传热学-第三章 非稳态热传导

合集下载

第三章 非稳态导热传热学

第三章 非稳态导热传热学
基本思想: 基本思想:当所研究的问题非常复杂, 当所研究的问题非常复杂,涉及到的参数很多, 涉及到的参数很多, 为了减少问题所涉及的参数, 为了减少问题所涉及的参数,于是人们将这样一些参数组合 起来, 起来,使之能表征一类物理现象, 使之能表征一类物理现象,或物理过程的主要特征, 或物理过程的主要特征, 并且没有量纲。 并且没有量纲。因此, 因此,这样的无量纲数又被称为特征数, 这样的无量纲数又被称为特征数,或 者准则数。 者准则数。
§3.1 非稳态导热的基本概念
二、非稳态导热的研究内容
1. 研究内容
温度分布和热流量分布随时间和空间的变化规律
t = f ( x, y , z ,τ ) ;
2. 数学模型
Φ = f(τ )
∂t ∂ ∂t ∂ ∂t ∂ ∂t ɺ ρ c = ( λ ) + ( λ ) + ( λ )+Φ ∂τ ∂x ∂x ∂y ∂y ∂z ∂z 解的唯一性定律 初 始 条 件 边 界 条 件
τ4 τ3
τ2
t
1
τ1
t
0
τ0
第3章 非稳态热传导
§3.1 非稳态导热的基本概念
一、非稳态导热
6. 导热量的特点
Φ1
Φ2
由于物体各处本身温度的变化 要积聚或消耗热量, 要积聚或消耗热量,非稳态导热过 程中在与热流方向相垂直的不同截 面上热流量处处不等。 面上热流量处处不等。
第3章 非稳态热传导
Φ1--板左侧导入的热流量 --板左侧导入的热流量 Φ2--板右侧导出的热流量 --板右侧导出的热流量

t
tf,h x
q
rh
rh = 1 h
rλ = δ λ

《传热学》第三章 非稳态热传导

《传热学》第三章 非稳态热传导
∂t −λ ( ) w = h(tw − t f ) ∂n
解的唯一性定理 数学上可以证明,如果某一函数t(x,y,z,τ)满足 方程(3-1a)(3-1b)以及一定的初始和边界条 件,则此函数就是这一特定导热问题的唯一解。 本章所介绍的各种分析法都被认为是满足特定问题 的唯一解。
3.1.3 第三类边界条件下Bi数对平板中 温度分布的影响
Bi =
δ λ δh = 1h λ
1)毕渥数的定义:
δ λ δh Bi = = 1h λ
毕渥数属特征数(准则数)。 2)Bi 物理意义: 固体内部单位导热面积上的导 热热阻与单位表面积上的换热热阻之比。Bi的大小 反映了物体在非稳态条件下内部温度场的分布规 律。 3)特征数(准则数):表征某一物理现象或过 程特征的无量纲数。 4)特征长度:是指特征数定义式中的几何尺 度。 毕渥数
∂t Φ = ∂τ ρ c

φ可视为广义热源,而且热交换的边界不是计算边 界(零维无任何边界) 界面上交换的热量应折算成整个物体的体积热源, 即: − ΦV = Ah(t − t )

物体被冷却,∴φ应为负值
dt ρ cV = − Ah(t − t∞ ) dτ
适用于本问题的导 热微分方程式
方法二
温度分布主要 受初始温度分 布控制 温度分布主要 取决于边界条 件及物性
非正规状况阶段(起始阶段)、正规状况阶段、新的稳态
二类非稳态导热的区别:瞬态导热存在着有区别的 两个不同阶段,而周期性导热不存在。
5 热量变化
Φ1--板左侧导入的热流量 Φ2--板右侧导出的热流量
各阶段热流量的特征: 非正规状况阶段:Φ1急剧减小,Φ2保持不变; 正规状况阶段: Φ1逐渐减小,Φ2逐渐增大。

传热学V4-第三章-非稳态热传导

传热学V4-第三章-非稳态热传导

3-2 零维非稳态导热-集总参数法 基于集总参数法的瞬态热流量:
Φ = hAθ = hAθ 0 exp(−τ / τ c )
基于集总参数法的 0~τ 时刻内总热量:
Q = ∫0Φ(τ )dτ = ρVcθ0 (1− e τ
τ

hA τ ρVc
) [J]
SJTU-OYH
传热学 Heat Transfer
温度分布与空间坐标无关 过余温度随时间呈指数曲线变化。
SJTU-OYH
传热学 Heat Transfer
Shanghai Jiao Tong University
3-2 零维非稳态导热-集总参数法 基于集总参数法的温度分布:
− τ θ t −t∞ ρVc = =e θ0 t0 −t∞ hA
定义时间常数:
a,b,c 查表3-2
J 0 ( x) = 0.9967 + 0.0354 x − 0.3259 x 2 + 0.0577 x 3
' J 1 ( x) = − J 0 ( x)
SJTU-OYH
传热学 Heat Transfer
Shanghai Jiao Tong University
3-3 一维非稳态导热的分析解 (正规状况阶段) 在 Fo >0.2 前提下,另外两种实用计算方法:近似拟合法,诺模图(海斯勒图)法 诺模图(海斯勒图)法 1 平板任一点瞬态温度
SJTU-OYH
传热学 Heat Transfer
Shanghai Jiao Tong University
3-3 一维非稳态导热的分析解
t
一维非稳态导热微分方程及定解条件:
t∞ h
δ
δ
t∞ h

传热学第3章-非稳态导热分析解法

传热学第3章-非稳态导热分析解法

传热学第3章-⾮稳态导热分析解法第三章⾮稳态导热分析解法1、重点内容:①⾮稳态导热的基本概念及特点;②集总参数法的基本原理及应⽤;③⼀维及⼆维⾮稳态导热问题。

2、掌握内容:①确定瞬时温度场的⽅法;②确定在⼀时间间隔内物体所传导热量的计算⽅法。

3、了解内容:⽆限⼤物体⾮稳态导热的基本特点。

许多⼯程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某⼀极限值所需的时间。

如:机器启动、变动⼯况时,急剧的温度变化会使部件因热应⼒⽽破坏。

因此,应确定其内部的瞬时温度场。

钢制⼯件的热处理是⼀个典型的⾮稳态导热过程,掌握⼯件中温度变化的速率是控制⼯件热处理质量的重要因素;⾦属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中⼼温度。

§3—1 ⾮稳态导热的基本概念⼀、⾮稳态导热1、定义:物体的温度随时间⽽变化的导热过程称⾮稳态导热。

2、分类:根据物体内温度随时间⽽变化的特征不同分:1)物体的温度随时间的推移逐渐趋于恒定值,即:const t =↑τ2)物体的温度随时间⽽作周期性变化1)物体的温度随时间⽽趋于恒定值如图3-1所⽰,设⼀平壁,初值温度t 0,令其左侧的表⾯温度突然升⾼到1t 并保持不变,⽽右侧仍与温度为0t 的空⽓接触,试分析物体的温度场的变化过程。

⾸先,物体与⾼温表⾯靠近部分的温度很快上升,⽽其余部分仍保持原来的t 0 。

如图中曲线HBD ,随时间的推移,由于物体导热温度变化波及范围扩⼤,到某⼀时间后,右侧表⾯温度也逐渐升⾼,如图中曲线HCD 、HE 、HF 。

最后,当时间达到⼀定值后,温度分布保持恒定,如图中曲线HG (若λ=const ,则HG 是直线)。

由此可见,上述⾮稳态导热过程中,存在着右侧⾯参与换热与不参与换热的两个不同阶段。

(1)第⼀阶段(右侧⾯不参与换热)温度分布显现出部分为⾮稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受t 分布的影响较⼤,此阶段称⾮正规状况阶段。

传热学 第三章 非稳态导热

传热学 第三章  非稳态导热

解:首先需要求出平壁 的热扩散率
a
0.185
0.65 106 m 2 / s
c 1500 0.839 1000
Fo
a 2
0.65 106 6 3600 0.25 2
0.22
非稳态导热的导热微分方程式:
c t ( t ) ( t ) ( t ) x x y y z z
求解方法: 分析解法、近似分析法、数值解法
分析解法:分离变量法、积分变换、拉普拉斯变换 近似分析法:集总参数法、积分法、瑞利-里兹法 数值解法:有限差分法、蒙特卡洛法、有限元法、 分子动力学模拟
非稳态导热正规状况阶段
x,
0
1
2 sin 1 sin 1 cos 1
cos
1
x
e 12 Fo
Bi h
平壁中心x=0时
m
2 sin 1
a Fo 2
e 12Fo f Bi, Fo
0 1 sin 1 cos 1
m
0 m 0
cos
1
x
f
Bi, x
只取决于毕渥数与几何位置,与时间无关----特点3
传热学
第3章 非稳态导热 Transient/Unsteady Conduction
概述
自然界和工程上许多导热过程为非稳态,t = f()
例如:冶金、热处理与热加工:工件被加热或冷却
锅炉、内燃机等装置起动、停机、变工况 自然环境温度 供暖或停暖过程中墙内与室内空气温度
非稳态导热:周期性和非周期性(瞬态导热)
假设:厚度为2,导热系数、热扩散率为常数,无
内热源,初始温度与两侧流体相同,为t0。两侧流体温 度突然降低为tf,并保持不变,平壁表面与流体间对流 换热表面传热系数h为常数。

传热学第三章 非稳态导热

传热学第三章 非稳态导热
Bi hl ≤0.1
时、物体中最大与最小的过余温度之差小于5%,对于一 般工程计算,此时已经足然特确地可以认为整个物体温度 均匀。按照这样要求,由于l=V/A对圆柱有球分别是半轻 的1/2与1/3、因而如果以l作为Bi数的特征长度,则该Bi数 对平板、国柱与球应该分别小于0.1、0.05和0. 033。
方程中指数的量纲:
hA
W m2K
m2
w1
Vc
kg m3
Jkg K
[
m3
]
J
s
第三章 非稳态导热
9
即与 1 的量纲相同,当 Vc 时,则
hA
hA
1 Vc
此时,
e1 36.8%
0

Vc
hA
为时间常数,用 c 表示。
第三章 非稳态导热
10
如果导热体的热容量( Vc )小、换热条件好(h大),
有一直径为 5cm 的钢球,初始温度为 450 ℃,将其突然置 于温度为 30 ℃空气中。设钢球表面与周围环境间的总换热 系数为 24w/(m2 . K),试计算钢球冷却到 300 ℃所需的 时间。已知钢球的 c=0.48kJ/(kg·K ) , ρ =7753kg/m3 , λ =33w/(m. K ).
Fo
l2
a
换热时间 边界热扰动扩散到l 2面积上所需的时间
无量纲 热阻
Fo越大,热扰动就能越深入地传播到物体 内部,因而,物体各点地温度就越接近周
围介质的温度。
无量纲 时间
第三章 非稳态导热
12
对于平板、圆柱、球的一维非稳态第三类边界条件条件下 的导热问题,当按特征长度
l= 、厚度为2 的平板,
l=R、圆柱 l=R.球 定义的Bi数满足

3第三章 非稳态导热

3第三章 非稳态导热

Bi
n
2.一维非稳态导热的分析解
(2)总传热量
设从初始时刻至某一时刻τ所传递的热量为Q,则有:
分离变量积分并代入初始条件得:
hA
=e cV
0
思考:上述结果是对物体被冷却 的情况导出的,如果要用于被加 热的场合,该怎么办?
6.集总参数系统的分析解
hA hV cV A
A2 cV 2
h(V / A) a (V / A)2
BiV FoV
Bi hl l= 物体内部导热热阻 1 h 物体表面对流换热热阻
• 在某厂生产的测温元件说明书上,标明该元件的 时间常数为1s。你怎么看待这个值?
cV
c hA
——根据定义式,时间常数中物性参数ρ、c、V、A可 以看作是常数,但表面传热系数h却是与具体过程 有关的量。
——说明书上的标明的时间常数需要具体分析,不能 盲目相信。
【内容小结】
• 集总参数系统的分析 • 时间常数的导出和意义 • 时间常数对测温系统的指导
一个集总参数系统,其体积
为V、表面积为A、密度为、 比热为c、初始温度为t0,突 然放入温度为tf (设t0> tf )、 对流换热系数为h的环境中,
求系统温度变化。
A h, tf
ΔE
Qc
ρ, c, V, t0
——表面对流换热对其过程有着重要影响,如何处理?
4. 微分方程
-
t n
ht
t
f
集总参数系统内部没有温差, 不能用第三类边界条件。
不断减小,在其它各截面上,其
截面温度开始升高之前通过该截
面的热流量是零,温度开始升高
A
之后,热流量才开始增加。
BC D 3

第三章非稳态导热_传热学

第三章非稳态导热_传热学

tm m tf 9 8= 17c C
m 2 0.9064 exp 1.1347 2 0.22 0.9 0 1.1347 0.9064 0.4224
平壁表面处 x 的过余温度为:
w 2sin 1 cos 1 exp 12 Fo 0 1 sin 1 cos 1
(2)在垂直于热量传递的方向上,每个截面上热流量不相等; (3)温度随时间变化,热流也随时间变化。
3.讨论非稳态导热问题的目的:
(1)在加热和冷却时,物体内部某一点温度达到预定温度 时所需要的时间,以及该时间内物体吸收和放出的热量;
(2)对物体加热或冷却之后,物体内部温度分布以及物体 温度随时间的变化率
1 0
1 d a d
c1 exp a
c1 exp a
2
1 d2 X 2 2 X dx
X c2 cos x c3 sin x
x, X x
第三章 非稳态导热
§3-1 §3-2 §3-3 §3-4 §3-5 非稳态导热的基本概念 无限大平壁的瞬态导热 半无限大物体的瞬态导热 其他形状物体的瞬态导热 周期性非稳态导热(自学)
• • • •
1.加热冷却过程 2.动力机械中的开关车
应用背景
3.地球的气候变化
4.医疗中激光技术(控制温度范围)
x, 2sin 1 x cos 1 exp 12 Fo 0 1 sin 1 cos 1
查表3-1,当Bi=2.5时, 1 1.1347
180 sin 1 sin 1.1347 0.9064
x A sin 0 B cos 0 exp a 2 0

《传热学》第3章_非稳态热传导分析

《传热学》第3章_非稳态热传导分析

《传热学》第3章_非稳态热传导分析非稳态热传导分析是传热学中一个重要的研究内容。

在真实的物理系统中,尤其是工程实际中,非稳态热传导过程往往更为常见。

非稳态热传导分析主要研究物体内部温度分布随时间的变化规律,以及热传导过程中的能量交换。

本文将重点介绍非稳态热传导分析的基本原理和方法。

非稳态热传导分析需要考虑时间因素以及物质的热传导性质。

在非稳态热传导过程中,物体内部的温度分布随时间的变化满足热传导方程。

传热方程的一般形式为:∂(ρcT)/∂t=k∇²T+Q其中ρ是物质密度,c是比热容,T是温度,k是热传导系数,∇²是拉普拉斯算子,Q是热源项,即热传导过程中的能量增减。

解决非稳态热传导分析的一般步骤如下:1.建立热传导方程。

根据实际情况,确定适当的坐标系,并根据系统的几何形状和边界条件,建立热传导方程。

2.确定边界条件。

边界条件包括物体表面的温度、热通量以及对流边界等。

根据具体情况,选择适当的边界条件。

3.选择合适的数值方法。

非稳态热传导问题通常需要借助数值方法进行求解。

有限差分法、有限元法、迭代法等都可以应用于非稳态热传导分析,具体选择哪种方法需要根据具体问题的特点进行判断。

4.数值求解。

根据使用的数值方法,将热传导方程离散化,并进行数值求解。

通常需要在计算过程中进行迭代,直到得到满足要求的结果。

5.结果分析和验证。

得到物体内部温度随时间的变化规律后,可以通过实验进行验证。

比较模拟结果与实验结果,判断模拟的准确性。

非稳态热传导分析的典型应用包括热处理过程中的温度变化分析、电子元器件的散热分析、建筑物内部温度分布分析等。

通过对非稳态热传导问题的分析,可以更好地理解和控制物体内部温度分布的变化规律,为实际工程提供指导。

然而,非稳态热传导分析也存在一些挑战和限制。

首先,非稳态热传导分析通常需要考虑物质性质的非线性以及边界条件的复杂性,这增加了问题的难度。

其次,非稳态热传导问题的求解往往需要较长的计算时间和大量的计算资源。

《传热学》第三章 非稳态导热

《传热学》第三章  非稳态导热

令:
—— 过余温度
使导热微分方程边界条件齐次化:
1.分离变量法求解导热微分方程:
对于此类偏微分方程,应采用分离变量法来进行求解: 假定:
代入导热微分方程,得出:
令:
并对两式分别求解
求解结果: 因φ 不可能是无限大或常数,所以只能有:μ <0,因而可令:
求解结果:
将两个求解结果合并,得到:
其中:
A c1c2 , B c1c3
集总热容体的温度分布:
其中:
L
V ——定型尺寸 A
cV
hA
——时间常数(表示物体温度接近流体温度的快慢)
集总热容体的温度分布亦可写成:
四、不同加热方式下的无限大平壁瞬态导热
t
qv
h, t f
h, t f
qw
qw
h, t f
h, t f
x
第三节 半无限大物体的瞬态导热
应用领域:大地 一、第一类边界条件
半无限大物体表面温度:
半无限大物体表热负荷:
——一定时间内将壁温提高至tw所需的热负荷
第四节 其他形状物体的瞬态导热
一、无限长圆柱体和球体——计算线图法 分无 布限 计长 算圆 步柱 骤温 度
计算Bi和Fo
由图3-13计算中心温度
由图3-14计算任意处温度 无限大平壁—— 半壁厚δ
定型尺寸
无限长圆柱体和球体—— 半径 R 其他不规则形状物体——V/A
或:
傅立叶准则——
二、正常情况阶段——Fo准则对温度分布的影响

进行收敛性分析: 随着β n的递增,级数中指数一项收敛很快,所以级数收敛很快,尤其当Fo较 大时,收敛性更加明显。 因此,当Fo>0.2时,仅用级数第一项来描述,已足够精确,即:

《传热学》第3章-非稳态导热

《传热学》第3章-非稳态导热

特殊多维非稳态导热的简易求解方法
在第一类边界条件(初始温度均匀)或第三类边界条件(表面 传热系数h为常数)下的二维或三维的非稳态导热问题,在数学 上已经证明,它们的无量纲过余温度的解等于构成这些物体的 两个或三个物体在同样边界条件下一维非稳态导热问题解的连 乘。
特殊多维非稳态导热的简易求解方法
对于无限长方柱 θ (x, y,τ ) = θ (x,τ ) ⋅ θ (y,τ )
该问题的解可以由3块相应的无限大平板的 解得出。最低温度发生在钢锭的中心,即3 筷无限大平板中心截面的交点上,最高温度 发生在钢锭的顶角,即3块大平板表面的公 共点上。
4
例题3 θ
m/B则θi x0钢==锭hλδ(1θ中=m心3/ 4θ温840×0度).05x.2⋅5(θ=
2.14
m/θ 0
)
y
⋅ (θ
无限大平板的非稳态导热
当Fo ≥ 0.2时,可取
θ (x,τ )
θ0
=
β1
2 sin β1 + sin β1 cos β1
cos

β
1
x δ
e − β12 ⋅Fo
只与Bi、x/δ有关, 与时间无关
lnθ
=
−mτ
+ lnθ 0
β1
2sin β1 + sinτ β1 cos β1
cos
= 0.36
短圆柱的中心温度为
查图3-6得 θ
再讨论直径为
m2R/θ=600=0m0m.8的无θ限m长/ θ圆0柱=:0.13
×
0.8
=
0.104
Bi = hR = 232 × 0.3 = 1.72 λ 40.5
tm = 0.104θ0 + t∞ 查附=2图0.11得04θ×m(3/θ00−=103.0103) +1300

传热学(第四版)第三章:非稳态热传导

传热学(第四版)第三章:非稳态热传导

方程求解
dt cV hA t t d
一阶非齐次方程
0时,t =t0
令: t t — 过余温度,则有
d -hA Vc d 0时, t t 0 0
一阶齐次方程
方程式改写为:
d hA d Vc
3 拟合线1: t 12.7 79.4 exp 79.4 0.216 3 拟合线2 : t 11.1 80.0 exp 80.0 第三章 非稳态导热 1.252
8
时间常数 ( Vc / hA)反应导热体的热惯性。 如果导热体的热容量( Vc )小、换热条件好(h大), 那么单位时间所传递的热量大、导热体的温度变化快。 对于测温的热电偶节点,时间常数越小、说明热电偶对 流体温度变化的响应越快。这是测温技术所需要的。
Q Q= Q 0 Q0
3.2 正规热状况的实用计算方法-近似拟合公式法(了解) 对上述公式中的A,B,μ 1,J0 可用下式拟合
b 1 (a ) Bi
2 1
A a b( 1 e cBi ) a cBi B 1 bBi J 0 ( x ) a` b` x c` x 2 d` x 3
第三章 非稳态导热 11
讨论4:零维问题(集中参数法)的应用条件 理论上,集中参数法是在Bi->0的条件下提出的。 在实际应用中,可以适当放宽适用条件: h(V A) Bi 0.1 (V/A)是物体的特征长度
对厚为2δ 的

无限大平板
对半径为R 的无限长 圆柱 对半径为R 的球
V A A A V R2 R A 2 R 2 4 R3 R V 3 2 A 4 R 3

第三章 非稳态导热

第三章  非稳态导热

适用条件:一维稳态、无内 热源、恒壁温、λ=常数
4.导热系数与温度成线性关系时的处理方法
0 (1 bt)其中0-系数, (m C) W
可通过以下方法处理:
b-常数
若已知t1及t2,则 m 0 (1 btm ) 常数 t1 t2 其中tm 。 2
五、显式、隐式差分方法优缺点
优点可以利用上一时间的温度一次性算出下一时间 的所有各节点值。 隐式差分方法恰好与显式相反。 缺点:Δx与Δτ的取值有一定限制。

例题:厚度为20mm的平壁状核反应堆燃料 元件,它的二个端面受到均匀冷却,冷却液的温 度t∞=250℃,h=1100W/(m2℃),燃料元件的导 热系数为 30W/(m℃) ,导温系数为a=10-5m2/s。 试计算燃料元件从具有均匀内热源Φ1=107 W/m3 的稳态运行条件变成Φ2= 108W/m3以后2秒钟时 各结点温度为多少?
n
2 n a
( x, ) 2 sin( n ) cos( n x) ( ) a e 0 n1 n sin( n ) cos( n )
2
2
(x, ) 因此 是F0和Bi以及 的函数,即 0 x
( x , ) x f ( F0 , Bi , ) 0

从公式中可知:

对于无限大圆柱体或球体,也可用查图方式求得。
适用条件: (1)适用于恒温介质的第三类边界条件或第一类边界 条件的加热及冷却过程。 (2)Fo>0.2,否则过于密集,误差太大,用解析解 求。


二维及三维非稳态导热问题的求解
y
有 一 矩 形 截 面 ( 2δ1×2δ2 ) 的 长 柱 , 原来具有均匀温度 t0 , 现将它突然浸没在温度 为t∞ 的流体中。流体与 长柱表面之间的换热系 数h 保 持 不 变。 试 分析 矩形截面的温度分布情 况。

传热学-第三章非稳态导热问题分析解

传热学-第三章非稳态导热问题分析解

单位时间 0, t t0
物体内能 的减少(或 增加)
Φ hAt t
Φ cV dt d
当物体被冷却时(t 0 >t),由能量守恒可

hA(t t ) -Vc dt
d
令: t t — 过余温度,则有
hA
-Vc
d d
( 0) t0 t 0
控制方程 初始条件
方程式改写为:d hA d 分离变量法 Vc
由于表面对流换热热阻与导热热阻相对大小的不同, 平板中温度场的变化会出现以下三种情形:
(1) 1/ h / Bi
(2) / 1/ h Bi 0
(3) δ/ λ 与1/h 的数值比较接近 0 Bi
Bi 准则对温度分布的影响
1/ h /
/ 1/ h δ/ λ 与1/h的数值接近
是一种理想化模型; 物体内导热热阻忽略不计; 物体内温度梯度忽略不计,认为整个物体具有相
同的温度;
通过表面传递的热量立即使整个物体的温度同时 发生变化; 把一个有分布热容的物体看成是一个集中热容的物体;
只考虑与环境间的换热不考虑物体内的导热。
问题的提出:
2 温度分布 如图所示,任意形状的物体,参数均为已知。
0.049 0.05 可采用集总参数法。
F cp V
cp
dl 2d 2 d 2l 4
4
cp
4(l d dl
2)
140 4 (0.3 0.025) 480 7753 0.05 0.3
0.326102
t tf 800 1200 0.342
0 t0 tf 30 1200
由式(3-1)得:
???
§3-2 集总参数法
基本思想:对任意形状的物体,忽略物体内部的导热 热阻,认为物体温度均匀一致。

传热学课件-第三章非稳态热传导共66页文档

传热学课件-第三章非稳态热传导共66页文档
e cV eBivFov
0
物体中的温度 呈指数分布
方程中指数的量纲:
hA
mW2Km2
w1
cV
kg m3
JKkg[m3]
J
s
即与 1 的量纲相同,当
时hVAc,则
hA 1
Vc
此时, e1 36.8% 0
上式表明:当传热时间等于 Vc时,物体的过余温度已经达
到了初始过余温度的36.8%。hA称 为Vc 时间常数,用 表示 。c
非周期性非稳态导热:物体的温度随时间的推移逐渐趋 近于恒定的值
非周期性非稳态导热实例(汽轮机外壳)
冷态启动前:tf1=tw1=tw2=tf2
进汽后 tf1
内壁 q1=h1(tf1-tw1) 到某一时刻 h1A1(tf1-tw1)=h2A2(tw2-tf2) 以后为稳态导热
3 温度分布:
问题描述:
3 、了解内容:
①无限大物体非稳态导热的基本特点。 ②二维非稳态导热问题。
§3-1 非稳态导热的基本概念
一、非稳态导热的特点及类型
1 非稳态导热的定义
物体的温度随时间而变化的导热过程称非稳态导热。
2 非稳态导热的分类
周期性非稳态导热:物体的温度随时间而作周期性的变化
例如太阳辐射的周期性变化引起的房屋的墙壁温度随时间的变化。
这 时 , 由 于 导 热 热 阻 δ/λ几乎可以 忽略,因而任一时刻平板中各点的 温度接近均匀,并随着时间的推移, 整体地下降,逐渐趋近于t∞ 。
(3) δ/λ与 1/h 的数值比较接近
这时,平板中不同时刻的温度分布介于上述两种极 端情况之间。
由此可见,上述两个热阻 的相对大小对于物体中非稳态 导热的温度场的变化具有重要 影响。为此,我们引入表征这 两个热阻比值的无量纲数毕渥 数: Bi h
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(0, ) m ( ) 2 sin 1 F e 0 0 1 sin 1 cos 1
( x, ) x cos(1 ) m ( )
2 1 0
2 1 0
与时间无关
28
考察热量的传递
Q0 cV (t0 t )
Q0 --非稳态导热所能传递的最大热量
第三章
非稳态导热
1
§3-1 非稳态导热的基本概念
1 非稳态导热的定义 . 2 非稳态导热的分类
t f (r , )
周期性非稳态导热 (定义及特点)
瞬态非稳态导热 (定义及特点)
2
着重讨论瞬态非稳态导热
3 温度分布:

t
1
4 3
2
1
t
0
0
3
4 两个不同的阶段
非正规状况阶段 (不规则情况阶段)
6
7 毕渥数
本章以第三类边界条件为重点。 (1) 问题的分析 如图所示,存在两个换热环节: a 流体与物体表面的对流换热环节 rh 1 h b 物体内部的导热 (2) 毕渥数的定义:
tf
h

t

tf h
0
r

t
x

tf
h
r h Bi rh 1 h
0
7
x
(微细热电偶、薄膜热电阻)
当 4 时, 1.83% hA 0 Vc
工程上认为=4 Vc / hA时 导热体已达到热平衡状态
第三章 非稳态导热
17
3 瞬态热流量:
Φ ( ) hA(t ( ) t ) hA hA 0 e
hA Vc
W
导热体在时间 0~ 内传给流体的总热量:
3
2
1
t t0 0
1 0
t t0
1 0
2 1 2 1
2
t


Bi




Bi 0
0 Bi
Bi 准则对无限大平壁温度分布的影响
9
(4) 无量纲数的简要介绍 基本思想:当所研究的问题非常复杂,涉及到的参 数很多,为了减少问题所涉及的参数,于是人们将 这样一些参数组合起来,使之能表征一类物理现象, 或物理过程的主要特征,并且没有量纲。
Biv
h(V A)

a Fov (V A) 2
Fov 是傅立叶数
e 0
hA Vc
e
Biv Fov
物体中的温度 呈指数分布
方程中指数的量纲:
W 2 m 2 hA w 1 m K Vc J s kg Jkg 3 3 K [m ] m
无量纲 时间
19
5 集总参数法的应用条件 采用此判据时,物体中各点过余温度的差别小于5%
Biv h( V A )

பைடு நூலகம் 0.1M
是与物体几何形状 有关的无量纲常数
V A A A V R 2 R A 2R 2 4 3 R V R 3 2 A 4R 3 Biv Bi Bi Biv 2 Bi Biv 3
误差小于1%
( x, ) 2 sin 1 x cos(1 ) e 0 1 sin 1 cos 1
2 1 F0
(0, ) m ( ) 2 sin 1 e 0 0 1 sin 1 cos 1
2 1 F0
27
( x, ) 2 sin 1 x F cos(1 ) e 0 1 sin 1 cos 1
因此,这样的无量纲数又被称为特征数,或者准则数,
比如,毕渥数又称毕渥准则。以后会陆续遇到许多类似
的准则数。特征数涉及到的几何尺度称为特征长度,一 般用符号 l 表示。 对于一个特征数,应该掌握其定义式+物理意义,
以及定义式中各个参数的意义。
10
§3-2 集总参数法的简化分析
1 定义:忽略物体内部导热热阻、认为物体温度均匀一致的
14
Vc 1 即与 的量纲相同,当 时,则 hA
hA 1 Vc
此时,
e 1 36.8% 0
Vc
时,物体的过
上式表明:当传热时间等于
hA 余温度已经达到了初始过余温度的36.8%。 Vc 称 为时间常数,用 c 表示。 hA
15
c
1 e 36.8% 0
0
x 0 x
23
用分离变量法可得其分析解为:
( x, ) 2 sin( n ) cos( n x) e 0 n 1 n sin( n ) cos( n )
此处βn为离散面(特征值)
2 n a
n n 若令 则上式可改写为:
此处的A,B及函数
f(1y ) 见P127表3-1
30
3 正规热状况的实用计算方法-拟合公式法
对上述公式中的A,B,μ 1,J0 可用下式拟合
b 1 (a ) Bi
2 1
A a b( 1 e cBi ) a cBi B 1 bBi J 0 ( x ) a` b` x c` x 2 d` x 3
20
对厚为2δ 的
无限大平板
对半径为R 的 无限长圆柱 对半径为R 的 球
M 1 1 M 2 1 M 3
§3-3 一维非稳态导热的分析解
1.无限大的平板的分析解
λ =const
a=const
h=const
因两边对称,只研究半块平壁
21
此半块平板的数学描写: 导热微分方程
2 t t a 2 x
Q 0 Φ ( )d Vc 0 (1 e


hA Vc
) J
18
4
Biv Fov物理意义
l 物体内部导热热阻 Bi = 1 h 物体表面对流换热热阻 hl

换热时间 Fo 2 l a 边界热扰动扩散到l 2面积上所需的时间
无量纲 热阻
Fo越大,热扰动就能越深入地传播到物体 内部,因而,物体各点地温度就越接近周 围介质的温度。
29
对无限大平板,长圆柱体及球: 及 可用一通式表达
0
2 A exp( 1 F0 ) f ( 1 y ) 0 2 0 A exp( 1 F0 )Bi
此处 无限大平板
y x Bi h Bi hR


F0 az F0 az
2
R2
长圆柱体及球 y x R
2 1 0
三个变量,因此,需要分开来画 (1)先画
m f ( Fo, Bi ) 0
32
(2) 再绘制其线算图
( x, ) x x cos(1 ) f ( Bi , ) m ( )
(3) 于是,平板中任一点的温度为 解的应用范围
m 0 m 0
( x, ) 2 sin( n ) cos( n x) e 0 n1 n sin( n ) cos( n )
2 n a
( x, ) 2 sin( n ) cos( n x) ( ) e 0 n 1 n sin( n ) cos( n )
(3) Bi数对温度分布的影响
r h Bi rh 1 h
无量纲数
当 Bi 时, r rh ,因此,可以忽略对流换热热阻
当 Bi 0时, r rh ,因此,可以忽略导热热阻
0 Bi
8
Bi 准则对温度分布的影响
0
t t0 0
式中常数a ,b ,c ,d 见书中表 a`,b`,c`,d`见书中表
31
3 正规热状况的实用计算方法-线算图法 诺谟图 以无限大平板为例,F0>0.2 时,取其级数首项即可
2 sin 1 x x F ( x, ) 0 e cos(1 ) f ( Fo, Bi , ) 1 sin 1 cos 1
若令Q为
[ 0 , ] 内所传递热量
Q c V [t0 t ( x, )]dV 1 Q0 cV (t0 t ) 0
--时刻z的平均过余温度
sin 1 2 1 2 sin 1 ( 1 F0 ) 1 dv 0 e v v 1 sin 1 cos 1
n
2
a
2
x ( x , ) 因此 是F0, Bi 和 函数,即 0
( x , ) x f ( F0 , Bi , ) 0
注意:特征值 n
特征数(准则数) 区别
26
2. 非稳态导热的正规状况简化
2 F a 对无限大平板 0 当 F0 0.2 取级数的首项,板中心温度,
正规状况阶段 (正常情况阶段) 导热过程的三个阶段 非正规状况阶段(起始阶段)、正规状况阶段、新的稳态
温度分布主要受初始温 度分布控制
温度分布主要取决于边 界条件及物性
4
5 热量变化
Φ 1--板左侧导入的热流量 Φ 2--板右侧导出的热流量
5
6 学习非稳态导热的目的:
(1) 温度分布和热流量分布随时间和空间的变化规律
书中的诺谟图及拟合函数仅适用恒温介质的第 三类边界条件或第一类边界条件的加热及冷却 过程,并且F0>0.2
33
§3-4 半无限大的物体
半无限大物体的概念
t 2t a x 2 t tw x0 t t0
t f ( x, y , z , ) ;
Φ f( )
(2) 非稳态导热的导热微分方程式:
t t t t c ( ) ( ) ( ) x x y y z z
相关文档
最新文档