新人教版高中数学函数的概念导学案 (2)

合集下载

高中数学必修一 《3 1 函数的概念及其表示》集体备课导学案

高中数学必修一 《3 1 函数的概念及其表示》集体备课导学案

【新教材】3.1.1 函数的概念(人教A版)1.理解函数的定义、函数的定义域、值域及对应法则。

2.掌握判定函数和函数相等的方法。

3.学会求函数的定义域与函数值。

重点:函数的概念,函数的三要素。

难点:函数概念及符号y=f(x)的理解。

一、预习导入阅读课本60-65页,填写。

1.函数的概念(1)函数的定义:设A,B是,如果按照某种确定的对应关系f,使对于集合A中的,在集合B中都有和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作.(2)函数的定义域与值域:函数y=f(x)中,x叫做,叫做函数的定义域,与x的值相对应的y值叫做,函数值的集合叫做函数的值域.显然,值域是集合B的.2.区间概念(a,b为实数,且a<b)3.其它区间的表示1.判断(正确的打“√”,错误的打“×”) (1)区间表示数集,数集一定能用区间表示. ( ) (2)数集{x |x ≥2}可用区间表示为[2,+∞]. ( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( ) (4)函数值域中每一个数在定义域中一定只有一个数与之对应.( ) (5)函数的定义域和值域一定是无限集合. ( ) 2.函数y =1x +1的定义域是 ( )A .[-1,+∞)B .[-1,0)C .(-1,+∞)D .(-1,0) 3.已知f (x )=x 2+1,则f ( f (-1))= ( ) A .2 B .3 C .4 D .5 4.用区间表示下列集合:(1){x |10≤x ≤100}用区间表示为________. (2){x |x >1}用区间表示为________.题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√xx ,g(x)=√x ;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 题型四 求函数的定义域 例4 求下列函数的定义域:(1)y=(x+2)|x |-x ; (2)f(x)=x 2-1x -1−√4-x . 跟踪训练四1.求函数y=√2x +3√2-x1x 的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x; ④y =2x -√x −1.跟踪训练五1.求下列函数的值域: (1)y = √2x +1 +1;(2)y =1−x 21+x 2.1.对于集合A ={x |0≤x ≤2},B ={y |0≤y ≤3},由下列图形给出的对应f 中,不能构成从A 到B 的函数有( )个A.1个B.2个C.3个D.4个2.函数()2121f x ax x =++的定义域为R ,则实数a 的取值范围为( )A .a >1B .0<a <1C .a <0D .a <13.函数f (x )=√x−1x+3的定义域为 A .{x|1≤x <3或x >3} B .{x|x >1} C .{x|1≤x <2} D .{x|x ≥1}4.已知函数f (2x +1)的定义域为(−2,0),则f (x )的定义域为( ) A.(−2,0)B.(−4,0)C.(−3,1)D.(−12,1)5.下列各组函数中,()f x 与()g x 相等的是( )A .()()2,2f x x g x x =-=-B .()()32,f x x g x ==C .()()22,2x f x g x x x=+=+D .()()22,1x x x f x g x x x-==- 6.集合A ={x |x ≤5且x ≠1}用区间表示____________.7.已知函数8()2f x x =-(1)求函数()f x 的定义域; (2)求(2)f -及(6)f 的值. 8.求下列函数的值域: (1)f (x )=211x x -+;(2)f (x )=x .答案小试牛刀1.(1)× (2) × (3)√ (4)× (5 )× 2.C 3.D4. (1)[10,100] (2)(1,+∞) 自主探究 例1 【答案】D 跟踪训练一【答案】C 例2 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以 它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 跟踪训练二【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 例3 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 跟踪训练三【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3).例4【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 跟踪训练四【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−√2-x+1x 的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32.∴函数f(2x+1)的定义域是[-1,32]. 例5【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.跟踪训练五【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 当堂检测1-5.CADCD 6.(,1)(1,5]-∞7.【答案】(1)()f x 的定义域为[3,2)(2,)-⋃+∞;(2)(2)1f -=-;(6)5f = 【解析】(1)依题意,20x -≠,且30x +≥,故3x ≥-,且2x ≠,即函数()f x 的定义域为[)()3,22,-⋃+∞. (2)()8223122f -=+-+=---,()8663562f =+=-. 8. 【答案】(1)(–∞,2)∪(2,+∞); (2)[–54,+∞). 【解析】(1)因为f (x )=()2131x x +-+=2–31x +,所以f (x )≠2, 所以函数f (x )的值域为(–∞,2)∪(2,+∞).(21x +(t≥0),则x=t 2–1,所以y=t 2–t –1(t≥0). 因为抛物线y=t 2–t –1开口向上,对称轴为直线t=12∈[0,+∞),所以当t=12时,y取得最小值为–54,无最大值,所以函数f(x)的值域为[–54,+∞).。

高中数学必修一新教材第3章 函数的概念与性质导学案

高中数学必修一新教材第3章  函数的概念与性质导学案

第三章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念1.函数的概念对吗?(2)f(x)与f(a)有何区别与联系?提示:(1)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y 是自变量的函数,当x 允许取某一具体值时,相应的y 值为与该自变量值对应的函数值.y =f (x )仅仅是函数符号,不表示“y 等于f 与x 的乘积”.在研究函数时,除用符号f (x )外,还常用g (x ),F (x ),G (x )等来表示函数.(2)f (x )与f (a )的区别与联系:f (a )表示当x =a 时,函数f (x )的值,是一个常量,而f (x )是自变量x 的函数,一般情况下,它是一个变量,f (a )是f (x )的一个特殊值,如一次函数f (x )=3x +4,当x =8时,f (8)=3×8+4=28是一个常数.2.区间及有关概念 (1)一般区间的表示设a ,b ∈R ,且a <b ,规定如下:(2)“∞”是数吗?如何正确使用“∞”?提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示. (2)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.1.函数y =1x +1的定义域是( ) A .[-1,+∞) B .[-1,0) C .(-1,+∞) D .(-1,0) 2.若f (x )=11-x 2,则f (3)=________. 3.用区间表示下列集合:(1){x |10≤x ≤100}用区间表示为________;(2){x|x>1}用区间表示为________.函数的概念【例1】(1)下列各组函数是同一函数的是()①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1.A.①②B.①③C.③④D.①④(2)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.1.判断对应关系是否为函数的2个条件(1)A,B必须是非空实数集.(2)A中任意一元素在B中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.2.判断函数相等的方法(1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.1.下列四个图象中,不是函数图象的是()A B C D2.下列各组函数中是相等函数的是()A .y =x +1与y =x 2-1x -1 B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 2 求函数值【例2】 设f (x )=2x 2+2,g (x )=1x +2, (1)求f (2),f (a +3),g (a )+g (0)(a ≠-2),g (f (2)). (2)求g (f (x )).[思路点拨] (1)直接把变量的取值代入相应函数解析式,求值即可; (2)把f (x )直接代入g (x )中便可得到g (f (x )).函数求值的方法(1)已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. (2)求f (g (a ))的值应遵循由里往外的原则.3.已知f (x )=x 3+2x +3,求f (1),f (t ),f (2a -1)和f (f (-1))的值. 求函数的定义域[探究问题]1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域? 提示:不可以.如f (x )=x +1x 2-1.倘若先化简,则f (x )=1x -1,从而定义域与原函数不等价.2.若函数y =f (x +1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y =f (x )的定义域是什么?提示:[1,2]是自变量x 的取值范围. 函数y =f (x )的定义域是x +1的范围[2,3]. 【例3】 求下列函数的定义域:(1)f(x)=2+3x-2;(2)f(x)=(x-1)0+2x+1;(3)f(x)=3-x·x-1;(4)f(x)=(x+1)2x+1-1-x.[思路点拨]要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可.(变结论)在本例求函数定义域的常用方法(1)若f(x)是分式,则应考虑使分母不为零.(2)若f(x)是偶次根式,则被开方数大于或等于零.(3)若f(x)是指数幂,则函数的定义域是使幂运算有意义的实数集合.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.1.对于用关系式表示的函数.如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合.这也是求某函数定义域的依据.2.函数的定义主要包括定义域和定义域到值域的对应法则,因此,判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.函数符号y=f(x)是学习的难点,它是抽象符号之一.首先明确符号“y=f(x)”为y是x的函数,它仅仅是函数符号,不是表示“y等于f与x的乘积”.1.思考辨析(1)区间表示数集,数集一定能用区间表示.()(2)数集{x|x≥2}可用区间表示为[2,+∞].()(3)函数的定义域和对应关系确定后,函数的值域也就确定了.()(4)函数值域中每一个数在定义域中一定只有一个数与之对应.()(5)函数的定义域和值域一定是无限集合.( ) 2.下列函数中,与函数y =x 相等的是( )A .y =(x )2B .y =x 2C .y =|x |D .y =3x 3 3.将函数y =31-1-x的定义域用区间表示为________.4.已知函数f (x )=x +1x , (1)求f (x )的定义域; (2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.3.1.2 函数的表示法 第1课时 函数的表示法函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗? 提示:不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D (x )=⎩⎨⎧0,x ∈Q ,1,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.1.已知函数f (x )由下表给出,则f (3)等于( )2.二次函数的图象的顶点为(0,-1),对称轴为y 轴,则二次函数的解析式可以为( )A .y =-14x 2+1B .y =14x 2-1 C .y =4x 2-16 D .y =-4x 2+16 3.已知函数y =f (x )的图象如图所示,则其定义域是______.函数的三种表示方法【例1】 某商场新进了10台彩电,每台售价3 000元,试求售出台数x 与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.在用三种方法表示函数时要注意:①解析法必须注明函数的定义域;②列表法中选取的自变量要有代表性,应能反映定义域的特征;③图象法中要注意是否连线.1.(1)某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )A B C D(2)由下表给出函数y=f(x),则f(f(1))等于()图象的画法及应用【例2】作出下列函数的图象并求出其值域.(1)y=-x,x∈{0,1,-2,3};(2)y=2x,x∈[2,+∞);(3)y=x2+2x,x∈[-2,2).描点法作函数图象的三个关注点(1)画函数图象时首先关注函数的定义域,即在定义域内作图.(2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象.(3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等.要分清这些关键点是实心点还是空心圈.提醒:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等.2.画出下列函数的图象:(1)y=x+1(x≤0);(2)y=x2-2x(x>1,或x<-1).函数解析式的求法[探究问题]已知f(x)的解析式,我们可以用代入法求f(g(x)),反之,若已知f(g(x)),如何求f(x).提示:若已知f(g(x))的解析式,我们可以用换元法或配凑法求f(x).【例3】(1)已知f(x+1)=x-2x,则f(x)=________;(2)已知函数f(x)是一次函数,若f(f(x))=4x+8,则f(x)=________;(3)已知函数f(x)对于任意的x都有f(x)-2f(-x)=1+2x,则f(x)=________.[思路点拨](1)用换元法或配凑法求解;(2)用待定系数法求解;(3)用方程组法求解.1.(变条件求函数解析式的四种常用方法(1)待定系数法:若已知f(x)的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.(2)换元法:设t=g(x),解出x,代入f(g(x)),求f(t)的解析式即可.(3)配凑法:对f(g(x))的解析式进行配凑变形,使它能用g(x)表示出来,再用x 代替两边所有的“g(x)”即可.(4)方程组法(或消元法):当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解.提醒:应用换元法求函数解析式时,务必保证函数在换元前后的等价性.1.函数有三种常用的表示方法,可以适时的选择,以最佳的方式表示函数.2.作函数图象必须要让作出的图象反映出图象的伸展方向,与x轴、y轴有无交点,图象有无对称性,并标明特殊点.3.求函数解析式的主要方法有:代入法、待定系数法、换元法、解方程组法(消元法),注意有的函数要注明定义域.1.思考辨析(1)任何一个函数都可以用解析法表示.()(2)函数的图象一定是定义区间上一条连续不断的曲线.()2.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.f(x)=3x-1B.f(x)=3x+1 C.f(x)=3x+2 D.f(x)=3x+43.已知函数f(x),g(x)分别由下表给出.4.已知函数f(x)=x2-2x(-1≤x≤2).(1)画出f(x)图象的简图;(2)根据图象写出f(x)的值域.第2课时分段函数分段函数如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.思考:分段函数是一个函数还是几个函数? 提示:分段函数是一个函数,而不是几个函数.1.下列给出的式子是分段函数的是( )①f (x )=⎩⎨⎧x 2+1,1≤x ≤5,2x ,x <1.②f (x )=⎩⎨⎧ x +1,x ∈R ,x 2,x ≥2.③f (x )=⎩⎨⎧ 2x +3,1≤x ≤5,x 2,x ≤1.④f (x )=⎩⎨⎧x 2+3,x <0,x -1,x ≥5.A .①②B .①④C .②④D .③④ 2.函数y =⎩⎨⎧x ,x ≥0,-x ,x <0的值域是________.3.函数f (x )=⎩⎨⎧x +1,x ≤1,-x +3,x >1,则f (f (4))=________.分段函数的求值问题【例1】已知函数f (x )=⎩⎨⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-3),f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52的值;(2)若f (a )=3,求实数a 的值.1.分段函数求函数值的方法:(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.已知函数值求字母取值的步骤: (1)先对字母的取值范围分类讨论. (2)然后代入不同的解析式中. (3)通过解方程求出字母的值.(4)检验所求的值是否在所讨论的区间内.提醒:求某条件下自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.1.函数f (x )=⎩⎨⎧x -3,x ≥10,f (f (x +5)),x <10,则f (7)=________.分段函数的解析式【例2】 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 关于x 的函数解析式,并画出大致图象.[思路点拨] 可按点E 所在的位置分E 在线段AB ,E 在线段AD 及E 在线段CD 三类分别求解.1.当目标在不同区间有不同的计算表达方式时,往往需要用分段函数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.2.通过本例让学生初步尝试用分段函数解决实际问题的意识,培养学生的建模素养.2.某市“招手即停”公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按照5公里计算). 如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.分段函数的图象及应用[探究问题]1.函数f (x )=|x -2|能用分段函数的形式表示吗?能否作出其图象? 提示:能.f (x )=⎩⎨⎧x -2,x ≥2,2-x ,x <2.函数f (x )的图象如图所示.2.结合探究点1,你能说一下画含有绝对值的函数图象的方法吗? 提示:含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.【例3】 已知函数f (x )=1+|x |-x2(-2<x ≤2). (1)用分段函数的形式表示f (x ); (2)画出f (x )的图象; (3)写出函数f (x )的值域.[思路点拨] (1)分-2<x <0和0≤x ≤2两种情况讨论,去掉绝对值可把f (x )写成分段函数的形式;(2)利用(1)的结论可画出图象;(3)由(2)中得到的图象,找到图象最高点和最低点的纵坐标,可得值域.把本例条件改为“分段函数图象的画法作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.1.分段函数是一个函数,而不是几个函数.2.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.3.分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一直角坐标系中,根据分段函数每段的定义区间和表达式依次画出图象,要注意确定每段图象的端点是空心点还是实心点,各段函数图象组合到一起就可得到整个分段函数的图象.1.思考辨析(1)分段函数由几个函数构成.( )(2)函数f (x )=⎩⎨⎧x +1,x ≤1,-x +3,x >1是分段函数.( )2.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=( )A.15 B .3 C.23 D.1393.函数y =f (x )的图象如图所示,则其解析式为________.4.已知f (x )=⎩⎨⎧x 2,-1≤x ≤1,1,x >1或x <-1.(1)画出f (x )的图象; (2)求f (x )的定义域和值域.3.2 函数的基本性质 3.2.1 单调性与最大(小)值 第1课时 函数的单调性1.增函数与减函数的定义12提示:定义中的x1,x2有以下3个特征:(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1<x2;(3)属于同一个单调区间.2.函数的单调性与单调区间如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.思考2:函数y=1x在定义域上是减函数吗?提示:不是.y =1x 在(-∞,0)上递减,在(0,+∞)上也递减,但不能说y =1x 在(-∞,0)∪(0,+∞)上递减.1.函数y =f (x )的图象如图所示,其增区间是( ) A .[-4,4] B .[-4,-3]∪[1,4] C .[-3,1] D .[-3,4]2.下列函数中,在区间(0,+∞)上是减函数的是( ) A .y =-1x B .y =x C .y =x 2 D .y =1-x 3.函数f (x )=x 2-2x +3的单调减区间是________. 求函数的单调区间【例1】 求下列函数的单调区间,并指出该函数在其单调区间上是增函数还是减函数.(1)f (x )=-1x ;(2)f (x )=⎩⎨⎧2x +1,x ≥1,5-x ,x <1;(3)f (x )=-x 2+2|x |+3.求函数单调区间的方法(1)利用基本初等函数的单调性,如本例(1)和(2),其中分段函数的单调区间要根据函数的自变量的取值范围分段求解;(2)利用函数的图象,如本例(3).提醒:若所求出函数的单调增区间或单调减区间不唯一,函数的单调区间之间要用“,”隔开,如本例(3).1.(1)根据如图所示,写出函数在每一单调区间上函数是增函数还是减函数;(2)写出y =|x 2-2x -3|的单调区间. 函数单调性的判定与证明【例2】 证明函数f (x )=x +1x 在(0,1)上是减函数. [思路点拨] 设元0<x 1<x 2<1―→作差:f (x 1)-f (x 2) ――→变形判号:f (x 1)>f (x 2)――→结论减函数利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f (x 1)-f (x 2)的符号.(4)结论:根据f (x 1)-f (x 2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.2.试用函数单调性的定义证明:f (x )=2x x -1在(1,+∞)上是减函数.函数单调性的应用[探究问题]1.若函数f (x )是其定义域上的增函数,且f (a )>f (b ),则a ,b 满足什么关系.如果函数f (x )是减函数呢?提示:若函数f (x )是其定义域上的增函数,那么当f (a )>f (b )时,a >b ;若函数f (x )是其定义域上的减函数,那么当f (a )>f (b )时,a <b .2.决定二次函数f (x )=ax 2+bx +c 单调性的因素有哪些? 提示:开口方向和对称轴的位置,即字母a 的符号及-b2a 的大小.【例3】 (1)若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是________.(2)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x -6),则实数x 的取值范围为________.[思路点拨] (1)分析f (x )的对称轴与区间的关系――→数形结合建立关于a 的不等式――→ 求a 的范围(2)f (2x -3)>f (5x -6)――――――――――――――――→f (x )在(-∞,+∞)上是增函数建立关于x 的不等式――→ 求x 的范围1.(变条件函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.1.定义单调性时应强调x 1,x 2在其定义域内的任意性,其本质是把区间上无限多个函数值的大小比较转化为两个任意值的大小比较.2.证明函数的单调性(利用定义)一定要严格遵循设元、作差、变形、 定号、结论的步骤,特别在变形上,一定要注意因式分解、配方等技巧的运用,直到符号判定水到渠成才可.3. 已知函数单调性求参数的范围时,要树立两种意识:一是等价转化意识, 如f (x )在D 上递增,则f (x 1)<f (x 2)⇔x 1<x 2.二是数形结合意识,如处理一(二)次函数及反比例函数中的含参数的范围问题.1.思考辨析(1)所有的函数在其定义域上都具有单调性.( )(2)若函数y =f (x )在区间[1,3]上是减函数,则函数y =f (x )的单调递减区间是[1,3].( )(3)函数f (x )为R 上的减函数,则f (-3)>f (3).( )(4)若函数y =f (x )在定义域上有f (1)<f (2),则函数y =f (x )是增函数.( ) (5)若函数f (x )在(-∞,0)和(0,+∞)上单调递减,则f (x )在(-∞,0)∪(0,+∞)上单调递减.( )2.如图是定义在区间[-5,5]上的函数y =f (x ),则下列关于函数f (x )的说法错误的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上没有单调性 3.如果函数f (x )=x 2-2bx +2在区间[3,+∞)上是增函数,则b 的取值范围为( )A .b =3B .b ≥3C .b ≤3D .b ≠3 4.证明:函数y =x x +1在(-1,+∞)上是增函数.第2课时 函数的最大(小)值函数最大值与最小值提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才是函数的最大值,否则不是.1.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是()A.-1,0B.0,2 C.-1,2 D.12,22.设函数f(x)=2x-1(x<0),则f(x)()A.有最大值B.有最小值C.既有最大值又有最小值D.既无最大值又无最小值3.函数f(x)=1x,x∈[1,2],则f(x)的最大值为________,最小值为________.利用函数的图象求函数的最值(值域)【例1】 已知函数f (x )=⎩⎨⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在直角坐标系内画出f (x )的图象;(2)根据函数的图象写出函数的单调区间和值域.利用图象求函数最值的方法 (1)画出函数y =f (x )的图象;(2)观察图象,找出图象的最高点和最低点;(3)写出最值,最高点的纵坐标是函数的最大值,最低点的纵坐标是函数的最小值.1.已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1x ,x >1,求f (x )的最大值、最小值.利用函数的单调性求最值(值域)【例2】 已知函数f (x )=2x +1x +1. (1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论; (2)求该函数在区间[2,4]上的最大值和最小值.1.利用单调性求函数的最大(小)值的一般步骤 (1)判断函数的单调性. (2)利用单调性求出最大(小)值. 2.函数的最大(小)值与单调性的关系(1)若函数f (x )在区间[a ,b ]上是增(减)函数,则f (x )在区间[a ,b ]上的最小(大)值是f (a ),最大(小)值是f (b ).(2)若函数f (x )在区间[a ,b ]上是增(减)函数,在区间[b ,c ]上是减(增)函数,则f (x )在区间[a ,c ]上的最大(小)值是f (b ),最小(大)值是f (a )与f (c )中较小(大)的一个.提醒:(1)求最值勿忘求定义域.(2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错误,求解时一定注意.2.求函数f(x)=x+4x在[1,4]上的最值.函数最值的实际应用【例3】一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元.(年利润=年销售总收入-年总投资)(1)求y(万元)与x(件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?解实际应用题的四个步骤(1)审题:解读实际问题,找出已知条件、未知条件,确定自变量和因变量的条件关系.(2)建模:建立数学模型,列出函数关系式.(3)求解:分析函数性质,利用数学知识探究问题解法(一定注意自变量的取值范围).(4)回归:数学问题回归实际问题,写出答案.3.将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润为多少?二次函数的最值问题[探究问题]1.二次函数f (x )=ax 2+bx +c (a >0)的对称轴与区间[m ,n ]可能存在几种位置关系,试画草图给予说明?提示:2.求二次函数f (x )=ax 2+bx +c 在[m ,n ]上的最值,应考虑哪些因素? 提示:若求二次函数f (x )在[m ,n ]上的最值,应考虑其开口方向及对称轴x =-b2a 与区间[m ,n ]的关系.【例4】 已知函数f (x )=x 2-ax +1,求f (x )在[0,1]上的最大值. [思路点拨] f (x )=x 2-ax +1――→分类讨论分析x =a 2与[0,1]的关系――→数形结合求f (x )的最大值1.在题设条件不变的情况下,求f (x )在[0,1]上的最小值.2.在本例条件不变的情况下,若a =1,求f (x )在[t ,t +1](t ∈R )上的最小值.二次函数在闭区间上的最值设f (x )=ax 2+bx +c (a >0),则二次函数f (x )在闭区间[m ,n ]上的最大值、最小值有如下的分布情况:1.函数的最大(小)值,包含两层意义:一是存在,二是在给定区间上所有函数值中最大(小)的,反映在函数图象上,函数的图象有最高点或最低点.2.求函数的最值与求函数的值域类似,常用的方法是:(1)图象法,即画出函数的图象,根据图象的最高点或最低点写出最值;(2)单调性法,一般需要先确定函数的单调性,然后根据单调性的意义求出最值;(3)对于二次函数还可以用配方法研究,同时灵活利用数形结合思想和分类讨论思想解题.3.通过函数最值的学习,渗透数形结合思想,树立以形识数的解题意识.1.思考辨析(1)任何函数都有最大(小)值.()(2)函数f(x)在[a,b]上的最值一定是f(a)(或f(b)).()(3)函数的最大值一定比最小值大.()2.函数y=x2-2x,x∈[0,3]的值域为()A.[0,3]B.[-1,0] C.[-1,+∞)D.[-1,3]3.函数y=ax+1在区间[1,3]上的最大值为4,则a=______.4.已知函数f(x)=2x-1(x∈[2,6]).(1)判断函数f(x)的单调性,并证明;(2)求函数的最大值和最小值.3.2.2 奇偶性 第1课时 奇偶性的概念函数的奇偶性提示:定义域关于原点对称.1.下列函数是偶函数的是( )A .y =xB .y =2x 2-3 C .y =1xD .y =x 2,x ∈[0,1]2.下列图象表示的函数具有奇偶性的是( )A B C D3.函数y =f (x ),x ∈[-1,a ](a >-1)是奇函数,则a 等于( ) A .-1 B .0 C .1 D .无法确定4.若f (x )为R 上的偶函数,且f (2)=3,则f (-2)=________. 函数奇偶性的判断【例1】 判断下列函数的奇偶性: (1)f (x )=x 3+x ;(2)f (x )=1-x 2+x 2-1; (3)f (x )=2x 2+2xx +1;(4)f (x )=⎩⎨⎧x -1,x <0,0,x =0,x +1,x >0.判断函数奇偶性的两种方法 (1)定义法:(2)图象法:1.下列函数中,是偶函数的有________.(填序号) ①f (x )=x 3;②f (x )=|x |+1;③f (x )=1x 2; ④f (x )=x +1x ;⑤f (x )=x 2,x ∈[-1,2]. 奇偶函数的图象问题【例2】已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.(变条件)将本例中的“奇函数”改为“偶函数”,再求解上述问题.巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称.(2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.2.如图是函数f(x)=1x2+1在区间[0,+∞)上的图象,请据此在该坐标系中补全函数f(x)在定义域内的图象,请说明你的作图依据.利用函数的奇偶性求值[探究问题]1.对于定义域内的任意x,若f(-x)+f(x)=0,则函数f(x)是否具有奇偶性?若f(-x)-f(x)=0呢?提示:由f(-x)+f(x)=0得f(-x)=-f(x),∴f(x)为奇函数.由f(-x)-f(x)=0得f(-x)=f(x),∴f(x)为偶函数.2.若f(x)是奇函数且在x=0处有定义,则f(0)的值可求吗?若f(x)为偶函数呢?提示:若f(x)为奇函数,则f(0)=0;若f(x)为偶函数,无法求出f(0)的值.【例3】(1)若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;(2)已知f(x)=x7-ax5+bx3+cx+2,若f(-3)=-3,则f(3)=________.[思路点拨](1)f(x)是偶函数――→定义域关于原点对称求a的值――→图象关于y轴对称求b的值(2)令g(x)=x7-ax5+bx3+cx―→判断g(x)的奇偶性―→计算g(-3)―→代入求得f(3)利用奇偶性求参数的常见类型及策略(1)定义域含参数:奇、偶函数f(x)的定义域为[a,b],根据定义域关于原点对称,利用a+b=0求参数.(2)解析式含参数:根据f(-x)=-f(x)或f(-x)=f(x)列式,比较系数即可求解.3.若f(x)=(x+a)(x-4)为偶函数,则实数a=________.1.奇偶性是函数“整体”性质,只有对函数f(x)定义域内的每一个值x,都有f(-x)=-f(x)(或f(-x)=f(x)),才能说f(x)是奇函数(或偶函数).2.函数的奇偶性是其相应图象特殊对称性的反映,也体现了在关于原点对称的定义域的两个区间上函数值及其性质的相互转化,这是对称思想的应用.1.思考辨析(1)函数f(x)=x2,x∈[0,+∞)是偶函数.()(2)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.()(3)不存在既是奇函数,又是偶函数的函数.()(4)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数.()2.函数f(x)=|x|+1是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数3.已知函数f (x )=ax 2+2x 是奇函数,则实数a =______.4.已知函数y =f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象,如图所示.(1)请补出完整函数y =f (x )的图象; (2)根据图象写出函数y =f (x )的增区间; (3)根据图象写出使f (x )<0的x 的取值集合.第2课时 奇偶性的应用用奇偶性求解析式【例1】 (1)函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=-x +1,求f (x )的解析式;(2)设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=1x -1,求函数f (x ),g (x )的解析式.[思路点拨] (1)设x <0,则-x >0――→当x >0f (x )=-x +1求f (-x )――→奇函数得x <0时f (x )的解析式――→奇函数的性质f (0)=0――→分段函数f (x )的解析式(2)f (x )+g (x )=1x -1――→用-x 代式中x得f (-x )+g (-x )=1-x -1――→奇偶性得f (x )-g (x )=-1x +1――→解方程组得f (x ),g (x )的解析式把本例(2)利用函数奇偶性求解析式的方法(1)“求谁设谁”,既在哪个区间上求解析式,x 就应在哪个区间上设. (2)要利用已知区间的解析式进行代入.(3)利用f (x )的奇偶性写出-f (x )或f (-x ),从而解出f (x ).提醒:若函数f (x )的定义域内含0且为奇函数,则必有f (0)=0,但若为偶函数,未必有f (0)=0.函数单调性和奇偶性的综合问题[探究问题]1.如果奇函数f (x )在区间(a ,b )上单调递增,那么f (x )在(-b ,-a )上的单调性如何?如果偶函数f (x )在区间(a ,b )上单调递减,那么f (x )在(-b ,-a )上的单调性如何?提示:如果奇函数f (x )在区间(a ,b )上单调递增,那么f (x )在(-b ,-a )上单调递增;如果偶函数f (x )在区间(a ,b )上单调递减,那么f (x )在(-b ,-a )上单调递增.2.你能否把上述问题所得出的结论用一句话概括出来?提示:奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反.3.若偶函数f (x )在(-∞,0)上单调递增,那么f (3)和f (-2)的大小关系如何?。

高一数学《基本初等函数》导学案(参考答案)

高一数学《基本初等函数》导学案(参考答案)

第二章 基本初等函数第二节 指数函数及其性质 (第2课时)参考答案【自主认知】 1.y 与x 之间满足y=2x (x ∈N *).2.y 与x 之间满足y= (x ∈N *).3.因为对于每一个x 都有唯一的y 与之对应,因此按照函数的定义这两个关系式都可构成函数.它们与函数y=x 2的区别在于前者的自变量都在指数的位置上,而y=x 2的自变量在底数的位置上.y=a x (a>0且a ≠1) 自变量 R【合作探究】不能.因为当a<0时,a x 不一定有意义,如(-2)x ;当a=0时,0x 不一定有意义,如00,0-2,故a 的取值范围不能小于或等于0.2.不一定,当限定a>0且a ≠1时,才是指数函数3.因为指数函数的解析式为y=a x (a>0,且a ≠1),故要确定指数函数的解析式,只需确定a 的值.【典型例题】 1.选B.y=2-x = 故此函数是指数函数,且为减函数,故选B. 2. 要使函数f(x)有意义,需2x -1≥0,即2x ≥1,故x ≥0.答案:[0,+∞)3.【解题指南】(1)观察函数解析式的形式看是否满足指数函数的定义,然后再下结论.(2)已知是指数函数时,需紧扣指数函数解析式的特点,让a x 的系数为1,列出a 的方程,进而求出a 的值,检验可得答案.【解析】(1)选B.函数y=2·3x ,y=3x+1,y=x x 均不符合指数函数解析式的特征,不是指数函数,而y=πx 符合指数函数的定义,是指数函数.(2)由题意a 2-3a+3=1,即a 2-3a+2=0.解得a=1或a=2,而a=1不符合指数函数的定义,故a=2.答案:24.选C.令(a-2)2=1,得a=3或a=1,当a=1时不符合题意舍去,故a=3.【变式拓展】【解题指南】1.取特殊值,令x=1,得到的y 值即为a,b,c,d 的值,通过观察图象即可确定大小关系.2.先考虑去掉绝对值,然后画出函数的图象求解.【解析】1.选D.过点(1,0)作直线x=1,在第一象限内分别与各曲线相交,可知1<d<c,b<a<1,故b<a<1<d<c.2.当x ≥0时,y=5|x|=5x ;当x<0时,y=5|x|=5-x = .所以函数y=5|x|的图象如图所示.四、随堂检测x 1(),2x 1()5x 1()21. 选C.①不是指数函数,自变量不在指数上;②中2x的系数为-1,故不是指数函数;③自变量不在指数上,不是指数函数;④⑤符合指数函数定义的形式,是指数函数.2. 选D.点(a,9)在函数y=3x的图象上,所以3a=9,a=2,所以tan=tan60°=.3. 选B.因为3x>0,所以3x+1>1,即函数的值域是(1,+∞).4. 选B.由函数的图象在第一、三、四象限可知,此函数应为递增的,故a>1,又过定点(0,-b),此点应在y轴的负半轴上,则-b<0,即b>0.5. 令t=x2-2x+2,则y=,又t=x2-2x+2=(x-1)2+1,因为0≤x≤3,所以当x=1时,t min=1;当x=3时,t max=5.故1≤t≤5,所以≤y≤,故所求函数的值域为.。

新人教版数学选修2-2全册导学案精品(全品学案)

新人教版数学选修2-2全册导学案精品(全品学案)

1.1. 3 │ 考点类析
1.1. 3 │ 考点类析
1.1. 3 │ 考点类析
1.1. 3 │ 考点类析
► 考点二 利用图像理解导数的几何意义
1.1. 3 │ 考点类析
y轴 x轴 锐角 钝角
1.1. 3 │ 考点类析
1.1. 3 │ 考点类析
1.1. 3 │ 考点类析
1.1. 3 │ 考点类析
1. 2.2 │ 考点类析
1. 2.2 │ 考点类析
► 考点二导数的运算法则在求导中的应用 可导
f1′(x)±f2′(x)±…±fn′(x) af′(x)+bg′(x)
1. 2.2 │ 考点类析
1. 2.2 │ 考点类析
1. 2.2 │ 考点类析
1. 2.2 │ 考点类析
1. 2.2 │ 考点类析
1. 2.2 │ 考点类析
► 考点三 导数公式及运算法则在切线方程中的应用
切线
导数值 曲线
1. 2.2 │ 考点类析
1. 2.2 │ 考点类析
1. 2.2 │ 考点类析
1. 2.2 │ 考点类析
1. 2.2 │ 考点类析
► 考点三 复合函数求导
1. 2.2 │ 考点类析
1.1.2 │ 三维目标
三维目标
【知识与技能】 (1)感受平均变化率的实际背景,理解函数的平均变化率的概 念,会求函数的平均变化率. (2)通过大量的实例的分析,经历由平均变化率过渡到瞬时变 化率的过程,了解导数概念的实际背景,知道瞬时变化率就是 导数. 【过程与方法】 (1)经历由实例抽象出平均变化率的过程,体会平均变化率的 思想及内涵,培养学生观察、归纳、类比、猜想、验证的数学 思想,体验由特殊到一般的逻辑思维过程.

高中数学《函数的概念》导学案

高中数学《函数的概念》导学案

第一章 集合与函数概集合 1.2.1 函数的概念一、学习目标1.理解函数的概念,了解构成函数的三要素;2.会判断给出的两个函数是否是同一函数;3.能正确使用区间表示数集,会求函数定义域、值域及函数相等的判断。

【重点、难点】重点:理解函数的概念,用区间符号正确表示数的集合;难点:对函数概念及符号y=f(x)的理解,求函数定义域和值域。

二、学习过程【情景创设】初中的函数的定义是什么?初中学过哪些函数?设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义.初中已经学过:正比例函数、反比例函数、一次函数、二次函数等。

【导入新课】问题1:对教科书中第15页的实例(1),你能得出炮弹飞行1s,5s,10s,20s 时距地面多高吗?其中t 的取值范围是什么?(点拨:用解析式刻画变量之间的对应关系,关注t 和h 的范围)解:h(1)= ,h(5)= , h(10)= , h(20)= 炮弹飞行时间t 的变化范围是数集{026}A x x =≤≤,炮弹距地面的高度h 的变化范围是数集{0845}B h h =≤≤,对应关系21305h t t =- (*)。

从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(*),在数集B 中都有唯一确定的高度h 和它对应。

问题2:对教科书中第15页的实例(2),你能从图中可以看出哪一年臭氧空洞面积最大?哪些年的臭氧空洞面积大约为2000万平方千米?其中t 的取值范围是什么?(点拨:用图像刻画变量之间的对应关系)。

例子(2)中数集{19792001}A t t =≤≤,{026}B S S =≤≤,并且对于数集A 中的任意一个时间t ,按图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应。

新课标高中数学人教A版必修1全册导学案及答案(105页).pdf

新课标高中数学人教A版必修1全册导学案及答案(105页).pdf

课题:1.1.1集合的含义与表示(1)一、三维目标:知识与技能:了解集合的含义,体会元素与集合的属于关系;掌握常用数集及其记法、集合中元素的三个特征。

过程与方法:通过实例了解,体会元素与集合的属于关系。

情感态度与价值观:培养学生的应用意识。

二、学习重、难点:重点:掌握集合的基本概念。

难点:元素与集合的关系。

三、学法指导:认真阅读教材P 1-P 3,对照学习目标,完成导学案,适当总结。

四、知识链接:军训前学校通知:8月13日8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?初中时你听说过“集合”这一词吗?你在学习那些知识点中提到了“集合” 这一词?(试举几例)五、学习过程:1、阅读教材P 2 页8个例子问题1:总结出集合与元素的概念:问题2:集合中元素的三个特征:问题3:集合相等:问题4:课本P 3的思考题,并再列举一些集合例子和不能构成集合的例子。

2、集合与元素的字母表示: 集合通常用大写的拉丁字母A ,B ,C …表示,集合的元素用小写的拉丁字母a,b,c,…表示。

问题5:元素与集合之间的关系?A 例1:设A 表示“1----20以内的所有质数”组成的集合,则3、4与A 的关系?B 例2:若+∈N x ,则N x ∈,对吗?六、达标检测:A 1.判断以下元素的全体是否组成集合:(1)大于3小于11的偶数; ( ) (2)我国的小河流; ( ) (3)非负奇数; ( ) (4)本校2009级新生; ( ) (5)血压很高的人; ( ) (6)著名的数学家; ( ) (7)平面直角坐标系内所有第三象限的点 ( ) A 2.用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4; (5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A ;B 3.下面有四个语句:①集合N 中最小的数是1;②若N a ∉−,则N a ∈;③若N a ∈,N b ∈,则b a +的最小值是2;④x x 442=+的解集中含有2个元素;其中正确语句的个数是( )A.0B.1C.2D.3B 4.已知集合S 中的三个元素a,b,c 是∆ABC 的三边长,那么∆ABC 一定不是 ( )A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形B 5. 已知集合A 含有三个元素2,4,6,且当A a ∈,有6-a ∈A ,那么a 为 ( )A .2 B.2或4 C.4 D.0B 6. 设双元素集合A 是方程x 2-4x+m=0的解集,求实数m 的取值范围。

山东省冠县第一中学人教版高中数学必修一导学案《1-2-1 函数的表示法(二)》 Word版无答案

山东省冠县第一中学人教版高中数学必修一导学案《1-2-1 函数的表示法(二)》 Word版无答案

函数的概念 一、学习目标通过丰富实例,使同学建立起函数概念的背景,体会函数是描述变量之间依靠关系的重要数学模型,能用集合与对应的语言来刻画函数,培育同学的抽象概括力量,体会对应关系在刻画函数概念中的作用;了解构成函数的三个要素,会求一些简洁函数的定义域和值域;了解区间的概念,体会区间表示集合的意义与作用,会推断两个函数是否相等.重点:函数概念的理解,函数的三要素;难点:函数概念及符号)(x f y =的理解 二、学问回顾(你已做好学问预备了吗?你肯定还记得以下学问吧!) 1. 函数在学校是怎样定义的? 2.填表函数一次函数二次函数反比例函数0>a0<a解析式 X 的范围 Y 的范围三、预习自学(自主学习课本15~19 页,了解本节学问点) 1.函数的概念:(结合课本实例,形成函数概念)设B A 、.是两个 的 ,假如依据某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有 确定的数()x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数. 记作A x ∈.2.函数的三要素:在函数()x f y =中,其中x 叫 ,x 的取值范围A 叫做函数的 ,与x 的值相对应的y 的值 叫做 ,函数值的集合(){}A x x f ∈|叫做函数的 ,那么值域是集合B 的 .(留意:函数的定义域与函数的值域都是以集合的形式呈现的) 、 和 是函数的三个构成要素.3.区间的概念?如何用区间表示数集?(规定,符号)4.相等函数 : 四、探究合作(师生互动,合作探究,分组呈现,点拨提升!) 问题:下面哪些能构成集合A 到集合B 的函数 (1)某位同学的几次考试状况如下:序号(数) 1 2 3 4 5 6 分数909390因病缺考9892集合{}{},92,98,93,90,6,5,4,3,2,1==B A 能否构成集合A 到集合B 的函数? (2)高一(6)班的同学组成集合A ,教室里的座椅组成集合B ,每一位同学都有唯一的一个座椅,班上还有空椅子.这能否算作一个集合A 到集合B 的函数的例子? 思考:1.理解函数B A f →:的概念你认为应把握哪几个关键词?2.函数的构成要素有哪些?一个函数必需具备全部要素吗?这些要素之间有什么关系?3.你认为若要判定两个函数相等,至少要满足什么条件?4.符号()x f 是什么意思?()()x f a f 与有什么区分?5.函数的图像既可以是连续的曲线,也可以是直线、折线、离散的点等等。

人教版高中数学必修2全册导学案及答案

人教版高中数学必修2全册导学案及答案

人教版高中数学必修2全册导学案及答案全文表达流畅,无影响阅读体验的问题。

为了确保文章的质量,我认为在回答你的提问之前,有必要对导学案和答案的特点进行一下了解。

人教版高中数学必修2全册导学案是教师在备课过程中为了引导学生自主学习而准备的一份辅助教材。

它通常包含了本课时的学习目标、学习内容的整理、学习方法指导和相关习题等。

这些内容对于学生来说是非常重要的,因为通过导学案,学生可以在自主学习的过程中得到更好的指导和帮助。

作为导学案的一部分,答案的提供也是非常重要的。

学生在自学过程中,可以通过对答案的核对来检验自己的学习情况,找出自己的问题所在,并及时进行纠正和补充学习。

根据题目要求,我将按照导学案的格式布局,提供必修2全册的导学案及答案。

这样你可以更方便地进行自主学习,并通过对答案的核对来加深对数学知识的理解。

导学案及答案第一章函数与导数1.1 函数的概念与表示学习目标:1. 了解函数的基本概念;2. 掌握用集合、映射等方法表示函数的方法。

学习内容:1. 函数的定义;2. 函数的表示方法;3. 函数的性质。

学习方法指导:1. 仔细阅读教材相关内容,理解函数的定义;2. 注意区分自变量和因变量的概念;3. 多做一些例题,加深对函数表示方法的理解。

习题:1. 设函数f(x) = 2x + 3,求f(1)的值;2. 函数y = x^2的图象为抛物线,确定该函数的定义域和值域。

答案:1. 将x = 1带入函数f(x),得到f(1) = 2(1) + 3 = 5。

2. 函数y = x^2的定义域为全体实数集R,值域为非负实数集[0,+∞)。

......根据上述导学案的格式,我将为你提供人教版高中数学必修2全册的导学案及答案。

由于篇幅限制,本文无法将全册的导学案及答案一一列出。

但你可以根据此示例并借鉴此格式,自行拟定其他章节的导学案及答案。

希望上述内容对你有所帮助,祝你学习顺利!。

高三数学导学案004函数的概念及其表示2

高三数学导学案004函数的概念及其表示2

函数及其表示【2013年高考会这样考】1.主要考查函数的定义域、值域、解析式的求法.2.考查分段函数的简单应用.3.由于函数的基础性强,渗透面广,所以会与其他知识结合考查.【复习指导】掌握:(1)求函数的定义域的方法;(2)求函数解析式的基本方法;(3)分段函数及其应用.基础梳理1.函数的基本概念(1)函数的定义:设A、B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A. (2)函数的定义域、值域在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合{f(x)|x∈A}叫值域.值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.两个防范(1)解决函数问题,必须优先考虑函数的定义域. (2)用换元法解题时,应注意换元前后的等价性. 三个要素函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f :A →B 的三要素是两个集合A 、B 和对应关系f .双基自测1.(人教A 版教材习题改编)函数f (x )=log 2(3x +1)的值域为( ). A .(0,+∞) B .[0,+∞) C .(1,+∞) D .[1,+∞)解析 ∵3x +1>1,∴f (x )=log 2(3x +1)>log 21=0. 答案 A2.(2011·江西)若f (x )=1log 122x +1,则f (x )的定义域为( ). A.⎝ ⎛⎭⎪⎫-12,0 B.⎝ ⎛⎦⎥⎤-12,0 C.⎝ ⎛⎭⎪⎫-12,+∞ D .(0,+∞)解析 由log 12(2x +1)>0,即0<2x +1<1,解得-12<x <0.答案 A3.下列各对函数中,表示同一函数的是( ). A .f (x )=lg x 2,g (x )=2lg x B .f (x )=lg x +1x -1,g (x )=lg(x +1)-lg(x -1) C .f (u )=1+u1-u,g (v )= 1+v1-vD .f (x )=(x )2,g (x )=x 2 答案 C4.(2010·陕西)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( ). A .y =⎣⎢⎡⎦⎥⎤x 10B .y =⎣⎢⎡⎦⎥⎤x +310 C .y =⎣⎢⎡⎦⎥⎤x +410 D .y =⎣⎢⎡⎦⎥⎤x +510 解析 根据规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表,即余数分别为7、8、9时可增选一名代表.因此利用取整函数可表示为y =⎣⎢⎡⎦⎥⎤x +310.故选B. 答案 B5.函数y =f (x )的图象如图所示.那么,f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是________.答案 [-3,0]∪[2,3] [1,5] [1,2)∪(4,5]考向一 求函数的定义域【例1】►求下列函数的定义域: (1)f (x )=|x -2|-1log 2x -1;(2)f (x )=ln x +1-x 2-3x +4. [审题视点] 理解各代数式有意义的前提,列不等式解得.解(1)要使函数f (x )有意义,必须且只须⎩⎨⎧|x -2|-1≥0,x -1>0,x -1≠1.解不等式组得x ≥3,因此函数f (x )的定义域为[3,+∞). (2)要使函数有意义,必须且只须⎩⎨⎧x +1>0,-x 2-3x +4>0,即⎩⎨⎧x >-1,x +4x -1<0,解得:-1<x <1.因此f (x )的定义域为(-1,1).求函数定义域的主要依据是(1)分式的分母不能为零;(2)偶次方根的被开方式其值非负;(3)对数式中真数大于零,底数大于零且不等于1.考向二 求函数的解析式【例2】►(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x );(2)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.[审题视点] (1)用代换法求解;(2)构造方程组求解. 解 (1)令t =2x +1,则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1. (2)x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).求函数解析式的方法主要有:(1)代入法;(2)换元法;(3)待定系数法;(4)解函数方程等.【训练2】 (1)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,试求f (x )的表达式.(2)已知f (x )+2f (1x)=2x +1,求f (x ).解 (1)由题意可设f (x )=ax 2+bx (a ≠0),则a (x +1)2+b (x +1)=ax 2+bx +x +1 ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1 ∴⎩⎨⎧2a +b =b +1,a +b =1,解得a =12,b =12.因此f (x )=12x 2+12x .(2)由已知得⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =2x +1,f ⎝ ⎛⎭⎪⎫1x +2f x =2x +1,消去f ⎝ ⎛⎭⎪⎫1x ,得f (x )=4+x -2x 23x.考向三 分段函数【例3】►(2011·辽宁)设函数f (x )=⎩⎨⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( ).A .[-1,2]B .[0,2]C .[1,+∞) D.[0,+∞) [审题视点] 对于分段函数应分段求解,最后再求其并集. 解析 f (x )≤2⇔⎩⎨⎧x ≤1,21-x≤2或⎩⎨⎧x >1,1-log 2x ≤2⇔0≤x ≤1或x >1,故选D.分段函数是一类重要的函数模型.解决分段函数问题,关键抓住在不同的段内研究问题,如本例中,需分x ≤1和x >1时分别解得x 的范围,再求其并集.一、选择题1.已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±12.已知函数f (x )=⎩⎨⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12B.45 C .2 D .93.定义x ⊗y =x 3-y ,则h ⊗(h ⊗h )=( ) A .-h B .0 C .h D .h 34.已知函数f (x )的图象是两条线段(如图,不含端点),则f⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13=( )A .-13 B.13C .-23 D.235.(2012·济南模拟)已知函数f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2,则f (3)=( )A .8B .9C .11D .10二、填空题6.已知函数f (x )=⎩⎨⎧x 2+2ax ,x ≥22x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.7.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.答案:g (x )=9-2x 三、解答题 8.若函数f (x )=xax +b(a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2; 由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0, 解此方程得x =0或x =1-ba , 又因方程有唯一解,∴1-ba =0, 解得b =1,代入2a +b =2得a =12,∴f (x )=2x x +2. 9.设x ≥0时,f (x )=2;x <0时,f (x )=1,又规定:g (x )=3f (x -1)-f (x -2)2(x >0),试写出y =g (x )的表达式,并画出其图象.解:当0<x <1时,x -1<0,x -2<0, ∴g (x )=3-12=1; 当1≤x <2时,x -1≥0,x -2<0, ∴g (x )=6-12=52; 当x ≥2时,x -1>0,x -2≥0, ∴g (x )=6-22=2.故g (x )=⎩⎪⎨⎪⎧1,(0<x <1),52,(1≤x <2),2,(x ≥2).其图象如图学后反思:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------。

高中数学《正弦函数、余弦函数的性质(二)》导学案

高中数学《正弦函数、余弦函数的性质(二)》导学案
∵0°<150°<170°<180°,且y=cosx在[0°,180°]上是减函数,
∴cos 150°>cos 170°,即cos 870°>sin 980°.
三、课堂练习
1.y=2sin(3x+ )的值域是()
A.[-2,2]B.[0,2]C.[-2,0]D.[-1,1]
解析因为sin(3x+ )∈[-1,1],所以y∈[-2,2].答案A
2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.
五、作业布置
课后作业:各班结合自己情况布置
六、教学反思
3.函数f(x)= cos(2x- )的单减区间是________.
解析令2kπ≤2x- ≤π+2kπ,k∈Z,得 +kπ≤x≤ +kπ,k∈Z,
即f(x)的单减区间是[ +kπ, +kπ](k∈Z).
答案[ +kπ, +kπ](k∈Z)
4.函数y=cos(x+ ),x∈[0, ]的值域是________.
即 +kπ≤x≤π+kπ,(k∈Z),
故y=cos 2x的单增区间是[ +kπ,π+kπ](k∈Z),则当k=0时为[ ,π],故选D.答案D
(2)求函数y=1+sin ,x∈[-4π,4π]的单调减区间.
解y=1+sin =-sin +1.
由2kπ- ≤ x- ≤2kπ+ (k∈Z).
解得4kπ- ≤x≤4kπ+ π(k∈Z).又∵x∈[-4π,4π],
∴cos π<cos ,即cos <cos .
【训练2】比较下列各组数的大小:
(1)sin 与sin ;(2)cos 870°与sin 980°.
解(1)siy=sinx在 上是增函数,

新人教A版必修5高中数学第一章1.1.2余弦定理(二)导学案

新人教A版必修5高中数学第一章1.1.2余弦定理(二)导学案

1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =csin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c .2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角.3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=a b,则∠C的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab , 即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B .3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( )A .30°B .60°C .90°D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( )A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等边三角形答案 D解析∵2b=a+c,∴4b2=(a+c)2,即(a-c)2=0.∴a=c.∴2b=a+c=2a.∴b=a,即a=b=c.5.在△ABC中,角A,B,C所对的边长分别为a,b,c,若C=120°,c=2a,则( )A.a>b B.a<bC.a=b D.a与b的大小关系不能确定答案 A解析在△ABC中,由余弦定理得,c2=a2+b2-2ab cos 120°=a2+b2+ab.∵c=2a,∴2a2=a2+b2+ab.∴a2-b2=ab>0,∴a2>b2,∴a>b.6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( )A.锐角三角形 B.直角三角形C.钝角三角形 D.由增加的长度确定答案 A解析设直角三角形三边长为a,b,c,且a2+b2=c2,则(a+x)2+(b+x)2-(c+x)2=a2+b2+2x2+2(a+b)x-c2-2cx-x2=2(a+b-c)x+x2>0,∴c+x所对的最大角变为锐角.二、填空题7.在△ABC中,边a,b的长是方程x2-5x+2=0的两个根,C =60°,则边c=________.答案19解析由题意:a+b=5,ab=2.由余弦定理得:c2=a2+b2-2ab cos C=a2+b2-ab=(a+b)2-3ab=52-3×2=19,∴c=19.8.设2a+1,a,2a-1为钝角三角形的三边,那么a的取值范围是________.答案2<a<8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________.答案 12解析 S △ABC =12AB ·AC ·sin A=12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A =AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC , ∴(AB +AC )2=BC 2+3AB ·AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=A -Bsin C.证明 右边=sin A cos B -cos A sin B sin C =sin Asin C·cos B -sin Bsin C·cos A =a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边.所以a 2-b 2c 2=A -B sin C.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且·=-21. (1)求△ABC 的面积; (2)若a =7,求角C .解 (1)∵·=-21,∴·=21.∴· = ||·||·cosB = accosB = 21.∴ac=35,∵cosB = 53,∴sinB = 54.∴S △ABC = 21acsinB = 21×35×54 = 14. (2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32, ∴b =4 2.由正弦定理:c sin C =bsin B. ∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值;(2)设· = 23,求a+c 的值.解 (1)由cos B =34,得sin B =1-⎝ ⎛⎭⎪⎫342=74.由b 2=ac 及正弦定理得sin 2 B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =A +C sin 2 B=sin B sin 2B =1sin B =477. (2)由· = 23得ca ·cosB = 23 由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ·cos B , 得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.。

高中数学-《函数的概念》教案、教学设计

高中数学-《函数的概念》教案、教学设计

《函数的概念》教案、教学设计一、教学目标理解函数的概念,掌握用集合与对应的语言刻画函数。

在探究函数概念的过程中,增强观察、思考和解决问题的能力,感知函数在实际生活中的应用,体会对应关系在刻画函数概念中的作用。

二、教学重难点【重点】理解函数概念。

【难点】用集合与对应语言刻画函数。

三、教学方法讲授法、问题情境设置法、组织讨论法四、教学过程环节一:导入新课回顾初中学习的函数概念。

学生回答:设在一个变化过程中有两个变量x与y,对于x的每一个值,y都有唯一确定的值与它对应,则称x是自变量,y是x的函数。

教师继续追问:高中研究的函数概念与初中有何不同。

环节二:新课讲授(一)探究函数概念大屏呈现第一个实例,请学生在导学案中画出的图象,提出问题:1、时间t的变化范围是多少;高度h的变化范围是多少?2、100s所对应的高度是多少?3、如何才能真实反映炮弹的发射过程?请同桌两人相互讨论,得出答案。

教师说明:对于数集A中的任意一个时间t,按照对应关系,在数集B中都有唯一确定的高度h和它对应。

大屏展示实例2、3。

引导学生思考在对应关系呈现上三个实例有什么不同,有什么相同的特征。

请前后四人为以小组进行讨论,时间为5分钟,讨论结束后,请小组代表发言。

学生观察后得出例1是用解析式刻画变量间的对应关系,例2是用图象刻画变量间的对应关系,例3是用表格刻画变量之间的关系。

第二问共同点为:1、都有两个非空数集A、B2、两个数集之间都有一种确定的对应关系。

教师引导学生探究函数能否看作是两个集合之间的一种对应关系,如何重新定义函数。

师生共同归纳总结函数的概念。

强调函数的三要素为定义域、对应关系和值域。

(二)深化函数概念教师提出问题:初中学过哪些函数,它们的定义域、值域,对应法则分别是什么?引导学生画图,结合图象观察。

教师大屏幕展示正确答案,请同桌互相批改订正。

环节三:巩固提升展示四个图象,判断是否为函数。

师生共同总结判断方法,观察自变量x是否有唯一的函数值y与之对应。

高考数学导学案-第2课时-函数的最大(小)值--高二下数学人教A版(2019)选必二第五章

高考数学导学案-第2课时-函数的最大(小)值--高二下数学人教A版(2019)选必二第五章

高考数学导学案第2课时函数的最大(小)值课程标准:1.理解最值的概念,了解函数的最值与极值的区别和联系.2.会用导数求在给定区间上函数的最大值、最小值(其中多项式函数一般不超过三次).教学重点:在闭区间上求函数的最值.教学难点:与函数最值有关的参数问题.1.对函数最值的两点说明(1)给定的区间必须是闭区间,y=f(x)的图象在开区间上虽然连续不断,但不能保证有最大值或最小值.例如:函数f(x)=1x,x∈(0,2),y=f(x)的图象在(0,2)上连续不断,但y=f(x)没有最大值和最小值.(2)在闭区间上的每一点必须连续,即在闭区间上有间断点也不能保证y=f(x)有最大值和最小值.2.函数极值与最值的内在联系(1)函数的极值是函数在某一点附近的局部概念,函数的最大值和最小值是一个整体性概念.最大值必须是整个区间内所有函数值中的最大值;最小值必须是整个区间内所有函数值中的最小值.(关键词:局部概念)(2)函数的最大值、最小值是比较整个定义区间的函数值得出的,函数的极值是比较极值点附近的函数值得出的,函数的极值可以有多个,但最大(小)值只能有一个.(关键词:整个定义区间)(3)极值只能在区间内取得,最值则可以在端点处取得.有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值不在端点处取得时必定是极值.(关键词:极值与最值的区别)1.判一判(正确的打“√”,错误的打“×”)(1)函数的最大值一定是函数的极大值.()(2)开区间上的单调连续函数无最值.()(3)函数f(x)在区间[a,b]上的最大值和最小值一定在两个端点处取得.()2.做一做(请把正确的答案写在横线上)(1)设函数f (x )=e 2x +3x (x ∈R ),则f (x )________(填“有”或“无”)最值.(2)已知函数y =x 3-x 2-x ,该函数在区间[0,3]上的最大值是________.(3)已知函数f (x )=-x 3+3x 2+m (x ∈[-2,2]),f (x )的最小值为1,则m =________.题型一求已知函数的最值例1(1)求函数f (x )=x 3-12x 2-2x +5在区间[-2,2]上的最大值与最小值;(2)求函数f (x )=12x +sin x 在区间[0,2π]上的最大值与最小值.[跟踪训练1](1)求函数f (x )=-x 3+3x 2-6x +5在[-1,1]上的最值;(2)求函数f (x )=e x(3-x 2)在区间[2,5]上的最值.题型二由函数的最值确定参数的值例2已知函数f (x )=ax 3-6ax 2+b ,x ∈[-1,2]的最大值为3,最小值为-29,求a ,b 的值.[跟踪训练2]设23<a <1,函数f (x )=x 3-32ax 2+b 在区间[-1,1]上的最大值为1,最小值为-62,求函数的解析式.题型三利用函数最值证明不等式例3已知函数f (x )=e x -ln (x +m ).证明:当m ≤2时,f (x )>0.[跟踪训练3]设f (x )=x -1x-2ln x .证明:当x ≥1时,f (x )≥0恒成立.题型四利用函数最值解决不等式恒成立问题例4已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.(1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.[跟踪训练4]已知函数f(x)=x ln x(x>0).(1)求f(x)的单调区间和极值;(2)若对任意x∈(0,+∞),f(x)≥-x2+mx-32恒成立,求实数m的最大值.题型五与函数图象有关的综合问题例5已知函数f(x)=xe x,x∈R.(1)写出函数的定义域,判断函数的单调性,并求出极值;(2)作出函数的大致图象;(3)求出方程f(x)=a(a∈R)解的个数.[跟踪训练5]若函数f(x)=ln xx2,x∈1e,+∞(1)写出函数的定义域,判断函数的单调性,并求出极值;(2)作出函数的大致图象;(3)求出方程f(x)=a(a∈R)解的个数.题型六导数在解决实际问题中的应用例6如图所示,有甲、乙两个工厂,甲厂位于一直线的岸边A处,乙厂与甲厂在河的同侧,乙厂位于距河岸40km的B处,乙厂到河岸的垂足D与A相距50km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?[跟踪训练6]用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四个角分别截去一个小正方形,然后把四边翻转90°,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?1.函数f(x)=2x-cos x在(-∞,+∞)上() A.单调递增B.单调递减C.有最大值D.有最小值2.某产品的销售收入y1(万元)是产量x(千台)的函数:y1=17x2(x>0),生产成本y2(万元)是产量x(千台)的函数:y2=2x3-x2(x>0),为使利润最大,应生产()A.6千台B.7千台C.8千台D.9千台3.(多选)已知ln x1-x1-y1+2=0,x2+2y2-4-2ln2=0,记M=(x1-x2)2+(y1-y2)2,则以下正确的为()A.M的最小值为25B.当M最小时,x2=125C.M的最小值为45D.当M最小时,x2=654.函数f(x)=4xx2+1,x∈[-2,2]的最大值是________,最小值是________.5.已知函数f(x)=ln x-x+1,x∈(0,+∞),求函数f(x)的最大值.A级:“四基”巩固训练一、选择题1.函数f(x)=x3-12x+1在闭区间[-3,0]上的最大值、最小值分别是() A.1,-1B.1,-17C.17,1D.9,-192.g(x 12x-log2(x+1)在区间[0,1]上的最小值为()A.12B.-12C.1D.-13.已知函数f(x),g(x)均为[a,b]上的可导函数,在[a,b]上连续且f′(x)<g′(x),则f(x)-g(x)的最大值为()A.f(a)-g(a)B.f(b)-g(b)C.f(a)-g(b)D.f(b)-g(a)4.函数y=x+2cos x在0,π2上取最大值时,x的值为()A.0B.π6C.π3D.π25.(多选)已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示,下列关于函数f(x)的结论正确的是()x-1045f(x)1221 A.函数f(x)的极大值点有2个B.函数f(x)在[0,2]上是减函数C.若x∈[-1,t]时,f(x)的最大值是2,则t的最大值为4D.当1<a<2时,函数y=f(x)-a有4个零点二、填空题6.函数y=x e-x,x∈[0,4]的最大值为________.7.某公司租地建仓库,每月土地占用费y1(万元)与仓库到车站的距离成反比,而每月库存货物的运费y2(万元)与仓库到车站的距离成正比,如果在距离车站10km处建仓库,y1和y2分别为2万元和8万元,那么当仓库建在离车站________km处时,费用之和最小,费用之和的最小值为________万元.8.若a为实数,对任意k∈[-1,1],当x∈(0,4]时,不等式6ln x+x2-9x+a≤kx恒成立,则实数a的最大值是________.三、解答题9.已知函数f(x)=e x-e x-e 2 .(1)求f(x)的最小值;(2)求证:e x-ln x>2310.(参考数据:e≈1.65)10.如图,在P地正西方向8km的A处和正东方向1km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设∠EPA=α(1)为减少对周边区域的影响,试确定E,F的位置,使△PAE与△PFB的面积之和最小;(2)为节省建设成本,求使PE+PF的值最小时AE和BF的值.B级:“四能”提升训练1.已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.2.已知函数f(x)=ln x+ax的图象在点(t,f(t))处的切线方程为y=3x-1.(1)求a的值;(2)已知k≤2,当x>1时,f(x)>x-1恒成立,求实数k的取值范围;(3)对于在(0,1)中的任意一个常数b,是否存在正数x,使得e f(x0+1)-3x0-2+b 2x2<1,请说明理由.第2课时函数的最大(小)值(教师独具内容)课程标准:1.理解最值的概念,了解函数的最值与极值的区别和联系.2.会用导数求在给定区间上函数的最大值、最小值(其中多项式函数一般不超过三次).教学重点:在闭区间上求函数的最值.教学难点:与函数最值有关的参数问题.1.对函数最值的两点说明(1)给定的区间必须是闭区间,y=f(x)的图象在开区间上虽然连续不断,但不能保证有最大值或最小值.例如:函数f(x)=1x,x∈(0,2),y=f(x)的图象在(0,2)上连续不断,但y=f(x)没有最大值和最小值.(2)在闭区间上的每一点必须连续,即在闭区间上有间断点也不能保证y=f(x)有最大值和最小值.例如:函数f(x x|-1≤x≤1,x≠0,x=0,作图可知f(x)无最小值.2.函数极值与最值的内在联系(1)函数的极值是函数在某一点附近的局部概念,函数的最大值和最小值是一个整体性概念.最大值必须是整个区间内所有函数值中的最大值;最小值必须是整个区间内所有函数值中的最小值.(关键词:局部概念)(2)函数的最大值、最小值是比较整个定义区间的函数值得出的,函数的极值是比较极值点附近的函数值得出的,函数的极值可以有多个,但最大(小)值只能有一个.(关键词:整个定义区间)(3)极值只能在区间内取得,最值则可以在端点处取得.有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值不在端点处取得时必定是极值.(关键词:极值与最值的区别)1.判一判(正确的打“√”,错误的打“×”)(1)函数的最大值一定是函数的极大值.()(2)开区间上的单调连续函数无最值.()(3)函数f (x )在区间[a ,b ]上的最大值和最小值一定在两个端点处取得.()答案(1)×(2)√(3)×2.做一做(请把正确的答案写在横线上)(1)设函数f (x )=e 2x +3x (x ∈R ),则f (x )________(填“有”或“无”)最值.(2)已知函数y =x 3-x 2-x ,该函数在区间[0,3]上的最大值是________.(3)已知函数f (x )=-x 3+3x 2+m (x ∈[-2,2]),f (x )的最小值为1,则m =________.答案(1)无(2)15(3)1题型一求已知函数的最值例1(1)求函数f (x )=x 3-12x 2-2x +5在区间[-2,2]上的最大值与最小值;(2)求函数f (x )=12x +sin x 在区间[0,2π]上的最大值与最小值.[解](1)因为f (x )=x 3-12x 2-2x +5,所以f ′(x )=3x 2-x -2.令f ′(x )=0,得x1=-23,x2=1.因为=15727,f(1)=72,又f(-2)=-1,f(2)=7,所以函数f(x)在[-2,2]上的最大值是7,最小值是-1.(2)f′(x)=12+cos x,令f′(x)=0,解得x=2π3或x=4π3.因为f(0)=0,=π3+32,=2π3-32,f(2π)=π,所以函数f(x)在[0,2π]上的最大值是π,最小值是0.求一个函数在闭区间上的最值时,一般是找出该区间上导数为零的点,无需判断出是极大值点还是极小值点,只需将这些点对应的函数值与端点处的函数值进行比较,其中最大的就是函数的最大值,最小的就是函数的最小值.[跟踪训练1](1)求函数f(x)=-x3+3x2-6x+5在[-1,1]上的最值;(2)求函数f(x)=e x(3-x2)在区间[2,5]上的最值.解(1)∵f′(x)=-3x2+6x-6=-3(x2-2x+2)=-3(x-1)2-3,∴f′(x)在[-1,1]内恒小于0.∴f(x)在[-1,1]上为减函数,∴当x=-1时,取得最大值为f(-1)=15;当x=1时,取得最小值为f(1)=1.即f(x)在[-1,1]上的最小值为1,最大值为15.(2)∵f′(x)=3e x-e x x2-2e x x,∴f′(x)=-e x(x2+2x-3)=-e x(x+3)(x-1),∵在区间[2,5]上,f′(x)=-e x(x+3)(x-1)<0,∴函数f(x)在区间[2,5]上单调递减,∴当x=2时,函数f(x)取得最大值f(2)=-e2;当x=5时,函数f(x)取得最小值f(5)=-22e5.题型二由函数的最值确定参数的值例2已知函数f(x)=ax3-6ax2+b,x∈[-1,2]的最大值为3,最小值为-29,求a,b的值.[解]由题设知a≠0,否则f(x)=b为常函数,与题设矛盾.f′(x)=3ax2-12ax=3ax(x-4),令f′(x)=0,得x1=0,x2=4(舍去).(1)当a>0,且x变化时,f′(x),f(x)的变化情况如下表:x-1(-1,0)0(0,2)2 f′(x)+0-f(x)-7a+b↗b↘-16a+b 由表可知,当x=0时,f(x)取得极大值,也就是函数在[-1,2]上的最大值,∴f(0)=3,即b=3.又f(-1)=-7a+3,f(2)=-16a+3<f(-1),∴f(2)=-16a+3=-29,解得a=2.(2)当a<0时,同理可得,当x=0时,f(x)取得极小值,也就是函数在[-1,2]上的最小值,∴f(0)=-29,即b=-29.又f(-1)=-7a-29,f(2)=-16a-29>f(-1),∴f(2)=-16a-29=3,解得a=-2.综上可得,a=2,b=3或a=-2,b=-29.由函数的最值来确定参数的问题是利用导数求函数最值的逆向运用,解题时一般采用待定系数法,列出含参数的方程或方程组,从而求出参数的值,这也是方程思想的应用.[跟踪训练2]设23<a<1,函数f(x)=x3-32ax2+b在区间[-1,1]上的最大值为1,最小值为-62,求函数的解析式.解f′(x)=3x2-3ax,令f′(x)=0,得x=0或x=a.当x变化时,f′(x),f(x)的变化情况如下表:x-1(-1,0)0(0,a)a(a,1)1 f′(x)+0-0+f(x)-1-32a+b↗b↘-a32+b1-32a+b从上表可知,当x=0时,f(x)取得极大值b,而f(0)>f(a),f(1)>f(-1),故需比较f(0)与f(1)的大小及f(-1)与f(a)的大小.因为f(0)-f(1)=32a-1>0,所以f(x)的最大值为f(0)=b,所以b=1.又f(-1)-f(a)=12(a+1)2(a-2)<0,所以f(x)的最小值为f(-1)=-1-32a+b=-32a,所以-32a=-62,所以a=6 3 .故所求函数的解析式是f(x)=x3-62x2+1.题型三利用函数最值证明不等式例3已知函数f(x)=e x-ln(x+m).证明:当m≤2时,f(x)>0. [证明]当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0.当m=2时,函数f′(x)=e x-1x+2在(-2,+∞)上单调递增.又f′(-1)<0,f′(0)>0,故f′(x)=0在(-2,+∞)有唯一实根x,且x∈(-1,0).当x∈(-2,x0)时,f′(x)<0;当x∈(x,+∞)时,f′(x)>0,从而当x=x时,f(x)取得最小值.由f′(x0)=0得e x0=1x+2,ln(x+2)=-x,故f(x)≥f(x0)=1x+2+x=x+12x+2>0.综上,当m≤2时,f(x)>0.本题的证明遵循了一般解法,但要注意到两个函数分别是对数函数和指数函数,因此需要进行分离.事实上,还可以利用搭桥的方式,通过传递进行证明.应选择一个一次式或多项式,使之能够在指数和对数之间起到桥梁作用,而且不增加计算量,此时经验的作用凸显,因为e x≥1+x,所以找到使1+x≥ln(m+x)成立的m是解决本题的关键.[跟踪训练3]设f(x)=x-1x-2ln x.证明:当x≥1时,f(x)≥0恒成立.证明f(x)=x-1x-2ln x的定义域为(0,+∞).∴f′(x)=1+1x2-2x=x2-2x+1x2=x-12x2≥0,∴f(x)在[1,+∞)上是单调增函数,∴f(x)在[1,+∞)上的最小值为f(1).∴f(x)≥f(1)=1-1-2ln1=0对于x∈[1,+∞)恒成立.题型四利用函数最值解决不等式恒成立问题例4已知f(x)=x ln x,g(x)=x3+ax2-x+2.(1)求函数f(x)的单调区间;(2)若对任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.[解](1)函数f(x)=x ln x的定义域为(0,+∞),f′(x)=ln x+1.令f′(x)<0,得ln x+1<0,解得0<x<1e ,∴f(x令f′(x)>0,得ln x+1>0,解得x>1e ,∴f(x(2)g′(x)=3x2+2ax-1,由题意得2x ln x≤3x2+2ax+1恒成立.∵x>0,∴a≥ln x-32x-12x在x∈(0,+∞)上恒成立.设h(x)=ln x-32x-12x(x>0),则h′(x)=1x-32+12x2=-x-13x+12x2.令h′(x)=0,得x1=1,x2=-13(舍去).当x变化时,h′(x),h(x)的变化情况如下表:x(0,1)1(1,+∞) h′(x)+0-h(x)↗极大值↘∴当x=1时,h(x)取得最大值,且h(x)max=h(1)=-2,∴若a≥h(x)在x∈(0,+∞)上恒成立,则a≥h(x)max=-2,即a≥-2,故实数a的取值范围是[-2,+∞).(1)涉及到不等式恒成立、不等式能成立的问题时,一般需转化为函数最值来解决.若不等式中含参数,则可考虑分离参数,以求避免分类讨论.(2)不等式恒成立、能成立常见的转化策略①a>f(x)恒成立⇔a>f(x)max ,a<f(x)恒成立⇔a<f(x)min;②f(x)>g(x)+k恒成立⇔k<[f(x)-g(x)]min;③f(x)>g(x)恒成立⇔[f(x)-g(x)]min>0;④a>f(x)能成立⇔a>f(x)min ,a<f(x)能成立⇔a<f(x)max.[跟踪训练4]已知函数f(x)=x ln x(x>0).(1)求f(x)的单调区间和极值;(2)若对任意x∈(0,+∞),f(x)≥-x2+mx-32恒成立,求实数m的最大值.解(1)由f(x)=x ln x(x>0),得f′(x)=1+ln x,令f′(x)>0,得x>1e ;令f′(x)<0,得0<x<1 e .∴f(x故f(x)在x=1e处有极小值=-1e,无极大值.(2)由f(x)≥-x2+mx-32及f(x)=x ln x,得m≤2x ln x+x2+3x恒成立,问题转化为m.令g(x)=2x ln x+x2+3x(x>0),则g′(x)=2x+x2-3x2,由g′(x)>0⇒x>1,由g′(x)<0⇒0<x<1.所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以g(x)min=g(1)=4,因此m≤4,所以实数m的最大值是4.题型五与函数图象有关的综合问题例5已知函数f(x)=xe x,x∈R.(1)写出函数的定义域,判断函数的单调性,并求出极值;(2)作出函数的大致图象;(3)求出方程f(x)=a(a∈R)解的个数.[解](1)已知函数的定义域为R,f′(x)=1-x e x,令f′(x)=0,得x=1.当x∈(-∞,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0,所以f(x)的极大值为f(1)=1e ,所以函数的单调递增区间为(-∞,1),单调递减区间为(1,+∞),极大值为1e,无极小值.(2)显然,当x→-∞时,f(x)=xe x→-∞,又x>0时,f(x)>0,且x→+∞时,f(x)=xe x→0,所以作出f(x)=xe x的图象如下.(3)由函数f(x)的图象得,当x=1时,f(x)有最大值f(1)=1e,故方程f(x)=a(a∈R)解的个数为当a≤0或a=1e时,方程有一解;当a>1e时,方程无解;当0<a<1e时,方程有两解.画函数f(x)大致图象的步骤如下:(1)求出函数f(x)的定义域;(2)求导数f′(x)及函数f′(x)的零点;(3)用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,并得出f(x)的单调性与极值;(4)确定f(x)的图象所经过的一些特殊点,以及图象的变化趋势;(5)画出f(x)的大致图象.[跟踪训练5]若函数f(x)=ln xx2,x∈1e,+∞(1)写出函数的定义域,判断函数的单调性,并求出极值;(2)作出函数的大致图象;(3)求出方程f(x)=a(a∈R)解的个数.解(1)已知函数的定义域为1e,+∞f′(x)=1x·x2-ln x·2xx4=1-2ln xx3,令f′(x)=0,得x=e,当x∈(0,e)时,f′(x)>0,当x∈(e,+∞)时,f′(x)<0,所以f(x)=ln xx2的极大值为f(e)=ln ee2=12e,所以函数的单调递增区间为1e,,单调递减区间为(e,+∞),极大值为12e,无极小值.(2)f(1)=0,当x→+∞时,f(x)=ln xx2→0,=ln1e=-e2,所以作出f(x)=ln xx2的图象如下.(3)由函数f(x)的图象得,当x=e时,f(x)有最大值12e.故方程f(x)=a(a ∈R)解的个数为当a<-e2或a>12e时,方程无解;当-e 2≤a ≤0或a =12e时,方程有一解;当0<a <12e时,方程有两解.题型六导数在解决实际问题中的应用例6如图所示,有甲、乙两个工厂,甲厂位于一直线的岸边A 处,乙厂与甲厂在河的同侧,乙厂位于距河岸40km 的B 处,乙厂到河岸的垂足D 与A 相距50km,两厂要在此岸边合建一个供水站C ,从供水站到甲厂和乙厂的水管费用分别为每千米3a 元和5a 元,问供水站C 建在岸边何处才能使水管费用最省?[解]设C 点距D 点x km,则BD =40,AC =50-x ,∴BC =CD 2+BD 2=x 2+402.又设总的水管费用为y 元,依题意,得y =3a (50-x )+5a x 2+402(0<x <50).则y ′=-3a +5axx 2+402,令y ′=0,解得x 1=30,x 2=-30(舍去).在(0,50)上,y 只有一个极值点,根据问题的实际意义,函数在x =30km 处取得最小值,此时AC =50-x =20(km).故供水站建在A ,D 之间距甲厂20km 处时,可使水管费用最省.(1)根据题设建立数学模型,借助图象寻找各条件间的联系,适当选定变量,构造相应的函数关系,通过求导或其他方法求出最值.(2)在实际问题中,若函数在某区间内只有一个极值点,则只要根据实际意义判断是最大值还是最小值即可,不必再与端点的函数值比较.[跟踪训练6]用长为90cm,宽为48cm 的长方形铁皮做一个无盖的容器,先在四个角分别截去一个小正方形,然后把四边翻转90°,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?解设容器的高为x cm,容器的容积为V(x)cm3,则V(x)=x(90-2x)(48-2x)=4x3-276x2+4320x(0<x<24),V′(x)=12x2-552x+4320=12(x2-46x+360)=12(x-10)(x-36)(0<x<24).令V′(x)=0,解得x1=10,x2=36(舍去).当0<x<10时,V′(x)>0,V(x)是增函数;当10<x<24时,V′(x)<0,V(x)是减函数.因此,在定义域(0,24)内,只有当x=10时函数V(x)取得最大值,其最大值为V(10)=10×(90-20)×(48-20)=19600.故当容器的高为10cm时,容器的容积最大,最大容积是19600cm3.1.函数f(x)=2x-cos x在(-∞,+∞)上()A.单调递增B.单调递减C.有最大值D.有最小值答案A解析因为f′(x)=2+sin x>0恒成立,所以f(x)在(-∞,+∞)上单调递增.2.某产品的销售收入y1(万元)是产量x(千台)的函数:y1=17x2(x>0),生产成本y2(万元)是产量x(千台)的函数:y2=2x3-x2(x>0),为使利润最大,应生产()A.6千台B.7千台C.8千台D.9千台答案A解析设利润为y,则y=y1-y2=17x2-(2x3-x2)=-2x3+18x2(x>0),∴y′=-6x 2+36x =-6x (x -6).令y ′=0,解得x =0(舍去)或x =6,经检验知x =6既是函数的极大值点又是函数的最大值点.3.(多选)已知ln x 1-x 1-y 1+2=0,x 2+2y 2-4-2ln 2=0,记M =(x 1-x 2)2+(y 1-y 2)2,则以下正确的为()A.M 的最小值为25B.当M 最小时,x 2=125C.M 的最小值为45D.当M 最小时,x 2=65答案BC解析由ln x 1-x 1-y 1+2=0,得y 1=ln x 1-x 1+2,故(x 1-x 2)2+(y 1-y 2)2的最小值可转化为函数y =ln x -x +2图象上的点到直线x +2y -4-2ln 2=0上的点的距离的最小值的平方.由y =ln x -x +2,得y ′=1x -1,与直线x +2y-4-2ln 2=0平行的直线的斜率为-12,则令1x -1=-12,解得x =2,∴切点坐标为(2,ln 2),∴点(2,ln 2)到直线x +2y -4-2ln 2=0的距离d =|2+2ln 2-4-2ln 2|1+4=255,即函数y =ln x -x +2图象上的点到直线x +2y -4-2ln 2=0上的点的距离的最小值为255,∴(x 1-x 2)2+(y 1-y 2)2的最小值为d 2=45.过点(2,ln 2)与x +2y -4-2ln 2=0垂直的直线为y -ln 2=2(x -2),即2x -y -4+ln 2=0,+2y -4-2ln 2=0,x -y -4+ln 2=0,解得x =125,即当M 最小时,x 2=125.故选BC.4.函数f (x )=4xx 2+1,x ∈[-2,2]的最大值是________,最小值是________.答案2-2解析∵y ′=4x 2+1-2x ·4x x 2+12=-4x 2+4x 2+12,令y ′=0可得x =1或x =-1.又∵f(1)=2,f(-1)=-2,f(2)=85,f(-2)=-85,∴最大值为2,最小值为-2.5.已知函数f(x)=ln x-x+1,x∈(0,+∞),求函数f(x)的最大值.解f(x)的定义域为(0,+∞),f′(x)=1x-1.令f′(x)=0,解得x=1.当0<x<1时,f′(x)>0,f(x)在(0,1)上是增函数;当x>1时,f′(x)<0,f(x)在(1,+∞)上是减函数,故函数f(x)在x=1处取得最大值f(1)=0.A级:“四基”巩固训练一、选择题1.函数f(x)=x3-12x+1在闭区间[-3,0]上的最大值、最小值分别是() A.1,-1B.1,-17C.17,1D.9,-19答案C解析令f′(x)=3x2-12=0,得x=±2,f(-2)=17,f(-3)=10,f(0)=1,所以最大值为17,最小值为1.故选C.2.g(x-log2(x+1)在区间[0,1]上的最小值为()A.12B.-12C.1D.-1答案B解析因为g(x-log2(x+1)是减函数,所以g(x)在区间[0,1]上的最小值为g(1)=-12.故选B.3.已知函数f(x),g(x)均为[a,b]上的可导函数,在[a,b]上连续且f′(x)<g′(x),则f(x)-g(x)的最大值为()A.f(a)-g(a)B.f(b)-g(b)C.f(a)-g(b)D.f(b)-g(a)答案A解析令h(x)=f(x)-g(x),x∈[a,b],则h′(x)=f′(x)-g′(x)<0,∴h(x)是[a,b]上的减函数.∴h(x)max =[f(x)-g(x)]max=f(a)-g(a).故选A.4.函数y=x+2cos x在0,π2上取最大值时,x的值为()A.0B.π6C.π3D.π2答案B解析f′(x)=1-2sin x,令f′(x)=0,得x=π6,当x∈0,f′(x)>0,f(x)为单调递增函数,当x ,π2时,f′(x)<0,f(x)为单调递减函数,所以f f(x)在0,π2上的极大值,也是最大值.故f(x)在区间0,π2上取最大值时,x的值为π6.5.(多选)已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示,下列关于函数f(x)的结论正确的是()x-1045f(x)1221 A.函数f(x)的极大值点有2个B.函数f(x)在[0,2]上是减函数C.若x ∈[-1,t ]时,f (x )的最大值是2,则t 的最大值为4D.当1<a <2时,函数y =f (x )-a 有4个零点答案AB解析由f ′(x )的图象可知,当-1≤x <0或2<x <4时,f ′(x )>0,函数f (x )为增函数,当0<x <2或4<x ≤5时,f ′(x )<0,函数f (x )为减函数,即当x =0时,函数f (x )取得极大值,当x =4时,函数f (x )取得极大值,即函数f (x )有两个极大值点,故A 正确;函数f (x )在[0,2]上是减函数,故B 正确;作出f (x )的图象如图1,若x ∈[-1,t ]时,f (x )的最大值是2,则t 满足0≤t ≤5,即t 的最大值是5,故C 错误;由y =f (x )-a =0得f (x )=a ,若f (2)≤1,当1<a <2时,f (x )=a 有四个根,如图2.若1<f (2)<2,当1<a <2时,f (x )=a 不一定有四个根,有可能是两个或三个,如图3,故函数y =f (x )-a 不一定有4个零点,故D 错误.故选AB.二、填空题6.函数y =x e -x ,x ∈[0,4]的最大值为________.答案1e解析令y =f (x )=x e -x ,则f ′(x )=e -x -x e -x =e -x (1-x ),令f ′(x )=0,得x =1.∵f (0)=0,f (4)=4e 4,f (1)=e -1=1e ,∴函数的最大值为f (1)=1e.7.某公司租地建仓库,每月土地占用费y 1(万元)与仓库到车站的距离成反比,而每月库存货物的运费y 2(万元)与仓库到车站的距离成正比,如果在距离车站10km 处建仓库,y 1和y 2分别为2万元和8万元,那么当仓库建在离车站________km 处时,费用之和最小,费用之和的最小值为________万元.答案58解析依题意可设每月土地占用费y 1=k 1x,每月库存货物的运费y 2=k 2x ,其中x 是仓库到车站的距离,k 1,k 2是比例系数.由2=k 110得k 1=20;由8=10k 2得k 2=45.因此,两项费用之和为y =20x +4x 5(x >0),y ′=-20x 2+45,令y ′=0,得x=5或x =-5(舍去).当0<x <5时,y ′<0;当x >5时,y ′>0.因此,当x =5时,y 取得极小值,也是最小值,故当仓库建在离车站5km 处时,费用之和最小,费用之和的最小值为205+4×55=8万元.8.若a 为实数,对任意k ∈[-1,1],当x ∈(0,4]时,不等式6ln x +x 2-9x +a ≤kx 恒成立,则实数a 的最大值是________.答案7解析因为对任意k ∈[-1,1],当x ∈(0,4]时,不等式6ln x +x 2-9x +a ≤kx恒成立,所以对任意k ∈[-1,1],当x ∈(0,4]时,不等式6ln x +x 2-9x +ax ≤k恒成立,即6ln x +x 2-9x +a x ≤k min ⇒6ln x +x 2-9x +ax ≤-1⇒a ≤-6ln x -x 2+8x ,所以当x ∈(0,4]时,不等式a ≤-6ln x -x 2+8x 恒成立.令f (x )=-6ln x -x 2+8x ,x ∈(0,4],则a ≤f (x )min ,f ′(x )=-2x 2+8x -6x=-2x -2x -3x,当f ′(x )>02x -2x -3<0,x ≤4⇒1<x <3,当f ′(x )<02x -2x -3>0,x ≤4⇒0<x <1或3<x ≤4,所以函数f (x )在区间(0,1)和(3,4]上单调递减,在区间(1,3)上单调递增.f (1)=0-1+8=7,f (4)=-6ln 4-16+32=16-6ln 4,因为16-6ln 4-7=9-6ln 4=3×(3-ln 16)=3ln e 316>0,所以f (x )min =7,所以a ≤7,a 的最大值为7.三、解答题9.已知函数f (x )=e x -e x -e 2.(1)求f (x )的最小值;(2)求证:e x -ln x >2310.(参考数据:e≈1.65)解(1)由f (x )=e x -e x -e2,得f ′(x )=e x -e,则当x f ′(x )<0,f (x )单调递减,当x f ′(x )>0,f (x )单调递增,所以f (x )的极小值也是最小值为(2)证明:由(1)知,f (x )=e x -e x -e2≥0,即e x ≥e x +e 2,则e x -ln x ≥e x -ln x +e 2.令g (x )=e x -ln x +e 2,则g ′(x )=e-1x =e x -1x (x >0).当x g ′(x )<0,g (x )单调递减,当x g ′(x )>0,g (x )单调递增,所以g (x )min =1e +e 2=1+12+e 2≈3+1.652=23.2510>2310.所以e x -ln x >2310.10.如图,在P 地正西方向8km 的A 处和正东方向1km 的B 处各有一条正北方向的公路AC 和BD ,现计划在AC 和BD 路边各修建一个物流中心E 和F ,为缓解交通压力,决定修建两条互相垂直的公路PE 和PF ,设∠EPA =α(1)为减少对周边区域的影响,试确定E,F的位置,使△PAE与△PFB的面积之和最小;(2)为节省建设成本,求使PE+PF的值最小时AE和BF的值.解(1)在Rt△PAE中,由题意可知∠APE=α,AP=8,则AE=8tanα,所以S△PAE =12PA·AE=32tanα.同理,在Rt△PBF中,∠PFB=α,PB=1,则BF=1tanα,所以S△PBF =12PB·BF=12tanα,故△PAE与△PFB的面积之和为32tanα+12tanα≥232tanα·12tanα=8,当且仅当32tanα=12tanα,即tanα=18时,取“=”,故当AE=1km,BF=8km时,△PAE与△PFB的面积之和最小.(2)在Rt△PAE中,由题意可知∠APE=α,则PE=8 cosα.同理,在Rt△PBF中,∠PFB=α,则PF=1 sinα.令f(α)=PE+PF=8cosα+1sinα,0<α<π2,则f′(α)=8sinαcos2α-cosαsin2α=8sin3α-cos3αsin2αcos2α.令f′(α)=0,得tanα=12,记tanα=12,0<α<π2,当α∈(0,α)时,f′(α)<0,f(α)单调递减;当α0f ′(α)>0,f (α)单调递增.所以tan α=12时,f (α)取得最小值,此时AE =AP ·tan α=8×12=4,BF =BPtan α=2.所以当AE =4km,BF =2km 时,PE +PF 的值最小.B 级:“四能”提升训练1.已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.解(1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x f ′(x )>0;当x f ′(x )<0.所以f (x (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 取得最大值,最大值为=ln 1a +a +a -1.因此a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,g ′(a )=1a+1>0,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,a 的取值范围是(0,1).2.已知函数f (x )=ln x +ax 的图象在点(t ,f (t ))处的切线方程为y =3x -1.(1)求a的值;(2)已知k≤2,当x>1时,f(x)>x-1恒成立,求实数k的取值范围;(3)对于在(0,1)中的任意一个常数b,是否存在正数x,使得e f(x0+1)-3x0-2+b 2x2<1,请说明理由.解(1)函数f(x)=ln x+ax的导数为f′(x)=1x+a,因为函数f(x)的图象在点(t,f(t))处的切线方程为y=3x-1,所以f′(t)=1t+a=3,又因为函数f(x)的图象在点(t,f(t))处的切线方程为y-(ln t+at)=3(x -t),即y-(ln t+3t-1)=3(x-t),y=3x+ln t-1,a=3,t-1=-1,解得a=2.(2)由(1)可得f(x)=ln x+2x,因为f(x)>x-1,所以ln x>x ln x+x-k(x-3)>0.令g(x)=x ln x+x-k(x-3),g′(x)=2+ln x-k,由x>1,k≤2,可得ln x>0,2-k≥0,即有g′(x)>0,所以g(x)在(1,+∞)上单调递增,可得g(x)>g(1)=1+2k≥0,所以-12≤k≤2,故实数k的取值范围为-12,2.(3)对于在(0,1)中的任意一个常数b,假设存在正数x,使得e f(x0+1)-3x0-2+b 2x2<1,则e f(x0+1)-3x0-2+b2x2=e ln(x0+1)-x0+b2x2=(x+1)·e-x0+b2x2<1.令H(x)=(x+1)·e-x+b2x2-1,则H′(x)=e-x-(x+1)e-x+bx=x(b-e-x),令H′(x)>0,解得x>-ln b,令H′(x)<0,解得0<x<-ln b,则x=-ln b是函数H(x)的极小值点,也是最小值点.故H(x)的最小值为H(-ln b)=(-ln b+1)·e ln b+b2ln2b-1=b2ln2b-b ln b+b-1.再令G(x)=x2ln2x-x ln x+x-1(0<x<1),则G′(x)=12(ln2x+2ln x)-(1+ln x)+1=12ln2x>0,所以G(x)在(0,1)上单调递增,所以G(x)<G(1)=0,则H(-ln b)<0.故存在正数x0=-ln b,使得e e f(x0+1)-3x0-2+b2x2<1.。

1.2.1函数的概念导学案

1.2.1函数的概念导学案

x ,输入“加工器” f (对 x 实行加工程序 f )后,生产出来产品 y 。 y f x 的
意义是: y 就是 x 在关系 f 下的对应值,而 f 是“对应”得以实现的方法和途径。 如 f x 2 x 6, f 表示 2 倍的自变量再加上 6,如 f 3 2 3 6 12 。“定义 域”就是一堆待加工的原材料,“对应法则”就是加工的程序(方法)。将每一个 原材料 x 经过加工的到相应的产品, 将所有的原材料经过加工得到的全部产品 收集起来,所形成的集合就是函数的值域,“值域”是产品,是被动生成的。函 数的定义域、对应法则、、值域被称为函数的三要素,其实起决定作用的只是 函数的定义域和对应法则。 对于“原料→加工→产品”的生产流程,显然“原料”是重要的。巧妇难为无 米之炊, “米”一定是要有的, 即函数的定义域不能是空集。 而且有什么样的“米”, 有多少“米”,一般都会影响整个加工过程。由此可见,对于函数而言,“米”是 重要的。故要研究函数先看“米”,有人甚至说:“定义域是函数的灵魂!” 从产品的角度来看,既要有“米”,还要看加工的流程工艺(方法)。不
,与 x 值相对应的 y 值叫做 .
2. y x ( x 0) 是函数吗?
3. y
x - 3 1 x 是函数吗?
1
4. 问题 1:下列给出的四个图形中,是函数图象的是: (

A、①
B、①③④
B、①②③
D、③④
5.下列对应是否是 A 到 B 的函数 A:A=Z,B= N ,f:x→y=|x| B:A={0,1,2,4},B={0,1,4,9,64},f:x→y=(x-1) C:A=B=R,f:x→y=
【强调】①值域由_________和______________唯一确定;f(x)是函数符号,f 表示对应 关系,f(x)表示 x 对应的函数值,绝对不能理解为 f 与 x 的乘积.在不同的函数中 f 的具 体含义不同,对应关系可以是解析式、图象、表格等.函数除了可用符号 f(x)表示外, 还可用 g(x),F(x)等表示. ②常见函数的定义域与值域. 函数 一次函数 二次函数 解析式 定义域 值域

高中数学(必修二)导学案

高中数学(必修二)导学案

高中数学(必修二)导学案第一章:平面直角坐标系1.1 坐标系的引入- 了解平面直角坐标系的基本概念- 掌握点在平面直角坐标系中的坐标表示方法1.2 平面直角坐标系上的距离公式- 了解平面直角坐标系上两点之间距离的公式- 掌握如何使用距离公式计算两个点之间的距离1.3 直线的斜率- 了解直线斜率的概念及其计算方法- 掌握如何根据两点坐标计算直线的斜率第二章:二次函数2.1 二次函数的图像和性质- 了解二次函数的基本概念和特点- 掌握根据二次函数的参数确定二次函数图像的方法2.2 二次函数的最值和零点- 了解二次函数最值和零点的基本概念及其计算方法- 掌握如何根据二次函数求解实际问题2.3 二次函数与一次函数的比较- 了解二次函数和一次函数的基本概念及其图像特点- 掌握如何比较二次函数和一次函数的大小关系第三章:三角函数3.1 任意角及其测量- 了解任意角的基本概念及其测量方法- 掌握如何将任意角的三角函数转化为其它角度的三角函数3.2 常用角的三角函数值- 掌握常用角的三角函数值及其推导方法- 掌握如何根据三角函数值求解实际问题3.3 三角函数的图像和性质- 了解三角函数的图像及其性质- 掌握如何根据三角函数图像解决实际问题第四章:概率统计4.1 随机事件与概率- 掌握随机事件和概率的基本概念和运算法则- 掌握如何计算简单事件的概率4.2 条件概率和独立性- 了解条件概率和独立性的基本概念及其计算方法- 掌握如何根据条件概率和独立性计算事件的概率4.3 离散型随机变量及其分布律- 了解离散型随机变量及其分布律的概念- 掌握如何根据分布律计算离散型随机变量的期望值和方差以上是本章节的导学内容,希望同学们认真学习,做好课后习题。

祝学习愉快!。

2023年人教版高中数学必修二导学案全套

2023年人教版高中数学必修二导学案全套

2023年人教版高中数学必修二导学案全套一、导学目的本导学案的目的是为了帮助高中数学研究者系统地研究和掌握2023年人教版高中数学必修二的相关知识,提高研究效果和成绩。

二、导学内容1. 第一章:函数及其表示方法- 研究函数的定义和基本性质- 掌握函数的表示方法及其应用- 理解函数的映射性和单调性2. 第二章:一次函数与二次函数- 研究一次函数和二次函数的定义和性质- 掌握一次函数和二次函数的图象与性质- 认识一次函数和二次函数在实际问题中的应用3. 第三章:指数和对数函数- 研究指数和对数函数的定义和性质- 掌握指数函数和对数函数的图象和性质- 理解指数函数和对数函数在实际问题中的应用4. 第四章:三角函数- 研究三角函数的定义和基本关系- 掌握三角函数的图象和性质- 理解三角函数在几何问题和实际问题中的应用5. 第五章:概率与统计- 研究概率与统计的基本概念- 掌握概率与统计的计算方法- 理解概率与统计在实际问题中的应用三、导学方法本教材使用了多种导学方法,包括课前预、课堂引导、课后练等,以帮助研究者全面提升数学知识和解题能力。

学生可以按照以下步骤进行研究:1. 阅读本章导学案,了解本章研究目标和内容。

2. 预本章内容,查阅相关资料和教辅材料,理解基本概念和原理。

3. 在课堂上认真听讲,参与互动,解答问题。

4. 课后进行题目练,巩固所学知识,掌握解题技巧。

5. 复本章知识,进行检测,查漏补缺。

四、导学评价为了确保研究效果,我们建议研究者在导学过程中进行自我评价和教师评价。

自我评价可以通过课后练和解题过程来进行,教师评价可以通过课堂表现和考试成绩来进行。

五、研究资源研究者可以使用以下资源进行研究:- 人教版高中数学必修二教材- 相关参考书和教辅材料- 互联网上的数学研究网站和视频资源六、结束语通过系统地研究和掌握本教材,相信研究者能够在数学研究中取得更好的成绩。

希望本导学案能够帮助你在2023年人教版高中数学必修二研究中有所收获!。

新人教版高中数学必修第一册第二章一元二次函数方程和不等式全套导学案PPT课件及配套WORD讲义

新人教版高中数学必修第一册第二章一元二次函数方程和不等式全套导学案PPT课件及配套WORD讲义

由 a>b>0,有 ab>0⇒aab>abb⇒1b>1a,故 B 为假命题;
a<b<0⇒-a>-b>0⇒-1b>-1a>0,
a<b<0⇒-a>-b>0
⇒ab>ba,故 C 为假命题;
a>b⇒b-a<0,
a1>1b⇒a1-b1>0⇒ba-ba>0⇒ab<0.
∵a>b,∴a>0,b<0,故 D 为真命题. 解析
答案
2
PART TWO
核心素养形成
题型一 作差法比较大小
例 1 比较下列各组中两个代数式的大小:
(1)x2+3 与 3x;
(2)设 x,y,z∈R,比较 5x2+y2+z2 与 2xy+4x+2z-2 的大小.
[解] (1)∵(x2+3)-3x=x2-3x+3=x-322+34≥34>0,∴x2+3>3x. (2)∵5x2+y2+z2-(2xy+4x+2z-2)=4x2-4x+1+x2-2xy+y2+z2-
第二章 一元二次函数、方程 和不等式
2.1 等式性质与不等式性质
(教师独具内容) 课程标准:1.梳理等式的性质,理解不等式的概念,掌握不等式的性质, 能运用不等式的性质比较大小.2.能运用不等式的性质证明不等式和解决实 际问题. 教学重点:1.不等式的性质.2.不等式性质的应用. 教学难点:用不等式的性质证明不等式. 核心素养:1.借助不等式性质的判断与证明,培养逻辑推理素养.2.通过 大小比较及利用不等式求范围,提升数学运算素养.
∴0<a-b<6,
故 2a+3b 的取值范围为-18<2a+3b<-5,a-b 的取值范围为 0<a-

【新导学案】高中数学人教版必修一:121《函数的概念》(1)(2).doc

【新导学案】高中数学人教版必修一:121《函数的概念》(1)(2).doc

1-2.1《函数的概念》(1)导学案【学习目标】1.通垃事富更例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2.了解构成函数的要素;3.能够正确使用“区间”的符号表示某些集合.【重点难点】重点:体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念;难点:对函数概念及符号y于(兀)的理解。

【知识链接】(预习教材PQ Pm找出疑惑之处)复习1:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?复习2:(初中对函数的定义)在一个变化过程中,有两个变量兀和y,对于兀的每一个确定的值,y 都有唯一的值与之对应,此时y是兀的函数,x是自变量,y是因变量.表示方法有:解析法、列表法、图象法.【学习过程】探学习探究探究任务一:函数模型思想及函数概念问题:研处下面三个实例:A.一枚炮弹发射,经26秒后落地击屮目标,射高为845米, 且炮弹距地面高度h(米)与吋间t(秒)的变化规律是/? = 130r-5r2.B.近儿十年,大气层屮臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.C.国际上常用恩格尔系数(食物支出金额三总支出金额)反映一个国家人民生活质量的高低.“八五”计划以來我们城镇居民的恩格尔系数如下表.年份19911992199319941995• • •恩格尔系53.852.950. 149.949.9• • •数%讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系?三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集力屮的每一个x,按照某种对应关系在数集〃屮都与唯一确定的y和它对应,记作:£A T B.新知:函数定义.设儿〃是非空数集,如果按照某种确定的对应关系使对于集合/中的任意一个数兀,在集合B中都有唯一确定的数/(x)和它对应,那么称f A T B为从集合A到集合B的一个函数(/unction),记作:y = /'(x), XG A.其中,x叫自变量,无的取值范围力叫作定义域(domain),与兀的值对应的y值叫函数值,函数值的集合{/(X)\XE A}叫值域(range).试试:(1)已知/(X)= X2-2X +3,求/(0)、/(I)、/⑵、/(-I)的值.(2)函数尸兀$ 一?兀+ 3, {-1,0,1,2}值域是,反思:(1)值域与〃的关系是__________ ;构成函数的三要素是________________(2)常见函数的定义域与值域.探究任务二:区间及写法新知:设e?、b是两个实数,且曰〈力,贝】J:{x\a<x<b} = [a9b]叫闭区间;{x\a<x<b} = (a,b)叫开区间;{x\a<x<b} = [a,b) , {x\a<x<b} = (a,b]都叫半开半闭区间.实数集R用区间(-OO,+OO)表示,其中“8”读“无穷大”;“一8”读“负无穷大”;“+8”读“正无穷大”・试试:用区间表示.(1){x\x^a\ -_____________ 、{x\x>a} = __________{兀 | xW份二________ 、{x | x< b} = _________(2){无|兀vO弧>1}= __________ .(3)函数y=旅的定义域_____________ ,值域是 ___________ .(观察法)探典型例题例1已知函数f(X)= Vx + 1 .(1)求于⑶的值;(2)求函数的定义域(用区间表示);(3)求f(a2-})的值.变式: 己知函数f(x)=(1)求/⑶的值;(2)求函数的定义域(用区间表示);(3)求的值.探动手试试练].已知函数f(x) = 3x2+5x-29求/⑶、/(-血)、f(a +1)的值.练2.求函数/心治的定义域.【学习反思】探学习小结①函数模型应用思想;②函数概念;③二次函数的值域;④区间表示. 探知识拓展求函数定义域的规则:①分式:y 则&(兀)工0;• g(x)②偶次根式:y = 2V7w(«e/v4),贝Ij/(x)>o;③零次幕式:y = [/(x)]°,则/(x)^0.【基础达标】探自我评价你完成本节导学案的情况为( ).A.很好B.较好C. 一般D.较差探当堂检测(时量:5分钊|满分:10分)计分:1.已知函数g(/) = 2/2—l,贝ijg(l)=( ).A. 一1 ・・B. 0C. 1D. 22.函数f(x) = Vl-2x的定义域是( ).A- [g,+°°)丘(*,+°°)C.(-°°,*]D.(-汽*)3.已知函数/(x) = 2x + 3,若f(a) = i ,则沪().A. -2B. -1C. 1D. 24.函数y = x2,XG {-2,-1,0,1,2}的值域是__________ .25.函数y =--的定义域是__________________________ ,值域是 _______________ (用区间表示)心…丄拓展提升】1.求函数y =—的定义域与值域.x-12.已知y = f ⑴=&- 2 , t(x) = x2 +2x+ 3 .(1)求r(0)的值;(2)求/⑴的定义域;(3)试用x表示y.亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!成绩肯定会很理想的, 在以后的学习中大家一定要用学到的知识让知识飞起来,学以致用!在考试的过程中也要养成仔细阅读,认真审题,努力思考,以最好的状态考出好成绩!你有没有做到这些呢?是不是又忘了检查了?快去再检查一下刚完成的试卷吧!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题函数的概念课型新授课课时 1
学习目标1.在初中函数概念的基础上,能够通过观察、辨析几个实际的例子,得出“函数的概念”,并能用准确的数学语言进行描述。

2. 通过多个具体函数的例子,弄懂函数的三要素,学会确定一个函数的方法。

3. 通过对实例的自主学习,感受自主学习的乐趣
合作探究随堂手记【课前预习区】
同学们请先精读一遍教材P15-P16,用红色笔对重点内容及有疑问的地方进行勾画;再针
对导学案二次阅读并解决课前预习区中的问题
问题1.阅读教科书第15页实例1后回答:
(1)你能得出炮弹飞行1s,5s,10s,20s时距地面多高吗?
(2)t和h的范围分别是什么?试把其范围用描述法表示分别记成集合A和B。

A= ,B=
(3)集合A和B中的元素存在着什么样的对应关系?试将其描述出来写在下面。

问题2.阅读课本P
15
实例(2)并观察图1.2-1后思考:
(1)你能从图中看出哪一年臭氧层空洞面积最大吗?最大面积是多少?
(2)t和s的范围分别是什么?试把其范围用描述法表示分别记成集合A和B。

A= ,B=
(3)集合A和B中的元素存在着什么样的对应关系?试将其描述出来写在下面。

问题
3.阅读课本
P 16
实例(3)并观察表1-1后思考:
恩格尔系数和时间(年)之间的关系是否和前两个实例中的两个变量之间的关系相似?如何描述这一关系?
问题4.以上三个实例的共同特点是什么?概括后写在下面:
【新知探究区】 一、概念生成 函数的概念:
问题5.在函数的概念中,你认为哪些是关键词?怎样理解这个概念?
概念理解: 判断下列对应是否构成函数?
二、 函数概念的应用
例1 下列图象具有函数关系的是_____.
A B C
D E F
变式训练
已知A ={x|0≤x ≤4},B ={y|1≤y ≤2},下列图形中不能表示从A 到B 的函数的是( )
A B C D 思考:以上图形中表示以A 为定义域,以B 为值域的函数的是( )
三、函数符号f(x)的理解和应用
2
(3) ,()3
f f -(1)求的值;
的值时,求)当()1-()(0a 2a f a f >
变式训练
,2
1
3)(2+++=x x x f 、已知例(4),0
()(1)(-3),(1).
(4),0x x x f x f f f a x x x +≥⎧=+⎨-<⎩已知函数(分段函数)求:,的值
我的收获:
当堂检测:
(1)已知2()23f x x x =-+,求()()()()1,a ,1,0-a f f f f 的值。

(2)下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数
D .A =R ,B ={正实数},f :A 中的数取绝对值
课后巩固:
1、有一位学生的考试情况是这样的 序号(数) 1 2 3 4 5 6 分数
90
93
90
98
92
集合A ={1,2,3,4,5,6},B ={90,93,98,92},f :每次考试成绩.这能否算作一个函数的例子,为什么?
2、 高一(1)班的同学组成集合A ,教室里的凳子组成集合B ,每一位同学都有唯一的一个凳子.这能否算作一个函数的例子,为什么?
3、已知函数f(x)=5x -2,求()()()()1,,0,3+a f a f f f 的值。

4、已知函数()322+-=x x x f ,{}2,1,0,1-∈x ,求该函数的值域。

15(),1(1)()1(1)
(2)(1)(2)
x
f x x
f a a f a a -=
++≠-+≠-、已知函数求:。

相关文档
最新文档