初一数学第五章第1节相交线同步练习.docx

合集下载

人教版七年级下册第五章《相交线与平行线》同步练习(含答案)

人教版七年级下册第五章《相交线与平行线》同步练习(含答案)

第五章相交线与平行线5.1相交线5.1.1相交线基础题知识点1认识邻补角和对顶角(1)有一条公共边,另一边互为反向延长线,具有这种位置关系的两个角互为邻补角.(2)有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角互为对顶角.1.(2018·贺州)如图,下列各组角中,互为对顶角的是(A)A.∠1和∠2B.∠1和∠3C.∠2和∠4D.∠2和∠52.下面四个图形中,∠1与∠2是邻补角的是(D)3.如图,AB与CD相交所成的四个角中,∠1的邻补角是∠2,∠4,∠1的对顶角是∠3.知识点2邻补角和对顶角的性质(1)互为邻补角的两个角相加等于180°.(2)对顶角相等.4.(2017·河池)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是(C)A.60°B.90°C.120°D.150°5.(2018·钦州期末)如图,已知∠1=120°,则∠2的度数是(A)A.120°B.90°C.60°D.30°6.(教材P9复习题T9变式)如图,测角器测得工件(圆台)的角度是40度,其测量角的原理是对顶角相等.7.在括号内填写依据:如图,因为直线a,b 相交于点O,所以∠1+∠3=180°(邻补角互补),∠1=∠2(对顶角相等).8.如图,直线AB,CD 相交于点O,∠EOC=70°,OA 平分∠EOC,求∠BOD 的度数.解:因为OA 平分∠EOC,∠EOC=70°,所以∠AOC=12∠EOC=35°.所以∠BOD=∠AOC=35°.易错点1对对顶角的性质理解不透彻而判断失误9.下列说法正确的有(B )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个易错点2未给出图形,考虑不全而致错10.两条直线相交所成的四个角中,有两个角分别是(2x-10)°和(110-x)°,则x=40或80.中档题11.如图,三条直线l 1,l 2,l 3相交于一点,则∠1+∠2+∠3=(C )A.90°B.120°C.180°D.360°12.如图,直线AB 和CD 相交于点O.若∠AOD 与∠BOC 的和为236°,则∠AOC 的度数为(A )A.62°B.118°C.72°D.59°13.(2018·揭阳揭西县期末)如图所示,直线AB 与CD 相交于点O,OE 平分∠BOC.若∠BOE=60°,则∠AOC 的度数为(A )A.60°B.30°C.120°D.45°14.如图,已知直线AB,CD,EF 相交于点O.(1)∠AOD 的对顶角是∠BOC,∠EOC 的对顶角是∠DOF;(2)∠AOC 的邻补角是∠AOD 和∠BOC,∠EOB 的邻补角是∠EOA 和∠BOF.15.如图,直线a,b,c 两两相交,∠1=80°,∠2=2∠3,则∠4=140°.16.如图,直线a,b 相交于点O,已知3∠1-∠2=100°,则∠3=130°.17.如图,直线AB,CD 相交于点O,∠AOE=∠BOE,OB 平分∠DOF.若∠DOE=50°,求∠DOF 的度数.解:因为∠AOE=∠BOE,且∠AOE+∠BOE=180°,所以∠AOE=∠BOE=90°.因为∠DOE=50°,所以∠DOB=∠BOE-∠DOE=40°.因为OB 平分∠DOF,所以∠DOF=2∠DOB=80°.18.如图,l 1,l 2,l 3交于点O,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.解:设∠1=∠2=x°,则∠3=8x°.由∠1+∠2+∠3=180°,得10x=180.解得x=18.所以∠1=∠2=18°.所以∠4=∠1+∠2=36°.综合题19.探究题:(1)三条直线相交,最少有1个交点,最多有3个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有1个交点,最多有6个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n条直线相交,最少有1个交点,最多有n(n-1)2个交点,对顶角有n(n-1)对,邻补角有2n(n-1)对.解:(1)图略,对顶角有6对,邻补角有12对.(2)图略,对顶角有12对,邻补角有24对.5.1.2垂线基础题知识点1认识垂直如果两条直线相交所成的四个角中的任意一个角等于90°,那么这两条直线互相垂直.其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.1.如图,OA⊥OB,若∠1=55°,则∠2=(A)A.35°B.40°C.45°D.60°2.(2018·来宾期末)如图,AB⊥CD于点O,EF为经过点O的一条直线,那么∠1与∠2的关系是(C)A.互为对顶角B.互补C.互余D.相等3.如图,已知直线AB,CD,EF相交于点O,AB⊥CD,∠DOE=127°,求∠AOF的大小.解:因为AB⊥CD,所以∠DOB=90°.又因为∠DOE=127°,所以∠BOE=∠DOE-∠DOB=127°-90°=37°.所以∠AOF=∠BOE=37°.知识点2画垂线4.下列各图中,过直线l外一点P画l的垂线CD,三角板操作正确的是(D)知识点3垂线的性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.5.(2017·柳州)如图,经过直线l外一点A画l的垂线,能画出(A)A.1条B.2条C.3条D.4条6.(2018·佛山顺德区期末)如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是(C)A.两点之间线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线7.下面可以得到在如图所示的直角三角形中斜边最长的原理是(D)A.两点确定一条直线B.两点之间线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短8.下列说法正确的有(C)①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个知识点4点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.9.(2017·北京)如图所示,点P到直线l的距离是(B)A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度易错点未给出图形,考虑不周全致错10.已知OA⊥OC,过点O作射线OB,且∠AOB=30°,则∠BOC的度数为120°或60°.中档题11.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的有(D)A.1个B.2个C.3个D.4个12.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是(C)13.如图所示,下列说法不正确的是(C)A.点B到AC的垂线段是线段AB B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段D.线段BD是点B到AD的垂线段14.(2018·贵港港南区期末)点P是直线l外一点,A,B,C为直线l上的三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离(C)A.小于2cm B.等于2cm C.不大于2cm D.等于4cm15.如图,当∠1与∠2满足条件∠1+∠2=90°时,OA⊥OB.16.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为55°.17.如图,已知DO⊥CO,∠1=36°,∠3=36°.(1)求∠2的度数;(2)AO与BO垂直吗?说明理由.解:(1)因为DO⊥CO,所以∠DOC=90°.因为∠1=36°,所以∠2=90°-36°=54°.(2)AO⊥BO.理由如下:因为∠3=36°,∠2=54°,所以∠3+∠2=90°.所以AO⊥BO.18.如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.解:(1)因为∠AOC∶∠AOD=7∶11,∠AOC+∠AOD=180°,所以∠AOC=70°,∠AOD=110°.所以∠BOD=∠AOC=70°,∠BOC=∠AOD=110°.又因为OE 平分∠BOD,所以∠BOE=∠DOE=12∠BOD=35°.所以∠COE=∠BOC+∠BOE=110°+35°=145°.(2)因为OF⊥OE,所以∠FOE=90°.所以∠FOD=∠FOE-∠DOE=90°-35°=55°.所以∠COF=180°-∠FOD=180°-55°=125°.5.1.3同位角、内错角、同旁内角基础题知识点认识同位角、内错角、同旁内角如图,直线AB,CD与EF相交.(1)图中∠1和∠2分别在直线AB,CD的同一方(或上方),并且都在直线EF的同侧(或右侧),具有这样位置关系的一对角叫做同位角;(2)图中∠2和∠8都在直线AB,CD之间,并且分别在直线EF的两侧,具有这样位置关系的一对角叫做内错角;(3)图中∠2和∠7都在直线AB,CD之间,且都在直线EF的同一旁(或右侧),具有这样位置关系的一对角叫做同旁内角.1.(2017·玉林)如图,直线a,b被c所截,则∠1与∠2是(B)A.同位角B.内错角C.同旁内角D.邻补角2.(2017·柳州期末)如图,与∠1是同位角的是(C)A.∠2B.∠3C.∠4D.∠53.如图,与∠1是同旁内角的是(D)A.∠2B.∠3C.∠4D.∠54.(2018·广州)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是(B)A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠45.如图,下列说法错误的是(D)A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角6.如图,若∠1=∠2,则在①∠3和∠2;②∠4和∠2;③∠3和∠6;④∠4和∠8中,相等的有(C)A.1对B.2对C.3对D.4对7.看图填空:(1)∠1和∠3是直线AB,BC被直线AC所截得的同旁内角;(2)∠1和∠4是直线AB,BC被直线AC所截得的同位角;(3)∠B和∠2是直线AB,AC被直线BC所截得的同位角;(4)∠B和∠4是直线AC,BC被直线AB所截得的内错角.8.如图,如果∠2=100°,那么∠1的同位角等于80°,∠1的内错角等于80°,∠1的同旁内角等于100°.中档题9.(2018·华南师大附中月考)在下列四个图中,∠1与∠2是同位角的图是(B)图①图②图③图④A.①②B.①③C.②③D.③④10.如图,属于内错角的是(D)A.∠1和∠2B.∠2和∠3C.∠1和∠4D.∠3和∠411.如图,下列说法错误的是(B)A.∠A和∠C是同旁内角B.∠1和∠3是同位角C.∠2和∠3是内错角D.∠3和∠B是同旁内角12.如图,∠ABC与∠EAD是同位角;∠ADB与∠DBC,∠EAD是内错角;∠ABC与∠DAB,∠BCD是同旁内角.13.根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和∠2是同位角;(2)若直线ED,BC被直线AF所截,则∠3和∠4是内错角;(3)∠1和∠3是直线AB,AF被直线ED所截构成的内错角;(4)∠2和∠4是直线AB,AF被直线BC所截构成的同位角.14.根据图形说出下列各对角是什么位置关系?(1)∠1和∠2;(2)∠1和∠7;(3)∠3和∠4;(4)∠4和∠6;(5)∠5和∠7.解:(1)∠1和∠2是同旁内角;(2)∠1和∠7是同位角;(3)∠3和∠4是内错角;(4)∠4和∠6是同旁内角;(5)∠5和∠7是内错角.15.如图,如果内错角∠1与∠5相等,那么与∠1相等的角还有吗?与∠1互补的角有吗?如果有,请写出来,并说明你的理由.解:∠1=∠2,与∠1互补的角有∠3和∠4.理由:因为∠1=∠5,∠5=∠2,所以∠1=∠2.因为∠1=∠5,且∠5与∠3或∠4互补,所以与∠1互补的角有∠3和∠4.综合题16.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有4对,内错角有2对,同旁内角有2对;图1图2(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有12对,内错角有6对,同旁内角有6对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有2n(n-1)对,内错角有n(n-1)对,同旁内角有n(n-1)对.(用含n的式子表示)5.2平行线及其判定5.2.1平行线基础题知识点1认识平行在同一平面内,两条不相交的直线互相平行.1.下列说法中,正确的是(D)A.平面内,没有公共点的两条线段平行B.平面内,没有公共点的两条射线平行C.没有公共点的两条直线互相平行D.互相平行的两条直线没有公共点2.在同一平面内的两条不重合的直线的位置关系(C)A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直3.在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上.(1)a与b没有公共点,则a与b平行;(2)a与b有且只有一个公共点,则a与b相交;(3)a与b有两个及以上公共点,则a与b重合.4.如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过点C画直线垂直于CD;(2)用符号表示上面①、②中的平行、垂直关系.解:(1)如图所示.(2)EF∥AB,MC⊥CD.知识点2平行公理及其推论(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行,即:如果a∥b,b∥c,那么a∥c.5.若直线a∥b,b∥c,则a∥c的依据是(D)A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行6.点P,Q都是直线l外的点,下列说法正确的是(D)A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行C.连接PQ,则PQ一定与直线l相交D.过点P只能画一条直线与直线l平行7.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是经过直线外一点,有且只有一条直线与这条直线平行.8.如图,P,Q分别是直线EF外两点.(1)过点P 画直线AB∥EF,过点Q 画直线CD∥EF;(2)AB 与CD 有怎样的位置关系?为什么?解:(1)如图.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.易错点对平行线的有关概念及公理理解不清9.(2017·玉林北流市期中)下列说法中,正确的有(A)①过一点有无数条直线与已知直线平行;②经过直线外一点有且只有一条直线与已知直线平行;③如果两条线段不相交,那么它们就平行;④如果两条直线不相交,那么它们就平行.A.1个B.2个C.3个D.4个中档题10.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有(C )A.4组B.5组C.6组D.7组11.如图,因为直线AB,CD 相交于点P,AB∥EF,所以CD 不平行于EF.理由是经过直线外一点,有且只有一条直线与这条直线平行.12.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必相交.13.(教材P17习题T11变式)观察下图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A 1B 1∥AB,AA 1⊥AB,A 1D 1⊥C 1D 1,AD∥BC;(2)AB 与B 1C 1所在的直线不相交,它们不是平行线(填“是”或“不是”).由此可知,在同一平面内,两条不相交的直线才是平行线.14.如图,在∠AOB 内有一点P.(1)过点P 画l 1∥OA;(2)过点P 画l 2∥OB;(3)用量角器量一量l 1与l 2相交的角与∠O 的大小有怎样的关系.解:(1)(2)如图所示.(3)l 1与l 2的夹角有两个:∠1,∠2.量得∠1=∠O,∠2+∠O=180°,所以l1与l2的夹角与∠O相等或互补.15.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF为折痕.把长方形ABFE平放在桌面上,另一个面CDEF无论怎么改变位置总有CD∥AB存在,你知道为什么吗?解:因为AB∥EF,CD∥EF,所以CD∥AB.综合题16.利用直尺画图:(1)利用图1中的网格,过点P画直线AB的平行线和垂线;(2)在图2的网格中画一个四边形,满足:①两组对边互相平行;②任意两个顶点都不在一条网格线上;③四个顶点都在格点上.解:(1)如图所示.CD∥AB,PQ⊥AB.(2)如图所示.四边形ABCD是符合条件的四边形.5.2.2平行线的判定基础题知识点1同位角相等,两直线平行1.(2017·玉林陆川县期末)如图,给出了过直线外一点画已知直线的平行线的方法,其依据是(A)A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等2.(2017·绥化)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是(C)A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°3.(教材P21例2变式)已知a,b,c为平面内三条不同的直线,若a⊥b,c⊥b,则a与c的位置关系是平行.4.如图,∠3与∠1互余,∠3与∠2互余.试说明:AB∥CD.解:∵∠3与∠1互余,∠3与∠2互余,∴∠1=∠2.∴AB∥CD(同位角相等,两直线平行).知识点2内错角相等,两直线平行5.(2018·深圳龙岗区一模)如图,能判定AB∥CD的条件是(A)A.∠A=∠ACD B.∠A=∠DCE C.∠B=∠ACB D.∠B=∠ACD6.如图,请在括号内填上正确的理由:∵∠DAC=∠C(已知),∴AD∥BC(内错角相等,两直线平行).7.如图,∠BAD=∠DCB,∠BAC=∠DCA,试说明:AD∥BC.解:∵∠BAD=∠DCB,∠BAC=∠DCA(已知),∴∠BAD-∠BAC=∠DCB-∠DCA(等式的性质),即∠DAC=∠BCA.∴AD∥BC(内错角相等,两直线平行).知识点3同旁内角互补,两直线平行8.如图,已知∠1=70°,要使AB∥CD,则须具备的另一个条件是(C)A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°9.如图,装修工人向墙上钉木条.若∠2=100°,要使木条b与a平行,则∠1的度数等于80°.10.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.解:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD(同旁内角互补,两直线平行).易错点不能准确识别截线与被截线,从而误判两直线平行11.(教材P36复习题T8(1)变式)(2018·贵港桂平期末)如图,点E在AC的延长线上,有下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠DCE;④∠D=∠DCE;⑤∠A+∠ABD=180°;⑥∠A+∠ACD=180°,其中能判定AB∥CD的是①③⑥.中档题12.(2018·郴州)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是(D)A.∠2=∠4B.∠1+∠4=180°C.∠5=∠4D.∠1=∠313.如图,下列说法错误的是(C)A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c14.(2018·湘潭)如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为答案不唯一,如:∠C=∠CDE.(任意添加一个符合题意的条件即可)15.如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE和BC平行.解:(1)∵∠1=∠B(已知),∴DE∥BC(同位角相等,两直线平行).(2)∵∠1=∠2(已知),∴EF∥AB(内错角相等,两直线平行).(3)∵∠BDE+∠B=180°(已知),∴DE∥BC(同旁内角互补,两直线平行).16.(2018·湛江廉江市期末)完成下面的推理.如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,试说明:AB∥CD.完成推理过程:∵BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义).∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换).∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).17.如图,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.解:CF∥BD.方法一:∵BD⊥BE,∴∠DBE=90°.∴∠1+∠2=90°.∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD(同位角相等,两直线平行).方法二:∵BD⊥BE,∴∠DBE=90°.∵∠1+∠C=90°,∴∠C+∠DBC=∠1+∠DBE+∠C=90°+90°=180°.∴CF∥BD(同旁内角互补,两直线平行).18.如图,直线EF 分别与直线AB,CD 相交于点P 和点Q,PG 平分∠APQ,QH 平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.解:PG∥QH,AB∥CD.∵PG 平分∠APQ,QH 平分∠DQP,∴∠1=∠GPQ=12∠APQ,∠PQH=∠2=12∠PQD.又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD.∴PG∥QH,AB∥CD(内错角相等,两直线平行).综合题19.如图,AB⊥BD 于点B,CD⊥BD 于点D,∠1+∠2=180°,试问CD 与EF 平行吗?为什么?解:CD∥EF.理由如下:∵AB⊥BD,CD⊥BD,∴∠ABD=∠BDC=90°.∴∠ABD+∠BDC=180°.∴AB∥CD(同旁内角互补,两直线平行).∵∠1+∠2=180°,∴AB∥EF(同旁内角互补,两直线平行).∴CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).周周练(5.1~5.2)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.邻补角是指(D )A.和为180°的两个角B.有一条公共边且相等的两个角C.有公共顶点且互补的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角2.如图,∠1和∠2是对顶角的是(B )3.如图,直线AB,CD 被EF 所截,下列说法正确的有(C )①∠3与∠5是内错角;②∠2与∠7是同位角;③∠4与∠5是同旁内角;④图中有4对同位角,2对内错角,2对同旁内角;⑤∠1与∠7是内错角.A.1个B.2个C.3个D.4个4.下列说法错误的是(C )A.两条直线相交,有一个角是直角,则两条直线互相垂直B.若互为对顶角的两角之和为180°,则两直线互相垂直C.两直线相交,所构成的四个角中,若有两个角相等,则两直线互相垂直D.在同一平面上,过点A 作直线l 的垂线,这样的垂线只有一条5.如图,直线AB⊥CD 于点O,直线EF 经过点O,若∠1=26°,则∠2的度数是(B )A.26°B.64°C.54°D.以上都不对6.下列说法错误的是(A )A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∥b,b∥c,c∥d,则a∥dD.同一平面内,若一条直线与两平行线中的一条相交,则它也和另一条相交7.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是(D )A.线段AC 的长度是点A 到BC 的距离B.CD 与AB 互相垂直C.AC 与BC 互相垂直D.点B 到AC 的垂线段是线段CA8.(2017·深圳)下列选项中,哪个不可以得到l 1∥l 2?(C )A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°二、填空题(每小题4分,共24分)9.如图,已知∠1+∠2=100°,则∠3=130°.10.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是153°.11.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是垂线段最短.12.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是同一平面内,过一点有且只有一条直线与已知直线垂直.13.如图,已知∠C=105°,增加一个条件答案不唯一,如∠BEC=75°或∠AEC=105°,使得AB∥CD.14.如图,AB与BC被AD所截得的内错角是∠1和∠3;DE与AC被直线AD所截得的内错角是∠2和∠4;图中∠4的内错角是∠5和∠2.三、解答题(共44分)15.(6分)完成下面的推理过程:如图,CB平分∠ACD,∠1=∠3.试说明:AB∥CD.解:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).16.(6分)如图,直线AO,BO 交于点O,过点P 作PC⊥AO 于点C,PD⊥BO 于点D,画出图形.解:作∠ACP=90°,作∠PDB=90°,则直线PC,PD 即为所求.17.(6分)如图,已知∠OEB=130°,∠FOD=25°,OF 平分∠EOD,试说明:AB∥CD.解:∵OF 平分∠EOD,∠FOD=25°,∴∠EOD=2∠FOD=50°.又∵∠OEB=130°,∴∠OEB+∠EOD=180°.∴AB∥CD(同旁内角互补,两直线平行).18.(8分)如图,已知直线l 1,l 2,l 3被直线l 所截,∠α=105°,∠β=75°,∠γ=75°,运用已知条件,你能找出哪两条直线是平行的吗?若能,请写出理由.解:l 1∥l 2∥l 3.理由:∵∠1=∠β,∠β=75°,∴∠1=75°.∵∠α=105°,∴∠α+∠1=180°.∴l 1∥l 2(同旁内角互补,两直线平行).∵∠β=75°,∠γ=75°,∴∠β=∠γ.∴l 2∥l 3(内错角相等,两直线平行).∴l 1∥l 2∥l 3.19.(8分)如图,AB 和CD 交于点O,OD 平分∠BOF,OE⊥CD 于点O,∠AOC=40°,求∠EOF 的度数.解:∵AB,CD 相交于点O,∴∠BOD=∠AOC=40°.∵OD 平分∠BOF,∴∠DOF=∠BOD=40°.∵OE⊥CD,∴∠EOD=90°.∴∠EOF=∠EOD+∠DOF=130°.20.(10分)如图,要判定AB∥CD,需要哪些条件?根据是什么?解:①若考虑截线AD,则需∠D+∠DAB=180°,根据是同旁内角互补,两直线平行.②若考虑截线AE,则需∠CEA+∠EAB=180°,根据是同旁内角互补,两直线平行或∠DEA=∠EAB,根据是内错角相等,两直线平行.③若考虑截线AC,则需∠DCA=∠CAB,根据是内错角相等,两直线平行.④若考虑截线FC,则需∠DCF+∠AFC=180°,根据是同旁内角互补,两直线平行或∠DCF=∠BFC,根据是内错角相等,两直线平行.⑤若考虑截线BC,则需∠DCB+∠B=180°,根据是同旁内角互补,两直线平行.5.3平行线的性质5.3.1平行线的性质基础题知识点1平行线的性质平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.1.(2018·桂林)如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是(B)A.120°B.60°C.45°D.30°2.(2018·绵阳)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上,如果∠2=44°,那么∠1的度数是(C)A.14°B.15°C.16°D.17°3.如图,在三角形ABC中,∠B=40°,过点C作CD∥AB,∠ACD=65°,则∠ACB的度数为(D)A.60°B.65°C.70°D.75°4.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.5.如图,AB∥CD,∠BAF=115°,则∠ECF的度数为65°.6.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.解:∵EF∥BC,∴∠BAF=180°-∠B=100°(两直线平行,同旁内角互补).∵AC平分∠BAF,∴∠CAF=12∠BAF=50°.∵EF∥BC,∴∠C=∠CAF=50°(两直线平行,内错角相等).知识点2平行线性质的应用7.某商品的商标可以抽象为如图所示的三条线段,若AB∥CD,∠EAB=45°,则∠FDC的度数是(B)A.30°B.45°C.60°D.75°8.一只因损坏而倾斜的椅子,从背后看到的形状如图所示,其中两组对边的平行关系没有发生变化.若∠1=76°,则∠2的度数是(C)A.76°B.86°C.104°D.114°9.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东42°.10.如图,某次考古发掘出的一块梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.解:∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.易错点误用平行线的性质11.已知∠1与∠2是同旁内角,若∠1=60°,则∠2的度数是(D)A.60°B.120°C.60°或120°D.不能确定中档题12.(2018·汕头澄海区一模)如图,点P是∠AOB的边OA上一点,PC⊥OB于点C,PD∥OB,∠OPC=35°,则∠APD的度数是(B)A.60°B.55°C.45°D.35°13.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的有(D )A.1个B.2个C.3个D.4个14.(2018·梧州岑溪市期末)如图是一汽车探照灯的纵剖面,从位于O 点的灯泡发出的两束光线OB,OC 经过灯碗反射以后平行射出.若∠ABO=α,∠DCO=β,则∠BOC 的度数是(A )A.α+βB.180°-αC.12(α+β)D.90°+(α+β)15.(2018·柳州期末)如图,AB∥CD∥EF,则下列四个等式中一定成立的有(A )①∠2+∠3=180°;②∠2=∠3;③∠1+∠3=180°;④∠2+∠3-∠1=180°.A.1个B.2个C.3个D.4个16.(2017·柳州期末)如图,已知AB∥CD,BC∥ED,请你猜想∠B 与∠D 之间具有什么数量关系,并说明理由.解:猜想:∠B+∠D=180°.理由如下:∵AB∥CD,∴∠B=∠C(两直线平行,内错角相等).∵BC∥ED,∴∠C+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠D=180°.17.(2017·南宁马山县期末)如图,CD∥AB,OE 平分∠AOD,OF⊥OE,∠D=50°,求∠BOF 的度数.解:∵CD∥AB,∴∠AOD=180°-∠D=180°-50°=130°.∵OE 平分∠AOD,∴∠EOD=12∠AOD=12×130°=65°.∵OF⊥OE,∴∠DOF=90°-∠EOD=90°-65°=25°.∴∠BOF=180°-∠AOD-∠DOF=180°-130°-25°=25°.综合题18.阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.解:过点P作PE∥AB.∵AB∥CD,∴PE∥AB∥CD(平行于同一条直线的两条直线互相平行).∴∠1+∠A=180°(两直线平行,同旁内角互补),∠2+∠C=180°(两直线平行,同旁内角互补).∴∠1+∠A+∠2+∠C=360°.又∵∠APC=∠1+∠2,∴∠APC+∠A+∠C=360°.如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.解:如图乙,过点P作PE∥AB.∵AB∥CD(已知),∴PE∥AB∥CD(平行于同一条直线的两条直线平行).∴∠A=∠EPA,∠EPC=∠C(两直线平行,内错角相等).∵∠APC=∠EPA+∠EPC,∴∠APC=∠A+∠C(等量代换).如图丙,过点P作PF∥AB.∴∠FPA=∠A(两直线平行,内错角相等).∵AB∥CD(已知),∴PF∥CD(平行于同一条直线的两条直线平行).∴∠FPC=∠C(两直线平行,内错角相等).∵∠FPC-∠FPA=∠APC,∴∠C-∠A=∠APC(等量代换).5.3.2命题、定理、证明基础题知识点1命题的定义及结构判断一件事情的语句叫做命题,命题常可以写成“如果……那么……”的形式,“如果”后面接的部分是题设,“那么”后面接的部分是结论.1.(2018·玉林陆川县期末)下列语句不是命题的是(A)A.画两条相交直线B.互补的两个角之和是180°C.两点之间线段最短D.相等的两个角是对顶角2.把“垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式是如果两条直线垂直于同一条直线,那么这两条直线平行.3.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.解:(1)如果在平面上有两个点,那么过这两个点确定一条直线.题设:在平面上有两个点;结论:过这两个点确定一条直线.(2)如果两个角是同一个角的补角,那么它们相等.题设:两个角是同一个角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.知识点2真假命题及其证明(1)题设成立,并且结论一定成立的命题叫做真命题;题设成立,不能保证结论一定成立的命题叫做假命题.(2)经过推理证实为正确并可以作为推理的依据的真命题叫做定理.很多情况下,一个命题的正确性需要经过推理,才能做出判断,这个推理的过程叫做证明.4.(2017·柳州期末)下列命题是真命题的是(C)A.同位角相等B.有且只有一条直线与已知直线垂直C.垂线段最短D.直线外一点到这条直线的垂线段,叫做点到直线的距离5.下列命题中,是假命题的是(A)A.相等的角是对顶角B.若|x|=3,则x=±3C.同一平面内,两条直线的位置关系只有相交和平行两种D.两点确定一条直线6.如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD∥AB.证明:∵BD平分∠ABC,∠ABD=55°,∴∠ABC=2∠ABD=110°.又∵∠BCD=70°,∴∠ABC+∠BCD=180°.。

(完整)人教版七年级下数学第五章-相交线与平行线典型例题.docx

(完整)人教版七年级下数学第五章-相交线与平行线典型例题.docx

第五章相交线与平行考点四:同位角、内错角、同旁内角的识别考点一:相关推理例题 1:如图2-44 ,∠ 1 和∠ 4 是 AB 、被 所截得的角,∠ 3 和∠ 5 是( 1)∵ a ∥c , b ∥ c (已知) ∴ ______ ∥ ______() 被 所截得的角,∠ 2 和∠ 5 是 、被所截得的( 2)∵∠ 1=∠ 2,∠ 2= ∠ 3(已知)∴______ =______ ()AC 、 BC 被 AB 所截得的同旁内角是.( 3)∵∠ 1+∠ 2=180°,∠ 2=30°(已知)∴∠ 1=______ () 如图 2-45 , AB 、DC 被 BD 所截得的内错角是, AB 、 CD 被 AC 所截是的内错角是( 4)∵∠ 1+∠ 2=90°,∠ 2=22°(已知)∴∠ 1=______ ( ) AD 、 BC 被 BD 所截得的内错角是,AD 、 BC 被 AC 所截得的内错角是。

( 5)如图( 1),∵∠ AOC=55 °(已知)∴∠ BOD=______ ( ) ( 6)如图( 1),∵∠ AOC=55 °(已知) ∴∠ BOC=______ ( )( 7)如图( 1),∵∠ AOC=1∠ AOD ,∠ AOC+ ∠AOD=180 °(已知)2∴∠ BOC=______ ()例题 3:如图1- 26 所示. AE ∥ BD ,∠ 1=3∠2,∠ 2=25°,求∠ C .ba考点五:平行线的判定、性质的综合应用(逻辑推理训练)11a例题 1:如图 9, 已知 DF ∥ AC,∠ C=∠ D, 要证∠ AMB=∠ 2, 请完善证明过程 ,?43ACBb并在括号内填上相应依据 :2( 1)( 2)( 3)( 4)证明:∵ DF ∥ AC(已知 ),D EF( 8)如图( 2),∵ a ⊥ b (已知) ∴∠ 1=______ () ∴∠ D= ()2N( 9)如图( 2),∵∠ 1=______ (已知)∴ a ⊥b ()M∵∠ C=∠ D1A( 10)如图( 3),∵点 C 为线段 AB 的中点 ∴ AC=______()∴∠ 1=∠ C( ?)B C(11) 如图( 3),∵ AC=BC ∴点 C 为线段 AB 的中点()(9)( 12)如图( 4),∵ a ∥ b (已知)∴∠ 1=∠2() ∴ DB ∥EC()( 13)如图( 4),∵ a ∥ b (已知)∴∠ 1=∠3()∴∠ AMB=∠ 2( )( 14)如图( 4),∵ a ∥ b (已知)∴∠ 1+∠4=()( 15)如图( 4),∵∠ 1=∠ 2(已知) ∴ a ∥b ( ) 例题 2,如图, EF ∥ AD ,∠ 1 =∠ 2 ,BAC ∠ = 70 °,将求∠ AGD 的过程填写完整,( 16)如图( 4),∵∠ 1=∠ 3(已知)∴ a ∥b ()( 17)如图( 4),∵∠ 1+∠ 4=(已知) ∴ a ∥ b ()并在括号内填上理由根据。

人教版 七年级数学下册 (5.1相交线) 课时同步优化训练习题(含答案)

人教版 七年级数学下册 (5.1相交线) 课时同步优化训练习题(含答案)

第五章相交线与平行线5.1 相交线5分钟训练(预习类训练,可用于课前)1.如图5-1-1所示,∠1与∠2互为对顶角的是( )图5-1-1解析:因为对顶角的角的两边互为反向延长线,所以选项A、B、C都不正确,选项D正确.答案:D2.已知∠A=40°,则∠A的补角等于( )A.50°B.90°C.140°D.180°解析:∠A的补角是180°-∠A=140°.答案:C3.如图5-1-2,一条直线c分别与直线a、b相交(也说直线a、b被直线c____________).构成的八个角中,∠1与∠____________是同位角,∠3与∠____________是内错角,∠3与∠____________是同旁内角.图5-1-2 图5-1-3解析:同位角在截线的同旁且两条被截直线的同侧,内错角在截线的两侧且在两条被截直线的内部,同旁内角在截线的同旁且在两条被截直线内部;所以∠1与∠5是同位角,∠3与∠5是内错角,∠3与∠6是同旁内角.答案:所截 5 5 64.如图5-1-3所示,直线AB、CD、EF相交于O点,∠AOF=3∠FOB,∠AOC=90°,则∠EOC的度数为____________.解析:∠AOF=3∠FOB,又因为∠AOF+∠FOB=180°,所以∠FOB=45°.因为∠AOE=∠FOB(对顶角相等),∠AOC=90°,所以∠EOC=∠AOC-∠AOE=45°.答案:45°10分钟训练(强化类训练,可用于课中)1.下列说法中正确的是( )A.对顶角必相等B.相等的角是对顶角C.不是对顶角的角不相等D.有公共顶点的角叫做对顶角解析:因为当两个角的两边互为反向延长线时才构成对顶角,而相等的角、有公共顶点的角的两边不一定成互为反向延长线,所以选项B、D不正确;由对顶角的性质可知“对顶角相等”,但不是对顶角的两个角的大小可以相等,如等腰直角三角板中有两个角相等,所以选项A正确,选项C不正确.答案:A2.下列说法不正确的是( )A.钝角没有余角,但一定有补角B.两个角相等且互补,则它们都是直角C.锐角的补角比该锐角的余角大D.一个锐角的余角一定比这个锐角大 解析:设一个角为α,则其余角为90°-α,补角为180°-α.当α为钝角时, 90°-α<0°,所以其余角不存在,但补角一定存在,所以选项A 正确;当α=180°-α时,α=90°,所以选项B 正确;当α为锐角时,其补角为180°-α>90°>90°-α,所以选项C 正确;因为30°角与60°角互余,所以60°角的余角小于60°.所以选项D 错误. 答案:D3.如图5-1-4所示,∠AOC ,∠BO C ,∠DOE 都是直角,则相等的角有( )图5-1-4A.2对B.3对C.4对D.5对 解析:∵∠AOD 与∠COE 都是∠DOC 的余角,∴∠AOD=∠COE. ∵∠DOC 与∠BOE 都是∠COE 的余角, ∴∠DOC=∠BOE.∵∠AOC ,∠BOC ,∠DOE 都是直角, ∴∠AOC=∠BOC=∠DOE. 答案:D4.如图5-1-5,运动会上,甲、乙两名同学测得小明的跳远成绩分别为DA=4.5米,DB=4.15米,则小明的跳远成绩应该为_____________米.图5-1-5 图5-1-6解析:根据跳远规则及直线外一点与直线上各点连结的所有线段中垂线段最短,得小明的跳远成绩应是BD 的长. 答案:4.155.如图5-1-6,∠1和∠B 是直线_____________和直线_____________被直线_____________所截得到的_____________角;∠2和∠4是直线_____________和直线_____________被直线_____________所截得到的_____________角;∠D 和∠4是直线_____________和直线_____________被直线_____________所截得到的_____________角.解析:由同位角、内错角、同旁内角的概念,进行辨析. 答案:AD BC AB 同位 AB CD AC 同位 AC AD CD 同旁内 6.一个角的余角比这个角的补角的31还小10°,求这个角的余角及补角. 解:设该角为x ,由题意得90°-x=31(180°-x)-10°,解之,得x=60°. ∴90°-x=30°,180°-x=120°,即这个角的余角与补角分别是30°、120°. 30分钟训练(巩固类训练,可用于课后) 1.下列结论不正确的是( )A.互为邻补角的两个角的平分线所成的角为90°B.互不相等的两个角不是对顶角C.两直线相交,若有一个交角为90°,则这四个角中任取两个角都互为补角D.不是对顶角的两个角互不相等 解析:A 选项,如图所示,∵∠1=21∠BOD,∠2=21∠AOD,∴∠EOC=∠1+∠2=21(∠BOD+∠AOD)=90°. B 选项,由于对顶角必然相等,因此不相等的角自然不可能是对顶角,故正确. C 选项,两条直线相交形成的四个角中,如有一个为90°,则其余三个角均为90°,因此,任意两个角互为补角,故正确.D 选项,对顶角相等,但相等的角不一定是对顶角,比如等腰直角三角板的两个45°的角,故错误. 答案:D2.如图5-1-7,AB 与CD 为直线,图中共有对顶角( )图5-1-7A.1对B.2对C.3对D.4对 解析:图中只有两条直线AB 与CD 相交,所以对顶角共有2对. 答案:B3.(2010广西南宁模拟,2)如图5-1-8,已知AB 、CD 相交于O 点,OE ⊥AB ,∠EOC=28°,则∠AOD=______________.图5-1-8 图5-1-9解析:利用垂直求出∠AOD 的对顶角∠COB 即可. 答案:62°4.如图5-1-9所示,直线AB 、CD 相交于O 点,∠AOD=130°,则∠BOC=______________, ∠AOC=______________,∠BOD=______________. 解析:利用对顶角相等和邻补角的关系求解. 答案:130° 50° 50°5.如图5-1-10,直线AB 、CD 相交于O,作∠DOE=∠BOD,OF 平分∠AOE,∠AOC=28°,求∠EOF 的度数.图5-1-10解:由题知∠BOD=∠AOC=28°(对顶角相等), 因为∠DOE=∠BOD,所以∠BOE=2∠BOD=56°. 因为∠AOE+∠BOE=180°,所以∠AOE=124°. 因为OF 平分∠AOE, 所以∠EOF=21∠AOE=62°. 6.A 、B 两厂在公路同侧,拟在公路边建一货场C,若由B 厂独家兴建,并考虑B 厂的利益,则要求货物离B 厂最近,请在图5-1-11中作出此时货场C 的位置,并说出这样做的道理.图5-1-11解:如图所示,过B 作公路所在直线的垂线,垂足O 就是所求货场C 的位置.理由:根据“垂线段最短”,所以BO 是点B 到公路的最短线段. 7.如图5-1-12,直线AB 、CD 、EF 相交于点O.图5-1-12(1)写出∠AOD 、∠EOC 的对顶角(2)已知∠AOC=50°,求∠BOD 、∠COB 的度数.解:(1)∠AOD 的对顶角是∠COB;∠EOC 的对顶角是∠DOF. (2)∠BOD=∠AOC=50°(对顶角相等), ∠COB=180-∠AOC=180°-50°=130°(邻补角的定义).8.图5-1-13中的∠1和∠2,∠3和∠4分别是由哪两条直线被哪一条直线所截而成的?它们各是什么角?图5-1-13解:由题图(1)知∠1和∠2的公共边所在的直线是BD,则BD 是截线,所以∠1和∠2是由直线AB,CD 被直线BD 所截而形成的内错角;∠3和∠4的公共边所在的直线是BD,则BD 是截线,所以∠3和∠4是由直线AD,BC 被直线BD 所截而形成的内错角.由题图(2)知,∠1和∠2的公共边所在的直线是BC,则B C 是截线,所以∠1和∠2是由直线AB,CD 被直线BC 所截而形成的同旁内角;∠3和∠4的公共边所在的直线是AB,则AB 是截线,所以∠3和∠4是由直线AD,BC 被直线AB 所截而形成的同位角.9.如图5-1-14,一棵小树生长时与地面成80°角,它的主根深入泥土,如果主根和小树在同一条直线上,那么∠2等于多少度?图5-1-14解:∵∠1+80°=90°,∴∠1=10°.∵∠1=∠2(对顶角相等),∴∠2=10°.10.(1)如图5-1-15(1)所示,两条直线AB与CD相交成几对对顶角?(2)如图5-1-15(2)所示,三条直线AB、CD、EF相交呢?(3)试猜想n条直线相交会成多少对对顶角?图5-1-15解:(1)两条直线AB与CD相交成2对对顶角.(2)三条直线AB、CD、EF相交有6对对顶角.(3)因为3条不同直线相交所成的对顶角有(3×2)÷2×2=6(对);4条不同直线相交所成的对顶角有(4×3)÷2×2=12(对);则可推测:n条直线相交所成的对顶角有n×(n-1)÷2×2=n(n-1)(对).。

人教版初一数学7年级下册 第5章(相交线与平行线)相交线 同步练习(含答案)

人教版初一数学7年级下册 第5章(相交线与平行线)相交线 同步练习(含答案)

初中数学人教版七年级下册第五章相交线与平行线相交线同步练习一、单选题1.将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A. B. C. D.2.把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A. 五棱锥B. 五棱柱C. 六棱锥D. 六棱柱3.如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是()A. 跟B. 百C. 走D. 年4.将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是()A. B.C. D.5.下列几何体中,其主视图是曲线图形的是()A. B. C. D.6.下列图形中,是圆锥侧面展开图的是()A. 三角形B. 圆C. 扇形D. 矩形7.如图,设点P是直线l外一点,PQ⊥l,垂足为点Q,点T是直线l上的一个动点,连结PT,则()A. PT≥2PQB. PT≤2PQC. PT≥PQD. PT≤PQ8.如图,在ΔABC中,CD是高,CM是中线,点C到AB边的距离是()A. CD的长B. CA的长C. CM的长D. CB的长9.如图,某单位要在河岸l上建一个水泵房引水到C处,他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A. 两点之间,线段最短B. 在同一平面内,过一点有且只有一条直线与已知直线垂直C. 两点确定一条直线D. 直线外一点与直线上所有点的连线中,垂线段最短10.下列图形中,线段PQ的长表示点P到直线MN的距离是()A. B.C. D.11.如图,直线CD和AB相交于点O,OD平分∠BOF,OE⊥CD于点O,若∠EOF=a,下列说法∶①∠AOC=a-90°;②∠EOB=180°-a③∠AOF=360°-2a ,其中正确的是()A. ①②B. ①③C. ②③D. ①②③12.下列说法正确的个数是()①射线MN与射线NM是同一条射线;②点A到点B的距离是线段AB;③画一条长为3cm的直线;④在同一平面内,过一点有且只有一条直线垂直于已知直线.A. 0个B. 1个C. 2个D. 3个13.下列语句正确的个数是()①直线外一点与直线上各点连接的所有线段中,垂线段最短②两点之间直线最短③在同一平面内,两条不重合的直线位置关系不平行必相交④两点确定一条直线A. 1B. 2C. 3D. 4二、填空题14.如图,要把池中的水引到D处,且使所开渠道最短,可过D点作DC⊥AB于C,然后沿所作的线段DC开渠,所开渠道即最短,试说明设计的依据是:________.15.已知点P(x0,y0)到直线y=kx+b的距离可表示为d=|kx0+b−y0|,例如:点(0,1)到直线1+k2y=2x+6的距离d=|2×0+6−1|=5.据此进一步可得点(2,−1)到直线y=x−4之间的距离为1+22________.16.如图所示,王师傅为了检验门框AB是否垂直于地面,在门框AB的上端A处用细线悬挂一铅锤,看门框AB 是否与铅锤线重合.若门框AB垂直于地面,则AB会重合于AE,否则AB与AE不重合.你能说出这里面的道理吗________.17.已知一次函数y=kx+1−3k,当k变化时,原点到一次函数y=kx+1−3k的图象的最大距离为________.18.如图,点O为直线AB上一点,∠AOC=55∘,过点O作射线使得OD⊥OC,则∠BOD的度数是________.19.如图直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠COB=________.三、综合题20.如图,点A表示小明家,点B表示小明外婆家,若小明先去外婆家拿渔具,然后再去河边钓鱼,怎样走路程最短,请画出行走路径,并说明理由.21.如图,已知同一平面内四个点A,B,C,D.(1)同时过A,C,两点能作几条直线?作图并写出理由;(2)在直线AC上画出符合下列条件的点P和Q,并说明理由.①使线段DP长度最小;②使BQ+DQ最小.22.如图,射线OC、OD把AOB分成三个角,且度数之比是∠AOC:∠COD:∠DOB=2:3:4,射线OM平分∠AOC ,射线ON平分∠BOD,且OM⊥ON.(1)求∠COD的度数;(2)求∠AOB的补角的度数.23.已知点直线BC及直线外一点A(如图),按要求完成下列问题:(1)画出射线CA、线段AB.过C点画CD⊥AB,垂足为点D;(2)比较线段CD和线段CA的大小,并说明理由;(3)在以上的图中,互余的角为________,互补的角为________.(各写出一对即可)答案解析部分一、单选题1.【答案】D【解析】【解答】解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故答案为:D.【分析】根据图中棱柱展开后,两个三角形的面不可能位于同一侧,再观察各选项,可得答案.2.【答案】A【解析】【解答】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故答案为:A.【分析】根据平面图形的折叠及立体图形的表面展开图的特点解答即可.3.【答案】B【解析】【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“百”是相对面,“党”与“年”是相对面,“跟”与“走”是相对面,故答案为:B.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点进行解答,即可得出答案.4.【答案】A【解析】【解答】解:根据题意可知只有A符合题意.故答案为:A.【分析】利用长方体的展开图中的141,可得答案.5.【答案】B【解析】【解答】解:A、主视图是三角形,故本选项不符合题意;B、主视图是圆,故本选项符合题意;C、主视图是矩形,故本选项不符合题意;D、主视图是矩形,故本选项不符合题意;故答案为:B.【分析】本题考查立体图形的三视图和直线及曲线的概念,熟练掌握立体图形的三视图是关键。

(精校版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案

(精校版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案

(直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改)的全部内容。

初一数学人教版七年级下册第五章 相交线与平行线5.1 相交线同步练习题1. 下列说法中正确的是( )A.不相等的角一定不是对顶角B.互补的两个角是邻补角C.互补且有一条公共边的两个角是邻补角D.两条直线相交所成的角是对顶角2. 下列说法正确的是( )A.在同一平面内,过直线外一点向该直线画垂线,垂足一定在该直线上B.在同一平面内,过线段或射线外一点向该线段或射线画垂线,垂足一定在该线段或射线上C.过线段或射线外一点不一定能画出该线段或射线的垂线D.过直线外一点与直线上一点画的一条直线与该直线垂直3. 已知∠α和∠β的对顶角,若∠α=60°,则∠β的度数为( )A.30° B.60° C.70° D.150°4。

如图,直线AB,CD相交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依据是( )A.同角的余角相等 B.对顶角相等C.同角的补角相等 D.等角的补角相等5. 如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余 D.不能确定6。

人教版七年级数学下册《5.1相交线》同步练习(含答案)

人教版七年级数学下册《5.1相交线》同步练习(含答案)

人教版七年级数学下册第五章相交线与平行线 5.1 相交线同步练习一、单选题(共10题;共30分)1.如图所示,∠1和∠2是对顶角的图形有( )A. 1个B. 2个C. 3个D. 4个2.如图,下列说法不正确的是()A. ∠1和∠2是同旁内角B. ∠1和∠3是对顶角C. ∠3和∠4是同位角D. ∠1和∠4是内错角3.如图所示,∠1和∠2是对顶角的是()A. B. C. D.4.下列说法中正确的个数为()①两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直;②两条直线相交成四个角,如果有一个角是直角,那么这两条直线垂直;③一条直线的垂线可以画无数条;④在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.A. 1B. 2C. 3D. 45.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A. 75°B. 15°C. 105°D. 165°6.如图所示,下列说法错误的是()A. ∠A和∠B是同旁内角B. ∠A和∠3是内错角C. ∠1和∠3是内错角D. ∠C和∠3是同位角7.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A. 30°B. 34°C. 45°D. 56°8.在下列语句中,正确的是().A. 在平面上,一条直线只有一条垂线;B. 过直线上一点的直线只有一条;C. 过直线上一点且垂直于这条直线的直线有且只有一条;D. 垂线段就是点到直线的距离9.如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共10题;共30分)11.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=________12.如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=________.13.如图,∠1和∠2是________角,∠2和∠3 是________角。

人教版数学七年级下 5.1 第1课时 相交线 同步练习

人教版数学七年级下 5.1 第1课时 相交线 同步练习

OFED CB A 第五章 相交线与平行线 5.1.1 相交线习题一、选择题1.图中是对顶角的是( ).2、下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个 3、如图,内错角共有( )A. 4对B. 6对C. 8对D. 10对4、如图所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120° 5、下列说法正确的是( ) A. 对顶角不一定相等B. 有公共顶点,且相等的两个角是对顶角C. 对顶角的补角相等D. 两条直线相交所成的角是对顶角6.如图,直线 a ,b 相交,若 ∠1=140∘,则 ∠2+∠3= ( )A . 40∘B . 70∘C . 80∘D . 100∘7、同一平面内的三条直线最多可把平面分成()部分A. 4B. 5C. 6D. 78.如图,直线AB,CD相交于点O,若∠BOC=2∠1,则∠2等于( )A.40∘B.45∘C.50∘D.60∘9.下面四个图形中,∠1=∠2一定成立的是( )10.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC和∠AOF(C)∠AOF(D)∠BOE和∠AOF11.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°12.如图,若AO⊥CO,BO⊥DO,且∠BOC=,则∠AOD等于( ).(A)180°-2 (B)180°-(C)(D)2-90°二、填空题13.有一条公共边,另一边__________,具有这种位置关系的两个角互为邻补角.14.如图,直线 AB 与 CD 相交于点 O ,射线 OE ,OF 在 ∠AOD 内部,∠1=∠2=∠3=30∘,则图中与 ∠3 相等的角有 ;与 ∠3 互补的角有 ;∠3 的邻补角是 .15、如图,∠AOC 和∠BOC 互为邻补角,OD ,OE 分别是∠AOC ,∠BOC 的平分线,则∠DOE= .16. 如图所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________. 17.如图,点A,O,B在同一直线上,已知∠BOC=50°,则∠AOC=__________.18.如图,直线 a ,b 相交于点 O ,若 ∠1+∠2=70∘,则 ∠3 的度数为 .α2190+︒OE DCBAOE DCBA19.如图,直线AB ,CD ,EF 都经过点O ,则∠1+∠2+∠3= .三、解答题20、如图所示,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°, 求∠BOD,∠AOE•的 度数.21.如图,两条直线 a ,b 相交.(1) 如果 ∠1=50∘,求 ∠2,∠3 的度数; (2) 如果 ∠2=3∠1,求 ∠3,∠4 的度数.22、如图,直线AB ,CD 被EF 所截,如果∠1与∠2互补,且∠1=110°,那么∠3,∠4的度数分别是多少?23.如图,直线AB,CD相交于点O.(1) 若∠AOD比∠AOC大40∘,求∠BOD的度数;(2) 若∠AOD:∠AOC=3:2,求∠BOD的度数.。

2021七年级数学下册第五章相交线与平行线5.1.1相交线同步练习含解析新版新人教版

2021七年级数学下册第五章相交线与平行线5.1.1相交线同步练习含解析新版新人教版

相交线知识要点:1.定义:两个角有一条公共边.它们的另一条边互为反向延长线.具有这种关系的两个角.互为邻补角.2.邻补角是成对出现的.单独的一个角不能称为邻补角.两条直线相交形成四对邻补角.3.性质:邻补角互补4.定义:两个角有一个公共的顶点.并且一个角的两边分别是另一个角的两边的反向延长线.具有这种关系的两个角.互为对顶角.5.性质:对顶角相等.但相等的角不一定是对顶角.注意:识别对顶角时.要抓住两个关键要素:一是顶点.二是边.先看两个角是否有公共顶点.再看两个角的两边是否分别互为反向延长线.两条直线相交形成两对对顶角.一、单选题1.如图.对于直线AB.线段CD.射线EF.其中能相交的图是()A.B.C.D.2.如图.已知直线AB、CD相交于点O.OA平分∠EOC.∠EOC=110°.则∠BOD的度数是( )A.25°B.35°C.45°D.55°3.如图.点O在直线AB上.射线OC平分∠DOB.若∠COB=35°.则∠AOD等于( ).A.35°B.70°C.110°D.145°4.如图.∠1=100°.∠2=145°.那么∠3=( ).A.55°B.65°C.75°D.85°5.如图.直线AB、CD相交于点O.且∠AO D+∠BOC=100°.则∠AOC是( )A.150°B.130°C.100°D.90°6.如图.直线AB.CD交于O.EO⊥AB于O.∠1与∠3的关系是()A.互余B.对顶角C.互补D.相等7.如图所示.∠1和∠2是对顶角的是()A.B.C.D.8.下面四个图形中.∠1与∠2是邻补角的是( )A.B.C.D.9.如图.下列各组角中.互为对顶角的是()A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠5 10.10.如图所示.下列判断正确的是( )A.图⑴中∠1和∠2是一组对顶角 B.图⑵中∠1和∠2是一组对顶角C.图⑶中∠1和∠2是一对邻补角 D.图⑷中∠1和∠2互为邻补角二、填空题11.如图所示.AB∥CD.EF与AB.CD相交.EF与AB交于点_____.EF与CD交于______.12.两条直线相交.只有_____个交点.13.平面内四条直线共有三个交点.则这四条直线中最多有________ 条平行线.14.探究题:(1)三条直线相交.最少有__________个交点.最多有__________个交点.分别画出图形.并数出图形中的对顶角和邻补角的对数;(2)四条直线相交.最少有__________个交点.最多有__________个交点.分别画出图形.并数出图形中的对顶角和邻补角的对数;(3)依次类推.n条直线相交.最少有__________个交点.最多有__________个交点.对顶角有_________对.邻补角有__________对.三、解答题15.平面上两条直线相交于一点.三条直线俩两相交.每个交点都不经过第三条直线.(1)5条直线的交点为_____个.(2)请探索n条直线的交点个数.16.如图所示.已知直线AB和CD相交于点O.OM平分∠BOD.∠MON=90°.∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.17.如图.直线AB与CD相交于点O.∠AOC∶∠AOD=1∶2.求∠BOD的度数.18.如图.三条直线AB.CD.EF交于一点.若∠1=30°.∠2=70°.求∠3的度数.答案1.B2.D3.C4.B5.B6.A7.C8.D9.A10.D11.M N 12. 1.13.三14.(1)1.3;(2)1.6;(3)1.(1)2n n-.n(n-1).2n(n-1)15.(1)如图所示:我们发现:2条直线相交有1个交点;3条直线相交有1+2=3个交点;4条直线相交有1+2+3=6个交点.则5条直线的交点为1+2+3+4=10;(2)图(n):1+2+3+…+n-1=(1)2n n-.16.(1)∵∠AOC+∠AOD=∠AOD+∠BOD=180°.∴∠BOD=∠AOC=50°.∵OM平分∠BOD.∴∠BOM=∠DOM=25°.又由∠MON=90°.∴∠AON=180°﹣(∠MON+∠BOM)=180°﹣(90°+25°)=65°;(2)由∠DON+∠DOM=∠MON=90°知∠DOM为∠DON的余角.∵∠AON+∠BOM=90°.∠DOM=∠MOB.∴∠AON+∠DOM=90°.∴∠NO D+∠BOM=90°.故∠DON的余角为:∠DOM.∠BOM.17.由邻补角的性质.得∠AOC+∠AOD=180°.由∠AOC∶∠AOD=1∶2.得∠AOD=2∠AOC.∠AOC+2∠AOC=180°.解得∠AOC=60°.由对顶角相等.得∠BOD=∠AOC=60°.故答案为:60°.18.解:如图.∵∠4=∠2=70°(对顶角相等). ∴∠3=180°-∠1-∠4=180°-30°-70°=80°.。

人教版七年级下册数学第五章5.1.1相交线 同步训练(Word版,含解析)

人教版七年级下册数学第五章5.1.1相交线 同步训练(Word版,含解析)

5 年中考3 年模拟·初中数学·人教版·七年级下册——第五章相交线与平行线5.1 相交线5.1.1 相交线基础闯关全练拓展训练1.下列选项中,∠1与∠2互为邻补角的是()2.下列图形中,∠1和∠2互为对顶角的是()3.如图,当光线从空气射入水中时,光线的传播方向发生了改变,这就是折射现象.∠1的对顶角是()A.∠A OBB.∠BOCC.∠AOCD.都不是4.如图,已知点O 在直线AE 上,O B平分∠A OC,O D平分∠C O E,求∠B O D的度数.5.如图,直线AB 与直线CD 相交于点O,∠B OC比∠A OC 的2 倍大30°.求∠B O D的度数.6.如图所示,直线AB,CD 交于点O,∠DOE=∠B O D,O F平分∠A O E,∠AOC=30°,试求∠E O F的度数.能力提升全练拓展训练1.如图,点O 是直线AB 上的任意一点,OC,OD,O E是三条射线,若∠A OD=∠CO E=90°,则下列说法:①与∠AOC互为邻补角的角只有一个;②与∠AOC互为补角的角只有一个;③与∠AOC互为邻补角的角有两个;④与∠AOC互为补角的角有两个.其中正确的是()A.②③B.②④C.③④D.①④2.如图,已知直线AB、CD、EF 相交于点O.(1)∠A OD的对顶角是;∠E O C的对顶角是;(2)∠A OC的邻补角是;∠E OB的邻补角是.3.如图,OC 平分∠A OB,反向延长OC 至D,反向延长OA 至E,∠3=25°,求∠B O E的度数.4.如图,AB、CD、EF相交于点O,如果∠A OC=65°,∠DOF=50°.(1)求∠B OE 的度数;(2)通过计算∠A OF的度数,你能发现射线OA 有什么特殊性?5.如图,直线AB 交CD 于点O,由点O 引射线OG、OE、OF,使OC 平分∠E OG,∠AOG=∠FOE,若∠BOD=56°,求∠FO C.三年模拟全练拓展训练1.(2019 浙江杭州二中期末,3,★☆☆)下列工具中,有对顶角的是()2.(2018 浙江杭州学军中学期中,3,★☆☆)如图所示,∠1的邻补角是()A.∠BOCB.∠BOE 和∠AOFC.∠AOFD.∠BOE 和∠AOC3.(2017 湖南邵阳期末 ,11,★☆☆) 如图 , 直线 AB,CD 相交于O,OE 平分∠AOC,∠E OA∶∠AO D=1∶4,则∠E OC等于()A.30°B.36°C.45°D.72°4.(2017 河北廊坊十二中月考,12,★☆☆)如图,剪刀在使用的过程中,随着两个把手之间的夹角(∠DOC)逐渐变大,剪刀刀刃之间的夹角(∠AOB)也相应,理由是.5.(2019 河北石家庄二中期中,17,★★☆)如图,直线AB、CD相交于点O,OE 把∠B O D分成两部分.(1)∠A OD的对顶角为,∠A OE的邻补角为;(2)若∠BO E=28°,且∠A O C∶∠D O E=5∶3,求∠C OE的度数.五年中考全练拓展训练1.(2018 广西贺州中考,5,★☆☆)如图,下列各组角中,互为对顶角的是()A.∠1和∠2B.∠1和∠3C.∠2和∠4D.∠2和∠52.(2015 广西柳州中考,4,★☆☆)如图,图中∠α的度数等于()A.135°B.125°C.115°D.105°3.(2015 吉林中考,10,★☆☆)如图所示的是对顶角量角器, 用它测量角的原理是.4.(2018 河南中考改编,12,★☆☆)如图,直线AB,CD 相交于点O,∠E OB=90°,∠EO D=50°, 则∠B O C的度数为.核心素养全练拓展训练1.古城黄冈旅游资源十分丰富,“桃林春色,柏子秋荫”便是其八景之一.为了实地测量“柏子塔”外墙底部的底角(∠ABC)的大小,张扬同学设计了两种测量方案:方案1:作AB 的延长线,量出∠C B D的度数,便知∠A B C的度数;方案2:作AB 的延长线,C B的延长线,量出∠D B E的度数,便知∠A BC的度数.同学们,你能解释他这样做的道理吗?2.已知∠A OB与∠BOC互补,且两个角有公共顶点和一条公共边,∠A O B=3∠BO C,求这两个角的平分线夹角的度数.基础闯关全练拓展训练1.答案 D A、B 中的∠1 与∠2都没有公共顶点,所以不互为邻补角;C 中∠1与∠2虽然有一条公共边,但它们的另一边不互为反向延长线,因此它们也不互为邻补角;只有D 中的∠1 与∠2符合邻补角的定义,故选D.2.答案D互为对顶角的两个角有公共顶点,且一个角的两边分别是另一个角两边的反向延长线.满足条件的只有D.3.答案 A 根据对顶角的定义判断,∠1的对顶角为∠AOB,故选A.4.解析由∠A OC 与∠C OE 互为邻补角可知,∠A OC+∠COE=180°.因为OB 平分∠AOC,O D平分∠COE,∠B O D=∠COB+∠C O D,所以∠BO D=12(∠AOC+∠C OE)=12×180°=90°.5.解析设∠A O C=x°,则∠BOC=2x°+30°.依题意得x+2x+30=180,解得x=50.所以∠BOD=∠A O C=50°.6.解析因为直线AB,CD 交于点O,所以∠B O D与∠A OC互为对顶角,所以∠B O D=∠AO C=30°. 因为∠B O D=∠DOE,所以∠B O E=∠BOD+∠D O E=2∠BO D=60°,所以∠AOE=180°-∠BOE=180°-60°=120°.因为OF 平分∠AOE,所以∠E O F=12∠AOE=60°.能力提升全练拓展训练1.答案D邻补角既包含数量关系,又包含位置关系,而补角仅包含数量关系.2.答案(1)∠BOC;∠DOF(2)∠A O D和∠BO C;∠E O A和∠BOF解析根据对顶角和邻补角的定义解答.3.解析由对顶角相等,得∠2=∠3=25°.因为OC 平分∠A OB,所以∠AOB=2∠2=50°.又因为∠B OE 与∠A OB 互为邻补角,所以∠BOE=180°-∠AOB=180°-50°=130°.4.解析(1)因为∠A OC=65°,所以∠B OD=∠AO C=65°.又因为∠B O E+∠BOD+∠D O F=180°,所以∠BOE=180°-65°-50°=65°.(2)因为∠A OF=∠BO E=65°,且∠A OC=65°, 所以∠AOF=∠A O C,所以射线OA 是∠C OF的平分线.5.解析因为OC 平分∠E O G,所以∠E O C=∠GOC.因为∠FOE=∠A O G,所以∠F OE+∠E OC=∠AO G+∠G OC,即∠FOC=∠A O C.又因为AB、CD相交于点O,所以∠A O C与∠B O D是对顶角,由对顶角相等,可得∠AOC=∠B O D,所以∠FOC=∠B O D.因为∠BOD=56°,所以∠F O C=56°.三年模拟全练拓展训练1.答案B根据对顶角的定义可知,有对顶角的是B.故选B.2.答案B∠1 是直线AB、EF 相交于点O 形成的角,所以它的邻补角与直线CD 无关,可知∠1的邻补角是∠B OE 和∠AOF.故选B.3.答案A设∠EO A=x,∵OE平分∠AO C,∴∠EO C=x,∵∠E O A∶∠AO D=1∶4,∴∠AOD=4x,∵∠C O A+∠AOD=180°,∴x+x+4x=180°,解得 x=30°.故∠E O C的度数是30°.4.答案变大;对顶角相等解析∵对顶角相等,∴对顶角中两个角的大小变化一致,又∵∠D O C与∠AOB是对顶角,∴ 随着两个把手之间的夹角(∠DOC)逐渐变大,剪刀刀刃之间的夹角(∠A OB)也相应变大.5.解析(1)∠B OC;∠BO E.(2)∵∠AO C=∠B OD,∴∠B O D∶∠D OE=5∶3,设∠B O D=5x,则∠DO E=3x, 则∠B O E=∠BOD-∠D O E=5x-3x=2x,∵∠B O E=28°,∴2x=28°,∴x=14°,∴∠D O E=3x=3×14°=42°,∵∠D OE+∠COE=180°,∴∠C O E=180°-∠D O E=180°-42°=138°.五年中考全练拓展训练1.答案A互为对顶角的是∠1和∠2.故选A.2. 答案A题图中∠α与45°角是邻补角,根据邻补角互补,得出∠α的度数为180°-45°=135°.3.答案对顶角相等4.答案140°解析∵∠EOB=90°,∠E O D=50°,∴∠D O B=90°-50°=40°,∴∠C O B=180°-∠D O B=180°-40°=140°.核心素养全练拓展训练1.解析显然,直接测量底角的度数是比较困难的,张扬同学运用转化的思想方法,利用邻补角、对顶角的性质进行迁移.方案1 利用了邻补角的性质,因为∠C B D+∠ABC=180°,即∠A BC=180°-∠C BD,所以,只要量出∠C B D的度数,便可求出∠ABC的度数;方案2 利用了对顶角的性质,因为∠D B E=∠A BC,所以,只要量出∠DBE的度数,便可以知道∠ABC的度数.2.解析分两种情况:若∠A OB 和∠B O C互为邻补角,则其情形如图所示:射线O D,OE分别平分∠A OB 和∠BOC,由一对邻补角的平分线互相垂直可知∠D OE=90°.若∠A OB 和∠B O C只是互为补角但不是邻补角,则其情形如图所示:射线O D,OE分别是∠AOB和∠B O C的平分线, 可设∠BOC=x°,则∠AOB=3x°,可得x+3x=180, 解得x=45.则∠AOB=135°.则∠D O E=1∠AOB-1∠B O C=1×135°-1×45°=45°.2 2 2 2综上可知,所求夹角的度数为90°或45°.。

人教版七年级下册数学第五章第1节《相交线》训练题 (16)(含答案解析)

人教版七年级下册数学第五章第1节《相交线》训练题 (16)(含答案解析)

七年级下册数学第五章第1节《相交线》训练题 (16)一、单选题1.如图所示,下列说法中,错误的是( )A .A ∠与EDC ∠是同位角B .A ∠与C ∠是同旁内角 C .A ∠与ADC ∠是同旁内角D .A ∠与ABF ∠是内错角2.点P 为直线m 外一点,点,,A B C 为直线m 上三点,4,5,2PA cm PB cm PC cm ===,则点到直线m 的距离为( )A .4cmB .5cmC .2cmD .不大于2cm 3.下列图形中,1∠和2∠不是同位角的是( )A .B .C .D .4.如图,直线a ,b 被直线c 所截,那么∠2的同旁内角是( )A .∠2B .∠3C .∠4D .∠55.如图,直线AB ,CD 相交于点O ,下列条件中:①∠AOD =90° ;②∠AOD =∠AOC ;③∠AOC+∠BOC =180°;④∠AOC+∠BOD =180°,能说明AB ⊥CD 的有( )A .1个B .2个C .3个D .4个6.如图,直线AB ,CD 相交于点O ,射线OE 平分AOC ∠,若68BOD ∠=︒,则∠BOE 等于( )A .34°B .112°C .146°D .148°7.下列各图中,∠1与∠2是对顶角的是( )A .B .C .D .8.如图,90BAC ∠=︒,AD BC ⊥于点D ,点C 到AD 的距离是下列哪条线段的长度()A .ACB .BC C .CD D .AD9.O 为直线AB 上一点,OC OD ⊥,若140∠=︒,则2∠=( )A .30°B .40°C .50°D .60°10.如图,直线a ,b 相交,若135∠=︒,则2∠=( )11.在同-平面内,若∠A 与∠B 的两边分别垂直,且∠A 比∠B 的3倍少40°,则∠A 的度数为( )A .20°B .55°C .20°或 125°D .20°或55°12.下列各图中,1∠与2∠互为对顶角的是( )A .B .C .D . 13.下列各图中,∠1 与∠2 是对顶角的是( )A .B .C .D . 14.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM ,若∠CON=55°,则∠AOM 的度数为( )A .35°B .45°C .55°D .25°15.如图,关于图中角与角的位置关系,描述有误..的是( )A .∠1与∠3是对顶角B .∠2与∠5是同位角C .∠3与∠4是内错角D .∠1与∠4是同旁内角16.如图,射线 AB ,DC 交于点O ,射线OM 平分∠AOC ,若∠BOD =80°,则∠COM 的度数为( )A .30°B .40°C .50°D .60°17.如图,连接直线l 外一点P 与直线l 上各点O ,123,,,A A A ,其中PO l ⊥,这些线段PO ,1PA ,2PA ,3PA ,中,最短的线段是( )A .POB .1PAC .2PAD .3PA18.如图,现要从村庄A 修建一条连接公路CD 的最短小路,过点A 作AB CD ⊥于点B ,沿AB 修建公路,则这样做的理由是( )A .垂线段最短B .两点之间,线段最短C .过一点可以作无数条直线D .两点确定一条直线19.如图,∠1和∠2是对顶角的图形有( )个.A .1B .2C .3D .4二、填空题20.如图,128,,AB CD ︒∠=⊥垂足为O , EF 经过点O .则2∠的度数是_____________.21.已知,OA OB ⊥,垂足为点O ,若:2:3AOC AOB ∠∠=,则BOC ∠=___.22.在直线AB 上有一点O ,OC ⊥OD ,∠AOC =30°,则∠BOD 的度数是____.23.如图,直线AB 与CD 相交于点O ,射线OM 是∠AOC 的平分线,如果∠MOC=25°,那么∠BOC=_______.24.如图,有下列3个结论:①能与∠DEF 构成内错角的角的个数是2;②能与∠EFB 构成同位角的角的个数是1;③能与∠C 构成同旁内角的角的个数是4,以上结论正确的是_____.25.如图,直线a ,b 相交于点O ,若12220∠+∠=︒,则3∠=________.26.如图,已知直线AB ,CD 相交于点O ,EO ⊥AB 于O ,若∠1=32°,则∠2=_____°,∠3=_____°,∠4=_____°.三、解答题27.如图,直线AB 与CD 相交于点O ,OE 平分BOD ∠,OF CD ⊥.(1)若54EOF ∠=︒,求AOC ∠的度数;(2)在AOD ∠的内部作射线OG OE ⊥,探究AOG ∠与EOF ∠之间有怎样的关系?并说明理由.的度数.29.如图,两直线,AB CD 相交于点O ,OE 平分BOD ∠,如果70AOC ∠=︒.(1)求COE ∠;(2)若OF OE ⊥,求COF ∠.30.如图,直线,AB CD 相交于点,O OD 平分,O BOE F ∠平分AOE ∠()1若58,122BOE AOE ︒︒∠=∠=,判断OF 与OD 的位置关系,并进行证明.()2若:1:5,AOC AOD ∠∠=求EOF ∠的度数.【答案与解析】1.B【解析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.解:A.∠A与∠EDC是同位角,本选项正确;B.∠A与∠C不是同旁内角,本选项错误;C.∠A与∠ADC是同旁内角,本选项正确;D.∠A与∠ABF是内错角,本选项正确;故选:B.本题主要考查了同位角、内错角和同旁内角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.2.D【解析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.解:当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选:D.本题考查了点到直线的距离,利用了垂线段最短的性质,熟悉相关性质是解题的关键.3.C【解析】在截线的同侧,并且在被截线的同一方的两个角是同位角.解:选项A、B、D中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;选项C中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:C.本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.4.C【解析】根据同旁内角的概念判断即可.∠是一对同旁内角,根据同旁内角的概念可知,2∠和4∠,∴∠2的同旁内角是4故选:C.本题主要考查同旁内角,掌握同旁内角的概念和形如字母“U”是解题的关键.5.C【解析】根据垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直进行判定即可.解:①∠AOD=90°,可以得出AB⊥CD;②∵∠AOD=∠AOC,∠AOC+∠AOD=180°,∴∠AOD=90°,∴AB⊥CD:③∠AOC+∠BOC=180°,不能得到AB⊥CD;④∵∠AOC+∠BOD=180°,∠AOC=∠BOD,∴∠AOC=90°,∴AB⊥CD;故能说明AB⊥CD的有①②④共3个.故选:C.此题主要考查了垂直定义,关键是通过条件计算出其中一个角为90°.6.C【解析】根据根据对顶角相等,∠AOC=∠BOD=68°,利用角平分线的性质求出∠EOC,再根据邻补角求出∠BOC,利用角的和,即可解答.解:根据对顶角相等,得:∠AOC=∠BOD=68°,∵射线OE平分∠AOC,∴∠EOC=12∠AOC=34°,∠BOC=180°−∠BOD=112°,∴∠BOE=∠BOC+∠EOC=112°+34°=146°,故选:C.本题考查对顶角和邻补角以及角平分线的定义,解决本题的关键是熟记对顶角和邻补角的定义.7.C【解析】根据对顶角的定义解答.角的两边都互为反向延长线的两个角是对顶角,所以是对顶角的是C,故选:C.此题考查对顶角的定义,正确理解定义,掌握对顶角的两个角的位置特点是解题的关键.8.C【解析】根据点到直线的距离定义判断可得;∵AD BC⊥,∴CD AD⊥,∴点C到AD的距离是线段CD的长度.故答案选C.本题主要考查了点到直线的距离知识点,准确判断是解题的关键.9.C【解析】首先根据垂线的定义可知:∠COD=90°,从而可得到∠1+∠2=90°,由∠1=40°,即可得出结果.解:∵OC⊥OD,∴∠COD=90°,∵∠1=40°,∴∠2=180°-∠COD-∠1=180°-90°-40°=50°.故选:C.本题主要考查的是垂线的定义、角的互余关系;熟练掌握垂线的定义是解决问题的关键.10.C【解析】根据邻补角的定义解答即可.∠=︒,解:∵135∴∠2=180°-∠1=180°-35°=145°.故选:C.本题考查了邻补角的定义,属于基本题型,明确∠1与∠2是一对邻补角是解此题的关键.11.C【解析】因为两个角的两边分别垂直,则这两个角相等或互补,又因∠A比∠B的3倍少40°,所以它们互补,可设∠B是x度,利用方程即可解决问题.解:设∠B是x度,根据题意,得①两个角相等时,如图1:∠B=∠A=x°,x=3x-40解得,x=20,故∠A=20°,②两个角互补时,如图2:x+3x-40=180,所以x=55,3×55°-40°=125°故∠A的度数为:20°或125°.故选:C.此题主要考查了考查了垂线,本题需仔细分析题意,利用方程即可解决问题.关键是得到∠A与∠B 互补.12.B。

人教版七年级数学下册第五章《5.1相交线》同步测试题及答案解析

人教版七年级数学下册第五章《5.1相交线》同步测试题及答案解析

第1页共8页七年级数学下册《相交线》同步测试卷考试范围:第五章第一节《相交线》;考试时间:100分钟;姓名班级考号评卷人得分一、选择题1.如图,已知直线a ,b 被直线c 所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30° B.60° C.70° D.150°3.如图,直线AB ,CD 相交于点O ,且∠AOD +∠BOC =236°,则∠AOC =()A.144°B.124°C.72°D.62°4.如图,AB ⊥b ,DC ⊥b ,CA ⊥a,ED ⊥b ,则图中其长度能表示点到直线的距离的线段有()A.4条B.6条C.7条D.8条5.如图,直线l1与l2相交于点O,OM⊥l1,若∠α=44°,则∠β等于()A.56°B.46°C.45°D.44°6.如图,在所标识的角中,互为同位角的两个角是()A.∠2和∠3B.∠1和∠3C.∠1和∠4D.∠1和∠27.有下列说法:①两条直线互相垂直,则所成的任意相邻两角均相等;②同一平面内,一条直线不可能与两条相交直线都垂直;③两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直;④直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离.其中正确的有()A.1个B.2个C.3个D.4个8.在下列各图形中,线段PQ的长表示点P到直线MN的距离的是()A.B.C.D.评卷人得分二、填空题第2页共8页第3页共8页9.如图,直线AB 与直线CD 相交于点O ,OE ⊥AB ,若∠AOC =65°,则∠DOE 的度数是________.10.如图,△ABC 中,∠BAC =90°,AD ⊥BC ,则点A 到BC 的距离是线段________的长度,点B 到AC 的距离是线段________的长度,点C 到AB 的距离是线段________的长度.11.如图,∠1=60°,则∠2=________°,∠3=________°.12.如图所示,AC⊥BC,C 为垂足,CD⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC=6,那么点C 到AB 的距离是,点A 到BC 的距离是,点B 到CD 的距离是,A,B 两点间的距离是.13.如图,两条直线相交只有1个交点,.三条直线相交最多有3个交点,四条直线相交最多有6个交点,……,二十条直线相交最多有________个交点.…第4页共8页两条直线三条直线四条直线14.将两块相同的直角三角尺的直角顶点重合为如图所示的位置,若∠AOD=120°,则∠BOC=.评卷人得分三、解答题15.如图,直线AB ,CD 相交于点O ,OE 平分∠AOC ,∠COF =35°,∠BOD =60°,求∠EOF 的度数.16.如图,当光线从空气中射入水中时,光线的传播方向会发生变化,在物理学中这种现象叫做光的折射,在图中∠1=43°,∠2=27°,问光的传播方向改变了多少度?17.如图所示的是明明自制的对顶角“小仪器”示意图.先将直角三角尺ABC 的AC 边固定且延长AC ;再将另一直角三角尺CDE 的直角顶点与前一个三角尺的直角顶点重合;最后延长DC ,∠PCD 与∠ACF 就是一对对顶角.第5页共8页已知∠1=30°,则∠ACF的度数是多少?18.如图,两直线AB ,CD 相交于点O ,已知OE 平分∠BOD ,且∠AOC:∠AOD =3:7.(1)求∠DOE 的度数;(2)若∠EOF =90°,求∠COF 的度数.19.如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD.(1)图中∠AOF 的余角有________.(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对:①________,②________,③________.(3)(i)如果∠AOD =160°,那么根据________可得∠BOC =________;(ii)如果∠AOD =4∠EOF ,求∠EOF 的度数.第6页共8页20.如图,直线AB,CD 相交于点O,过O 点画射线OE,OF,使OE⊥CD,OD 平分∠BOF.如果∠BOE=50°,求∠AOC,∠EOF 和∠AOF 的度数.评卷人得分四、作图题21.在如图所示的各图形中,用三角板分别画过点C 的AB 的垂线.22.如图所示.(1)过点A 作射线CB 的垂线l;(2)过点A 作线段AC 的垂线m.参考答案-8AADD BCCA9.25°10.AD ;AB ;AC11.60;12012.4.8;6;6.4;1013.19014.60°15.根据对顶角的性质,得∠AOC=∠BOD=60°.因为OE平分∠AOC,所以∠COE=1 2∠AOC=12×60°=30°,所以可得∠EOF=∠EOC+∠COF=30°+35°=65°.16.根据对顶角的性质,得∠BFD=∠1=43°,则∠DFE=∠BFD−∠2=43°−27°=16°,所以光的传播方向改变了16°.17.因为∠PCD=90°−∠1,所以∠PCD=90°−30°=60°.又因为∠PCD=∠ACF,所以可得∠ACF=60°.18.(1)因为两直线AB,CD相交于点O,∠AOC:∠AOD=3:7,所以∠AOC=180°×33+7=54°.所以∠BOD=∠AOC=54°.又因为OE平分∠BOD,所以∠DOE=12∠BOD=12×54°=27°.(2)因为∠EOF=90°,∠DOE=27°,所以∠DOF=∠EOF−∠DOE=63°,所以∠COF=180°−∠DOF=180°−63°=117°.19.(1)∠AOF的余角有∠AOC,∠EOF,∠DOB.(2)答案不唯一,如∠AOF=∠EOD,∠AOC=∠EOF,∠EOF=∠DOB(提示:同角的余角相等).(3)(i)对顶角相等;160°.(ii)因为∠AOC=∠EOF,∠AOD=4∠EOF,且∠AOC+∠AOD=180°,所以∠EOF+4∠EOF=180°,所以∠EOF=36°.20.因为OE⊥CD,所以∠DOE=90°.因为∠BOE=50°,所以∠AOC=180°-90°-50°=40°.因为∠AOC和∠BOD是对顶角,所以∠BOD=40°,因为OD平分∠BOF,所以∠DOF=∠BOD=40°.所以∠EOF=∠EOD+∠DOF=90°+40°=130°,∠AOF=∠AOB-∠BOF=180°-2×40°=100°.第7页共8页第8页共8页21.所画垂线如图所示.22.(1)如图所示,直线l 即为所求;(2)如图所示,直线m 即为所求.。

七年级人教版数学下册第五章【5.1 相交线】同步检测卷有答案

七年级人教版数学下册第五章【5.1 相交线】同步检测卷有答案

第五章【5.1 相交线】同步检测卷一、单选题(共10题;共30分)1.如图所示,∠1和∠2是对顶角的图形有( )A. 1个B. 2个C. 3个D. 4个2.如图,下列说法不正确的是()A. ∠1和∠2是同旁内角B. ∠1和∠3是对顶角C. ∠3和∠4是同位角D. ∠1和∠4是内错角3.如图所示,∠1和∠2是对顶角的是()A. B. C. D.4.下列说法中正确的个数为()①两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直;②两条直线相交成四个角,如果有一个角是直角,那么这两条直线垂直;③一条直线的垂线可以画无数条;④在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.A. 1B. 2C. 3D. 45.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A. 75°B. 15°C. 105°D. 165°6.如图所示,下列说法错误的是()A. ∠A和∠B是同旁内角B. ∠A和∠3是内错角C. ∠1和∠3是内错角D. ∠C和∠3是同位角7.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A. 30°B. 34°C. 45°D. 56°8.在下列语句中,正确的是().A. 在平面上,一条直线只有一条垂线;B. 过直线上一点的直线只有一条;C. 过直线上一点且垂直于这条直线的直线有且只有一条;D. 垂线段就是点到直线的距离9.如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共10题;共30分)11.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=________12.如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=________.13.如图,∠1和∠2是________角,∠2和∠3 是________角。

数学七年级下册 5.1《相交线》同步练习(含答案)

数学七年级下册 5.1《相交线》同步练习(含答案)

人教版数学七年级下册第五章第一节相交线一、单选题1.如图,直线a,b相交于点O,∠1=60°,则∠2=()A. 120°B. 60°C. 30°D. 15°2.如图,P是直线l外一点,从点P向直线l引PA,PB,PC,PD几条线段,其中只有PB与l垂直,这几条线段中长度最短的是()A. PAB. PBC. PCD. PD3.下列图形中线段PQ的长度表示点P到直线a的距离的是()A. B. C. D.4.如图所示,直线a∥b.AC⊥AB.AC交直线b于点C.∠1=65°.则∠2的度数是( )A. 65°B. 50°C. 35°D. 25°5.如图,点A、C、B在同一直线上,DC⊥EC,若∠BCD=40°,则∠ACE的度数是()A. 30°B. 40°C. 50°D. 60°6.下列命题中,是真命题的是()A. 同位角相等B. 相等的角是对顶角C. 邻补角一定互补D. 有且只有一条直线与已知直线垂直7.若线段AM,AN分别是ΔABC边上的高线和中线,则()A. AM>ANB. AM≥ANC. AM<AND. AM≤AN8.如图,射线AB,AC被射线DE所截,图中的∠1与∠2是()A. 内错角B. 对顶角C. 同位角D. 同旁内角9.如图,直线AB,CD相交于点O,EO⊥AB,若∠AOC=24°,则∠DOE的度数是()A. 24°B. 54°C. 66°D. 76°10.如图,若村庄A要从河流l引水入村,则沿着垂线段AB铺设水管最节省材料,其依据是( )A. 两点之间,线段最短B. 垂线段最短C. 两点确定一条直线D. 在同一平面内,经过一点有并且只有一条直线与已知直线垂直二、填空题11.如图所示,其中共有________对对顶角.12.如图,AB⊥l1,AC⊥l2,若AB=4,BC=3,AC=5,则点A到直线l1的距离是。

人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)

人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)

人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)5.1《相交线》同步练习题一、选择题(每小题只有一个正确答案)1.如图所示,∠1与∠2不是同位角的是()A. B. C. D.2.在同一平面内,下列说法中,错误的是()A.过两点有且只有一条直线B.过一点有无数条直线与已知直线平行C.过直线外一点有且只有一条直线与已知直线平行D.过一点有且只有一条直线与已知直线垂直3.已知:OA⊥OC,∠AOB∶∠AOC=2∶3,则∠BOC的度数为().A.30°B.60°C.150°D.30°或150°4.如图,点A到线段BC所在直线的距离是线段()A.AC的长度B.AD的长度C.AE的长度D.AB的长度5.如图所示,下列说法错误的是()A.∠1和∠3是同位角B.∠1和∠5是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角6.两条直线相交所构成的四个角中:①有三个角都相等;②有一对对顶角互补;③有一个角是直角;④有一对邻补角相等.其中能判定这两条直线垂直的有()A.1个B.2个C.3个D.4个7.平面上三条直线两两相交最多能构成对顶角的对数是().A.7B.6C.5D.4二、填空题8.如图,直线a与b相交于点O,直线c⊥b,且垂足为O,若∠1=35°,则∠2=_____.1/69.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是_______10.两条直线相交所成的四个角中,有两个角分别是(2x-10)°和(110-x)°,则x=__________.11.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p、q 分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.12.看图填空:(1)∠1和∠3是直线__________被直线__________所截得的__________;(2)∠1和∠4是直线__________被直线__________所截得的__________;(3)∠B和∠2是直线__________被直线__________所截得的__________;(4)∠B和∠4是直线__________被直线__________所截得的__________.三、解答题13.如图,直线AB,CD相交于点O,∠BOE=90°,OF平分∠AOD,∠COE=20°,求∠BOD与∠DOF的度数.人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)14.在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a∥b∥c,如图(1)所示.乙:同一平面内三条直线交点个数只有1个,因为a,b,c交于同一点O,如图(2)所示.以上说法谁对谁错?为什么?15.已知,如图,直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠AOC和∠BOD的度数.3/616.探究题:(1)三条直线相交,最少有个交点;最多有个交点,画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有个交点;最多有个交点,画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n条直线相交,最少有个交点;最多有个交点,对顶角有对,邻补角有对.﹣12对,邻补角有24对;(3)1,n(n-1)人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)参考答案1.B2.B3.D4.B5.B6.D7.B8.55°9.垂线段最短10.40或8011.4.12.解析:根据同旁内角、同位角及内错角的概念可得:(1)∠1和∠3是直线AB、BC被直线A C所截得的同旁内角;(2)∠1和∠4是直线AB,BC被直线AC所截得的同位角;(3)∠B和∠2是直线AB,AC被直线BC所截得的同位角;(4)∠B和∠4是直线AC,BC被直线AB所截得的内错角.13.∠BOD=70°,∠DOF=55°解:∵∠COE=20°,∠BOE=90°,∴∠BOD=180°﹣20°﹣90°=70°,∴∠AOD═180°70°=110°,∵OF平分∠AOD,∴∠DOF=∠AOD=55°.∴∠BOD=70°,∠DOF=55°.14.甲,乙说法都不对,各自少了三种情况,具体见解析.解析:甲、乙说法都不对,都少了三种情况.a∥b,c与a,b相交如图(1);a,b,c两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况.15.∠AOC=22°,∠BOD=22°.解析:∵∠COE=90°,∠COF=34°,∴∠EOF=∠COE﹣∠COF=56°,∵OF是∠AOE的平分线,∴∠AOE=2∠EOF=112°,∴∠AOC=112°﹣90°=22°,∵∠BOD和∠AOC是对顶角,∴∠BOD=22°.16.(1)1,3,画图见解析,对顶角有6对,邻补角有12对;(2)1,6,画图见解析,对顶角有2,n(n-1),2n(n-1).分析:当直线同交于一点时,只有一个交点;当直线两两相交,且不过同一点时,交点个数1/6最多;根据对顶角与邻补角的定义找出即可.(1)三条直线相交,最少有1个交点,最多有3个交点,如图:对顶角:6对,邻补角:12对;(2)四条直线相交,最少有1个交点,最多有6个交点,如图:对顶角:12对,邻补角:24对;(3)n条直线相交,最少有1个交点,最多有邻补角有2n(n﹣1)对.n(n-1)2个交点,对顶角有n(n﹣1)对,故答案为:(1)1,3;(2)1,6;(3)1,n(n-1)2,n(n﹣1),2n(n﹣1).。

人教版七年级数学下册第五章5.1:相交线 同步训练(含答案)

人教版七年级数学下册第五章5.1:相交线 同步训练(含答案)

人教版七年级下册第五章5.1相交线同步训练一、单选题1.下列结论中:①若a=b ;①在同一平面内,若a①b ,b//c ,则a①c ;①直线外一点到直线的垂线段叫点到直线的距离;-2|=2( ) A .1个 B .2个 C .3个 D .4个 2.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线l 1,l 2的距离,则称(p,q)为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有( )个.A .1个B .2个C .3个D .4个 3.如图,直线AB 和CD 相交于点O ,100AOD ∠=︒,则AOC ∠的度数为( )A .120︒B .100︒C .90︒D .80︒ 4.如图,点P 是直线a 外一点,PB①a ,点A ,B ,C ,D 都在直线a 上,下列线段中最短的是( )A .PAB .PBC .PCD .PD 5.如图,直线AB 与直线CD 相交于点O ,OE①AB ,垂足为O ,①EOD=30°,则①BOC=( )A .150°B .140°C .130°D .120° 6.如图所示,下列说法不正确的是( )A .①1和①2是同旁内角B .①1和①3是对顶角C .①3和①4是同位角D .①1和①4是内错角7.过点B 画线段AC 所在直线的垂线段,其中正确的是( )A .B .C .D .8.如图,直线AB 、CD 相交于点O ,90EOD ∠=︒.下列说法不正确的是()A .AOD BOC ∠=∠B .AOC AOE ∠=∠C .90AOE BOD ∠+∠=︒ D .180AOD BOD ∠+∠=︒9.如图,点P 是直线a 外的一点,点、、A B C 在直线a 上,且PB a ⊥,垂足是B ,PA PC ⊥,则下列不正确的语句是( )A .线段PB 的长是点P 到直线a 的距离B .PA PB PC 、、三条线段中,PB 最短C .线段CP 的长是点C 到直线PA 的距离D .线段AC 的长是点A 到直线PC 的距离10.如图,下列各角中,是对顶角的一组是( )A .①1和①2B .①1和①3C .①2和①4D .①3和①4 11.如图所示,下列说法正确的是( )A .①1和①2是内错角B .①1和①5是同位角C .①1和①2是同旁内角D .①1和①4是内错角12.如图,直线,AB CD 相交于点O ,已知40AOC ∠=︒,则BOD ∠的度数为()A .20︒B .40︒C .50︒D .140︒ 13.如图,直线,AB CD 被直线EF 所截,则1∠的同旁内角是( )A .2∠B .3∠C .4∠D .5∠ 14.如图,直线b 、c 被直线a 所截,则1∠与2∠是( )A .内错角B .同位角C .同旁内角D .对顶角 15.点P 为MN 直线外一点,点,,A B C 为直线MN 上三点,5PA =厘米,4PB =厘米,PC=2厘米,则P 到直线MN 的距离为( )A .4厘米B .2厘米C .小于2厘米D .不大于2厘米16.如图,三角形ABC 中,①C=90°,CD①AB ,CD <AC 的理由是( )A .两点之间,线段最短B .同一平面,过一点有且只有一条直线与已知直线垂直C .垂线段最短D .直线外一点到直线上的点的距离中,垂线最短17.平面上五条不同的直线两两相交,最多能构成的对顶角的对数是( ) A .5对 B .10对 C .20对 D .40对 18.如图, ,, 5, 3AD BD BC CD AB BC ⊥⊥==,则BD 的长度可能是( )A .3B .5C .3或5D .4.5 19.如图,把小河里的水引到田地A 处就作AB①l ,垂足为B ,沿AB 挖水沟,水沟最短,理由是( )A .垂线段最短B .两点确定一条直线C .点到直线的距离D .两点之间线段最短 20.如图,下列说法正确的是( )A.图中没有同位角、内错角、同旁内角B.图中没有同位角和内错角,但是有一对同旁内角C.图中没有内错角和同旁内角但有三对同位角D.图中没有同位角和内错角,但有三对同旁内角21.下列语句正确的是()A.两条直线被第三条直线所截,同旁内角互补B.互为邻补角的两个角的平分线互相垂直C.相等的角是平行线的内错角D.从直线外一点作这条直线的垂直线段叫点到直线的距离22.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点23.如图,O是直线AB上一点,OC平分①DOB,①COD=55°45′,则①AOD=()A.68°30′B.69°30′C.68°38′D.69°38′24.如图,有三条公路,其中AC与AB垂直,小明和小亮分别沿AC、BC同时从A、B出发骑车到C城,若他们同时到达,则下列判断中正确的是()A .小明骑车的速度快B .小亮骑车的速度快C .两人一样快D .因为不知道公路的长度,所以无法判断他们速度的快慢二、填空题25.如图,直线AB 、CD 相交于点O ,OE AB ⊥于点O ,且50COE ∠=︒,则BOD ∠=________.26.如图所示,计划把河水引到水池A 中,先作AB ①CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是________________________________。

人教版七年级数学下册第五章《相交线与平行线》同步练习(含答案)

人教版七年级数学下册第五章《相交线与平行线》同步练习(含答案)

第五章 相交线与平行线5.1 相交线5.1.1 相交线基础题知识点1 认识邻补角和对顶角(1)有一条公共边,另一边互为反向延长线,具有这种位置关系的两个角互为邻补角.(2)有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角互为对顶角.1.(2018·贺州)如图,下列各组角中,互为对顶角的是( A )A.∠1和∠2B.∠1和∠3C.∠2和∠4D.∠2和∠52.下面四个图形中,∠1与∠2是邻补角的是( D )3.如图,AB与CD相交所成的四个角中,∠1的邻补角是∠2,∠4,∠1的对顶角是∠3.知识点2 邻补角和对顶角的性质(1)互为邻补角的两个角相加等于180°.(2)对顶角相等.4.(2017·河池)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( C )A.60° B.90° C.120° D.150°5.(2018·钦州期末)如图,已知∠1=120°,则∠2的度数是( A )A.120°B.90°C.60°D.30°6.(教材P9复习题T9变式)如图,测角器测得工件(圆台)的角度是40度,其测量角的原理是对顶角相等.7.在括号内填写依据:如图,因为直线a ,b 相交于点O ,所以∠1+∠3=180°(邻补角互补),∠1=∠2(对顶角相等).8.如图,直线AB ,CD 相交于点O ,∠EOC=70°,OA 平分∠EOC,求∠BOD 的度数.解:因为OA 平分∠EOC,∠EOC=70°,所以∠AOC=∠EOC=35°.12所以∠BOD=∠AOC=35°.易错点1 对对顶角的性质理解不透彻而判断失误9.下列说法正确的有( B )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A .1个B .2个C .3个D .4个易错点2 未给出图形,考虑不全而致错10.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =40或80.中档题11.如图,三条直线l 1,l 2,l 3相交于一点,则∠1+∠2+∠3=( C )A .90°B .120°C .180°D .360°12.如图,直线AB 和CD 相交于点O.若∠AOD 与∠BOC 的和为236°,则∠AOC 的度数为( A )A.62° B.118°C.72° D.59°13.(2018·揭阳揭西县期末)如图所示,直线AB与CD相交于点O,OE平分∠BOC.若∠BOE=60°,则∠AOC的度数为( A )A.60° B.30° C.120° D.45°14.如图,已知直线AB,CD,EF相交于点O.(1)∠AOD的对顶角是∠BOC,∠EOC的对顶角是∠DOF;(2)∠AOC的邻补角是∠AOD和∠BOC,∠EOB的邻补角是∠EOA和∠BOF.15.如图,直线a,b,c两两相交,∠1=80°,∠2=2∠3,则∠4=140°.16.如图,直线a,b相交于点O,已知3∠1-∠2=100°,则∠3=130°.17.如图,直线AB,CD相交于点O,∠AOE=∠BOE,OB平分∠DOF.若∠DOE=50°,求∠DOF的度数.解:因为∠AOE=∠BOE,且∠AOE+∠BOE=180°,所以∠AOE=∠BOE=90°.因为∠DOE=50°,所以∠DOB=∠BOE-∠DOE=40°.因为OB 平分∠DOF,所以∠DOF=2∠DOB=80°.18.如图,l 1,l 2,l 3交于点O ,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.解:设∠1=∠2=x°,则∠3=8x°.由∠1+∠2+∠3=180°,得10x =180.解得x =18.所以∠1=∠2=18°.所以∠4=∠1+∠2=36°.综合题19.探究题:(1)三条直线相交,最少有1个交点,最多有3个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有1个交点,最多有6个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n 条直线相交,最少有1个交点,最多有个交点,对顶角有n(n -1)对,邻补角有n (n -1)22n(n -1)对.解:(1)图略,对顶角有6对,邻补角有12对.(2)图略,对顶角有12对,邻补角有24对.5.1.2 垂线基础题知识点1 认识垂直如果两条直线相交所成的四个角中的任意一个角等于90°,那么这两条直线互相垂直.其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.1.如图,OA⊥OB,若∠1=55°,则∠2=( A )A.35° B.40°C.45° D.60°2.(2018·来宾期末)如图,AB⊥CD于点O,EF为经过点O的一条直线,那么∠1与∠2的关系是( C )A.互为对顶角B.互补C.互余D.相等3.如图,已知直线AB,CD,EF相交于点O,AB⊥CD,∠DOE=127°,求∠AOF的大小.解:因为AB⊥CD,所以∠DOB=90°.又因为∠DOE=127°,所以∠BOE=∠DOE-∠DOB=127°-90°=37°.所以∠AOF=∠BOE=37°.知识点2 画垂线4.下列各图中,过直线l外一点P画l的垂线CD,三角板操作正确的是( D )知识点3 垂线的性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.5.(2017·柳州)如图,经过直线l外一点A画l的垂线,能画出( A )A.1条B.2条C.3条D.4条6.(2018·佛山顺德区期末)如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是( C )A.两点之间线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线7.下面可以得到在如图所示的直角三角形中斜边最长的原理是( D )A.两点确定一条直线B.两点之间线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短8.下列说法正确的有( C )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个知识点4 点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.9.(2017·北京)如图所示,点P到直线l的距离是( B )A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度易错点 未给出图形,考虑不周全致错10.已知OA⊥OC,过点O作射线OB,且∠AOB=30°,则∠BOC的度数为120°或60°.中档题11.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的有( D )A.1个B.2个C.3个D.4个12.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是( C )13.如图所示,下列说法不正确的是( C )A.点B到AC的垂线段是线段AB B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段D.线段BD是点B到AD的垂线段14.(2018·贵港港南区期末)点P是直线l外一点,A,B,C为直线l上的三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线l的距离( C )A.小于2 cm B.等于2 cm C.不大于2 cm D.等于4 cm15.如图,当∠1与∠2满足条件∠1+∠2=90°时,OA⊥OB.16.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为55°.17.如图,已知DO⊥CO,∠1=36°,∠3=36°.(1)求∠2的度数;(2)AO 与BO 垂直吗?说明理由.解:(1)因为DO⊥CO,所以∠DOC=90°.因为∠1=36°,所以∠2=90°-36°=54°.(2)AO⊥BO.理由如下:因为∠3=36°,∠2=54°,所以∠3+∠2=90°.所以AO⊥BO.18.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD,∠AOC∶∠AOD=7∶11.(1)求∠COE 的度数;(2)若OF⊥OE,求∠COF 的度数.解:(1)因为∠AOC∶∠AOD=7∶11,∠AOC+∠AOD=180°,所以∠AOC=70°,∠AOD=110°.所以∠BOD=∠AOC=70°,∠BOC=∠AOD=110°.又因为OE 平分∠BOD,所以∠BOE=∠DOE=∠BOD=35°.12所以∠COE=∠BOC+∠BOE=110°+35°=145°.(2)因为OF⊥OE,所以∠FOE=90°.所以∠FOD=∠FOE-∠DOE=90°-35°=55°.所以∠COF=180°-∠FOD=180°-55°=125°.5.1.3 同位角、内错角、同旁内角基础题知识点 认识同位角、内错角、同旁内角如图,直线AB,CD与EF相交.(1)图中∠1和∠2分别在直线AB,CD的同一方(或上方),并且都在直线EF的同侧(或右侧),具有这样位置关系的一对角叫做同位角;(2)图中∠2和∠8都在直线AB,CD之间,并且分别在直线EF的两侧,具有这样位置关系的一对角叫做内错角;(3)图中∠2和∠7都在直线AB,CD之间,且都在直线EF的同一旁(或右侧),具有这样位置关系的一对角叫做同旁内角.1.(2017·玉林)如图,直线a,b被c所截,则∠1与∠2是( B )A.同位角B.内错角C.同旁内角D.邻补角2.(2017·柳州期末)如图,与∠1是同位角的是( C )A.∠2B.∠3C.∠4D.∠53.如图,与∠1是同旁内角的是( D )A.∠2B.∠3C.∠4D.∠54.(2018·广州)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( B )A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠45.如图,下列说法错误的是( D )A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角6.如图,若∠1=∠2,则在①∠3和∠2;②∠4和∠2;③∠3和∠6;④∠4和∠8中,相等的有( C )A.1对B.2对C.3对D.4对7.看图填空:(1)∠1和∠3是直线AB,BC被直线AC所截得的同旁内角;(2)∠1和∠4是直线AB,BC被直线AC所截得的同位角;(3)∠B和∠2是直线AB,AC被直线BC所截得的同位角;(4)∠B和∠4是直线AC,BC被直线AB所截得的内错角.8.如图,如果∠2=100°,那么∠1的同位角等于80°,∠1的内错角等于80°,∠1的同旁内角等于100°.中档题9.(2018·华南师大附中月考)在下列四个图中,∠1与∠2是同位角的图是( B )图①图②图③图④A.①②B.①③C.②③D.③④10.如图,属于内错角的是( D )A.∠1和∠2B.∠2和∠3C.∠1和∠4D.∠3和∠411.如图,下列说法错误的是( B )A.∠A和∠C是同旁内角B.∠1和∠3是同位角C.∠2和∠3是内错角D.∠3和∠B是同旁内角12.如图,∠ABC与∠EAD是同位角;∠ADB与∠DBC,∠EAD是内错角;∠ABC与∠DAB,∠BCD是同旁内角.13.根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和∠2是同位角;(2)若直线ED,BC被直线AF所截,则∠3和∠4是内错角;(3)∠1和∠3是直线AB,AF被直线ED所截构成的内错角;(4)∠2和∠4是直线AB,AF被直线BC所截构成的同位角.14.根据图形说出下列各对角是什么位置关系?(1)∠1和∠2;(2)∠1和∠7;(3)∠3和∠4;(4)∠4和∠6;(5)∠5和∠7.解:(1)∠1和∠2是同旁内角;(2)∠1和∠7是同位角;(3)∠3和∠4是内错角;(4)∠4和∠6是同旁内角;(5)∠5和∠7是内错角.15.如图,如果内错角∠1与∠5相等,那么与∠1相等的角还有吗?与∠1互补的角有吗?如果有,请写出来,并说明你的理由.解:∠1=∠2,与∠1互补的角有∠3和∠4.理由:因为∠1=∠5,∠5=∠2,所以∠1=∠2.因为∠1=∠5,且∠5与∠3或∠4互补,所以与∠1互补的角有∠3和∠4.综合题16.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有4对,内错角有2对,同旁内角有2对;图1 图2(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有12对,内错角有6对,同旁内角有6对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有2n(n-1)对,内错角有n(n-1)对,同旁内角有n(n-1)对.(用含n的式子表示)5.2 平行线及其判定5.2.1 平行线基础题知识点1 认识平行在同一平面内,两条不相交的直线互相平行.1.下列说法中,正确的是( D )A.平面内,没有公共点的两条线段平行B.平面内,没有公共点的两条射线平行C.没有公共点的两条直线互相平行D.互相平行的两条直线没有公共点2.在同一平面内的两条不重合的直线的位置关系( C )A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直3.在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上.(1)a与b没有公共点,则a与b平行;(2)a与b有且只有一个公共点,则a与b相交;(3)a与b有两个及以上公共点,则a与b重合.4.如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过点C画直线垂直于CD;(2)用符号表示上面①、②中的平行、垂直关系.解:(1)如图所示.(2)EF∥AB,MC⊥CD.知识点2 平行公理及其推论(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行,即:如果a∥b,b∥c,那么a∥c.5.若直线a∥b,b∥c,则a∥c的依据是( D )A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行6.点P,Q都是直线l外的点,下列说法正确的是( D )A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行C.连接PQ,则PQ一定与直线l相交D.过点P只能画一条直线与直线l平行7.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是经过直线外一点,有且只有一条直线与这条直线平行.8.如图,P,Q分别是直线EF外两点.(1)过点P画直线AB∥EF,过点Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?解:(1)如图.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.易错点 对平行线的有关概念及公理理解不清9.(2017·玉林北流市期中)下列说法中,正确的有( A )①过一点有无数条直线与已知直线平行;②经过直线外一点有且只有一条直线与已知直线平行;③如果两条线段不相交,那么它们就平行;④如果两条直线不相交,那么它们就平行.A.1个B.2个C.3个D.4个中档题10.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有( C )A.4组B.5组C.6组D.7组11.如图,因为直线AB,CD相交于点P,AB∥EF,所以CD不平行于EF.理由是经过直线外一点,有且只有一条直线与这条直线平行.12.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必相交.13.(教材P17习题T11变式)观察下图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A1B1∥AB,AA1⊥AB,A1D1⊥C1D1,AD∥BC;(2)AB与B1C1所在的直线不相交,它们不是平行线(填“是”或“不是”).由此可知,在同一平面内,两条不相交的直线才是平行线.14.如图,在∠AOB内有一点P.(1)过点P画l1∥OA;(2)过点P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样的关系.解:(1)(2)如图所示.(3)l1与l2的夹角有两个:∠1,∠2.量得∠1=∠O,∠2+∠O=180°,所以l1与l2的夹角与∠O相等或互补.15.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF为折痕.把长方形ABFE平放在桌面上,另一个面CDEF无论怎么改变位置总有CD∥AB存在,你知道为什么吗?解:因为AB∥EF,CD∥EF,所以CD∥AB.综合题16.利用直尺画图:(1)利用图1中的网格,过点P画直线AB的平行线和垂线;(2)在图2的网格中画一个四边形,满足:①两组对边互相平行;②任意两个顶点都不在一条网格线上;③四个顶点都在格点上.解:(1)如图所示.CD∥AB,PQ⊥AB.(2)如图所示.四边形ABCD是符合条件的四边形.5.2.2 平行线的判定基础题知识点1 同位角相等,两直线平行1.(2017·玉林陆川县期末)如图,给出了过直线外一点画已知直线的平行线的方法,其依据是( A )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等2.(2017·绥化)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( C )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°3.(教材P21例2变式)已知a,b,c为平面内三条不同的直线,若a⊥b,c⊥b,则a与c的位置关系是平行.4.如图,∠3与∠1互余,∠3与∠2互余.试说明:AB∥CD.解:∵∠3与∠1互余,∠3与∠2互余,∴∠1=∠2.∴AB∥CD(同位角相等,两直线平行).知识点2 内错角相等,两直线平行5.(2018·深圳龙岗区一模)如图,能判定AB∥CD的条件是( A )A.∠A=∠ACD B.∠A=∠DCE C.∠B=∠ACB D.∠B=∠ACD6.如图,请在括号内填上正确的理由:∵∠DAC=∠C(已知),∴AD∥BC(内错角相等,两直线平行).7.如图,∠BAD=∠DCB,∠BAC=∠DCA,试说明:AD∥BC.解:∵∠BAD=∠DCB,∠BAC=∠DCA(已知),∴∠BAD-∠BAC=∠DCB-∠DCA(等式的性质),即∠DAC=∠BCA.∴AD∥BC(内错角相等,两直线平行).知识点3 同旁内角互补,两直线平行8.如图,已知∠1=70°,要使AB∥CD,则须具备的另一个条件是( C )A.∠2=70° B.∠2=100°C.∠2=110° D.∠3=110°9.如图,装修工人向墙上钉木条.若∠2=100°,要使木条b与a平行,则∠1的度数等于80°.10.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.解:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD(同旁内角互补,两直线平行).易错点 不能准确识别截线与被截线,从而误判两直线平行11.(教材P36复习题T8(1)变式)(2018·贵港桂平期末)如图,点E在AC的延长线上,有下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠DCE;④∠D=∠DCE;⑤∠A+∠ABD=180°;⑥∠A+∠ACD=180°,其中能判定AB∥CD的是①③⑥.中档题12.(2018·郴州)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是( D )A.∠2=∠4B.∠1+∠4=180° C.∠5=∠4D.∠1=∠313.如图,下列说法错误的是( C )A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c14.(2018·湘潭)如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为答案不唯一,如:∠C=∠CDE.(任意添加一个符合题意的条件即可)15.如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE和BC平行.解:(1)∵∠1=∠B(已知),∴DE∥BC(同位角相等,两直线平行).(2)∵∠1=∠2(已知),∴EF∥AB(内错角相等,两直线平行).(3)∵∠BDE+∠B=180°(已知),∴DE∥BC(同旁内角互补,两直线平行).16.(2018·湛江廉江市期末)完成下面的推理.如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,试说明:AB∥CD.完成推理过程:∵BE 平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE 平分∠BDC(已知),∴∠BDC=2∠β (角平分线的定义).∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换).∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).17.如图,点B 在AC 上,BD⊥BE,∠1+∠C=90°,问射线CF 与BD 平行吗?试用两种方法说明理由.解:CF∥BD.方法一:∵BD⊥BE,∴∠DBE=90°.∴∠1+∠2=90°.∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD(同位角相等,两直线平行).方法二:∵BD⊥BE,∴∠DBE=90°.∵∠1+∠C=90°,∴∠C+∠DBC=∠1+∠DBE+∠C=90°+90°=180°.∴CF∥BD(同旁内角互补,两直线平行).18.如图,直线EF 分别与直线AB ,CD 相交于点P 和点Q ,PG 平分∠APQ,QH 平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.解:PG∥QH,AB∥CD.∵PG 平分∠APQ,QH 平分∠DQP,∴∠1=∠GPQ=∠APQ,∠PQH=∠2=∠PQD.1212又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD.∴PG∥QH,AB∥CD(内错角相等,两直线平行).综合题19.如图,AB⊥BD 于点B ,CD⊥BD 于点D ,∠1+∠2=180°,试问CD 与EF 平行吗?为什么?解:CD∥EF.理由如下:∵AB⊥BD,CD⊥BD,∴∠ABD=∠BDC=90°.∴∠ABD+∠BDC=180°.∴AB∥CD(同旁内角互补,两直线平行).∵∠1+∠2=180°,∴AB∥EF(同旁内角互补,两直线平行).∴CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).周周练(5.1~5.2)(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.邻补角是指( D )A.和为180°的两个角B.有一条公共边且相等的两个角C.有公共顶点且互补的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角2.如图,∠1和∠2是对顶角的是( B )3.如图,直线AB,CD被EF所截,下列说法正确的有( C )①∠3与∠5是内错角;②∠2与∠7是同位角;③∠4与∠5是同旁内角;④图中有4对同位角,2对内错角,2对同旁内角;⑤∠1与∠7是内错角.A.1个B.2个C.3个D.4个4.下列说法错误的是( C )A.两条直线相交,有一个角是直角,则两条直线互相垂直B.若互为对顶角的两角之和为180°,则两直线互相垂直C.两直线相交,所构成的四个角中,若有两个角相等,则两直线互相垂直D.在同一平面上,过点A作直线l的垂线,这样的垂线只有一条5.如图,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是( B )A.26° B.64°C.54° D.以上都不对6.下列说法错误的是( A )A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∥b,b∥c,c∥d,则a∥dD.同一平面内,若一条直线与两平行线中的一条相交,则它也和另一条相交7.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是( D )A.线段AC的长度是点A到BC的距离B.CD与AB互相垂直C.AC与BC互相垂直D.点B到AC的垂线段是线段CA8.(2017·深圳)下列选项中,哪个不可以得到l1∥l2?( C )A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°二、填空题(每小题4分,共24分)9.如图,已知∠1+∠2=100°,则∠3=130°.10.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是153°.11.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是垂线段最短.12.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是同一平面内,过一点有且只有一条直线与已知直线垂直.13.如图,已知∠C=105°,增加一个条件答案不唯一,如∠BEC=75°或∠AEC=105°,使得AB∥CD.14.如图,AB与BC被AD所截得的内错角是∠1和∠3;DE与AC被直线AD所截得的内错角是∠2和∠4;图中∠4的内错角是∠5和∠2.三、解答题(共44分)15.(6分)完成下面的推理过程:如图,CB平分∠ACD,∠1=∠3.试说明:AB∥CD.解:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).16.(6分)如图,直线AO,BO交于点O,过点P作PC⊥AO于点C,PD⊥BO于点D,画出图形.解:作∠ACP=90°,作∠PDB=90°,则直线PC,PD即为所求.17.(6分)如图,已知∠OEB=130°,∠FOD=25°,OF平分∠EOD,试说明:AB∥CD.解:∵OF平分∠EOD,∠FOD=25°,∴∠EOD=2∠FOD=50°.又∵∠OEB=130°,∴∠OEB+∠EOD=180°.∴AB∥CD(同旁内角互补,两直线平行).18.(8分)如图,已知直线l1,l2,l3被直线l所截,∠α=105°,∠β=75°,∠γ=75°,运用已知条件,你能找出哪两条直线是平行的吗?若能,请写出理由.解:l1∥l2∥l3.理由:∵∠1=∠β,∠β=75°,∴∠1=75°.∵∠α=105°,∴∠α+∠1=180°.∴l1∥l2(同旁内角互补,两直线平行).∵∠β=75°,∠γ=75°,∴∠β=∠γ.∴l2∥l3(内错角相等,两直线平行).∴l1∥l2∥l3.19.(8分)如图,AB和CD交于点O,OD平分∠BOF,OE⊥CD于点O,∠AOC=40°,求∠EOF的度数.解:∵AB,CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°.∵OE⊥CD,∴∠EOD=90°.∴∠EOF=∠EOD+∠DOF=130°.20.(10分)如图,要判定AB∥CD,需要哪些条件?根据是什么?解:①若考虑截线AD,则需∠D+∠DAB=180°,根据是同旁内角互补,两直线平行.②若考虑截线AE,则需∠CEA+∠EAB=180°,根据是同旁内角互补,两直线平行或∠DEA=∠EAB,根据是内错角相等,两直线平行.③若考虑截线AC,则需∠DCA=∠CAB,根据是内错角相等,两直线平行.④若考虑截线FC,则需∠DCF+∠AFC=180°,根据是同旁内角互补,两直线平行或∠DCF=∠BFC,根据是内错角相等,两直线平行.⑤若考虑截线BC,则需∠DCB+∠B=180°,根据是同旁内角互补,两直线平行.5.3 平行线的性质5.3.1 平行线的性质基础题知识点1 平行线的性质平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.1.(2018·桂林)如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是( B )A.120°B.60°C.45°D.30°2.(2018·绵阳)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上,如果∠2=44°,那么∠1的度数是( C )A.14° B.15°C.16° D.17°3.如图,在三角形ABC中,∠B=40°,过点C作CD∥AB,∠ACD=65°,则∠ACB的度数为( D )A.60°B.65°C.70°D.75°4.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.5.如图,AB∥CD,∠BAF=115°,则∠ECF的度数为65°.6.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.解:∵EF∥BC,∴∠BAF=180°-∠B=100°(两直线平行,同旁内角互补).∵AC 平分∠BAF,∴∠CAF=∠BAF=50°.12∵EF∥BC,∴∠C=∠CAF=50°(两直线平行,内错角相等).知识点2 平行线性质的应用7.某商品的商标可以抽象为如图所示的三条线段,若AB∥CD,∠EAB=45°,则∠FDC 的度数是( B )A .30°B .45°C .60°D .75°8.一只因损坏而倾斜的椅子,从背后看到的形状如图所示,其中两组对边的平行关系没有发生变化.若∠1=76°,则∠2的度数是( C )A .76°B .86°C .104°D .114°9.如图,在A ,B 两地挖一条笔直的水渠,从A 地测得水渠的走向是北偏西42°,A ,B 两地同时开工,B 地所挖水渠走向应为南偏东42°.10.如图,某次考古发掘出的一块梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.解:∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.易错点 误用平行线的性质11.已知∠1与∠2是同旁内角,若∠1=60°,则∠2的度数是( D )A .60°B .120°C .60°或120°D .不能确定中档题12.(2018·汕头澄海区一模)如图,点P 是∠AOB 的边OA 上一点,PC⊥OB 于点C ,PD∥OB,∠OPC=35°,则∠APD 的度数是( B )A .60°B .55°C .45°D .35°13.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的有( D )A .1个B .2个C .3个D .4个14.(2018·梧州岑溪市期末)如图是一汽车探照灯的纵剖面,从位于O 点的灯泡发出的两束光线OB ,OC 经过灯碗反射以后平行射出.若∠ABO=α,∠DCO=β,则∠BOC 的度数是( A )A .α+βB .180°-α C.(α+β) D .90°+(α+β)1215.(2018·柳州期末)如图,AB∥CD∥EF,则下列四个等式中一定成立的有( A )①∠2+∠3=180°;②∠2=∠3;③∠1+∠3=180°;④∠2+∠3-∠1=180°.A .1个B .2个C .3个D .4个16.(2017·柳州期末)如图,已知AB∥CD,BC∥ED,请你猜想∠B 与∠D 之间具有什么数量关系,并说明理由.解:猜想:∠B+∠D=180°.理由如下:∵AB∥CD,∴∠B=∠C(两直线平行,内错角相等).∵BC∥ED,∴∠C+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠D=180°.17.(2017·南宁马山县期末)如图,CD∥AB,OE 平分∠AOD,OF⊥OE,∠D=50°,求∠BOF 的度数.解:∵CD∥AB,∴∠AOD=180°-∠D=180°-50°=130°.∵OE 平分∠AOD,∴∠EOD=∠AOD=×130°=65°.1212∵OF⊥OE,∴∠DOF=90°-∠EOD=90°-65°=25°.∴∠BOF=180°-∠AOD-∠DOF=180°-130°-25°=25°.综合题18.阅读下列解答过程:如图甲,AB∥CD,探索∠P 与∠A,∠C 之间的关系.解:过点P 作PE∥AB.∵AB∥CD,∴PE∥AB∥CD(平行于同一条直线的两条直线互相平行).∴∠1+∠A=180°(两直线平行,同旁内角互补),∠2+∠C=180°(两直线平行,同旁内角互补).∴∠1+∠A+∠2+∠C=360°.又∵∠APC=∠1+∠2,∴∠APC+∠A+∠C=360°.如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P 与∠A,∠C 之间的关系.解:如图乙,过点P 作PE∥AB.∵AB∥CD(已知),∴PE∥AB∥CD(平行于同一条直线的两条直线平行).∴∠A=∠EPA,∠EPC=∠C(两直线平行,内错角相等).∵∠APC=∠EPA+∠EPC,∴∠APC=∠A+∠C(等量代换).如图丙,过点P 作PF∥AB.∴∠FPA=∠A(两直线平行,内错角相等).∵AB∥CD(已知),∴PF∥CD(平行于同一条直线的两条直线平行).∴∠FPC=∠C(两直线平行,内错角相等).∵∠FPC-∠FPA=∠APC,∴∠C-∠A=∠APC(等量代换).5.3.2 命题、定理、证明基础题知识点1 命题的定义及结构判断一件事情的语句叫做命题,命题常可以写成“如果……那么……”的形式,“如果”后面接的部分是题设,“那么”后面接的部分是结论.1.(2018·玉林陆川县期末)下列语句不是命题的是( A )A.画两条相交直线B.互补的两个角之和是180°C.两点之间线段最短D.相等的两个角是对顶角2.把“垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式是如果两条直线垂直于同一条直线,那么这两条直线平行.3.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.解:(1)如果在平面上有两个点,那么过这两个点确定一条直线.题设:在平面上有两个点;结论:过这两个点确定一条直线.(2)如果两个角是同一个角的补角,那么它们相等.题设:两个角是同一个角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.知识点2 真假命题及其证明(1)题设成立,并且结论一定成立的命题叫做真命题;题设成立,不能保证结论一定成立的命题叫做假命题.(2)经过推理证实为正确并可以作为推理的依据的真命题叫做定理.很多情况下,一个命题的正确性需要经过推理,才能做出判断,这个推理的过程叫做证明.4.(2017·柳州期末)下列命题是真命题的是( C )A.同位角相等B.有且只有一条直线与已知直线垂直C.垂线段最短D.直线外一点到这条直线的垂线段,叫做点到直线的距离5.下列命题中,是假命题的是( A )A.相等的角是对顶角B.若|x|=3,则x=±3C.同一平面内,两条直线的位置关系只有相交和平行两种D.两点确定一条直线6.如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD∥AB.证明:∵BD 平分∠ABC,∠ABD=55°,∴∠ABC=2∠ABD=110°.又∵∠BCD=70°,∴∠ABC+∠BCD=180°.∴CD∥AB(同旁内角互补,两直线平行).7.如图,如果∠1=∠2,那么AB∥CD,这个命题是真命题吗?若不是,请你再添加一个条件,使该命题成为真命题,并说明理由.解:假命题,添加BE∥DF.∵BE∥DF,∴∠EBD=∠FDN(两直线平行,同位角相等).∵∠1=∠2,∴∠EBD-∠1=∠FDN-∠2.∴∠ABD=∠CDN.∴AB∥CD(同位角相等,两直线平行).中档题8.(2017·无锡)对于命题“若a 2>b 2,则a>b.”下面四组关于a ,b 的值中,能说明这个命题是假命题的是( B )A .a =3,b =2B .a =-3,b =2C .a =3,b =-1D .a =-1,b =39.下列命题是假命题的是( B )A .锐角小于它的补角B .内错角相等C .两点之间线段最短D .同旁内角互补,两直线平行10.下列说法正确的是( C )A .“作线段CD =AB”是一个命题B .过一点作已知直线的平行线有一条且只有一条C .命题“若x =1,则x 2=1”是真命题D .命题“若>1,则a>b”是真命题a b 11.“直角都相等”的题设是两个角是直角,结论是这两个角相等.12.对于下列假命题,各举一个反例写在横线上.(1)“如果ac =bc ,那么a =b”是一个假命题.反例:3×0=(-2)×0;(2)“如果a 2=b 2,则a =b”是一个假命题.反例:32=(-3)2.13.下列命题中:①若|a|=b ,则a =b ;②若直线l 1∥l 2,l 1∥l 3,则l 2∥l 3;③同角的补角相等;④同位角相等,是真命题的有②③(填序号).14.把下列命题写成“如果……那么……”的形式,并判断其真假.(1)等角的补角相等;(2)不相等的角不是对顶角;(3)相等的角是内错角.解:(1)如果两个角是两个相等的角的补角,那么这两个角相等.是真命题.(2)如果两个角不相等,那么这两个角不是对顶角.是真命题.。

【精品】人教版七年级下册第五章《相交线与平行线》同步练习(有答案)

【精品】人教版七年级下册第五章《相交线与平行线》同步练习(有答案)

第五章相交线与平行线5.1 相交线5.1.1 相交线基础题知识点1 认识邻补角和对顶角(1)有一条公共边,另一边互为反向延长线,具有这种位置关系的两个角互为邻补角.(2)有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角互为对顶角.1.(2018·贺州)如图,下列各组角中,互为对顶角的是( A )A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠52.下面四个图形中,∠1与∠2是邻补角的是( D )3.如图,AB与CD相交所成的四个角中,∠1的邻补角是∠2,∠4,∠1的对顶角是∠3.知识点2 邻补角和对顶角的性质(1)互为邻补角的两个角相加等于180°.(2)对顶角相等.4.(2017·河池)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( C )A.60°B.90°C.120°D.150°5.(2018·钦州期末)如图,已知∠1=120°,则∠2的度数是( A )A .120°B .90°C .60°D .30°6.(教材P9复习题T9变式)如图,测角器测得工件(圆台)的角度是40度,其测量角的原理是对顶角相等.7.在括号内填写依据:如图,因为直线a ,b 相交于点O , 所以∠1+∠3=180°(邻补角互补), ∠1=∠2(对顶角相等).8.如图,直线AB ,CD 相交于点O ,∠EOC =70°,OA 平分∠EOC ,求∠BOD 的度数.解:因为OA 平分∠EOC ,∠EOC =70°, 所以∠AOC =12∠EOC =35°.所以∠BOD =∠AOC =35°.易错点1 对对顶角的性质理解不透彻而判断失误 9.下列说法正确的有( B )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A .1个B .2个C .3个D .4个易错点2 未给出图形,考虑不全而致错10.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =40或80. 中档题11.如图,三条直线l 1,l 2,l 3相交于一点,则∠1+∠2+∠3=( C )A.90°B.120°C.180°D.360°12.如图,直线AB和CD相交于点O.若∠AOD与∠BOC的和为236°,则∠AOC的度数为( A )A.62°B.118°C.72°D.59°13.(2018·揭阳揭西县期末)如图所示,直线AB与CD相交于点O,OE平分∠BOC.若∠BOE=60°,则∠AOC的度数为( A )A.60°B.30°C.120°D.45°14.如图,已知直线AB,CD,EF相交于点O.(1)∠AOD的对顶角是∠BOC,∠EOC的对顶角是∠DOF;(2)∠AOC的邻补角是∠AOD和∠BOC,∠EOB的邻补角是∠EOA和∠BOF.15.如图,直线a,b,c两两相交,∠1=80°,∠2=2∠3,则∠4=140°.16.如图,直线a,b相交于点O,已知3∠1-∠2=100°,则∠3=130°.17.如图,直线AB,CD相交于点O,∠AOE=∠BOE,OB平分∠DOF.若∠DOE=50°,求∠DOF的度数.解:因为∠AOE =∠BOE ,且∠AOE +∠BOE =180°, 所以∠AOE =∠BOE =90°. 因为∠DOE =50°,所以∠DOB =∠BOE -∠DOE =40°. 因为OB 平分∠DOF , 所以∠DOF =2∠DOB =80°.18.如图,l 1,l 2,l 3交于点O ,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.解:设∠1=∠2=x °,则∠3=8x °. 由∠1+∠2+∠3=180°,得 10x =180.解得x =18. 所以∠1=∠2=18°. 所以∠4=∠1+∠2=36°. 综合题 19.探究题:(1)三条直线相交,最少有1个交点,最多有3个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有1个交点,最多有6个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n 条直线相交,最少有1个交点,最多有n (n -1)2个交点,对顶角有n(n -1)对,邻补角有2n(n -1)对.解:(1)图略,对顶角有6对,邻补角有12对. (2)图略,对顶角有12对,邻补角有24对.5.1.2 垂线基础题知识点1 认识垂直如果两条直线相交所成的四个角中的任意一个角等于90°,那么这两条直线互相垂直.其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.1.如图,OA⊥OB,若∠1=55°,则∠2=( A )A.35°B.40°C.45°D.60°2.(2018·来宾期末)如图,AB⊥CD于点O,EF为经过点O的一条直线,那么∠1与∠2的关系是( C )A.互为对顶角B.互补C.互余D.相等3.如图,已知直线AB,CD,EF相交于点O,AB⊥CD,∠DOE=127°,求∠AOF的大小.解:因为AB⊥CD,所以∠DOB=90°.又因为∠DOE=127°,所以∠BOE=∠DOE-∠DOB=127°-90°=37°.所以∠AOF=∠BOE=37°.知识点2 画垂线4.下列各图中,过直线l外一点P画l的垂线CD,三角板操作正确的是( D )知识点3 垂线的性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.5.(2017·柳州)如图,经过直线l外一点A画l的垂线,能画出( A )A.1条B.2条C.3条D.4条6.(2018·佛山顺德区期末)如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是( C )A.两点之间线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线7.下面可以得到在如图所示的直角三角形中斜边最长的原理是( D )A.两点确定一条直线B.两点之间线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短8.下列说法正确的有( C )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个知识点4 点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.9.(2017·北京)如图所示,点P到直线l的距离是( B )A.线段PA的长度B.线段PB的长度 C.线段PC的长度 D.线段PD的长度易错点未给出图形,考虑不周全致错10.已知OA⊥OC,过点O作射线OB,且∠AOB=30°,则∠BOC的度数为120°或60°.中档题11.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的有( D )A.1个B.2个C.3个D.4个12.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是( C )13.如图所示,下列说法不正确的是( C )A.点B到AC的垂线段是线段AB B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段D.线段BD是点B到AD的垂线段14.(2018·贵港港南区期末)点P是直线l外一点,A,B,C为直线l上的三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线l的距离( C )A.小于2 cm B.等于2 cm C.不大于2 cm D.等于4 cm15.如图,当∠1与∠2满足条件∠1+∠2=90°时,OA⊥OB.16.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM.若∠AOM =35°,则∠CON 的度数为55°.17.如图,已知DO ⊥CO ,∠1=36°,∠3=36°. (1)求∠2的度数;(2)AO 与BO 垂直吗?说明理由.解:(1)因为DO ⊥CO ,所以∠DOC =90°. 因为∠1=36°,所以∠2=90°-36°=54°. (2)AO ⊥BO.理由如下: 因为∠3=36°,∠2=54°, 所以∠3+∠2=90°. 所以AO ⊥BO.18.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD ,∠AOC ∶∠AOD =7∶11. (1)求∠COE 的度数;(2)若OF ⊥OE ,求∠COF 的度数.解:(1)因为∠AOC ∶∠AOD =7∶11,∠AOC +∠AOD =180°, 所以∠AOC =70°,∠AOD =110°. 所以∠BOD =∠AOC =70°, ∠BOC =∠AOD =110°. 又因为OE 平分∠BOD ,所以∠BOE =∠DOE =12∠BOD =35°.所以∠COE =∠BOC +∠BOE =110°+35°=145°. (2)因为OF ⊥OE ,所以∠FOE =90°.所以∠FOD =∠FOE -∠DOE =90°-35°=55°.所以∠COF=180°-∠FOD=180°-55°=125°.5.1.3 同位角、内错角、同旁内角基础题知识点认识同位角、内错角、同旁内角如图,直线AB,CD与EF相交.(1)图中∠1和∠2分别在直线AB,CD的同一方(或上方),并且都在直线EF的同侧(或右侧),具有这样位置关系的一对角叫做同位角;(2)图中∠2和∠8都在直线AB,CD之间,并且分别在直线EF的两侧,具有这样位置关系的一对角叫做内错角;(3)图中∠2和∠7都在直线AB,CD之间,且都在直线EF的同一旁(或右侧),具有这样位置关系的一对角叫做同旁内角.1.(2017·玉林)如图,直线a,b被c所截,则∠1与∠2是( B )A.同位角B.内错角C.同旁内角D.邻补角2.(2017·柳州期末)如图,与∠1是同位角的是( C )A.∠2 B.∠3 C.∠4 D.∠53.如图,与∠1是同旁内角的是( D )A.∠2 B.∠3 C.∠4 D.∠54.(2018·广州)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( B )A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠45.如图,下列说法错误的是( D )A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角6.如图,若∠1=∠2,则在①∠3和∠2;②∠4和∠2;③∠3和∠6;④∠4和∠8中,相等的有( C )A.1对B.2对C.3对D.4对7.看图填空:(1)∠1和∠3是直线AB,BC被直线AC所截得的同旁内角;(2)∠1和∠4是直线AB,BC被直线AC所截得的同位角;(3)∠B和∠2是直线AB,AC被直线BC所截得的同位角;(4)∠B和∠4是直线AC,BC被直线AB所截得的内错角.8.如图,如果∠2=100°,那么∠1的同位角等于80°,∠1的内错角等于80°,∠1的同旁内角等于100°.中档题9.(2018·华南师大附中月考)在下列四个图中,∠1与∠2是同位角的图是( B )图①图②图③图④A.①②B.①③C.②③D.③④10.如图,属于内错角的是( D )A.∠1和∠2 B.∠2和∠3 C.∠1和∠4 D.∠3和∠411.如图,下列说法错误的是( B )A.∠A和∠C是同旁内角B.∠1和∠3是同位角C.∠2和∠3是内错角D.∠3和∠B是同旁内角12.如图,∠ABC与∠EAD是同位角;∠ADB与∠DBC,∠EAD是内错角;∠ABC与∠DAB,∠BCD是同旁内角.13.根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和∠2是同位角;(2)若直线ED,BC被直线AF所截,则∠3和∠4是内错角;(3)∠1和∠3是直线AB,AF被直线ED所截构成的内错角;(4)∠2和∠4是直线AB,AF被直线BC所截构成的同位角.14.根据图形说出下列各对角是什么位置关系?(1)∠1和∠2;(2)∠1和∠7;(3)∠3和∠4;(4)∠4和∠6;(5)∠5和∠7.解:(1)∠1和∠2是同旁内角;(2)∠1和∠7是同位角;(3)∠3和∠4是内错角;(4)∠4和∠6是同旁内角;(5)∠5和∠7是内错角.15.如图,如果内错角∠1与∠5相等,那么与∠1相等的角还有吗?与∠1互补的角有吗?如果有,请写出来,并说明你的理由.解:∠1=∠2,与∠1互补的角有∠3和∠4.理由:因为∠1=∠5,∠5=∠2,所以∠1=∠2.因为∠1=∠5,且∠5与∠3或∠4互补,所以与∠1互补的角有∠3和∠4.综合题16.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有4对,内错角有2对,同旁内角有2对;图1 图2(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有12对,内错角有6对,同旁内角有6对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有2n(n-1)对,内错角有n(n-1)对,同旁内角有n(n-1)对.(用含n的式子表示)5.2 平行线及其判定5.2.1 平行线基础题知识点1 认识平行在同一平面内,两条不相交的直线互相平行.1.下列说法中,正确的是( D )A.平面内,没有公共点的两条线段平行B.平面内,没有公共点的两条射线平行C.没有公共点的两条直线互相平行D.互相平行的两条直线没有公共点2.在同一平面内的两条不重合的直线的位置关系( C )A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直3.在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上.(1)a与b没有公共点,则a与b平行;(2)a与b有且只有一个公共点,则a与b相交;(3)a与b有两个及以上公共点,则a与b重合.4.如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过点C画直线垂直于CD;(2)用符号表示上面①、②中的平行、垂直关系.解:(1)如图所示.(2)EF∥AB,MC⊥CD.知识点2 平行公理及其推论(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行,即:如果a∥b,b∥c,那么a∥c.5.若直线a∥b,b∥c,则a∥c的依据是( D )A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行6.点P,Q都是直线l外的点,下列说法正确的是( D )A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行C.连接PQ,则PQ一定与直线l相交D.过点P只能画一条直线与直线l平行7.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是经过直线外一点,有且只有一条直线与这条直线平行.8.如图,P,Q分别是直线EF外两点.(1)过点P画直线AB∥EF,过点Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?解:(1)如图.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.易错点对平行线的有关概念及公理理解不清9.(2017·玉林北流市期中)下列说法中,正确的有( A )①过一点有无数条直线与已知直线平行;②经过直线外一点有且只有一条直线与已知直线平行;③如果两条线段不相交,那么它们就平行;④如果两条直线不相交,那么它们就平行.A.1个B.2个C.3个D.4个中档题10.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有( C )A.4组B.5组C.6组D.7组11.如图,因为直线AB,CD相交于点P,AB∥EF,所以CD不平行于EF.理由是经过直线外一点,有且只有一条直线与这条直线平行.12.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必相交.13.(教材P17习题T11变式)观察下图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A1B1∥AB,AA1⊥AB,A1D1⊥C1D1,AD∥BC;(2)AB与B1C1所在的直线不相交,它们不是平行线(填“是”或“不是”).由此可知,在同一平面内,两条不相交的直线才是平行线.14.如图,在∠AOB内有一点P.(1)过点P画l1∥OA;(2)过点P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样的关系.解:(1)(2)如图所示.(3)l1与l2的夹角有两个:∠1,∠2.量得∠1=∠O,∠2+∠O=180°,所以l1与l2的夹角与∠O相等或互补.15.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF为折痕.把长方形ABFE平放在桌面上,另一个面CDEF无论怎么改变位置总有CD∥AB存在,你知道为什么吗?解:因为AB∥EF,CD∥EF,所以CD∥AB.综合题16.利用直尺画图:(1)利用图1中的网格,过点P画直线AB的平行线和垂线;(2)在图2的网格中画一个四边形,满足:①两组对边互相平行;②任意两个顶点都不在一条网格线上;③四个顶点都在格点上.解:(1)如图所示.CD∥AB,PQ⊥AB.(2)如图所示.四边形ABCD是符合条件的四边形.5.2.2 平行线的判定基础题知识点1 同位角相等,两直线平行1.(2017·玉林陆川县期末)如图,给出了过直线外一点画已知直线的平行线的方法,其依据是( A )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等2.(2017·绥化)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( C )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°3.(教材P21例2变式)已知a,b,c为平面内三条不同的直线,若a⊥b,c⊥b,则a与c的位置关系是平行.4.如图,∠3与∠1互余,∠3与∠2互余.试说明:AB∥CD.解:∵∠3与∠1互余,∠3与∠2互余,∴∠1=∠2.∴AB∥CD(同位角相等,两直线平行).知识点2 内错角相等,两直线平行5.(2018·深圳龙岗区一模)如图,能判定AB∥CD的条件是( A )A.∠A=∠ACD B.∠A=∠DCE C.∠B=∠ACB D.∠B=∠ACD6.如图,请在括号内填上正确的理由:∵∠DAC=∠C(已知),∴AD∥BC(内错角相等,两直线平行).7.如图,∠BAD=∠DCB,∠BAC=∠DCA,试说明:AD∥BC.解:∵∠BAD=∠DCB,∠BAC=∠DCA(已知),∴∠BAD-∠BAC=∠DCB-∠DCA(等式的性质),即∠DAC=∠BCA.∴AD∥BC(内错角相等,两直线平行).知识点3 同旁内角互补,两直线平行8.如图,已知∠1=70°,要使AB∥CD,则须具备的另一个条件是( C )A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°9.如图,装修工人向墙上钉木条.若∠2=100°,要使木条b与a平行,则∠1的度数等于80°.10.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.解:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD(同旁内角互补,两直线平行).易错点不能准确识别截线与被截线,从而误判两直线平行11.(教材P36复习题T8(1)变式)(2018·贵港桂平期末)如图,点E在AC的延长线上,有下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠DCE;④∠D=∠DCE;⑤∠A+∠ABD=180°;⑥∠A+∠ACD=180°,其中能判定AB∥CD的是①③⑥.中档题12.(2018·郴州)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是( D )A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠313.如图,下列说法错误的是( C )A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c14.(2018·湘潭)如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为答案不唯一,如:∠C=∠CDE.(任意添加一个符合题意的条件即可)15.如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE和BC平行.解:(1)∵∠1=∠B(已知),∴DE∥BC(同位角相等,两直线平行).(2)∵∠1=∠2(已知),∴EF∥AB(内错角相等,两直线平行).(3)∵∠BDE+∠B=180°(已知),∴DE∥BC(同旁内角互补,两直线平行).16.(2018·湛江廉江市期末)完成下面的推理.如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,试说明:AB∥CD.完成推理过程:∵BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β (角平分线的定义).∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换).∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).17.如图,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.解:CF∥BD.方法一:∵BD⊥BE,∴∠DBE=90°.∴∠1+∠2=90°.∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD(同位角相等,两直线平行).方法二:∵BD⊥BE,∴∠DBE=90°.∵∠1+∠C=90°,∴∠C+∠DBC=∠1+∠DBE+∠C=90°+90°=180°.∴CF∥BD(同旁内角互补,两直线平行).18.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.解:PG∥QH,AB∥CD.∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=12∠APQ,∠PQH=∠2=12∠PQD.又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD.∴PG∥QH,AB∥CD(内错角相等,两直线平行).综合题19.如图,AB⊥BD于点B,CD⊥BD于点D,∠1+∠2=180°,试问CD与EF平行吗?为什么?解:CD∥EF.理由如下:∵AB⊥BD,CD⊥BD,∴∠ABD=∠BDC=90°.∴∠ABD+∠BDC=180°.∴AB∥CD(同旁内角互补,两直线平行).∵∠1+∠2=180°,∴AB∥EF(同旁内角互补,两直线平行).∴CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).周周练(5.1~5.2)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.邻补角是指( D )A.和为180°的两个角B.有一条公共边且相等的两个角C.有公共顶点且互补的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角2.如图,∠1和∠2是对顶角的是( B )3.如图,直线AB,CD被EF所截,下列说法正确的有( C )①∠3与∠5是内错角;②∠2与∠7是同位角;③∠4与∠5是同旁内角;④图中有4对同位角,2对内错角,2对同旁内角;⑤∠1与∠7是内错角.A.1个B.2个C.3个D.4个4.下列说法错误的是( C )A.两条直线相交,有一个角是直角,则两条直线互相垂直B.若互为对顶角的两角之和为180°,则两直线互相垂直C.两直线相交,所构成的四个角中,若有两个角相等,则两直线互相垂直D.在同一平面上,过点A作直线l的垂线,这样的垂线只有一条5.如图,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是( B )A.26°B.64°C.54°D.以上都不对6.下列说法错误的是( A )A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∥b,b∥c,c∥d,则a∥dD.同一平面内,若一条直线与两平行线中的一条相交,则它也和另一条相交7.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是( D )A.线段AC的长度是点A到BC的距离B.CD与AB互相垂直C.AC与BC互相垂直D.点B到AC的垂线段是线段CA8.(2017·深圳)下列选项中,哪个不可以得到l1∥l2?( C )A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°二、填空题(每小题4分,共24分)9.如图,已知∠1+∠2=100°,则∠3=130°.10.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是153°.11.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是垂线段最短.12.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是同一平面内,过一点有且只有一条直线与已知直线垂直.13.如图,已知∠C=105°,增加一个条件答案不唯一,如∠BEC=75°或∠AEC=105°,使得AB∥CD.14.如图,AB与BC被AD所截得的内错角是∠1和∠3;DE与AC被直线AD所截得的内错角是∠2和∠4;图中∠4的内错角是∠5和∠2.三、解答题(共44分)15.(6分)完成下面的推理过程:如图,CB平分∠ACD,∠1=∠3.试说明:AB∥CD.解:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).16.(6分)如图,直线AO,BO交于点O,过点P作PC⊥AO于点C,PD⊥BO于点D,画出图形.解:作∠ACP=90°,作∠PDB=90°,则直线PC,PD即为所求.17.(6分)如图,已知∠OEB=130°,∠FOD=25°,OF平分∠EOD,试说明:AB∥CD.解:∵OF平分∠EOD,∠FOD=25°,∴∠EOD=2∠FOD=50°.又∵∠OEB=130°,∴∠OEB+∠EOD=180°.∴AB∥CD(同旁内角互补,两直线平行).18.(8分)如图,已知直线l1,l2,l3被直线l所截,∠α=105°,∠β=75°,∠γ=75°,运用已知条件,你能找出哪两条直线是平行的吗?若能,请写出理由.解:l1∥l2∥l3.理由:∵∠1=∠β,∠β=75°,∴∠1=75°.∵∠α=105°,∴∠α+∠1=180°.∴l1∥l2(同旁内角互补,两直线平行).∵∠β=75°,∠γ=75°,∴∠β=∠γ.∴l2∥l3(内错角相等,两直线平行).∴l1∥l2∥l3.19.(8分)如图,AB和CD交于点O,OD平分∠BOF,OE⊥CD于点O,∠AOC=40°,求∠EOF的度数.解:∵AB,CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°.∵OE⊥CD,∴∠EOD=90°.∴∠EOF=∠EOD+∠DOF=130°.20.(10分)如图,要判定AB∥CD,需要哪些条件?根据是什么?解:①若考虑截线AD,则需∠D+∠DAB=180°,根据是同旁内角互补,两直线平行.②若考虑截线AE,则需∠CEA+∠EAB=180°,根据是同旁内角互补,两直线平行或∠DEA=∠EAB,根据是内错角相等,两直线平行.③若考虑截线AC,则需∠DCA=∠CAB,根据是内错角相等,两直线平行.④若考虑截线FC,则需∠DCF+∠AFC=180°,根据是同旁内角互补,两直线平行或∠DCF=∠BFC,根据是内错角相等,两直线平行.⑤若考虑截线BC,则需∠DCB+∠B=180°,根据是同旁内角互补,两直线平行.5.3 平行线的性质5.3.1 平行线的性质基础题知识点1 平行线的性质平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.1.(2018·桂林)如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是( B )A.120°B.60°C.45°D.30°2.(2018·绵阳)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上,如果∠2=44°,那么∠1的度数是( C )A.14°B.15°C.16°D.17°3.如图,在三角形ABC中,∠B=40°,过点C作CD∥AB,∠ACD=65°,则∠ACB的度数为( D )A.60°B.65°C.70°D.75°4.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.5.如图,AB∥CD,∠BAF=115°,则∠ECF的度数为65°.6.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.解:∵EF ∥BC ,∴∠BAF =180°-∠B =100°(两直线平行,同旁内角互补). ∵AC 平分∠BAF , ∴∠CAF =12∠BAF =50°.∵EF ∥BC ,∴∠C =∠CAF =50°(两直线平行,内错角相等).知识点2 平行线性质的应用7.某商品的商标可以抽象为如图所示的三条线段,若AB ∥CD ,∠EAB =45°,则∠FDC 的度数是( B )A .30°B .45°C .60°D .75°8.一只因损坏而倾斜的椅子,从背后看到的形状如图所示,其中两组对边的平行关系没有发生变化.若∠1=76°,则∠2的度数是( C )A .76°B .86°C .104°D .114°9.如图,在A ,B 两地挖一条笔直的水渠,从A 地测得水渠的走向是北偏西42°,A ,B 两地同时开工,B 地所挖水渠走向应为南偏东42°.10.如图,某次考古发掘出的一块梯形残缺玉片,工作人员从玉片上量得∠A =115°,∠D =100°,已知梯形的两底AD ∥BC ,请你帮助工作人员求出另外两个角的度数,并说明理由.解:∵AD ∥BC ,∠A =115°,∠D =100°,∴∠B =180°-∠A =180°-115°=65°, ∠C =180°-∠D =180°-100°=80°.易错点 误用平行线的性质11.已知∠1与∠2是同旁内角,若∠1=60°,则∠2的度数是( D ) A .60°B .120°C .60°或120°D .不能确定中档题12.(2018·汕头澄海区一模)如图,点P 是∠AOB 的边OA 上一点,PC ⊥OB 于点C ,PD ∥OB ,∠OPC =35°,则∠APD 的度数是( B )A .60°B .55°C .45°D .35°13.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的有( D )A .1个B .2个C .3个D .4个14.(2018·梧州岑溪市期末)如图是一汽车探照灯的纵剖面,从位于O 点的灯泡发出的两束光线OB ,OC 经过灯碗反射以后平行射出.若∠ABO =α,∠DCO =β,则∠BOC 的度数是( A )A .α+βB .180°-αC.12(α+β) D .90°+(α+β)15.(2018·柳州期末)如图,AB ∥CD ∥EF ,则下列四个等式中一定成立的有( A ) ①∠2+∠3=180°;②∠2=∠3;③∠1+∠3=180°;④∠2+∠3-∠1=180°.A .1个B .2个C .3个D .4个16.(2017·柳州期末)如图,已知AB ∥CD ,BC ∥ED ,请你猜想∠B 与∠D 之间具有什么数量关系,并说明理由.解:猜想:∠B +∠D =180°. 理由如下:∵AB ∥CD ,∴∠B =∠C(两直线平行,内错角相等). ∵BC ∥ED ,∴∠C +∠D =180°(两直线平行,同旁内角互补). ∴∠B +∠D =180°.17.(2017·南宁马山县期末)如图,CD ∥AB ,OE 平分∠AOD ,OF ⊥OE ,∠D =50°,求∠BOF 的度数.解:∵CD ∥AB ,∴∠AOD =180°-∠D =180°-50°=130°. ∵OE 平分∠AOD ,∴∠EOD =12∠AOD =12×130°=65°.∵OF ⊥OE ,∴∠DOF =90°-∠EOD =90°-65°=25°.∴∠BOF =180°-∠AOD -∠DOF =180°-130°-25°=25°. 综合题18.阅读下列解答过程:如图甲,AB ∥CD ,探索∠P 与∠A ,∠C 之间的关系.解:过点P 作PE ∥AB. ∵AB ∥CD ,∴PE ∥AB ∥CD(平行于同一条直线的两条直线互相平行). ∴∠1+∠A =180°(两直线平行,同旁内角互补), ∠2+∠C =180°(两直线平行,同旁内角互补). ∴∠1+∠A +∠2+∠C =360°. 又∵∠APC =∠1+∠2, ∴∠APC +∠A +∠C =360°.如图乙和图丙,AB ∥CD ,请根据上述方法分别探索两图中∠P 与∠A ,∠C 之间的关系. 解:如图乙,过点P 作PE ∥AB. ∵AB ∥CD(已知),∴PE∥AB∥CD(平行于同一条直线的两条直线平行).∴∠A=∠EPA,∠EPC=∠C(两直线平行,内错角相等).∵∠APC=∠EPA+∠EPC,∴∠APC=∠A+∠C(等量代换).如图丙,过点P作PF∥AB.∴∠FPA=∠A(两直线平行,内错角相等).∵AB∥CD(已知),∴PF∥CD(平行于同一条直线的两条直线平行).∴∠FPC=∠C(两直线平行,内错角相等).∵∠FPC-∠FPA=∠APC,∴∠C-∠A=∠APC(等量代换).5.3.2 命题、定理、证明基础题知识点1 命题的定义及结构判断一件事情的语句叫做命题,命题常可以写成“如果……那么……”的形式,“如果”后面接的部分是题设,“那么”后面接的部分是结论.1.(2018·玉林陆川县期末)下列语句不是命题的是( A )A.画两条相交直线B.互补的两个角之和是180°C.两点之间线段最短D.相等的两个角是对顶角2.把“垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式是如果两条直线垂直于同一条直线,那么这两条直线平行.3.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.解:(1)如果在平面上有两个点,那么过这两个点确定一条直线.题设:在平面上有两个点;结论:过这两个点确定一条直线.(2)如果两个角是同一个角的补角,那么它们相等.题设:两个角是同一个角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.知识点2 真假命题及其证明(1)题设成立,并且结论一定成立的命题叫做真命题;题设成立,不能保证结论一定成立的命题叫做假命题.(2)经过推理证实为正确并可以作为推理的依据的真命题叫做定理.很多情况下,一个命题的正确性需要经过推理,才能做出判断,这个推理的过程叫做证明.4.(2017·柳州期末)下列命题是真命题的是( C )A.同位角相等B.有且只有一条直线与已知直线垂直C.垂线段最短D.直线外一点到这条直线的垂线段,叫做点到直线的距离5.下列命题中,是假命题的是( A )A.相等的角是对顶角B.若|x|=3,则x=±3C.同一平面内,两条直线的位置关系只有相交和平行两种D.两点确定一条直线6.如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD∥AB.证明:∵BD平分∠ABC,∠ABD=55°,∴∠ABC=2∠ABD=110°.又∵∠BCD=70°,∴∠ABC+∠BCD=180°.∴CD∥AB(同旁内角互补,两直线平行).7.如图,如果∠1=∠2,那么AB∥CD,这个命题是真命题吗?若不是,请你再添加一个条件,使该命题成为真命题,并说明理由.解:假命题,添加BE∥DF.∵BE∥DF,∴∠EBD=∠FDN(两直线平行,同位角相等).∵∠1=∠2,∴∠EBD-∠1=∠FDN-∠2.∴∠ABD=∠CDN.∴AB∥CD(同位角相等,两直线平行).中档题8.(2017·无锡)对于命题“若a2>b2,则a>b.”下面四组关于a,b的值中,能说明这个命题是假命题的是( B )A.a=3,b=2 B.a=-3,b=2 C.a=3,b=-1 D.a=-1,b=39.下列命题是假命题的是( B )A.锐角小于它的补角B.内错角相等C.两点之间线段最短D.同旁内角互补,两直线平行10.下列说法正确的是( C )A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.命题“若ab>1,则a>b”是真命题11.“直角都相等”的题设是两个角是直角,结论是这两个角相等.12.对于下列假命题,各举一个反例写在横线上.(1)“如果ac=bc,那么a=b”是一个假命题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学第五章第1节相交线同步练习
(答题时间:60分钟)
一、选择题
1. 如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是( ) A. 两点确定一条直线
B. 过一点有且只有一条直线垂直于已知直线
C. 垂线段最短
D. 过一点只能作一条垂线
l
M N
2. 如图,直线AB ,CD 相交于点O ,OA 平分∠COE ,∠COE =70°,则∠BOD 的度数是( ) A. 20°
B. 30°
C. 35°
D. 40°
3. 如图,有三条公路,其中AC 与AB 垂直,小明和小亮分别沿AC ,BC 同时出发骑车到C 城,若他们同时到达,则下列判断中正确的是( )
A. 小亮骑车的速度快
B. 小明骑车的速度快
C. 两人一样快
D. 因为不知道公路的长度,所以无法判断他们速度的快慢
A B
C
4. 如图所示,按各组角的位置判断错误的是( ) A. ∠1和∠2是同旁内角 B. ∠3和∠4是内错角 C. ∠5和∠6是同旁内角 D. ∠5和∠7是同旁内角
A
B
C
D E 123
456
7
5. 如图所示,AC ⊥BC ,AD ⊥CD ,AB =a ,CD =b ,则AC 的取值范围是( ) A. 大于b B. 小于a C. 大于b 而小于a D. 无法确定
A
B
C
D a
b
6. 如图所示,内错角的对数是( ) A. 1对 B. 2对 C. 3对
D. 4对
A
B
C D
E
F
*7. 点P 为直线l 外一点,点A 、B 、C 为l 上三点,PA =3cm ,PB =4cm ,PC =5cm ,则点P 到直线l 的距离为( )
A. 3cm
B. 4cm
C. 小于3cm
D. 不大于3cm **8. 下列结论错误的是( )
A. ∠α的邻补角与∠α的和是180°
B. 对顶角的角平分线在一条直线上
C. 有公共顶点且相等的角是对顶角
D. 同一个角的两个邻补角是对顶角
**9. 在如图所示的方格纸上,互相垂直的直线有( ) A. 6对 B. 5对 C. 4对 D. 3对
A B
E
**10. 下列说法正确的有( )
①两条直线相交,交点叫垂足;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③在同一平面内,一条直线有且只有一条垂线;④在同一平面内,一条线段有无数条垂线;⑤过一点不可能向一条射线或线段所在的直线作垂线;⑥若l 1⊥l 2,则l 1是l 2的垂线,l 2不是l 1的垂线.
A. 2个
B. 3个
C. 4个
D. 5个
二、填空题
11. 如图所示,在图中找出互相垂直的直线是__________.
O
A B
C
D
12. 若一对邻补角之差是30°,则这对邻补角的度数分别是__________. *13. 如图所示,∠1、∠2、∠3、∠4、∠5和∠B 中,同位角是__________.
A B
C
D E
F 12345
*14. 已知:如图所示,A 、O 、B 在一条直线上,∠AOC =1
2∠BOC +30°,OE 平分∠BOC ,则∠BOE
=__________度.
A
B
O
C
E
三、解答题
15. 如图所示,画出点C 到AB 的垂线段CE ,垂足是E ,点A 到BC 的垂线段AD ,垂足是D (不写画法).化简︱AC -CE ︱+︱AD -AC ︱.
16. 如图所示,AB 与CD 相交于点O ,OE 平分∠AOD ,∠AOC =120°.求∠BOD 、∠AOE 的度数.
A B
C
D
O
E
*17. 如图所示,直线AB 、CD 、EF 相交于点O ,∠AOF =3∠BOF ,∠AOC =90°.求∠EOC 的度数.
A
B E
C
O
F
D
**18. 如图所示,直线AB 、CD 相交于点O ,OM ⊥AB . (1)若∠1=∠2,求∠NOD 的度数;
(2)若∠1=1
4
∠BOC ,求∠MOD 的度数.
A
B
C
D
O
M
N
1
2
初一数学第五章第1节相交线同步练习参考答案
1. B
2. C 解析:因为∠COE =70°且OA 平分∠COE ,所以∠COA =∠AOE =35°,又因为∠COA 与∠BOD 是对顶角,所以∠COA =∠BOD =35°.故选C .
3. A 解析:因为AC 与AB 垂直,所以BC >AC ,若他们同时到达,根据速度公式可得,小亮骑车的速度快,小明骑车的速度慢.故选A .
4. C 解析:同位角、内错角、同旁内角的特点是有一边公共,这条公共边就是截线.∠5和∠6没有公共边,故它们不是同旁内角.
5. C 解析:根据垂线段最短判断即可.
6. D 解析:即∠EDB 与∠DBC ,∠EDB 与∠DBA ,∠FDB 与∠DBC ,∠FDB 与∠DBA .
7. D 解析:若PC 为垂线段,点P 到直线l 的距离为3cm ;若PC 不是垂线段,点P 到直线l 的距离将小于3cm .
8. C 解析:由邻补角的定义可知A 和D 是正确的,对于B ,如图所示,因为AB 、CD 相交于点O ,根据对顶角相等,得∠AOC =∠BOD ,则它们的一半也相等,即∠1=∠2,因为∠COD 是一条直线,所以∠1+∠EOD =180°,∠2+∠EOD =180°,即OE 与OF 构成平角,所以OE 、OF 在同一条直线上,对于C ,有公共顶点且相等的角不一定是对顶角,如图,∠1=∠3,但它们不是对顶角.
A B
C
D
E F O
1
23
9. B 解析:应按一定的次序来找,AB ⊥AC ,AB ⊥DE ,DF ⊥AC ,DF ⊥DE ,AD ⊥BC .
10. A 解析:①错误,当两条直线垂直相交时,交点才叫垂足;②正确,所以③错误;④正确,因为没有指明是过哪一点,所以一条线段的垂线有无数条;⑤错误,垂直是两条直线所具有的位置关系,两条射线或线段垂直是指其所在的直线垂直,所以过一点可以向一条射线或线段所在的直线作垂线;⑥错误,垂直是两条直线的相互关系. 11. OA ⊥OC ,OB ⊥OD
12. 75°,105° 解析:设这对邻补角中较大的角为α,则较小的角为α-30°,所以α+α-30°=180°,解得α=105°,所以α-30°=75°. 13. ∠1与∠B ,∠4与∠B
14. 50 解析:因为∠AOC =180°-∠BOC ,所以180°-∠BOC =1
2
∠BOC +30°,解得∠BOC =
100°.又因为OE 平分∠BOC ,所以∠BOE =12∠BOC =1
2
×100°=50°.
15. 解:画图略,由垂线段最短知AC >CE ,AC >AD ,所以︱AC -CE ︱+︱AD -AC ︱=AC -CE +AC -AD =2AC -CE -AD .
16. 解:已知AB 与CD 相交于点O ,由对顶角相等,得:∠BOD =∠AOC =120°,由邻补角的定义可
得:∠AOD =180°-∠AOC =180°-120°=60°,又因为OE 平分∠AOD ,所以∠AOE =12∠AOD =
1
2
×60°=30°.
17. 解:设∠BOF =x ,则∠AOF =3x .由邻补角的定义可得:x +3x =180°.解方程得x =45°,即∠BOF =45°.由对顶角相等,得∠AOE =∠BOF =45°,即∠EOC =∠AOC -∠AOE =90°-45°=45°. 18. 解:(1)由OM ⊥AB 可得,∠BOM =∠AOM =90°,而∠AOM =∠1+∠AOC 、∠1=∠2.所以∠AOM =∠2+∠AOC =90°.又因为∠2+∠AOC =∠CON ,所以∠CON =90°,而∠NOD =∠COD -∠CON .所以∠NOD =180°-90°=90°.
(2)由题意可得∠BOC -∠1=90°,所以∠BOC -14∠BOC =90°,所以∠BOC =120°,∠1=1
4
∠BOC
=1
4
×120°=30°.所以∠MOD =∠COD -∠1=180°-30°=150°.。

相关文档
最新文档