小学奥数必学几何五大模型及例题解析
小学奥数之几何五大模型
一、等积变换模型⑴等底等高的两个三角形面积相等; 其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。
如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半; 二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
梯形中比例关系(“梯形蝴蝶定理”) ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。
四、相似模型相似三角形性质:金字塔模型 沙漏模型①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。
小学奥数平面几何五种面积模型(等积,鸟头,蝶形,相似,共边)
小学奥数平面几何五种模型(等积,鸟头,蝶形,相似,共边)目标:熟练掌握五大面积模型等积,鸟头,蝶形,相似(含金字塔模型与沙漏模型),共边(含燕尾模型与风筝模型), 掌握五大面积模型得各种变形 知识点拨一、等积模型①等底等高得两个三角形面积相等;②两个三角形高相等,面积比等于它们得底之比; 两个三角形底相等,面积比等于它们得高之比;如右图③夹在一组平行线之间得等积变形,如右图; 反之,如果,则可知直线平行于、④等底等高得两个平行四边形面积相等(长方形与正方形可以瞧作特殊得平行四边形);⑤三角形面积等于与它等底等高得平行四边形面积得一半;⑥两个平行四边形高相等,面积比等于它们得底之比;两个平行四边形底相等,面积比等于它们得高之比、 二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形、 共角三角形得面积比等于对应角(相等角或互补角)两夹边得乘积之比、 如图在中,分别就就是上得点如图 ⑴(或在得延长线上,在上), 则EDCBA图⑴ 图⑵三、蝶形定理任意四边形中得比例关系(“蝶形定理”):①或者②蝶形定理为我们提供了解决不规则四边形得面积问题得一个途径、通过构造模型,一方面可以使不规则四边形得面积关系与四边形内得三角形相联系;另一方面,也可以得到与面积对应得对角线得比例关系、 梯形中比例关系(“梯形蝶形定理”):DC BA S 4S 3S 2S 1O DCBA A BC DO ba S 3S 2S 1S 4① ②;③得对应份数为、 四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①; ②、所谓得相似三角形,就就就是形状相同,大小不同得三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关得常用得性质及定理如下:⑴相似三角形得一切对应线段得长度成比例,并且这个比例等于它们得相似比;⑵相似三角形得面积比等于它们相似比得平方;⑶连接三角形两边中点得线段叫做三角形得中位线、三角形中位线定理:三角形得中位线长等于它所对应得底边长得一半、 相似三角形模型,给我们提供了三角形之间得边与面积关系相互转化得工具、在小学奥数里,出现最多得情况就就是因为两条平行线而出现得相似三角形、五、共边定理(燕尾模型与风筝模型) 在三角形中,,,相交于同一点,那么、 上述定理给出了一个新得转化面积比与线段比得手段,因为与得形状很象燕子得尾巴,所以这个定理被称为燕尾定理、该定理在许多几何题目中都有着广泛得运用,它得特殊性在于,它可以存在于任何一个三角形之中,为三角形中得O FEDCBA三角形面积对应底边之间提供互相联系得途径、 典型例题【例 1】如图,正方形ABCD 得边长为6,1、5,2、长方形EFGH 得面积为 、【解析】 连接DE ,DF,则长方形EFGH 得面积就就是三角形DEF 面积得二倍、三角形DEF 得面积等于正方形得面积减去三个三角形得面积, ,所以长方形E FGH 面积为33、【巩固】如图所示,正方形得边长为厘米,长方形得长为厘米,那么长方形得宽为几厘米?【解析】 本题主要就就是让学生会运用等底等高得两个平行四边形面积相等(长方形与正方形可以瞧作特殊得平行四边形)、三角形面积等于与它等底等高得平行四边形面积得一半、 证明:连接、(我们通过把这两个长方形与正方形联系在一起)、 ∵在正方形中,边上得高,∴(三角形面积等于与它等底等高得平行四边形面积得一半) 同理,、∴正方形与长方形面积相等、 长方形得宽(厘米)、【例 2】 长方形得面积为36,、、为各边中点,为边上任意一点,问阴影部分面积就就是多少?E【解析】 解法一:寻找可利用得条件,连接、,如下图:_H_G_ F_E_D_C_B_ A _A_B_C_D_E_ F_G_H_ A _ B_ G_ C _ E _ F_ D_ A _ B_ G_ C _ E_ F_ DE可得:、、,而 即; 而,、所以阴影部分得面积就就是:解法二:特殊点法、找得特殊点,把点与点重合,那么图形就可变成右图:GE (H )这样阴影部分得面积就就就是得面积,根据鸟头定理,则有:11111113636363613.52222222ABCD AED BEF CFD S S S S S ∆∆∆=---=-⨯⨯-⨯⨯⨯-⨯⨯=阴影、【巩固】在边长为6厘米得正方形内任取一点,将正方形得一组对边二等分,另一组对边三等分,分别与点连接,求阴影部分面积、【解析】 (法1)特殊点法、由于就就是正方形内部任意一点,可采用特殊点法,假设点与点重合,则阴影部分变为如上中图所示,图中得两个阴影三角形得面积分别占正方形面积得与,所以阴影部分得面积为平方厘米、(法2)连接、、由于与得面积之与等于正方形面积得一半,所以上、下两个阴影三角形得面积之与等于正方形面积得,同理可知左、右两个阴影三角形得面积之与等于正方形面积得,所以阴影部分得面积为平方厘米、 【例 3】 如图所示,长方形内得阴影部分得面积之与为70,,,四边形得面积为 、B【解析】 利用图形中得包含关系可以先求出三角形、与四边形得面积之与,以及三角形与得面积之与,进而求出四边形得面积、由于长方形得面积为,所以三角形得面积为,所以三角形与得面积之与为;又三角形、与四边形得面积之与为,所以四边形得面积为、另解:从整体上来瞧,四边形得面积三角形面积三角形面积白色部分得面积,而三角形面积三角形面积为长方形面积得一半,即60,白色部分得面积等于长方形面积减去阴影部分得面积,即,所以四边形得面积为、【巩固】如图,长方形得面积就就是36,就就是得三等分点,,则阴影部分得面积为 、ABAB【解析】 如图,连接、根据蝶形定理,,所以;,所以、又,,所以阴影部分面积为:、 【例 4】 已知为等边三角形,面积为400,、、分别为三边得中点,已知甲、乙、丙面积与为143,求阴影五边形得面积、(丙就就是三角形)B【解析】 因为、、分别为三边得中点,所以、、就就是三角形得中位线,也就与对应得边平行,根据面积比例模型,三角形与三角形得面积都等于三角形得一半,即为200、根据图形得容斥关系,有,即,所以、又,所以、【例 5】如图,已知,,,,线段将图形分成两部分,左边部分面积就就是38,右边部分面积就就是65,那么三角形得面积就就是、【解析】连接,、根据题意可知,;;所以,,,,,于就就是:;;可得、故三角形得面积就就是40、【例 6】如图在中,分别就就是上得点,且,,平方厘米,求得面积、【解析】连接,,,所以,设份,则份,平方厘米,所以份就就是平方厘米,份就就就是平方厘米,得面积就就是平方厘米、由此我们得到一个重要得定理,共角定理:共角三角形得面积比等于对应角(相等角或互补角)两夹边得乘积之比、【巩固】如图,三角形中,就就是得5倍,就就是得3倍,如果三角形得面积等于1,那么三角形得面积就就是多少?【解析】连接、∵∴又∵∴,∴、【巩固】如图,三角形ABC被分成了甲(阴影部分)、乙两部分,,,,乙部分面积就就是甲部分面积得几倍?【解析】连接、∵,∴,又∵,∴,∴,、【例 7】如图在中,在得延长线上,在上,且,,平方厘米,求得面积、EDCBAEDCB A【解析】 连接,,所以,设份,则份,平方厘米,所以份就就是平方厘米,份就就就是平方厘米,得面积就就是平方厘米、由此我们得到一个重要得定理,共角定理:共角三角形得面积比等于对应角(相等角或互补角)两夹边得乘积之比【例 8】 如图,平行四边形,,,,,平行四边形得面积就就是, 求平行四边形与四边形得面积比、HGAB CD EFHGAB CDEF【解析】 连接、、根据共角定理 ∵在与中,与互补,∴、又,所以、 同理可得,,、所以8815+3+236EFGH AEH CFG DHG BEF ABCD S S S S S S =++++=++=△△△△、 所以、【例 9】 如图所示得四边形得面积等于多少?DB13131212【解析】 题目中要求得四边形既不就就是正方形也不就就是长方形,难以运用公式直接求面积、我们可以利用旋转得方法对图形实施变换:把三角形绕顶点逆时针旋转,使长为得两条边重合,此时三角形将旋转到三角形得位置、这样,通过旋转后所得到得新图形就就是一个边长为得正方形,且这个正方形得面积就就就是原来四边形得面积、因此,原来四边形得面积为、(也可以用勾股定理)【例 10】如图所示,中,,,,以为一边向外作正方形,中心为,求得面积、【解析】如图,将沿着点顺时针旋转,到达得位置、由于,,所以、而,所以,那么、、三点在一条直线上、由于,,所以就就是等腰直角三角形,且斜边为,所以它得面积为、根据面积比例模型,得面积为、【例 11】如图,以正方形得边为斜边在正方形内作直角三角形,,、交于、已知、得长分别为、,求三角形得面积、F【解析】如图,连接,以点为中心,将顺时针旋转到得位置、那么,而也就就是,所以四边形就就是直角梯形,且,所以梯形得面积为:()、又因为就就是直角三角形,根据勾股定理,,所以()、那么(),所以()、【例 12】如下图,六边形中,,,,且有平行于,平行于,平行于,对角线垂直于,已知厘米,厘米,请问六边形得面积就就是多少平方厘米?FEABDCGFEABDC【解析】 如图,我们将平移使得与重合,将平移使得与重合,这样、都重合到图中得了、这样就组成了一个长方形,它得面积与原六边形得面积相等,显然长方形得面积为平方厘米,所以六边形得面积为平方厘米、【例 13】 如图,三角形得面积就就是,就就是得中点,点在上,且,与交于点、则四边形得面积等于 、ABCDEF【解析】 方法一:连接,根据燕尾定理,,,设份,则份,份,份,如图所标 所以方法二:连接,由题目条件可得到, ,所以, ,而、所以则四边形得面积等于、【巩固】如图,长方形得面积就就是平方厘米,,就就是得中点、阴影部分得面积就就是多少平方厘米?x yyx ABC D EFG E D CBA【解析】 设份,则根据燕尾定理其她面积如图所示平方厘米、【例 14】 四边形得对角线与交于点(如图所示)、如果三角形得面积等于三角形得面积得,且,,那么得长度就就是得长度得_________倍、ABCDOH GA BCD O【解析】 在本题中,四边形为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形、瞧到题目中给出条件,这可以向模型一蝶形定理靠拢,于就就是得出一种解法、又观察题目中给出得已知条件就就是面积得关系,转化为边得关系,可以得到第二种解法,但就就是第二种解法需要一个中介来改造这个”不良四边形”,于就就是可以作垂直于,垂直于,面积比转化为高之比、再应用结论:三角形高相同,则面积之比等于底边之比,得出结果、请老师注意比较两种解法,使学生体会到蝶形定理得优势,从而主观上愿意掌握并使用蝶形定理解决问题、解法一:∵,∴,∴、 解法二:作于,于、 ∵,∴,∴, ∴,∴,∴、【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形得面积已知, 求:⑴三角形得面积;⑵?B【解析】 ⑴根据蝶形定理,,那么;⑵根据蝶形定理,、【例 15】 如图,平行四边形得对角线交于点,、、、得面积依次就就是2、4、4与6、求:⑴求得面积;⑵求得面积、OGF EDCBA【解析】 ⑴根据题意可知,得面积为,那么与得面积都就就是,所以得面积为;⑵由于得面积为8,得面积为6,所以得面积为, 根据蝶形定理,,所以, 那么、【例 16】 如图,长方形中,,,三角形得面积为平方厘米,求长方形得面积、ABCD EF GABCD EF G【解析】 连接,、因为,,所以、因为,,所以平方厘米,所以平方厘米、因为,所以长方形得面积就就是平方厘米、【例 17】 如图,正方形面积为平方厘米,就就是边上得中点、求图中阴影部分得面积、CBA【解析】 因为就就是边上得中点,所以,根据梯形蝶形定理可以知道,设份,则 份,所以正方形得面积为份,份,所以,所以平方厘米、 【巩固】在下图得正方形中,就就是边得中点,与相交于点,三角形得面积为1平方厘米,那么正方形面积就就是 平方厘米、ABCDEF【解析】 连接,根据题意可知,根据蝶形定理得(平方厘米),(平方厘米),那么(平方厘米)、【例 18】 已知就就是平行四边形,,三角形得面积为6平方厘米、则阴影部分得面积就就是 平方厘米、BB【解析】连接、由于就就是平行四边形,,所以,根据梯形蝶形定理,,所以(平方厘米),(平方厘米),又(平方厘米),阴影部分面积为(平方厘米)、【巩固】右图中就就是梯形,就就是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分得面积就就是平方厘米、BB【分析】连接、由于与就就是平行得,所以也就就是梯形,那么、根据蝶形定理,,故,所以(平方厘米)、【巩固】右图中就就是梯形,就就是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分得面积就就是平方厘米、BB【解析】连接、由于与就就是平行得,所以也就就是梯形,那么、根据蝶形定理,,故,所以(平方厘米)、另解:在平行四边形中,(平方厘米),所以(平方厘米),根据蝶形定理,阴影部分得面积为(平方厘米)、【例 19】如图,长方形被、分成四块,已知其中3块得面积分别为2、5、8平方厘米,那么余下得四边形得面积为___________平方厘米、?852O A B C DEF?852O A BCD EF【解析】 连接、、四边形为梯形,所以,又根据蝶形定理,,所以,所以(平方厘米),(平方厘米)、那么长方形得面积为平方厘米,四边形得面积为(平方厘米)、【例 20】 如图,就就是等腰直角三角形,就就是正方形,线段与相交于点、已知正方形得面积48,,则得面积就就是多少?BB【解析】 由于就就是正方形,所以与平行,那么四边形就就是梯形、在梯形中,与得面积就就是相等得、而,所以得面积就就是面积得,那么得面积也就就是面积得、由于就就是等腰直角三角形,如果过作得垂线,为垂足,那么就就是得中点,而且,可见与得面积都等于正方形面积得一半,所以得面积与正方形得面积相等,为48、 那么得面积为、【例 21】 下图中,四边形都就就是边长为1得正方形,、、、分别就就是,,,得中点,如果左图中阴影部分与右图中阴影部分得面积之比就就是最简分数,那么,得值等于 、BEE【解析】 左、右两个图中得阴影部分都就就是不规则图形,不方便直接求面积,观察发现两个图中得空白部分面积都比较好求,所以可以先求出空白部分得面积,再求阴影部分得面积、如下图所示,在左图中连接、设与得交点为、左图中为长方形,可知得面积为长方形面积得,所以三角形得面积为、又左图中四个空白三角形得面积就就是相等得,所以左图中阴影部分得面积为、BEE如上图所示,在右图中连接、、设、得交点为、可知∥且、那么三角形得面积为三角形面积得,所以三角形 得面积为,梯形得面积为、在梯形中,由于,根据梯形蝶形定理,其四部分得面积比为:,所以三角形得面积为,那么四边形得面积为、而右图中四个空白四边形得面积就就是相等得,所以右图中阴影部分得面积为、那么左图中阴影部分面积与右图中阴影部分面积之比为,即, 那么、【例 22】 如图, 中,,,互相平行,,则 、【解析】 设份,根据面积比等于相似比得平方,所以,,因此份,份,进而有份,份,所以【巩固】如图,平行,且,,,求得长、【解析】 由金字塔模型得,所以【巩固】如图, 中,,,,,互相平行,,则、 【解析】 设份,,因此份,进而有份,同理有份,份,份、 所以有 【例 23】 如图,已知正方形得边长为,就就是边得中点,就就是边上得点,且,与相交于点,求Q EGNM F PAD CBGFAEDC BM GFAEDCB GFAEDCB【解析】 方法一:连接,延长,两条线交于点,构造出两个沙漏,所以有,因此,根据题意有,再根据另一个沙漏有,所以、方法二:连接,分别求,,根据蝶形定理,所以、 【例 24】 如图所示,已知平行四边形得面积就就是1,、就就是、得中点, 交于,求得面积、A【解析】 解法一:由题意可得,、就就是、得中点,得,而,所以,并得、就就是得三等分点,所以,所以 ,所以,;又因为,所以、解法二:延长交于,如右图,可得,,从而可以确定得点得位置, ,,(鸟头定理), 可得【例 25】 如图,为正方形,且,请问四边形得面积为多少?CACA【解析】 (法)由,有,所以,又,所以,所以,所以占得, 所以、(法)如图,连结,则(, 而,所以,()、而(),因为,所以,则(),阴影部分面积等于 ()、【例 26】 如右图,三角形中,,,求、【解析】 根据燕尾定理得(都有得面积要统一,所以找最小公倍数) 所以【点评】本题关键就就是把得面积统一,这种找最小公倍数得方法,在我们用比例解题中屡见不鲜,如果能掌握它得转化本质,我们就能达到解奥数题四两拨千斤得巨大力量!【巩固】如右图,三角形中,,,求、【解析】 根据燕尾定理得(都有得面积要统一,所以找最小公倍数) 所以【巩固】如右图,三角形中,,,求、【解析】 根据燕尾定理得(都有得面积要统一,所以找最小公倍数) 所以【点评】本题关键就就是把得面积统一,这种找最小公倍数得方法,在我们用比例解题中屡见不鲜,如果能掌握它得转化本质,我们就能达到解奥数题四两拨千斤得巨大力量!【例 27】 如右图,三角形中,,且三角形得面积就就是,则三角形得面积为______,三角形得面积为________,三角形得面积为______、I HGFEDCBAI HG FEDCBA【分析】 连接、、、由于,所以,故;根据燕尾定理,,,所以,则,;那么;同样分析可得,则,,所以,同样分析可得,所以,、【巩固】如右图,三角形中,,且三角形得面积就就是,求三角形得面积、【解析】连接BG,份根据燕尾定理,,得(份),(份),则(份),因此,同理连接AI、CH得,,所以三角形GHI得面积就就是1,所以三角形ABC得面积就就是19【巩固】如图,中,,,那么得面积就就是阴影三角形面积得倍、B CB【分析】如图,连接、根据燕尾定理,,,所以,,那么,、同理可知与得面积也都等于面积得,所以阴影三角形得面积等于面积得,所以得面积就就是阴影三角形面积得7倍、【巩固】如图在中,,求得值、【解析】连接BG,设1份,根据燕尾定理,,得(份),(份),则(份),因此,同理连接AI、CH得,,所以【点评】如果任意一个三角形各边被分成得比就就是相同得,那么在同样得位置上得图形,虽然形状千变万化,但面积就就是相等得,这在这讲里面很多题目都就就是用“同理得到”得,即再重复一次解题思路,因此我们有对称法作辅助线、【例 28】如图,三角形得面积就就是,,,三角形被分成部分,请写出这部分得面积各就就是多少?NMQ P G FEDC BA【解析】 设BG 与AD 交于点P,BG 与AE 交于点Q ,BF与AD 交于点M ,BF 与AE交于点N 、连接CP ,CQ ,CM ,C N、 根据燕尾定理,,,设(份),则(份),所以 同理可得,,,而,所以,、 同理,,所以,,,【巩固】如图,得面积为1,点、就就是边得三等分点,点、就就是边得三等分点,那么四边形得面积就就是多少?K J IHABC D EF GKJI HABCD EFG【解析】 连接、、、根据燕尾定理,,,所以,那么,、 类似分析可得、 又,,可得、 那么,、根据对称性,可知四边形得面积也为,那么四边形周围得图形得面积之与为,所以四边形得面积为、 【例 29】 右图,中,就就是得中点,、、就就是边上得四等分点,与交于,与交于,已知得面积比四边形得面积大平方厘米,则得面积就就是多少平方厘米?N M GA BCD EFNMGA BC D EF【解析】 连接、、根据燕尾定理,,,所以;再根据燕尾定理,,所以,所以,那么,所以、 根据题意,有,可得(平方厘米)【例 30】 如图,面积为l 得三角形AB C中,D、E 、F、G 、H 、I分别就就是AB 、BC 、C A 得三等分点,求阴影部分面积、GC BAGCBA【解析】 三角形在开会,那么就好好利用三角形中最好用得比例与燕尾定理吧!令BI 与CD得交点为M ,AF 与CD 得交点为N ,BI 与A F得交点为P,BI 与CE 得交点为Q ,连接AM 、BN 、CP ⑴求:在中,根据燕尾定理, 设(份),则(份),(份),(份), 所以,所以,, 所以,同理可得另外两个顶点得四边形面积也分别就就是面积得 ⑵求:在中,根据燕尾定理, 所以,同理在中,根据燕尾定理,所以,所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形 同理另外两个五边形面积就就是面积得,所以【例 31】 如图,面积为l 得三角形ABC 中,D 、E、F 、G、H 、I 分别就就是AB 、B C、CA 得三等分点,求中心六边形面积、CBAGCBA【解析】 设深黑色六个三角形得顶点分别为N 、R 、P、S、M 、Q,连接C R在中根据燕尾定理,,所以,同理, 所以,同理根据容斥原理,与上题结果 课后练习: 练习1. 已知得面积为平方厘米,,求得面积、【解析】 ,设份,则份,份,份,份,恰好就就是平方厘米,所以平方厘米 练习2. 如图,四边形得面积就就是平方米,,,,,求四边形得面积、H GFED CB AAB CDEFGH【解析】 连接、由共角定理得,即同理,即所以连接,同理可以得到5AHE CGF HDG BEF EFGH ABCD ABCD S S S S S S S =++++=△△△△四边形四边形四边形所以平方米练习3. 正方形得面积就就是120平方厘米,就就是得中点,就就是得中点,四边形得面积就就是 平方厘米、H GFEDCBAMH GFEDCBA【解析】 欲求四边形得面积须求出与得面积、由题意可得到:,所以可得: 将、延长交于点,可得: ,而,得, 而,所以、,连接,确定得位置(也就就就是),同样也能解出、练习4. 如图,已知,,,,则 、DCEBABCA'C'EDA【解析】 将三角形绕点与点分别顺时针与逆时针旋转,构成三角形与,再连接,显然,,,所以就就是正方形、三角形与三角形关于正方形得中心中心对称,在中心对称图形中有如下等量关系: ;;、所以2'''11101050cm 22ABC ACE CDE AEC ACE CDE ACA C S S S S S S S ∆∆∆∆∆∆++=++==⨯⨯=、练习5. 如图,正方形得面积就就是平方厘米,就就是得中点,就就是得中点,四边形 得面积就就是_____平方厘米、EDC B EDCB【解析】 连接,根据沙漏模型得,设份,根据燕尾定理份,份,因此份,,所以(平方厘米)、练习6. 如图,中,点就就是边得中点,点、就就是边得三等分点,若得面积为1,那么四边形得面积就就是_________、F ABCDEM NFABCDEMN【解析】 由于点就就是边得中点,点、就就是边得三等分点,如果能求出、、三段得比,那么所分成得六小块得面积都可以求出来,其中当然也包括四边形得面积、 连接、、根据燕尾定理,,而,所以,那么,即、 那么,、另解:得出后,可得,则、练习7. 如右图,三角形中,,且三角形得面积就就是,求角形 得面积、【解析】 连接BG ,12份根据燕尾定理,,得(份),(份),则(份),因此, 同理连接AI 、CH 得,,所以三角形ABC 得面积就就是,所以三角形G HI 得面积就就是月测备选【备选1】按照图中得样子,在一平行四边形纸片上割去了甲、乙两个直角三角形、已知甲三角形两条直角边分别为与,乙三角形两条直角边分别为与,求图中阴影部分得面积、【解析】 如右图,我们将三角形甲与乙进行平移,就会发现平行四边形面积等于平移后两个长方形面积之与、所以阴影部分面积为:【备选2】如图所示,矩形得面积为36平方厘米,四边形得面积就就是3平方厘米,则阴影部分得面积就就是平方厘米、【解析】因为三角形面积为矩形得面积得一半,即18平方厘米,三角形面积为矩形得面积得,即9平方厘米,又四边形得面积为3平方厘米,所以三角形与三角形得面积之与就就是平方厘米、又三角形与三角形得面积之与就就是矩形得面积得一半,即18平方厘米,所以阴影部分面积为(平方厘米)、【备选3】如图,已知,,与相交于点,则被分成得部分面积各占面积得几分之几?【解析】连接,设份,则其她部分得面积如图所示,所以份,所以四部分按从小到大各占面积得【备选4】如图,在中,延长至,使,延长至,使,就就是得中点,若得面积就就是,则得面积就就是多少?AB C D EF 【解析】∵在与中,与互补,∴、又,所以、同理可得,、所以【备选5】如图,,,则【解析】根据燕尾定理有,,所以。
小学奥数几何五大模型
(4)相似模型1、相似三角形:形状相同、大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
3、相似三角形性质:①相似三角形的一切对应线段(对应高、对应边)的比等于相似比;②相似三角形周长的比等于相似比;③相似三角形面积的比等于相似比的平方。
相似模型大致分为金字塔模型、沙漏模型这两大类,注意这两大类中都含有DE BC ∥。
(一)金字塔模型 (二) 沙漏模型结论:因为DE BC ∥,所以ADE ABC △∽△,则①AD AE DE==;②22::ADE ABC S S AD AB =△△。
②::ABO BCO S S AE EC =△△;ED C BA E DCB A③::ACO BCO S S AF FB =△△。
二、五大模型经典例题详解 (1)等积变换模型例1、图中的E F G 、、分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是多少?GFE D CBA解析:把另外三个三等分点标出之后,正方形的3条边AB BC CD 、、就被分成了相等的三段。
把点H 和这些分点、正方形的顶点连接,这样就把整个正方形分割成了9个形状各不相同的三角形,同时我们把空白部分的6个三角形按顺时针标记1~6。
这9个三角形的底边都是正方形边长的三分之一;阴影部分被分割成了其中的3个三角形。
根据等积变换模型可知,CD 边上的阴影三角形的面积与第1、2个三角形相等;BC 边上的阴影三角形与第3、4个三角形相等;AB 边上的阴影三角形与第5、6个三角形相等。
因此,阴影面积是空白面积的二分之一,是正方形面积的三分之一,即:12×12÷3=48。
例2、如图所示,Q E P M 、、、分别为直角梯形ABCD 两边AB CD 、上的点,且DQ CP ME 、、彼此平行,已知5753AD BC AE EB ====、、、,求阴影部分三角形PQM 的面积。
小学奥数之几何五大模型
一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。
如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;五大模型1S 2S二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。
四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。
小学奥数-几何五大模型(相似模型)
模型四 相似三角形模型(一)金字塔模型 (二) 沙漏模型 ①AD AE DE AF AB AC BC AG===; ②22:ADE ABC S S AF AG =△△:。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线。
三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。
相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。
在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。
【例 1】如图,已知在平行四边形ABCD 中,16AB =,10AD =,4BE =,那么FC 的长度是多少?【解析】 图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为AB 平行于CD ,所以::4:161:4BF FC BE CD ===,所以410814FC =⨯=+.【例 2】 如图,测量小玻璃管口径的量具ABC ,AB 的长为15厘米,AC 被分为60等份。
如果小玻璃管口DE 正好对着量具上20等份处(DE 平行AB ),那么小玻璃管口径DE 是多大?【解析】 有一个金字塔模型,所以::DE AB DC AC =,:1540:60DE =,所以10DE =厘米。
【例 3】如图,DE 平行BC ,若:2:3AD DB =,那么:ADE ECB S S =△△________。
【解析】 根据金字塔模型:::2:(23)2:5AD AB AE AC DE BC ===+=,22:2:54:25ADE ABC S S ==△△,设4ADE S =△份,则25ABC S =△份,255315BEC S =÷⨯=△份,所以:4:15ADE ECB S S =△△。
小学奥数几何五大模型
(4)相似模型1、相似三角形:形状相同、大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
3、相似三角形性质:①相似三角形的一切对应线段(对应高、对应边)的比等于相似比;②相似三角形周长的比等于相似比;③相似三角形面积的比等于相似比的平方。
相似模型大致分为金字塔模型、沙漏模型这两大类,注意这两大类中都含有DE BC ∥。
(一)金字塔模型 (二) 沙漏模型结论:因为DE BC ∥,所以ADE ABC △∽△,则①AD AE DE==;②22::ADE ABC S S AD AB =△△。
②::ABO BCO S S AE EC =△△;ED C BA E DCB A③::ACO BCO S S AF FB =△△。
二、五大模型经典例题详解 (1)等积变换模型例1、图中的E F G 、、分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是多少?GFE D CBA解析:把另外三个三等分点标出之后,正方形的3条边AB BC CD 、、就被分成了相等的三段。
把点H 和这些分点、正方形的顶点连接,这样就把整个正方形分割成了9个形状各不相同的三角形,同时我们把空白部分的6个三角形按顺时针标记1~6。
这9个三角形的底边都是正方形边长的三分之一;阴影部分被分割成了其中的3个三角形。
根据等积变换模型可知,CD 边上的阴影三角形的面积与第1、2个三角形相等;BC 边上的阴影三角形与第3、4个三角形相等;AB 边上的阴影三角形与第5、6个三角形相等。
因此,阴影面积是空白面积的二分之一,是正方形面积的三分之一,即:12×12÷3=48。
例2、如图所示,Q E P M 、、、分别为直角梯形ABCD 两边AB CD 、上的点,且DQ CP ME 、、彼此平行,已知5753AD BC AE EB ====、、、,求阴影部分三角形PQM 的面积。
小学奥数-几何五大模型(相似模型)分解
模型四 相似三角形模型(一)金字塔模型① AD AE DE AF .AB — AC — BC — AG ;②ADE :ABC=AF : AG。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线。
三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。
相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。
在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。
【例1】如图,已知在平行四边形 ABCD 中,AB=16,AD =10, BE =4,那么FC 的长 度是多少?但我们用沙漏就能解决问题,因为AB 平行于CD ,4= 1:4,所以 FC =10^^^ =8 .1+4二)沙漏模型【解析】图中有一个沙漏,也有金字塔,进而有S四边形DEGF=3份 ,S 四边形FGCB =5份,所以ADE: S 四边形DEGF : S 四边形 FGCB =1: 3: 5如图,测量小玻璃管口径的量具 ABC , AB 的长为15厘米,AC 被分为60等份。
如果小玻璃管口 DE 正好对着量具上20等份处(DE 平行AB ),那么小玻璃管口径 DE 是多大?有一个金字塔模型, 所以DE:AB=DC:AC , DE :15 =40:60,所以DE=10厘米。
如图,DE 平行 BC ,若 AD: DB =2:3,那么 S AADE : S AECB =【解析】根据金 字塔 模 型 AD : AB = AE : AC = DE :BC =2: (2+3) =2:5,S A ADE: SA ABC =22 :52=4: 25 ,设SA ADE —4份则SA ABC=25 份,SABEC= 25 X 5 = 3份,所以& A D :SA毛 C 4【例4】如图,A ABC 中,DE , 贝U S A ADE : &边形DEGF :S四边形FGCB【解析】设S AADE =1份,根据面积比等于相似比的平方,所以SA ADE : SA AFG =AD: AF —1: 4,SA ADE : SA ABC =AD: AB =1: 9 ,因此S A AFG =4 份,S A ABC =9 份,【例2】 【解析】 【例3】FG ,BC 互相平行, AD = DF = FB ,2已知△ ABC 中,DE 平行 BC ,若 AD : DB =2:3,且 S 弟形DBCE 比 $△ ADE 大 8.5 cm2求 SA ABC 。
小学奥数之几何五大模型
一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。
如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于及它等底等高的平行四边形面积的一半;五大模型1S 2S二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系及四边形内的三角形相联系;另一方面,也可以得到及面积对应的对角线的比例关系。
梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。
四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),及相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。
小学奥数-几何五大模型等高模型
模型一 三角形等高模型已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比方当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如图12::S S a b =③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比; 两个平行四边形底相等,面积比等于它们的高之比. 【例 1】 你有多少种方法将任意一个三角形分成:⑴3个面积相等的三角形;⑵4个面积相等的三角形;⑶6个面积相等的三角形。
【解析】 ⑴ 如下列图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一:⑵ 如下列图,答案不唯一,以下仅供参考: ⑶如下列图,答案不唯一,以下仅供参考:【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。
⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍. ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍.【解析】 因为三角形ABD 、三角形ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时,它们的高都是从A 点向BC 边上所作的垂线,也就是说三个三角形的高相等。
小学奥数-几何五大模型(鸟头模型)
模型二 鸟头模型如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上如图 2), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBAEDCBA【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===⨯⨯△△,::4:7(45):(75)ABE ABC S S AE AC ===⨯⨯△△,所以:(24):(75)ADE ABC S S =⨯⨯△△,设8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 .【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那三角形等高模型与鸟头模型么三角形ABC 的面积是多少?EDC B AA B C DE【解析】 连接BE .∵3EC AE = ∴3ABC ABE S S = 又∵5AB AD =∴515ADE ABE ABC S S S =÷=÷,∴1515ABC ADE S S ==.【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E DCBAA BCDE甲乙【解析】 连接AD .∵3BE =,6AE =∴3AB BE =,3ABD BDE S S = 又∵4BD DC ==,∴2ABC ABD S S =,∴6ABC BDES S=,5S S =乙甲.【例 2】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBA EDCBA【解析】 连接BE ,::2:5(23):(53)ADE ABE S S AD AB ===⨯⨯△△[]::3:(32)(35):(32)5ABE ABC S S AE AC ==+=⨯+⨯△△,所以[]:(32):5(32)6:25ADE ABC S S =⨯⨯+=△△,设6ADE S =△份,则25ABC S =△份,12ADE S =△平方厘米,所以1份是2平方厘米,25份就是50平方厘米,ABC △的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【例 3】 如图所示,在平行四边形ABCD 中,E 为AB 的中点,2AF CF =,三角形AFE (图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?【解析】 连接FB .三角形AFB 面积是三角形CFB 面积的2倍,而三角形AFB 面积是三角形AEF 面积的2倍,所以三角形ABC 面积是三角形AEF 面积的3倍;又因为平行四边形的面积是三角形ABC 面积的2倍,所以平行四边形的面积是三角形AFE 面积的326⨯=()倍.因此,平行四边形的面积为8648⨯=(平方厘米).【例 4】 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA【解析】 :():()(11):(23)1:6BDE ABCS S BD BE BA BC =⨯⨯=⨯⨯=△△,:():()(13):(24)3:8CEF ABC S S CE CF CB CA =⨯⨯=⨯⨯=△△:():()(21):(34)1:6ADF ABC S S AD AF AB AC =⨯⨯=⨯⨯=△△设24ABC S =△份,则4BDE S =△份,4ADF S =△份,9CEF S =△份,244497DEF S =---=△份,恰好是7平方厘米,所以24ABC S =△平方厘米【例 5】 如图,三角形ABC 的面积为3平方厘米,其中:2:5AB BE =,:3:2BC CD =,三角形BDE 的面积是多少?AB EC DDC EB A【解析】 由于180ABC DBE ︒∠+∠=,所以可以用共角定理,设2AB =份,3BC =份,则5BE =份,325BD =+=份,由共角定理:():()(23):(55)6:25ABC BDE S S AB BC BE BD =⨯⨯=⨯⨯=△△,设6ABC S =△份,恰好是3平方厘米,所以1份是0.5平方厘米,25份就是250.512.5⨯=平方厘米,三角形BDE 的面积是12.5平方厘米【例 6】 (2007年”走美”五年级初赛试题)如图所示,正方形ABCD 边长为6厘米,13AE AC =,13CF BC =.三角形DEF 的面积为_______平方厘米.A【解析】 由题意知13AE AC =、13CF BC =,可得23CE AC =.根据”共角定理”可得,():():()12:(33)2:9CEF ABC S S CF CE CB AC =⨯⨯=⨯⨯=△△;而66218ABC S =⨯÷=△;所以4CEF S =△;同理得,:2:3CDE ACD S S =△△;,183212CDE S =÷⨯=△,6CDF S =△ 故412610DEF CEF DEC DFC S S S S =+-=+-=△△△△(平方厘米).【例 7】 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积.F EDCB AABCDEF【解析】 (法1)本题是性质的反复使用.连接AE 、CD . ∵11ABC DBC S S =,1ABC S =, ∴S 1DBC =.同理可得其它,最后三角形DEF 的面积18=.(法2)用共角定理∵在ABC 和CFE 中,ACB ∠与FCE ∠互补, ∴111428ABC FCE S AC BC S FC CE ⋅⨯===⋅⨯. 又1ABCS=,所以8FCES=.同理可得6ADFS =,3BDES=.所以186318DEFABCFCEADFBDESS SS S=+++=+++=.【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EFHGA B CD EF【解析】 连接AC 、BD .根据共角定理∵在ABC △和BFE △中,ABC ∠与FBE ∠互补,∴111133ABC FBE S AB BC S BE BF ⋅⨯===⋅⨯△△. 又1ABC S =△,所以3FBE S =△.同理可得8GCF S =△,15DHG S =△,8AEH S =△.所以8815+3+236EFGH AEH CFG DHG BEF ABCD S S S S S S =++++=++=△△△△.所以213618ABCD EFGH S S ==.【例 9】 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GFED CBAA BCDEFGH【解析】 连接BD .由共角定理得:():()1:2BCD CGF S S CD CB CG CF =⨯⨯=△△,即2CGF CDB S S =△△同理:1:2ABD AHE S S =△△,即2AHE ABD S S =△△ 所以2()2AHE CGF CBD ADB ABCD S S S S S +=+=△△△△四边形 连接AC ,同理可以得到2DHG BEF ABCD S S S +=△△四边形5AHE CGF HDG BEF EFGH ABCD ABCD S S S S S S S =++++=△△△△四边形四边形四边形所以66513.2ABCD S =÷=四边形平方米【例 10】 如图,将四边形ABCD 的四条边AB 、CB 、CD 、AD 分别延长两倍至点E 、F 、G 、H ,若四边形ABCD 的面积为5,则四边形EFGH 的面积是 .A B CD E F GHA B CD EF GH【解析】 连接AC 、BD .由于2BE AB =,2BF BC =,于是4BEF ABC S S ∆∆=,同理4HDG ADC S S ∆∆=.于是444BEF HDG ABC ADC ABCD S S S S S ∆∆∆∆+=+=.再由于3AE AB =,3AH AD =,于是9AEH ABD S S ∆∆=,同理9CFG CBD S S ∆∆=. 于是999AEH CFG ABD CBD ABCD S S S S S ∆∆∆∆+=+=.那么491260EFGH BEF HDG AEH CFG ABCD ABCD ABCD ABCD ABCD S S S S S S S S S S ∆∆∆∆=+++-=+-==.【例 11】 如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?A BCDEF【解析】 ∵在ABC △和CFE △中,ACB ∠与FCE ∠互补,∴224111ABC FCE S AC BC S FC CE ⋅⨯===⋅⨯△△. 又2ABCS=,所以0.5FCES=.同理可得2ADF S =△,3BDE S =△.所以20.532 3.5DEF ABC CEF DEB ADF S S S S S =++-=++-=△△△△△【例 12】 如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =.求FGSS.SGF E DCBA【解析】 本题题目本身很简单,但它把本讲的两个重要知识点融合到一起,既可以看作是”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用,也可以看作是找点,最妙的是其中包含了找点的3种情况.最后求得FGS S △的面积为4321115432210FGS S =⨯⨯⨯⨯=△.【例 13】 如图所示,正方形ABCD 边长为8厘米,E 是AD 的中点,F 是CE 的中点,G 是BF 的中点,三角形ABG 的面积是多少平方厘米?ABCD EF GABCDEF G【解析】 连接AF 、EG .因为218164BCF CDE S S ==⨯=△△,根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”8AEF S =,8EFG S =,再根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”,得到16BFCS =,32ABFE S =,24ABFS=,所以12ABGS=平方厘米.【例 14】 四个面积为1的正六边形如图摆放,求阴影三角形的面积.【解析】 如图,将原图扩展成一个大正三角形DEF ,则AGF ∆与CEH ∆都是正三角形.假设正六边形的边长为为a ,则AGF ∆与CEH ∆的边长都是4a ,所以大正三角形DEF 的边长为4217⨯-=,那么它的面积为单位小正三角形面积的49倍.而一个正六边形是由6个单位小正三角形组成的,所以一个单位小正三角形的面积为16,三角形DEF 的面积为496.由于4FA a =,3FB a =,所以AFB ∆与三角形DEF 的面积之比为43127749⨯=.同理可知BDC ∆、AEC ∆与三角形DEF 的面积之比都为1249,所以ABC ∆的面积占三角形DEF 面积的1213134949-⨯=,所以ABC ∆的面积的面积为4913136496⨯=.【巩固】已知图中每个正六边形的面积都是1,则图中虚线围成的五边形ABCDE 的面积是 .B DCEA【解析】 从图中可以看出,虚线AB 和虚线CD 外的图形都等于两个正六边形的一半,也就是都等于一个正六边形的面积;虚线BC 和虚线DE 外的图形都等于一个正六边形的一半,那么它们合起来等于一个正六边形的面积;虚线AE外的图形是两个三角形,从右图中可以看出,每个三角形都是一个正六边形面积的16,所以虚线外图形的面积等于11132363⨯+⨯=,所以五边形的面积是12103633-=.8、这个世界并不是掌握在那些嘲笑者的手中,而恰恰掌握在能够经受得住嘲笑与批忍不断往前走的人手中。
小学奥数-几何五大模型(燕尾模型)
燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题 证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得, 1423:::S S S S BD DC ==.例题精讲燕尾定理【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F E DC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△,设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△,所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBAABC DEF FEDCBA【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+=【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △面积的几分之几?OE DCBA13.54.59211213O E D CBA【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .XQPABC XQPABC4411XQPCBA【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABC S S =V V ,1126BPQ BCQ ABC S S S ==V V V .由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===V V V V ,所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=V V V V .方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积,所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F48621ABCDEF【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积 .A BCDE FA BCDEF 2.41.62A BC DE F 12【解析】 连接CF ,根据燕尾定理,12ABFACFS BD S DC ==△△,23ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABCS =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△; 同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?y B CD EGE D CBAEDB A【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.OFE DCBA684621O F E DCB A【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=.【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.GFE DCBAGFE D CBA【解析】 连接AC 、GB ,设1AGC S =△份,根据燕尾定理得1AGB S =△份,1BGC S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=【例 4】如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.EDED【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米).【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .FE D C B AFE DCB A【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△,根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?A BCDE OABCDE O【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=; 又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::2:1AOB AOEOB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?A B CDE O【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC .A B CDE O因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=; 又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .BEH BEBE【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=X .且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=. (法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==,而1602ABC ABCD S S ∆==X ,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEG ABG S S ∆∆==,154CFG BCG S S ∆∆==,所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△ ::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCGS S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDC BAI HG FEDCBA【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==; 根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=;同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGC ABC S S =△△,同理连接AI 、CH 得619ABH ABC S S =△△,619BIC ABC S S =△△, 所以1966611919GHI ABC S S ---==△△ 三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCB【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIH G FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABC S S =△△,同理连接AI 、CH 得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHI ABC S S ---==△△【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGC ABC S S =△△,同理连接AI 、CH 得1237ABH ABC S S =△△,1237BIC ABC S S =△△, 所以3712121213737GHI ABC S S ---==△△ 三角形ABC 的面积是74,所以三角形GHI 的面积是174237⨯=【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?【解析】 方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC ,BE 和CD 交于F ,则BF FE =,再连结DE . 所以三角形DEF 的面积为3.设三角形ADE 的面积为x ,则()():33:10:10x AD DB x +==+,所以15x =,四边形的面积为18.方法二:设ADF S x =△,根据燕尾定理::ABF BFC AFE EFC S S S S =△△△△,得到3AEF S x =+△,再根据向右下飞的燕子,有(37):7:3x x ++=,解得7.5x =四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 .【解析】 方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S =+阴影,解得2S =阴影.方法二:回顾下燕尾定理,有2:41:3S +=阴影(),解得2S =阴影.【例 10】 如图,三角形ABC 被分成6个三角形,已知其中4个三角形的面积,问三角形ABC 的面积是多少?35304084O FED CBA【解析】 设BOF S x =△,由题意知:4:3BD DC =根据燕尾定理,得::4:3ABO ACO BDO CDO S S S S ==△△△△,所以33(84)6344ACO S x x =⨯+=+△,再根据::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形ABC 的面积是844030355670315+++++=【例 11】 三角形ABC 的面积为15平方厘米,D 为AB 中点,E 为AC 中点,F 为BC 中点,求阴影部分的面积.F CBA F CBA【解析】 令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△,所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =,F 为BC 中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△,所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯= ⎪⎝⎭△△阴影(平方厘米)【例 12】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BCD EF【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABCABC S S -=△△,可得336ABC S =△(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.F ABCDEM NFABCDE MN【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =.那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABM ACM ADM S S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=,则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形.【例 13】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF GKJI HA BCD EFG【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==,所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=.又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=. 那么,111742184CGKJ S =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABES S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 14】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.CBB【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM , IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△,∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△,∵:1:4AH AB = :3:4AF AC = ∴316AHF ABC S S =△△ .同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==,∵ :3:4,:3:4AI AB AF AC ==, ∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =,∴17710160160HMN HDF ABC S S S ===△△△. 同理 6个小阴影三角形的面积均为7160.阴影部分面积721616080=⨯=.【例 15】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.GCBAGCBA【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影【例 16】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GCBAGCBA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△,::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形【例 17】(2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 4B 5A 3A 45A 3【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A G S =△份,则233A A G S =△份,313A A G S =△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形,因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米)(方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米)FA 3A【例 18】已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =baEDA baNMHFED【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解 连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△所以 22::AOE EOF S S a b =△△,作OM ⊥AE 、ON ⊥EF , ∵AE =EF∴22::OM ON a b = ∴33::1:8S S a b ==乙甲 ∴:1:2a b =。
小学奥数_几何五大模型(鸟头模型)
模型二 鸟头模型如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上如图 2), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBAEDCBA【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===⨯⨯△△,::4:7(45):(75)ABE ABC S S AE AC ===⨯⨯△△,所以:(24):(75)ADE ABC S S =⨯⨯△△,设8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 .三角形等高模型与鸟头模型【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?EDCBA AB CDE【解析】 连接BE .∵3EC AE = ∴3ABC ABE S S =又∵5AB AD =∴515ADE ABE ABCS S S=÷=÷,∴1515ABCADESS==.【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E DCBAA BCDE甲乙【解析】 连接AD .∵3BE =,6AE =∴3AB BE =,3ABD BDES S=又∵4BD DC ==, ∴2ABC ABD S S =,∴6ABCBDESS=,5S S =乙甲.【例 2】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBA EDCBA【解析】 连接BE ,::2:5(23):(53)ADE ABE S S AD AB ===⨯⨯△△[]::3:(32)(35):(32)5ABE ABC S S AE AC ==+=⨯+⨯△△,所以[]:(32):5(32)6:25ADE ABC S S =⨯⨯+=△△,设6ADE S =△份,则25ABC S =△份,12ADE S =△平方厘米,所以1份是2平方厘米,25份就是50平方厘米,ABC △的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【例 3】 如图所示,在平行四边形ABCD 中,E 为AB 的中点,2AF CF =,三角形AFE (图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?【解析】 连接FB .三角形AFB 面积是三角形CFB 面积的2倍,而三角形AFB 面积是三角形AEF 面积的2倍,所以三角形ABC 面积是三角形AEF 面积的3倍;又因为平行四边形的面积是三角形ABC 面积的2倍,所以平行四边形的面积是三角形AFE 面积的326⨯=()倍.因此,平行四边形的面积为8648⨯=(平方厘米).【例 4】 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA【解析】 :():()(11):(23)1:6BDE ABCS S BD BE BA BC =⨯⨯=⨯⨯=△△,:():()(13):(24)3:8CEF ABC S S CE CF CB CA =⨯⨯=⨯⨯=△△:():()(21):(34)1:6ADF ABC S S AD AF AB AC =⨯⨯=⨯⨯=△△设24ABC S =△份,则4BDE S =△份,4ADF S =△份,9CEF S =△份,244497DEF S =---=△份,恰好是7平方厘米,所以24ABC S =△平方厘米【例 5】 如图,三角形ABC 的面积为3平方厘米,其中:2:5AB BE =,:3:2BC CD =,三角形BDE 的面积是多少?AB EC DDC EB A【解析】 由于180ABC DBE ︒∠+∠=,所以可以用共角定理,设2AB =份,3BC =份,则5BE =份,325BD =+=份,由共角定理:():()(23):(55)6:25ABC BDE S S AB BC BE BD =⨯⨯=⨯⨯=△△,设6ABC S =△份,恰好是3平方厘米,所以1份是0.5平方厘米,25份就是250.512.5⨯=平方厘米,三角形BDE 的面积是12.5平方厘米【例 6】 (2007年”走美”五年级初赛试题)如图所示,正方形ABCD 边长为6厘米,13AE AC =,13CF BC =.三角形DEF 的面积为_______平方厘米.A【解析】 由题意知13AE AC =、13CF BC =,可得23CE AC =.根据”共角定理”可得,():():()12:(33)2:9CEF ABC S S CF CE CB AC =⨯⨯=⨯⨯=△△;而66218ABC S =⨯÷=△;所以4CEF S =△;同理得,:2:3CDE ACD S S =△△;,183212CDE S =÷⨯=△,6CDF S =△ 故412610DEF CEF DEC DFC S S S S =+-=+-=△△△△(平方厘米).【例 7】 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积.F EDCB AABCDEF【解析】 (法1)本题是性质的反复使用.连接AE 、CD . ∵11ABC DBC S S =,1ABC S =, ∴S1DBC=.同理可得其它,最后三角形DEF 的面积18=.(法2)用共角定理∵在ABC 和CFE 中,ACB ∠与FCE ∠互补, ∴111428ABC FCE S AC BC S FC CE ⋅⨯===⋅⨯. 又1ABCS=,所以8FCES=.同理可得6ADFS =,3BDES=.所以186318DEFABCFCEADFBDESS SS S=+++=+++=.【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EFHGA B CD EF【解析】 连接AC 、BD .根据共角定理∵在ABC △和BFE △中,ABC ∠与FBE ∠互补,∴111133ABC FBE S AB BC S BE BF ⋅⨯===⋅⨯△△. 又1ABC S =△,所以3FBE S =△.同理可得8GCF S =△,15DHG S =△,8AEH S =△.所以8815+3+236EFGH AEH CFG DHG BEF ABCD S S S S S S =++++=++=△△△△.所以213618ABCD EFGH S S ==.【例 9】 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GFED CB A A B CDEFGH【解析】 连接BD .由共角定理得:():()1:2BCD CGF S S CD CB CG CF =⨯⨯=△△,即2CGF CDB S S =△△同理:1:2ABD AHE S S =△△,即2AHE ABD S S =△△ 所以2()2AHE CGF CBD ADB ABCD S S S S S +=+=△△△△四边形 连接AC ,同理可以得到2DHG BEF ABCD S S S +=△△四边形5AHE CGF HDG BEF EFGH ABCD ABCD S S S S S S S =++++=△△△△四边形四边形四边形所以66513.2ABCD S =÷=四边形平方米【例 10】 如图,将四边形ABCD 的四条边AB 、CB 、CD 、AD 分别延长两倍至点E 、F 、G 、H ,若四边形ABCD 的面积为5,则四边形EFGH 的面积是 .A B CD E F GHA B CD EF GH【解析】 连接AC 、BD .由于2BE AB =,2BF BC =,于是4BEF ABC S S ∆∆=,同理4HDG ADC S S ∆∆=.于是444BEF HDG ABC ADC ABCD S S S S S ∆∆∆∆+=+=.再由于3AE AB =,3AH AD =,于是9AEH ABD S S ∆∆=,同理9CFG CBD S S ∆∆=. 于是999AEH CFG ABD CBD ABCD S S S S S ∆∆∆∆+=+=.那么491260EFGH BEF HDG AEH CFG ABCD ABCD ABCD ABCD ABCD S S S S S S S S S S ∆∆∆∆=+++-=+-==.【例 11】 如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?A BCDEF【解析】 ∵在ABC △和CFE △中,ACB ∠与FCE ∠互补,∴224111ABC FCE S AC BC S FC CE ⋅⨯===⋅⨯△△. 又2ABCS=,所以0.5FCES=.同理可得2ADF S =△,3BDE S =△.所以20.532 3.5DEF ABC CEF DEB ADF S S S S S =++-=++-=△△△△△【例 12】 如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =.求FGSS.SGF E DCB【解析】 本题题目本身很简单,但它把本讲的两个重要知识点融合到一起,既可以看作是”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用,也可以看作是找点,最妙的是其中包含了找点的3种情况.最后求得FGS S △的面积为4321115432210FGS S =⨯⨯⨯⨯=△.【例 13】 如图所示,正方形ABCD 边长为8厘米,E 是AD 的中点,F 是CE 的中点,G 是BF 的中点,三角形ABG 的面积是多少平方厘米?ABCDEF GABCDEF G【解析】 连接AF 、EG .因为218164BCF CDE S S ==⨯=△△,根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”8AEF S =,8EFG S =,再根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”,得到16BFCS =,32ABFE S =,24ABFS=,所以12ABGS=平方厘米.【例 14】 四个面积为1的正六边形如图摆放,求阴影三角形的面积.【解析】 如图,将原图扩展成一个大正三角形DEF ,则AGF ∆与CEH ∆都是正三角形.假设正六边形的边长为为a ,则AGF ∆与CEH ∆的边长都是4a ,所以大正三角形DEF 的边长为4217⨯-=,那么它的面积为单位小正三角形面积的49倍.而一个正六边形是由6个单位小正三角形组成的,所以一个单位小正三角形的面积为16,三角形DEF 的面积为496.由于4FA a =,3FB a =,所以AFB ∆与三角形DEF 的面积之比为43127749⨯=.同理可知BDC ∆、AEC ∆与三角形DEF 的面积之比都为1249,所以ABC ∆的面积占三角形DEF 面积的1213134949-⨯=,所以ABC ∆的面积的面积为4913136496⨯=.【巩固】已知图中每个正六边形的面积都是1,则图中虚线围成的五边形ABCDE 的面积是 .BDCA【解析】从图中可以看出,虚线AB和虚线CD外的图形都等于两个正六边形的一半,也就是都等于一个正六边形的面积;虚线BC和虚线DE外的图形都等于一个正六边形的一半,那么它们合起来等于一个正六边形的面积;虚线AE外的图形是两个三角形,从右图中可以看出,每个三角形都是一个正六边形面积的16,所以虚线外图形的面积等于11132363⨯+⨯=,所以五边形的面积是12103633-=.。
小学奥数必学几何五大模型及例题解析
小学奥数必学几何五大模型及例题解析一、等积变换模型——很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACDBCD S S =△△;反之,如果ACDBCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:1S 2S 解析:连接CE ,如图。
AE=3AB,所以S △AEC =3S △ABC=3 所以 S △BCE =2又因为:BD=2BC,所以S △BDE =2 S △BCE =4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2此模型的结论可以用将来初中学到的正弦定理进行证明!因为S △ABC =AB ×ACsinA ,S △ADE =AD ×AEsinA所以:S △ABC :S △ADE= (AB ×ACsinA ):(AD ×AEsinA )=(AB ×AC ):(AD ×AE )经典例题:S △ADF :S △ABC=(AD ×AF ):(AB ×AC )=(2BD ×AF ):(3BD ×4AF )=1:6 S △BDE :S △ABC=(BD ×BE ):(AB ×BC )=(BD ×BE ):(3BD ×2BE )=1:6 S △CEF :S △ABC=(CE ×CF ):(CB ×CA )=(CE ×3AF ):(2CE ×4AF )=3:8 1-1/6-1/6-3/8=7/24 S △ABC =7÷7/24=24(平方厘米).点评:本题直接用到鸟头模型,先分别求出三个角上的三个三角形占S △ABC 的比例,再求出S △DEF 占S △ABC 的比例,就能直接求出S △ABC 的面积。
小学奥数-几何五大模型(等高模型)
模型一 三角形等高模型已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如图 12::S S a b =baS 2S 1DC BA三角形等高模型与鸟头模型③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比; 两个平行四边形底相等,面积比等于它们的高之比. ﻬ 【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶6个面积相等的三角形。
【解析】 ⑴ 如下图,D 、E 是的三等分点,F 、G 分别是对应线段的中点,答案不唯一:CEDBAFC DB A GDBA⑵ 如下图,答案不唯一,以下仅供参考:⑸⑷⑶⑵⑴⑶如下图,答案不唯一,以下仅供参考:【例 2】 如图,长12厘米,长4厘米,B 、C 和D 在同一条直线上。
小学奥数-几何五大模型(燕尾模型)
小学奥数-几何五大模型(燕尾模型)燕尾定理是一个有关于三角形的定理。
它表明在三角形ABC中,若有AD,BE,CF三条线段相交于同一点O,则可以得出以下关系:S△现在我们通过一道例题来证明燕尾定理。
如右图,D是BC上任意一点,请你说明:解析】我们可以通过以下方法来证明燕尾定理。
首先,我们连接CF,然后根据燕尾定理,我们可以得到△ABF/△ACF=BD/DC=1/2.接着,我们可以得到△ABF=3份,△DCF=2份,△AEF=△EFC=3份。
因此,我们可以得到SDFEC=S△ABC/2=1/2.另外一种证明方法是连接DE。
根据题目条件,我们可以得到S△ABD=S△ABC=1/3,S△ADE=S△ADC=1/6.因此,我们可以得到S△DEF/S△DEB=S△ADE/S△ABD*S△BEC/S△ADC=1/2*1/3*2/1=2/3.同时,我们可以得到S△CDE/S△ABC=1/3.因此,我们可以得到SDFEC=S△ABC/2=1/2.综上所述,我们证明了燕尾定理。
已知BD=3DC,EC=2AE,可以得到连接OE,可以得到△OEC和△OEB的面积比为2:3,因此△ABC被分成的第一部分面积为2/5.连接OD,可以得到△OBD和△OCD的面积比为1:3,因此△ABC被分成的第二部分面积为3/20.连接AE,可以得到△ABE和△AEC的面积比为2:5,因此△ABC被分成的第三部分面积为5/20=1/4.连接BO和CO,可以得到△BOC和△BEO的面积比为3:2,因此△ABC被分成的第四部分面积为3/20.因此,△ABC被分成的四部分面积分别为2/5、3/20、1/4、3/20,即它们各占△ABC面积的40%、15%、25%、15%。
解析】连接CF,设S△ABF=1份,则S△ACF=2份,S△BDF=1份,S△DCF=2份,S△AEF=4份,S△EFC=4份。
根据燕尾定理,SDFEC=S△ACF+S△DCF+S△BDF=5份。
小高奥数几何-三角形五大模型及例题解析
三角形五大模型【专题知识点概述】本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。
重点模型重温一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、等分点结论(“鸟头定理”)如图,三角形AED 占三角形ABC 面积的23×14=16DCBAbas 2s1三、任意四边形中的比例关系 (“蝴蝶定理”)① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3)梯形中比例关系(“梯形蝴蝶定理”)① S 1︰S 3=a 2︰b 2②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2模型四:相似三角形性质如何判断相似(1)相似的基本概念:两个三角形对应边城比例,对应角相等。
(2)判断相似的方法:①两个三角形若有两个角对应相等则这两个三角形相似;②两个三角形若有两条边对应成比例,且这两组对应边所夹的角相等则两个三角形相似。
hh H cb a CB Aac b HC BA①a b c hA B C H=== ; ② S 1︰S 2=a 2︰A 2模型五:燕尾定理S 4S 3s 2s 1O DCBA S 4S 3s 2s 1baS △ABG :S △AGC =S △BGE :S △GEC =BE :EC ;S △BGA :S △BGC =S △AGF :S △GFC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ;【重点难点解析】1. 模型一与其他知识混杂的各种复杂变形2. 在纷繁复杂的图形中如何辨识“鸟头”【竞赛考点挖掘】1. 三角形面积等高成比2. “鸟头定理”3. “蝴蝶定理”【习题精讲】【例1】(难度等级 ※)如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.【例2】(难度等级 ※)如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是____平方厘米.G HFE DCBA【例3】(难度等级 ※)如图,在三角形ABC 中,BC=8 厘米,AD=6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米?【例4】(难度等级 ※※※)如图,在面积为1的三角形ABC 中,DC=3BD,F 是AD 的中点,延长CF 交AB 边于E,求三角形AEF 和三角形CDF 的面积之和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数必学几何五大模型及例题解析
一、等积变换模型一一很重要,小学常考
⑴等底等高的两个三角形面积相等;
⑵两个三角形高相等,面积比等于它们的底之比;
两个三角形底相等,面积比等于它们的高之比。
如下图右图S i : = a :b
⑶夹在一组平行线之间的等积变形,如下图S^ ACD = S^ BCD 反之,如果S A ACD =
S A BCD,则可知直线AB平行于CD
⑷正方形的面积等于对角线长度平方的一半;
⑸三角形面积等于与它等底等高的平行四边形面积的一半;
经典例题:
(第四届”迎春杯欄试题)如图‘三角形A眈的面积为1 ,其中AE = 3AB ,,三角形册肉的面积是多少?
解析:连接CE,如图。
AE=3AB,所以S A AEC =3S △ABC=3
所以S A BCE =2
又因为:BD=2BC,所以S A BDE=2S A BCE=4
点评:此题就是三角形等积变换模型的直接应用
二、鸟头定理(共角定理)模型
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在△ ABC中,D,E分别是AB,AC上的点(如图1)或D在BA的延长线上,
E 在AC 上( 女口图2) ,则S A ABC:ADE二(AB AC): (AD AE)
此模型的结论可以用将来初中学到的正弦定理进行证明!
因为S^ABC=AB >ACsinA,S^ADE=AD >AEsinA
所以:S A ABC: S A ADE= (AB/CsSA): (AD >AEsinA) = (AB 0C):
(AD >AE)
经典例题:
已知MEF的面积为7平方厘米,BE = CE、AD = 2BD*CF=3AF,求心眈
的面积・
三、蝴蝶定理模型
任意四边形中的比例关系(蝴蝶定理”:
① S i
: S 2 = S 4 : S
3 或者
S S
^ = S
2 S 4
②
AO:OC 二 $ S 2 : S 4 S 3
蝴蝶定理为我们提供了解决不规则四边形的面积问题的一
个途径•通过构造模型,一方面可以使不规则四边形的面积关系 与四边形内的三角形相联系;另一方面,也可以得到与面积对应 的对角线的比例关系。
蝴蝶定理实际上也是由三角形的等级变换模型推导而出的,即高相等的两个 三角形面积比等于底的比
因为:S i : S 2二DO:BO , S 4: S 3二DO:BO 所以:S: S 2= S: S 3二DO:BO
所以,由等比性质得:(S+S 4): (S 2: S 3) =DO:BO 同理可得:结论②(S 1+S 2) : (S 4: S 3) =AO:CO
a 2
: b
②
S 1 : S 3: S 2: S 4 = a 2: b 2
: ab: ab ;
2
②梯形S 的对应份数为
a
b
梯形由于其是特殊的四边形,所以不但对普通四边形的蝴蝶定理适用外,还有 上面几个特殊的结论。
经典例题:
四边形朋⑴的对角线.忙与心交于点如圏所示)如果三倉形昇朋的 面积等于三角形放◎的面积的7』且,那么匸。
的长度是 DO 的长度的 倍,
解析:S ^ ABD :
S ^BCD =AO : CO=1 : 3 A0=2,所以 CO=6=2DO 点评:此题直接应用了蝴蝶模型的结论
梯形中比例关系(“梯形蝴蝶定理”)
金字塔模型 沙漏模型
AD AE DE AF
① AB AC BC AG
②
S A ADE : S A ABC = AF 2
: AG 2o
所谓的相似三角形,就是形状相同,大小不同的三角形 (只要其形状不 改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及 定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似 比; ⑵相似三角形的面积比等于它们相似比的平方。
相似模型实际就是初中的相似三角形,最常见的就上上面的“ A ”型和“X ”型 (也称沙漏)两种。
经典例题:
如图,已知在平行四边形磁Q 中,^ = 16 , AD=\O 1 BE = 4 ,那么尺' 的长度是多少?
解析:四边形ABCD
是平行四边形,所以DC=AB=16,BC=AD=10 BECD 构成一个沙漏模型:所以有:DC:BE=CF:BF 即 16:4=CF:(10-CF ) 解得CF=8
点评:此题直接应用了相似模型中的沙漏模型,同学们做题的时 候只要注意观察就很容易能发现这个模型。
四、相似模型
相似三角形性质:
五、燕尾定理模型
.
1
S^ABG :AGC BGE : S AEGC = BE:EC
S A BGA : S A BGC =S A AGF : S A FGC =AF :FC
S A AGC : S A BCG =S A ADG : S^DGB =AD:DB
燕尾模型实际也可以由三角形的等积变换模型推导而出,即高相等的三角形面积比等于底的比此处进行简单的证明:
如图,因为:S A AG B S A GE B=AG:GE S A AGC S A GE C=AG:GE
所以:S A AG B:S A GE B= S A AG C S A GEC
所以:S A AGB:S A AGC= S A GEB S△GE C=BE:EC(此处用到更比性质,以后我们会学到)
经典例题解析:
燕尾模型
如图,上在月匸上,。
在衣厂上’且AE EC = 2 i AD与眈
交于点卜.四边形的面积等于22,则三角形『出「的面
积,
解析:连接FC,设S A ABD=X,则,S A ABD=2X,
S A ABF : S A BCF=CE : AE=3 : 2,所以S A ABF=2X,所以S A AFC=4X,所以
S A F EC=12X/5,
所以S 四边形DFE(=2X+12X/5=22,得:X=5,所以S A ABC =9X=45(cm2)。