八年级数学上册第4章一次函数单元综合测试题(含解析) (2)
第四章一次函数 单元测试2024-2025学年北师大版数学八年级上册

O yx O y x x y O O y x 第四章 一次函数单元测试(共120分,100分钟)一、选择题:(每小题3分,共30分)1.一次函数83y x =-+的图象经过的象限是( )A.一、二、三B.二、三、四C.一、二、四D.一、三、四2.若y=(m -2)x+m 2-4是正比例函数,则m 的取值是( )A .2B .-2C .±2D .任意实数3.已知点()14,y -,()22,y 都在直线122y x =-+上,则1y ,2y 大小关系是( ) A.12y y > B.12y y = C.12y y < D.不能比较4.如图,函数y=kx+k 的图象可能是下列图象中( )A B C D5.下列函数中,是正比例函数,且y 随x 增大而减小的是( )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2x y -= 6.已知3-y 与x 成正比例,且x =2时,y =7,则y 与x 的函数关系式为( )A .32+=x yB .32-=x yC .323+=-x yD .33-=x y7.下列各点,在直线y =x +5上的是( )A . (0,4)B .(-1,2)C .(2,6)D . (-5, 0)8.若将直线23y x =-向下平移3个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+说法正确的是( )A.经过第一、二、四象限B.与x 轴交于()2,0-C.与y 轴交于(0,6)D.y 随x 的增大而增大 9.关于x 的函数()3y k x k =-+,给出下列结论:①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点()1,3-;③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<.其中正确结论的序号是( )A.①②④B.①③④C.①②③④D.②③④10.如图,点B 在直线2y x =上,过点B 作BA x ⊥轴于点A ,作//BC x 轴与直线()0y kx k =≠交于点C ,若:1:2AB BC =,则k 的值是( )A.27B.23C.13D.25二、填空题:(每小题4分,共28分)11.一次函数图象过(1,2)且y 随x 的增大则减小,请写出一个符合条件的函数解析式 .12.直线y = -3x +6与x 轴交点坐标是 .13.一次函数y=kx+b 的图像位于第一、三、四,则y 随x 的增大而_________.14.直线63+=x y 与两坐标轴围成的三角形的面积是15.若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =__________.16.若k x k y )1(-=-7是一次函数,则k = .17.若点A (x ,4),B (0,8)和C (-4,0)在同一直线上,则x = .三、解答下列各题:(共62分)18.(9分)已知一次函数2(2)312y k x k =--+.(1)k 为何值时,图象经过原点;(2)k 为何值时,图象与直线y = -2x +9的交点在y 轴上;(3)k 为何值时,图象平行于2y x =-的图象;19.(9分)如图是某汽车行驶的路程S (km )与时间t (min)的函数关系图.回答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间?(3)当16≤t ≤30时,求S 与t 的函数关系式.20.(10分)直线122y x =-+分别交x 轴,y 轴于A,B 两点,O 是原点,直线y=kx+b 经过AOB △的顶点A 或B,且把AOB △分成面积相等的两部分,求该直线所对应的函数表达式.9 16 30 t /minS /km40 1221.(10分)如图,直线132y x =-+与x,y 轴分别交于A,B 两点.(1)分别求点A 、点B 的坐标.(2)在x 轴上有一点M,线段AB 上有一点N,当OMN △是以ON 为斜边的等腰直角三角形时,求点M 的坐标。
北师大版八年级数学上册 第4章 一次函数 单元基础卷 (含详解)

第4章《一次函数》(单元基础卷)一、单选题(本大题共10小题,每小题3分,共30分)1.若点在函数的图象上,则的值是( )A .1B .-1C.D .2.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( )A .B .C .D .3.已知点(-1,y 1),(4,y 2)在一次函数y=3x-2的图象上,则,,0的大小关系是( )A .B .C .D .4.已知一次函数不经过第三象限,则的取值范围是( )A .B .C .D .5.将一次函数y=kx+2的图象向下平移3个单位长度后经过点(-4,3),则k 的值为( )A .-1B .2C .1D .-26.一次函数与的图象如图,则下列结论:①;②;③当时,,其中正确的结论有( )A .0个B .1个C .2个D .3个7.对于一次函数,下列结论错误的是( )A .函数值随自变量的增大而减小()2,A m -12y x =-m 1414-24y x =+31y x =-31y x =-+24y x =-+1y 2y 120y y <<120y y <<120y y <<210y y <<()2y k x k =-+k 2k ≠2k >02k <<02k ≤<1y kx b =+2y x a =+0k <0a >3x <12y y <24y x =-+B .函数的图象不经过第三象限C .函数的图象与x 轴的交点坐标为(0,4)D .函数的图象向下平移4个单位长度得到的图象8.数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b,相交于点P ,根据图象可知,方程x+5=ax+b 的解是( )A .x=20B .x=5C .x=25D .x=159.如图,直线y 1=x+3分别与x 轴、y 轴交于点A 和点C ,直线y 2=﹣x+3分别与x 轴、y 轴交于点B 和点C ,点P (m ,2)是△ABC 内部(包括边上)的一点,则m 的最大值与最小值之差为( )A .1B .2C .4D .610.如图,函数的图象分别与x 轴、y 轴交于A ,B 两点,线段绕点A 顺时针旋转得到线段,则点C 的坐标为( )A .B .C .D .二、填空题(本大题共8小题,每小题4分,共32分)2y x =-22y x =-+AB 90︒AC (2,1)(1,2)(3,1)(1,3)11.函数x 的取值范围是________.12.已知点,都在直线上,则______.13.若点在直线上,则代数式的值为______.14.一次函数y=x+m+2的图象不经过第二象限,则m 的取值范围是 _______.15.若一次函数________.16.若一次函数y =kx+2的图象,y 随x 的增大而增大,并与x 轴、y 轴所围成的三角形的面积为2,则k =_____.17.如图,把放在平面直角坐标系内,其中,,点,的坐标分别为,,将沿轴向右平移,当点落在直线上时,线段扫过的面积为______.18.如图,已知点,,直线经过点.试探究:直线与线段有交点时的变化情况,猜想的取值范围是______.三、解答题(本大题共6小题,共58分)19.(8分)已知关于的函数,当,为何值时,它是正比例函数?20.(8分)一次函数(为常数,且).y =()1,A m y ()21,B m y +23y x =-21y y -=(),P a b 21y x =-842a b -+y ax b =+=Rt ABC △90CAB а=5cm =BC A B ()1,0()4,0ABC V x C 26y x =-BC 2cm ()2,3A -()2,1B y kx k =+()1,0P -AB k k x ||1(2)5m y m x n -=++-m n 1=-+y ax a a 0a <(1)若点在一次函数的图象上,求的值;(2)当时,函数有最大值2,求的值.21.(10分)如图,已知正比例函数的表达式为y=﹣x ,过正比例函数在第四象限图象上的一点A 作x 轴的垂线,交x 轴于点H ,AH =2,求线段OA 的长.22.(10分)如图,已知点A(6,4),直线l 1经过点B(0,2)、点C(3,−3),且与x 轴交于点D ,连接AD 、AC ,AC 与x 轴交于点P .()2,3-1=-+y ax a a 12x -≤≤a 12(1) 求直线l1的表达式,并求出点D的坐标;(2) 在线段AD上存在一点Q.使S△PDQ=S△PDC,请求出点Q的坐标;(3) 一次函数y=kx+k+5的图象为l2,若点A,D到l2的图象的距离相等,直接写出k的值.23.(10分)某快递公司为提高快递分拣的速度,决定购买甲、乙两种型号的机器人共20台来代替人工分拣,两种型号机器人的工作效率和价格如下表:型号甲乙每台每小时分拣快递件数/件800600每台价格/万元3 2.5设购买甲种型号的机器人x 台,购买这20台机器人所花的费用为y 万元.(1)求y 与x 之间的函数关系式;(2)若要求这20台机器人每小时分拣快递件数总和不少于12700件,则该公司至少需要购买几台甲种型号的机器人?此时所花费的费用为多少万元?24.(12分)如图,一次函数的图象与轴,轴分别交于,两点,在轴上有一点,动点从点以每秒2个单位长度的速度向左移动,y kx b =+x y (30)A ,(01)B ,y (03)C ,P A(1)求直线的表达式;(2)求的面积与移动时间之间的函数关系式;(3)当为何值时,≌,求出此时点的坐标.参考答案一、单选题1.AAB COP ∆S t t COP ∆AOB ∆P【分析】将x=-2代入一次函数解析式中求出m 值,此题得解.解:当x=-2时,y=-×(-2)=1,∴m=1.故选A .2.D【分析】设一次函数关系式为y=kx+b ,y 随x 增大而减小,则k<0;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.解:设一次函数关系式为y=kx+b ,∵图象经过点(1,2),∴k+b=2;∵y 随x 增大而减小,∴k<0.即k 取负数,满足k+b=2的k 、b 的取值都可以故选:D.3.B【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出、的值,将其与0比较大小后即可得出结论.解:∵点(-1,),(4,)在一次函数y=3x-2的图象上,∴=-5,=10,∵10>0>-5,∴<0<.故选:B .4.D【分析】根据一次函数的图象与k 、b 的关系列不等式组求解即可.解:∵一次函数的图象不经过第三象限,∴,,∴,故选:D .5.A121y 2y 1y 2y 1y 2y 1y 2y ()2y k x k =-+20k -<0k ≥02k ≤<【分析】根据平移的规律得到y=kx+2-3,然后根据待定系数法即可求得k 的值,从而求得正比例函数的表达式.解:将一次函数y=kx+2的图象向下平移3个单位长度后得到y=kx+2-3=kx-1,∵平移后的函数图象经过点(-4,3),∴3=-4k-1,解得k=-1,故选:A .6.B【分析】根据一次函数的增减性可得,再根据一次函数与轴的交点位于轴负半轴可得,然后根据当时,一次函数的图象位于一次函数的图象的上方可得,由此即可得出答案.解:对于一次函数而言,随的增大而减小,,结论①正确;一次函数与轴的交点位于轴负半轴,,结论②错误;由函数图象可知,当时,一次函数的图象位于一次函数的图象的上方,则,结论③错误;综上,正确的结论有1个,故选:B .7.C【分析】根据一次函数的图象和性质,平移的规律以及函数图象与坐标轴的交点的求法即可判断.解:A 、∵k=-2<0,∴函数值随自变量的增大而减小,故选项不符合题意;B 、∵k=-2<0,b=4>0,函数经过第一、二、四象限,不经过第三象限,故选项不符合题意;C 、当y=0时,x=2,则函数图象与x 轴交点坐标是(2,0),故选项符合题意;D 、函数的图象向下平移4个单位长度得y=-2x+4-4=-2x ,故选项不符合题1y kx b =+0k <2y x a =+y y 0a <3x <1y kx b =+2y x a =+12y y > 1y kx b =+1y x 0k ∴< 2y x a =+y y 0a ∴<3x <1y kx b =+2y x a =+12y y >意;故选:C.8.A【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.解:由图可知:直线y=x+5和直线y=ax+b交于点P(20,25),∴方程x+5=ax+b的解为x=20.故选:A.9.B【分析】由于P的纵坐标为2,故点P在直线y= 2上,要求符合题意的m 值,则P点为直线y= 2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.解:∵点P (m, 2)是△ABC内部(包括边上)的点.∴点P在直线y= 2上,如图所示,,当P为直线y= 2与直线y2的交点时,m取最大值,当P为直线y= 2与直线y1的交点时,m取最小值,∵y2 =-x+ 3中令y=2,则x= 1,∵y1 =x+ 3中令y=2,则x= -1,∴m的最大值为1, m的最小值为- 1.则m的最大值与最小值之差为:1- (-1)= 2.故选:B.10.C【分析】过C点作CD⊥x轴于D,如图,先利用一次函数图象上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=OA=1,则C点坐标可求.解:过C 点作CD ⊥x 轴于D ,如图.∵y =−2x +2的图象分别与x 轴、y 轴交于A ,B 两点,∴当x =0时,y =2,则B (0,2),当y =0时,−2x +2=0,解得x =1,则A (1,0).∵线段AB 绕A 点顺时针旋转90°,∴AB =AC ,∠BAC =90°,∴∠BAO +∠CAD =90°,而∠BAO +∠ABO =90°,∴∠ABO =∠CAD .在△ABO 和△CAD 中,∴△ABO ≌△CAD ,∴AD =OB =2,CD =OA =1,∴OD =OA +AD =1+2=3,∴C 点坐标为(3,1).故选:C .二、填空题11.且【分析】根据二次根式中被开方数大于等于0及分母不为0即可求解.解:由题意可知:,解得:且,故答案为:且.AOB CDA ABO CAD AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩0x ≥2x ≠020x x ≥⎧⎨-≠⎩0x ≥2x ≠0x ≥2x ≠【分析】分别把A 、B 的坐标代入,求得、再计算即可.解:把代入得=2m -3,把代入得=2(m +1)-3=2m -1,∴=(2m -1)-(2m -3)=2m -1-2m +3=2故答案为:213.6【分析】把点P 代入一次函数解析式,可得,化简带值可求出结论.解:∵点在直线上,∴,变形得:,代数式;故答案为:6.14.m ≤-2【分析】由一次函数y=x+m+2的图象不经过第二象限,可得k >0,b ≤0,列不等式求解即可.解:∵一次函数y=x+m+2的图象不经过第二象限,∴m+2≤0,解得m ≤-2,故答案为:m ≤-2.15.【分析】首先根据一次函数的位置确定a 和b 的值,然后化简二次根式求23y x =-1y 2y 21y y -()1,A m y 23y x =-1y ()21,B m y +23y x =-2y 21y y -21b a =-(),P a b 21y x =-21b a =-21a b -=()8428228216a b a b -+=--=-⨯=b-解:∵若一次函数y=ax+b 的图象经过第一、二、四象限,∴a <0,b >0,∴b-a >0,,故答案为-b .16.1【分析】如图,根据题意可求出OA .根据一次函数y =kx+2的图象,y 随x 增大而增大,即可利用k 表示出OB 的长,再根据三角形面积公式,即可求出k 的值.解:如图,令x=0,则y=2,∴A(0,2),∴OA=2.令y=0,则,∴B(,0).∵一次函数y =kx+2的图象,y 随x 增大而增大,∴k >0,∴OB=,∵一次函数y =kx+2的图象与两坐标轴围成的三角形面积为2,∴,即,a a b a b -=--+=-2x k=-2k -2k 122OA OB ⋅=12222k ⨯⨯=解得:.故答案为:1.17.16【分析】先根据勾股定理求出C 点的坐标,得到C 点平移后的对应点C 1的纵坐标为4,与直线 相交,可得C 1坐标,由此推出CC 1距离,再求出四边形BCC 1B 1的面积即可.解:∵A (1,0),B (4,0)∴AB=3∵,∠CAB=90°,∴∴C (1,4),∴C 点平移后对应点C 1的纵坐标为4,∴把代入解得,∴CC 1=4,∴,故答案为:16.18.或【分析】根据题意,画出图象,可得当x=2时,y ≥1,当x=-2时,y ≥3,即可求解.解:如图,1k =26y x =-5BC =4AC ==4y =26y x =-5x =11116BCC B S CC AC =⨯=13k ≥3k ≤-观察图象得:当x=2时,y ≥1,即,解得:,当x=-2时,y ≥3,即,解得:,∴的取值范围是或.故答案为:或三、解答题19.解:是正比例函数,且且,解得,.即当,时,函数是正比例函数.20.解:(1)把(2,-3)代入得,解得;(2)∵a <0时,y 随x 的增大而减小,则当x=-1时,y 有最大值2,把x=-1代入函数关系式得 2=-a-a+1,解得,所以.21.解:∵AH ⊥x 轴,AH =2,点A 在第四象限,∴A 点的纵坐标为﹣2,21k k +≥13k ≥23k k -+≥3k ≤-k 13k ≥3k ≤-13k ≥3k ≤-||1(2)5m y m x n -=++- 20m ∴+≠||11m -=50n -=2m =5n =2m =5n =||1(2)5m y m x n -=++-1=-+y ax a 213a a -+=-4a =-12a =-12a =-代入得,解得x =4,∴A (4,﹣2),∴OH =4,∴OA.22.(1)解:设l 1的表达式为y=kx+b(k≠0),∵l 1经过点B(0,2)、点C(3,−3),∴,解得,∴l 1的函数表达式:y=x+2.∵点D 为l 1与x 轴的交点,故令y=0,x+2=0,解得x=,∴点D 坐标为,0);(2)解:由(1)同理可得AD 所在直线的一次函数表达式为:,∵点Q 在线段上,∴设点Q 坐标为,其中.∵,∴,即,解得,满足题意.∴点Q 坐标为;(3)解:∵y=kx+k+5=(k+1)x+5,∴直线l 2过定点(-1,5),12y x =-122x -=-==233b k b =⎧⎨-=+⎩532k b ⎧=-⎪⎨⎪=⎩53-53-6565516y x =-AD 516m m ⎛⎫- ⎪⎝⎭,665m ≤≤PDQ PDC S S =V V Q C y y =-5136m -=245=m 2435⎛⎫⎪⎝⎭∵点A ,D 到l 2的图像的距离相等,∴当l 2与线段AD 平行或过线段AD 中点,当l 2与线段AD 平行时,k=;当l 2过线段AD 中点(,2)时,∴2=k+k+5,解得:k=;综上,k 的值为或.23.(1)解:y 与x 之间的函数关系式为:y=3x+2.5(20-x ),=3x+50-2.5x=0.5x+50(0≤x ≤20);(2)解:由题可得:800x+600(20-x )≥12700,解得x ≥3.5,∴当x=4时,y 取得最小值,∴y 最小=0.5×4+50=52.∴该公司至少需要购买4台甲种型号的机器人;此时所花费的费用为52万元.24.解:解(1)设直线AB 的表达式为将,两点代入得解得 ∴AB 的表达式为(2) 561851851523-561523-(0)y kx b k =+≠(30)A ,(01)B ,301k b b +=⎧⎨=⎩131k b ⎧=-⎪⎨⎪=⎩113y x =-+3322÷=当时当时(3)若≌时当 时, ,此时P 的坐标为;当 时, ,此时P 的坐标为;302t <≤13(32)22S OP OC t =⋅=-32t >13(23)22S OP OC t =⋅=-COP ∆AOB ∆OP OB=(0,1)B 1OB =∴1OP ∴=321t -=1t =(1,0)231t -=2t =(1,0)-。
(北师大版)济南市八年级数学上册第四单元《一次函数》检测(含答案解析)

一、选择题1.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示y 与x 之间的函数关系,下列结论: ①甲、乙两地相距1800千米;②点B 的实际意义是两车出发后4小时相遇; ③动车的速度是280千米/小时;④6m =,900n =. 则结论一定正确的个数是( )A .1个B .2个C .3个D .4个2.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x ﹣k 的图象大致是( ) A .B .C .D .3.下列命题是假命题的是( ). A 10 B .若点A (-2,a ),B (3,b )在直线y=-2x+1,则a>bC .数轴上的点与有理数一一对应D .点A (2,5)关于y 轴的对称点的坐标是(-2,5)4.一次函数y =-3x -2的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限5.如图,在平面直角坐标系中,函数2y x =和y x =-的图象分别为直线1l ,2l ,过点()1,0作x 轴的垂线交1l 于点1A ,过点1A 作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4A ,…,依次进行下去,则点2018A 的坐标为( ).A .()100910092,2 B .()100910092,2-C .()100910102,2--D .()100910102,2-6.已知点()()()1232,,1,,1,y y y -- 都在直线y=-3x+m 上,则 123,,y y y 的大小关系是( )A .123y y y >>B .132y y y >>C .231y y y >>D .321y y y >>7.一次函数y mx n =-+的图象经过第二、三、四象限,则化简22()m n n -+所得的结果是( ) A .mB .m -C .2m n -D .2m n -8.某快递公司每天上午7:008:00-为集中件和派件时段,甲仓库用来揽收快件,乙仓库用来派发件快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,下列说法正确的个数为:①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为4件:③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同( )A .1个B .2个C .3个D .4个9.下列各图象中,y 不是..x 的函数的是( )A.B.C.D.10.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为()A.22 B.22.5 C.23 D.2511.如图所示,小刚家,菜地,稻田在同一条直线上.小刚从家去菜地浇水,又去稻田除草,然后回家.如图反映了这个过程中,小刚离家的距离y与时间x之间的对应关系.如果菜地和稻田的距离为akm,小刚在稻田除草比在菜地浇水多用了bmin,则a,b的值分别为()A .1,8B .0.5,12C .1,12D .0.5,812.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( ) A .y=x+2B .22y x =+ C .y=4x-12D .33y x =-二、填空题13.为了迎接学校“歌咏比赛”的到来,九年级学生组织了一个梯形鲜花队参加开幕式,要求共站20排,第一排10人,以后每一排都比前一排多站一人,则某排人数y 与该排排数x 之间的函数关系式为_________________.(写出自变量的取值范围). 14.一次函数y=2x ﹣3的图象不经过第__象限.15.请你直接写出一个图象经过点(0,-2),且y 随x 的增大而减小的一次函数的解析式_____.16.已知函数1(1);24(1).x x y x x +≤⎧=⎨-+>⎩当函数值为-2时,自变量x 的值为__________. 17.1-6个月的婴儿生长发育得非常快,在1-6个月内,一个婴儿的体重y 与月龄x 之间的变化情况如下表: 月龄/月 1 2 3 4 5 6 体重/克470054006100680075008200在这个变化过程中,婴儿的体重y 与月龄x 之间的关系式是__________. 18.己知一次函数23y x =-+,当05x ≤≤时,函数y 的最大值是__________. 19.函数y =2x x-中,自变量x 的取值范围是_____. 20.若式子23x x +-有意义,则x 的取值范围为______. 三、解答题21.如图1,在Rt ABC ∆中,90306ACB ABC AC ∠=︒∠=︒=,,,D 是AB 的中点P 是射线CD 上一个动点,联结PB ,过点B 作PB 的垂线,交射线CD 于Q . (1)如图2,如果点P 与点D 重合,求证:2PQ PC =; (2)如图3,如果BP BQ =,求PQ 的长;(3)设CP x BP y ==,,求y 关于x 的函数关系式,并写出x 的取值范围.22.如图,在平面直角坐标系中,直线43y x b =-+与x 轴,y 轴分别交于(6,0)A ,B 两点,点D 在y 轴的负半轴上,若将DAB 沿直线AD 折叠,则点B 恰好落在x 轴正半轴上的点C 处.(1)求AB 的长; (2)求点C ,D 的坐标;(3)在y 轴上是否存在一点P ,使得14PABOCDS S =?若存在,求出点P 的坐标;若不存在,请说明理由.23.定义:关于x 的一次函数y =ax +b 与y =bx +a (ab ≠0)叫做一对交换函数,例如:一次函数y =3x +4与y =4x +3就是一对交换函数. (1)一次函数y =2x ﹣b 的交换函数是 ;(2)当b ≠﹣2时,(1)中两个函数图象交点的横坐标是 ; (3)若(1)中两个函数图象与y 轴围成的三角形的面积为4,求b 的值.24.小明同学看到一则材料:甲开汽车,乙骑自行车从P 地出发沿同一条公路匀速前往Q地、设乙行驶的时间为t (h ).甲乙两人之间的距离为y (km ),y 与t 的函数关系如图所示.小明思考后发现了图中的部分信息:乙先出发1h ;甲出发0.5小时与乙相遇. 请你帮助小明同学解决以下问题:(1)分别求出线段BC ,CD 所在直线的函数表达式(不需要写出自变量的取值范围); (2)直接写出乙行驶的路程S 乙(km )与时间t (h )的函数表达式是 (不需要写出自变量的取值范围);(3)丙骑摩托车从Q 地沿同一条公路匀速前往P 地,若丙与乙同时出发,丙经过1.4h 与甲相遇.①直接写出丙行驶的路程S 丙(km )与时间t (h )的函数表达式是 (不需要写出自变量的取值范围);②直接写出甲出发 h 后与丙相距10km .25.疫情过后,地摊经济迅速兴起.小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y (元)与销售量x (千克)之间的关系如图所示.(1)求降价后销售额y (元)与销售量x (千克)之间的函数表达式; (2)当销售量为多少千克时,小李销售此种水果的利润为150元?26.如图,直线312y x =-+分别交x 轴、y 轴于点A ,B ,以AB 为斜边向左侧作等腰Rt △ABD ,延长BD 交x 轴于点C ,连接DO ,过点D 作DE DO ⊥交y 轴于点E .∠=∠;(1)求证:12(2)求OE的长;∠的一边平行时,求出所有符合条件的点P的坐(3)点P在线段AB上,当PE与COD标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图象可知,甲、乙两地相距1800千米,故①说法正确;点B的实际意义是两车出发后4小时相遇,故②说法正确;普通列车的速度为:1800÷12=150(km/h),动车的速度为:1800÷4﹣150=300(km/h),故③说法错误;C点表示动车到达乙地,1800÷300=6(小时),∴m=6,n=150×6=900,故④说法正确;故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2.B解析:B【分析】根据正比例函数的性质可得出k>0,进而可得出-k<0,由1>0,-k<0利用一次函数图象与系数的关系,可找出一次函数y=x-k的图象经过第一、三、四象限,此题得解.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴﹣k<0.又∵1>0,∴一次函数y=x﹣k的图象经过第一、三、四象限.故选:B.【点睛】本题考查了正比例函数的性质以及一次函数图象与系数的关系,牢记“k>0,b<0⇔y=kx+b 的图象在一、三、四象限”是解题的关键.3.C解析:C【分析】根据最简二次根式、一次函数及不等式、数轴及实数、轴对称和坐标的性质,对各个选项逐个分析,即可得到答案.【详解】是最简二次根式,故A正确;∵若点A(-2,a),B(3,b)在直线y=-2x+1,∴()221231ab ⎧-⨯-+=⎨-⨯+=⎩∴55 ab=⎧⎨=-⎩∴a b>,即B正确;∵数轴上的点与实数一一对应∴C不正确;∵点A(2,5)关于y轴的对称点的坐标是(-2,5)∴D正确;故选:C.【点睛】本题考查了最简二次根式、一次函数、不等式、数轴、实数、轴对称、坐标的知识;解题的关键是熟练掌握最简二次根式、一次函数、数轴、实数、轴对称的性质,从而完成求解.4.A解析:A【分析】根据一次函数的性质,当k <0,b <0时,图象经过第二、三、四象限解答. 【详解】 解:∵k=-3<0,∴函数经过第二、四象限,∵b=﹣2<0,∴函数与y 轴负半轴相交, ∴图象不经过第一象限. 故选A 【点睛】本题考查一次函数的性质,利用数形结合思想解题是关键.5.B解析:B 【分析】根据一次函数图象上点的坐标特征可得出点A 1、A 2、A 3、A 4、A 5、A 6、A 7、A 8等的坐标,根据坐标的变化找出变化规律“A 4n+1(22n ,22n+1),A 4n+2(-22n+1,22n+1),A 4n+3(-22n+1,-22n+2),A 4n+4(22n+2,-22n+2)(n 为自然数)”,依此规律结合2018=504×4+2即可找出点A 2018的坐标. 【详解】解:当x=1时,y=2, ∴点A 1的坐标为(1,2); 当y=-x=2时,x=-2, ∴点A 2的坐标为(-2,2);同理可得:A 3(-2,-4),A 4(4,-4),A 5(4,8),A 6(-8,8),A 7(-8,-16),A 8(16,-16),A 9(16,32),…,∴A 4n+1(22n ,22n+1),A 4n+2(-22n+1,22n+1),A 4n+3(-22n+1,-22n+2),A 4n+4(22n+2,-22n+2)(n 为自然数). ∵2018=504×4+2,∴点A 2018的坐标为(-2504×2+1,2504×2+1),即(-21009,21009). 故选:B . 【点睛】本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.6.A解析:A 【分析】根据在y=-3x+m 中,-3<0,则y 随x 的增大而减小,然后根据一次函数的增减性解答即可. 【详解】∵直线3y x m =-+ 中30-< , ∴ y 随 x 的增大而减小,又∵点 ()()()1232,,1,,1,y y y -- 都在直线上, 且211-<-<. ∴y 1>y 2>y 3 故答案为A . 【点睛】本题考查了一次函数的增减性,灵活运用一次函数的性质是正确解答本题的关键.7.D解析:D 【分析】根据题意可得﹣m <0,n <0,再进行化简即可. 【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限, ∴﹣m <0,n <0, 即m >0,n <0,∴=|m ﹣n |+|n | =m ﹣n ﹣n =m ﹣2n , 故选D . 【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.8.C解析:C 【分析】根据题意,结合一次函数图象去分析图象所表示的实际意义,上升的图象表示甲仓库,下降的图象表示乙仓库,然后选出正确选项. 【详解】解:①不正确,根据上升的一次函数图象,当15x =的时候,130y =;②正确,根据下降的一次函数图象,从15分钟到60分钟,乙仓库派发的快递是180件,所以速度=()18060154÷-=(件/分钟);③正确,用待定系数法求出上升的一次函数图象的解析式为640y x =+,当60x =时,66040400y =⨯+=;④正确,用待定系数法求出下降的一次函数图象解析式为4240y x =-+,再联立两个直线解析式求交点横坐标,列式6404240x x +=-+,解得20x ,也就是20分钟之后甲乙仓库快递数一样. 故选:C .【点睛】本题考查一次函数图象的实际应用,解题的关键是能够结合题意理解函数图象所表达的实际含义.9.B解析:B【分析】对于自变量x 的每一个确定的值y 都有唯一的确定值与其对应,则y 是x 的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A 、C 、D 图象表示y 是x 的函数,B 图象中对于x 的一个值y 有两个值对应,故B 中y 不是x 的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键. 10.B解析:B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b ,将x=4时,y=20;x=12时,y=30代入求得k 、b 值,可得函数解析式,再将x=6代入求得对应的y 值即可.【详解】设当4≤x≤12时函数的解析式为y=kx+b(k≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∴5154y x =+, 当x=6时,56157.51522.54y =⨯+=+=, 故选:B .【点睛】 本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.11.D解析:D【分析】首先弄清横、纵坐标所表示的意义,然后根据各个特殊点来分段分析整个函数图象.【详解】解:此函数大致可分以下几个阶段:(1)0﹣12分种,小刚从家走到菜地;(2)12﹣27分钟,小刚在菜地浇水;(3)27﹣33分钟,小刚从菜地走到稻田地;(4)33﹣56分钟,小刚在稻田地除草;(5)56﹣74分钟,小刚从稻田地回到家;综合上面的分析得:由(3)的过程知,a =1.5-1=0.5(千米);由(2)(4)的过程知b =(56-33)-(27-12)=8(分钟).故选:D .【点睛】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 12.D解析:D【分析】先确定A ,B 的坐标,从而确定交点横坐标的取值范围,后逐一计算选项直线与x 轴的交点,判断横坐标是否在求得的范围内,在范围内,满足条件,否则,不满足.【详解】∵直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,∴A (-1,0),B (2,0),∴-1≤x≤2,∵y=x+2交x 轴于点A (-2,0),且x= -2不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵2y =+交x 轴于点A (0),且x= 不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵y=4x-12交x 轴于点A (3,0),且x= 3不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵3y =-交x 轴于点A 0),且是-1≤x≤2的解,∴与x 轴的交点在线段AB 上,故选D .【点睛】本题考查了一次函数与x 轴的交点问题,利用交点的横坐标建立不等式解集,验证新直线与x 轴交点的横坐标是否是解集的解是解题的关键.二、填空题13.y=x+9(且x 是整数)【分析】根据第一排10人以后每一排都比前一排多站一人得到y=10+(x-1)=x+9由共站20排且排数x 为正整数得到且x 是整数【详解】∵第一排10人以后每一排都比前一排多站一解析:y=x+9(120x ≤≤,且x 是整数)【分析】根据第一排10人,以后每一排都比前一排多站一人,得到y=10+(x-1)=x+9,由共站20排,且排数x 为正整数,得到120x ≤≤,且x 是整数.【详解】∵第一排10人,以后每一排都比前一排多站一人,∴y=10+(x-1)=x+9,∵共站20排,且排数x 为正整数,∴120x ≤≤,且x 是整数,故答案为:y=x+9(120x ≤≤,且x 是整数).【点睛】此题考查列函数关系式,自变量的取值范围,正确理解题意是解题的关键.14.二【分析】先根据一次函数的性质判断出此函数图象所经过的象限再进行解答即可【详解】解:∵一次函数y=2x-3中k=2>0∴此函数图象经过一三象限∵b=-3<0∴此函数图象与y 轴负半轴相交∴此一次函数的解析:二【分析】先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【详解】解:∵一次函数y=2x-3中,k=2>0,∴此函数图象经过一、三象限,∵b=-3<0,∴此函数图象与y 轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故答案为:二.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b (k≠0)中,当k >0时,函数图象经过一、三象限,当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴. 15.y=-x-2(答案不唯一)【分析】由图象经过点(0-2)则b=-2又y 随x 的增大而减小只要k <0即可【详解】解:设函数y=kx+b (k≠0kb 为常数)∵图象经过点(0-2)∴b=-2又∵y 随x 的增大解析:y=-x-2(答案不唯一).【分析】由图象经过点(0,-2),则b=-2,又y 随x 的增大而减小,只要k <0即可.【详解】解:设函数y=kx+b (k≠0,k ,b 为常数),∵图象经过点(0,-2),∴b=-2,又∵y 随x 的增大而减小,∴k <0,可取k=-1.这样满足条件的函数可以为:y=-x-2.故答案为:y=-x-2.【点睛】本题考查了一次函数y=kx+b (k≠0,k ,b 为常数)的性质.它的图象为一条直线,当k >0,图象经过第一,三象限,y 随x 的增大而增大;当k <0,图象经过第二,四象限,y 随x 的增大而减小;当b >0,图象与y 轴的交点在x 轴的上方;当b=0,图象过坐标原点;当b <0,图象与y 轴的交点在x 轴的下方.16.或【分析】把代入计算求解即可【详解】解:代入可得:故答案为:或【点睛】本题主要考查了函数的概念和不等式的性质利用函数与函数值的等量关系代入函数值计算是解题的关键解析:3或3-【分析】把=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩计算求解即可. 【详解】解:=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩可得: 21(1)224(1)x x x x -=+≤⎧⎨-=-+>⎩⇒3(1)3(1)x x x x =-≤⎧⎨=>⎩故答案为:3或3-【点睛】本题主要考查了函数的概念和不等式的性质,利用函数与函数值的等量关系代入函数值计算是解题的关键.17.y=700x+4000【分析】观察不难发现后一个月比前一个月的体重增加700克然后写出关系式即可【详解】解:根据题意得y 与x 之间的关系式为:y=700x+4000故答案为:y=700x+4000【点解析:y=700x+4000.【分析】观察不难发现,后一个月比前一个月的体重增加700克,然后写出关系式即可.【详解】解:根据题意,得y 与x 之间的关系式为:y=700x+4000.故答案为:y=700x+4000.【点睛】本题考查函数关系式.能够仔细观察表格数据,发现后一个月比前一个月的体重增加700g 是解题关键.18.3【分析】根据知道一次函数是单调递减函数即y 随x 的增大而减小代入计算即可得到答案【详解】解:∵∴一次函数是单调递减函数即y 随x 的增大而减小∴当时在时y 取得最大值即:当时y 的最大值为:故答案为:3【点 解析:3【分析】根据20-<知道一次函数23y x =-+是单调递减函数,即y 随x 的增大而减小,代入计算即可得到答案.【详解】解:∵20-<,∴一次函数23y x =-+是单调递减函数,即y 随x 的增大而减小,∴当05x ≤≤时,在0x =时y 取得最大值,即:当05x ≤≤时,y 的最大值为:max 0(2)33y =⨯-+=,故答案为:3.【点睛】本题主要考查了一次函数的性质,一次函数y kx b =+,当k 0<时y 随x 的增大而减小,0k >时,y 随x 的增大而增大;掌握一次函数的性质是解题的关键.19.x≥2【分析】根据被开方数大于等于0分母不等于0列式进行计算即可得解【详解】解:根据题意得x ﹣2≥0且x≠0解得x≥2且x≠0所以自变量x 的取值范围是x≥2故答案为x≥2【点睛】本题考查的知识点为:解析:x ≥2.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x ﹣2≥0且x ≠0,解得x ≥2且x ≠0,所以,自变量x 的取值范围是x ≥2.故答案为x ≥2.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 20.x >-2且x≠3【分析】根据二次根式有意义的条件可得x+2≥0根据分式有意义的条件可得x -3≠0再解即可【详解】由题意得:x+2≥0且x -3≠0解得:x >-2且x≠3故答案为:x >-2且x≠3【点睛解析:x >-2,且x≠3.【分析】根据二次根式有意义的条件可得x+2≥0,根据分式有意义的条件可得x -3≠0,再解即可.【详解】由题意得:x +2≥0,且x -3≠0,解得:x >-2,且x≠3故答案为:x >-2,且x≠3.【点睛】本题考查了二次根式的性质和分式的意义,掌握二次根式及分式有意义的条件是解题的关键.三、解答题21.(1)证明见详解;(2)PQ=63;(3)()21810809y x x x =-+<≤,()2181089y x x x =-+>,【分析】(1)在Rt ABC ∆中,90306ACB ABC AC ∠=︒∠=︒=,,,D 是AB 的中点可得DC=AD=BD ,可求∠DCB=∠DBC=30°,由外角性质∠QDB=∠DCB+∠DBC=60°,由QB ⊥DB , 可求∠DQB=90°-∠QDB=30°,可得DQ=2DB=2DC ,由D 与P 重合,可证PQ=2PC ; (2)过B 作BH ⊥PQ 于H ,由AC=6,∠ACB=90°,∠ABC=30°,可求AB=2AC=12,在Rt △ACB 中由勾股定理BC=2263AB AC -=,由∠HCB=30°,∠CHB=90°,可求CB=2BH=63可得BH=33,由∠PBQ=90°,BP=BQ ,可求PQ=2BH=63;(3)由(2)得BH=33,在Rt △CBH 中,由勾股定理求出CH=9=,当CP≤9时PH=9-PC=9-x ,当CP 9>时PH=PC-9=x-9,分两种情况,在RtRt △PBH 中由勾股定理得:PB 2=PH 2+BH 2即可求出。
北师大版数学八年级上册第四章《一次函数》检测题(解析版)

第四章《一次函数》检测题一.选择题1.下列曲线中不能表示y是x的函数的是()A.B.C.D.2.已知A、B两地相距3千米,小黄从A地到B地,平均速度为4千米/小时,若用x表示行走的时间(小时),y 表示余下的路程(千米),则y关于x的函数解析式是()A.y=4x(x≥0)B.y=4x﹣3(x≥)C.y=3﹣4x(x≥0)D.y=3﹣4x(0≤x≤)3.函数y=﹣中,自变量x的取值范围是()A.x≤B.x≥C.x<且x≠﹣1D.x≤且x≠﹣14.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>05.若ab<0且a>b,则函数y=ax+b的图象可能是()A.B.C.D.6.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y 的值是()A.5B.10C.19D.217.若式子+(m﹣1)0有意义,则一次函数y=(m﹣1)x+1﹣m的图象可能()A.B.C.D.8.已知一次函数=kx+b(k,b为常数,k≠0)的图象经过一、三、四象限,则下列结论正确的是()A.kb>0B.kb<0C.k+b>0D.k+b<09.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.410.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y211.如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为()A.B.C.2D.412.一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题13.函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC为等腰三角形,则满足条件的点C共有个.14.在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=,则点P(3,﹣3)到直线y=﹣x+的距离为.15.已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是.16.在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x轴上,点D在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为.17.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.18.甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b=.三、解答题19.在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k 与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.20.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.(1)m=,n=;(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.21.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.22.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA 和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.23.已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.(3)当一次函数的图象不经过第二象限时,求实数m的取值范围.(4)当y随x的增大而增大时,求m的取值范围.24.如图,直线y=kx+3与x轴、y轴分别相交于E,F.点E的坐标为(﹣6,0),点P是直线EF上的一点.(1)求k的值;(2)若△POE的面积为6,求点P的坐标.答案与解析一.选择题(共24小题)1.分析:函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项C中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故C中曲线不能表示y是x的函数,故选:C.2.分析:根据路程=速度×时间,容易知道y与x的函数关系式.解:根据题意得:全程需要的时间为:3÷4=(小时),∴y=3﹣4x(0≤x≤).故选:D.3.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:2﹣3x≥0且x+1≠0,解得:x≤且x≠﹣1.故选:D.4.分析:由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.5.分析:利用ab<0,且a>b得到a>0,b<0,然后根据一次函数图象与系数的关系进行判断.解:∵ab<0,且a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限.故选:A.6.分析:把x=7代入程序中计算,根据y值相等即可求出b的值,再将x=﹣8代入y=﹣2x+3中即可得出结论解:当x=7时,可得,可得:b=3,当x=﹣8时,可得:y=﹣2×(﹣8)+3=19,故选:C.7.分析:根据非负性得出m﹣1≥0,m﹣1≠0,进而利用一次函数的性质解答即可.解:由题意可得m﹣1≥0,m﹣1≠0,解得:m>1,∴m﹣1>0,1﹣m<0,所以一次函数y=(m﹣1)x+1﹣m的图象经过一,三,四象限,故选:A.8.分析:根据一次函数经过一、三、四象限,可知k>0,b<0,即可求得答案;解:=kx+b的图象经过一、三、四象限,∴k>0,b<0,∴kb<0;故选:B.9.分析:利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可;解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴∴,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选:C.10.分析:根据两函数图象平行k相同,以及向下平移减即可判断.解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.11.分析:由一次函数解析式分别求出点A和点B的坐标,即可作答.解:一次函数y=2x+1中,当x=0时,y=1;当y=0时,x=﹣0.5;∴A(﹣0.5,0),B(0,1)∴OA=0.5,OB=1∴△AOB的面积=0.5×1÷2=故选:A.12.分析:根据图象与纵轴的交点可得出A、B两地的距离,而s=0时,即为甲、乙相遇的时候,同理根据图象的拐点情况解答即可.解:由图象可知A村、B村相离10km,故①正确,当1.25h时,甲、乙相距为0km,故在此时相遇,故②正确,当0≤t≤1.25时,易得一次函数的解析式为s=﹣8t+10,故甲的速度比乙的速度快8km/h.故③正确当1.25≤t≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s=kt+b代入得,解得∴s=8t+10当s=2时.得2=8t﹣10,解得t=1.5h由1.5﹣1.25=0.25h=15min同理当2≤t≤2.5时,设函数解析式为s=kt+b将点(2,6)(2.5,0)代入得,解得∴s=﹣12t+30当s=2时,得2=﹣12t+30,解得t=由﹣1.25=h=65min故相遇后,乙又骑行了15min或65min时两人相距2km,④正确.故选:D.二、填空题:13.分析:三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB 为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为4;14.分析:根据题目中的距离公式即可求解.解:∵y=﹣x+∴2x+3y﹣5=0∴点P(3,﹣3)到直线y=﹣x+的距离为:=,故答案为:.15.分析:根据y=kx+b,k<0,b>0时,函数图象经过第一、二、四象限,则有k﹣3<0即可求解;解:y=(k﹣3)x+1的图象经过第一、二、四象限,∴k﹣3<0,∴k<3;故答案为k<3;16.分析:先由已知得出D1(4,1),D2(4,﹣1),然后分类讨论D点的位置从而依次求出每种情况下点P的坐标.解:∵A,B两点的坐标分别为(4,0),(4,4)∴AB∥y轴∵点D在直线AB上,DA=1∴D1(4,1),D2(4,﹣1)如图:(Ⅰ)当点D在D1处时,要使CP⊥DP,即使△COP1~△P1AD1∴即解得:OP1=2∴P1(2,0)(Ⅱ)当点D在D2处时,∵C(0,4),D 2(4,﹣1)∴CD2的中点E(2,)∵CP⊥DP∴点P为以E为圆心,CE长为半径的圆与x轴的交点设P(x,0),则PE=CE即解得:x=2±2∴P2(2﹣2,0),P3(2+2,0)综上所述:点P的坐标为(2,0)或(2﹣2,0)或(2+2,0).17.分析:根据已知条件得到A(,0),B(0,﹣1),求得OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,得到AB=AF,根据全等三角形的性质得到AE=OB=1,EF=OA=,求得F(,﹣),设直线BC的函数表达式为:y=kx+b,解方程组于是得到结论.解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣1,令y=0,则x=,∴A(,0),B(0,﹣1),∴OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△F AE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,∴,∴,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.18.分析:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,即可求解.解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为.三.解答题(共6小题)19.分析:(1)令x=0,y=1,直线l与y轴的交点坐标(0,1);(2)①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点;②当x=k+1时,y=﹣k+1,则有k2+2k=0,k=﹣2,当0>k≥﹣1时,W内没有整数点;解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式y=kx+1,当x=k+1,y=﹣k+1,则有k2+2k=0,∴k=﹣2;当﹣1≤k<0时,W内没有整数点,∴当k=﹣2或﹣1≤k<0时,W内没有整数点;20.分析:(1)观察图象即可解决问题;(2)运用待定系数法解得即可;(3)把x=3代入(2)的结论即可.解:(1)根据题意可得m=2×2=4,n=280﹣2(280÷3.5)=120;故答案为:4;120;(2)设y关于x的函数解析式为y=kx(0≤x≤2),因为图象经过(2,120),所以2k=120,解得k=60,所以y关于x的函数解析式为y=60x,设y关于x的函数解析式为y=k1x+b(2≤x≤4),因为图象经过(2,120),(4,0)两点,所以,解得,所以y关于x的函数解析式为y=﹣60x+240(2≤x≤4);(3)当x=3.5时,y=﹣60×3.5+240=30.所以当甲车到达B地时,乙车距B地的路程为30km.21.分析:(1)观察图象即可解决问题;(2)分别求出得A、B、C的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.解:(1)车的速度是50千米/小时;轿车的速度是:480÷(7﹣1)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80x+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.22.分析:(1)利用待定系数法即可求得函数的解析式;(2)求利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).23.分析:(1)把(0,0)代入函数解析式求得m的值即可;(2)、(3)由一次函数图象与系数的关系解答;(4)由一次函数图象的增减性解答.解:(1)把原点(0,0)代入,得m﹣5=0解得m=5;(2)由题意,得.解得3<m<5;(3)由题意,得.解得m<3;(4)由题意,得3﹣m>0.解得m<3.24.分析:(1)将点E的坐标代入即可求出k的值,(2)确定直线的关系式,若△POE的面积为6,以OE=6为底,因此高为2,即点P的纵坐标为2或﹣2,然后代入直线的关系式求出点P的坐标.解:(1)把E的坐标为(﹣6,0)代入直线y=kx+3得,﹣6k+3=0,解得:k=,答:k的值为.(2)设P(x,y),∵S△POE=OE•|y|=×6×|y|=6,∴|y|=2,即y=2,或y=﹣2,当y=2时,即2=x+3,解得:x=﹣2,∴P(﹣2,2)当y=﹣2时,即﹣2=x+3,解得:x=﹣10,∴P(﹣10,﹣2)答:点P的坐标为(﹣2,2)或(﹣10,﹣2)。
北师大版八年级数学上册《第4章一次函数》单元测试含答案

第4章一次函数一、选择题(共26小题)1.2021年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B. C. D.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t (小时)之间的函数图象是()A. B. C.D.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B. C. D.11.函数y=的图象为()A.B.C.D.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤314.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A.B.C.D.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B. C.D.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B.C.D.23.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或﹣24.已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.825.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.326.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降二、填空题(共4小题)27.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.28.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.29.已知函数,那么=.30.如图,根据所示程序计算,若输入x=,则输出结果为.第4章一次函数参考答案与试题解析一、选择题(共26小题)1.2021年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【专题】动点型.【分析】根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.【解答】解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;故选:C.【点评】本题考查了函数图象,字数先增加再不变最后增加的快是解题关键.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.【考点】函数的图象.【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【考点】函数的图象.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选:D.【点评】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B. C. D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.【考点】函数的图象.【分析】根据函数图象的纵坐标,可得答案.【解答】解:由函数图象的纵坐标,得故选:B.【点评】本题考查了函数图象,利用了有理数大大小比较.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟【考点】函数的图象.【分析】根据图象可以确定小强离公共汽车站2公里,步行用了多长时间,等公交车时间是多少,两人乘公交车运行的时间和对应的路程,然后确定各自的速度.【解答】解:A、依题意得小强从家到公共汽车步行了2公里,故选项正确;B、依题意得小强在公共汽车站等小明用了10分钟,故选项正确;C、公交车的速度为15÷=30公里/小时,故选项正确.D、小强和小明一起乘公共汽车,时间为30分钟,故选项错误;故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t (小时)之间的函数图象是()A. B.C. D.【考点】函数的图象.【专题】压轴题.【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【解答】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点评】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】立方体的上下底面为正方形,立方体的高为x,则得出y﹣x=2x,再得出图象即可.【解答】解:正方形的边长为x,y﹣x=2x,∴y与x的函数关系式为y=x,故选:B.【点评】本题考查了一次函数的图象和综合运用,解题的关键是从y﹣x等于该立方体的上底面周长,从而得到关系式.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.【解答】解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B符合要求.故选B.【点评】此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B. C. D.【考点】函数的图象.【专题】压轴题.【分析】开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.【解答】解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.【点评】本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.11.函数y=的图象为()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】从x<0和x>0两种情况进行分析,先化简函数关系式再确定函数图象即可.【解答】解:当x<0时,函数解析式为:y=﹣x﹣2,函数图象为:B、D,当x>0时,函数解析式为:y=x+2,函数图象为:A、C、D,故选:D.【点评】本题考查的是函数图象,利用分情况讨论思想把函数关系式进行正确变形是解题的关键,要能够根据函数的系数确定函数的大致图象.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.【考点】函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤3【考点】函数的图象.【分析】根据图象,找到y的最高点是(﹣2,3)及最低点是(1,0),确定函数值y的取值范围.【解答】解:∵图象的最高点是(﹣2,3),∴y的最大值是3,∵图象最低点是(1,0),∴y的最小值是0,∴函数值y的取值范围是0≤y≤3.故选:D.【点评】本题考查了函数的图象,解答本题的关键是会观察图象,找到y的最高点及最低点.14.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点【考点】函数的图象.【分析】根据给出的函数图象对每个选项进行分析即可.【解答】解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C说法不正确;甲先到达终点,D说法正确,故选:C.【点评】本题考查的是函数的图象,从函数图象获取正确的信息是解题的关键.15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A.B.C.D.【考点】函数的图象.【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【解答】解:圆柱的直径较长,圆柱的高较低,水流下降较慢;圆柱的直径变长,圆柱的高变低,水流下降变慢;圆柱的直径变短,圆柱的高变高,水流下降变快.故选:A.【点评】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B. C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短.故选B.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.【考点】函数的图象;中心投影.【专题】压轴题;数形结合.【分析】根据中心投影的性质得出小红在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l 与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.【点评】此题主要考查了函数图象以及中心投影的性质,得出l随S的变化规律是解决问题的关键.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程的增加幅度会变大一点.据此即可选择.【解答】解:由题意知,前1小时路程随时间增大而增大,1小时后路程的增加幅度会变大一点.故选:C.【点评】本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟【考点】函数的图象.【分析】A.从4分钟到8分钟时间增加而离家的距离没变,所以这段时间在看报;B.4分钟时散步到了报栏,据此知公共阅报栏距小明家200米;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米;D.据图知小明从出发到回家共用时16分钟.【解答】解:A.小明看报用时8﹣4=4分钟,本项错误;B.公共阅报栏距小明家200米,本项正确;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米,本项正确;D.据图知小明从出发到回家共用时16分钟,本项正确.故选:A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米【考点】函数的图象.【分析】根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,然后可得绿化速度.【解答】解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.【点评】此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时【考点】函数的图象.【专题】行程问题.【分析】结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米;平均速度=总路程÷总时间.【解答】解:A、由函数图象可知,体育场离张强家2.5千米,故A选项正确;B、由图象可得出张强在体育场锻炼30﹣15=15(分钟),故B选项正确;C、体育场离张强家2.5千米,体育场离早餐店距离无法确定,因为题目没说体育馆,早餐店和家三者在同一直线上,故C选项错误;D、∵张强从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D选项正确.故选:C.【点评】此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B.C.D.【考点】函数的图象.【分析】根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,即可得到答案.【解答】解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,故选:B.【点评】本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.23.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.。
北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)

北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)一、单选题1.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-2.下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x =D .5x y = 3.在函数23y x =-中,当自变量5x =时,函数值等于( )A .1B .4C .7D .134.如图,在平面直角坐标系中,线段AC 所在直线的解析式为4y x =-+,E 是AB 的中点,P 是AC 上一动点,则PB PE +的最小值是( )A .42B .22C .25D .55.如图,直线y =x +5和直线y =ax +b 相交于点P ,根据图象可知,关于x 的方程x +5=ax +b 的解是( )A .x =20B .x =25C .x =20或25D .x =﹣20 6.点(3,5)-在正比例函数y kx =(0k ≠)的图象上,则k 的值为( )A .-15B .15C .35D .53- 7.已知某汽车耗油量为0.1L/km ,油箱中现有汽油50L .如果不再加油,记此后汽车行驶的路程为x km ,油箱中的油量为y L .则此问题中的常量和变量是( )A .常量50;变量x .B .常量0.1;变量y .C .常量0.1,50;变量x ,y .D .常量x ,y ;变量0.1,50.8.一次函数y =(a +1)x +a +2的图象过一、二、四象限,则a 的取值是( )A .a <﹣2B .a <﹣1C .﹣2≤a ≤﹣1D .﹣2<a <﹣19.已知,甲、乙两地相距720米,甲从A 地去B 地,乙从B 地去A 地,图中分别表示甲、乙两人离B 地的距离y (单位:米),下列说法正确的是( )A .乙先走5分钟B .甲的速度比乙的速度快C .12分钟时,甲乙相距160米D .甲比乙先到2分钟 10.函数13y x =+中自变量x 的取值范围是( ) A .3x >- B .3x ≥- C .3x <- D .3x ≠-11.汽车由A 地驶往相距120km 的B 地,它的平均速度是60km/h ,则汽车距B 地路程s (km )与行驶时间t (h )的关系式为( ).A .12060s t =-B .12060s t =+C .60s t =D .120s t =12.如图所示,一次函数()0y kx b k =+≠的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定二、填空题(共0分)13.一次函数(21)y m x m =-+的函数值y 随x 值的增大而增大,则m 的取值范围是____ ____.14.从﹣1,2,3这三个数中随机抽取两个数分别记为x ,y ,把点M 的坐标记为(x ,y ),若点N 为(﹣4,0),则在平面直角坐标系内直线MN 经过第一象限的概率为___ .15.一个正方形的边长为3cm ,它的边长减少cm x 后,得到的新的正方形周长(cm)y 与(cm)x 之间的函数关系式为124y x =-,自变量x 的取值范围是________ __.16.弹簧的长度()cm y 与所挂物体的质量()kg x 的关系如图所示,则当弹簧所挂物体质量是10kg 时的长度是____ __cm .17.方程328x +=的解是x =______,则函数32y x =+在自变量x 等于_______时的函数值是818.如图(a )所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP 的面积为y ,如果y 关于x 的关系如图(b )所示,则m 的值是________.19.小亮早晨从家骑车到学校,先上坡后下坡,所行路程()y m 与时间(min)x 的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡、下坡的速度分别相同,则小明从学校骑车回家用的时间是__________min .20.某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______x x千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额(10)的函数解析式为______.三、解答题21.某天小刚骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续前行,按时赶到学校,如图是小刚从家到学校这段所走的路程s(米)与时间t(分)之间的关系.(1)小刚从家到学校的路程是________米,从家出发到学校,小刚共用了________分;(2)小刚修车用了多长时间;(3)小刚修车前的平均速度是多少?22.已知如图,在平面直角坐标系中,点A(3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B(1,0)和点C都在x轴上,当△ABC的面积是17.5时,求点C的坐标.23.如图一次函数y kx b =+的图象经过点(1,5)A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1.(1)求AB 的函数表达式.(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标. (3)若3kx b x +<,请直接写出x 的取值范围.24.如图1,在长方形ABCD 中,点P 从点B 出发,沿B →C →D →A 运动到点A 停止.设点P 的运动路程为x ,△P AB 的面积为y ,y 与x 的关系图象如图2所示.(1)AB 的长度为______,BC 的长度为______.(2)求图象中a 和b 的值.(3)在图象中,当m =15时,求n 的值.25.因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?26.甲、乙两地之间有一条笔直的公路,小明从甲地出发步行前往乙地,同时小亮从乙地出发骑自行车前往甲地,小亮到达甲地没有停留,按原路原速返回,追上小明后两人一起步行到乙地.如图,线段OA 表示小明与甲地的距离y 1(米)与行走的时间x (分钟)之间的函数关系:折线BCDA 表示小亮与甲地的距离y 2(米)与行走的时间x (分钟)之间的函数关系.请根据图象解答下列问题:(1)小明步行的速度是 米/分钟,小亮骑自行车的速度是 米/分钟;(2)线段OA 与BC 相交于点E ,求点E 坐标;(3)请直接写出小亮从乙地出发到追上小明的过程中,与小明相距100米时x 的值.27.如图1,在Rt △ABC 中,AC =BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以每秒1cm 的速度沿F →E →D →A →B 的路径运动,连接BP 、CP ,△BCP 的面积y (2cm )与运动时间x (秒)之间的图象关系如图2所示.(1)求EF 的长度和a 的值;(2)当x =6时,连接AF ,判断BP 与AF 的数量关系,说明理由.28.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过320m 时,按2.5元/ 3m 计费;月用水量超过320m 时,其中320m 仍按2.5元/3m 收费,超过部分按3.2元/ 3m 计费,设每户家庭月用水量为3xm 时,应交水费y 元.(1)分别写出020x ≤≤和20x >时,y 与x 的函数表达式.(2)小明家第二季度缴纳水费的情况 如下:月份四月份 五月份 六月份 交费金额 40元 45元 56.4元小明家第二季度共用水多少立方米?29.一慢车和一快车沿相同路线从A 地到B 地,两车所行的路程s (千米)与慢车行驶的时间x (时)关系如图所示.根据图像解决下列问题:(1)快车比慢车晚 小时出发,快车比慢车早到 小时.快车追上慢车时,快车行驶了 千米.(2)求A 、B 两地相距多少千米?30.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月的利润y (元)的变化关系如下表所示:(利润=收入费用-支出费用,每位乘客的公交票价是固定不变的):x (人) 500 10001500 2000 2500 3000 … y (元)3000- 2000- 1000- 01000 2000 … (1)在这个变化过程中,直接写出自变量和因变量;(2)观察表中数据可知,每月乘客量达到_____人以上时,该公交车才会盈利;(3)请你估计每月乘车人数为3500人时,每月的利润为______元;(4)根据表格直接写出y 与x 的表达式,并求出5月份乘客量需达多少人时,可获得5000元的利润参考答案1.C2.D3.C4.C5.A6.D7.C8.D9.D10.A11.A12.C13.12m > 14.2315.03x ≤<16.1517. 2 218.519.37.220. 3 42y x =+##24y x =+21.(1)由图象可得,小刚从家到学校的路程共2000米,从家出发到学校,小明共用了20分钟;故答案为:2000,20;(2)小刚修车用了:15-10=5(分钟),答:小刚修车用了5分钟;(3)由图象可得,小刚修车前的速度为:1000÷10=100米/分钟.答:小刚修车前的平均速度是100米/分钟.22.解:(1)设正比例函数的解析式为y kx =,将点(3,7)A 代入得:37k =,解得73k =, 则正比例函数的解析式为73y x =; (2)如图,过点A 作AD x ⊥轴于点D ,(3,7)A ,7AD ∴=,设点C 的坐标为(,0)a ,则1BC a =-,ABC 的面积是175., 117.52BC AD ∴⋅=,即17117.52a ⨯-=, 解得6a =或4a =-,故点C 的坐标为(6,0)或(4,0)-.23.解:(1)∵一次函数y kx b =+与正比例函数3y x =的图象交于点C ,点C 的横坐标为1,∴把x =1代入正比例函数得:3y =,∴点()1,3C ,∴把点()1,5A -、()1,3C 代入一次函数得:53k b k b -+=⎧⎨+=⎩,解得:14k b =-⎧⎨=⎩, ∴AB 的函数解析式为4y x =-+;(2)由(1)得:()1,3C ,AB 的函数解析式为4y x =-+, ∴令y =0时,则有4x =,∴点()4,0B ,∴OB =4,令C x 表示点C 的横坐标,C y 表示点C 的纵坐标,则由图象可得:1143622BOC C S OB y =⋅=⨯⨯=, ∵13COD BOC S S =△△, ∴2COD S =, ∴122COD C S OD x =⋅=△, ∴4OD =,∵点D 在y 轴负半轴,∴()0,4D -;(3)由图象可得:当3kx b x +<时,则x 的取值范围为1x >.24.解:由图2知,当x =5时,点P 与C 重合, ∴BC =5,当x =13时,点P 与D 重合,∴BC +CD =13,∴CD =8=AB ,故答案为:8,5;(2)当P 与C 点重合时,b =185202⨯⨯=,当点P 与A 重合时,a =5+8+5=18; (3)∵15m =58>+,∴此时点P 在AD 边上,且AP =3. ∴183122n =⨯⨯=. 25.由图中可知,货车a 小时走了90km ,∴a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩, 解得,100150k b =⎧⎨=-⎩, ∴轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=(h),到达乙地一共:3+3=6(h ),6-4.8=1.2(h),∴轿车比货车早1.2h 时间到达乙地.26.(1)由图可知,小明步行的速度为1500÷30=50(米/分钟),小亮骑车的速度为1500÷10=150(米/分钟),故答案为:50,150;(2)点E的横坐标为:1500÷(50+150)=7.5,纵坐标为:50×7.5=375,即点E的坐标为(7.5,375);(3)小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.理由:两人相遇前,(50+150)x+100=1500,得x=7,两人相遇后,(50+150)x﹣100=1500,得x=8,小亮从甲地到追上小明时,50x﹣100=150(x﹣10),得x=14,即小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.27.解:当点P在边EF上运动时,y=S△BCP12=BC•PF12=BC×1×x12=BC•x,∵BC为定值,∴y随x的增大而增大,∴当x=3时,y=a,此时EF=1×3=3(cm),当点P在边ED上运动时,点P到BC的距离等于3,y=S△BCP12=BC×332=BC,∴y的值不变,∵四边形FEDC是正方形,∴DE=EF=3cm,∴x331+==6(秒),∴b=6,当点P在DA上运动时,y=S△PBC12=BC•PC,∴y随PC的增大而增大,当点P与点A重合时,即x=8时,y最大,此时AD=8×1﹣3﹣3=2,∴AC=BC=3+2=5(cm),∴a12=BC×EF12=⨯5×3152=;(2)由(1)知,当点x =6时,点P 在点D 处,如图所示:此时,BD =AF ,理由:∵BC =AC ,CD =CF ,∠ACB =∠ACF =90°,∴△BDC ≌△AFC (SAS ),∴BD =AF .28.(1)当020x ≤≤时,1 2.5y x =;当20x >时,()2 2.520 3.220 3.214y x x =⨯+-=-;()2当20x 时,150y =4050,4550,56.450<<>∴四、五月份的月用水量比320m 少,六月份的月用水量比320m 多令140y =,得16x =令145y ,得18x =令256.4y =,得22x =16182256++=(立方米)∴第二季度共用水56立方米29.解:由图像可得,慢车比快车晚2小时出发,快车比慢车早到18﹣14=4(小时),快车追上慢车时,快行驶了276千米,故答案为:2,4,276;(2)解:由图像可得,慢车的速度为:276÷6=46(千米/时),46×18=828(千米),答:A 、B 两地相距828千米.30.解:(1)在这个变化过程中,每月的乘车人数x 是自变量,每月的利润y 是因变量; 故答案为每月的乘车人数x ,每月的利润y ;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元, 当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;故答案为3000;(4)设y 与x 的表达式为y=kx+b ,则依题意得:500300020000x b x b +=-⎧⎨+=⎩解得:24000k b =⎧⎨=-⎩ ∴y 与x 的表达式为24000y x =-;当5000y =时,500024000x =-.解得4500x =.答:5月乘车人数为4500人时,可获得利润5000元。
北师大版八年级数学上册 第四章 《一次函数》 综合提升练习题(含答案)

北师大版八年级数学上册第四章《一次函数》综合提升练习题1.一辆快递车从长春出发,走高速公路,途经伊通,前往靖宇镇送快递,到达后卸货和休息共用1h,然后开车按原速原路返回长春.这辆快递车在长春到伊通、伊通到靖宇的路段上分别保持匀速前进,这辆快递车距离长春的路程y(km)与它行驶的时间x(h)之间的函数图象如图所示.(1)快递车从伊通到长春的速度是km/h,往返长春和靖宇两地一共用时h.(2)当这辆快递车在靖宇到伊通的路段上行驶时,求y与x之间的函数关系式,并写出自变量x的取值范围.(3)如果这辆快递车两次经过同一个服务区的时间间隔为4h,直接写出这个服务区距离伊通的路程.2.如图,已知直线l1:y=2x+4与坐标轴y轴交于点A,与x轴交于点B,以OA为边在y 轴右侧作正方形OACD.将直线l1向下平移5个单位得到直线l2.(1)求直线l2的解析式,以及A、B两点的坐标;(2)已知点M在第一象限,且是直线l2上的点,点P是边CD上的一动点,设M(m,2m﹣1),若△APM是等腰直角三角形,求点M的坐标;(3)点Q是边OD上一动点,连接AQ,过B作AQ的垂线,垂足为N,求线段DN的最小值.3.如图,两个一次函数y=kx+b与y=mx+n的图象分别为直线l1和l2,l1与l2交于点A(1,p),l1与x轴交于点B(﹣2,0),l2与x轴交于点C(4,0)(1)填空:不等式组0<mx+n<kx+b的解集为;(2)若点D和点E分别是y轴和直线l2上的动点,当p=时,是否存在以点A、B、D、E为顶点的四边形是平行四边形?若存在,请求出点E的坐标;若不存在,请说明理由.4.小明和小强在同一直线跑道AB上进行往返跑,小明从起点A出发,小强在小明前方C 处与小明同时出发,当小明到达终点B处时,休息了100秒才又以原速返回A地,而小强到达终点B处后马上以原来速度的3.2倍往回跑,最后两人同时到达A地,两人距B 地的路程记为y(米),小强跑步的时间记为x(秒),y和x的关系如图所示.(1)A,C两地相距米;(2)小强原来的速度为米/秒;(3)小明和小强第一次相遇时他们距A地米;(4)小明到B地后再经过秒与小强相距100米?5.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.6.周未,小丽骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小丽离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小丽离家时间x(h)的函数图象.(1)小丽骑车的速度为km/h,H点坐标为;(2)求小丽游玩一段时间后前往乙地的过程中y与x的函数关系;(3)小丽从家出发多少小时后被妈妈追上?此时距家的路程多远.7.如图,A(0,2),M(4,3),N(5,6),动点P从点A出发,沿y轴以每秒1个单位速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时、点M关于l的对称点落在坐标轴上.8.如图1,在平画直角坐标系中,直线交x轴于点E,交y轴于点A,将直线y=﹣2x﹣7沿x轴向右平移2个单位长度交x轴于D,交y轴于B,交直线AE于C.(1)直接写出直线BD的解析式为,S=;△ABC(2)在直线AE上存在点F,使BA是△BCF的中线,求点F的坐标;(3)如图2,在x轴正半轴上存在点P,使∠PBO=2∠P AO,求点P的坐标.9.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.10.如图所示,平面直角坐标系中,直线y=kx+b与x轴交于点A,与y轴交于点B,且AB=2,AO:BO=2:;(1)求直线AB解析式;(2)点C为射线AB上一点,点D为AC中点,连接DO,设点C的横坐标为t,△BDO 的面积为S,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当点C在第一象限时,连接CO,过D作DE⊥CO于E,在DE 的延长线上取点F,连接OF、AF,且OF=OD,当∠DF A=30°时,求S的值.11.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车在零点同时出发,相遇后快车继续行驶,中午12点到达丙地,两车之间的距离为y(km),图中的折线表示两车之间的距离y(km)与时间x(时)之间的关系.根据图象进行以下探究:(直接填空)(1)甲、乙两地之间的距离为m;(2)两车之间的最大距离是km,是在时?(3)从一开始两车相距900km到两车再次相距900km,共用了小时?(4)请写出0时至4时,y与x的关系式.12.某校为学生装一台直饮水器,课间学生到直饮水器打水.他们先同时打开全部的水笼头放水,后来又关闭了部分水笼头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,直饮水器的余水量y(升)与接水时间x(分)的函数图象如图,请结合图象回答下列问题:(1)求当x>5时,y与x之间的函数关系式;(2)假定每人水杯接水0.7升,要使40名学生接水完毕,课间10分钟是否够用?请计算回答.13.甲、乙两家采摘园的圣女果品质相同,售价也相同,节日期间,两家均推出优惠方案,甲:游客进园需购买60元门票,采摘的打六折;乙:游客进园不需购买门票,采摘超过一定数量后,超过部分打折,设某游客打算采摘60x千克,在甲、乙采摘园所需总费用为y1、y2元,y1、y2与x之间的函数关系的图象如图所示.(1)分别求出y1、y2与x之间的函数关系式;(2)求出图中点A、B的坐标;(3)若该游客打算采摘10kg圣女果,根据函数图象,直接写出该游客选择哪个采摘园更合算.14.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她骑车速度最快是在什么时候?车速多少?(3)玲玲自离家到返回的平均速度是多少?15.小亮家距离学校8千米,一天早晨小亮骑车上学,途中恰好遇到交警叔叔在十字路口带领小朋友过马路,小亮停下车协助交警叔叔,几分钟后为了不迟到,他加快了骑车到校的速度到校后,小亮根据这段经历画出了过程图象如图该图象描绘了小亮骑行的路程y (千米)与他所用的时间x(分钟)之间的关系请根据图象,解答下列问题(1)小亮骑车行驶了多少千米时,协助交警叔叔?协助交警叔叔用了几分钟?(2)小亮从家出发到学校共用了多少时间?(3)如果没有协助交警叔叔,仍保持出发时的速度行驶,那么他比实际情况早到或晚到学校多少分钟?参考答案1.解:(1)快递车从伊通到长春的速度是:66÷0.6=110km/h;往返长春和靖宇两地一共用时间为:2.6×2+1=6.2小时;故答案为:110;6.2;(2)当这辆快递车在靖宇到伊通的路段上行驶时,设y与x之间的函数关系式为y=kx+b,由点A(3.6,246),B(5.6,66)得,解得,∴y=﹣90x+570(3.6≤x≤5.6);(3)(246﹣66)÷(2.6﹣0.6)×(4﹣1135(km).2.解:(1)由题意可得y=2x﹣1,∴A(0,4),B(﹣2,0);(2)①当M在正方形内部时,过点M作EF∥OD,AM=MP,∠AEM=∠PFM=90°,∠EAM=∠PMF,易证Rt△AEM≌Rt△MFP(AAS),∴AE=MF,∵M(m,2m﹣1),∴AE=4﹣(2m﹣1)=5﹣2m,MF=4﹣m,∴5﹣2m=4﹣m,∴m=1,∴M(1,1);②当M在正方形外部时,作GH∥AC,AM=MP,∠MGA=∠MHP=90°,∠GMA=∠HPM,易证Rt△AGM≌Rt△MPH(AAS),∴AG=MH,∵M(m,2m﹣1),∴AG=2m﹣1﹣4=2m﹣5,MH=4﹣m,∴2m﹣5=4﹣m,∴m=3,∴M(3,5);(3)取AB的中点为K,则K(﹣1,2),在Rt△ABN中,KN=AB∵D(4,0),∴KD在△KND中,∵KN+ND>KD,∴ND>KD﹣KN,若N在直线KD上,则ND=KD﹣KN,综上,ND≥KD﹣KN=﹣,∴ND的最小值为﹣.3.解:(1)由图象可知满足0<mx+n<kx+b的部分为A点与C点之间的部分,∴1<x<4;(2)∵p=,∴A(1,),将点A与B代入y=kx+b,得,∴,∴y=x+1,将点A与点C代入y=mx+n,得,∴,∴y=﹣x+2,①如图1:当四边形ABDE为平行四边形时,∵E在直线l2上,此时,BD∥AC,∴BD所在直线解析式为y=﹣x﹣1,∴D(0,﹣1),∵DE∥AB,∴DE所在直线解析式为y=x﹣,∵﹣x+2=x﹣,可得x=,∴E(,);②如图2:当四边形EBDA是平行四边形时,则有BD∥AC,∴BD所在直线解析式为y=﹣x﹣1,∴D(0,﹣1),∴AD的直线解析为y=x+1,∵AD∥BE,∴BE所在直线解析为y=x+5,∵﹣x+2=x+5,解得x=﹣1,∴E(﹣1,);③如图3:当四边形EBAD为平行四边形时,设D(0,a),E(m,﹣m+2),此时AE的中点M的横坐标为,BD中点M的横坐标为﹣1,∴﹣1=,∴m=﹣3,∴E(﹣3,);综上所述:满足条件的E点为(,),(﹣1,),(﹣3,).4.解:(1)由图可得,A,C两地相距800﹣500=300(米),故答案为:300;(2)小强原来的速度为a米/秒,,解得,a=1.5,故答案为:1.5;(3)设小明的速度为b米/秒,(300﹣100)b=800,解得,b=4米/秒,小明和小强第一次相遇时的所用的时间为m秒,4m=(800﹣500)+1.5m,解得m=120,小明和小强第一次相遇时他们距A地为:4×120=480(米),故答案为:480;(4)设小明到B地后再经过b秒,与小强相距100米,500﹣100=1.5b,解得,b=,故答案为:.5.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;=×6×4=12;(2)S△OAC(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).6.解:(1)由函数图可以得出,小丽家距离甲地的路程为10km,花费时间为0.5h,故小丽骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H的纵坐标为20,横坐标为:,故点H的坐标为(,20);故答案为:20;(,20);(2)设直线AB的解析式为:y1=k1x+b1,将点A(0,30),B(0.5,20)代入得:y1=﹣20x+30,∵AB∥CD,∴设直线CD的解析式为:y2=﹣20x+b2,将点C(1,20)代入得:b2=40,故y2=﹣20x+40;(3)设直线EF的解析式为:y3=k3x+b3,将点E(,30),H(,20)代入得:k3=﹣60,b3=110,∴y3=﹣60x+110,解方程组,解得,∴点D坐标为(1.75,5),30﹣5=25(km),所以小丽出发1.75小时后被妈妈追上,此时距家25km;7.解:(1)当t=3时,点P的坐标为(0,5),则直线l的表达式为:y=﹣x+5;(2)当直线l过点M时,将点M的坐标代入直线l的表达式:y=﹣x+b得:3=﹣4+b,解得:b=7,t=5;当直线l过点N时,同理可得:t=9,故t的取值范围为:5<t<9;(3)直线l随P沿y轴向上移动时,点M关于直线l的对称轴不可能落在y轴上,只能落在x轴上,如图,当点M关于l的对称点E′落在坐标轴上时,直线M′M交l于点H,设直线l交x轴于点G,则M′M⊥l,∠HM′G=45°=∠M′GH=∠HGM,即MG⊥x轴,故M′G=MG=3,则点G(3,0),则t=2.8.解:(1)直线y=﹣2x﹣7沿x轴向右平移2个单位长度后,所得直线方程为y=﹣2(x ﹣2)﹣7=﹣2x﹣3.则直线BD的解析式为y=﹣2x﹣3.解方程组,得,∴C(﹣4,5).在中,令x=0,得y=8,∴A(0,8).在y=﹣2x﹣3中,令x=0,得y=﹣3,∴B(0,﹣3).∴AB=11,∴S=×11×4=22.△ABC故答案是:y=﹣2x﹣3,22.(2)如图1,作CG⊥y轴于G,FH⊥y轴于H,∴CG=4,∠CGA=∠FHA=90°,∵BA为△BCF的中线,∴CA=F A,∵∠CAG=∠F AH,∴△CAG≌△F AH(AAS),∴FH=CG=4,在中,当x=4时,y=11,∴F(4,11).(3)由(1)知A(0,8),B(0,﹣3),∴OA=8,OB=3.如图2,在y轴正半轴上取一点Q,使OQ=OB=3,∵∠POB=90°,∴PQ=PB,∴∠PBO=∠PQO=∠P AO+∠APQ,∵∠PBO=2∠P AO,∴∠P AO=∠APQ,∴PQ=AQ=5,∴OP=4,∴P(4,0).9.解:(1)把A(4,0)代入y=kx+4,得0=4k+4.解得k=﹣1.故答案是:﹣1;(2)∵在直线y=﹣x+4中,令x=0,得y=4,∴B(0,4),∵A(4,0),∴线段AB的中点P的坐标为(2,2),代入,得n=1,∴直线l2为,∵QM⊥x轴分别交直线l1、l2于M、N,Q(t,0),∴M(t,﹣t+4),,∴,MQ=|﹣t+4|=|t﹣4|,∵MN=2MQ,∴,分情况讨论:①当t≥4时,,解得:t=10.②当2≤t<4时,,解得:.③当t<2时,,解得:t=10>2,舍去.综上所述:或t=10.(3)在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(﹣1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为,将N(5m,3m+2)代入,得3m+2=﹣×5m+4解得,∴.10.解:(1)∵AO:BO=2:,∴设AO=2a,BO=a,∵AO2+BO2=AB2,∴4a2+3a2=28∴a=2,∴AO=4,BO=2,∴点A(﹣4,0),点B(0,2)设直线AB解析式为:y=kx+b,解得∴直线AB解析式为:y=x+2,(2)当﹣4<t<4时,S=×2×(﹣)=2﹣t,当t>4时,S=×2×()=t﹣2(3)作AH⊥DE于H,OG⊥AB于G,如图,∵OD=OF,OE⊥DF,∴DE=FE,∵D点为AC的中点,AH⊥HE,CE⊥HE,∴AD=CD,AH∥CE,在△AHD和△CED中,∴△AHD≌△CED(AAS),∴DH=DE,∴HF=3DH,在Rt△AFH中,∵∠HF A=30°,∴FH=AH,∴3HD=AH,∴AH=DH,在△ADH中,tan∠DAH==,∴∠DAH=30°,∴∠DCE=30°,∵OG•AB=OA•OB,∴OG==,在Rt△COG中,OC=2OG=,设C(t,t+2),∴t2+(t+2)2=()2,整理得49t2+168t﹣432=0,解得t1=﹣(舍去),t2=,把t=代入S=﹣t+2得S=×+2=.11.解:(1)图象过(0,900),表示时间为0时,即未出发,两车相距900km,即900000m,就是甲乙两地的距离.故答案为:900000,(2)点D(12,1200),表示12时,两车的距离达到1200千米,故答案为:1200,12,(3)点A(0,900),C(8,900),因此从一开始两车相距900km到两车再次相距900km,共用8﹣0=8小时,故答案为:8,(4)设关系式为y=kx+b,把(0,900),(4,0)代入得,,解得,k=﹣225,b=900,∴y=﹣225x+900,答:y与x的关系式为y=﹣225x+900 (0≤x≤4).12.解:(1)设x>5时,y与x之间的函数关系式为y=kx+b,由题意得,解得,所以x>5时,y与x之间的函数关系式为y=﹣1.5x+16.5;(2)够用.理由如下:接水总量为0.7×40=28(升),饮水机内余水量为30﹣28=2(升),当y=2时,有2=﹣1.5x+16.5,解得:x=.所以要使40名学生接水完毕,课间10分钟够用.13.解:(1)由图得单价为300÷10=30(元),据题意,得y1=30×0.6x+60=18x+60当0≤x<10时,y2=30x,当x≥10时由题意可设y2=kx+b,将(10,300)和(20,450)分别代入y2=kx+b中,得,解得,故y2与x之间的函数关系式为y2=;(2)联立y2=18x+60,y2=30x,得,解得:,故A(5,150).联立y1=18x+60,y2=15x+150x,得解得,故B(30,600).(3)由(2)结合图象得,当5<x<30时,甲采摘园所需总费用较少.14.解:观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)玲玲郊游过程中,各时间段的速度分别为:9~10时,速度为10÷(10﹣9)=10千米/时;10~10.5时,速度约为(17.5﹣10)÷(10.5﹣10)=15千米/小时;10.5~11时,速度为0;11~12时,速度为(30﹣17.5)÷(12﹣11)=12.5千米/小时;12~13时,速度为0;13~15时,在返回的途中,速度为:30÷(15﹣13)=15千米/小时;可见骑行最快有两段时间:10~10.5时;13~15时.两段时间的速度都是15千米/小时.速度为:30÷(15﹣13)=15千米/小时;(3)玲玲自离家到返回的平均速度是:(30+30)÷(15﹣9)=10千米/小时.15.解:(1)由图可知,小亮骑车行驶了3千米时,协助交警叔叔,协助交警叔叔用,5分钟;(2)由图可知,小亮从家出发到学校共用了27分钟;(3),27﹣24=3.∴小亮比实际情况早到学校3分钟.。
第四章一次函数单元测试 2024—2025学年北师大版数学八年级上册

第四章一次函数单元测试北师大版2024—2025学年秋季八年级上册(考试时间:120 分钟试卷满分: 120分)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.若点(3,m)在函数y=x+2的图象上.则m的值为()A.0B.1C.2D.32.一个正比例函数的图象经过点(﹣2,4),它的表达式为()A.y=﹣2x B.y=2x C.y=﹣x D.y=x3.在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)4.关于一次函数y=2x+4,下列说法正确的是()A.图象经过第一、三、四象限B.图象与y轴交于点(0,﹣2)C.函数值y随自变量x的增大而增大D.当x>﹣1时,y<25.点A(2,y1)与点B(3,y2)在直线y=﹣2024x+2024上,则y1与y2的关系是()A.y1<y2B.y1≤y2C.y1>y2D.y1=y26.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中,如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象,则下列结论中不正确的是()A.公园离小明家1600米B.小明出发分钟后与爸爸第一次相遇C.小明在公园停留的时间为5分钟D.小明与爸爸第二次相遇时,离家的距离是960米7.若一次函数y=(4﹣3k)x﹣2的图象经过点A(x1,y1)和点B(x2,y2),当x1>x2时,y1<y2,则k的取值范围是()A.B.C.D.8.一次函数y=kx﹣k和正比例函数y=kx在同一平面直角坐标系中的函数图象可能是()A.B.C.D.9.将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣3 10.一次函数y=(m﹣1)x+m+2的图象过一、二、三象限,则m的取值范围是()A.m>1B.﹣1<m<2C.﹣2<m<1D.m>﹣2二、填空题(每小题3分,满分18分)11.已知关于x的函数y=(k﹣1)x|k﹣2|是正比例函数,则k=.12.当直线y=(2﹣2k)x+k﹣3,不经过第一象限时,则k的取值范围是.13.在函数y=中,自变量x的取值范围是.14.若,则直线y=kx﹣k必经过第象限.15.如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB 上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是.16.如图,在平面直角坐标系中,一次函数y=k(x﹣1)的图象分别交x 轴,y轴于A,B两点,且OB=2OA,将直线AB绕点B按顺时针方向旋转45°,交x 轴于点C,则直线BC的函数表达式是.第II卷第四章一次函数单元测试北师大版2024—2025学年秋季八年级上册考生注意:本试卷共三道大题,24道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18题每题8分,19、20、21、22每题9分,23、24每题10分,共计72分,解答题要有必要的文字说明)17.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.18.如图,直线l1:y=2x+4与x轴交于点A,与y轴交于点B,直线l2:y=﹣x+1与y轴交于点C,直线l1和直线l2相交于点D.(1)直接写出点A、B、C的坐标分别为:A,B,C;(2)在x轴上是否存在一点P,使得S△ADP=4,若存在,求点P坐标;若不存在,请说明理由.19.“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?20.已知y=y1+y2,y1与x成正比例,y2与x﹣2成正比例,当x=1时,y=﹣3;当x=﹣2时,y=0.(1)求y与x的函数关系式;(2)当x=3时,求y的值.21.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?22.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.23.已知函数y=其中m为常数,该函数的图象记为G.(1)当m=﹣2时,若点D(3,n)在图象G上,求n的值;(2)当3﹣m≤x≤4﹣m时,若函数最大值与最小值的差为,求m的值;(3)已知点A(0,1),B(0,﹣2),C(2,1),当图象G与△ABC有两个公共点时,直接写出m的取值范围.24.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)求一次函数y=kx+b的解析式;(2)求四边形AOCD的面积;(3)在平面内直线CD的右侧是否存在点P,使得以点P,C,D为顶点的三角形是以CD为腰的等腰直角三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.。
北师大版八年级上册数学第四章 一次函数含答案(综合知识)

北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、函数y=中,自变量x的取值范围是()A.x≠2B.x≥2C.x≤2D.全体实数2、成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,休息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是()A. B.C. D.3、下列各式中,自变量x的取值范围是x≥2的是( )A.y=x-2B.y=C.y=·D.y=x 2-44、下列函数的图象不经过第一象限,且y随x的增大而减小的是( )A. B. C. D.5、同一坐标系中有四条直线::,:,:,:,其中与轴交于点的直线是()A.直线B.直线C.直线D.直线6、某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s (米)与行进时间t(分)的关系的示意图,你认为正确的是()A. B. C.D.7、如图,反映了某公司的销售收入(单位:元)与销售量(单位:吨)的关系,反映了该公司的销售成本(单位:元)与销售量(单位:吨)的关系,当该公司盈利(收入大于成本)时,销售量应为()A.大于4吨B.等于5吨C.小于5吨D.大于5吨8、已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是图中的()A. B. C.D.9、若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3B.0<k≤3C.0≤k<3D.0<k<310、下列各图中,是函数图象的是().A. B. C. D.11、对于0≤x≤100,用[x]表示不超过x的最大整数,则[x]+[ x]的不同取值的个数为( )A.267B.266C.234D.23312、一次函数y=-2x+5的图象性质错误的是().A.y随x的增大而减小B.直线经过第一、二、四象限C.直线从左到右是下降的D.直线与x轴交点坐标是(0,5)13、如图,已知点A 的坐标为(-1,0 ),点B在直线y=x上运动,当线段AB 最短时,点B的坐标为()A.(0,0)B.(, - )C.(-,-)D.(-,-)14、若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)15、某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y (元)与销售量(x)的函数关系如图所示,则降价后每件商品的销售价格为()A.5元B.10元C.12.5元D.15元二、填空题(共10题,共计30分)16、若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.17、如图所示的是春季某地一天气温随时间变化的图象,根据图象判断,在这天中,最高温度与最低温度的差是________ ℃.18、一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1, y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x=h时,两车相遇;③当x=时,两车相距60km;④图2中C点坐标为(3,180);⑤当x=h或h时,两车相距200km.其中正确的有________(请写出所有正确判断的序号)19、如图,A(4,3),B(2,1),在x轴上取两点P、Q,使PA+PB值最小,|QA-QB|值最大,则PQ=________.20、表示变量之间关系的常用方法有________ ,________ ,________ .21、某函数满足当自变量x=-1时,函数的值y=2,且函数y的值始终随自变量x的增大而减小,写出一个满足条件的函数表达式________.22、若一次函数y=(m﹣3)x+1中,y值随x值的增大而减小,则m的取值需满足________.23、已知正比例函数的图像经过点M( )、、,如果,那么________ .(填“>”、“=”、“<”)24、写出一个正比例函数,使其图象经过第二、四象限:________.25、已知二次函数y=ax2(a≠0的常数),则y与x2成________ 比例.三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分 1 2 3 4 5 …电话费/元 0.36 0.72 1.08 1.44 1.8 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?28、如图,已知一次函数的图象与轴,轴分别交于A,B两点,点在该函数的图象上,连接OC.求点A,B的坐标和的面积.29、小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M 点坐标为(2,0).(1)A点所表示的实际意义是;=;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?30、如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S 关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)求m的值。
北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)

北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列两个变量之间不存在函数关系的是( )A.圆的面积S和半径r B.某地一天的气温T与时间t C.某班学生的身高y与学生的学号x D.一个正数的平方根与这个数2.一个正比例函数的图象经过点(-2,-4),则它的表达式为( )A.y=-2x B.y=2x C.y=-12x D.y=12x3.【教材P88习题T4改编】正比例函数y=x的图象向上平移2个单位长度,所得函数为( )A.y=x+2 B.y=x-2 C.y=2x D.y=x 24.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为( ) A.x=3B.x=-3C.x=4D.x=-45.已知点P(a,-3)在一次函数y=2x+9的图象上,则a的值为( ) A.-3 B.-6 C.15 D.36.关于函数y=-x2-1,下列说法错误的是( )A.当x=2时,y=-2B.y随x的增大而减小C.若(x1,y1),(x2,y2)为该函数图象上两点,x1>x2,则y1>y2D.图象经过第二、三、四象限7.【教材P98复习题T3变式】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)间有如下关系(其中x≤12).下列说法不正确的是( )A.x与y都是变量,且x是自变量B.弹簧不挂物体时的长度为10 cmC.物体质量每增加1 kg,弹簧长度增加0.5 cmD.所挂物体质量为7 kg,弹簧长度为14.5 cm8.若直线y=-3x+m与两坐标轴所围成的三角形的面积是6,则m的值为( ) A.6 B.-6 C.±6 D.±39.【教材P99复习题T8变式】已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是( )10.【2020·铜仁】如图,在长方形ABCD中,AB=3,BC=4,动点P沿折线BCD 从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x 之间的函数关系的图象大致是( )二、填空题(每题3分,共24分)11.【2021·黑龙江】在函数y =1x -5中,自变量x 的取值范围是__________.12.若函数y =(m +1)x |m |是关于x 的正比例函数,则m =________. 13.直线y =3x +1与y 轴的交点坐标是__________.14.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +1上,则m 与n 的大小关系是__________.15.拖拉机油箱中有54 L 油,拖拉机工作时,每小时平均耗油6 L ,则油箱里剩下的油量Q (L)与拖拉机的工作时间t (h)之间的函数关系式是________________(写出自变量的取值范围).16.【教材P 90习题T 2改编】一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A ,B ,则△AOB 的面积是________.17.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是____________.(第17题) (第18题)18.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法:①两人出发1小时后相遇;②赵明阳跑步的速度为8 km/h;③王浩月到达目的地时两人相距10 km;④王浩月比赵明阳提前1.5 h到目的地.其中错误的序号是________.三、解答题(每题11分,共66分)19.已知y-2与x成正比例,且x=2时,y=4.(1)求y与x之间的函数关系式;(2)若点M(m,3)在这个函数的图象上,求点M的坐标.20.已知一次函数y=(m-3)x+m-8中,y随x的增大而增大.(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值;(3)如果这个一次函数的图象经过第一、三、四象限,试写一个m的值,不用写理由.21.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值,(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C的坐标.22.如图,一次函数y=kx+5的图象与y轴交于点B,与正比例函数y=32x的图象交于点P(2,a).(1)求k的值;(2)求△POB的面积.23.水龙头关闭不紧会持续不断地滴水,小明用可以显示水量的容器做实验,并根据实验数据绘制出容器内盛水量y(L)与滴水时间t(h)之间的函数关系图象(如图).请结合图象解答下面的问题:(1)容器内原有水多少升?(2)求y与t之间的函数表达式,并计算在这种滴水状态下一天的滴水量是多少升.24.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的收费金额y (元)与通信时间x (分钟)之间的函数关系如图所示.(1)有月租费的收费方式是________(填“①”或“②”),月租费是________元; (2)分别求出①②两种收费方式中,收费金额y (元)与通信时间x (分钟)之间的函数表达式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.参考答案一、1.D 2.B 3.A 4.D 5.B 6.C 7.D 8.C 9.B 10.D二、11.x ≠5 12.1 13.(0,1) 14.m <n15.Q =54-6t (0≤t ≤9) 16.14 17.y =-x +3 18.③三、19.解:(1)设y -2=kx (k ≠0).把x =2,y =4代入,得k =1.故y 与x 之间的函数关系式是y =x +2. (2)因为点M (m ,3)在这个函数的图象上, 所以3=m +2,解得m =1.所以点M 的坐标为(1,3).20.解:(1)因为一次函数y =(m -3)x +m -8中,y 随x 的增大而增大,所以m -3>0. 所以m >3.(2)因为这个一次函数是正比例函数, 所以m -8=0,即m =8. (3)答案不唯一,如m =4.21.解:将A (2,0)的坐标代入y =2x +b ,得2×2+b =0,解得b =-4.(2)因为S △AOC =4,点A (2,0), 所以OA =2.所以12OA ·y c =4,解得y c =4.把y =4代入y =2x -4,得2x -4=4, 解得x =4.所以点C 的坐标为(4,4).22.解:(1)把点P (2,a )的坐标代入y =32x ,得a =3,所以点P 的坐标为(2,3).把点P (2,3)的坐标代入y =kx +5,得2k +5=3, 解得k =-1.(2)由(1)知一次函数表达式为y =-x +5. 把x =0代入y =-x +5,得y =5,所以点B的坐标为(0,5).所以S△POB=12×5×2=5.23.解:(1)根据图象可知,当t=0时,y=0.3,即容器内原有水0.3 L.(2)设y与t之间的函数表达式为y=kt+b.将点(0,0.3),(1.5,0.9)的坐标分别代入,得b=0.3,1.5k+b=0.9,解得k=0.4.所以y与t之间的函数表达式为y=0.4t+0.3.当t=24时,y=0.4×24+0.3=9.9,所以在这种滴水状态下一天的滴水量是9.9-0.3=9.6(L).24.解:(1)①;30(2)记有月租费的收费金额为y1(元),无月租费的收费金额为y2(元),则设y1=k1x+30,y2=k2x.将点(500,80)的坐标代入y1=k1x+30,得500k1+30=80,所以k1=0.1,则y1=0.1x+30.将点(500,100)的坐标代入y2=k2x,得500k2=100,所以k2=0.2,则y2=0.2x.所以①②两种收费方式中,收费金额y(元)与通信时间x(分钟)之间的函数表达式分别为y1=0.1x+30,y2=0.2x.(3)当收费相同,即y1=y2时,0.1x+30=0.2x,解得x=300.结合图象,可知当通信时间少于300分钟时,选择收费方式②更实惠;当通信时间超过300分钟时,选择收费方式①更实惠;当通信时间等于300分钟时,选择收费方式①②一样实惠.。
北师大版八年级上册数学第四章一次函数单元测试卷(Word版,含答案)

第 1 页 共 9 页北师大版八年级上册数学第四章一次函数单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.甲、乙两种物质的溶解度(g)y 与温度()t ℃之间的对应关系如图所示,则下列说法中,错误的是( )A .甲、乙两种物质的溶解度均随着温度的升高而增大B .当温度升高至2t ℃时,甲的溶解度比乙的溶解度大C .当温度为0℃时,甲、乙的溶解度都小于20gD .当温度为30℃时,甲、乙的溶解度相等2.举世瞩目的2022北京冬季奥运会由北京市和河北省张家口市联合举办,以下表述能够准确表示张家口市地理位置的是( ).A .位于东经114.8°,北纬40.8°B .位于中国境内河北省C .西边和西南边与山西省接壤D .距离北京市180千米3.如图,点、、A B C 都在方格纸的格点上,若点A 的坐标为(0,2),点B 的坐标为(2,0),则点C 的坐标是( )第 2 页 共 9 页 A .(2,2) B .(1,2) C .(1,1) D .(2,1)4.如图所示,一次函数()0y kx b k =+≠的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定5.下列函数关系式中,自变量x 的取值范围错误的是( )A .y =2x 2中,x 为全体实数B .yx ≠﹣1 C .yx =0 D .yx >﹣7 6.下列变化过程中,y 是x 的正比例函数是( )A .某村共有5210m 耕地,该村人均占有耕地y (单位:2m )随该村人数x (单位:人)的变化而变化B .一天内,温岭市气温y (单位:℃)随时间x (单位:时)的变化而变化C .汽车油箱内的存油y (单位:升)随行驶时间x (单位:时)的变化而变化D .某人一年总收入y (单位:元)随年内平均月收入x (单位:元)的变化而变化 7.若2x =是关于x 的方程()00,0mx n m n +=≠>的解,则一次函数()1y m x n =---的图象与x 轴的交点坐标是( ) A .()2,0 B .()3,0 C .()0,2 D .()0,38.某个函数的图象由线段AB 和线段BC 组成,如图,其中()0,2A ,()2,1B ,()5,3C ,点()11,M x y ,()22,N x y 是这两条线段上的点,则正确的结论是( )。
北师大版八年级上册数学第四章一次函数单元测试(附答案)

八年级上册数学第四章单元测试一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.根据函数的定义,下列图象中表示函数的是()2.在函数y=1x-2-x+2中,自变量x的取值范围是()A.x>-2 B.x≥-2C.x>-2且x≠2 D.x≥-2且x≠23.已知某一次函数的图象与直线y=-2x+1平行,且过点(2,8),那么此一次函数的表达式为()A.y=-2x-2 B.y=-2x+12C.y=-2x-6 D.y=-2x-124.对于一次函数y=-2x+4,下列结论正确的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(-2,0)C.函数的图象向上平移4个单位长度后得到y=-2x的图象D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1<y25.两直线y1=kx+b和y2=bx+k(k≠0且b≠0)在同一平面直角坐标系内的图象位置可能是()6.一次函数y=(m-1)x+m的图象必过一定点,此定点的坐标为() A.(-1,1) B.(1,1)C.(0,1) D.(1,-1)7.爷爷在离家2 900 m的公园锻炼后回家,离开公园走了20 min后,爷爷停下来与朋友聊天10 min ,接着又走了15 min 回到家中.下列图象中表示爷爷离家的距离y (m)与爷爷离开公园的时间x (min)之间的函数关系的是( )8.等腰三角形的周长是40 cm ,其腰长y (cm)与底边长x (cm)的函数表达式正确的是( )A .y =-2x +40(10<x <20)B .y =-0.5x +20(10<x <20) C. y =-0.5x +20(0<x <20) D .y =-2x +40(0<x <20)9.某快递公司每天上午9:00-10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当甲、乙两仓库快件数量相同时,此时的时刻为( )A .9:15B .9:20C .9:25D .9:3010.8个边长为1的正方形如图摆放在平面直角坐标系中,若经过原点的一条直线l 将这8个正方形分成面积相等的两部分,则该直线l 的函数表达式为( ) A .y =35x B .y =34x C .y =910x D .y =x(第9题) (第10题) (第12题)11.已知过点(2,-3)的直线y =ax +b (a ≠0)不经过第一象限,设s =a +2b ,则s的取值范围是( )A .-5≤s ≤-32B .-6<s ≤-32 C .-6≤s ≤-32 D .-7<s ≤-3212.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80 km/h 的速度行驶1 h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1 h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km)与乙车行驶时间x (h)之间的函数关系如图所示.下列说法:①乙车的速度是120 km/h ;②m =160;③点H 的坐标是(7,80);④n =7.4. 其中说法正确的有( )A .1个B .2 个C .3个D .4个 二、填空题:本大题共6小题,每小题4分,共24分. 13.如果函数y =(m -1)x m2-3是正比例函数,且y 的值随x 值的增大而增大,那么m 的值是________.14.一次函数y =kx +b 的图象如图所示,当y <5时,x 的取值范围是____________.(第14题) (第18题)15.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +b 上,则m 与n 的大小关系是________.16.2021年5月15日7时18分,“天问一号”火星探测器成功在火星着陆,开启了中国人自主探测火星之旅.已知华氏温度f (℉)与摄氏温度c (℃)之间的关系满足下表:c /℃ … -10 0 10 20 30 … f /℉…1432506886…____________℉.17.某直线与x 轴交于点A (-4,0),与y 轴交于点B ,若点B 到x 轴的距离为2,则该直线对应的函数表达式为__________________.18.如图①所示,在长方形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y .如果y 关于x 的函数图象如图②所示,那么△ABC的面积是________.三、解答题(一):本大题共2小题,每小题8分,共16分.19.已知y与x-1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)求当x=-5时y的值.20.拖拉机开始工作时,油箱中有油40 L,如果工作1 h耗油4 L,求:(1)油箱中的余油量Q(L)与工作时间t(h)的函数关系式及自变量的取值范围;(2)当工作5 h时油箱的余油量.四、解答题(二):本大题共2小题,每小题10分,共20分.21.如图,在平面直角坐标系中,直线l经过原点O和点A(6,4),经过点A的另一条直线交x 轴于点B (12,0). (1)求直线l 对应的函数表达式;(2)若直线l 上有一点P ,使得S △ABP =13S △AOB ,求出点P 的坐标.22.甲、乙两车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2 h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为y甲(km),y 乙(km),甲车行驶的时间为x (h),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题. (1)乙车休息了________h ;(2)已知乙车与甲车相遇后y 乙仍是x 的正比例函数,求乙车与甲车相遇后y 乙与x 的函数表达式,并写出自变量x 的取值范围; (3)当甲、乙两车相距40 km 时,求x 值.五、解答题(三):本大题共2小题,每小题12分,共24分.23.某大型商场为了提高销售人员的积极性,对原有的薪酬计算方式进行了修改,设销售人员一个月的销售量为x (件),销售人员的薪酬为y (元),原有的薪酬y1(元)计算方式采用的是底薪+提成,且y1=k1x+b1,已知每销售一件商品另外获得15元的提成.修改后的薪酬y2(元)计算方式为y2=k2x+b2.根据图象回答下列问题:(1)分别求y1、y2与x之间的函数表达式,并说明b1和b2的实际意义;(2)求两个函数图象的交点F的坐标,并说明交点F的实际意义;(3)请根据函数图象判断哪种薪酬计算方式更适合销售人员.24.如图,直线y=-2x+8分别与x轴,y轴交于A,B两点,点C在线段AB 上,过点C作CD⊥x轴于点D,CD=2OD,点E在线段OB上,且AE=BE.(1)点C的坐标为________,点E的坐标为________;(2)若直线m经过点E,且将△AOB分成面积比为1:2的两部分,求直线m的函数表达式;(3)若点P在x轴上运动,当PC+PE取最小值时,求点P的坐标及PC+PE的最小值.答案一、1.C2.D3.B4.A5.A6.A点拨:将一次函数y=(m-1)x+m变形为m(x+1)-x-y=0,令x+1=0,则-x-y=0,解得x=-1,y=1,故一次函数y=(m-1)x+m的图象必过定点(-1,1).7.B8.C点拨:根据三角形周长的定义可得x+2y=40,所以y=-0.5x+20.又由三角形三边关系,得x<2y,x>y-y,所以x<2(-0.5x+20),x>0,即x<20,x>0,所以0<x<20.9.B10.C11.B点拨:因为直线y=ax+b(a≠0)不经过第一象限,所以a<0,b≤0.因为直线y=ax+b(a≠0)过点(2,-3),所以2a+b=-3,所以a=-b-32,b=-2a-3,所以s=a+2b=-b-32+2b=32b-32≤-32,s=a+2b=a+2(-2a-3)=-3a-6>-6,所以s的取值范围是-6<s≤-32.故选B.12.D二、13.214.x>015.m<n16.-67点拨:由表中数据可得,f=32+18×c10=32+1.8c,当c=-55时,f=32+1.8×(-55)=-67.所以换算成华氏温度约为-67℉.17.y =12x +2或y =-12x -2 18.10三、19.解:(1)设y =k (x -1),把x =3,y =4代入,得(3-1)k =4, 解得k =2,所以y =2(x -1),即y =2x -2. (2)当x =-5时,y =2×(-5)-2=-12.20.解:(1)由题意可知Q =40-4t (0≤t ≤10).(2)把t =5代入Q =40-4t , 得Q =40-4×5=20.所以当工作5 h 时油箱的余油量为20 L . 四、21.解:(1)设直线l 对应的函数表达式为y =kx ,把(6,4)代入,得4=6k , 解得k =23.所以直线l 对应的函数表达式为y =23x .(2)因为A (6,4),B (12,0), 所以S △AOB =12×12×4=24.当S △ABP =13S △AOB =8时,分两种情况, 设点P 的坐标为⎝ ⎛⎭⎪⎫x ,23x .①如图①,当点P 在线段OA 上时,连接BP , 则S △BOP =S △AOB -S △ABP =24-8=16, 即12×12×23x =16. 解得x =4, 则P ⎝ ⎛⎭⎪⎫4,83;②如图②,当点P 在线段OA 的延长线上时,连接BP ,则S △BOP =S △AOB +S △ABP =24+8=32, 即12×12×23x =32. 解得x =8, 则P ⎝ ⎛⎭⎪⎫8,163.故点P 的坐标为⎝ ⎛⎭⎪⎫4,83或⎝ ⎛⎭⎪⎫8,163.22.解:(1)0.5(2)设乙车与甲车相遇后y 乙与x 的函数表达式为y 乙=k 2x ,把(5,400)代入,得5k 2=400. 解得k 2=80.所以y 乙=80x (2.5≤x ≤5).(3)设乙车与甲车相遇前y 乙与x 的函数表达式为y 乙=k 3x ,把(2,200)代入,得2k 3=200. 解得k 3=100.所以乙车与甲车相遇前y 乙与x 的函数表达式为y 乙=100x (0≤x ≤2). 设y 甲与x 的函数表达式为y 甲=k 1x +b 1. 把(0,400),(5,0)代入, 得b 1=400,5k 1+b 1=0, 解得k 1=-80,所以y 甲=-80x +400(0≤x ≤5). 当0≤x ≤2时,y 甲-y 乙=40, 即-80x +400-100x =40. 解得x =2.当2.5≤x ≤5时,y 乙-y 甲=40,即80x-(-80x+400)=40.解得x=11 4.所以当甲、乙两车相距40 km时,x=2或x=11 4.五、23.解:(1)因为y1=k1x+b1的图象过点(0,3 000),所以b1=3 000,又因为每销售一件商品另外获得15元的提成,所以k1=15,所以y1=15x+3 000.因为y2=k2x+b2的图象过点(100,3 000),(0,0),所以b2=0,100k2=3 000,解得k2=30,所以y2=30x.所以b1的实际意义是底薪为3 000元,b2的实际意义是底薪为0元.(2)令y1=y2,即15x+3 000=30x,解得x=200,所以y1=y2=6 000.所以F(200,6 000),所以交点F的实际意义是当销售人员一个月的销售量为200件时,销售人员通过两种薪酬计算方式所得的薪酬相等,为6 000元.(3)结合函数图象可知,当0<x<200时,原有的薪酬计算方式更适合销售人员;当x=200时,两种薪酬计算方式对销售人员一样;当x>200时,修改后的薪酬计算方式更适合销售人员.24.解:(1)(2,4);(0,3)(2)设直线m的函数表达式为y=kx+3,根据k值的不同,可分为两种情况讨论:①当k>0时,如图①,设直线m交AB于点F,过点F作FH⊥y轴于点H.当S△BEF=11+2S△AOB时,易知B (0,8),E (0,3),所以BE =5, 所以5FH 2=13×4×82,解得FH =3215.将x =3215代入y =-2x +8,得y =5615.将点F ⎝ ⎛⎭⎪⎫3215,5615的坐标代入y =kx +3, 得k =1132,所以直线m 的函数表达式为y =1132x +3;②当k <0时,如图②,设直线m 交OA 于点N .当S △OEN =11+2S △AOB时,易知OE =3, 所以3ON 2=13×4×82,解得ON =329.将点N ⎝ ⎛⎭⎪⎫329,0的坐标代入y =kx +3, 得k =-2732,所以直线m 的函数表达式为y =-2732x +3.综上,直线m 的函数表达式为y =1132x +3或y =-2732x +3.(3)作点E 关于x 轴的对称点E ′,连接 CE ′交x 轴于点P ,此时PC +PE取最小值.易知点E ′的坐标为(0,-3), 设直线CE ′的函数表达式为y =nx -3,将点C (2,4)的坐标代入,得n =72,所以y =72x -3.将y =0代入y =72x -3,得x =67,所以点P 的坐标为⎝ ⎛⎭⎪⎫67,0, 作E ′G ⊥CD 交CD 延长线于点G ,易知E ′G =OD =2,CG =7,所以PC +PE 的最小值=CE ′=22+72=53.。
八年级上册数学单元测试卷-第四章 一次函数-北师大版(含答案)

八年级上册数学单元测试卷-第四章一次函数-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A. B. C. D.2、已知A,B两地相距80km,甲,乙两人沿同一条公路从A地出发到B地,乙骑自行车,甲骑摩托车.图中DE,OC分别表示甲,乙离开A地的路程s(km)与时间t(h)的函数关系,根据图象得出的下列信息错误的是()A.乙到达B地时甲距A地120kmB.乙出发1.8小时被甲追上C.甲,乙相距20km时,t为2.4hD.甲的速度是乙的速度的倍3、下列命题中,正确的个数有()①若,则a、b中至少有一个是0.②若S△ABC=S△ABD(C、D不重合),则CD∥AB。
③图象为直线的函数的解析式为一次函数。
④有一组对边相等和一组对角相等的四边形是平行四边形。
A.0个B.1个C.2个D.4 个4、下列函数中,自变量的取值范围选取错误的是()A.y=2x 2中,x取全体实数B.y= 中,x取x≠-1的实数C.y=中,x取x≥2的实数 D.y= 中,x取x≥-3的实数5、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是()A. B. C. D.6、甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()A.S是变量B.t是变量C.v是变量D.S是常量7、如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M 为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的()A.点CB.点OC.点ED.点F8、如图,在平面直角坐标系中,一次函数的图象与x轴、y轴分别相交于点A,B,点P的坐标为,且点P在的内部,则m的取值范围是()A. B. C. D. 或9、一次函数y=x+3的图象与x轴的交点坐标是()A.(-3,0)B.(3,0)C.(0,-3)D.(0,3)10、在函数中,自变量的取值范围是( )A. B. C. D.11、下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y=C.y= x-3D.y=12、对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是()x -1 0 1 2 3y 2 5 8 12 14A.5B.8C.12D.1413、若y=是一次函数,则m的值为()A.0B.-1C.0或﹣1D.±114、小亮家与学校相距1500m ,一天放学后他步行回家,最初以某一速度匀速前进,途中遇到熟人小强,说话耽误了几分钟,与小强告别后他就改为匀速慢跑,最后回答了家,设小亮从学校出发后所用的时间为t(min),与家的距离为s(m),下列图象中,能表示上述过程的是().A. B. C. D.15、函数的图象一定经过点()A.(3,5)B.(-2,3)C.(2,7)D.(4,10)二、填空题(共10题,共计30分)16、请你写出同时具备下列两个条件的一次函数的表达式(写出一个即可)________17、一次函数y=(2k﹣5)x+2中,y随x的增大而减小,则k的取值范围是________.18、若函数,则当函数值y=12时,自变量x的值是________ 。
八年级数学上册第四章一次函数单元综合测试含解析北师大版

《第4章一次函数》一、选择题1.下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个2.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=﹣2x+24(0<x<12) B.y=﹣x+12(0<x<24)C.y=2x﹣24(0<x<12)D.y=x﹣12(0<x<24)3.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m=()A.﹣1 B.3 C.1 D.﹣1或34.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)5.对于函数y=﹣x+3,下列说法错误的是()A.图象经过点(2,2)B.y随着x的增大而减小C.图象与y轴的交点是(6,0)D.图象与坐标轴围成的三角形面积是96.关于x的一次函数y=kx+k2+1的图象可能正确的是() A.B. C.D.7.P1(x1,y1),P2(x2,y2)是一次函数y=﹣2x+5图象上的两点,且x1<x2,则y1与y2的大小关系是()A.y1<y2 B.y1=y2C.y1>y2 D.y1>y2>08.已知一次函数y=x+m和y=﹣x+n的图象都经过点A(﹣2,0),且与y轴分别交于B,C两点,那么△ABC的面积是()A.2 B.3 C.4 D.69.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.810.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,点B2013的坐标为()A.(42012×,42012) B.(24026×,24026)C.(24026×,24024)D.(44024×,44024)二、填空题11.将直线y=2x向上平移1个单位长度后得到的直线是.12.函数y=中,自变量x的取值范围是.13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.14.直线y=3x﹣m﹣4经过点A(m,0),则关于x的方程3x﹣m﹣4=0的解是.15.已知某一次函数的图象经过点A(0,2),B(1,3),C(a,1)三点,则a的值是.16.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是天.17.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是.18.如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为.三、解答题(共66分)19.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a 的值.20.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0。
(必考题)初中数学八年级数学上册第四单元《一次函数》检测卷(有答案解析)

一、选择题1.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( ) A .12y y > B .12y y < C .12y y = D .无法比较 2.一次函数()0y kx b k =+≠在平面直角坐标系内的图像如图所示,则k 和b 的取值范围是( )A .0k >,0b >B .0k <,0b <C .0k <,0b >D .0k >,0b < 3.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x ﹣k 的图象大致是( )A .B .C .D . 4.一次函数y=2x-1的图象大致是( )A .B .C .D . 5.对于一次函数24y x =-+,下列结论错误的是( )A .函数的图象与x 轴的交点坐标是()0,4B .函数值随自变量的增大而减小C .函数的图象不经过第三象限D .函数的图象向下平移4个单位长度得到2y x =-的图象6.下列各图分别近似地刻画了现实生活中两变量之间的变化关系,其中,能大致刻画张老师从住家小区单元的2楼坐电梯到5楼(中途不停)中高度与时间关系的变化图是( ) A . B .C.D.7.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t 或154其中正确的结论有()A.1个B.2个C.3个D.4个8.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有()A .1个B .2个C .3个D .4个9.一次函数y mx n =-+的图象经过第二、三、四象限,则化简22()m n n -+所得的结果是( ) A .m B .m - C .2m n - D .2m n - 10.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .11.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③ 12.甲、乙两车分别从A 、B 两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为2:3,甲、乙两车离AB 中点C 路程y (千米)与甲车出发时间t (时)的关系图象如图所示,则下列说法错误的是( )A .乙车的速度为90千米/时B .a 的值为52C .b 的值为150D .当甲、乙车相距30千米时,甲行走了95h 或125h 二、填空题13.已知某汽车装满油后油箱中的剩余油量y (升)与汽车的行驶路程x (千米)之间具有一次函数关系(如图所示).为了行驶安全考虑,邮箱中剩余油量不能低于5升,那么这辆汽车装满油后至多行驶_____千米,就应该停车加油.14.如图,在平面直角坐标系中,点M (﹣1,3)、N (a ,3),若直线y =﹣2x 与线段MN 有公共点,则a 的值可以为_____.(写出一个即可)15.按如图所示的程序计算,当输入3x =时,则输出的结果为______.16.已知平面直角坐标系中A .B 两点坐标如图,若PQ 是一条在x 轴上活动的线段,且PQ=1,求当BP+PQ+QA 最小时,点Q 的坐标___.17.已知1(2)23k y k x k -=-+-是关于x 的一次函数,则这个函数的解析式是_______.18.在一次函数28(2)1k y k x -=-+中,随y 的x 增大而增大,则k =________.19.在一次函数()15y m x =++中,y 随x 的增大而减小,则m 的取值范围是_______. 20.将直线2y x =向下平移1个单位,得到直线___________.三、解答题21.如图1,对于平面内的点A 、P ,如果将线段PA 绕点P 逆时针旋转90°能得到线段PB ,就称点B 是点A 关于点P 的“旋垂点”.(1)在平面直角坐标系xOy 中,点()3,1S -关于原点O 的“旋垂点”是 ;(2)如图2,90AOB ∠=︒,OC 平分AOB ∠,将直角三角板的直角顶点P 放在OC 上,两直角边分别交OA 、OB 于点M 、N ,试说明:点N 是点M 关于点P 的“旋垂点”;(3)如图3,直线3y kx =+与x 轴交于点P ,与y 轴交于点Q ,点Q 关于点P 的“旋垂点”记为点(),T m n ,若点P 在x 轴上,且03OP <<,点T 的横坐标m 满足21m -<≤-,求k 的取值范围.22.一次试验中,小明把一根弹簧的上端固定,在其下端悬挂砝码,下面是测得的弹簧长度()y cm 与所挂砝码的质量()x g 的一组对应值: ()x g 0 1 2 3 4 5 …()y cm 18 20 22 24 26 28 …(2)弹簧的原长是多少?当所挂砝码质量为3g 时,弹簧的长度是多少?(3)砝码质量每增加1g ,弹簧的长度增加_______cm .(4)请写出y 与x 之间的关系式(写成用含x 的式子表示y 的形式),并判断y 是不是x 的函数.23.如图,在平面直角坐标系中,已知点A 的坐标为(12,0)-,点B 的坐标为(3,0),点C 在y 轴的正半轴上,连接,AC BC ,有90ACB ︒∠=.(1)求点C 的坐标;(2)求ACB ∠的平分线所在直线l 的表达式;(3)若P 为直线l 上的点,连接,PB PC ,若12PBC ACB S S ∆=,求点P 的坐标.24.某地区的电力资源缺乏,未能得到较好的开发.该地区一家供电公司为了居民能节约用电,采用分段计费的方法来计算电费.月用电量x(度)与相应电费y(元)之间的函数图象如图所示.(1)月用电量为50度时,应交电费多少元?x 时,求y与x之间的函数关系式;(2)当100(3)月用电量为150度时,应交电费多少元?25.李老师一家去离家200千米的某地自驾游,周六上午8点整出发.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等另一家人一同前往,等到后以每小时80千米的速度直达目的地;求等侯的时间及线段BC的解析式;(3)上午11点时,离目的地还有多少千米?26.A,B两个红十字会分别有100吨和120吨生活物资,准备直接运送给甲、乙两个灾区,甲地需160吨,乙地需60吨,A,B两地到甲、乙两地的路程以及每吨每千米的运费如图所示.(1)设A 红十字会运往甲地物资x 吨,完成下表.运量(吨) 运费(元)A 红十字会B 红十字会 A 红十字会 B 红十字会甲地x 160x - 1.330x ⨯ ()20 1.5160x ⨯⨯- 乙地(3)当A ,B 两红十字会各运往甲、乙两地多少吨物资时,总运费最省?最省运费是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较.【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<,所以y 随着x 的增大而减小,∵-2<1,∴12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-,∴12y y ;故选:A .【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.2.A解析:A【分析】根据一次函数的图象和性质判断即可.【详解】解:∵一次函数y=kx+b (k≠0)在平面直角坐标系内的图象过第一、二、三象限, ∴k >0,b >0,故选:A .【点睛】本题主要考查了一次函数的图象与系数之间的关系,关键是掌握数形结合思想. 3.B解析:B【分析】根据正比例函数的性质可得出k >0,进而可得出-k <0,由1>0,-k <0利用一次函数图象与系数的关系,可找出一次函数y=x-k 的图象经过第一、三、四象限,此题得解.【详解】解:∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,∴k >0,∴﹣k <0.又∵1>0,∴一次函数y =x ﹣k 的图象经过第一、三、四象限.故选:B .【点睛】本题考查了正比例函数的性质以及一次函数图象与系数的关系,牢记“k >0,b <0⇔y=kx+b 的图象在一、三、四象限”是解题的关键.4.B解析:B【分析】根据一次函数的性质进行判断即可.【详解】解:∵k=2>0,∴直线y=2x-1经过第一、三象限;∵b=-1,∴直线y=2x-1与y轴的交点在x轴下方,∴直线y=2x-1经过第一、三、四象限,∴B选项符合题意.故选:B.【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数的性质是解题的关键.对于b≠0的一次函数,其图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.5.A解析:A【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A、令y=0,则x=2,因此函数的图象与x轴的交点坐标是(2,0),故A选项错误;B、因为一次函数y=-2x+4中k=-2<0,因此函数值随x的增大而减小,故C选项正确;C、因为一次函数y=-2x+4中k=-2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故C选项正确;D、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=-2x的图象,故D选项正确.故选A.【点睛】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.6.B解析:B【分析】张老师从住家小区单元的2楼坐电梯到5楼(中途不停),高度与时间关系成正相关关系,即可解答.【详解】对于张老师从住家小区单元的2楼坐电梯到5楼(中途不停),高度与时间关系成正相关关系,于是可知它对应的是选项B,故选B.【点睛】此题考查函数图象,解题关键在于理解高度与时间关系成正相关关系.7.C解析:C【分析】由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t ,可得出答案.【详解】图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲,把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩, 100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-,解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确; 令50y y -=甲乙,可得|60100100|50t t -+=,即|10040|50t -=,当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为54t =或154t =或56t =或256t =时,两车相距50千米,故④不正确; 综上可知正确的有①②③共三个,故选:C .【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.8.C解析:C【分析】①由函数图象可以求出妈妈骑车的速度是250米/分;②设妈妈到家后追上小华的时间为x 分钟,就可以求出小华家到学校的距离;③由②结论就可以求出小华到校的时间;④由③的结论就可以求出相遇的时间.【详解】解:①由题意,得妈妈骑车的速度为:2500÷10=250米/分;②设妈妈到家后追上小华的时间为x分钟,由题意,得250x=50(20+x),解得:x=5.∴小华家到学校的距离是:250×5=1250米.③小华今天早晨上学从家到学校的时间为1250÷50=25分钟,④由③可知在7点25分时妈妈与小华在学校相遇.∴正确的有:①②③共3个.故选:C.【点睛】本题考查了追击问题的数量关系的运用,路程÷速度=时间的关系的运用,解答时认真分析函数图象的意义是关键.9.D解析:D【分析】根据题意可得﹣m<0,n<0,再进行化简即可.【详解】∵一次函数y=﹣mx+n的图象经过第二、三、四象限,∴﹣m<0,n<0,即m>0,n<0,∴=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,故选D.【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.10.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P 到A→B 的过程中,y=0(0≤x≤2),故选项C 错误,点P 到B→C 的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A 错误, 点P 到C→D 的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D 错误, 点P 到D→A 的过程中,y=12⨯2(12-x)=12-x(8<x ≤12), 由以上各段函数解析式可知,选项B 正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.11.B解析:B【分析】由图象经过第一,二,三象限,可得k >0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③【详解】解:∵图象过第一,第二,第三象限,∴k >0,b>0,∴0kb >,①正确, y 随x 增大而增大,∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数,∴这部分图像的纵坐标y>b ,③正确,故①③正确故选:B .【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.12.D解析:D【分析】根据题意和函数图象中的数据,先求出A 、B 两地的距离,再求出甲乙的速度,进而即可判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:由图象可得,A 、B 两地之间的距离为为30×2÷(32-2323++)=300(千米),乙车的速度为:(300÷2+30)÷2=90(千米/时),故选项A 正确; 甲车的速度为:(300÷2−30)÷2=60(千米/时),a =300÷2÷60=52,故选项B 正确; b=300÷2=150,故C 正确;当甲、乙车在相遇前相距30千米时,30030960905t -==+, 当甲、乙车在相遇后相距30千米时,300301160905t +==+, 故D 错误,故选D .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出A 、B 两地的距离以及甲乙的速度,利用数形结合的思想解答. 二、填空题13.450【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程此题得解【详解】解:设该一次函数解析式为y =kx +b 将(4001解析:450【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程,此题得解.【详解】解:设该一次函数解析式为y =kx +b ,将(400,10),(500,0)代入得400105000k b k b +=⎧⎨+=⎩, 解得0.150k b =-⎧⎨=⎩, ∴该一次函数解析式为y =−0.1x +50.当y =−0.1x +50=5时,x =450.故答案为:450.【点睛】本题考查了一次函数的应用,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.14.﹣16【分析】把y=3代入y=-2x 得到x=-15根据已知可得N 点应该在直线y=-2x 的左侧从而分析出a 的取值范围依此判断即可【详解】解:当y =3时x =﹣15若直线y =﹣2x 与线段MN 有公共点则N 点解析:﹣1.6【分析】把y=3代入y=-2x 得到x=-1.5,根据已知可得N 点应该在直线y=-2x 的左侧,从而分析出a 的取值范围,依此判断即可.【详解】解:当y =3时,x =﹣1.5.若直线y =﹣2x 与线段MN 有公共点,则N 点应该在直线y =﹣2x 的左侧,即a ≤﹣1.5.∴a 的值可以为﹣1.6.(不唯一,a ≤﹣1.5即可).故答案为:﹣1.6.【点睛】本题考查了一次函数图象上点的坐标特征,解决本题的关键是掌握一次函数的性质. 15.1【分析】根据x 的值选择函数关系式然后进行计算即可得解【详解】解:当x=3时y=-x+4=-3+4=1故答案为:1【点睛】本题考查了函数值的求解关键在于准确选择函数关系式解析:1【分析】根据x 的值选择函数关系式然后进行计算即可得解.【详解】解:当x=3时,y=-x+4=-3+4=1,故答案为:1.【点睛】本题考查了函数值的求解,关键在于准确选择函数关系式.16.(0);【分析】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此时的值最小求出直线的解析式即可解决问题【详解】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此解析:(197,0); 【分析】 如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,求出直线AF 的解析式,即可解决问题.【详解】如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,设最小AF 的解析式为y kx b =+,则有354k b k b +=-⎧⎨+=⎩,解得74194k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AF 的解析式为71944y x =-, 令0y =,得到197x =, ∴19,07Q ⎛⎫ ⎪⎝⎭. 故答案为19,07⎛⎫⎪⎝⎭. 【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型. 17.=-4-7【分析】根据一次函数的定义先求出k 的值然后求出一次函数的解析式【详解】解:∵是关于的一次函数∴解得:(负值已舍去);∴这个函数的解析式是:;故答案为:【点睛】本题考查了一次函数的定义解题的 解析:y =-4x -7【分析】根据一次函数的定义,先求出k 的值,然后求出一次函数的解析式.【详解】解:∵1(2)23k y k x k -=-+-是关于x 的一次函数, ∴1120k k ⎧-=⎨-≠⎩, 解得:2k =-(负值已舍去);∴这个函数的解析式是:47y x =--;故答案为:47y x =--.【点睛】本题考查了一次函数的定义,解题的关键是正确求出k 的值.18.-3【分析】根据一次函数图象的增减性来确定(2-k )的符号从而求得k 的取值范围【详解】解:∵在一次函数y=(2-k )x+1中y 随x 的增大而增大∴2-k >0∴k <2k=±3∴k=-3故答案是:-3【点解析:-3【分析】根据281k -=,一次函数图象的增减性来确定(2-k )的符号,从而求得k 的取值范围.【详解】解:∵在一次函数y=(2-k )x+1中,y 随x 的增大而增大,∴2-k >0,281k -=,∴k <2,k=±3,∴k=-3故答案是:-3.【点睛】本题考查了一次函数图象与系数的关系.关键是掌握在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.19.m <-1【分析】根据y 与x 的关系判断出k 的符号进而求得m 的取值范围【详解】∵随的增大而减小∴一次函数的比例系数k <0即m+1<0解得:m <-1故答案为:m <-1【点睛】本题考查一次函数的性质当k >0解析:m <-1【分析】根据y 与x 的关系,判断出k 的符号,进而求得m 的取值范围.【详解】∵y 随x 的增大而减小∴一次函数的比例系数k <0,即m+1<0解得:m <-1故答案为:m <-1.【点睛】本题考查一次函数的性质,当k >0时,y 随x 的增大而增大,当k <0时,则反之. 20.【分析】平移时k 的值不变只有b 的值发生变化而b 值变化的规律是上加下减【详解】解:由上加下减的原则可知直线y=2x 向下平移1个单位得到直线是:y=2x-1故答案为y=2x-1【点睛】本题考查了一次函数解析:21y x =-【分析】平移时k 的值不变,只有b 的值发生变化,而b 值变化的规律是“上加下减”.【详解】解:由“上加下减”的原则可知,直线y=2x 向下平移1个单位,得到直线是:y=2x-1. 故答案为y=2x-1.【点睛】本题考查了一次函数的图象与几何变换,掌握“上加下减”的原则是解题的关键.三、解答题21.(1)()1,3--;(2)见解析;(3)332k -<≤-. 【分析】(1)由“旋垂点”的定义可直接进行求解;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,根据题意易得PD=PE ,∠PMD=∠PNE ,进而可证△PDM ≌△PEN ,然后可得PM=PN ,则问题可求解;(3)过点T 作TA ⊥x 轴,根据题意易证△APT ≌△OQP ,则有AP=OQ ,进而可得AP=OQ=3,3OP k =-,然后可得33m k=--,最后问题可求解. 【详解】解:(1)如图,过点S 作SA ⊥x 轴,过点P 作PB ⊥x 轴,由“旋垂点”可得:△SAO ≌△PBO ,∴OB=OA ,PB=SA ,∵点()3,1S -,∴PB=1,OB=3,∴点()1,3P --,故答案为()1,3--;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,如图所示:∵OC 平分∠AOB ,∴PD=PE ,∵∠AOB=∠MPN=90°,∴由四边形内角和定理得:∠PMO+∠PNO=180°,∵∠PMO+∠PMD=180°,∴∠PMD=∠PNE ,∵∠PDM=∠PEN=90°,∴△PDM ≌△PEN (AAS ),∴PM=PN ,∴点N 是点M 关于点P 的“旋垂点”;(3)过点T 作TA ⊥x 轴,如图所示:∴PQ=PT ,∵∠APT+∠APQ=90°,∠APQ+∠PQO=90°,∴∠APT=∠OQP ,∴△APT ≌△OQP (AAS ),∴AP=OQ ,令y=0时,则03kx =+,解得:3x k =-, 当x=0时,则3y =,∴AP=OQ=3,3OP k =-, ∴OA=AP-OP=33k +, ∴33m k=--, ∵21m -<≤-,0k <, ∴3231k -<--≤-, 解得:332k -<≤-. 【点睛】本题主要考查一次函数与几何综合及一元一次不等式组的解法,熟练掌握一次函数与几何综合及一元一次不等式组的解法是解题的关键.22.(1)弹簧长度与所挂砝码质量;(2)18cm ;24cm ;(3)2;(4)218y x =+;y 是x 的一次函数.【分析】(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系;(2)由表可知,当物体的质量为0g 时,弹簧的长度即弹簧的原长是18cm ;当物体的质量为3g 时,弹簧的长度是24cm ;(3)由表中的数据可知,x=0时,y=18;x=1时,y=20,则砝码质量每增加1g ,弹簧的长度增加2cm .(4)根据表格,利用待定系数法,即可求出关系式.【详解】解:(1)上表反映了弹簧长度与所挂砝码质量之间的关系;其中所挂砝码质量是自变量,弹簧长度是因变量;(2)因为不挂砝码时的弹簧长度即为弹簧的原长,所以弹簧的原长是18cm ;当所挂物体重量为3g 时,弹簧长24cm ;(3)根据上表可知,砝码质量每增加1g ,弹簧的长度增加2cm .故答案为:2.(4)设关系式为y kx b =+,则当x=0时,y=18;x=1时,y=20;∴1820b k b =⎧⎨+=⎩,解得182b k =⎧⎨=⎩, ∴关系式为:218y x =+;∴y 是x 的一次函数.【点睛】考查了一次函数的定义,常量与变量,本题需仔细分析表中的数据,进而解决问题.明确变量及变量之间的关系是解好本题的关键.23.(1)C (0,6);(2)36y x =+;(3)(3,3)P --或(3,15)P【分析】(1)设点C 的坐标为(0,)(0)c c >,根据勾股定理分别用c 表示出,,AC BC AB ,列出关于c 的方程即可求解;(2)设l 与x 轴交于点D ,过点D 作DE BC ⊥于点E ,设BD m =,在等腰直角三角形CDE 中,CE DE =,通过1122BCD S BD CO BC DE =⋅=⋅△将,CE DE 用m 的代数式表示出来,在Rt DBE 中,根据勾股定理将BE 表示出来,最后根据CE BE BC +=列方程求解;(3)分两种情况:点P 在CD 的延长线上或DC 的延长线上,①取AB 的中点F ,连接CF ,过点F 作1//FP BC 交CD 于点1P ,点1P 就是所要求作的点,利用待定系数法求出点1P 的坐标;②在线段DC 的延长线上取点2P ,使得点21P C PC =,2P 即是所求作的点,写出2P 的坐标,据此答案为1P ,2P 的坐标即为所求.【详解】解:(1)设点C 的坐标为(0,)(0)c c >(12,0),(3,0)A B -12,3,15OA OB AB ∴===在Rt AOC 中,222AC AO CO =+在Rt BOC 中,222BC BO CO =+在Rt ABC △中,222AB AC BC =+22222AO CO BO CO AB ∴+++=,即2222212315,6c c c +++=∴=∴点C 的坐标是(0,6)(2)如图,设直线l 交x 轴于点D ,过点D 作DE BC ⊥于点E ,设DB 的长为m 12,3,6,OA OB OC ===15,65,35AB AC BC ∴===1122BCD S BD CO BC DE =⋅=⋅6,5m DE ∴=∴=又在Rt DBE 中,222BD DE BE =+,即222,m BE BE ⎫=+∴=⎪⎪⎝⎭由题意,在Rt DEC △中,45DCE ︒∠=,于是5CE DE m ==由CE BE BC +=,即55m m +=5m = 又由||||OA OB >,知点D 在线段OA 上,||3OB =||2OD ∴=,故点(2,0)D -设直线l 的解析式为y kx b =+,把(0,6)C 和(2,0)D -代入得620b k b =⎧⎨-+=⎩ 解得:36k b =⎧⎨=⎩故直线l 的表达式为36y x =+(3)①取AB 的中点( 4.5,0)F -,过点F 作BC 的平行线交直线l 于点1P ,连接CF 易知112P BC FBC ACB S S S ==∴点1P 为符合题意的点()()3,0,0,6B C∴ 直线BC 的表达式为26y x =-+直线1P F 可由直线BC 向左平移152个单位得到 ∴直线1P F 的表达式为15262y x ⎛⎫=-++ ⎪⎝⎭,即29y x =-+ 由2936y x y x =-+⎧⎨=+⎩解得33x y =-⎧⎨=-⎩ ∴点1(3,3)P --②在直线l 上取点2P ,使21P C PC =此时有1212P BC P BC ACB S S S ==∴点2P 符合题意由21P C PC =,可得点2P 的坐标为(3,15)∴点(3,3)P --或(3,15)P 可使12PBC ACB S S =【点睛】本题考查了坐标系内点的坐标问题,用待定系数法求一次函数的解析式,一次函数的平移,勾股定理及三角形面积问题等知识,用待定系数法,勾股定理是解此题的关键. 24.(1)30元;(2) 1.480y x =-;(3)130元【分析】(1)求出0100x <≤时一次函数的解析式,即可求解;(2)当100x ≥时, y 与x 之间的函数关系式为y kx b =+,把点()()100,60,200,200代入求解即可;(3)把150x =代入解析式即可得到答案;【详解】解:()10100x <≤时,35y x = 月用电量为50度时,应交电费30元;()2当100x ≥时,设y 与x 之间的函数关系式为y kx b =+,点()()100,60,200,200在函数y kx b =+的图象上,10060200200k b k b +=⎧∴⎨+=⎩解得 1.480k b =⎧⎨=-⎩, 即当100x ≥时,y 与x 之间的函数关系式为 1.480y x =-;()3当150x =时, 1.415080130y =⨯-=,即月用电量为150时,应交电费130元.【点睛】本题主要考查了一次函数的图象应用,准确分析计算是解题的关键.25.(1)他们出发半小时时,离家30千米;(2)在服务区等了半个小时;y =80x -60(1.5≤x ≤3.25);(3)上午11点时,离目的地还有20千米.【分析】(1)根据函数图象,可求出线段OA 的函数表达式,即可求出出发半小时时离家的距离. (2)根据题意可列出(10060)800.5-÷=小时,即可进一步求出在服务区等待的时间.根据图象利用待定系数法即可求出BC 段的函数表达式.(3)将x=3代入BC 段的函数表达式,即可.【详解】(1)设线段OA 的函数表达式为y =kx ,当x =1时,y =60.所以k =60,即y =60x (0≤x ≤1).当x =0.5时,y =60×0.5=30(千米).即他们出发半小时时,离家30千米.(2)因为(10060)800.5-÷=(小时),所以在服务区等了2-1-0.5=0.5个小时,设线段BC 的函数表达式为1y k x b =+.因为B(1.5,60),B(2,100),代入得111.5602100k b k b +=⎧⎨+=⎩, 解得18060k b =⎧⎨=-⎩, 所以y =80x -60(1.5≤x ≤3.25)(3)当x =11-8=3(时),y =80×3-60=180(千米),所以200-180=20(千米).上午11点时,离目的地还有20千米.【点睛】本题考查一次函数的实际应用.根据函数图象求出各段的函数表达式是解答本题的关键. 26.(1)100x -,40x -,()351100x ⨯⨯-,()25 1.240x ⨯⨯-;(2)47100y x =+,自变量x 的取值范围是:40100x ≤≤;(3)当A 运往甲、乙分别为40吨、60吨,B 运往甲、乙分别为120吨、0吨时费用最省,为7260元.【分析】(1)根据题意及图中的信息可直接得出答案;(2)根据4个运费相加再化简即可得出答案;(3)根据一次函数的性质即可得出最大值,从而得出方案.【详解】解:(1) 运量(吨) 运费(元)(2)总运费47100x =+自变量x 的取值范围是:40100x ≤≤.(3)∵47100y x =+中,40k =>,∴y 随x 的增大而增大.∵40100x ≤≤,∴当40x =时,min 7260y =元此时A 运往甲、乙分别为40吨、60吨,B 运往甲、乙分别为120吨、0吨.【点睛】本题考查了一次函数的应用,熟练掌握一次函数的性质是解题的关键.。
初中数学北师大版(2024)八年级上册 第四章 一次函数单元测试(含简单答案)

第四章一次函数一、单选题1.下列曲线中,表示y是x的函数的是()A.B.C.D.2.关于一次函数y=−2x+3,下列结论正确的是( )A.图象过点(1,−1)B.其图象可由y=−2x的图象向上平移3个单位长度得到C.y随x的增大而增大D.图象经过一、二、三象限3.设半径为r的圆的周长为C,则C=2πr,下列说法错误的是()A.常量是π和2B.常量是2C.用C表示r为CD.变量是C和r2π4.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是( )A.B.C.D.5.如果M(−1,y1),N(2,y2)是正比例函数y=kx的图象上的两点,且y1>y2.那么符合题意的k的值可能是()A.1B.1C.3D.−236.如图所示,已知点C(1,0),直线y=−x+7与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是()A.42B.10C.42+4D.127.函数y=|kx|(k≠0)的图象可能是()A.B.C.D.8.我们把三个数的中位数记作Z{a,b,c}.例如Z{1,3,2}=2.函数y=|2x+b|的图象为C1,函数y=Z{x+1,-x+1,3}的图象为C2.图象C1在图象C2的下方点的横坐标x满足-3<x<1,则b的取值范围为()A.0<b<3B.b>3或b<0C.0≤b≤3D.1<b<39.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.汽车在高速公路上的行驶速度为100km/h B.乡村公路总长为90kmC.汽车在乡村公路上的行驶速度为65km/h D.该记者在出发后5h到达采访地10.如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论:①k<0;②a>0;③b>0:④方程kx+b=x+a的解是x=3,错误的个数是()A.1个B.2个C.3个D.4个二、填空题11.函数y=−3x+6的图象与x轴.y轴围成的三角形面积为.12.如图,购买一种商品,付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次性购买50千克这种商品要付款元.13.直线y=kx+b平行于直线y=−2x,且与y轴交于点(0,3),则此函数的解析式y=.14.已知点A(2,y1),B(3,y2)在直线y=﹣3x+1上,则y1与y2的大小关系为:y1y2.(填“>”,“=”或“<”)15.若y=(m−1)x|m|+2是关于x的一次函数,则m等于.16.已知一次函数y1=kx﹣2k(k是常数)和y2=﹣x+1.若无论x取何值,总有y1>y2,则k的值是.17.杭黄高铁开通运营,已知杭州到黄山距离300千米,现有直达高铁往返两城市之间,该高铁每次到达杭州或黄山后,均需停留一小时再重新出发.暑假期间,铁路局计划在同线路上加开一列慢车直达旅游专列,在试运行期间,该旅游专列与高铁同时从杭州出发,在整个小时两车第一次相遇.两车之间的距离y千米运行过程中,两列车均保持匀速行驶,经过103与行驶时间x小时之间的部分函数关系如图所示,当两车第二次相遇时,该旅游专列共行驶了千米.18.如图,在平面直角坐标系中,点A1(1,1)在直线y=x图象上,过A1点作y轴平行线,交直线y=−x于点B1,以线段A1B1为边在右侧作正方形A1B1C1D1,C1D1所在的直线交y=x 的图象于点A2,交y=−x的图象于点B2,再以线段A2B2为边在右侧作正方形A2B2C2D2⋯依此类推,按照图中反映的规律,第2020个正方形的边长是.三、解答题19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了表格.距离地面高度(千米)12345温度(℃)201482−4−10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答;(1)如果用ℎ表示距离地面的高度,用t表示温度,写出t与ℎ的关系式;(2)你能计算出距离地面16千米的高空温度是多少吗?x+2和y=2x﹣3的图象分别交y轴与A、B两点,两个一次函数的20.已知一次函数y=﹣12图象相交于点P.(1)求△PAB的面积;(2)求证:∠APB=90°;(3)若在一次函数y=2x﹣3的图象上有一点N,且横坐标为x,连结NA,请直接写出△NAP 的面积关于x的函数关系式,并写出相应x的取值范围.21.已知直线y=-4x+4与x轴和y轴分别交于B、A两点,另一直线经过点B和点D3(11,6).(1)求A、B的坐标;(2)证明:△ABD是直角三角形;(3)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标.22.如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?23.如图1,某地铁车站在出入口设有上、下行自动扶梯和步行楼梯,甲、乙两人从车站入口同时下行去乘坐地铁,甲乘自动扶梯,乙走步行楼梯,乙离地铁进站入口地面的高度ℎ(单位:m)与下行时间x(单位:s)之间具有函数关系ℎ=−15x+6,甲离地铁进站入口地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达地铁进站入口地面.24.已知直线y=kx+b可变形为:kx−y+b=0,则点P(x0, y0)到直线kx−y+b=0的距离d可用公式d=|kx0−y0+b|1+k2计算.例如:求点P(-2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x−y+1=0,其中k=1,b=1.所以点P(-2,1)到直线y=x+1的距离为d=|kx0−y0+b|1+k2=|1×(−2)−1+1|1+12=22=2.根据以上材料求:(1)点P(2,-1)到直线y=2x−1的距离;(2)已知M为直线y=−x+2上的点,且M到直线y=2x−1的距离为35,求M的坐标;(3)已知线段y=kx+3(−1≤x≤2)上的点到直线y=x+1的最小距离为1,求k的值.25.如图,一次函数y=x+1的图象分别与x轴,y轴交于点B与点A,直线AC与x轴正半轴交于点C,且∠BAO=45°,OC=2OB.(1)求直线AC的函数表达式;(2)点D在直线AB上且不与点B重合,点E在直线AC上.若以A,D,E为顶点的三角形与△ABC全等,请直接写出点D的坐标(不必写解答过程);(3)已知平面内一点P(m,n),作点P关于直线AB的对称点P1,作P1关于y轴的对称点P2,若P2恰好落在直线AC上,则m,n应满足怎样的等量关系?说明理由.26.某企业准备为员工采购20000袋医用口罩.经市场调研,准备购买A,B,C三种型号的口罩,这三种型号口罩的价格如下表所示:型号A B C价格/(元/袋)303540已知购买B型号口罩的数量是A型号口罩的2倍,设购买A型号口罩x袋,该企业购买口罩的总费用为y元.(1)请求出y与x之间的函数表达式;(2)因为A型号口罩的数量严重不足,口罩生产厂家能提供的A型号口罩的数量不大于C型号口罩的数量,怎样购买能使该企业购买口罩的总费用最少?请求出费用最少的购买方案,并求出总费用的最小值.参考答案:1.D 2.B 3.B 4.B 5.D 6.B 7.C 8.C 9.D 10.A 11.612.42013.−2x +314.>15.−116.−117.25018.2×3201919.(1)t =20−6ℎ(ℎ≥0)(2)距离地面16千米的高空温度是−76℃20.(1)5;(3)当x >2时,△NAP 的面积S=52(x ﹣2);当x <2时,△NAP 的面积S=52(2﹣x ).21.(1)A (0,4),B (3,0);(3)C (14122,0).22.(1)5海里;(2)走私船:1海里/分;公安快艇:1.5海里/分(3)y 1=t+5 ;y 2=32t ;(4)2海里;23.(1)y =−310x +6;(2)甲先到地铁进站入口地面.24.(1)455;(2)M (6,-4)或M (-4,6);(3)k =−2+3或22x+125.(1)y=−12(2)点D的坐标为(−102,1−102)或(1,2)或(102,1+102);(3)2m+1=n,26.(1)y=−20x+800000(2)当购买A型号口罩5000袋,B型号口罩10000袋,C型号口罩5000袋时,该企业购买口罩的总费用最少,总费用的最小值为700000元。
2019秋北师大新版八年级数学上第四章一次函数单元练习卷(解析版)

第四章一次函数一.选择题(共12小题)1.一个圆柱的高h为10cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中()A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量2.今有一组统计数据如下:其中能晟近似地表达这些数据规律的函数是()A.y=﹣2﹣B.y=C.y=D.y=2x﹣23.嘉嘉买了6支笔花了9元钱,琪琪买了同样售价的x支笔,还买了单价为5元的三角尺两幅,用y(元)表示琪琪花的总钱数,那么y与x之间的关系式应该是()A.y=1.5x+10 B.y=5x+10 C.y=1.5x+5 D.y=5x+54.如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为()A.s=6x B.s=8(6﹣x)C.s=6(8﹣x)D.s=8x5.函数y=2﹣中,自变量x的取值范围是()A.x>﹣3 B.x≥﹣3 C.x≠﹣3 D.x≤﹣36.若定义f(x)=3x﹣2,如f(﹣2)=3×(﹣2)﹣2=﹣8,下列说法中:①当f(x)=1时,x=1;②对于正数x,f(x)>f(﹣x)均成立;③f(x﹣1)+f(1﹣x)=0;④当a=2时,f(a﹣x)=a﹣f(x).其中正确的是()A.①②B.①③C.①②④D.①③④7.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有()A.①②B.①②③C.①③④D.①②③④8.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A.B.C.D.9.小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和小明所用时间t(分钟)的关系图.则下列说法中正确的个数是()①小明吃早餐用时5分钟;②小华到学校的平均速度是240米/分;③小明跑步的平均速度是100米/分;④小华到学校的时间是7:05.A.1 B.2 C.3 D.410.已知函数y=(m﹣1)x|m|+5m是一次函数,则m的值为()A.1 B.﹣1 C.0或﹣1 D.1或﹣111.下面各组变量的关系中,成正比例关系的有()A.人的身高与年龄B.买同一练习本所要的钱数与所买本数C.正方形的面积与它的边长D.汽车从甲地到乙地,所用时间与行驶速度12.若函数y=(m﹣2)是正比例函数,则m的值是()A.2 B.3 C.﹣2 D.±2二.填空题(共3小题)13.地表以下岩层的温度y(℃)随着所处深度x(km)的变化而变化,在某个地点y与x 之间有如下关系:根据表格,估计地表以下岩层的温度为230℃时,岩层所处的深度为km.14.若函数y=2x k﹣2+(k+1)是关于y是x的一次函数,则k=.15.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=.三.解答题(共17小题)16.如图,在直角坐标系内,一次函数y=kx+b(kb>0,b<0)的图象分别与x轴、y轴和直线x=4相交于A、B、C三点,直线x=4与x轴交于点D,四边形OBCD(O是坐标原点)的面积是10.若点A的横坐标是﹣,求这个一次函数解析式.17.如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)点M的坐标为;(2)求直线MN的表达式;(3)若点A的横坐标为﹣1,求四边形ABOC的面积.18.已知y与x+3成正比例,且当x=1时,y=8(1)求y与x之间的函数关系式;(2)若点(a,6)在这个函数的图象上,求a的值.19.已知两个正比例函数y1=k1x与y2=k2x,当x=2时,y1+y2=﹣1;当x=3时,y1﹣y2=12.(1)求这两个正比例函数的解析式;(2)当x=4时,求的值.20.定义符号min{a,b,c}表示a、b、c三个数中的最小值,如min{1,﹣2,3}=﹣2,min{0,5,5}=0.(1)根据题意填空:min=;(2)试求函数y=min{2,x+1,﹣3x+11}的解析式;(3)关于x的方程﹣x+m=min{2,x+1,﹣3x+11}有解,试求常数m的取值范围.21.利用函数图象解下列方程(1)0.5x﹣3=1(2)3x﹣2=x+4【思路导引】把0.5x﹣3=1变化为y=画出函数y=的图象,求得函数和x轴的交点.22.拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量23.一盘蚊香长105cm,点燃时每小时缩短10cm.(1)请写出点燃后蚊香的长y(cm)与蚊香燃烧时间t(h)之间的函数关系式;(2)该蚊香可点燃多长时间?24.在同一坐标系中画出下列函数的图象(1)y=2x+1(2)y=x+125.在同一直角坐标系上画出函数y=2x,y=2x﹣3,y=2x+3的图象,并指出它们的特点.26.已知点A(8,0)及在第一象限的动点P(x,y),且x+y=5,设△OPA的面积是S.(1)求S关于x的函数解析式,并求出x的取值范围.(2)当S=10时,求P点的坐标.27.小岚根据学习函数的经验,对一个未知函数的图象与性质进行了探究.已知:y=y1•y2,其中y1=﹣x,y2与x成一次函数关系,当x=1时,y2=﹣6;当x =2时,y2=﹣4.(1)根据给定的条件,求y与x的函数关系式;(2)写出函数y与x合适的几组对应值,并根据表中数据,在如图所示的平面直角坐标系中描点并画出函数图象:(3)结合画出的函数图象,解决问题:直接写出关于x的方程y1•y2=x﹣(x>0)的实数解为(结果保留一位小数).28.如图,一次函数y=﹣x+5的图象l1分别与x轴,y轴交于A、B两点,正比例函数的图象l2与l1交于点C(m,).(1)求m的值及l2的解析式;(2)求得S△AOC﹣S△BOC的值为;(3)一次函数y=kx+1的图象为l3且l1,l2,l3可以围成三角形,直接写出k的取值范围.29.在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.30.将直线y=2x+3平移后经过点(2,﹣1),求:(1)平移后的直线解析式;(2)沿x轴是如何平移的.31.小明和小亮分别从甲地和乙地同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达乙地恰好用40min.小亮骑自行车以300m/min的速度直接到甲地,两人离甲地的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示,(1)甲、乙两地之间的路程为m,小明步行的速度为m/min;(2)求小亮离甲地的路程y关于x的函数表达式,并写出自变量x的取值范围;(3)求两人相遇的时间.32.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于点A(a,﹣a),与y轴交于点B(0,b),其中a,b满足(a+3)2+=0.(1)求直线l2的解析式;(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP=S△AOB,请求出点P的坐标;(3)已知平行于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N的下方,点Q为y轴上一动点,且△MNQ为等腰直角三角形,请求出满足条件的点Q的坐标.参考答案一.选择题(共12小题)1.一个圆柱的高h为10cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中()A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量解:一个圆柱的高h为10cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中r是自变量,V是因变量,故选:B.2.今有一组统计数据如下:其中能晟近似地表达这些数据规律的函数是()A.y=﹣2﹣B.y=C.y=D.y=2x﹣2解:A.将x,y的各对对应值代入y=﹣2﹣,不符合函数关系,故不合题意;B.将x,y的各对对应值代入y=,不符合函数关系,故不合题意;C.将x,y的各对对应值代入y=,近似符合函数关系,故符合题意;D.将x,y的各对对应值代入y=2x﹣2,不符合函数关系,故不合题意;故选:C.3.嘉嘉买了6支笔花了9元钱,琪琪买了同样售价的x支笔,还买了单价为5元的三角尺两幅,用y(元)表示琪琪花的总钱数,那么y与x之间的关系式应该是()A.y=1.5x+10 B.y=5x+10 C.y=1.5x+5 D.y=5x+5解:∵每支笔的价格=9÷6=1.5元/支,∴y与x之间的关系式为:y=1.5x+10,故选:A.4.如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为()A.s=6x B.s=8(6﹣x)C.s=6(8﹣x)D.s=8x解:∵长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,∴余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为:s=6(8﹣x).故选:C.5.函数y=2﹣中,自变量x的取值范围是()A.x>﹣3 B.x≥﹣3 C.x≠﹣3 D.x≤﹣3解:根据题意得:x+3≥0,解得:x≥﹣3.故选:B.6.若定义f(x)=3x﹣2,如f(﹣2)=3×(﹣2)﹣2=﹣8,下列说法中:①当f(x)=1时,x=1;②对于正数x,f(x)>f(﹣x)均成立;③f(x﹣1)+f(1﹣x)=0;④当a=2时,f(a﹣x)=a﹣f(x).其中正确的是()A.①②B.①③C.①②④D.①③④解:∵f(x)=1,∴3x﹣2=1,∴x=1,故①正确,f(x)﹣f(﹣x)=3x﹣2﹣(﹣3x﹣2)=6x,∵x>0,∴f(x)>f(﹣x),故②正确,f(x﹣1)+f(1﹣x)=3(x﹣1)﹣2+3(1﹣x)﹣2=﹣4,故③错误,∵f(a﹣x)=3(a﹣x)﹣2=3a﹣3x﹣2,a﹣f(x)=a﹣(3x﹣2),∵a=2,∴f(a﹣x)=a﹣f(x),故④正确.故选:C.7.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有()A.①②B.①②③C.①③④D.①②③④解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,x=﹣2时,y取最小值﹣5,x=﹣1时y取最大值﹣4,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.8.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A.B.C.D.解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给你小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选:B.9.小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和小明所用时间t(分钟)的关系图.则下列说法中正确的个数是()①小明吃早餐用时5分钟;②小华到学校的平均速度是240米/分;③小明跑步的平均速度是100米/分;④小华到学校的时间是7:05.A.1 B.2 C.3 D.4解:由图象可得,小明吃早餐用时13﹣8=5分钟,故①正确,小华到学校的平均速度是:1200×(13﹣8)=240米/分,故②正确,小明跑步的平均速度是:(1200﹣500)÷(20﹣13)=100米/分,故③正确,小华到学校的时间是7:13,故④错误,故选:C.10.已知函数y=(m﹣1)x|m|+5m是一次函数,则m的值为()A.1 B.﹣1 C.0或﹣1 D.1或﹣1解:由题意可知:解得:m=﹣1故选:B.11.下面各组变量的关系中,成正比例关系的有()A.人的身高与年龄B.买同一练习本所要的钱数与所买本数C.正方形的面积与它的边长D.汽车从甲地到乙地,所用时间与行驶速度解:A、人的身高与年龄不成比例,故选项错误;B、单价一定,买同一练习本所要的钱数与所买本数成正比例,故选项正确;C、正方形的面积与它的边长不成比例,故选项错误;D、路程一定,所用时间与行驶速度成反比例,故选项错误;故选:B.12.若函数y=(m﹣2)是正比例函数,则m的值是()A.2 B.3 C.﹣2 D.±2解:∵函数y=(m﹣2)是正比例函数,∴m2﹣3=1,m﹣2≠0,解得:m=±2,m≠2,故m=﹣2.故选:C.二.填空题(共3小题)13.地表以下岩层的温度y(℃)随着所处深度x(km)的变化而变化,在某个地点y与x 之间有如下关系:根据表格,估计地表以下岩层的温度为230℃时,岩层所处的深度为 6 km.解:设Y=kx+b,则把(1,55),(2,90)代入得:,解得:,故Y=35k+20,则当Y=230时,230=35x+20,解得:x=6,故答案为:6.14.若函数y=2x k﹣2+(k+1)是关于y是x的一次函数,则k= 3 .解:根据一次函数的定义可知:k﹣2=1,解得:k=3.故答案为:3.15.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=﹣1 .解:由正比例函数的定义可得:m2﹣1=0,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1.三.解答题(共17小题)16.如图,在直角坐标系内,一次函数y=kx+b(kb>0,b<0)的图象分别与x轴、y轴和直线x=4相交于A、B、C三点,直线x=4与x轴交于点D,四边形OBCD(O是坐标原点)的面积是10.若点A的横坐标是﹣,求这个一次函数解析式.解:由A的横坐标为﹣,得到A(﹣,0),把A坐标代入一次函数y=kx+b解析式得:﹣k+b=0①,令x=0,得到y=b,即B(0,b),令x=4,得到y=4k+b,即C(4,4k+b),∵S四边形OBCD=(OB+CD)•OD=10,即×(﹣b﹣4k﹣b)×4=10,∴4k+2b=﹣5②,联立①②,解得:k=﹣1,b=﹣,则一次函数解析式为y=﹣x﹣.17.如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)点M的坐标为(﹣2,0);(2)求直线MN的表达式;(3)若点A的横坐标为﹣1,求四边形ABOC的面积.解:(1)∵N(0,6),ON=3OM,∴OM=2,∴M(﹣2,0);故答案为:(﹣2,0);(2)设直线MN的函数解析式为y=kx+b,把点(﹣2,0)和(0,6)分别代入上式解得:k=3,b=6 ∴直线MN的函数解析式为:y=3x+6;(3)把x=﹣1代入y=3x+6,得y=3×(﹣1)+6=3∴点A(﹣1,3),∴点C(0,3),∵AB⊥x轴,AC⊥y轴,∠BOC=90°,∴四边形ABOC为矩形,OB=1,OC=3,∴四边形ABOC的面积=1×3=3,∴四边形ABOC的面积为3.18.已知y与x+3成正比例,且当x=1时,y=8(1)求y与x之间的函数关系式;(2)若点(a,6)在这个函数的图象上,求a的值.解:(1)根据题意:设y=k(x+3),把x=1,y=8代入得:8=k(1+3),解得:k=2.则y与x函数关系式为y=2(x+3)=2x+6;(2)把点(a,6)代入y=2x+6得:6=2a+6,解得a=0.19.已知两个正比例函数y1=k1x与y2=k2x,当x=2时,y1+y2=﹣1;当x=3时,y1﹣y2=12.(1)求这两个正比例函数的解析式;(2)当x=4时,求的值.解:(1)根据题意得,解得,所以两正比例函数的解析式分别为y1=x,y2=﹣x;(2)当x=4时,y1=x=7,y2=﹣x=﹣9,所以=﹣=.20.定义符号min{a,b,c}表示a、b、c三个数中的最小值,如min{1,﹣2,3}=﹣2,min{0,5,5}=0.(1)根据题意填空:min= 3 ;(2)试求函数y=min{2,x+1,﹣3x+11}的解析式;(3)关于x的方程﹣x+m=min{2,x+1,﹣3x+11}有解,试求常数m的取值范围.解:(1)∵=3,∴min=3;故答案为:3;(2)由图象得:y=;(3)当y=2时,﹣3x+11=2,x=3,∴A(3,2),当y=﹣x+m过点A时,则﹣3+m=2,m=5,如图所示:∴常数m的取值范围是m≤5.21.利用函数图象解下列方程(2)3x﹣2=x+4【思路导引】把0.5x﹣3=1变化为y=0.5x﹣4 画出函数y=0.5x﹣4 的图象,求得函数和x 轴的交点.解:把0.5x﹣3=1变化为y=0.5x﹣4,画出函数y=0.5x﹣4的图象,如图,直线y=0.5x﹣4与x轴的交点坐标为(8,0),所以方程0.5x﹣3=1的解为x=8;把3x﹣2=x+4变化为y=2x﹣6,画出函数y=2x﹣6的图象,如图,直线y=2x﹣6与x 轴的交点坐标为(3,0),所以方程3x﹣2=x+4的解为x=3.故答案为0.5x﹣4;0.5x﹣4.22.拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量解:(1)由题意可知:Q=40﹣4t(0≤t≤10);(2)把t=5时代入Q=40﹣4t得:油箱的余油量Q=20升.23.一盘蚊香长105cm,点燃时每小时缩短10cm.(1)请写出点燃后蚊香的长y(cm)与蚊香燃烧时间t(h)之间的函数关系式;(2)该蚊香可点燃多长时间?解:(1)∵蚊香的长等于蚊香的原长减去燃烧的长度,∴y=105﹣10t(0≤t≤10.5);(2)∵蚊香燃尽的时候蚊香的长度y=0,解得:t=10.5,∴该蚊香可点燃10.5小时.24.在同一坐标系中画出下列函数的图象(1)y=2x+1(2)y=x+1解:(1)图象如图所示:(2)图象如图所示:.25.在同一直角坐标系上画出函数y=2x,y=2x﹣3,y=2x+3的图象,并指出它们的特点.解:函数y=2x,y=2x﹣3,y=2x+3的图象如图所示,从解析式上看k相同,从图象上看是平行的.26.已知点A(8,0)及在第一象限的动点P(x,y),且x+y=5,设△OPA的面积是S.(1)求S关于x的函数解析式,并求出x的取值范围.(2)当S=10时,求P点的坐标.解:(1)由x+y=5得y=5﹣x,∴在第一象限内过点P(x,y)作PE⊥x轴于点E,则PE=y,x>0,y>0∴S=OA•PE==4(5﹣x)=20﹣4x∴由y=5﹣x>0得x<5∴x的取值范围是0<x<5;(2)当S=10时,由10=20﹣4x得x=2.5∴点P的坐标是(2.5,2.5)27.小岚根据学习函数的经验,对一个未知函数的图象与性质进行了探究.已知:y=y1•y2,其中y1=﹣x,y2与x成一次函数关系,当x=1时,y2=﹣6;当x =2时,y2=﹣4.(1)根据给定的条件,求y与x的函数关系式;(2)写出函数y与x合适的几组对应值,并根据表中数据,在如图所示的平面直角坐标系中描点并画出函数图象:(3)结合画出的函数图象,解决问题:直接写出关于x的方程y1•y2=x﹣(x>0)的实数解为x=3.6 (结果保留一位小数).解:(1)设y2=kx+b,则,解得:,∴y2=2x﹣8,∴y=y1y2=﹣x(2x﹣8)=﹣x2+4x;(2)如图表:(3)由图象得:关于x的方程y1y2=x(x>0)的实数解为:x=3.6;故答案为:x=3.6.28.如图,一次函数y=﹣x+5的图象l1分别与x轴,y轴交于A、B两点,正比例函数的图象l2与l1交于点C(m,).(1)求m的值及l2的解析式;(2)求得S△AOC﹣S△BOC的值为;(3)一次函数y=kx+1的图象为l3且l1,l2,l3可以围成三角形,直接写出k的取值范围.解:(1)把C(m,)代入一次函数y=﹣x+5,可得,=﹣m+5,解得m=,∴C(,).设l2的解析式为y=ax,将点C(,)代入,得=a,解得a=,∴l2的解析式为y=x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=,CE=,y=﹣x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC﹣S△BOC=×10×﹣×5×=.故答案为;(3)一次函数y=kx+1的图象为l3,如果11,l2,l3不能围成三角形,那么可分三种情况:①l3经过点C(,)时,k+1=,解得k=;②l2,l3平行时,k=;③11,l3平行时,k=﹣;故l1,l2,l3可以围成三角形时,k的取值范围是k≠且k≠且k≠﹣.29.在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式y=kx+1,当x=k+1,y=﹣k+1,则有k2+2k=0,∴k=﹣2;当﹣1≤k<0时,W内没有整数点,∴当k=﹣2或﹣1≤k<0时,W内没有整数点;30.将直线y=2x+3平移后经过点(2,﹣1),求:(1)平移后的直线解析式;(2)沿x轴是如何平移的.解:(1)设平移后的直线解析式为y=2x+b,把(2,﹣1)代入可得﹣1=2×2+b,解得b=﹣5,∴平移后的直线解析式为y=2x﹣5;(2)∵y=2x﹣5=2x﹣8+3=2(x﹣4)+3,∴是沿x轴向右平移4个单位得到的.31.小明和小亮分别从甲地和乙地同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达乙地恰好用40min.小亮骑自行车以300m/min的速度直接到甲地,两人离甲地的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示,(1)甲、乙两地之间的路程为8000 m,小明步行的速度为100 m/min;(2)求小亮离甲地的路程y关于x的函数表达式,并写出自变量x的取值范围;(3)求两人相遇的时间.解:(1)结合题意和图象可知,线段CD为小亮路程与时间函数图象,折线O﹣A﹣B为小明路程与时间图象,则甲、乙两地之间的路程为8000米,小明步行的速度==100m/min,故答案为8000,100(2)∵小亮从离甲地8000m处的乙地以300m/min的速度去甲地,则xmin时,∴小亮离甲地的路程y=8000﹣300x,自变量x的取值范围为:0≤x≤(3)∵A(20,6000)∴直线OA解析式为:y=300x∴8000﹣300x=300x,∴x=∴两人相遇时间为第分钟.32.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于点A(a,﹣a),与y轴交于点B(0,b),其中a,b满足(a+3)2+=0.(1)求直线l2的解析式;(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP=S△AOB,请求出点P的坐标;(3)已知平行于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N的下方,点Q为y轴上一动点,且△MNQ为等腰直角三角形,请求出满足条件的点Q的坐标.解:(1)由(a+3)2+=0,得a=﹣3,b=4,即A(﹣3,3),B(0,4),设l2的解析式为y=kx+b,将A,B点坐标代入函数解析式,得,解得,l2的解析式为y=x+4;(2)如图1,作PB∥AO,P到AO的距离等于B到AO的距离,S△AOP=S△AOB.∵PB∥AO,PB过B点(0,4),∴PB的解析式为y=﹣x+4或y=﹣x﹣4,又P在直线y=5上,联立PB及直线y=5,得﹣x+4=5或﹣x﹣4=5,解得x=﹣1或﹣9,∴P点坐标为(﹣1,5)或(﹣9,5);(3)设M点的坐标为(a,﹣a),N(a,a+4),∵点M在点N的下方,∴MN=a+4﹣(﹣a)=+4,如图2,当∠NMQ=90°时,即MQ∥x轴,NM=MQ,+4=﹣a,解得a=﹣,即M(﹣,),∴Q(0,);如图3,当∠MNQ=90°时,即NQ∥x轴,NM=NQ,+4=﹣a,解得a=﹣,即N(﹣,),∴Q(0,),如图4,当∠MQN=90°时,即NM∥y轴,MQ=NQ,a+2=﹣a,解得a=﹣,∴Q(0,).综上所述:Q点的坐标为(0,)或(0,)或(0,).。
北师大版八年级数学上册第四单元《一次函数》单元练习题(含答案)

北师大版八年级数学上册第四单元《一次函数》单元练习题(含答案)一、单选题1.一次函数24y x =--的图象上有两点A (﹣3,y 1)、B (1,y 2),则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定2.两个一次函数y 1 = mx+n ,y 2 = nx+m ,它们在同一坐标系中的图像可能是( )A .B .C .D .3.在函数12y x =-中,自变量x 的取值范围是( )A .x>12B .x<12C .x ≥12D .x≤124.如图,是由两个大小完全相同的圆柱形容器在中间连通而成的可以盛水的器具,现匀速地向容器A 中注水,则容器A 中水面上升的高度h 随时间t 变化的大致图象是( )A .B .C .D .5.若函数是一次函数,则m 的值是( )A .B .2C .或2D .或6.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( )A .0b <B .2b <C .02b <<D .0b <或2b >7.若正比例函数的图象经过点(﹣2,2),则这个图象必经过点( )A .(1,2)B .(﹣1,﹣2)C .(2,﹣1)D .(2,﹣2)8.甲乙两车分别从M 、N 两地相向而行,甲车出发1小时后,乙车出发,并以各自的速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的路程S (千米)与甲车所用时间t (小时)之间的函数图象,其中D 点表示甲车到达N 地停止运行,下列说法中正确的是( )A .M 、N 两地的路程是1000千米;B .甲到N 地的时间为4.6小时;C .甲车的速度是120千米/小时;D .甲乙两车相遇时乙车行驶了440千米.9.张老师出门散步时离家的距离y 与时间x 之间的关系图象如图所示,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( )A .B .C .D .10.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE=BF=CG=DH, 设小正方形EFGH 的面积为,AE 为,则关于的函数图象大致是( )A. B. C.D.11.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A.B.C.D.12.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元) 每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为( )A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二、填空题13.将函数2y x =的图象向上平移2个单位,所得的函数图象的解析为________.14.已知直线y 1=kx +1(k <0)与直线y 2=nx (n >0)的交点坐标为(13,13n ),则不等式组nx -3<kx +1<nx 的解集为______.15.正比例函数y =kx 的图象经过点(2,3),则k =______.16.梯形的上底长是2,下底长是8,则梯形的面积y 与高x 之间的关系式是____________.17.如果点A (1,m )在直线y=-2x+1上,那么m=___________.18.若正比函数y=kx 的图像经过点(4,-2),则k 的值为___________.19.已知点6P m (,)在一次函数153y x =-+的图象上,则点P 的坐标为________. 20.当m=__________时,函数213m y x+=+3 是一次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章一次函数一、选择题(共12小题,每小题3分,满分36分)1.函数y=3x+1的图象一定经过点( )A.(3,5)B.(﹣2,3)C.(2,7)D.(4,10)2.对于圆的周长公式C=2πR,下列说法正确的是( )A.π、R是变量,2是常量B.R是变量,π是常量C.C是变量,π、R是常量D.C、R是变量,2、π是常量3.下列说法正确的是( )A.正比例函数是一次函数B.一次函数是正比例函数C.变量x,y,y是x的函数,但x不是y的函数D.正比例函数不是一次函数,一次函数也不是正比例函数4.下列函数关系式:①y=﹣x;②y=2x+11;③y=x2+x+1;④.其中一次函数的个数是( ) A.1个B.2个C.3个D.4个5.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是( ) A.B.C.D.6.函数值y随x的增大而减小的是( )A.y=1+x B.y=x﹣1 C.y=﹣x+1 D.y=﹣2+3x7.直线y=kx+b经过A(0.2)和B(3.0)两点,那么这个一次函数关系式是( )A.y=2x+3 B.y=﹣x+2 C.y=3x+2 D.y=x+18.下列直线不经过第二象限的是( )A.y=﹣3x+1 B.y=3x+2 C.y=x﹣1 D.y=﹣2x﹣19.一次函数y=kx+b的图象如图所示,则k、b的值为( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<010.如果y=x﹣2a+1是正比例函数,则a的值是( )A.B.0 C.﹣D.﹣211.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离ykm与已用时间xh之间的关系,则小敏、小聪行走的速度分别是( )A.3km/h和4km/h B.3km/h和3km/h C.4km/h和4km/h D.4km/h和3km/h12.若甲、乙两弹簧的长度ycm与所挂物体质量xkg之间的函数表达式分别为y=k1x+b1和y=k2x+b2,如图所示,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为( )A.y1>y2B.y1=y2 C.y1<y2D.不能确定二、填空题(本大题共7小题,每小题3分,共21分)13.已知函数y=3x﹣6,当x=0时,y=__________;当y=0时,x=__________.14.已知一直线经过原点和P(﹣3,2),则该直线的解析式为__________.15.长沙向北京打长途电话,设通话时间x(分),需付电话费y(元),通话3分以内话费为3.6元,请你根据如图所示的y随x的变化的图象,找出通话5分钟需付电话费__________元.16.已知一次函数y=(k﹣1)x+5随着x的增大,y的值也随着增大,那么k的取值范围是__________.17.一次函数y=1﹣5x经过点(0,__________)与点(__________,0),y随x的增大而__________.18.一次函数y=(m2﹣4)x+(1﹣m)和y=(m﹣1)x+m2﹣3的图象与y轴分别交于点P和点Q,若点P与点Q 关于x轴对称,则m=__________.19.假定甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示,那么可以知道:(1)这是一次__________米赛跑;(2)甲、乙两人中先到达终点的是__________;(3)乙在这次赛跑中的速度是__________米/秒.三、解答题(本大题共6小题,共43分)20.已知正比例函数的图象上有一点P,它的纵坐标与横坐标的比值是﹣.(1)求这个函数的解析式;(2)点P1(10,﹣12),P2(﹣3,36)在这个函数的图象上吗?为什么?21.(1998•广东)如图一次函数y=kx+b的图象经过点A和点B.(1)写出点A和点B的坐标并求出k、b的值;(2)求出当x=时的函数值.22.一次函数y=(2a+4)x﹣(3﹣b),当a,b为何值时:(1)y与x的增大而增大;(2)图象经过二、三、四象限;(3)图象与y轴的交点在x轴上方;(4)图象过原点.23.判断三点A(1,3),B(﹣2,0),C(2,4)是否在同一直线上,为什么?24.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜.25.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为x(立方米),应交水费为y(元).(1)分别写出用水未超过7立方米和多于7立方米时,y与x间的函数关系式;(2)如果某单位共有用户50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?北师大新版八年级上册《第4章一次函数》2015年单元测试卷(广东省深圳市展华实验中学)一、选择题(共12小题,每小题3分,满分36分)1.函数y=3x+1的图象一定经过点( )A.(3,5)B.(﹣2,3)C.(2,7)D.(4,10)【考点】一次函数图象上点的坐标特征.【分析】将各点坐标代入一次函数表达式,验证是解本题的关键.【解答】解:A、把x=3代入y=3x+1,解得y=10,所以图象不经过点(3,5),B、把x=﹣2代入y=3x+1,解得y=﹣5,所以图象不经过点(﹣2,3),C、把x=2代入y=3x+1,解得y=7,所以图象经过点(2,7),D、把x=4代入y=3x+1,解得y=13,所以图象不经过点(4,10).故选C.【点评】本题主要考查一次函数图象上点的坐标特往,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.2.对于圆的周长公式C=2πR,下列说法正确的是( )A.π、R是变量,2是常量B.R是变量,π是常量C.C是变量,π、R是常量D.C、R是变量,2、π是常量【考点】常量与变量.【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【解答】解:R是变量,2、π是常量.故选:D.【点评】本题主要考查了常量,变量的定义,是需要识记的内容.3.下列说法正确的是( )A.正比例函数是一次函数B.一次函数是正比例函数C.变量x,y,y是x的函数,但x不是y的函数D.正比例函数不是一次函数,一次函数也不是正比例函数【考点】正比例函数的定义.【分析】根据正比例函数的定义与形式y=kx(k为常数,且k≠0),逐个对选项进行判断.【解答】解:正比例函数是一次函数,故A正确,B错误.变量x,y,y是x的函数,x是y的函数,故C错误.正比例函数是一次函数,一次函数也不是正比例函数,故D错误.故选A.【点评】主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.4.下列函数关系式:①y=﹣x;②y=2x+11;③y=x2+x+1;④.其中一次函数的个数是( )A.1个B.2个C.3个D.4个【考点】一次函数的定义.【分析】根据一次函数的定义解答即可.【解答】解:①y=﹣x是一次函数;②y=2x+11是一次函数;③y=x2+x+1是二次函数;④是反比例函数.故选B.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.5.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是( )A.B.C.D.【考点】正比例函数的图象.【分析】根据正比例函数图象的性质进行解答.【解答】解:A、D、根据正比例函数的图象必过原点,排除A,D;B、也不对;C、又要y随x的增大而减小,则k<0,从左向右看,图象是下降的趋势.故选C.【点评】本题考查了正比例函数图象,了解正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.6.函数值y随x的增大而减小的是( )A.y=1+x B.y=x﹣1 C.y=﹣x+1 D.y=﹣2+3x【考点】一次函数的性质.【分析】根据一次函数的性质:当k>0时,y随x的增大而增大,可得答案.【解答】解:A、k=1>0,y随x的增大而增大,故A错误;B、k=>0,y随x的增大而增大,故B错误;C、k=﹣1<0,y随x的怎大而减小,故C正确;D、k=3>0,y随x的增大而增大,故D错误;故选:C.【点评】本题考查了一次函数的性质,当k>0时,y随x的增大而增大,k<0时,y随x的怎大而减小.7.直线y=kx+b经过A(0.2)和B(3.0)两点,那么这个一次函数关系式是( )A.y=2x+3 B.y=﹣x+2 C.y=3x+2 D.y=x+1【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】把A、B两点坐标代入y=kx+b得到关于k与b的方程组,再解方程组求出k、b,从而得到一次函数解析式.【解答】解:根据题意得,解得,所以一次函数解析式为y=﹣x+2.故选B.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.8.下列直线不经过第二象限的是( )A.y=﹣3x+1 B.y=3x+2 C.y=x﹣1 D.y=﹣2x﹣1【考点】一次函数图象与系数的关系.【分析】根据一次函数的图象与系数对各选项进行逐一判断即可.【解答】解:A、∵一次函数y=﹣3x+1中,k=﹣3,b=1,∴此函数的图象经过一、二、四象限,不经过第三象限,故本选项错误;B、∵一次函数y=3x+2中,k=3,b=2,∴此函数的图象经过一、二、三象限,不经过第四象限,故本选项错误;C、∵一次函数y=x﹣1中,k=1,b=﹣1,∴此函数的图象经过一、三、四象限,不经过第二象限,故本选项正确;D、∵一次函数y=﹣2x﹣1中,k=﹣2,b=﹣1,∴此函数的图象经过二、三、四象限,不经过第一象限,故本选项错误.故选C.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时,函数的图象在一、二、三象限;当k>0,b<0时,函数的图象在一、三、四象限;当k<0,b>0时,函数的图象在一、二、四象限;当k<0,b<0时,函数的图象在二、三、四象限.9.一次函数y=kx+b的图象如图所示,则k、b的值为( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数图象与系数的关系.【分析】先根据一次函数y=kx+b的图象过一、三象限可知k>0,由函数的图象与y轴的正半轴相交可知b>0,进而可得出结论.【解答】解:∵一次函数y=kx+b的图象过一、三象限,∴k>0,∵函数的图象与y轴的正半轴相交,∴b>0.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象过一、三象限,当b>0时,函数图象与y轴的正半轴相交.10.如果y=x﹣2a+1是正比例函数,则a的值是( )A.B.0 C.﹣D.﹣2【考点】正比例函数的定义.【分析】由正比例函数的定义可得方程,根据解方程,可得答案.【解答】解:由正比例函数的定义可得:﹣2a+1=0,解得:a=,故选:A.【点评】本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.11.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离ykm与已用时间xh之间的关系,则小敏、小聪行走的速度分别是( )A.3km/h和4km/h B.3km/h和3km/h C.4km/h和4km/h D.4km/h和3km/h【考点】一次函数的应用.【分析】观察函数图象得到小敏、小聪相遇时,小聪走了4.8千米,接着小敏再用2.8小时﹣1.6小时=1.2小时到达B点,然后根据速度公式计算他们的速度.【解答】解:小敏从相遇到B点用了2.8﹣1.6=1.2小时,所以小敏的速度==4(千米/时),小聪从B点到相遇用了1.6小时,所以小聪的速度==3(千米/时).故选:D.【点评】本题考查了函数的图象:对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.函数图形上的任意点(x,y)都满足其函数的解析式;满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上.12.若甲、乙两弹簧的长度ycm与所挂物体质量xkg之间的函数表达式分别为y=k1x+b1和y=k2x+b2,如图所示,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为( )A.y1>y2B.y1=y2 C.y1<y2D.不能确定【考点】一次函数的应用.【分析】将点(0,4)和点(1,12)代入y1=k1x+b1中求出k1和b1,将点(0,8)和点(1,12)代入y2=k2x+b2中求出k2和b2,再将x=2代入两式比较y1和y2大小.【解答】解:∵点(0,4)和点(1,12)在y1=k1x+b1上,∴得到方程组:,解得:,∴y1=8x+4.∵点(0,8)和点(1,12)代入y2=k2x+b2上,∴得到方程组为,解得:.∴y2=4x+8.当x=2时,y1=8×2+4=20,y2=4×2+8=16,∴y1>y2.故选A.【点评】本题考查了一次函数的应用,待定系数法求一次函数关系式,比较函数值的大小,熟练掌握待定系数法求一次函数关系式是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分)13.已知函数y=3x﹣6,当x=0时,y=﹣6;当y=0时,x=2.【考点】一次函数的定义.【专题】计算题.【分析】把x=0代入函数y=3x﹣6求出y的值,再把y=0代入此解析式求出x的值即可.【解答】解:把x=0代入函数y=3x﹣6得:y=﹣6;把y=0代入函数y=3x﹣6得:3x﹣6=0,解得x=2.【点评】本题比较简单,考查的是一次函数图象上点的坐标特点,即函数图象上的点的坐标一定适合此函数的解析式.14.已知一直线经过原点和P(﹣3,2),则该直线的解析式为y=﹣x.【考点】待定系数法求正比例函数解析式.【分析】设函数的解析式为y=kx,把P的坐标代入即可求得.【解答】解:设正比例函数的解析式为y=kx,∵直线经过原点和P(﹣3,2),∴2=﹣3k,解得k=﹣,∴该直线的解析式为y=﹣x.故答案为y=﹣x.【点评】本题考查了待定系数法求正比例函数的解析式,熟练掌握待定系数法是解题的关键.15.长沙向北京打长途电话,设通话时间x(分),需付电话费y(元),通话3分以内话费为3.6元,请你根据如图所示的y随x的变化的图象,找出通话5分钟需付电话费6元.【考点】函数的图象.【专题】压轴题.【分析】仔细观察函数图象,通话5分钟所需话费可以由图象上直接读出数据.【解答】解:由函数图象可以直接得到,通话5分钟需要付话费6元.【点评】此题主要考查学生的读图获取信息的能力,特别注意题干中的条件“通话3分以内话费为3.6元”属于干扰项,对于本题求解没有直接帮助.16.已知一次函数y=(k﹣1)x+5随着x的增大,y的值也随着增大,那么k的取值范围是k>1.【考点】一次函数图象与系数的关系.【分析】先根据函数的增减性得出关于k的不等式,解不等式求出k的取值范围即可.【解答】解:∵一次函数y=(k﹣1)x+5随着x的增大,y的值也随着增大,∴k﹣1>0,即k>1.故答案为k>1.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中当k>0时,y随x的增大而增大是解答此题的关键.17.一次函数y=1﹣5x经过点(0,1)与点(,0),y随x的增大而减小.【考点】一次函数的性质.【专题】计算题.【分析】先分别计算自变量为0时的函数值和函数值为0所对应的自变量的值,然后根据一次函数的性质回答增减性.【解答】解:当x=0时,y=1﹣5x=1;当y=0时,1﹣5x=0,解得x=,所以一次函数y=1﹣5x经过点(0,1)和点(,0),因为k=﹣5<0,所以y随x的增大而减小.故答案为1,,减小.【点评】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.18.一次函数y=(m2﹣4)x+(1﹣m)和y=(m﹣1)x+m2﹣3的图象与y轴分别交于点P和点Q,若点P与点Q 关于x轴对称,则m=﹣1.【考点】两条直线相交或平行问题.【分析】根据函数解析式求出P、Q的坐标,再由P点和Q点关于x轴对称可列出等式解得m的值.【解答】解:∵y=(m2﹣4)x+(1﹣m)和y=(m﹣1)x+m2﹣3的图象与y轴分别交于点P和点Q,∴P(0,1﹣m),Q(0,m2﹣3)又∵P点和Q点关于x轴对称∴可得:1﹣m=﹣(m2﹣3)解得:m=2或m=﹣1.∵y=(m2﹣4)x+(1﹣m)是一次函数,∴m2﹣4≠0,∴m≠±2,∴m=﹣1.故答案为:﹣1.【点评】本题考查了两条直线相交或平行问题,直线与y轴的交点坐标,以及关于x轴对称的点的坐标特征,关键在于根据函数解析式求出P、Q的坐标.19.假定甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示,那么可以知道:(1)这是一次100米赛跑;(2)甲、乙两人中先到达终点的是甲;(3)乙在这次赛跑中的速度是8米/秒.【考点】函数的图象.【专题】行程问题;压轴题.【分析】根据图象中特殊点的实际意义即可求出答案.【解答】解:分析图象可知:(1)这是一次100米赛跑;(2)甲、乙两人中先到达终点的是甲;(3)乙在这次赛跑中的速度是8米/秒.【点评】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.三、解答题(本大题共6小题,共43分)20.已知正比例函数的图象上有一点P,它的纵坐标与横坐标的比值是﹣.(1)求这个函数的解析式;(2)点P1(10,﹣12),P2(﹣3,36)在这个函数的图象上吗?为什么?【考点】待定系数法求正比例函数解析式;一次函数图象上点的坐标特征.【分析】(1)设正比例函数的解析式为y=kx,根据题意得出k==﹣,即可求得解析式;(2)分别代入x=10和x=﹣3求得对应的函数值,与P1(10,﹣12),P2(﹣3,36)比较即可判断.【解答】解:(1)设正比例函数的解析式为y=kx,∴k=,∵点P的纵坐标与横坐标的比值是﹣.∴k=﹣,∴正比例函数的解析式为y=﹣x;(2)∵当x=10时,y=﹣×10=﹣≠﹣12,当x=﹣3时,y=y=﹣×(﹣3)=≠36,∴P1(10,﹣12),P2(﹣3,36)不在这个函数的图象上.【点评】本题考查了待定系数法求正比例函数的解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.21.(1998•广东)如图一次函数y=kx+b的图象经过点A和点B.(1)写出点A和点B的坐标并求出k、b的值;(2)求出当x=时的函数值.【考点】待定系数法求一次函数解析式.【专题】压轴题;待定系数法.【分析】(1)由图可直接写出A、B的坐标,将这两点代入联立求解可得出k和b的值.(2)由(1)的关系式,将x=代入可得出函数值.【解答】解:(1)由图可得:A(﹣1,3),B(2,﹣3),将这两点代入一次函数y=kx+b得:,解得:∴k=﹣2,b=1;(2)将x=代入y=﹣2x+1得:y=﹣2.【点评】本题考查待定系数法求一次函数解析式,关键在于看出图示的坐标信息.22.一次函数y=(2a+4)x﹣(3﹣b),当a,b为何值时:(1)y与x的增大而增大;(2)图象经过二、三、四象限;(3)图象与y轴的交点在x轴上方;(4)图象过原点.【考点】一次函数的性质.【专题】计算题.【分析】根据一次函数的特点,就可以得到一次函数的一次项系数,常数项的范围,从而求出a,b的范围.【解答】解:(1)由题意,得2a+4>0,∴a>﹣2,故当a>﹣2,b为任意实数时,y随x的增大而增大;(2)由题意,得,∴当a<﹣2,b<3时,图象过二、三、四象限;(3)由题意得,得,所以,当a≠﹣2,b>3时,图象与y轴的交点在x轴上方;(4)当a≠﹣2,b=3时,图象过原点.【点评】本题考查了一次函数的性质,对性质的记忆是解决本题的关键.23.判断三点A(1,3),B(﹣2,0),C(2,4)是否在同一直线上,为什么?【考点】一次函数图象上点的坐标特征.【分析】根据A、B两点的坐标求得直线AB的解析式,然后把C的坐标代入看是否符合解析式即可判定.【解答】解:设A(1,3)、B(﹣2,0)两点所在直线解析式为y=kx+b∴,解得,∴y=x+2,当x=2时,y=4∴点C在直线AB上,即点A、B、C三点在同一条直线上.【点评】本题考查了待定系数法求解析式,以及判定是否是直线上的点.24.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜.【考点】一次函数的应用.【分析】(1)y1与通话时间x成一次函数,y2与x成正比例函数,使用待定系数法求解即可;(2)当两种卡的收费相等时,可计算出通过时间x的值,当通话时间小于此值,则“如意卡”便宜;当通话时间大于此值,则,“便民卡”便宜.【解答】解:(1)设y1=kx+b,将(0,29),(30,35)代入,解得k=,b=29,∴,又24×60×30=43200(min)∴(0≤x≤43200),同样求得;(2)当y1=y2时,;当y1<y2时,.所以,当通话时间等于96min时,两种卡的收费相等,当通话时间小于mim时,“如意卡便宜”,当通话时间大于min时,“便民卡”便宜.【点评】本题意在考查学生利用待定系数法求解一次函数关系式,比较简单.25.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为x(立方米),应交水费为y(元).(1)分别写出用水未超过7立方米和多于7立方米时,y与x间的函数关系式;(2)如果某单位共有用户50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?【考点】一次函数的应用.【分析】(1)因为每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为x(立方米),应交水费为y(元)所以未超出7立方米时:y=x×(1+0.2);超出7立方米时:y=7×1.2+(x﹣7)×(1.5+0.4);(2)分别求出当某户用水7立方米时和10立方米时的水费,假设50户都不超过7立方米,则最多共交420元.而实际交了541.6元,所以541.6﹣420=121.6,则多出部分为最少超过7立方米的各户用水,由此即可求出最少10立方的用户,从而求出答案.【解答】解:(1)未超出7立方米时:y=x×(1+0.2)=1.2x ;超出7立方米时:y=7×1.2+(x ﹣7)×(1.5+0.4)=1.9x ﹣4.9;(2)当某户用水7立方米时,水费8.4元.当某户用水10立方米时,水费8.4+5.7=14.1元,比7立方米多5.7元.8.4×50=420元,还差541.6﹣420=121.6元,121.6÷5.7=21.33.所以需要22户换成10立方米的,不超过7立方米的最多有28户.附另解:设未超过7m 3的有x 户,则超过7m 3的有(50﹣x )户由题意得:某户用水7立方米时,水费8.4元.10立方米时,水费8.4+5.7=14.1元,可列不等式:8.4x+14.1(50﹣x )>541.6,解得x <28,x 最大可取27.【点评】本题首先读懂题意,然后根据题意列出函数关系式,再利用函数解析式即可解决实际问题.。