第5章 第2单元 动能定理
第5章第2节动能动能定理1-PPT文档资料

机械能
验《 版走 向 高 考 》 高 考 总 复 习 · ( 物 理 配 人 教 实
)
首页
上页
下页
末页
第五章
机械能
验《 版走 向 高 考 》 高 考 总 复 习 · ( 物 理 配 人 教 实
)
首页
上页
下页
Байду номын сангаас
末页
第五章
机械能
温故自查 1.概念:一个物体能够对外界做功,我们就说物体
具有能量.能量可以有不同的形式,物体由于运动而具有
验《 版走 向 高 考 》 高 考 总 复 习 · ( 物 理 配 人 教 实
)
首页
上页
下页
末页
第五章
机械能
(3) 对该定理标量性的认识:因动能定理中各项均为 标量,因此单纯速度方向的改变不影响动能的大小.如用 细绳拉着一物体在光滑桌面上以绳头为圆心做匀速圆周运 动的过程中,合外力方向指向圆心,与位移方向始终保持
)
首页
上页
下页
末页
第五章
机械能
(2) 对外力对物体做的总功的理解:有的力促进物体 负之分,总功指的是各外力做功的代数和;对于单一物体
运动,而有的力则阻碍物体运动,因此它们做的功就有正、
的单一物理过程,又因为W合=W1+W2+…=F合l.所以总
功也可理解为合外力的功.即:如果物体受到多个共点力 作用,则: W 合 = F 合 l ;如果发生在多个物理过程中,不 同过程中作用力的个数不相同,则:W合=W1+W2+…+ Wx .
首页 上页 下页
验《 版走 向 高 考 》 高 考 总 复 习 · ( 物 理 配 人 教 实
)
或W=ΔEk.
第五章 第2讲 动能定理及其应用

C.对物体,动能定理的表达式为 WN-mgH=12mv22-12mv12
D.对电梯,其所受合力做功为12Mv22-12Mv12
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业
首页 上页 下页 尾页
高频考点·分类突破
2.[动能定理的简单应用] (2018·高考全国卷Ⅱ)如图,某同学用绳子拉动木箱,使它从静
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业来自首页 上页 下页 尾页
高频考点·分类突破
2.动能定理公式中体现的“三个关系” (1)数量关系:即合力所做的功与物体动能的变化具有等量替代关系.可以通 过计算物体动能的变化,求合力做的功,进而求得某一力做的功. (2)单位关系:等式两边物理量的国际单位都是焦耳. (3)因果关系:合力的功是引起物体动能变化的原因.
解得 h′=1-Rcμocso3t73°7°=0.48 m. 答案:0.48 m
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业
首页 上页 下页 尾页
高频考点·分类突破
[拓展延伸2] 若在[典例]中斜面轨道光滑,滑块从 A 点释放后滑到 C 点,对轨 道的压力是重力的多少倍?(原 AB 高度差 h=1.38 m 不变) 解析:由 A→C 应用动能定理,设 C 点时的速度为 vC. mgh-mg(R+Rcos θ)=12mv2C① NC+mg=mRv2C② 由①②得 NC=2.3mg,故是重力的 2.3 倍. 答案:2.3
C.等于克服摩擦力所做的功
D.大于克服摩擦力所做的功
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业
首页 上页 下页 尾页
高频考点·分类突破
3.A 球[动向能右定运理动求0解.1变m力时做,功vA]=3(2m01/s9,·吉O林A′长=春0模.4拟m),如O图B所′示=,0.3竖m直,平设面此内时放∠一B直′角A′杆O=
高考物理一轮总复习精品课件 第5章 机械能 第2节 动能定理及其应用

F和8F时小球做圆周运动的动能,然后由动能定理求出拉力由F变为8F过
程中绳子拉力对小球所做的功,用拉力做的功除以时间就是该过程的平均
功率。
答案:(1)
3
(2)
2
3
(3)
2
0
解析:(1)小球做圆周运动的向心力由绳子的拉力提供,由向心力公式得
解得,当拉力为 F 时,小球的线速度 v=
侧有一轻质弹簧,左端固定,弹簧处于自然伸长状态。质量为m=1 kg的物
块A(可视为质点)从轨道右侧以初速度 v0=2√3 m/s 冲上轨道,通过圆形轨
道、水平轨道后压缩弹簧并被弹簧以原速率弹回,经水平轨道返回圆形轨
道。物块A与PQ段间的动摩擦因数μ=0.2,轨道其他部分摩擦不计,重力加
速度g取10 m/s2。
好为零,g取10 m/s2,则提升重物的最短时间为(
A.13.2 s
B.14.2 s
C.15.5 s
D.17.0 s
答案:C
)
解析:为了以最短时间提升重物,一开始先以最大拉力拉重物使重物匀加速上升,
当功率达到额定功率时,保持功率(额定功率)不变直到重物达到最大速度,接着做
匀速运动,最后以最大加速度匀减速上升到达平台时速度刚好为零。重物在第一
(1)求物块A与弹簧刚接触时的速度大小v1;
(2)求物块A被弹簧以原速率弹回返回到圆形轨道的高度h1;
(3)调节PQ段的长度L,A仍以v0从轨道右侧冲上轨道,当L满足什么条件时,
物块A能第一次返回圆形轨道且能沿轨道运动而不脱离轨道?
解题指导:
关键词句
获取信息
物块 A 与弹簧刚接触时的速
求物块 A 到达 P 点时的速度
第5章_2动能__动能定理

点评:此题对考生的能力要求较高,将 圆周运动与动能定理相结合,注重过程的分 析,物理规律的应用.考生很容易由于过程 分析不完整,运动情况分析不全而造成失 分.
如图5-2-2所示,DO是水平面,AB 是斜面,初速度为v0的物体从D点出发沿 DBA滑动到顶点A时的速度刚好为零,如果 斜面改为AC,让该物体从D点出发沿DCA滑 动到A点且速度刚好为零,则物体具有的初 速度为(已知物体与路面之间的动摩擦因数 处处相同,且不为零,在B、C处无机械能的 损失)( ) A.大于v0 B.等于v0 C.小于v0 图5-2-2
图5- 6 2-
【错解】在分力F1的方向上,由动能定理得 1 2 1 v 1 2 2 W1 = mv1 = m( ) = mv ,故A正确. 2 2 2 cos 30° 6 【错解分析】错解原因是在物体运动的分方向 上应用了动能定理. 【正解】在合力F的方向上,由动能定理得, 1 2 W = Fs = mv ,某个分力的功为W1 = F1s cos 30 2 F 1 1 2 = s cos 30? Fs = mv ,故B正确. 2 cos 30° 2 4
2.应用动能定理求变力的功 质量为m的小球被系在轻绳一端,在竖直平面 内做半径为R的圆周运动,运动过程中小球受到 空气阻力的作用.设某一时刻小球通过轨道的最低 点,此时绳子的拉力为7mg,此后小球继续做圆 周运动,经过半个圆周恰能通过最高点,则在此 过程中小球克服空气阻力所做的功为( ) A.mgR/4 B.mgR/3 C.mgR/2 D.mgR
l l 2 h2
v1
所以
v0l l 2 h2
物体此时上升的速度为
l 2 h2 mv0 2l 2 1 1 v0 2l 2 Ek mv12 0 m 2 2 2 2 2 l h 2(l h2 ) 人所做的功为:
人教版高三物理教材第5章 第2节动能定理及其应用

第2节 动能定理及其应用一、动能1.公式:E k =12m v 2,式中v 为瞬时速度,动能是状态量.2.矢标性:动能是标量,只有正值,动能与速度的方向无关.3.动能的变化量:ΔE k =12m v 22-12m v 21. 4.动能的相对性 由于速度具有相对性,则动能也具有相对性,一般以地面为参考系.二、动能定理1.内容:合外力对物体所做的功等于物体动能的变化.2.表达式:W =ΔE k =12m v 22-12m v 21.3.功与动能的关系(1)W >0,物体的动能增加.(2)W <0,物体的动能减少.(3)W =0,物体的动能不变.4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动.(2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用.[自我诊断]1.判断正误(1)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.(√)(2)动能不变的物体一定处于平衡状态.(×)(3)如果物体所受的合外力为零,那么合外力对物体做功一定为零.(√)(4)物体在合外力作用下做变速运动时,动能一定变化.(×)(5)物体的动能不变,所受的合外力必定为零.(×)(6)做自由落体运动的物体,动能与时间的二次方成正比.(√)2.一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则碰撞前后小球速度变化量的大小Δv和碰撞过程中小球的动能变化量ΔE k为() A.Δv=0B.Δv=12 m/sC.ΔE k=1.8 J D.ΔE k=10.8 J解析:选B.取初速度方向为正方向,则Δv=(-6-6)m/s=-12 m/s,由于速度大小没变,动能不变,故动能变化量为0,故只有选项B正确.3.A、B两物体在光滑水平面上,分别在相同的水平恒力F作用下,由静止开始通过相同的位移l.若A的质量大于B的质量,则在这一过程中() A.A获得动能较大B.B获得动能较大C.A、B获得动能一样大D.无法比较A、B获得动能大小解析:选C.由动能定理可知恒力F做功W=Fl=12m v2-0,因为F、l相同,所以A、B的动能变化相同,C正确.4.质量m=2 kg的物体在光滑水平面上以v1=6 m/s的速度匀速向西运动,若有一个F=8 N、方向向北的恒力作用于物体,在t=2 s内物体的动能增加了()A.28 J B.64 JC.32 J D.36 J解析:选B.由于力F 与速度v 1垂直,物体做曲线运动,其两个分运动为向西的匀速运动和向北的匀加速直线运动,对匀加速运动有a =F m =4 m/s 2,v 2=at=8 m/s.2 s 末物体的速度v =v 21+v 22=10 m/s, 2 s 内物体的动能增加了ΔE k =12m v 2-12m v 21=64 J ,故选项B 正确.考点一 动能定理的理解和应用1.定理中“外力”的两点理解(1)重力、弹力、摩擦力、电场力、磁场力或其他力,它们可以同时作用,也可以不同时作用.(2)既可以是恒力,也可以是变力.2.公式中“=”体现的三个关系3.应用动能定理的注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)应用动能定理时,必须明确各力做功的正、负.(3)应用动能定理解题,关键是对研究对象进行准确的受力分析及运动过程分析,并画出物体运动过程的草图,借助草图理解物理过程和各量关系.1. 光滑斜面上有一个小球自高为h 的A 处由静止开始滚下,抵达光滑水平面上的B 点时速度大小为v 0.光滑水平面上每隔相等的距离设置了一个与小球运动方向垂直的活动阻挡条,如图所示,小球越过n 条活动阻挡条后停下来.若让小球从h 高处以初速度v 0滚下,则小球能越过的活动阻挡条的条数是(设小球每次越过活动阻挡条时损失的动能相等)( )A .nB .2nC .3nD .4n解析:选B.设每条阻挡条对小球做的功为W ,当小球在水平面上滚动时,由动能定理得nW =0-12m v 20,对第二次有NW =0-12m v 22=0-⎝ ⎛⎭⎪⎫12m v 20+mgh ,又因为12m v 20=mgh ,联立解得N =2n ,选项B 正确.2. (多选)质量不等,但有相同动能的两个物体,在动摩擦因数相同的水平地面上滑行,直至停止,则( )A .质量大的物体滑行的距离大B .质量小的物体滑行的距离大C .它们滑行的距离一样大D .它们克服摩擦力所做的功一样多解析:选BD.由动能定理可知,摩擦力对物体所做的功等于物体动能的增量,因两物体具有相同的动能,故两物体滑行过程中克服摩擦力所做的功也相同,又W f =μmg ·x 可知,质量越大的物体,滑行的距离x 越小,故B 、D 选项正确.3.如图所示,质量为m 的小球用长为L 的轻质细线悬于O 点,与O 点处于同一水平线上的P 点处有一个光滑的细钉,已知OP =L 2,在A 点给小球一个水平向左的初速度v 0,发现小球恰能到达跟P 点在同一竖直线上的最高点B .求:(1)小球到达B 点时的速率;(2)若不计空气阻力,则初速度v 0为多少;(3)若初速度v 0=3gL ,则小球在从A 到B 的过程中克服空气阻力做了多少功?解析:(1)小球恰能到达最高点B ,由牛顿第二定律得mg =m v 2B L 2解得v B =gL2(2)若不计空气阻力,从A →B 由动能定理得-mg ⎝ ⎛⎭⎪⎫L +L 2=12m v 2B -12m v 20 解得v 0= 7gL2(3)当v 0=3gL 时,由动能定理得-mg ⎝ ⎛⎭⎪⎫L +L 2-W F f =12m v 2B -12m v 20 解得W F f =114mgL答案:(1)gL 2 (2) 7gL 2 (3)114mgL(1)优先应用动能定理的问题①不涉及加速度、时间的问题.②有多个物理过程且不需要研究整个过程中的中间状态的问题.③变力做功的问题.④含有F、l、m、v、W、E k等物理量的力学问题.(2)应用动能定理的解题步骤考点二动能定理与图象的综合问题1.力学中图象所围“面积”的意义(1)v-t图:由公式x=v t可知,v-t图线与坐标轴围成的面积表示物体的位移.(2)a-t图:由公式Δv=at可知,a-t图线与坐标轴围成的面积表示物体速度的变化量.(3)F-x图:由公式W=Fx可知,F-x图线与坐标轴围成的面积表示力所做的功.(4)P-t图:由公式W=Pt可知,P-t图线与坐标轴围成的面积表示力所做的功.2.解决物理图象问题的基本步骤(1)观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.[典例1]如图甲所示,一半径R=1 m、圆心角等于143°的竖直圆弧形光滑轨道,与斜面相切于B处,圆弧轨道的最高点为M,斜面倾角θ=37°,t=0时刻有一物块沿斜面上滑,其在斜面上运动的速度变化规律如图乙所示,若物块恰能到达M点,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,求:(1)物块经过M点的速度大小;(2)物块经过B点的速度大小;(3)物块与斜面间的动摩擦因数.解析(1)物块恰能到达M点则有mg=m v2M R解得v M=gR=10 m/s(2)物块从B点运动到M点的过程中,由动能定理得-mgR(1+cos 37°)=12m v2M-12m v2B解得v B=46 m/s(3)由题图乙可知,物块在斜面上运动时,加速度大小为a=ΔvΔt=10 m/s2,方向沿斜面向下,有mg sin 37°+μmg cos 37°=ma解得μ=0.5答案(1)10 m/s(2)46 m/s(3)0.51. (2017·安徽合肥一模)A、B两物体分别在水平恒力F1和F2的作用下沿水平面运动,先后撤去F1、F2后,两物体最终停下,它们的v-t图象如图所示.已知两物体与水平面间的滑动摩擦力大小相等.则下列说法正确的是()A.F1、F2大小之比为1∶2B.F1、F2对A、B做功之比为1∶2C.A、B质量之比为2∶1D.全过程中A、B克服摩擦力做功之比为2∶1解析:选C.由速度与时间图象可知,两个匀减速运动的加速度之比为1∶2,由牛顿第二定律可知:A、B受摩擦力大小相等,所以A、B的质量关系是2∶1,由速度与时间图象可知,A 、B 两物体加速与减速的位移相等,且匀加速运动位移之比1∶2,匀减速运动的位移之比2∶1,由动能定理可得:A 物体的拉力与摩擦力的关系,F 1·x -f 1·3x =0-0;B 物体的拉力与摩擦力的关系,F 2·2x -f 2·3x =0-0,因此可得:F 1=3f 1,F 2=32f 2,f 1=f 2,所以F 1=2F 2.全过程中摩擦力对A 、B 做功相等,F 1、F 2对A 、B 做功大小相等.故A 、B 、D 错误,C 正确.2. (2017·江西九江质检)打桩机是利用冲击力将桩贯入地层的桩工机械.某同学对打桩机的工作原理产生了兴趣.他构建了一个打桩机的简易模型,如图甲所示.他设想,用恒定大小的拉力F 拉动绳端B ,使物体从A 点(与钉子接触处)由静止开始运动,上升一段高度后撤去F ,物体运动到最高点后自由下落并撞击钉子,将钉子打入一定深度.按此模型分析,若物体质量m =1 kg ,上升了1 m 高度时撤去拉力,撤去拉力前物体的动能E k 与上升高度h 的关系图象如图乙所示.(g 取10 m/s 2,不计空气阻力)(1)求物体上升到0.4 m 高度处F 的瞬时功率;(2)若物体撞击钉子后瞬间弹起,且使其不再落下,钉子获得20 J 的动能向下运动.钉子总长为10 cm.撞击前插入部分可以忽略,不计钉子重力.已知钉子在插入过程中所受阻力F f 与深度x 的关系图象如图丙所示,求钉子能够插入的最大深度.解析:(1)撤去F 前,根据动能定理,有(F -mg )h =E k -0由题图乙得,斜率为k=F-mg=20 N得F=30 N又由题图乙得,h=0.4 m时,E k=8 J,则v=4 m/s P=F v=120 W(2)碰撞后,对钉子有-F f x′=0-E k′已知E k′=20 JF f=k′x′2又由题图丙得k′=105 N/m解得x′=0.02 m答案:(1)120 W(2)0.02 m动能定理与图象结合问题的分析方法(1)首先看清楚所给图象的种类(如v-t图象、F-t图象、E k-x图象等).(2)挖掘图象的隐含条件——求出所需要的物理量,如由v-t图象所包围的“面积”求位移,由F-x图象所包围的“面积”求功等.(3)分析有哪些力做功,根据动能定理列方程,求出相应的物理量.考点三用动能定理解决多过程问题1.运用动能定理解决问题时,选择合适的研究过程能使问题得以简化.当物体的运动过程包含几个运动性质不同的子过程时,可以选择一个、几个或全部子过程作为研究过程.2.当选择全部子过程作为研究过程,涉及重力、大小恒定的阻力或摩擦力做功时,要注意运用它们的功能特点:(1)重力的功取决于物体的初、末位置,与路径无关.(2)大小恒定的阻力或摩擦力做的功等于力的大小与路程的乘积.[典例2]如图所示,用一块长L1=1.0 m的木板在墙和桌面间架设斜面,桌子高H=0.8 m,长L2=1.5 m.斜面与水平桌面的倾角θ可在0~60°间调节后固定.将质量m=0.2 kg的小物块从斜面顶端静止释放,物块与斜面间的动摩擦因数μ1=0.05,物块与桌面间的动摩擦因数为μ2,忽略物块在斜面与桌面交接处的能量损失.(重力加速度取g=10 m/s2;最大静摩擦力等于滑动摩擦力)(1)求θ角增大到多少时,物块能从斜面开始下滑;(用正切值表示)(2)当θ角增大到37°时,物块恰能停在桌面边缘,求物块与桌面间的动摩擦因数μ2;(已知sin 37°=0.6,cos 37°=0.8)(3)继续增大θ角,发现θ=53°时物块落地点与墙面的距离最大,求此最大距离x m.解析(1)为使小物块下滑,应有mg sin θ≥μ1mg cos θ①θ满足的条件tan θ≥0.05②即当θ=arctan 0.05时物块恰好从斜面开始下滑.(2)克服摩擦力做功W f=μ1mgL1cos θ+μ2mg(L2-L1cos θ)③由动能定理得mgL1sin θ-W f=0④代入数据得μ2=0.8⑤(3)由动能定理得mgL1sin θ-W f=12m v2⑥结合③式并代入数据得v=1 m/s⑦由平抛运动规律得H=12gt2,x1=v t解得t =0.4 s ⑧x 1=0.4 m ⑨x m =x 1+L 2=1.9 m答案 (1)arctan 0.05 (2)0.8 (3)1.9 m1. 如图所示,相同材料制成的滑道ABC ,其中AB 段为曲面,BC 段为水平面.现有质量为m 的木块,从距离水平面h 高处的A 点由静止释放,滑到B 点过程中克服摩擦力做功为13mgh ;木块通过B 点后继续滑行2h 距离后,在C 点停下来,则木块与曲面间的动摩擦因数应为( )A.13B .23 C.16 D.112解析:选A.物体从A 点到C 点根据动能定理,mgh -13mgh -μmg ·2h =0,解得μ=13,因为曲面和水平轨道是同种材料,所以木块与曲面间的动摩擦因数也为13,选项A 正确.2.(2016·高考天津卷) 我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1 530 J ,g 取10 m/s 2.(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?解析:(1)运动员在AB段做初速度为零的匀加速运动,设AB的长度为x,则有v2B=2ax①由牛顿第二定律有mg Hx-F f=ma②联立①②式,代入数据解得F f=144 N③(2)设运动员到达C点时的速度为v C,在由B到达C的过程中,由动能定理有mgh+W=12m v2C-12m v2B④设运动员在C点所受的支持力为F N,由牛顿第二定律有F N-mg=m v2C R⑤由运动员能够承受的最大压力为其所受重力的6倍,联立④⑤式,代入数据解得R=12.5 m答案:(1)144 N(2)12.5 m利用动能定理求解多过程问题的基本思路(1)弄清物体的运动由哪些过程组成.(2)分析每个过程中物体的受力情况.(3)各个力做功有何特点,对动能的变化有无影响.(4)从总体上把握全过程,表达出总功,找出初、末状态的动能.(5)对所研究的全过程运用动能定理列方程.课时规范训练[基础巩固题组]1.(多选)关于动能定理的表达式W =E k2-E k1,下列说法正确的是( )A .公式中的W 为不包含重力的其他力做的总功B .公式中的W 为包含重力在内的所有力做的功,也可通过以下两种方式计算:先求每个力的功再求功的代数和或先求合外力再求合外力的功C .公式中的E k2-E k1为动能的增量,当W >0时动能增加,当W <0时,动能减少D .动能定理适用于直线运动,但不适用于曲线运动,适用于恒力做功,但不适用于变力做功解析:选BC.公式W =E k2-E k1中的“W ”为所有力所做的总功,A 错误,B 正确;若W >0,则E k2>E k1,若W <0,则E k2<E k1,C 正确;动能定理对直线运动、曲线运动、恒力做功、变力做功均适用,D 错误.2.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧对应的圆的半径为R ,BC 的长度也是R ,一质量为m 的物体与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为( )A 12μmgRB .12mgRC .mgRD .(1-μ)mgR解析:选D.由题意可知mgR =W f AB +W f BC ,W f BC =μmgR ,所以W f AB =(1-μ)mgR ,D 正确.3.一个质量为m 的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v ,在力的方向上获得的速度分别为v 1、v 2,如图所示,那么在这段时间内,其中一个力做的功为( )A.16m v 2B.14m v 2C.13m v 2D.12m v 2解析:选B.在合力F 的方向上,由动能定理得W =Fl =12m v 2,某个分力的功为W 1=F 1l cos 30°=F 2cos 30°l cos 30°=12Fl =14m v 2,B 正确.4. 如图所示,一块长木板B 放在光滑的水平面上,在B 上放一物体A ,现以恒定的外力拉B ,由于A 、B 间摩擦力的作用,A 将在B 上滑动,以地面为参考系,A 、B 都向前移动一段距离.在此过程中( )A .外力F 做的功等于A 和B 动能的增量B .B 对A 的摩擦力所做的功,等于A 的动能增量C .A 对B 的摩擦力所做的功,等于B 对A 的摩擦力所做的功D .外力F 对B 做的功等于B 的动能的增量解析:选B.A 物体所受的合外力等于B 对A 的摩擦力,对A 物体运用动能定理,则有B 对A 的摩擦力所做的功等于A 的动能的增量,即B 对;A 对B 的摩擦力与B 对A 的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A 在B 上滑动,A 、B 对地的位移不等,故二者做功不相等,C 错;对B 应用动能定理,W F -W f =ΔE k B ,即W F =ΔE k B +W f ,就是外力F 对B 做的功,等于B 的动能增量与B 克服摩擦力所做的功之和,D 错;由前述讨论知B 克服摩擦力所做的功与A 的动能增量(等于B 对A 的摩擦力所做的功)不等,故A 错.5.(多选)如图甲所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,小环线速度大小的平方v 2随下落高度h 的变化图象可能是图乙中的( )解析:选AB.对小球由动能定理得mgh =12m v 2-12m v 20,则v 2=2gh +v 20,当v 0=0时,B 正确;当v 0≠0时,A 正确.6. 如图所示,半径R =2.5 m 的光滑半圆轨道ABC 与倾角θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直.质量m =1 kg 的小球从A 点左上方距A 点高h =0.45 m 的P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)小球从P 点抛出时速度v 0的大小;(2)小球从C 点运动到D 点过程中摩擦力做的功W ;(3)小球从D 点返回经过轨道最低点B ,对轨道的压力大小.解析:(1)在A 点有:v 2y =2ghv yv 0=tan θ解得v 0=4 m/s(2)全过程由动能定理得W =0-12m v 20=-8 J(3)从D 到B 过程由动能定理得mg (h +R cos θ+R )+W =12m v 2 在B 点由牛顿第二定律得F N -mg =m v 2R解得F N =43.2 N由牛顿第三定律得小球在B 点对轨道的压力大小F N ′=F N =43.2 N答案:(1)4 m/s (2)-8 J (3)43.2 N[综合应用题组]7.一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,动能变为原来的9倍.该质点的加速度为( )A.s t 2B .3s 2t 2 C.4s t 2 D.8s t 2解析:选A.由E k =12m v 2可知速度变为原来的3倍.设加速度为a ,初速度为v ,则末速度为3v .由速度公式v t =v 0+at 得3v =v +at ,解得at =2v ;由位移公式s =v 0t +12at 2得s =v t +12·at ·t =v t +12·2v ·t =2v t ,进一步求得v =s 2t ;所以a=2v t =2t ·s 2t =s t 2,A 正确.8.如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,BC是水平的,其距离d=0.50 m.盆边缘的高度为h=0.30 m.在A处放一个质量为m的小物块并让其从静止开始下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停的地点到B的距离为()A.0.50 m B.0.25 mC.0.10 m D.0解析:选D.设小物块在BC段通过的总路程为s,由于只有水平面上存在摩擦力,则小物块从A点开始运动到最终静止的整个过程中,摩擦力做功为-μmgs,而重力做功与路径无关,由动能定理得:mgh-μmgs=0-0,代入数据可解得s =3 m.由于d=0.50 m,所以,小物块在BC段经过3次往复运动后,又回到B 点.9.小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放,在各自轨迹的最低点()A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度解析:选C.从释放到最低点过程中,由动能定理得mgl=12m v2-0,可得v=2gl,因l P<l Q,则v P<v Q,故选项A错误;由E k Q=m Q gl Q,E k P=m P gl P,而m P>m Q,故两球动能大小无法比较,选项B错误;在最低点对两球进行受力分析,根据牛顿第二定律及向心力公式可知T -mg =m v 2l =ma n ,得T =3mg ,a n =2g ,则T P >T Q ,a P =a Q ,C 正确,D 错误.10. 用水平力F 拉一物体,使物体在水平地面上由静止开始做匀加速直线运动,t 1时刻撤去拉力F ,物体做匀减速直线运动,到t 2时刻停止,其速度-时间图象如图所示,且α>β,若拉力F 做的功为W 1,平均功率为P 1;物体克服摩擦阻力F f 做的功为W 2,平均功率为P 2,则下列选项正确的是( )A .W 1>W 2,F =2F fB .W 1=W 2,F >2F fC .P 1<P 2,F >2F fD .P 1=P 2,F =2F f解析:选B.由动能定理可得W 1-W 2=0,解得W 1=W 2.由图象可知,撤去拉力F 后运动时间大于水平力F 作用时间,所以F >2F f ,选项A 、D 错误B 正确;由于摩擦阻力作用时间一定大于水平力F 作用时间,所以P 1>P 2,选项C 错误.11. (多选) 如图所示,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P .它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最低点时,向心加速度的大小为a ,容器对它的支持力大小为N ,则( )A .a =2(mgR -W )mRB .a =2mgR -W mRC .N =3mgR -2W RD .N =2(mgR -W )R解析:选AC.质点P 下滑到底端的过程,由动能定理得mgR -W =12m v 2-0,可得v 2=2(mgR -W )m ,所以a =v 2R =2(mgR -W )mR ,A 正确,B 错误;在最低点,由牛顿第二定律得N-mg=m v2R,故N=mg+mv2R=mg+mR·2(mgR-W)m=3mgR-2WR,C正确,D错误.12.在竖直平面内固定一轨道ABCO,AB段水平放置,长为4 m,BCO段弯曲且光滑;一质量为1.0 kg、可视作质点的圆环套在轨道上,圆环与轨道AB 段之间的动摩擦因数为0.5.建立如图所示的直角坐标系,圆环在沿x轴正方向的恒力F作用下,从A(-7,2)点由静止开始运动,到达原点O时撤去恒力F,圆环从O(0,0)点水平飞出后经过D(6,3)点.重力加速度g取10 m/s2,不计空气阻力.求:(1)圆环到达O点时的速度大小;(2)恒力F的大小;(3)圆环在AB段运动的时间.解析:(1)圆环从O到D过程中做平抛运动x=v0ty=12gt2读图得x=6 m,y=3 mv0=60 m/s=7.75 m/s.(2)圆环从A到O过程中,根据动能定理Fx AO-μmgx AB-mgy′=12m v2代入数据得F=10 N.(3)圆环从A到B过程中,根据牛顿第二定律F-μmg=max AB=12at2代入数据得t=85s=1.26 s.答案:(1)7.75 m/s(2)10 N(3)1.26 s。
物理浙江高考:必修2 第五章 第2讲 动能 动能定理含解析

第2讲 动能 动能定理知识排查动能1.定义:物体由于运动而具有的能叫动能。
2.公式:E k =12m v 2。
3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2。
4.矢标性:动能是标量,只有正值。
5.状态量:动能是状态量,因为v 是瞬时速度。
动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化。
2.表达式:W =12m v 22-12m v 21或W =E k2-E k1。
3.物理意义:合外力的功是物体动能变化的量度。
4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动。
(2)既适用于恒力做功,也适用于变力做功。
(3)力可以是各种性质的力,既可以同时作用,也可以间断作用。
5.应用动能定理解决的典型问题大致分为两种(1)单一物体的单一过程或者某一过程;(2)单一物体的多个过程。
动能定理由于不涉及加速度和时间,比动力学研究方法要简便。
小题速练1.思考判断(1)物体的动能不变,所受合外力一定为零( )(2)物体在合外力作用下做变速运动,动能一定变化( )(3)动能不变的物体,一定处于平衡状态( )(4)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化( )(5)如果物体所受的合外力不为零,那么合外力对物体做功一定不为零()答案(1)×(2)×(3)×(4)√(5)×2.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员。
他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J。
韩晓鹏在此过程中()A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J解析由题可得,重力做功W G=1 900 J,则重力势能减少1 900 J ,故选项C 正确,D错误;由动能定理得,W G-W f=ΔE k,克服阻力做功W f=100 J,则动能增加1 800 J,故选项A、B错误。
第五章第二节动能动能定理

第二节 动能 动能定理 考点一 动能和动能定理1.动能(1)定义:物体由于运动而具有的能.(2)表达式:E k =12m v 2.(3)单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2. (4)矢标性:标量. 2.动能定理(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.(2)表达式:W =E k2-E k1=12m v 22-12m v 21. (3)适用范围①动能定理既适用于直线运动,也适用于曲线运动. ②既适用于恒力做功,也适用于变力做功.③力可以是各种性质的力,既可以同时作用,也可以不同时作用. 命题视角1 利用动能定理解决恒力做功问题(2015·高考浙江卷)如图所示,用一块长L 1=1.0 m 的木板在墙和桌面间架设斜面,桌子高H =0.8 m ,长L 2=1.5 m .斜面与水平桌面的倾角θ可在0~60°间调节后固定.将质量m =0.2 kg 的小物块从斜面顶端静止释放,物块与斜面间的动摩擦因数μ1=0.05,物块与桌面间的动摩擦因数为μ2,忽略物块在斜面与桌面交接处的能量损失.(重力加速度取g =10 m/s 2;最大静摩擦力等于滑动摩擦力)(1)当θ角增大到多少时,物块能从斜面开始下滑;(用正切值表示) (2)当θ角增大到37°时,物块恰能停在桌面边缘,求物块与桌面间的动摩擦因数μ2;(已知sin 37°=0.6,cos 37°=0.8)(3)继续增大θ角,发现θ=53°时物块落地点与墙面的距离最大,求此最大距离x m .[思路点拨] (1)小物块刚好能沿斜面下滑,用平衡条件求解. (2)小物块沿斜面加速下滑,用牛顿第二定律或用动能定理求解. (3)小物块在桌面上减速滑动,用牛顿第二定律或动能定理求解. (4)小物块离开桌面做平抛运动,用平抛运动的知识求解. [解析] (1)为使小物块下滑,应有 mg sin θ≥μ1mg cos θ, θ满足的条件tan θ≥0.05即当θ=arctan 0.05时物块恰好从斜面开始下滑. (2)克服摩擦力做功W f =μ1mgL 1cos θ+μ2mg (L 2-L 1cos θ)① 由动能定理得mgL 1sin θ-W f =0 代入数据得μ2=0.8.(3)由动能定理得mgL 1sin θ-W f =12m v 2结合①式并代入数据得v =1 m/s由平抛运动规律得H =12gt 2,x 1=v t解得t =0.4 sx 1=0.4 mx m =x 1+L 2=1.9 m.[答案] (1)arctan 0.05 (2)0.8 (3)1.9 m命题视角2 利用动能定理解决变力做功问题如图所示,一个质量为m 的圆环套在一根固定的水平直杆上,杆足够长,环与杆的动摩擦因数为μ.现给环一个向右的初速度v 0,如果环在运动过程中还受到一个方向始终竖直向上的力F ,且F =k v (k 为常数,v 为环的速率),则环在整个运动过程中克服摩擦力所做的功不可能为( )A.12m v 20 B .12m v 20+m 3g 22k2 C .0 D .12m v 20-m 3g 22k2[思路点拨] 当环受到的合力向下时,随着环做减速运动,向上的力F 逐渐减小,环将最终静止;当环所受合力向上时,随着环速度的减小,竖直向上的力F 逐渐减小,当力F 减至和重力大小相等时,此时环所受合力为0,杆不再给环阻力,环将保持此时速度不变做匀速直线运动;当环在竖直方向所受合力为0时,环将一直做匀速直线运动.分上述三种情况应用动能定理求出阻力对环做的功即可.[解析] 当F =k v 0=mg 时,圆环不受杆的支持力和摩擦力,摩擦力做功为零,故C 可能;当F =k v 0<mg 时,圆环做减速运动到静止,只有摩擦力做功,根据动能定理得-W =0-12m v 20,得W =12m v 20,故A 可能;当F =k v 0>mg 时,圆环先做减速运动,当F =mg 时,圆环不受摩擦力,做匀速直线运动,F =k v =mg 时得v =mg k ,根据动能定理得-W =12m v 2-12m v 20,解得W =12m v 20-m 3g 22k 2,故D 可能.[答案] B命题视角3 利用动能定理解决弹簧弹力做功问题(2015·高考江苏卷)一转动装置如图所示,四根轻杆OA 、OC 、AB 和CB 与两小球及一小环通过铰链连接,轻杆长均为l ,球和环的质量均为m ,O 端固定在竖直的轻质转轴上.套在转轴上的轻质弹簧连接在O 与小环之间,原长为L .装置静止时,弹簧长为32L .转动该装置并缓慢增大转速,小环缓慢上升.弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g .求:(1)弹簧的劲度系数k ;(2)AB 杆中弹力为零时,装置转动的角速度ω0;(3)弹簧长度从32L 缓慢缩短为12L 的过程中,外界对转动装置所做的功W .[思路点拨] 弹簧弹性势能的变化是由弹力做功来量度的,而弹力一般是变力,故通常用动能定理解决此类问题.[解析] (1)装置静止时,设OA 、AB 杆中的弹力分别为F 1、T 1,OA 杆与转轴的夹角为θ1.小环受到弹簧的弹力F 弹1=k ·L2小环受力平衡,F 弹1=mg +2T 1cos θ1 小球受力平衡,F 1cos θ1+T 1cos θ1=mgF 1sin θ1=T 1sin θ1解得k =4mgL.(2)设OA 、AB 杆中的弹力分别为F 2、T 2,OA 杆与转轴的夹角为θ2,弹簧长度为x . 小环受到弹簧的弹力F 弹2=k (x -L )小环受力平衡,F 弹2=mg ,得x =54L对小球,F 2cos θ2=mgF 2sin θ2=m ω20l sin θ2且cos θ2=x2l解得ω0= 8g5L .(3)弹簧长度为12L 时,设OA 、AB 杆中的弹力分别为F 3、T 3,OA 杆与弹簧的夹角为θ3.小环受到弹簧的弹力F 弹3=12kL小环受力平衡,2T 3cos θ3=mg +F 弹3,且cos θ3=L4l对小球,F 3cos θ3=T 3cos θ3+mg F 3sin θ3+T 3sin θ3=m ω23l sin θ3 解得ω3=16gL整个过程弹簧弹性势能变化为零,则弹力做的功为零,由动能定理W -mg ⎝⎛⎭⎫3L 2-L 2-2mg ⎝⎛⎭⎫3L 4-L 4=2×12m (ω3l sin θ3)2 解得W =mgL +16mgl2L.[答案] (1)4mg L (2) 8g5L(3)mgL +16mgl 2L1.[视角1](2014·高考上海卷)如图,竖直平面内的轨道Ⅰ和Ⅱ都由两段细直杆连接而成,两轨道长度相等.用相同的水平恒力将穿在轨道最低点B 的静止小球,分别沿Ⅰ和Ⅱ推至最高点A ,所需时间分别为t 1、t 2;动能增量分别为ΔE k1、ΔE k2.假定球在经过轨道转折点前后速度的大小不变,且球与Ⅰ、Ⅱ轨道间的动摩擦因数相等,则( )A .ΔE k1>ΔE k2;t 1>t 2B .ΔE k1=ΔE k2;t 1>t 2C .ΔE k1>ΔE k2;t 1<t 2D .ΔE k1=ΔE k2;t 1<t 2解析:选B.两轨道长度相等,球与Ⅰ、Ⅱ轨道间的动摩擦因数相等,W f =μ(mg cos α+F sin α)·s =μmgx +μFh ,用相同的水平恒力使它们到达最高点,则水平恒力做功相等,摩擦力做功相等,重力做功相等,根据动能定理W F -mgh -W f =ΔE k 知,动能的增量相等,即ΔE k1=ΔE k2.作出小球在轨道Ⅰ、Ⅱ上运动的v -t 图象如图所示,则t 1>t 2.2.[视角2](2016·北京101中学检测)如图所示,质量为m 的物体静置在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮,由地面上的人以速度v 0向右匀速拉动,设人从地面上平台的边缘开始向右行至绳与水平方向夹角为45°处,在此过程中人所做的功为( )A.m v 202 B .2m v 202 C.m v 204D .m v 20 解析:选C.由题意知,绳与水平方向夹角为45°时,沿绳方向的速度v =v 0cos 45°=2v 02,故质量为m 的物体速度等于2v 02,对物体应用动能定理可知,在此过程中人所做的功为W =12m v 2-0=m v 204,C 正确.3.[视角3]如图所示,倾角为θ的固定斜面的底端有一挡板M ,轻弹簧的下端固定在挡板M 上,在自然长度下,弹簧的上端在O 点处.质量为m 的物块A (可视为质点)从P 点以初速度v 0沿斜面向下运动,PO =x 0,物块A 与弹簧接触后将弹簧上端压到O ′点,然后A 被弹簧弹回.A 离开弹簧后,恰好能回到P 点.已知A 与斜面间的动摩擦因数为μ,重力加速度用g 表示.求:(1)物块A 运动到O 点的速度大小; (2)O 点和O ′点间的距离x 1;(3)在压缩过程中弹簧具有的最大弹性势能E p .解析:(1)物块A 从P 点运动到O 点,只有重力和摩擦力做功,由动能定理可知(mg sin θ-μmg cos θ)x 0=12m v 2-12m v 20得:v =v 20+2g (sin θ-μcos θ)x 0.(2)物块A 从P 点向下运动再向上运动回到P 点的全过程中,根据动能定理: μmg cos θ·2(x 1+x 0)=12m v 20x 1=v 204μg cos θ-x 0.(3)物块A 从O ′点向上运动到P 点的过程中,由能量守恒定律可知: E p =(mg sin θ+μmg cos θ)·(x 1+x 0)解得E p =14m v 20·⎝⎛⎭⎫1μtan θ+1. 答案:(1)v 20+2g (sin θ-μcos θ)x 0(2)v 204μg cos θ-x 0 (3)14m v 20·⎝⎛⎭⎫1μtan θ+11.对动能定理的理解(1)动能定理公式中等号表明了合外力做功与物体动能的变化间的两个关系:①数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.②因果关系:合外力的功是引起物体动能变化的原因.(2)动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的问题时,优先考虑使用动能定理.2.应用动能定理的三理解、两注意(1)三理解:①动能定理说明了合力对物体所做的功和动能变化量间的一种因果关系和数量关系.②动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.③动能定理的表达式是一个标量式,不能在某方向上应用动能定理.(2)两注意:①动能定理往往用于单个物体的运动过程,由于不涉及加速度和时间,比动力学研究方法更简便.②当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解.考点二 利用动能定理解决曲线运动问题在解决曲线运动尤其是平抛运动(抛体运动)、圆周运动时运用运动学公式很难研究过程中的运动参量,不能清晰明确曲线运动的初、末状态运动量;而动能定理一般不涉及中间过程,只与初、末状态有关,因此解决曲线运动有很大优势.命题视角1 与圆周运动相结合的问题(2015·高考全国卷Ⅰ)如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离[思路点拨] 圆周运动中摩擦力做的功与运动速度有关,因为速度影响向心力,向心力影响支持力,而支持力影响摩擦力.[解析] 设质点到达N 点的速度为v N ,在N 点质点受到轨道的弹力为F N ,则F N -mg =m v 2NR ,已知F N =F ′N =4mg ,则质点到达N 点的动能为E k N =12m v 2N =32mgR .质点由开始至N 点的过程,由动能定理得mg ·2R +W f =E k N -0,解得摩擦力做的功为W f =-12mgR ,即克服摩擦力做的功为W =-W f =12mgR .设从N 到Q 的过程中克服摩擦力做功为W ′,则W ′<W .从N 到Q 的过程,由动能定理得-mgR -W ′=12m v 2Q -12m v 2N ,即12mgR -W ′=12m v 2Q ,故质点到达Q 点后速度不为0,质点继续上升一段距离.选项C 正确.[答案] C命题视角2 与平抛运动相结合的问题一探险队员在探险时遇到一山沟,山沟的一侧竖直,另一侧的坡面呈抛物线形状.此队员从山沟的竖直一侧,以速度v 0沿水平方向跳向另一侧坡面.如图所示,以沟底的O 点为原点建立坐标系xOy .已知,山沟竖直一侧的高度为2h ,坡面的抛物线方程为y =12hx 2,探险队员的质量为m .人视为质点,忽略空气阻力,重力加速度为g .(1)求此人落到坡面时的动能;(2)此人水平跳出的速度为多大时,他落在坡面时的动能最小?动能的最小值为多少?[解析] (1)设该队员在空中运动的时间为t ,在坡面上落点的横坐标为x ,纵坐标为y .由运动学公式和已知条件得x =v 0t ①2h -y =12gt 2②根据题意有y =x 22h③ 由动能定理mg (2h -y )=12m v 2-12m v 20④联立①②③④式得12m v 2=12m ⎝ ⎛⎭⎪⎫v 20+4g 2h 2v 20+gh .⑤ (2)⑤式可以改写为v 2=⎝⎛⎭⎪⎫v 20+gh -2gh v 20+gh 2+3gh ⑥ v 2有极小的条件为⑥式中的平方项等于0,由此得 v 0=gh此时v 2=3gh ,则最小动能为⎝⎛⎭⎫12m v 2min =32mgh . [答案] 见解析命题视角3 与平抛、圆周运动相结合的综合问题山谷中有三块石头和一根不可伸长的轻质青藤,其示意图如图所示.图中A 、B 、C 、D 均为石头的边缘点,O 为青藤的固定点,h 1=1.8 m ,h 2=4.0 m ,x 1=4.8 m ,x 2=8.0 m .开始时,质量分别为M =10 kg 和m =2 kg 的大、小两只滇金丝猴分别位于左边和中间的石头上,当大猴发现小猴将受到伤害时,迅速从左边石头的A 点水平跳至中间石头.大猴抱起小猴跑到C 点,抓住青藤下端,荡到右边石头上的D 点,此时速度恰好为零.运动过程中猴子均可看成质点,空气阻力不计,重力加速度g =10 m/s 2.求:(1)大猴从A 点水平跳离时速度的最小值; (2)猴子抓住青藤荡起时的速度大小; (3)猴子荡起时,青藤对猴子的拉力大小. [思路点拨] (1)大猴从A →B 做什么运动?(2)猴子抓住青藤荡起,从C →D ,受几个力作用?其中有哪些力做功?机械能是否守恒? [解析] (1)设大猴从A 点水平跳离时速度的最小值为v min ,根据平抛运动规律,有h 1=12gt 2x 1=v min t代入数据解得v min =8 m/s.(2)设荡起时的速度为v C ,由动能定理得:-(M +m )gh 2=0-12(M +m )v 2C 解得v C =2gh 2=80 m/s ≈9 m/s.(3)设拉力为F T ,青藤的长度为L ,在最低点,根据牛顿第二定律有F T -(M +m )g =(M +m )v 2CL由几何关系得(L -h 2)2+x 22=L 2代入数据解得F T =216 N.[答案] (1)8 m/s (2)9 m/s (3)216 N4.[视角1](2015·高考海南卷)如图所示,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高;质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g .质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )A.14mgR B .13mgR C.12mgR D .π4mgR 解析:选C.在Q 点,质点受重力和支持力作用,由牛顿第二定律有:F N -mg =m v 2R,又F N =2mg ,质点由P 到Q 过程中,由动能定理有:mgR -W f =12m v 2,联立以上各式解得,克服摩擦力所做的功为W f =12mgR ,C 项正确.5.[视角2](2014·高考福建卷)右图为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)若游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R)解析:(1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR ).⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由动能定理,有mg (R -R cos θ)=12m v 2P-0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦又N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R .答案:(1)2gR -(mgH -2mgR ) (2)23R6.[视角3]如图所示,从A 点以某一水平速度v0抛出一质量m =1 kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入∠BOC =37°的光滑圆弧轨道BC ,经圆弧轨道后滑上与C 点等高、静止在粗糙水平面上的长木板上,圆弧轨道C 端的切线水平.已知长木板的质量M =4 kg ,A 、B 两点距C 点的高度分别为H =0.6 m 、h =0.15 m ,R =0.75 m ,物块与长木板之间的动摩擦因数μ1=0.7,长木板与地面间的动摩擦因数μ2=0.2,g =10 m/s 2.求:(1)小物块的初速度v 0及在B 点时的速度大小; (2)小物块滑动至C 点时,对圆弧轨道的压力大小; (3)长木板至少为多长,才能保证小物块不滑出长木板.解析:(1)从A 点到B 点,物块做平抛运动,H -h =12gt 2设到达B 点时竖直分速度为v y ,则v y =gt , 联立解得v y =3 m/s此时速度方向与水平面的夹角为θ=37° 有tan θ=v y /v 0=3/4,得v 0=4 m/s 在B 点时的速度大小v 1=v 20+v 2y =5 m/s.(2)从A 点至C 点,由动能定理有:mgH =12m v 22-12m v 20 设物块在C 点受到的支持力为F N ,则有F N -mg =m v 22R解得:v 2=27 m/s ,F N =47.3 N根据牛顿第三定律可知,物块在C 点时对圆弧轨道的压力大小为47.3 N. (3)小物块与长木板间的滑动摩擦力 F f =μ1mg =7 N长木板与地面间的最大静摩擦力近似等于滑动摩擦力 F ′f =μ2(M +m )g =10 N因为F f <F ′f ,所以小物块在长木板上滑动时,长木板静止不动 小物块在长木板上做匀减速运动则长木板的长度至少为l =v 222μ1g=2.0 m.答案:(1)4 m/s 5 m/s (2)47.3 N (3)2.0 m(1)解决抛体运动都可用动能定理求解速度大小问题,但不能求其方向.(2)圆周运动中用动能定理可把临界点的运动情况推广到圆上各点.(3)用动能定理解决曲线运动问题一定要关注运动交接点的运动状态变化.考点三 动能定理在多阶段多过程问题中的应用当物体的运动是由几个物理过程组成或物体做多过程往复运动,且又不需要研究过程的中间状态时,可以把这几个物理过程看做一个整体进行研究,从而避免每个运动过程的具体细节,具有过程简明、方法巧妙、运算量小等优点.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看做质点)从直轨道上的P 点由静止释放,结果它能在两轨道间做往返运动.已知P 点与圆弧的圆心O 等高,物体与轨道AB 间的动摩擦因数为μ,求:(1)物体做往返运动的整个过程中在AB 轨道上通过的总路程; (2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力; (3)为使物体能顺利到达圆弧轨道的最高点D ,释放点距B 点的距离L ′应满足什么条件.[思路点拨] 首先要判断出物体最后所停留的位置(或过程),即确定末状态,然后再根据动能定理求解全过程问题.[解析] (1)因为摩擦力始终对物体做负功,所以物体最终在圆心角为2θ的圆弧轨道上往复运动.对整体过程由动能定理得: mgR ·cos θ-μmg cos θ·s =0,所以总路程为s =Rμ.(2)对B →E 过程mgR (1-cos θ)=12m v 2E ①F N -mg =m v 2ER ②由①②得F N =(3-2cos θ)mg由牛顿第三定律可知,物体对轨道的压力 F ′N =F N =(3-2cos θ)mg ,方向竖直向下. (3)设物体刚好到达D 点,则mg =m v 2DR③L ′取最小值时,对全过程由动能定理得:mgL ′sin θ-μmg cos θ·L ′-mgR (1+cos θ)=12m v 2D ④由③④得L ′=3+2cos θ2(sin θ-μcos θ)·R故应满足的条件为L ′≥3+2cos θ2(sin θ-μcos θ)·R.[答案] (1)R μ(2)(3-2cos θ)mg ,方向竖直向下 (3)L ′≥3+2cos θ2(sin θ-μcos θ)·R7.(多选)如图所示,一质量m =0.75 kg 的小球在距地面高h =10 m 处由静止释放,落到地面后反弹,碰撞时无能量损失.若小球运动过程中受到的空气阻力f 的大小恒为2.5 N ,g =10 m/s 2.下列说法正确的是( )A .小球与地面第一次碰撞后向上运动的最大高度为5 mB .小球与地面第一次碰撞后向上运动的最大高度为3.3 mC .小球在空中运动的总路程为30 mD .小球在空中运动的总路程为28.75 m解析:选AC.设小球与地面第一次碰撞后向上运动的高度为h 2,从静止释放到第一次碰撞后运动到高度h 2的过程中,由动能定理有mg (h -h 2)-f (h +h 2)=0,解得:h 2=mg -f mg +fh =5 m ,选项A 正确;对小球运动的全过程,由动能定理可得,mgh -fs 总=0,解得s 总=mgh f=30 m ,选项C 正确.8.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,B 、C 在水平线上,其距离d =0.50 m .盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的位置到B 的距离为( )A .0.50 mB .0.25 mC .0.10 mD .0解析:选D.由于BC 面粗糙,物块在BC 面上往返运动不断消耗机械能,直至停止运动.设物块在BC 面上运动的总路程为s .根据动能定理得:mgh -μmgs =0,解得s =h μ=0.300.10m =3 m ,因为30.50=6,可见物块最后停在B 点,D 正确.一、选择题(1~6小题为单选题,7~10小题为多选题)1.(2016·宁波模拟)如图所示,木盒中固定一质量为m 的砝码,木盒和砝码在桌面上以一定的初速度一起滑行一段距离后停止.现拿走砝码,而持续加一个竖直向下的恒力F (F =mg ),若其他条件不变,则木盒滑行的距离( )A .不变B .变小C .变大D .变大变小均可能[导学号76070223] 解析:选B.设木盒质量为M ,木盒中固定一质量为m 的砝码时,由动能定理可知,μ(m +M )gx 1=12(M +m )v 2,解得x 1=v 22μg;加一个竖直向下的恒力F (F =mg )时,由动能定理可知,μ(m +M )gx 2=12M v 2,解得x 2=M v 22(m +M )μg.显然x 2<x 1.2.如图所示,一个人推磨,其推磨杆的力的大小始终为F ,与磨杆始终垂直,作用点到轴心的距离为r ,磨盘绕轴缓慢转动.则在转动一周的过程中推力F 做的功为( )A .0B .2πrFC .2FrD .-2πrF[导学号76070224] 解析:选B.磨盘转动一周,力的作用点的位移为0,但不能直接套用W =Fs cos α求解,因为在转动过程中推力F 为变力.我们可以用微元的方法来分析这一过程.由于F 的方向在每时刻都保持与作用点的速度方向一致,因此可把圆周划分成很多小段来研究,如图所示,当各小段的弧长Δs i 足够小(Δs i →0)时,F 的方向与该小段的位移方向一致,所以有:W F =F Δs 1+F Δs 2+F Δs 3+…+F Δs i =F ·2πr =2πrF (这等效于把曲线拉直).3.(2016·衡水模拟)质量为10 kg 的物体,在变力F 作用下沿x 轴做直线运动,力随坐标x 的变化情况如图所示.物体在x =0处,速度为1 m/s ,一切摩擦不计,则物体运动到x =16 m 处时,速度大小为( )A .2 2 m/sB .3 m/sC .4 m/sD .17 m/s[导学号76070225] 解析:选B.根据F -x 图象可得W 总=40 J ,由动能定理得:W 总=12m v 2-12m v 20,解得v =3 m/s ,B 对4.(2016·太原摸底)如图所示,将质量为m 的小球以速度v 0由地面竖直向上抛出.小球落回地面时,其速度大小为34v 0.设小球在运动过程中所受空气阻力的大小不变,则空气阻力的大小等于( )A.34mg B .316mg C.716mg D .725mg [导学号76070226] 解析:选D.对小球向上运动,由动能定理,-(mg +f )H =0-12m v 20,对小球向下运动,由动能定理,(mg -f )H =12m ⎝⎛⎭⎫34v 02,联立解得f =725mg ,选项D 正确.5.如图所示,质量相等的物体A 和物体B 与地面的动摩擦因数相等,在力F 的作用下,一起沿水平地面向右移动x ,则( )A .摩擦力对A 、B 做功相等B .A 、B 动能的增量相同C .F 对A 做的功与F 对B 做的功相等D .合外力对A 做的总功与合外力对B 做的总功不相等[导学号76070227] 解析:选B.对A 、B 分别受力分析,受力如图所示对A 分析:F N -F sin α-G =0,f =μF N =μ(F sin α+G )对B 分析:F N1=G ,f 1=μF N1=μG ,W f =fL ,W f 1=f 1L ,因为f >f 1,所以W f >W f 1,故A 项错误;根据动能定理可知,A 、B 所受的合外力做的功等于A 、B 物体动能的变化,而A 、B 动能的变化量相等,所以合外力对A 、B 做的功相等,故B 正确,D 错误;F 对B 不做功,只对A 做功,故C 错误.6.如图所示,某滑草场有两个坡度不同的滑道AB 和AB ′(均可看做斜面).质量相同的甲、乙两名游客先后乘坐同一滑草板从A点由静止开始分别沿AB 和AB ′滑下,最后都停在水平草面上,斜草面和水平草面平滑连接,滑草板与草面之间的动摩擦因数处处相同,下列说法正确的是( )A .甲沿斜草面下滑过程中克服摩擦力做的功比乙的多B .甲、乙经过斜草面底端时的速率相等C .甲、乙最终停在水平草面上的同一位置D .甲停下时的位置与B 的距离和乙停下时的位置与B ′的距离相等[导学号76070228] 解析:选C.设斜草面长度为l ,倾角为θ,游客在斜草面上下滑,克服摩擦力做功W =μmgl cos θ,因此甲克服摩擦力做的功少,选项A 错误;由A 点到斜草面底端过程,由动能定理有mgh -μmgl cos θ=12m v 2,可得v B >v B ′,选项B 错误;游客由A 点开始下滑到停在水平草面上,设x 为游客最终停在水平草面上的位置与斜草面底端的距离,由动能定理有mgh -μmg (l cos θ+x )=0,则l cos θ+x =h μ,与斜草面的倾角无关,所以甲、乙最终停在水平草面上的同一位置,选项C 正确、D 错误.7.(2016·南昌模拟)如图所示,与水平面夹角为锐角的斜面底端A 向上有三个等间距点B 、C 和D ,即AB =BC =CD ,D 点距水平面高为h .小滑块以某一初速度从A 点出发,沿斜面向上运动.若斜面光滑,则滑块到达D 位置时速度为零;若斜面AB 部分与滑块有处处相同的摩擦,其余部分光滑,则滑块上滑到C 位置时速度为零,然后下滑.已知重力加速度为g ,则在AB 有摩擦的情况下( )A .从C 位置返回到A 位置的过程中,克服阻力做功为23mgh B .滑块从B 位置返回到A 位置的过程中,动能变化为零C .滑块从C 位置返回到B 位置时的动能为13mgh D .滑块从B 位置返回到A 位置时的动能为23mgh [导学号76070229] 解析:选BC.由于A 、B 、C 和D 等间距,A 、B 、C 和D 所处的高度均匀变化,设A 到B 重力做功为W G ,从A 到D ,根据动能定理,有-3W G =0-12m v 20;若斜面AB 部分与滑块间有处处相同的摩擦,设克服摩擦力做功为W f ,根据动能定理,有-2W G-W f =0-12m v 20,联立解得W G =W f ,所以从C 位置返回到A 位置的过程中克服阻力做功为13mgh ,选项A 错误;从B 位置返回到A 位置时因W G =W f ,所以动能的变化为零,选项B 正确;设滑块下滑到B 位置时速度大小为v B ,根据动能定理,有W G =12m v 2B =13mgh ,选项C 正确,D 错误.8.如图所示,MPQ 为竖直面内一固定轨道,MP 是半径为R 的1/4光滑圆弧轨道,它与水平轨道PQ 相切于P 点,Q 端固定一竖直挡板,PQ 长为x .一小物块在M 端由静止开始沿轨道下滑,与挡板发生一次碰撞后以碰前速率反向弹回,最后停在距离Q 点为l 的地方,重力加速度为g ,则( )A .物块由静止滑至圆弧轨道P 点时速度大小为2gRB .物块由静止滑至圆弧轨道P 点时对轨道压力的大小为mgC .物块与PQ 段的动摩擦因数μ值可能是R x -lD .物块与PQ 段的动摩擦因数μ值可能是R 3x -l[导学号76070230] 解析:选AD.设物块滑至P 点时的速度为v ,根据动能定理有mgR =12m v 2-0,解得v =2gR ,选项A 正确;设物块到达P 点时,轨道对它的支持力大小为F N ,根据牛顿第二定律有F N -mg =m v 2R,解得F N =3mg ,根据牛顿第三定律,物块对轨道压力的大小F ′N =F N =3mg ,选项B 错误;若物块与Q 处的竖直挡板相撞后,向左运动一段距离,停在距Q 为l 的地方.设该点为O ,物块从M 运动到O 的过程,根据动能定理有mgR -μmg (x+l )=0-0,解得μ=R x +l,选项C 错误;若物块与Q 处的竖直挡板相撞后,向左运动冲上圆弧轨道,后又返回水平轨道,停在距Q 为l 的O 点,全程应用动能定理有mgR -μmg (2x +x-l )=0-0,解得μ=R 3x -l,选项D 正确.9.(2016·南宁月考)在有大风的情况下,一小球自A 点竖直上抛,其运动轨迹如图所示(小球的运动可看做竖直方向的竖直上抛运动和水平方向的初速度为零的匀加速直线运动的合运动),小球运动轨迹上的A 、B 两点在同一水平直线上,M 点为轨迹的最高点.若风力的大小恒定,方向水平向右,小球在A 点抛出时的动能为4 J ,在M 点时它的动能为2 J ,落回到B 点时动能记为E k B ,小球上升时间记为t 1,下落时间记为t 2,不计其他阻力,则( )A .x 1∶x 2=1∶3B .t 1<t 2C .E k B =6 JD .E k B =12 J[导学号76070231] 解析:选AD.由小球上升与下落时间相等即t 1=t 2得,x 1∶(x 1+x 2)=1∶22=1∶4,即x 1∶x 2=1∶3,A 正确,B 错误;A →M 应用动能定理得-mgh +W 1=12m v 2M -12m v 2,① 竖直方向有v 2=2gh ②①②式联立得W 1=2 JA →B 风力做功W 2=4W 1=8 J ,A →B 由动能定理W 2=E k B -E k A ,可求得E k B =12 J ,C 错误,D 正确.10.2022年北京和张家口将携手举办冬奥会,因此在张家口建造了高标准的滑雪跑道,来迎接冬奥会的到来.如图所示,一个滑雪运动员从左侧斜坡距离坡底8 m 处自由滑下,当。
第5章-第2讲 动能定理及其应用

和h分别为( D )
A.tan θ和H2 B.2vg2H-1tan θ和H2
C.tan θ和H4 D.2vgH2 -1tan θ和H4
试题
解析
由动能定理有-mgH-
μmgcos
θ
H sin θ
=0-
1 2
mv2,-mgh-μmgcos θ
h sin
θ
=0-
1 2
m
v 2
2,解得
μ= 2vgH2 -1 tan θ,h=
NO.2 题组训练 提升能力
试题
解析
1.(2016·怀化模拟)放在粗糙水平面上的物 体受到水平拉力的作用,在 0~6 s 内其速 度与时间图象和该拉力的功率与时间图 象分别如图甲和乙所示,下列说法正确的
是( C )
A.0~6 s 内物体位移大小为 36 m B.0~6 s 内拉力做的功为 30 J C.合力在 0~6 s 内做的功与 0~2 s 内做 的功相等 D.滑动摩擦力大小为 5 N
第2讲 动能定理及其应用
考点一 考点二 考点三 知能提升演练 上页 下页
考点一
NO.1 梳理主干 填准记牢
NO.2 题组训练 提升能力
2.一物块沿倾角为θ的斜坡向上滑
动.当物块的初速度为v时,上升的最大
高度为H,如图所示;当物块的初速度
为
v 2
时,上升的最大高度记为h.重力加速
度大小为g.物块与斜坡间的动摩擦因数
NO.2 题组训练 提升能力
第2讲 动能定理及其应用
考点一 考点二 考点三 知能提升演练 上页 下页
考点三
NO.1 梳理主干 牢固记忆
2.力学中四类图象所围“面积”的意义
NO.2 题组训练 提升能力
高三物理一轮复习课件:第五章_第二讲_动能_动能定理

(1)物体 A 刚运动时的加速度 aA; (2)t= 1.0 s 时,电动机的输出功率 P;
(1)物体 A 刚运动时的加速度 aA; (2)t= 1.0 s 时,电动机的输出功率 P; (3)若 t= 1.0 s 时,将电动机的输出功率立即调整为 P′ = 5 W,并在以后的运动过程中始终保持这一功率不变,t = 3.8 s 时物体 A 的速度为 1.2m/s,则在 t= 1.0 s 到 t= 3.8 s 这段时间内木板 B 的位移为多少?
②
1 2 [答案] mv0+mg( 2-1)H 4
变式训练 2 如图所示, 物体 A 放在足够长的木板 B 上, 木板 B 静置于水平面.t= 0 时,电动机通过水平细绳以恒力 F 拉木板 B,使它做初速度为零、加速度 aB=1.0m/s2 的匀加 速直线运动.已知 A 的质量 mA 和 B 的质量 mB 均为 2.0 kg, A、B 之间的动摩擦因数 μ1=0.05,B 与水平面之间的动摩擦 因数 μ2=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重 力加速度 g 取 10m/s2.求:
2
= 60 N、μ= 0.2,B 错误,C 正确;由于摩擦力始终对物体 做负功,根据图像可求得物体通过的路程为 12m,由 Wf= μmgs 可得物体克服摩擦力做的功为 480 J,D 正确.
答案 ACD
热点题型探究
题型归纳
题型一
用动能定理处理多过程问题
【例 1】 物体从高出地面 H 米处由 静止自由落下,不考虑空气阻力,落 至地面进入沙坑 h 米停止,如图所 示, 求物体在沙坑中受到的平均阻力 是其重力的多少倍.
答案
BD
2.子弹以某速度击中静止在光滑水平面上的木块,当 x 子弹进入木块深度为 x 时,木块相对水平面移动距离为 , 2 求 木 块获 得 的动能 ΔEk1 和 子 弹损 失的 动能 ΔEk2 之 比 ________.
第五章第二讲动能定理及其应用

[思路点拨] 解答本题时应注意以下三个方面: (1)对木箱做功的力有哪几个; (2)合外力的功与动能变化量的关系; (3)重力做功与重力势能变化的关系。
[解析] 木箱加速上滑的过程中,拉力 F 做正功,重力和 摩擦力做负功.支持力不做功,由动能定理得:WF-WG- Wf=12mv2-0,即 WF=WG+Wf+12mv2,A、B 错误,又因 克服重力做功 WG 等于物体增加的重力势能,所以 WF=ΔEp +ΔEk+Wf,故 D 正确,又由重力做功与重力势能变化的关 系知 C 错误.
足够长,圆形轨道间不相互重叠.重力加速度取g=10 m/s2, 计算结果保留小数点后一位数字.试求:
图5-2-7
(1)小球在经过第一个圆形轨道的最高点时,轨道对小 球作用力的大小; (2)如果小球恰能通过第二个圆形轨道,B、C间距L应是 多少.
[思路点拨] 解答本题时应注意以下两个方面: (1)应用动能定理所选的过程和对应过程中各力做功的 情况. (2)小球在轨道最高点的受力情况及恰好通过圆轨道最 高点的含义.
[典例启迪]
[例1] 如图5-2-1所示,卷扬机
的绳索通过定滑轮用力F拉位于粗
糙斜面上的木箱,使之沿斜面加
速向上移动.在移动过程中,下
列说法正确的是
()
图5-2-1
A.F对木箱做的功等于木箱增加的动能与木箱克服 摩擦力所做的功之和
B.F对木箱做的功等于木箱克服摩擦力和克服重力 所做的功之和
C.木箱克服重力做的功大于木箱增加的重力势能 D.F对木箱做的功等于木箱增加的机械能与木箱克
一、动能
1.定义:物体由于 运动 而具有的能. 2.公式:Ek= 12mv2 . 3.单位:J,1 J=1 N·m=1 kg·m2/s2. 4.矢标性:动能是 标量 ,只有正值.
第五章第2动能定理

【变式训练2】
(2012· 山东济南模拟)如图5-2-4所
示,一质量m=0.5kg的小滑块,在水平拉力F=4N的作用 下,从水平面上的A处由静止开始运动,滑行s=1.75m后由 B处滑上倾角为37° 的光滑斜面,滑上斜面后拉力的大小保持 不变,方向变为沿斜面向上,滑动一段时间后撤去拉力.已 知小滑块沿斜面上滑到的最远点C距B点为L=2m,小滑块 最后恰好停在A处.不计B处能量损失,g取10m/s2,已知 sin37° =0.6,cos37° =0.8.试求:
让小物块沿桌面运动,已知O点至桌边B点的距离为L=2x, 水平桌面的高度为h=5.0m,计算时,可用滑动摩擦力近似 等于最大静摩擦力.(g取10m/s2)求:
图5-2-5
(1)在压缩弹簧过程中,弹簧存贮的最大弹性势能; (2)小物块到达桌边B点时速度的大小; (3)小物块落地点与桌边B的水平距离. [思路分析] 动能定理与弹簧、平抛运动综合应用问题
(3)小滑块由A运动到B,由动能定理得 1 2 Fs-μmgs= mv , 2 由牛顿第二定律得F-mgsin37° =ma, 1 2 由运动学公式得x=vt+ at , 2 联立解得t=0.5s.
答案 24 (1) 35 (2)1.25m (3)0.5s
题型三
动能定理与其他知识的综合应用
【例3】
图5-2-4 (1)小滑块与水平面间的动摩擦因数μ; (2)小滑块在斜面上运动时,拉力作用的距离x; (3)小滑块在斜面上运动时,拉力作用的时间t.
解析
(1)小滑块由C运动到A,由动能定理得
mgLsin37° -μmgs=0, 24 解得μ= . 35 (2)小滑块由A运动到C,由动能定理得 Fs-μmgs+Fx-mgLsin37° =0, 解得x=1.25m.
第5章 第2讲 动能 动能定理

1.(单选)静置于光滑水平面上坐标原点处的小 物块,在水平拉力F作用下,沿x轴方向运动,拉 力F随物块所在位置坐标x的变化关系如图5-2-3 所示,图线为半圆.则小物块运动到x0处时的动能 为( )
A. 0 C.
4
1 B Fm x0 2 Fm x0 D.
4
2 x0
解析:图象与横坐标轴包围的面积表示 拉力做的功,再根据动能定理即可求得最后 的动能. 答案:C
(1)了解由哪些过程构成,选哪个过程研究;
(2)分析每个过程物体的受力情况;
(3)分析各个力的做功情况; (4)从总体上把握全过程,表达出总功,找出 初、末状态的动能;
(5) 对 所 研 究 的 全 过 程 运 用 动 能 定 理 列 方 程.
例3:物体从高出地面H处,由 静止自由下落,如图5-2-2所示, 不考虑空气阻力,落至地面进入沙 坑深h处停止,求物体在沙坑中受 到的平均阻力是其重力的多少倍?
问题:什么情况下优先使用动能定理?
解析:研究对象是单个物体或者没有相对 运动的物体系,在曲线运动和变力问题中,不 涉及加速度和时间时,可优先考虑使用动能定 理,这样可以不考虑和分析运动过程的细节, 使问题简单化,解题过程清晰容易.实际上我 们在解题时,往往首先考虑看能不能用动能定 理求解,然后再考虑其他办法,牛顿运动定律 一般是我们最后考虑的方法.
D.取决于斜面的倾角
解析:设OD=x,OA=h,斜面倾角为,物体 从D点出发,沿DBA滑动到顶点A,过B点(或C点)时 物体与斜面碰撞没有机械能损失,由动能定理得: h 1 2 -mgh- mgcos - mg ( x-hcot )=0- mv0 sin 2 1 2 即 mgx+mgh= mv0 2 解得:v0= 2 g x +h 由上式可见,物体的初速度跟斜面倾角无关.
第5章机械能 第2讲动能定理及其应用

跟
点
踪
突
训
破
练
第22页
第5章
第2讲
与名师对话·系列丛书
基
A.tan θ和H2
础 知 识 回 顾
B.2vg2H-1 tan θ和H2
C.tan θ和H4
核 心
D.2vg2H-1 tan θ和H4
考
点
突
破
第23页
高考总复习·课标版·物理 名 师 微 课 导 学 课 后 跟 踪 训 练
第5章
第2讲
与名师对话·系列丛书
高考总复习·课标版·物理
基
[解析] 由动能定理有
名
础
师
知 识 回
-mgH-μmg cos θsinHθ =0-12 mv2,
微 课 导
顾
学
-mgh-μmg
cos
θ
h sin
θ
=0-12
v m2
2
.
核 心
联立解得μ=2vg2H-1 tan θ,h=H4 ,故D正确.
考
课 后 跟
点
踪
突
训
破
练
第24页
第5章
课 导
顾
(2)动能定理的表达式是标量式,不能在其中一个方向 学
上应用动能定理.
核
(3)动能定理本质上反映了动力学过程中的能量转化与 课
心
后
考 守恒,普遍适用于一切运动过程.
跟
点
踪
突 破
(4)动能定理往往应用于单个物体的运动过程,由于不
训 练
涉及时间,比用运动学规律更加方便.
第21页
第5章
第2讲
与名师对话·系列丛书
高考物理总复习 第五章 第2节 动能定理课件

ppt精选
2
5.公式理解 (1)动能定理公式中等号表明了合外力做功与物体动能的变化 具有等量代换关系。合外力的功是引起物体动能变化的原因。 (2)动能定理中涉及的物理量有 F、l、m、v、W、Ek 等,在处 理含有上述物理量的问题时,优先考虑使用动能定理。
ppt精选
3
[典题例析]
(2014·北京朝阳期中)如图 5-2-1 所
车与地面的摩擦。
图5-2-4
ppt精选
15
(1)若弹簧的劲度系数为k,求轻杆开始移动时,弹簧的压缩 量x;
答案:CD
ppt精选
11
2.如图5-2-3所示,BC是竖直面内的
四分之一圆弧形光滑轨道,下端C与
水平直轨道相切。一个小物块从B点
正上方R处的A点处由静止释放,从
B点刚好进入圆弧形光滑轨道下滑,
图5-2-3
已知圆弧形轨道半径为R=0.2 m,小物块的质量为m=0.1 kg,
小物块与水平面间的动摩擦因数μ=0.5,取g=10 m/s2。小物块
示,MPQ 为竖直面内一固定轨道,MP 是
半径为 R 的14光滑圆弧轨道,它与水平轨道
图 5-2-1
PQ 相切于 P,Q 端固定一竖直挡板,PQ 长为 s。一小物块在 M 端由
静止开始沿轨道下滑,与挡板发生一次碰撞后停在距 Q 点为 l 的地方, 与挡板碰撞过程中无机械能损失,重力加速度为 g。求:
第2节
动能定理
动能定理
[必备知识]
1.内容 力在一个过程中对物体所做的功,等于物体在这个过程中 _动__能__的__变__化 。 2.表达式 W= Ek2-Ek1 。
ppt精选
1
3.物理意义
_合__力__的功是物体动能变化的量度。 4.适用条件 (1)动能定理既适用于直线运动,也适用于曲线运动 。 (2)既适用于恒力做功,也适用于 变力做功 。 (3)力可以是各种性质的力,既可以同时作用,也可以 不同 _时__作__用__。
第5章 第2节 动能定理

【解析】地板上的物体与电梯一起向上运动,以物 体和电梯组成的系统作为研究对象.应用动能定理 1 2 可得:W拉 M m gH M m v ,拉力做的功 2 1 为W拉 M m v 2 M m gH,所以C不正确; 2 分别对电梯和物体应用动能定理可得,合外力对电 1 梯做的功为 Mv 2,答案D正确;地板对物体的支持 2 1 2 力做的功为 mv mgH,所以答案A、B均不正确. 2
为t.由B到 C的过程中,克服摩擦力做功为W,空气 阻力忽略不计,重力加速度为g ,试求:自行车运 动员从B到C至少做多少功?
图523
【解析】运动员在C点时,设速度为v,运动员从C点 1 冲出做竖直上抛运动,则 v v gt,即v gt 2 B到C的过程,用动能定理,则 1 2 W W mv 2 1 2 1 W mv W mg 2t 2 W 2 8
2.(2012· 天津卷)如图526甲所示,静止在水平地面 的物块A,受到水平向右的拉力F作用,F与时间t的 关系如图526乙所示,设物块与地面的静摩擦力最 大值fmax,与滑动摩擦力大小相等,则( )
图526
2.(2012· 天津卷)如图526甲所示,静止在水平地面 的物块A,受到水平向右的拉力F作用,F与时间t的 关系如图526乙所示,设物块与地面的静摩擦力最 大值fmax,与滑动摩擦力大小相等,则( ) A.0~t1时间内F的功率逐渐增大 B.t2时刻物块A的加速度最大 C.t2时刻后物块A做反向运动 D.t3时刻物块A的动能最大
图524
【解析】解法一:物体运动分两个物理过程,先自由 落体,然后做匀减速运动,设物体落至地面时速度为 v,则由动能定理可得 1 2 mgH mv ① 2 第二个物理过程中物体受重力和阻力,同理可得 1 2 mgh Ff h 0 mv ② 2 Ff 点评:(1)动能定理中所说的外力,既可以是重力、 弹力、摩擦力,也可以是任何其他的力,动能定理 中的W是指所有作用在物体上的外力的合力的 功.(2)动能定理的表达式是在物体受恒力作用且做 直线运动的情况下得出的,但对于外力是变力,物 体做曲线运动的情况同样适用.
第五章第2讲动能定理

【基础知识】知识点1、动能1.公式:Ek=mv2,式中v为瞬时速度.2.动能是标量,只有正值,动能与速度的方向无关.3.动能的变化量ΔEk=mv-mv.【针对训练】1.关于动能的理解,下列说法正确的是( )A.动能是机械能的一种表现形式,凡是运动的物体都具有动能B.物体的动能总为正值C.一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化D.动能不变的物体,一定处于平衡状态知识点2、动能定理1.内容:合外力对物体所做的功等于物体动能的增量.2.表达式 W=ΔEk=mv-mv.3.功与动能的关系(1)W>0,物体的动能增加. (2)W<0,物体的动能减少. (3)W=0,物体的动能不变.4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动.(2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用.【针对训练】2.(2013届辽宁省实验中学检测)木球从水面上方某位置由静止开始自由下落,落入水中又继续下降一段距离后速度减小到零.把木球在空中下落过程叫做Ⅰ过程,在水中下落过程叫做Ⅱ过程.不计空气和水的摩擦阻力.下列说法中正确的是( )A.第Ⅰ阶段重力对木球做的功等于第Ⅱ阶段木球克服浮力做的功B.第Ⅰ阶段重力对木球做的功大于第Ⅱ阶段木球克服浮力做的功C.第Ⅰ、第Ⅱ阶段重力对木球做的总功和第Ⅱ阶段合力对木球做的功的代数和为零D.第Ⅰ、第Ⅱ阶段重力对木球做的总功等于第Ⅱ阶段木球克服浮力做的功考点1、对动能定理的理解1.总功的计算物体受到多个外力作用时,计算合外力的功,要考虑各个外力共同做功产生的效果,一般有如下两种方法:(1)先由力的合成或根据牛顿第二定律求出合力F合,然后由W=F合lcos α计算.(2)由W=Flcos α计算各个力对物体做的功W1、W2、…Wn然后将各个外力所做的功求代数和,即W合=W1+W2+…+Wn.2.动能定理公式中等号的意义(1)数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力的功,进而求得某一力的功.(2)单位相同:国际单位都是焦耳.(3)因果关系:合外力的功是物体动能变化的原因.3.动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面为参考系.例1、(2013届中山模拟)质量为m的物体在水平力F的作用下由静止开始在光滑地面上运动,前进一段距离之后速度大小为v,再前进一段距离使物体的速度增大为2v,则( )A.第二过程的速度增量等于第一过程的速度增量B.第二过程的动能增量是第一过程动能增量的3倍C.第二过程合外力做的功等于第一过程合外力做的功D.第二过程合外力做的功等于第一过程合外力做功的2倍【即学即用】1. (2013届大连一中检测)某物体同时受到两个在同一直线上的力F1、F2的作用,由静止开始做直线运动,力F1、F2与位移x的关系图象如图所示,在物体开始运动后的前4.0 m内,物体具有最大动能时对应的位移是( )A.2.0 m B.1.0 m C.3.0 m D.4.0 m考点2、动能定理的应用1.基本步骤(1)选取研究对象,明确它的运动过程.(2)分析研究对象的受力情况和各力的做功情况。
课件1:5.2 动能定理

v'=v cos 45° g(
h22 l 2
-l)=
1mv2+
2
12Mv'2
⑤
联立③④⑤式并代入数据解得v=0.72 m/s。
2-2 如图所示,光滑斜面与水平面在B点平滑连接,质量为0.20 kg 的物体从斜面上的A点由静止开始下滑,经过B点后进入水平面( 设经过B点前后速度大小不变),最后停在水平面上的C点。每隔0. 20 s通过速度传感器测量物体的瞬时速度,下表给出了部分测量 数据。取g=10 m/s2。
解法一 对物体在斜面上和水平面上时分别进行受力分析,如图
所示,知下滑阶段有FN1=mg cos 37°,故
F1=μFN1=μmg cos 37°。
由动能定理有
mgx1 sin 37°-μmg cos 37°·x1= 12m v12 ①
在水平面上运动过程中F2=μFN2=μmg
由动能定理有-μmgx2=0-
【解析】
对物体m用动能定理:
WFN
-mgH=
1 2
mv2,故
WFN =mgH+
1 2
mv2,A、B均错。
钢索的拉力做的功: WF拉
=(M+m1 )gH+
2
(M+m)v2,故C错误。
由动能定理知,合力对电梯做的功应等于电梯动能的变化量12 Mv2,
故D正确。
【答案】 D
1-1 一人乘竖直电梯从1楼到12楼,在此过程中经历了先加速,后 匀速,再减速的运动过程,则下列说法正确的是 ( ) A.电梯对人做功情况:加速时做正功,匀速时不做功,减速时做负 功 B.电梯对人做功情况:加速和匀速时做正功,减速时做负功 C.电梯对人做的功等于人动能的增加量 D.电梯对人做的功和重力对人做的功的代数和等于人动能的增 加量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 第二单元
第8页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
4.动能定理的适用条件:动能定理既适用于直线运动, 变力 也适用于 曲线运动 ; 既 适 用 于 恒 力 做 功 , 也 适 用 于 ______ 做功 _______.力可以是各种性质的力,既可以同时作用,也可以 不同时作用 .
第五章 第二单元
第29页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
例2
[2012·北京高考]如图所示,质量为m的小物块在粗
糙水平桌面上做直线运动,经距离l后以速度v飞离桌面,最终
落在水平地面上.已知l=1.4 m,v=3.0 m/s,m=0.10 kg,物
块与桌面间的动摩擦因数μ=0.25,桌面高h=0.45 m.不计空 气阻力,重力加速度g取10 m/s2.求:
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
第二单元
动能定理
第五章 第二单元
第1页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
核心考点导学
第五章 第二单元
第2页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
第五章 第二单元
第6页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
1.关于动能的理解,下列说法正确的是(
有动能 B.物体的动能不可能为负值
)
A.动能是机械能的一种表现形式,凡是运动的物体都具
C.一定质量的物体动能变化时,速度一定变化,但速度
变化时,动能不一定变化
D.动能不变的物体,一定处于平衡状态 答案:ABC
第五章 第二单元
第26页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
(三)一语道破天机 (1)动能定理往往用于单个物体的运动过程,由于不涉及加 速度及时间,比动力学研究方法要简捷.
(2)动能定理表达式是一个标量式,不能在某个方向上应用
动能定理. (3)物体在某个运动过程中包含有几个运动性质不同的小过 程(如加速、减速的过程),此时可以分段考虑,也可以对全过 程考虑,但如能对整个过程利用动能定理列式,则可使问题简
(2)选手摆到最高点时松手落入水中,(如图所示)对选手由 动能定理得:
mg(H-lcosα+d)-(F1+F2)d=0-0
③
解得:d=1.2 m
第五章 第二单元
第25页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
(3)选手摆到最低点时松手将做平抛运动,则: 1 2 竖直方向:H-l= gt 2 水平方向:x=vt 可解得:x= 4lH-l1-cosα H 可知当 l= =1.5 m 时,x 取最大值,落点距岸边最远. 2 ④ ⑤
例1
[2010·江苏单科,14]在游乐节目中,选手需借助悬
挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进 行了讨论.如图所示,他们将选手简化为质量m=60 kg的质
点,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角α=
53°,绳的悬挂点O距水面的高度为H=3 m.不考虑空气阻力 和绳的质量,浮台露出水面的高度不计,水足够深.取重力加 速度g=10 m/s2,sin53°=0.8,cos53°=0.6.
对选手的平均浮力F1=800 N,平均阻力F2=700 N,求选手落
入水中的深度d; (3)若选手摆到最低点时松手,小明认为绳越长,在浮台上 的落点距岸边越远;小阳却认为绳越短,落点距岸边越远.请 通过推算说明你的观点.
第五章 第二单元
第22页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
第五章 第二单元
第14页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
如果一个物体受到力的持续作用使物体的运动状态发生变 化时,如果只涉及位移和速度,而不涉及时间时,应当首先考 虑应用动能定理.
第五章 第二单元
第15页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
(一)解读审题视角 解答本题关键把握三点:
(1)分析清楚每一问中选手的运动类型,如第(1)问中为圆周
运动,第(2)问中为直线运动,第(3)问中为平抛运动. (2)应用动能定理时,搞清哪些力做了功. (3)会用数学方法解决物理问题.
第五章 第二单元
第23页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
1.动能的相对性:由于速度具有相对性,所以动能也具 有相对性,大小与参考系的选取有关,中学物理中,一般选取 地面为参考系.
第五章 第二单元
第5页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
2.动能的变化:物体末动能与初动能之差. 1 2 1 2 即 ΔEk= mv2- mv1. 2 2 说明:(1)表达式中 v1、v2 均指瞬时速度. (2)ΔEk>0,表示物体的动能增大.ΔEk<0,表示物体的动 能减小. (3)同一物体速度的变化量相同,但动能的变化量不相同. (意即 v2-v1 相同,但 v2-v2不相同) 2 1
第五章 第二单元
第9页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
1.一个物体的动能变化ΔEk与合外力对物体所做功W具有 等量代换关系.
(1)若ΔEk>0,表示物体的动能增加,其增加量等于合外力
对物体所做的正功; (2)若ΔEk<0,表示物体的动能减少,其减少量等于合外力 对物体所做的负功的绝对值; (3)若ΔEk=0,表示合外力对物体所做的功等于零.反之亦 然.这种等量代换关系提供了一种计算变力做功的简便方法.
小、方向怎样变化?
第五章 第二单元
第28页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
[解析]
由力的平衡条件可知,支持力FN=mgcosα,随板
的转动(α增大)而减少,而方向始终与物体的速度方向同向,是
一个变力.
对物体的运动过程应用动能定理,有 WN+WG+Wf=0 其中Wf 为静摩擦力做的功,且Wf =0,WG =-mglsinα, 所以WN=mglsinα.
师说: 从能量角度分析和求解物理问题是物理学分析和解决问题
的重要方法,使用动能定理,由于只需从力在整个位移内做的
功和这段位移始末两状态的动能变化去考虑,无需注意其中运 动状态变化的细节,动能为标量,求解会更方便,因此做题要 优先考虑能量观点.
第五章 第二单元
第3页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
1.定义:物体由于 运动 而具有的能. 1 2 2.公式:Ek= 2mv .动能与 v 对应,是状态量. 3.单位: J,1 J=1 N· m=1 kg· 2/s2. m 4.矢标性:动能是 标量 ,只有正值. 5.动能的变化量: 末动能 减初动能,是过程量.
第五章 第二单元
第4页
金版教程 · 高三物理
第五章 第二单元
第13页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
5.应用动能定理的一般步骤 (1)选取研究对象,明确它的运动过程. (2)分析研究对象的受力情况和各力的做功情况: 受哪些力 ―→ 各力是否做功 ―→ 做正功还是负功 ―→ 做多少功 ―→ 各力做功的代数和 (3)明确物体在过程的始末状态的动能 Ek1 和 Ek2. (4)列出动能定理的方程 W 合=Ek2-Ek1,及其他必要的解 题方程,进行求解.
第五章 第二单元
第11页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
3.动能定理中涉及的物理量有F、x、m、v、W、Ek等, 在处理含有上述物理量的力学问题时,可以考虑使用动能定
理.由于只需要从力在整个位移内做的功和这段位移始、末两
状态动能变化去考虑,无需注意其中运动状态变化的细节,同 时动能和功都是标量,无方向性,所以无论是直线运动或曲线 运动,计算都会特别方便.
第五章 第二单元
第12页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
4.动能定理中的位移和速度必须是相对于同一个参考系 的,一般以地面为参考系.
注意:功和动能都是标量,动能定理表达式是一个标量
式,不能在某一个方向上应用动能定理,但牛顿第二定律是矢 量方程,可以在互相垂直的方向上分别使用分量方程.
化.
第五章 第二单元
第27页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
1.如图所示,质量为m的小物体静止于长l的木板边 缘.现使板由水平放置绕其另一端O沿逆时针方向缓缓转过α 角,转动过程中,小物体相对板始终静止,求板对物体的支持
力对物体做的功.
[思路分析]
木板缓缓转动过程中,物体所受支持力的大
第五章 第二单元
第20页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
第五章 第二单元
第21页
金版教程 · 高三物理
核心考点导学 考向案例研究 单元精彩视窗 限时规范特训
(1)求选手摆到最低点时对绳拉力的大小F; (2)若绳长l=2 m,选手摆到最高点时松手落入水中.设水