七年级数学上册《解一元一次方程(一)》移项课案(教师用) 新人教版

合集下载

人教版七年级数学上册一元一次方程《解一元一次方程(一)——合并同类项与移项(第1课时)》示范教学课件

人教版七年级数学上册一元一次方程《解一元一次方程(一)——合并同类项与移项(第1课时)》示范教学课件
x=20.
解方程的第一步:将方程同侧的含有未知数的项和常数项分别合并,使方程化为 mx=n(m≠0)的形式.
解方程的第二步:运用等式的性质 2 ,等号两边同时除以未知数项的系数,使方程变形为 x=a(常数)的形式.
答:前年这个学校购买了 20 台计算机.
上面解方程中“合并同类项”起了什么作用?
今年购买计算机 4x 台.
根据前年购买量+去年购买量+今年0.
则去年购买计算机 2x 台,
如何解方程:x+2x+4x=140.
问题
解:合并同类项,得
7x=140.
系数化为 1,得
解:(2)合并同类项,得
系数化为 1,得
x=-13.
6x=-78.
利用合并同类项解方程时要注意:
归纳
(1)只有同类项才能合并,非同类项不能合并. (2)合并同类项的法则:同类项的系数相加减,字母及字母的指数不变. (3)在系数化为 1时,特别注意系数是负数时,符号不要出错.
请你尝试用分析(2)中②③的设未知数的方法解决本题.
解方程
解一元一次方程(一)——合并同类项
合并同类项
系数化为 1
列方程
审题
设未知数
列方程
解一元一次方程(一)——
合并同类项与移项
(第1课时)
人教版七年级数学上册
1.等式的性质
等式的性质 1:如果 a=b,那么 a±c=b±c.
2.利用等式的性质解下列方程.
(1)x-5=6; (2) .
解:(1)两边加 5,得 x-5+5=6+5.于是,x=11.
问题
问题中涉及了哪些量?
前年购买量+去年购买量+今年购买量=三年总量
在列方程时,“总量=各部分量的和”是一个基本的相等关系.

人教版七年级数学上册第3章第3课时 解一元一次方程(一)——合并同类项与移项(1)

人教版七年级数学上册第3章第3课时 解一元一次方程(一)——合并同类项与移项(1)
(1)将等式中的某些项变号后,从等式的一边 移到 另一边的 变形叫做移项. (2)例如:把方程2y-6=y+7变形为2y-y=7+6,这种变形 叫移项.根据是 等式的性质1 . (3)注意:在移项前等式的两边的项数与移项后等式的两边的 项数不变.
返回
数学
对点训练
返回
数学
10.有两个仓库,A仓库存货30吨,B仓库存货50吨.A仓库每 天入货2吨,B仓库每天出货3吨.几天后两个仓库存货量相 等? 解:设x天后两个仓库存货量相等, 由题意,得30+2x=50-3x,∴x=4. 答:4天后两个仓库存货量相等.
返回
数学
7.【例4】一个长方形和一个正方形,长方形的长比正方形的 边长多4 cm,长方形的宽比正方形的边长少2 cm,长方形 的长、宽之比为5∶3,长方形的长、宽各是多少? 解:设长方形的长、宽分别为5x cm、3x cm, 由题意,得5x-4=3x+2,∴x=3.∴5x=15,3x=9. 答:长方形的长、宽分别为15 cm、9 cm. 小结:按长、宽之比分别表示出长为5x,宽为3x,再分别表 示出正方形的边长的两个不同式子,列等式.
返回
数学
精典范例
4.【例1】下面的移项对不对?若不对,应怎样改正? (1)从7+x=13得到x=13+7; 不对,正确的应为x=13-7
(2)从5x=4x+8得到5x-4x=8; 对
(3)从3x-2=x+1得到3x+x=2+1; 不对,正确的应为3x-x=2+1
(4)从8x=7x-2得到8x-7x=2. 不对,正确的应为8x-7x=-2
第三章 一元一次方程
第4课时 解一元一次方程(一) ——合并同类项与移项(2)
数学
目录
01 学习目标 02 知识要点 03 对点训练 04 精典范例 05 变式练习

七年级(人教版)集体备课教学设计:3.2《解一元一次方程(一)——合并同类项与移项》2

七年级(人教版)集体备课教学设计:3.2《解一元一次方程(一)——合并同类项与移项》2

七年级(人教版)集体备课教学设计:3.2《解一元一次方程(一)——合并同类项与移项》2一. 教材分析《解一元一次方程(一)——合并同类项与移项》是人教版七年级数学的重要内容。

这部分内容主要让学生掌握一元一次方程的解法,培养学生解决实际问题的能力。

教材通过引入实际问题,引导学生掌握合并同类项与移项的方法,从而解决一元一次方程。

二. 学情分析学生在学习本节课之前,已经学习了代数式的基本概念,如加减乘除等运算。

但是,对于合并同类项与移项的方法,学生可能还比较陌生。

因此,在教学过程中,需要教师耐心引导,让学生逐步理解和掌握。

三. 教学目标1.让学生理解合并同类项与移项的概念和方法。

2.培养学生解决实际问题的能力,提高学生的数学素养。

3.培养学生合作学习的精神,提高学生的沟通表达能力。

四. 教学重难点1.合并同类项的方法。

2.移项的方法。

3.如何将实际问题转化为方程,并运用合并同类项与移项的方法解决问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究合并同类项与移项的方法。

2.采用合作学习法,让学生在小组讨论中,共同解决问题,提高沟通表达能力。

3.采用实例教学法,让学生在解决实际问题的过程中,理解并掌握合并同类项与移项的方法。

六. 教学准备1.准备相关的实例问题,用于引导学生学习和实践。

2.准备PPT,用于辅助教学。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决此类问题。

例如:某商店举行打折活动,原价100元的商品,打8折后售价是多少?2.呈现(10分钟)讲解合并同类项与移项的方法,并通过PPT展示相关的实例问题。

让学生在小组内讨论,共同解决问题。

3.操练(15分钟)让学生在小组内进行练习,运用合并同类项与移项的方法解决问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)挑选几个代表性的问题,让学生上讲台进行讲解,其他学生进行评价。

以此巩固所学知识。

人教版七年级数学上册:3.2《解一元一次方程(一) ——合并同类项与移项》说课稿5

人教版七年级数学上册:3.2《解一元一次方程(一) ——合并同类项与移项》说课稿5

人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿5一. 教材分析《人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》是学生在掌握了方程的概念和一元一次方程的定义后,进一步学习解一元一次方程的方法。

这一节内容是整个初中数学中非常重要的一部分,也是学生学习代数的基础。

通过这一节的学习,学生将学会如何合并同类项和移项,从而解决一元一次方程。

二. 学情分析学生在进入七年级之前,已经学习了小学数学,对数学的基本概念和运算规则有一定的了解。

但是,对于解一元一次方程,他们可能是第一次接触,因此需要通过实例和练习来逐步理解和掌握。

另外,由于学生的学习能力和学习习惯各不相同,因此在教学过程中需要关注学生的个体差异,因材施教。

三. 说教学目标本节课的教学目标是让学生掌握合并同类项和移项的方法,能够解一元一次方程。

同时,通过教学过程,培养学生的逻辑思维能力和解决问题的能力。

四. 说教学重难点本节课的重点是让学生学会合并同类项和移项的方法,难点是让学生理解为什么要合并同类项和移项,以及如何在解题过程中正确地应用这些方法。

五. 说教学方法与手段为了达到本节课的教学目标,我将以问题为导向,采用启发式教学法和实例教学法。

通过提出问题,引导学生思考和探索,从而让学生理解和掌握合并同类项和移项的方法。

同时,我将使用多媒体教学手段,如PPT和教学软件,来辅助教学,使教学过程更加生动和直观。

六. 说教学过程1.导入:通过提出实际问题,引发学生的思考,激发学生的学习兴趣。

2.讲解:通过实例讲解,让学生理解合并同类项和移项的概念和方法。

3.练习:让学生通过练习题,巩固所学的知识和方法。

4.总结:对所学内容进行总结,让学生形成系统的知识结构。

5.拓展:提出一些拓展问题,激发学生的学习兴趣和探索精神。

七. 说板书设计板书设计要简洁明了,能够突出本节课的重点内容。

可以设计成思维导图的形式,将合并同类项和移项的方法和步骤清晰地展示出来。

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案

人教版七年级数学上册:3.2《解一元一次方程(一)——移项》教案一. 教材分析《人教版七年级数学上册》第三单元《解一元一次方程(一)——移项》是学生在学习了方程与方程的解、一元一次方程的定义及解法的基础上进行学习的。

本节课的主要内容是让学生掌握移项的方法,并能运用移项法解一元一次方程。

教材通过例题和练习题的安排,使学生能够逐步掌握移项的方法,并能够灵活运用。

二. 学情分析学生在学习本节课之前,已经掌握了方程与方程的解、一元一次方程的定义及解法等知识,具备了一定的数学基础。

但是,对于移项的方法,学生可能还不太熟悉,需要通过例题和练习题的讲解和练习,才能够掌握。

三. 教学目标1.让学生掌握移项的方法,能够将方程中的项移动到等号的同一边。

2.能够运用移项法解一元一次方程。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.教学重点:移项的方法和解一元一次方程的方法。

2.教学难点:如何引导学生理解和掌握移项的方法,并能够灵活运用。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,使学生能够理解和掌握移项的方法,并能够灵活运用。

六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)教师通过复习方程与方程的解、一元一次方程的定义及解法等知识,引出本节课的主题——移项。

2.呈现(10分钟)教师通过PPT课件,展示移项的方法,并通过示例进行讲解和示范。

示例中,教师引导学生观察方程的两边,找出需要移动的项,并说明移动的方向和规则。

3.操练(10分钟)教师给出一些练习题,让学生独立完成。

教师在学生完成练习的过程中,进行巡视指导,帮助学生理解和掌握移项的方法。

4.巩固(5分钟)教师通过PPT课件,给出一些巩固题,让学生进行练习。

教师在学生完成练习的过程中,进行巡视指导,帮助学生巩固理解和掌握移项的方法。

5.拓展(5分钟)教师通过PPT课件,给出一些拓展题,让学生进行练习。

人教版数学七年级上册《 解一元一次方程(一)合并同类项与移项(1)》教案

人教版数学七年级上册《 解一元一次方程(一)合并同类项与移项(1)》教案

人教版数学七年级上册《解一元一次方程(一)合并同类项与移项(1)》教案一. 教材分析人教版数学七年级上册《解一元一次方程(一)合并同类项与移项(1)》这一节主要让学生掌握一元一次方程的合并同类项与移项的方法。

在已有的知识基础上,进一步培养学生解决实际问题的能力。

教材通过例题和练习题引导学生掌握解一元一次方程的基本步骤和方法。

二. 学情分析学生在之前的学习中已经掌握了整数、分数、有理数等基础知识,对解方程有一定的了解。

但部分学生在解一元一次方程时,对合并同类项与移项的操作还不够熟练,容易出错。

因此,在教学过程中,需要关注这部分学生的学习需求,通过讲解和练习,使他们能够掌握解题技巧。

三. 教学目标1.让学生掌握一元一次方程的合并同类项与移项方法。

2.培养学生解决实际问题的能力。

3.提高学生的数学思维能力和团队合作能力。

四. 教学重难点1.合并同类项的方法。

2.移项的操作及其在解一元一次方程中的应用。

五. 教学方法采用讲解、演示、练习、讨论等多种教学方法,以学生为主体,教师为引导,充分发挥学生的积极性和主动性。

六. 教学准备1.教材、PPT等相关教学资料。

2.练习题。

3.黑板、粉笔。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学的解方程知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过PPT展示一元一次方程的合并同类项与移项方法,讲解相关概念和操作步骤。

3.操练(10分钟)教师给出例题,引导学生分组讨论、解答。

学生在讨论过程中,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生独立完成练习题,教师选取部分学生的作业进行讲评,指出解题过程中的优点和不足。

5.拓展(10分钟)教师引导学生运用合并同类项与移项方法解决实际问题,培养学生的应用能力。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。

7.家庭作业(5分钟)教师布置适量的家庭作业,让学生进一步巩固所学知识。

8.板书(5分钟)教师在黑板上板书本节课的主要知识点和步骤,方便学生复习。

人教版七年级数学上册一元一次方程《解一元一次方程(一)——合并同类项与移项(第3课时)》示范教学设计

人教版七年级数学上册一元一次方程《解一元一次方程(一)——合并同类项与移项(第3课时)》示范教学设计

解一元一次方程(一)——合并同类项与移项(第3课时)教学目标1.通过分析实际问题中的数量关系,能够建立方程解决问题.2.熟练掌握利用合并同类项与移项解一元一次方程的方法,体会化归思想.教学重点会利用合并同类项与移项的方法解一元一次方程.教学难点能够通过题干分析出“总量和分量关系问题”和“盈不足问题”中的相等关系,并建立方程解决问题.教学过程知识回顾1.利用合并同类项解方程.将一元一次方程同侧的含有未知数的项与常数项分别合并,使方程转化为mx=n (m≠0)的简单形式,从而更接近x=a(常数)的形式,便于求解.一般步骤:(1)合并同类项;(2)系数化为1.2.利用移项解方程.将含有未知数的项移到方程的一边,将不含未知数的常数项移到方程的另一边,使方程更接近于mx=n(m≠0)的形式.一般步骤:(1)移项;(2)合并同类项;(3)系数化为1.3.列方程解应用题的步骤.(1)审题勾画关键词,找出相等关系;(2)表示相等关系;(3)设未知数,列方程;(4)解方程、检验,并答题.本节课,我们将学习一元一次方程的简单应用.新知探究类型一、利用合并同类项解方程【问题】1.利用合并同类项解下列方程:(1)6x-4x=17-5;(2)-9x+2x-4x=50-2-4.【答案】解:(1)合并同类项,得2x=12.系数化为1,得x=6.(2)合并同类项,得-11x=44.系数化为1,得x=-4.【师生活动】教师提问:根据上面例题,请同学们尝试归纳利用合并同类项解方程时的注意事项.学生尝试总结,教师补充.【归纳】(1)把方程中的同类项合并时,要牢记合并同类项的法则:同类项的系数相加,字母连同它的指数不变.(2)在系数化为1时,特别注意系数是负数时,符号不要出错.【设计意图】通过例题讲解,让学生掌握如何利用合并同类项解方程.例题之后,进行总结归纳,加深学生对所学知识的理解及应用.类型二、利用移项解方程【问题】2.利用移项解下列方程:(1)5x-4=-7x+8;(2)6-8x=3x+3-5x.【答案】解:(1)移项,得5x+7x=4+8.合并同类项,得12x=12.系数化为1,得x=1.(2)移项,得-8x-3x+5x=-6+3.合并同类项,得-6x=-3.系数化为1,得12x .【师生活动】教师提问:通过例题练习,你能发现利用移项解方程时的易错点吗?学生回答:移项时容易忘记变号.教师补充,学生尝试总结归纳.【归纳】(1)方程中的项包括它前面的符号;(2)在解方程时,习惯上把含有未知数的项移到等号的左边,不含有未知数的项移到等号的右边;(3)移项时一定要变号.【设计意图】通过例题讲解,让学生掌握如何利用移项解方程.例题之后,进行总结归纳,加深学生对所学知识的理解及应用.类型三、列方程解应用题【问题】3.在植树节期间,学校开展了植树活动.七年级三个班共植树100棵,其中一班植树的棵数比二班植树的棵数多4棵,三班植树的棵数比二班植树棵数的2倍少4棵,求三个班各植树多少棵.【师生活动】教师提问:问题中涉及了哪些量?这些量之间有怎样的关系?学生回答:(1)一班植树的棵数,二班植树的棵数,三班植树的棵数;(2)总棵数=一班植树的棵数+二班植树的棵数+三班植树的棵数.教师总结:在列方程时,“总量=各部分量的和”是一个基本的相等关系.【分析】题中已知一班、三班植树的棵数分别与二班植树的棵数的关系,所以可以考虑设二班植树x棵.【答案】解:设二班植树x棵,则一班植树(x+4)棵,三班植树(2x-4)棵.根据题意,得x+x+4+2x-4=100.合并同类项,得4x=100.系数化为1,得x=25.所以x+4=29,2x-4=46.答:一班植树29棵,二班植树25棵,三班植树46棵.【归纳】根据“总量=各部分量的和”解决问题的四个步骤:第1步:弄清楚总量包括哪几部分量,并设出未知数;第2步:根据“总量=各部分量的和”列出方程;第3步:解方程求出所设未知数;第4步:求出其余各部分量,并作答.【问题】4.已知一列火车匀速驶过一条隧道,从车头进入隧道到车尾离开隧道共用45 s,而整列火车全在隧道内的时间为33 s,且火车的长度为180 m,求隧道的长度和火车的速度.【师生活动】教师提问:隧道的长度有几种表示方法?学生回答:(1)若火车的速度为x m/s,火车匀速驶过隧道,从车头进入隧道到车尾离开隧道是45x m,减去火车的长度180 m,得隧道的长度为(45x-180)m;(2)若火车的速度为x m/s,整列火车全在隧道内行驶了33x m,加上两个火车的长度(180×2) m,得隧道的长度为(33x+180×2)m.教师追问:本题哪个相等关系可作为列方程的依据呢?学生回答:两种表示方式表示的隧道的长度是相同的.教师总结:“表示同一个量的两个不同的式子相等”是一个基本的相等关系.【答案】解:设火车的速度为x m/s.根据题意,得45x-180=33x+180×2.移项,得45x-33x=180+360.合并同类项,得12x=540.系数化为1,得x=45.45×45-180=1 845(m).答:隧道的长度为1 845 m,火车的速度为45 m/s.【归纳】根据“表示同一个量的两个不同的式子相等”解决问题的四个步骤第1步:找出应用题中贯彻始终的一个不变的量;第2步:用两个不同的式子表示出这个量;第3步:由“表示同一个量的两个不同式子相等”列出方程;第4步:解方程,求出答案并作答.【设计意图】通过问题3、问题4的分析与讲解,加深学生对这两种应用题解题方法的认识,在遇到相对应题型时可以准确迅速地找出相等关系,从而列出方程解决问题.课堂小结板书设计一、利用合并同类项解一元一次方程二、利用移项解一元一次方程三、列方程解应用题课后任务完成教材第91页习题3.2第1,3,6,11题.。

【人教版七年级上册数学上册】3.2解一元一次方程(一)——合并同类项与移项课时3

【人教版七年级上册数学上册】3.2解一元一次方程(一)——合并同类项与移项课时3

注意:1. 移项必须是由等号的一边移到另一边,而不
是在等号的同一边交换位置.
2. 方程中的各项均包括它们前面的符号,如x-2=1中,
方程左边的项有x,-2,移项时所移动的项一定要变号.
3.移项时,一般都习惯把含未知数的项移到等号左边,
把常数项移到等号右边.
移项与加法交换律的区别
移项是在等式中,把某些项从等号的一边移到另一边,
(3) 已知整式-3x+2 与2x-1的值互为相反数,求x的值.
解:(2) 列方程,得 -3y=y+1.移项,得 -3y-y=1.
合并同类项,得 -4y=1.
系数化为1,得
1
y=4
.
3.利用方程解答下列问题:
(1) x的3倍与2的和等于x的2倍与1的差,求x的值;
(2) y与-3的积等于y与1的和,求y的值;
2.解下列方程:
1
−6
2
3
= .
4
1
3
移项,得 −
2
4
(1) 6x-7=4x-5;
(2)
解:(1) 移项,
(2)
得6x-4x=-5+7.
1
合并同类项,得-
4
合并同类项,
得2x=2.
系数化为1,得 x=1.
= 6.
=6.
系数化为1,得 x= -24.
3.利用方程解答下列问题:
(1) x的3倍与2的和等于x的2倍与1的差,求xx+2x=32-7.
(2) 移项,得
合并同类项 ,得
5x=25.
合并同类项,得
系数化为1,得
x=5.
3
x- x=1+3.
2

3.2解一元一次方程(一)第2课时移项(导学案)七年级数学上册(人教版)

3.2解一元一次方程(一)第2课时移项(导学案)七年级数学上册(人教版)

3.2 解一元一次方程(一)第2课时移项导学案1. 理解移项的意义,掌握移项的方法.2. 学会运用移项解形如“ax+b=cx+d”的一元一次方程.3. 能够抓住实际问题中的数量关系列一元一次方程解决实际问题.★知识点1:用移项的方法解一元一次方程移项是解一元一次方程步骤中重要的一步,注意两点:形式上是把方程中的某一项改变符号后从方程的某一边移到另一边,本质上是依据等式的性质1,应用时,要让学生理解这样做的依据,从而确信它的正确性,熟练掌握移项的方法和目的.★知识点2:利用方程这个工具解应用问题通过实际问题,重点让学生经历和感受方程较算式的优越性,突出数学模型的广泛性和有效性.★知识点3:题目中含有比的应用题题目中含有比的应用题在设未知数时,一般根据比去设,如果题目已知的比是a:b,一般设为ax和bx两部分,如果比是a:b:c,一般设为ax, bx,cx在计算时较简单.1. 移项:把等式一边的某项移到叫做移项.2. 在列方程解应用题中:表示是一个基本的相等关系.3. 路程= ×,这是行程问题中常用的基本等量关系.4. 两个数a与b(b≠0)相除,叫做a与b的比,记作或者 .其中a叫做比的,b叫做比的 .5. 七年一班有学生42人,如果男、女生人数的比是4:3,求该班的男女生人数.在设未知数时,一般设男生为人,女生为人.1. 变号后;另一边;2. 同一个量的两个不同的式子相等;3. 速度;时间;4. a:b;ab;前项;后项;5. 4x;3x.问题1:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?每人分3本,共分出3x本,加上剩余的20本,这批书共有本;(3x+20)每人分4本,共分出4x本,减去缺少的25本,这批书共有本.(4x-25)从而列方程. 3x+20=4x-25问题2:方程3x+20=4x-25与前面学过的一元一次方程在结构上有什么不同?问题3:怎样才能将它转化为x=a(常数)的形式呢?把等式一边的某项变号后移到另一边,它叫做移项.问题4:移项的依据是什么?问题5:以上解方程中“移项”起了什么作用?1. 下列方程的变形,属于移项的是(D)A. 由-3x=24得x=-8B. 由3x+6-2x=8 得3x-2x+6=8C. 由4x+5=0 得-4x-5=0D. 由2x+1=0得2x=-12. 下列移项正确的是(C)A.由2+x=8,得到x=8+2B.由5x=-8+x,得到5x+x=-8C.由4x=2x+1,得到4x-2x=1D.由5x-3=0,得到5x=-3例1:解方程:(1)3x+7=32-2x;(2)x-3=32x+1.解:(1)移项,得3x+2x=32-7合并同类项,得5x=25系数化为1,得x=5.解:(2)移项,得合并同类项,得系数化为1,得x=-8.解下列方程:(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x.解:(1)移项,得5x-2x=-10+7,合并同类项,得-3x=-3,系数化为1,得x=1.(2)移项,得-0.3x-1.2x=9-3,合并同类项,得-1.5x=6,系数化为1,得x=-4.例2:某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t. 新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?解:若设新工艺的废水排量为2x t,则旧工艺的废水排量为5x t.由题意得5x-200=2x+100,移项,得5x-2x=100+200,合并同类项,得3x=300,系数化为1,得x=100,所以2x=200,5x=500.答:新工艺的废水排量为200 t,旧工艺的废水排量为 500 t.下面是两种移动计费方式:问:一个月内,通话时间是多少分钟时,两种移动计费方式的费用一样?解:设通话时间t分钟,则按方式一要收费(50+0.3t)元,按方式二要收费(10+0.4t). 如果两种移动计费方式的费用一样,则50+0.3t=10+0.4t.移项,得0.3t-0.4t =10-50.合并同类项,得-0.1t =-40.系数化为1,得t =400.答:一个月内通话400分钟时,两种计费方式的费用一样.1. 通过移项将下列方程变形,正确的是( C )A.由5x-7=2,得5x=2-7B.由6x-3=x+4,得3-6x=4+xC.由8-x=x-5,得-x-x=-5-8D.由x+9=3x-1,得3x-x=-1+92. 已知2m-3=3n+1,则2m-3n = 4.3. 如果154m+与14m+互为相反数,则m的为.(112-)4. 当x = -2时,式子2x-1的值比式子5x+6的值小1.5. 解下列一元一次方程:(1)7-2x=3-4x;(2)1.8t=30+0.3t;(3)1132x x+=+;(4)541183333x x+=-.答案:(1)x=-2;(2)t=20;(3)x=-4;(4)x=2.6. 小明和小刚每天早晨坚持跑步,小明每秒跑4米,小刚每秒跑6米. 若小明站在百米起点处,小刚站在他前面10米处,两人同时同向起跑,几秒后小明追上小刚?解:设小明x秒后追上小刚,可得方程:4x+10=6x.移项,得4x-6x=-10.合并同类项,得-2x=-10.系数化为1,得x=5.答:小明5秒后追上小刚.1.(2022•百色)方程3x=2x+7的解是()A.x=4B.x=-4C.x=7D.x=-7【解答】解:移项得:3x-2x=7,合并同类项得:x=7.故选:C.2.(2022•海南)若代数式x+1的值为6,则x等于()A.5B.-5C.7D.-7【解答】解:根据题意可得,x+1=6,解得:x=5.故选:A.3.(4分)(2021•重庆A卷15/26)若关于x的方程442xa-+=的解是x=2,则a的值为.【解答】解:把x=2代入方程442xa-+=得:4242a-+=,解得:a=3,故答案为:3.(1)本节课学习了哪些主要内容?(2)移项的依据是什么?移项起到什么作用?移项时应该注意什么问题?(3)解ax+b=cx+d型方程的步骤是什么?(4)用方程来解决实际问题的关键是什么?【参考答案】1. 变号后;另一边;2. 同一个量的两个不同的式子相等;3. 速度;时间;4. a:b;ab;前项;后项;5. 4x;3x.1. D;2. C.例1:解:(1)移项,得3x+2x=32-7合并同类项,得5x=25系数化为1,得x=5.解:(2)移项,得合并同类项,得系数化为1,得x=-8.解:(1)移项,得5x-2x=-10+7,合并同类项,得-3x=-3,系数化为1,得x=1.(2)移项,得-0.3x-1.2x=9-3,合并同类项,得-1.5x=6,系数化为1,得x=-4.例2:解:若设新工艺的废水排量为2x t,则旧工艺的废水排量为5x t.由题意得5x-200=2x+100,移项,得5x-2x=100+200,合并同类项,得3x=300,系数化为1,得x=100,所以2x=200,5x=500.答:新工艺的废水排量为200 t,旧工艺的废水排量为 500 t.解:设通话时间t分钟,则按方式一要收费(50+0.3t)元,按方式二要收费(10+0.4t). 如果两种移动计费方式的费用一样,则50+0.3t=10+0.4t.移项,得0.3t-0.4t =10-50.合并同类项,得-0.1t =-40.系数化为1,得t =400.答:一个月内通话400分钟时,两种计费方式的费用一样.1. C;2. 4;3.1 12 ;4. -2;5.(1)x=-2;(2)t=20;(3)x=-4;(4)x=2.6. 解:设小明x秒后追上小刚,可得方程:4x+10=6x.移项,得4x-6x=-10.合并同类项,得-2x=-10.系数化为1,得x=5.答:小明5秒后追上小刚.1.【解答】解:移项得:3x-2x=7,合并同类项得:x=7.故选:C.2.【解答】解:根据题意可得,x+1=6,解得:x=5.故选:A.3.【解答】解:把x=2代入方程442xa-+=得:4242a-+=,解得:a=3,故答案为:3.。

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》说课稿

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》说课稿

人教版七年级数学上册:3.2《解一元一次方程(一)——移项》说课稿一. 教材分析《解一元一次方程(一)——移项》是人教版七年级数学上册第三章第二节的内容。

本节内容是在学生已经掌握了方程的定义和一元一次方程的解法的基础上进行授课的。

通过本节课的学习,使学生掌握一元一次方程的移项法则,进一步理解和掌握方程的解法,培养学生解决实际问题的能力。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于方程的概念和解法已经有了一定的理解。

但是,学生在解方程的过程中,对于移项的操作还不够熟练,对于移项的法则的理解还不够深入。

因此,在教学过程中,需要教师耐心引导,让学生充分理解和掌握移项的法则,提高解方程的技能。

三. 说教学目标1.知识与技能目标:使学生理解和掌握一元一次方程的移项法则,能够熟练地进行移项操作。

2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和细心。

四. 说教学重难点1.教学重点:一元一次方程的移项法则。

2.教学难点:移项的法则的应用,特别是对于含字母的方程的移项。

五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生自主探究和合作交流。

2.教学手段:利用多媒体课件,进行动画演示,帮助学生直观地理解移项的过程。

六. 说教学过程1.导入新课:通过复习一元一次方程的解法,引导学生进入新课。

2.自主探究:让学生自主探究一元一次方程的移项法则,教师进行适当的引导和点拨。

3.合作交流:学生分组进行合作交流,分享各自的解题心得和方法。

4.动画演示:利用多媒体课件,进行动画演示,帮助学生直观地理解移项的过程。

5.巩固练习:布置一些练习题,让学生进行巩固练习。

6.总结反思:让学生总结本节课的收获,教师进行总结和点评。

七. 说板书设计板书设计如下:一元一次方程的移项法则八. 说教学评价教学评价主要通过学生的课堂表现、练习题的完成情况和学生的学习反馈来进行。

人教版七年级数学上册教案:第3章 一元一次方程 解一元一次方程(一)——合并同类项与移项(2课时)

人教版七年级数学上册教案:第3章 一元一次方程  解一元一次方程(一)——合并同类项与移项(2课时)

3.2解一元一次方程(一)——合并同类项与移项第1课时合并同类项一、基本目标【知识与技能】1.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.2.学会探索实际问题中的数量关系,正确地求解一元一次方程.【过程与方法】经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力.【情感态度与价值观】初步体会一元一次方程的应用价值,感受数学文化.培养学生乐于思考,不怕困难的精神.二、重难点目标【教学重点】会解“ax+bx=c”类型的一元一次方程.【教学难点】分析实际问题中的数量关系,会列方程并能正确求解.环节1自学提纲,生成问题【5 min阅读】阅读教材P86~P87的内容,完成下面练习.【3 min反馈】1.教材第87页“思考”:通过合并同类项可以化简方程,把方程化为ax=b(a、b为常数且a≠0)的形式,从而求出方程的解.2.合并同类项的法则:同类项的系数相加,字母连同它的指数不变.3.解形如ax+bx=c的一元一次方程先合并,再将系数化为1.4.列方程步骤:(1)设未知数;(2)找相等关系;(3)列方程.环节2合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)3x -20x =-34;(2)y 3+y 4=1-112. 【互动探索】(引发学生思考)利用合并同类项的方法求解.【解答】(1)合并同类项,得-17x =-34.系数化为1,得x =2.(2)合并同类项,得7y 12=1112. 系数化为1,得y =117. 【互动总结】(学生总结,老师点评)用合并同类项法解一元一次方程的步骤:(1)合并同类项,即把方程中含有未知数的项合并,常数项合并,把方程化为ax =b (a ≠0)的形式;(2)系数化为1,即根据等式的性质2,将形如ax =b (a ≠0)的方程两边都除以一次项系数,化成x =b a(a ≠0)的形式,即得方程的解为x =b a.系数化为1时注意:(1)利用等式的性质2,方程的两边同时除以未知项的系数,把系数化为1;(2)不要颠倒分子、分母的位置.【例2】有一列数,按一定规律排列成1,-3,9,-27,81,-243,….其中某三个相邻数的和是-1701,这三个数各是多少?【解答】见教材第87页例2活动2 巩固练习(学生独学)1.下列各式的变形错误的是( C )A .由7x -6x =1,得x =1B .由3x -4x =10,得-x =10C .由x -2x +4x =15,得x =15D .由-7y +y =6,得-6y =62.已知关于x 的方程4x -3m =2的解是x =m ,则m 的值是( A )A .2B .-2 C.27 D .-272.一个两位数,个位上的数字是十位上数字的3倍,两个数字的和是12,这个两位数是39.3.顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,到两地旅游的人数各是多少人?解:设到怀集的旅游人数为x人,则到德庆旅游的人数为(2x-1)人.根据题意,得x+2x-1=200.解得x=67.则2x-1=133.即到怀集和德庆旅游的人数分别是67人,133人.活动3拓展延伸(学生对学)【例3】有一些分别标有6,12,18,24,…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片,且这些卡片上的数字之和为342.(1)小彬拿到哪3张卡片?(2)小彬能否拿到相邻的3张卡片,使得这3张卡片上的数的和为86?如果能拿到,请求出这3张卡片上的数各是多少;如果不能拿到,请说明理由.【互动探索】(1)根据题意可以求得相邻的三个数;(2)先判断这三个数字的和能否是86,然后说明理由即可.【解答】(1)设小彬拿到相邻的3张卡片上的数分别为x-6,x,x+6,则有x-6+x+x+6=342.解得x=114.所以x-6=108,x+6=120.即小彬拿到相邻的3张卡片上的数分别为108,114,120.(2)假设能拿到和为86的3张卡片,设这3张卡片上的数分别为y-6,y,y+6,则有y-6+y+y+6=86.解得y≈28.67,显然不符合题意,说明上述假设不成立.故小彬不能拿到相邻的3张卡片,使得这3张卡片上的数的和为86.【互动总结】(学生总结,老师点评)解答本题的关键是由后一张卡片上的数比前一张卡片上的数大6的特点,可设中间的一张卡片分别为x,那么另外两张卡片为x-6和x+6.然后根据每一问中的具体等量关系列出方程即可.环节3课堂小结,当堂达标(学生总结,老师点评)1.合并同类项法则:把同类项的系数相加,字母的指数不变.利用合并同类项法则可使方程转化为ax=b的形式.2.利用一元一次方程解应用题,当问题中有多个未知数时,可设其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程求解.请完成本课对应训练!第2课时移项一、基本目标【知识与技能】1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.2.掌握移项的方法,学会解“ax+b=cx+d”类型的一元一次方程.【过程与方法】通过解形如ax+b=cx+d的方程,使学生感受化归的思想方法.【情感态度与价值观】1.培养学生积极思考,勇于探索的精神.2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值.二、重难点目标【教学重点】会解“ax+b=cx+d”类型的一元一次方程.【教学难点】分析实际问题中的相等关系,列出方程.环节1自学提纲,生成问题【5 min阅读】阅读教材P88~P90的内容,完成下面练习.【3 min反馈】1.教材第88页思考:先移项,将方程变为3x-4x=-25-20的形式;再合并同类项,得-x=-45;最后将系数化为1,得x=45.2.把等式一边的某项变号后移到另一边,叫做移项.3.移项的根据是等式的性质1.4.教材第89页思考:通过移项,可以把含有未知数的项与常数项分别移到等号的两边,通过合并同类项,使方程化为ax=b(a、b为常数且a≠0)的形式,再化系数为1,即可求出方程的解.5.解方程20-3x=5时,移项后正确的是(B)A.-3x=5+20B.20-5=3xC.3x=5-20D.-3x=-5-20环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)x -2018=82-5x ;(2)-2x +3.5=3x -8.【互动探索】(引发学生思考)解简单的一元一次方程的步骤有哪些?移项的关键是什么?【解答】(1)移项,得x +5x =82+2018.合并同类项,得6x =2100.系数化为1,得x =350.(2)移项,得-2x -3x =-8-3.5.合并同类项,得-5x =-11.5.系数化为1,得x =2.3.【互动总结】(学生总结,老师点评)移项是解方程的关键步骤,移项时,一般把含有未知数的项移到等号左边,常数项移到等号右边,注意移项时一定要变号.【例2】某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量比环保限制的最大量少100 t .新、旧工艺的废水排量之比在2∶5,两种工艺的废水排量各是多少?【解答】见教材第90页例4【教师点拨】列方程解决应用题的关键是找出题中的等量关系.本题的等量关系:旧工艺废水排量-200 t =新工艺废水排量+100 t.活动2 巩固练习(学生独学)1.解下列方程:(1)x -2=3-x ;(2)-x =1-2x ;(3)5=5-3x ;(4)x -2x =1-23x ;(5)x -3x -1.2=4.8-5x .解:(1)x =52. (2)x =1.(3)x =0.(4)x =-3.(5)x =2.2.把若干块糖果分给若干个小朋友,若每人分3块,则多12块;若每人分5块,则少10块.则一共有多少个小朋友?多少块糖?解:设一共有x 个小朋友.根据题意,得5x -10=3x +12.移项,得5x -3x =12+10.合并同类项,得2x =22.系数化为1,得x =11.所以共有糖5x -10=45(块).即一共有11个小朋友,糖45块.3.一个三位数,十位上的数字比个位上的数字多1,且是百位上的数字的4倍,百位上的数字与个位上的数字之和比十位上的数字大1,求这个三位数.解:设十位上的数字为x .根据题意,得x -1+x 4=x +1. 移项,得x +x 4-x =1+1. 合并同类项,得x 4=2. 系数化为1,得x =8.所以个位上的数字为x -1=8-1=7,百位上的数字是x 4=84=2,则这个三位数是287. 活动3 拓展延伸(学生对学)【例3】某中学组织七年级的同学去游玩,原计划租用45座客车(不包括司机)若干辆,但有15人没有座位,如果租用同样数量的60座客车(不包括司机),则多出一辆且其余客车恰好坐满.则七年级有多少人?原计划租用45座客车多少辆?【互动探索】本题中的等量关系为:45×45座客车辆数+15=学生总数,60×(45座客车辆数-1)=学生总数,据此可列方程组求出45座客车辆数,进而可求出七年级的学生人数.【解答】解:设原计划租用45座客车x辆,则七年级有(45x+15)人.根据题意,得45x+15=60x-60.移项,得45x-60x=-60-15.合并同类项,得-15x=-75.系数化为1,得x=5.当x=5时,45x+15=45×5+15=240.即七年级有240人,原计划租用45座客车5辆.【互动总结】(学生总结,老师点评)列方程解应用题的一般步骤:审题→找相等关系→设未知数→列方程→解方程→检验(不在解题过程中体现)→写出答案.环节3课堂小结,当堂达标(学生总结,老师点评)1.移项:移项是解方程的重要变形,一般把含有未知数的各项移到同一边(通常移到左边),而把常数项移到另一边(通常移到右边),不管是从左边到右边,还是从右边到左边,注意移项要变号.2.题目中含有比的应用题在设未知数时,一般根据比去设,如果题目告诉的比是a∶b,一般设为ax、bx两部分,如果比是a∶b∶c,一般设为ax、bx、cx三部分,然后找出题目中的等量关系列出方程,并解答.请完成本课对应训练!。

人教版数学七年级上册说课稿:3.2《解一元一次方程移项》(第2课时)

人教版数学七年级上册说课稿:3.2《解一元一次方程移项》(第2课时)
2.解释移项法则:通过讲解和示例,让学生掌握移项的符号变化规律,理解移项的原理。
3.逐步引导:从简单到复杂,通过典型例题的讲解,引导学生逐步掌握移项的方法和技巧。
4.互动讨论:组织学生讨论移项过程中的关键步骤和注意事项,加深对知识点的理解。
(三)巩固练习
为帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
2.提出问题:在情境中提出问题,引导学生思考如何解决这一问题,从而引出一元一次方程的移项。
3.引发思考:通过提问方式,让学生回顾一元一次方程的基本概念和解法,为新课的学习做好铺垫。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.演示移项过程:利用教具和多媒体资源,直观演示移项的过程,让学生形象地理解移项法则。
3.学会分析问题,找出解题关键,提高解题能力。
过程与方法:
1.通过自主探究、合作交流,培养学生的观察能力和逻辑思维能力;
2.通过典型例题的讲解和练习,让学生掌握解一元一次方程的方法;
3.培养学生分析问题、解决问题的能力。
情感态度与价值观:
1.培养学生对待数学问题的积极态度,增强学习数学的兴趣;
2.培养学生严谨、细心的学习习惯;
4.互动游戏:设计数学游戏,让学生在游戏中运用移项法则,提高课堂趣味性,增强学生的学习积极性。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过讲述一个与移项有关的生活实例,如分配物品的问题,让学生感受到数学在生活中的应用,激发他们的学习兴趣。
人教版数学七年级上册说课稿:3.2《解一元一次方程移项》(第2课时)
一、教材分析

人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿

人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿

人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿一. 教材分析《人教版七年级数学上册》第三章第二节《解一元一次方程(一)——合并同类项与移项》是学生在学习了代数基础和方程概念之后,进一步深入研究一元一次方程的解法。

此节内容主要介绍了一元一次方程的解法——合并同类项与移项,是学生解决实际问题,提高解决实际问题能力的重要工具。

二. 学情分析七年级的学生已经具备了一定的代数基础,对方程的概念有了初步的了解,但是解一元一次方程的方法和技巧还不够熟练,需要通过本节课的学习进一步提高。

同时,学生在这个阶段的学习中,需要培养抽象思维能力和逻辑推理能力。

三. 说教学目标1.知识与技能目标:理解合并同类项与移项的概念,学会运用合并同类项与移项解一元一次方程。

2.过程与方法目标:通过自主学习、合作交流,培养学生的抽象思维能力和逻辑推理能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 说教学重难点1.教学重点:合并同类项与移项的方法及应用。

2.教学难点:如何引导学生理解并掌握合并同类项与移项的原理和技巧。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的教学方法。

2.教学手段:利用多媒体课件辅助教学,提高教学效果。

六. 说教学过程1.导入新课:通过复习上节课的内容,引出本节课的主题——解一元一次方程。

2.自主学习:让学生自主探究合并同类项与移项的方法,引导学生发现解题规律。

3.合作交流:学生分组讨论,分享解题心得,互相学习,提高解题能力。

4.教师讲解:针对学生的疑问和难点,进行讲解和辅导,帮助学生掌握解题方法。

5.巩固练习:布置适量的练习题,让学生巩固所学知识,提高解题技巧。

6.课堂小结:总结本节课的学习内容,强化学生对合并同类项与移项的理解。

7.课后作业:布置相关的作业,让学生进一步巩固所学知识。

七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。

初中移项教案

初中移项教案

初中移项教案一、教学目标:1. 让学生理解移项的概念,掌握移项的基本方法。

2. 培养学生解决实际问题的能力,提高学生的数学思维水平。

3. 通过对移项的学习,培养学生严谨的学习态度和良好的学习习惯。

二、教学内容:1. 移项的概念:移项是指在解一元一次方程时,将方程中的项移到等式的另一边。

2. 移项的方法:移项时,需要改变移动项的符号。

如果将方程中的项移到等式的左边,移动项的符号变为负号;如果将方程中的项移到等式的右边,移动项的符号变为正号。

3. 移项的应用:解决实际问题中的方程移项。

三、教学重点与难点:1. 教学重点:让学生掌握移项的概念和方法,能够运用移项解决实际问题。

2. 教学难点:理解移项时符号的变化规律,以及在实际问题中灵活运用移项。

四、教学过程:1. 导入:通过复习一元一次方程的解法,引出移项的概念。

2. 讲解:讲解移项的概念和方法,通过示例让学生明白移项的步骤和注意事项。

3. 练习:让学生通过练习题,巩固移项的方法和技巧。

4. 应用:结合实际问题,让学生运用移项解决实际问题,体会移项在实际问题中的应用价值。

5. 总结:对本节课的内容进行总结,强调移项的重要性和注意事项。

五、课后作业:1. 完成课后练习题,巩固移项的方法和技巧。

2. 思考实际问题中的移项应用,提高解决实际问题的能力。

六、教学反思:通过本节课的教学,学生应掌握移项的概念和方法,能够在解一元一次方程时灵活运用移项。

在教学过程中,要注意引导学生理解移项的原理,让学生在实际问题中能够独立思考,培养学生的数学思维能力。

同时,要关注学生的学习反馈,针对不同学生的学习情况,进行有针对性的辅导,提高教学效果。

3.2 解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2  解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2 解一元一次方程(一)——合并同类项与移项第1课时 用合并同类项的方法解一元一次方程学习目标:1.学会运用合并同类项解形如ax +bx = c 类型的一元一次方程,进一步体会方程中的“化归”思想.2. 能够根据题意找出实际问题中的相等关系,列出方程求解.重点:用合并同类项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系.教学过程:要点探究探究点1:利用合并同类项解简单的一元一次方程合作探究:试一试:把一元一次方程x +2x +4x = 140转化为x = m 的形式.依据:______________ 依据:_________________归纳:解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax = b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.典例精析例1 解下列方程:(1) 1115;24x x x --= 221(2)423.32x x x -++=-⨯+.方法总结:合并同类项解方程的一般步骤如下:(1)合并同类项;(2)系数化为1.针对训练:解下列方程:(1) 5x -2x = 9; (2) 72321=+x x .\探究点2:根据“总量=各部分量的和”列方程解决问题例2 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?方法总结:方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的每一份为,然后用含x的代数式表示各数量,根据等量关系,列方程求解.例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,···. 其中某三个相邻数的和是-1701,这三个数各是多少?检测:1.下列方程合并同类项正确的是( )A. 由3x-x=-1+3,得2x=4B. 由2x+x=-7-4,得3x=-3C. 由15-2=-2x+x,得3=xD. 由6x-2-4x+2=0,得2x=02.如果2x与x-3的值互为相反数,那么x等于()A.-1 B.1 C.-3 D.33.某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人.设该班有女生有x人,可列方程为_____________.4.解下列方程:(1) -3x + 0.5x =10;(2) 6m-1.5m-2.5m =3;(3) 3y-4y =-25-20.5.某洗衣厂2016年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?二、课堂小结1. 解形如“ax + bx + ···+ mx = p”的一元一次方程的步骤.2. 用方程解决实际问题的步骤.3.2 解一元一次方程(一)——合并同类项与移项第2课时用移项的方法解一元一次方程学习目标:1. 理解移项的意义,掌握移项的方法.2. 学会运用移项解形如“ax+b=cx+d”的一元一次方程.3. 能够抓住实际问题中的数量关系列一元一次方程解决实际问题.重点:理解移项法则,会用移项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系,并能正确运用移项的方法进行解答.教学过程:一.要点探究探究点1:用移项解一元一次方程合作探究:请运用等式的性质解下列方程:(1) 4x-15 = 9①;(2) 2x = 5x-21③.两边同时_______,得两边同时_______,得②________________; ④________________;合并同类项,合并同类项,得________________; ________________;系数化为1,得系数化为1,得________________; ________________;比一比:从方程①到方程②,从方程③到方程④,有哪些项发生了变化,它们是如何变化的?说一说:利用移项解一元一次方程的步骤:__________ ____________ ______________.例1解下列方程:(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x .要点归纳:移项得目的是为了把所有含有未知数的项移到方程的左边,把所有常数项移到方程的右边,使得一元一次方程更接近“x = a”的形式.针对训练由方程3x-5=2x-4变形得3x-2x=-4+5,那么这是根据()变形的.A.合并同类项法则B.乘法分配律C.移项D.等式性质22.若代数式y-7与2y-1的值相等,则y的值是.3.利用移项的方法解下列方程:(1) 3x=2x+2; (2) 4x=-x+25.探究点2:列方程解决问题例2我区期末考试一次数学阅卷中,阅B卷第28题(简称B28)的教师人数是阅A卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28题和阅A18题的原有教师人数各为多少?方法总结:列方程解决含有多个未知量的实际问题中,一般先根据题意找出这些未知量之间存在的数量关系,然后设合适的未知数列方程求解.针对训练:下面是两种移动电话计费方式:问:一个月内,通话时间是多少分钟时,两种移动电话计费方式的费用一样?解形如“ax +b = cx + d ”的方程的一般步骤:(1)移项;(2)合并同类项;(3)化未知数的系数为1.1. 通过移项将下列方程变形,正确的是 ( )A. 由5x -7=2,得5x =2-7B. 由6x -3=x +4,得3-6x =4+xC. 由8-x =x -5,得-x -x =-5-8D. 由x +9=3x -1,得3x -x =-1+92. 已知 2m -3=3n +1,则 2m -3n = .3. 如果415+m 与41+m 互为相反数,则m 的值为 . 4. 当x =_____时,式子2x -1的值比式子5x +6的值小1.5. 解下列一元一次方程:(1) 7-2x =3-4x ; (2) 1.8t =30+0.3t ;(3)x x +=+3121; (4) .383113435-=+x x6. 小明和小刚每天早晨坚持跑步,小明每秒跑4米,小刚每秒跑6米. 若小明站在百米起点处,小刚站在他前面10米处,两人同时同向起跑,几秒后小明追上小刚?课堂小结 (1) 一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.(2) 移项的依据是等式的性质1.3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程学习目标:1.了解“去括号”是解方程的重要步骤.2.准确而熟练地运用去括号法则解带有括号的一元一次方程.重点:能正确运用去括号法则解一元一次方程.难点:能够较为灵活、熟练地运用去括号法则解一元一次方程.教学过程:一,要点探究探究点1:利用去括号解一元一次方程合作探究:观察下面的方程,结合去括号法则,你能求得它的解吗?6x+ 6 ( x-2000 ) = 150000解:去括号,得_______________.移项,得____________.合并同类项,得_______________.系数化为1,得_____________.典例精析例1解下列方程:(1)x-2(x-2) = 3x+5(x-1); (2)312 71423x x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭+8=3-6要点归纳:解含有括号的一元一次方程的一般步骤:去括号→移项→合并同类项→系数化为1.针对训练1.解方程3-5(x+2)=x去括号正确的是()A.3-x+2=x B.3-5x-10=x C.3-5x+10=x D.3-x-2=x2.若2(x+3)的值与4(1-x)的值相等,则x的值为.3.解下列方程:(1) 6x=-2 (3x-5) +10;(2)-2 (x+5) = 3 (x-5)-6 .探究点2:去括号解方程的应用例2一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,逆风飞行要3小时,求两城距离.方法总结:涉及水流或风速的行程问题,需要找准路程、时间、速度间的等量关系,且要注意顺流(风)和逆流(风)时的速度不同.例3 为鼓励居民节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度按0.50元收费;如果超过100度不超过200度,那么超过部分每度按0.65元收费;如果超过20度,那么超过部分每度按0.75元收费.若某户居民在9月份缴纳电费310元,那么他这个月用电多少度?方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪个阶段,然后列方程求解即可. 针对训练1.某市出租车的收费标准是:起步价7元(行驶距离不超过3km ,都需付7元车费),超过3km每增加1km ,加收1.2元,小陈乘出租车到达目的地后共支付车费19元,那么小陈坐车可行驶的路最远是( )A .12km B.13km C .14km D .15km2.一艘轮船在A 、B 两港口之间行驶,顺水航行需要5h ,逆水航行需要7h ,水流的速度是5km/h ,则轮船在静水中航行的速度为 ,A 、B 两港口之间的路程是 .3.水浒中学要把420元奖学金分给22名获一、二等奖的学生,一等奖每人50元,二等奖每人10元.求获得一、二等奖的人数分别是多少?1. 对于方程 2( 2x -1 )-( x -3 ) =1 去括号正确的是 ( )A. 4x -1-x -3=1B. 4x -1-x +3=1C. 4x -2-x -3=1D. 4x -2-x +3=1 2. 若关于x 的方程 3x + ( 2a +1 ) = x -( 3a +2 ) 的解为x = 0,则a 的值等于 __3.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是___岁.4. 解下列方程: (1) 3x -5(x -3) = 9-(x +4); (2).12165326⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫ ⎝⎛-x x x5. 某羽毛球协会组织一些会员到现场观看羽毛球比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?6. 当x 为何值时,代数式2(x 2-1)-x 2的值比代数式x 2+3x -2的值大6.二、课堂小结1. 解一元一次方程的步骤:去括号→移项→合并同类项→系数化为1.2. 若括号外的因数是负数,去括号时,原括号内各项的符号要改变.3.3 解一元一次方程(二)——去括号与去分母第2课时 利用去分母解一元一次方程学习目标:1.掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.重点:利用去分母解一元一次方程.难点:熟练利用解一元一次方程的步骤解各种类型的方程.教学过程:一、要点探究探究点1:解含分母的一元一次方程合作探究:1.解方程:()()13128231-=-x x . 方法一: 方法二解:去括号,得 解:方程两边同时乘3, ________________________ ________________________移项,得 去括号,得________________________ ________________________合并同类项,得 移项,得________________________ ________________________合并同类项,得____________2.对比方法一与方法二,想一想如何解含分母的方程更简便?3.用你认为更简便的方法解方程:.5210232213x x x --=-+要点归纳: 解含分母的一元一次方程的一般步骤:去分母→去括号→移项→合并同类项→系数化为1. 观察与思考:下列方程的解法对不对?如果不对,你能找出错在哪里吗? 解方程:.122312=+--x x 解:去分母,得4x -1-3x + 6 = 1,移项,合并同类项,得x =4.如果上述解法错误,你能写出正确解法吗?典例精析例1 解下列方程:(1)121163x x -+-=; (2) 490.30.25.50.32x x x ++--=解法:_______(填“对”或“错”) 错误原因:_________________ _________________________________________________________________________________要点归纳:1. 去分母时,应在方程的左右两边乘以分母的 ;2. 去分母的依据是 ,去分母时不能漏乘 ;3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.针对训练:A .3(x+1)-2x-3=6B .3(x+1)-2x-3=1C .3(x+1)-(2x-3)=12D .3(x+1)-(2x-3)=6(1);34= (2) 1.32x +=-探究点2:去分母解方程的应用例2 火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求火车的长度.方法总结:火车过桥问题中,火车行驶的路程等于桥的长度加上火车的长度.针对训练清人徐子云《算法大成》中有一首诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生名算者,算来寺内几多增?诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?1. 方程4172753+-=+-x x 去分母正确的是 ( ) A. 3-2(5x +7) = -(x +17) B. 12-2(5x +7) = -x +17C. 12-2(5x +7) = -(x +17)D. 12-10x +14 = -(x +17)2. 若代数式21-x 与56的值互为倒数,则x = . 3. 解下列方程: (1)154353+=--x x ; (2).1255241345--=-++y y y4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?趣味拓展“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡.再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”你知道丢番图去世时的年龄吗?请你列出方程来算一算.二、课堂小结:3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.教学过程:二、要点探究:探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典例精析例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若每天每天生产的螺栓螺母刚好配套,设安排x人生产螺栓,可列方程为.2.一套仪器由一个A部件和三个B部件构成. 用1立方米钢材可做40个A部件或240个B部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?共配成多少套?人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片探究点2:工程问题填一填:一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是,乙的工作效率是.(2)甲做x天完成的工作量是,乙做x天完成的工作量是,甲乙合做x天完成的工作量是.议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:___________________________________________________________________________________________ _______________________________________________________________.典例精析例2加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】工作效率工作时间工作量甲乙想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1.三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量= 工作效率×工作时间;合作的工作效率=工作效率之和.2.相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间.3. 通常在没有具体数值的情况下,把工作总量看作1.针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 . 2. 一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由 甲独做x 天完成,那么所列方程为 .3. 某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方 米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可 生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题实际问题的答案 一元一次方程的解(x =a )设未知数,列方程检验3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路.重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折 扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路. 教学过程:三、要点探究:探究点:销售中的盈亏合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格. 标价 商店销售商品时所赚的钱. 售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价. 填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元. 想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价; ●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ;●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率). 议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小. (1)盈利:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(2)亏损:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(3)不盈不亏:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、 “小于”或“=”).典例精析例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价>总成本时,盈利;总售价<总成本时,亏损;总售价=总成本时,不盈不亏.针对训练1.某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?2.某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?例2某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题关键.针对训练1. 某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为 元.2. 我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨 价30%后,2007降价70%至a 元,则这种药品在2005年涨价前价格为 元.20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价 50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价?二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)3.4 实际问题与一元一次方程第3课时球赛积分表问题学习目标:1. 通过对实际问题的探究,认识到生活中数据信息传递形式的多样性.2. 会阅读、理解表格,并从表格中提取关键信息.3. 掌握解决“球赛积分表问题”的一般思路,并会根据方程的解的情况对实际问题作出判断.重点:能够阅读和理解表格中的信息.难点:能够通过自主分析,从表格中提取关键信息进行解题,并掌握解决“球赛积分表问题”的一般思路.教学过程:四、要点探究:探究点:比赛积分问题互动探究:某次篮球联赛积分榜如下:问题1你能从表格中了解到哪些信息?问题2你能从表格中看出负一场积多少分吗?问题3你能进一步算出胜一场积多少分吗?提示:设胜一场积x分,根据表中其他任何一行可以列方程求解.问题4怎样用式子表示总积分与胜、负场数之间的关系?问题5某队胜场总积分能等于它负场总积分吗?例某次篮球联赛共有十支队伍参赛,部分积分表如下:根据表格提供的信息,你能求出胜一场、负一场各积多少分吗?【提示:先观察C队的得分,可知胜场得分+负场得分=_____,然后再设未知数列方程求解】想一想:某队的胜场总积分能等于它的负场总积分吗?针对训练:某赛季篮球甲A 联赛部分球队积分榜如下:(1) 列式表示积分与胜、负场数之间的数量关系;(2) 某队的胜场总积分能等于它的负场总积分吗?为什么?1. 某球队参加比赛,开局9场保持不败,积21分,比赛规则:胜一场得3分,平一场得1分,则该队共胜( )A. 4场B. 5场C. 6场D. 7场2.中国男篮CBA职业联赛的积分办法是:胜一场积2分,负一场积1分,某支球队参加了12场比赛,总积分恰是所胜场数的4倍,则该球队共胜____场.3. 某次知识竞赛共20道题,每答对一题得8分,答错或不答要扣3分. 某选手在这次竞赛中共得116 分,那么他答对几道题?4.把互动探究中积分榜的最后一行删去(如下表),如何求出胜一场积几分,负一场积几分.二、课堂小结1. 解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.2. 用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义.3.4 实际问题与一元一次方程第4课时 电话计费问题学习目标:1. 体会分类思想和方程思想在解决问题中的作用,能够根据已知条件选择 分类关键点对“电话计费问题”进行整体分析,从而得出整体选择方案. 2. 进一步深化对数学建模方法的体验,增强应用方程模型解决问题的意识和 能力.重点:能够理解题目信息,建立方程模型解决电话计费问题. 难点:关键点的选择,整体方案的确定.五、要点探究:探究点1:电话计费问题:下表中有两种移动电话计费方式:想一想 你觉得哪种计费方式更省钱?填填下面的表格,你有什么发现?问题1 设一个月内移动电话主叫为t min (t 是正整数),列表说明:当t 在不同时间范围内取值时,按方式一和方式二如何计费.想一想:计费多少是与__________有关;计费时,首先主要关注的是________________; 考虑t 值时,不同时间范围的划分点为_____________、___________________ 列表如下: 主叫时间t/min 方式一计费/元 方式二计费/元问题2 观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.结论:当t________________时,选择方式一省钱;当t________________时,两种方式费用相同; 当t________________时,选择方式二省钱. 想一想:(1)回顾问题的解决过程,谈谈你的收获.月使用 费/元 主叫限定 时间/分 主叫超时 费/(元/分) 被叫 方式一 58 150 0.25 免费方式二 88 350 0.19 免费主叫时间(分) 100 150 250 300 350 450 方式一计费(元)方式二计费(元)。

人教版七年级数学上册第3章第3课时 解一元一次方程(一)——合并同类项与移项

人教版七年级数学上册第3章第3课时 解一元一次方程(一)——合并同类项与移项
返回
数学
小结:本题数量关系为“三个季度的销售量的和=2 800 台”,设第一季度的销售量为x台,则第二、三季度的销售 量分别为2x台、4x台.
返回
数学
10.洗衣机厂今年计划生产洗衣机25 500台,其中A型,B型, C型三种洗衣机的数量比为1∶2∶14.洗衣机厂计划生产这三 种型号的洗衣机各多少台?
返回
数学
对点训练
1.合并同类项:
(1)7x-2x= 5x ;
(2)4.2x+4x-2.5x= 5.1x ;
(3)13y-41y=
1 12y

(4)2x-3+4-5x= -3x+1 .
返回
数学
2.解下列方程: (1)5x-2x=6; 解:合并同类项,得 3x=6 , 系数化为1,得 x=2 . (2)4x-7x+x=10; 解:合并同类项,得 -2x=10 , 系数化为1,得 x=-5 .
返回
数学
(3)2x+3x=15; x=3
(4)y-5y=-6+2. y=1
返回
数学
知识点二:列方程解“各种分量的和=总量”的问题 (1)列一元一次方程解决实际问题的一般步骤中,找等量关系 是关键,本节课的实际问题的相等关系都是“各部分量的和 =总量”,这是一个基本的相等关系.
返回
数学
(2)例如:地球的表面积是 5.1 亿平方千米,其中陆地面积约为 海洋面积的37.你能算出地球的海洋面积吗? 分析:地球的陆地面积和海洋面积都是未知量,已知两者的 比,设出其中一个便能表示另一个.若设海洋面积为 x 亿 平方千米,则陆地面积为 37x 亿平方千米. 而海洋面积+陆地面积=地球的表面积,
数学
9.解方程: (1)-x+3x=7-1; x=3 (2)12x-22x+3x=-8-30+24. x=2

人教版七年级上册数学教案第三章3.2解一元一次方程(一)-合并同类项与移项

人教版七年级上册数学教案第三章3.2解一元一次方程(一)-合并同类项与移项
2.案例分析:接下来,我们来看一个具体的案例。通过案例,展示合并同类项与移项在实际中的应用,以及如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调同类项的识别和正确合并,以及移项时符号的变化。对于难点部分,我会通过对比分析和反复练习来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与合并同类项和移项相关的实际问题。
-求解过程中的运算技巧:在化简方程时,学生可能会出现运算错误。
-难点突破:教授运算技巧,如先处理数字再处理字母,避免混淆。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元一次方程(一)-合并同类项与移项》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个数量关系的问题?”比如,如果你知道两个数的和以及其中一个数,你会如何找到另一个数?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程的奥秘。
最后,我认识到,教学反思不仅是对于课堂的回顾,也是对于自己教学方法的审视。我会继续努力,不断调整教学策略,以期达到更好的教学效果。毕竟,教育的目标是让学生真正理解和掌握知识,而不仅仅是完成课堂任务。
然而,我也注意到,在小组讨论中,有些学生过于依赖同伴,自己思考不够。为了解决这个问题,我打算在未来的课堂中,增加一些个人思考的环节,鼓励每个学生独立思考,然后再进行小组交流。
在学生展示环节,我尽量给予积极的反馈,鼓励学生表达自己的思路。我发现,即使是错误的答案,也能成为教学的机会,通过错误的纠正,学生往往能更深刻地理解正确的概念。
-方程求解步骤:引导学生按照步骤解方程,包括合并同类项、移项、化简、求解。

人教版七年级上册数学教案:3.2解一元一次方程移项

人教版七年级上册数学教案:3.2解一元一次方程移项
五、教学反思
在今天的课堂上,我们探讨了解一元一次方程中的移项技巧。回顾整个教学过程,我觉得有几个方面值得反思。
首先,我发现学生们在理解移项概念上存在一定的难度。在讲解移项法则时,尽管我尽可能用简单明了的语言描述,但仍有部分学生表现出困惑。我考虑在下一节课中,用更多的实例和图示来说明移项的原理,让学生更直观地理解这一概念。
4.增强学生分析问题和解决问题的能力,使其在解决实际问题时能够运用一元一次方程移项方法,形成解决问题的策略。
三、教学难点与重点
1.教学重点
-理解并掌握一元一次方程移项法则,包括未知数与常数项的移动;
-学会运用移项法则解决一元一次方程,特别是含有一个未知数的实际问题;
-能够将实际问题抽象为一元一次方程,并进行移项求解。
人教版七年级上册数学教案:3.2解一元一次方程移项
一、教学内容
本节课选自人教版七年级上册数学教材第3章第2节“解一元一次方程”,主要包括以下内容:一元一次方程的移项法则,利用移项法则解决实际问题。具体内容包括:
1.理解移项的概念,掌握移项的法则;
2.学会运用移项法则将一元一次方程的未知数移至方程的一边,常数项移至另一边;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程移项在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元一次方程》中的“移项”这一技巧。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平衡收支、分配数量等情况?”这些问题实际上都可以通过解一元一次方程来解决。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索移项的奥秘。

江苏省南通市海安县紫石中学七年级数学上册 第三章《解一元一次方程(一)》移项课案(教师用) 新人教版

江苏省南通市海安县紫石中学七年级数学上册 第三章《解一元一次方程(一)》移项课案(教师用) 新人教版

课案(教师用)解一元一次方程(一)移项(新授课)【理论支持】义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体.《数学课程标准》指出:对学生数学学习的评价,既要关注学生学习的结果,更要关注学生在学习过程中的变化和发展;既要关注学生数学学习的水平,更要关注他们在数学实践活动中所表现出来的情感和态度.移项是解方程的主要步骤之一,另外它还适用于后面将要学习的解不等式,因此,移项是一个重点内容.一、注意理解移项的依据方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项. 因为方程是特殊的等式,所以移项的依据是等式的一个性质:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.二、注意移项与交换两项位置的区别如果在方程一边交换两项的位置,这些项不需要改变符号,这是因为改变某一项在代数式中的排列顺序,是以加法的交换律与结合律为依据的;而移项的依据是等式的性质,必须要把要移动的项改变符号后,才能移到另一边去.三、注意移动的项要变号,不移的项不能变号根据移项法则我们知道,某项从方程的一边移到另一边时,它的符号一定要改变,即“+”号变为“-”号,而“-”号变为“+”号,并且没有移动的项绝对不能改变符号.例如,我们在解方程3x-2 = 2x +1的时候,如果将其变成3x + 2x = 1-2的形式,就存在着变号的错误.四、注意移项与等式的基本性质相结合对一个方程,我们不能拿过来就移项,有些方程可以先利用等式的基本性质两边同乘或同除以一个数后,再移项,这样数据会比较简单一点,运算起来也不容易出现错误.教学对象分析:1.初一学生性格开朗活泼,对新鲜事物特别敏感,且较易接受,因此,教学过程中创设的问题情境应较生动活泼,直观形象,且贴近学生的生活,从而引起学生的有意注意. 2.初一学生的概括能力较弱,推理能力还有待发展,所以在教学时,可让学生充分探讨、分析,帮助他们直观形象地感知.3.初一学生已经具备了一定的学习能力,所以本节课中,应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究.总之,通过本节课的研究,旨在让学生体会到数学与实际生活的密切联系,经历知识的形成过程,培养学生的应用意识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课案(教师用) 解一元一次方程(一) 移项 (新授课) 【理论支持】 义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体. 《数学课程标准》指出:对学生数学学习的评价,既要关注学生学习的结果,更要关注学生在学习过程中的变化和发展;既要关注学生数学学习的水平,更要关注他们在数学实践活动中所表现出来的情感和态度. 移项是解方程的主要步骤之一,另外它还适用于后面将要学习的解不等式,因此,移项是一个重点内容. 一、注意理解移项的依据 方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项. 因为方程是特殊的等式,所以移项的依据是等式的一个性质:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式. 二、注意移项与交换两项位置的区别 如果在方程一边交换两项的位置,这些项不需要改变符号,这是因为改变某一项在代数式中的排列顺序,是以加法的交换律与结合律为依据的;而移项的依据是等式的性质,必须要把要移动的项改变符号后,才能移到另一边去. 三、注意移动的项要变号,不移的项不能变号 根据移项法则我们知道,某项从方程的一边移到另一边时,它的符号一定要改变,即“+”号变为“-”号,而“-”号变为“+”号,并且没有移动的项绝对不能改变符号. 例如,我们在解方程3x -2 = 2x +1的时候,如果将其变成3x + 2x = 1-2的形式,就存在着变号的错误. 四、注意移项与等式的基本性质相结合 对一个方程,我们不能拿过来就移项,有些方程可以先利用等式的基本性质两边同乘或同除以一个数后,再移项,这样数据会比较简单一点,运算起来也不容易出现错误. 教学对象分析: 1.初一学生性格开朗活泼,对新鲜事物特别敏感,且较易接受,因此,教学过程中创设的问题情境应较生动活泼,直观形象,且贴近学生的生活,从而引起学生的有意注意. 2.初一学生的概括能力较弱,推理能力还有待发展,所以在教学时,可让学生充分探讨、分析,帮助他们直观形象地感知. 3.初一学生已经具备了一定的学习能力,所以本节课中,应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究. 总之,通过本节课的研究,旨在让学生体会到数学与实际生活的密切联系,经历知识的形成过程,培养学生的应用意识。

教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验,体验到数、符号和图形是有效地描述现实世界的重要手段与解决实际问题的重要工具. 【教学目标】 【教学重难点】 重点:(1)建立列方程解决实际问题的思想方法;
(2)学会移项,会解“ax +b =cx +d ”类型的一元一次方程. 难点:(1)分析实际问题中的已知量和未知量,找出相等关系,列出方程; (2)使学生逐步建立列方程解决实际问题的思想方法. 【课时安排】 一课时 【教学设计】 课前延伸 一、选择题
1.解方程6x +1=-4,移项正确的是( )
A. 6x =4-1
B. -6x =-4-1
C.6x =1+4
D.6x =-4-1
2. 解方程-3x+5=2x-1, 移项正确的是( )
A.3x -2x =-1+5
B.-3x -2x =5-1
C.3x -2x =-1-5
D.-3x -2x =-1-5
3.下列方程变形正确的是( )
A . 由-2x =6, 得x =3
B . 由-3=x +2, 得x =-3-2
C . 由-7x +3=x -3, 得(-7+1)x =-3-3
D . 由5x =2x +3, 得x =-1
4.已知当x =2,y =1时,代数式kx -y 的值是3,那么k 的值是( )
A .2
B .-2
C .1
D .-1
二、填空题
5. 方程12
x +3=5的解是 . 6. 3x n +2-6=0是关于x 的一元一次方程,则x = .
7. 关于x 的方程5ax -10=0的解是1,则a = .
三、检查预习情况:明确检查方法,学生口答后论证
〖设计说明〗在学生充分预习的基础上完成.这些题目,难度适中,有梯度,有利于检查预习效果.
课内探究
一.问题导入
上节课学习的一元一次方程都有这样的特点:一边是含有未知数的项,一边是常数项.这样的方程我们
可以用合并同类项来解,那么像3x +7=32-2x 这样的方程怎么解呢?
教师展示练习
〖设计说明〗通过练习,起到复习知识的作用.通过复习合并及解方程的过程,为进一步学习做好准备. 二.移项的概念
我们来看下面的问题.
[投影1]问题:把一些图书分给某班学生阅读,如果每人3本,则剩余20本;如果每人4本,则还缺25本,这个班有多少学生?
教师与学生一起分析问题,找出相等关系,合理设未知数.列式子.
这批书的总数是一个定值,表示它的两个式子应该相等,根据这一相等关系列出方程:3x +20=4x -25
〖设计说明〗从学生比较熟悉的问题开始,能给学生一种轻松的心理氛围,易于学生学习新知识.
三.例题
现在我们来解前面提到的方程.
[投影2]例1 3x +7=32-2x
四.课堂反馈训练 知识技能 通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性. 数学思考 掌握移项方法,学会解“ax +b =cx +d ”类型的一元一次方程,理解解方程的目标,体会解法中蕴含的化归思想. 解决问题 通过学生观察.思考等过程,培养学生归纳.概括的能力;进一步让学生感受到并尝试寻找不同的解决问题的方法. 情感态度 初步体会一元一次方程的应用价值,感受数学文化.
[投影3]1.下面的移项对不对?如果不对,错在哪里?应当怎样改正?
(1) 从3x+6=0得到3x=6;
(2) 从2x=x-1得到2x= 1-x
(3)从2+x-3=2x+1得到2-3-1=2x-x.
2.课本91面(1)~(2);
[投影4]3.甲粮仓存粮1000吨,乙粮仓存粮798吨,现从甲粮仓运一部分到乙粮仓使甲乙两个粮仓的粮食数量相等,那么应从甲粮仓运出多少吨粮食?
五.课堂小结
〖设计说明〗反馈学生对知识掌握的情况:
1.什么叫做移项?移项的依据是什么?
2.移项法解一元一次方程要注意什么?
移项要注意变号.
3.我们知道了哪些基本的等量关系?
课后提升
一、解下列方程.
(1)6x=3x-7 (2)5=7+2x
(3)y-1
2
=
1
2
y-2 (4)7y+6=4y-3
二、一批学生乘汽车去观看“北京奥运会”如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和学生各有多少?。

相关文档
最新文档