4逻辑式与真值表
第四次 逻辑函数及最小项、最大项ppt
二、 逻辑函数式
按照对应的逻辑关系,把输出变量表示为输入
变量的与、或、非三种运算的组合,称为逻辑代 数式,又称为逻辑函数式,通常采用“与或” 的形式。
B A
C
Y = A ·(B + C)
Y
8
书写简洁、方便; 便于利用公式定理进行运算、变换; 便于用逻辑图实现。 不如真值表直观。
9
三、 逻辑图 把逻辑函数式的逻辑运算关系用逻辑符
内容 回顾
2.4.1 代入定理
------在任何一个包含变量A的逻辑等式中,若以另 外一个逻辑式代入式中所有A的位置,则等式依然成
立。
3
2.4.2 反演定理
对任何一个逻辑表达式Y 作反演变换,可得Y 的
反函数 Y 。这个规则叫做反演定理。
反演变换:
“﹒”→“﹢” “﹢”→“﹒”
变换顺序 先括号, 然后乘,最后加
21
2.5.3 逻辑函数的两种标准形式
最小项之和最大项之积
一、最小项
1、概念:在n个变量逻辑函数中,若m为包含n个 因子的乘积项,而且这n个变量均以原 变量或反变量的形式在m中出现一次, 则称m为该组变量的最小项。
最小项 m: m是乘积项 包含n个因子 n个变量均以原变量和反16
3. 从逻辑式画出逻辑图 用图形符号代替逻辑式中的运算符号。
【例】已知逻辑函数为 Y A(B C) 试画出对应的逻辑图。 解:
将式中所有的与、或、非运算符号用 图形符号代替,并依据运算优先顺序将 它们连接起来。
17
4. 从逻辑图写出逻辑式
1. 用图形符号代替逻辑式中的逻辑运算符。
将输入变量取值的所有组合状态逐一 代入逻辑式求出函数值,列成表。
167;11.4逻辑式与真值表 (1)
南通工贸技师学院教案首页授课日期班级15对口2课题:§11.4 逻辑式与真值表教学目的要求:了解逻辑式的定义及其对应的真值表的概念,能够进行逻辑式与真值表的互化.教学重点、难点: 逻辑式的运算及逻辑式对应的真值表、逻辑式与真值表的互化授课方法:任务驱动法小组合作学习法教学参考及教具(含多媒体教学设备):《单招教学大纲》授课执行情况及分析:板书设计或授课提纲§11.4逻辑式与真值表1、逻辑非的定义2、例题2、逻辑非的真值表3、“或”、“与”、“非”的复合运算规则教 学 内 容 、方 法 和 过 程附 记 一、复习引入1、复习“与运算”、“或运算”、“非运算”的真值表和运算法则2、引入新课 二、讲授新知1、逻辑代数式:是由常量1,0以及逻辑变量经逻辑运算构成的式子,逻辑代数式简称逻辑式;2、逻辑式真值表:是用表格的形式列出逻辑变量的一切可能值与相应的逻辑式的值的表.由于逻辑变量只能取0或1,所以逻辑式的值也只有0或1;3、逻辑运算的次序:依次为先“非运算”,再“与运算”,最后是“或运算”,如果逻辑式有括号,则要先进行括号内的运算.三、例题分析【例1】 写出下列各式的运算结果.(1)011⋅+ ;(2)001++ ;(3)0101⋅+⋅ ;(4)0111++⋅ . 解:(1)0101011==+=⋅+ ; (2)11001001=+=+=++ ; (3)1100100101=+=+⋅=⋅+⋅ ; (4)11100110111=++=++=++⋅ .做好逻辑运算主要包括:(1)了解运算次序,依次为“非运算”“与运算”“或运算”,有括号的逻辑式,先进行括号内的运算;(2)熟悉运算规律.举 一 反 三写出下列各式的运算结果.(1)101⋅+ ;(2)()101⋅+ ; (3)()0100+⋅+ ; (4)0100⋅++ .教 学 内 容 、方 法 和 过 程附 记 【例2】 列出逻辑式C A B A +的真值表. 解:表11-20ABCBCB AC AC A B A +1 1 1 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 011列出逻辑式对应的真值表的步骤:(1) 明确逻辑变量的个数n ; (2) 列出逻辑变量可取的n2组值;(3) 按照先“非”再“与”后“或”,括号先行的次序逐一代入运算.举 一 反 三列出逻辑式AB B A ++的真值表.教 学 内 容 、方 法 和 过 程附 记 四.课堂练习1.写出下列各式的运算结果. (1)1111+⋅+ ;(2)()01011+⋅+⋅ ; (3)()11000⋅+⋅+;(4)()()11101+++.6.列出下列逻辑式的真值表. (1)C B A ;(2)BC A C AB +五.课堂总结本节课,我们学习了逻辑式、逻辑式对应的真值表及它们相互转换的方法.由常量1和0以及逻辑变量经过逻辑运算构成的式子叫 ;逻辑式对应的真值表就是将 的各种可能的取值和相对应的 排列在一起而组成的表格;一般地,有n 个输入变量的逻辑函数,就应该有 种不同的输入变量的取值组合.六.课外作业《教与学新方案》P36页5、6。
命题、联结词、命题公式与真值表
1、一些基本概念 逻辑、命题、真值
2、联结词 3、命题公式 4、真值表
问题?
一、命题的定义
命题P——不关心其具体涵义,只关心其值的 真值
命题变元——定义域:真、假 命题常元——T和F 命题公式(也称命题,合式公式)——含命题变元
的断言,由以下规则生成: (1)单个原子公式是命题。 (2)若A、B是命题公式,┐A、A∧B、A∨B、
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
Hale Waihona Puke 111回顾一下:五个联结词真值表
否定
等价(双条件)
合取
析取
蕴涵(条件)
几个相关概念
1、合式公式的层次:
0层
1层
2层
3层
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
1
1
1
几个相关概念
A(BC) (D E)
1 01
10
p
2、什么情况下,下面论述为真:
q
说小王不会唱歌或小李不会跳舞是正确的,而
说如果小王会唱歌,小李会跳舞是不正确的。
(p q) (pq)
综合问题1
Key:
A→B、AB也是命题公式。 (3) 有限步应用条款(1)(2)生成的公式。
例:下列符号串都是命题公式
下列符号串是否为命题公式?
命题、联结词、命题公式与真值表
基本逻辑运算
1
1
0
1
1
0
(3) 逻辑符号 国 A 标 B
=1 L
国 外
A B
L *
10
4、同或逻辑
(1) 逻辑式: L=A⊙B (2) 真值表
A 0 0 1 1 B 0 1 0 1 L 1 0 0 1
L AB AB
只有两变量 参与运算
同入出1 异入出0
同或门 表示反相 L
(3) 逻辑符号 国 A 标 B
*
4
2、或逻辑(逻辑加)
(1)定义:在决定事物结果的诸条件中只要任何一个满 足,结果就会发生。 A (2)逻辑式:L= A + B
B + _
(3)真值表
设 开关闭合为 1,断开为 0 灯亮为 1,熄灭为 0
A 0 0 B 0 1 L 0 1
L
当逻辑变量A、B中任何一 个为1时,逻辑函数L等于1。 (低低得低)
只有输入A、B同时为0时,输 出L才为1 有1出0 全0出1
或非门 表示反相 L 表示反相
(3) 逻辑符号 国 A 标 B
1
国 A 外 B
L *
9
3、异或逻辑
(1) 逻辑式: L A B (2) 真值表
A 0 0 B 0 1 L 0 1
L AB AB
只有两变量 参与运算
同入出0 异入出1
分配律
B A.B B.A 0 0 0 1 0 0 0 0 0 1 1 1
*
13
2、常用恒等式
AB AC BC AB AC
含A的 原变量 含A的 反变量 含除A以外的 其余因子
冗余 项
如何证明?
检验等式两边的真值表 是否相等
逻辑式与真值表
我们能不能把逻辑式A B AB的取值
用表格的形式表示出来呢?
A
B
AB AB
0
0
1
1
0
0
0
1
0
1
1
1
3、真值表
列出逻辑变量的一切可能取值与相应逻辑式的 值的表,叫做逻辑式的真值表.
注意:真值表必须列出逻辑变量所有可能 的取值以及所对应的逻辑式的值。
例如“异或”运算 F= A B A B
例如 S = A+B C D
这些变量A、B、C、D组成的式子叫 什么呢?这些式子又怎么取值呢?
讲授新课
1、逻辑代数式
由常量1,0以及逻辑变量经逻辑运算构成的 式子叫做逻辑代数式。简称逻辑式。
问题:A,A(B
等是逻辑式吗?
C),
AB
C
D,
1,0
注意: 表示常量的1和0及单个变量都看作是 逻式.
含
义
参加运算的量,只有两个同时
或
000 101
011 111
为“0”时,运算结果才为
“0”。否则运算结果为“1”
参加运算的量,只有两个同时
与
0 0 0 0 1 0 为“1”时,则运算结果为
1 0 0 11 1 “1”。否则运算合运算 逻辑变量之间除了“非运算”,“与运算”,“或 运算”三种基本的逻辑运算之外,任何其它的 逻辑运算都可以以它们为基础表示,其它的逻 辑运算是它们的复合运算.
逻辑式与真值表
复习导入
➢什么是逻辑? 事物的因果关系称为逻辑.
➢什么是逻辑变量? 只有两种变化状态的量称为逻辑变量,一般用
大写字母A,B, C,…,L,…表示. ➢什么是逻辑常量?
04逻辑式与真值表
A B AB
1
1
0 1
0
1 1
0
0 1
二、讲授新课
3、等值逻辑式
如果对于逻辑变量的任何一组取值,两个逻辑式 的值都相等,这样的两个逻辑式叫做等值逻辑式。 等值逻辑式可用“=”连接,并称为等式,需要 注意的是,这种相等是状态的相同。
三、例题与练习
例1 写出下列各式的运算结果 (1) 1 0 (2) 1 0 1 (3) 1 0 1
1 0 0 0
三、例题与练习
练习3
用真值表验证等式 A B A B. 用真值表验证等式
A B B C C A ( A B )( B C )( C A ).
四、课堂小结
1、逻辑式和真值表的概念 2、逻辑式的运算;逻辑式的真值表; 会用真值表验证等式是否成立
五、作业
解 (1)列出真值表
A B A+B
ABAΒιβλιοθήκη BAB00 1 1
0
1 0 1
0
1 1 1
1
0 0 0
1
1 0 0
1
0 1 0
1
0 0 0
可以看出对于逻辑变量的任何一组值, B 与 A B 的值都相 A
同,所以 A B A B.
三、例题与练习
例3 用真值表验证下列等式:
(1) A B A B; ( 2) A B AB ( A B )( A B ).
例如 A, A ( B + C ) , A B C D ,1, 0 等都是逻辑式
将各逻辑变量取定的一组值代入逻辑式,经过运 算,可以得到逻辑式的一个值(0 或 1).
逻辑式与真值表
等值逻辑式
如果对于逻辑变量的任何一组取值,两个逻辑式 的值都相等,这样的两个逻辑式叫做等值逻辑式。 等值逻辑式可用“=”连接,并称为等式,需要 注意的是,这种相等是状态的相同。
三、例题与练习
例4 如图所示,开关电路中的灯D的状态,能否用 开关A,B,C的逻辑运算来表示?试给出结果. 分析 这个电路
用真值表验证下列等式是否成立:
A (B C) ( A B) ( A C)
A 0 0 0 0 1 1 1 1
A (B C) ( A B) ( A C)
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1
BC
A (B C)
A B A C ( A B) ( A C)
可以看出对于逻辑变量的任何一组值, A B与 AB的值都相等 所以 A B AB .
用真值表验证下列等式是否成立:
AB AB ( A B)( A B)
三、例题与练习
A 0 0 1 1 B 0 1 0 1
AB
0 0 1 0
AB
0 1 0 0
A B
1 1 1 0
AB AB
A A 0
A A
A 0 1
A
1 0
A A
1 1
A A 1
用真值表验证下列等式是否成立:
AB BA
A 0 0 1 1
B 0 1 0 1
A B B A
A B B A
0 0 0 1
0 0 0 1
用真值表验证下列等式是否成立:
AB B A
A 0 0 1 1
A 1 1 0 0
B 1 0 1 0
1-4真值表与等价公式
第一章 数理逻辑 1-4 真值表与等价公式
10
2、等价公式-证明(真值表法)
例题 5 证明 PQ(PQ)(QP)
第一章 数理逻辑 1-4 真值表与等价公式
11
2、等价公式-汇总
下面的命题定理(表1-4.8)都可以用真值表 予以验证:
对合律 等幂律 结合律 交换律 分配律 吸收律 德·摩根律 同一律 零律 否定律
从真值表可见,上述两个命题公式在分量的不同 指派下,其对应的真值与另一命题公式完全相同。
同理如: (PQ)(PQ)与PQ。
第一章 数理逻辑 1-4 真值表与等价公式
9
2、等价公式-概念
定义:1-4.2 给定两个命题公式A和B,设P1, P2,…,Pn为所有出现于A和B中的原子变元, 若给P1,P2,…,Pn任一组真值指派, A和B的 真值都相同,则称A和B是等价的或逻辑相等。 记作AB。
PQ F F F T
(PQ) (PQ) T F F T
6
第一章 数理逻辑 1-4 真值表与等价公式
1、真值表
例题4 给出(PQ)(PQ)的真值表 公式不论命题变元做何种指派,其真值永为真, 我们把这类公式记为T。
P Q PQ (PQ) P Q PQ T T T F F T F F T F F F F T T T F F T T F T F T F T T T (PQ)( PQ) T T T T
第一章 数理逻辑 1-4 真值表与等价公式
18
第一章 数理逻辑 1-4 真值表与等价公式
16
小结
真值表
完整性
等价公式
等价公式表1-4.8 等价置换
命题公式(合式公式)证明方法
列真值表法 利用等价公式
数字电子技术基础 第2章
证明若干常用公式
21、A+A ·B=A 证明:A(1+B)=A 22、A+A’ ·B=A+B 证明:利用分配律,(A+A’).(A+B)=1.(A+B) 23、A ·B+A ·B’=A 证明:A.(B+B’)=A.1 24、A ·(A+B)=A 证明:A.A+A.B=A+A.B=A(1+B)=A.1=A
1.2 逻辑式列出真值表
将输入变量取值的所有组合状态逐一代入逻辑式求出函数值, 就得到真值表。
例 2.5.2 P32-33
五、各种表示方法间的相互转换
2、逻辑函数式与逻辑图 的相互转换
2.1 给定逻辑函数式转换 为相应的逻辑图
用逻辑图形符号代替逻辑 函数式中的逻辑运算符号 并按运算顺序将它们连接 起来。
1、真值表与逻辑函数式的相互转换 1.1 由真值表写出逻辑函数式
1)找出真值表中使逻辑函数Y=1的那些输入变量取值的组合。 2)每组输入变量取值的组合对应一个乘积项,其中取值为1的
写入原变量,取值为0的写入反变量。 3)将这些乘积项相加,即得Y的逻辑函数式。 例 2.5.1 P32
IEC (International Electrotechnical Commission,国 际电工协会)
异或,同或
异或:
输入A,B 不同时,输出Y为1;输入A,B 相同时,输 出Y为0。
Y=A⊕ B=A· B’+A’ · B
或:
输入A,B 不同时,输出Y为0;输入A,B 相同时,输 出Y为1。
证明若干常用公式
25、A ·B+A’ ·C+B ·C=A ·B+A’ ·C 证明:=A.B+A’.C+B.C(A+A’) =A.B+A’.C+A.B.C+A’.B.C =A.B(1+C)+A’.C.(1+B)=A.B+A’.C 同样可证明:A ·B+A’ ·C+B CD=A ·B+A’ ·C 26、A ·(A ·B)’=A ·B’; A’ ·(A·B)’=A’ 证明:A.(A’+B’)=A.A’+A.B’=A.B’
形式逻辑(第四章下(新))
复合命题及其推理(下)
授课教师刘滨
一、负命题的性质和逻辑形式:
1.负命题
负命题是复合命题
则相应的负命题
例如所有科学家都是大学毕业的
等值式:
(1)“并非所有S 都是P ”等值于“有的S 不是P ”
即:A O
(3)S
C. 并非有的商人不是奸商。
2.联命题的负命题
例如:西瓜又熟又甜
负命题:支命题为相负命题的逻辑形式:
负命题:支命题为负命题的逻辑形式:
小周高但。
熊不可得
A. 乙中至少
充分条件言
即使气温降到零度以下,也仍然能施工。
负命题:支命题为
负命题:支命题为
等值命题:
四、负命题推理n理:
效推﹁(
a. 明李或
股评有巧妙
第六节复合命题推理的扩展——假言推理的推广形式
假要求的
通过
理。
选言
1.如故意犯罪,
如过失
,结
,结论
你娶到
论否定了假
武松打死
(2推理的a言
言前提
达哥拉斯耐烦
勒士
,中一
况,对的部落
且q,
乙:如王经理
第七节多重复合命题
与真值表的判定作用
或量
结
Ⅰ式是:
析施肥料
场的为
究员。
4逻辑函数及其表示方法
Y AB AB
二、逻辑函数的表示方法
设某一逻辑网络的输入逻辑变量为A1、 A2、…、An,输出逻辑变量为F。若A1、 A2、…、An的值被确定后,F的值就唯一 地被确定下来,则F和A1、A2、…、An之 间存在的因果关系称为逻辑关系。一个确 定的逻辑关系通常可以采用以下几种表示 方法:
逻辑式
取值为 0 的用反变量代替,则得到一系列与项。 (3)将这些与项相加即得逻辑式。
例如
A
B
C
Y
0 0
0 0
0 1
1 0
逻辑式为
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
ABC
1
1
0
0
1
1
1
1
3. 逻辑图 例如
由逻辑符号及相应连线构成的电路图。
ቤተ መጻሕፍቲ ባይዱ
画
的逻辑图
反变量用非门实现
相加项用或门实现
与项用与门实现
运算次序为先非后与再或,因此用三级电路实现之。
( A B)(A B)C AB
ABC ABC AB
F(A, B,C) ABC ABC AB(C C)
ABC ABC ABC ABC
m3 m5 m7 m6 m(3,5,6,7)
二、最大项的定义和性质
1、定义:
在逻辑函数中,如果一个或项包含该逻辑函数的全部变量 且每个变量在该或项(和项)中 (以原变量或反变量)只 出现一次。这样的乘积项称为这 n 个变量的最大项,也称 为 n 变量逻辑函数的最大项。
在同一逻辑关系的各种表示方法中,真值表、卡诺图、 时序图具有唯一性,而逻辑函数表达式和逻辑图则具有多 样性。通常检查两个逻辑关系是否“相等”的办法是看他 们的真值表是否完全相同。
离散数学-1-4真值表与等价公式
表1 (┐P∧Q)→┐R的真值表
从表1可知,公式(1)的成假赋值为011,其余7个赋值都是 成真赋值。
9
三、真值表
公式(2)是含2个命题变项的3层合式公式,它的真值表如表2 所示。
表2 (P∧┐P) (Q∧┐Q)的真值表
从表2可以看出,该公式的4个赋值全是成真赋值,即无成
假赋值。
10
(┐P∨Q)→R ┐(┐P∨Q)∨R
23
六、等值演算
如果再用德摩根律及置换规则,又会得到 ┐(┐P∨Q)∨R (P∧┐Q)∨R
再用分配律及置换规则,又会得到 (P∧┐Q)∨R (P∨R)∧(┐Q∨R)
将以上过程连在一起,可得到 (P→Q)→R (┐P∨Q) → R ┐(┐P∨Q)∨R (P∧┐Q)∨R (P∨R)∧(┐Q∨R) *上述演算中得到的5个公式彼此之间都是等值的, 在演算的每一步都用到了等价置换规则
28
15
五、公式置换
在一命题公式中,如果用公式置换命题的 某个部分,一般地会产生某种新的公式, 例如Q→(P∨(P∧Q))中以( ┐P →Q)取代 (P∧Q),则Q→(P∨ ( ┐P →Q))就与原 式不同。为了保证取代后的公式与原式等 价(即真值相同),需要对置换作出一些 规定。
16
五、公式置换
定义 1-4.3 如果X是合式公式A的一部分, 且X本身也是一个合式公式,则称X为公式A 的子公式。 定理 1-4.1 设X是合式公式A的子公式,若 X Y,如果将A中的X用Y来置换,所得到 公式B与公式A等价,即A B。 证明 书P16 *满足定理1-4.1条件的置换称为等价置换(等 价代换)
7
三、真值表
(2) 按从低到高的顺序写出公式的各个层次。
(3) 对应各个赋值计算出各层次的真值,直到最后计 算出公式的真值。 例 求下列公式的真值表,并求成真赋值和成假赋 值。
逻辑函数的表示方法及相互转换
自变量 因变量
ABC
F
2)从真值表写标准和之积式A+B+C 0 0 0 0
A+B+C
001
0
找出F = 0的行;
A+B+C
编号
M7 M6 M5 M4 M3 M2 M1 M0
3. 最小项与最大项的性质
全部最小项之和恒为1,全部最大项之积恒
为0。
2n 1
mi 1,
i0
2n 1
Mi 0
i0
任意两个不同的最小项之积恒为0,任意两
个不同的最大项之和恒为1。
mi·mj =0, Mi+Mj=1 相同下标的最小项和最大项互为反函数。
逻辑函数的表示方法 及相互转换
一、逻辑函数的表示方法 真值表描述法 逻辑函数式描述法 逻辑电路图表示法 卡诺图描述法、波形图表示
逻辑函数的描述方法
《数字电子技术基础》第六版
• 真值表 • 逻辑式 • 逻辑图 • 波形图 • 卡诺图 • 计算机软件中的描述方式
各种表示方法之间可以相互转换
《数字电子技术基础》第六版
即:和项都是最大项的或与式。
例:F(A,B,C)
=(A+B+C)(A+B+C)(A+B+C)(A+B+C)
=M1M2M4M6
最大项表达式
=M(1,2,4,6)
5 标准积之和式与标准和之积式的关系
同一函数的两种不同表示形式; 序号间存在一种互补关系,即:
最小项表达式中未出现的最小项的下标必然出现在最 大项表达式中,反之亦然。
相同自变量、相同序号构成的最小项表 达式和最大项表达式互为反函数
命题公式真值表
(4) (P Q) (P Q);
(5) (P Q) (P Q).
A
6
1-4 真值表与等价公式
解 (1) P Q 的真值表为:
P
Q
T
T
T
F
F
T
F
F
P Q
T F T T
(2) P Q 的真值表为:
P
Q
PQ
T
T
T
T
F
F
F
T
T
F
F
T
A
7
1-4 真值表与等价公式
(3) (P Q) P 的真值表为:
(1)单个命题变元本身是一个合式公式;
(2)如果 A 是合式公式,那么 A是合式公式;
(3)如果 A 和 B 是合式公式,那么
A B , A B , A B, A B 是合式公式;
(4)当且仅当能够有限次地应用(1)、(2)、(3)
所得到的包含命题变元,联结词和括号的字符串
是合式公式.
A
3
1-3 命题公式与翻译
A 中的 X 用Y 置换,所得公式 B 与公式 A 等价,即 A B .
例 4 证明: Q (P (P Q)) Q P
例 5 证明下列等价式
(1) (P Q) (P Q) P ;
(2) P (Q R) Q (P R) .
练习 证明 P (Q R) (P Q) R
A
14
1-4 真值表与等价公式
例 6 化简下列命题公式: (1) P (P (Q P)) (2) (P Q) (Q P)
说明:
(1)命题变元是没有真假值的,只有当命题变元用 确定的命题代入时,才得到一个命题,命题的真值 依赖于代换变元的那些命题的真值;
三种基本的逻辑运算
11
也可以用图2.2.2表示与 逻辑,称为逻辑门或逻 辑符号,实现与逻辑运 算的门电路称为与门。
A B
&
Y
A B
Y
图2.2.2 与门逻辑符号
若有n个逻辑变量做与运算,其逻辑式可表示为
Y A1A2An
2.2.2 或运算
或运算也叫逻辑加或逻辑或,即当其中一个条 件满足时,事件就会发生,即“有一即可
如图2.2.3所示电路,两个 并联的开关控制一盏灯就是或 逻辑事例,只要开关A、B有 一个闭合时灯就会亮。
6.与或非运算 与或非运算是“先与后或再非”三种运算的组合。
以四变量为例,逻辑表达式为:
Y ( AB CD)
上式说明:当输入变量A、B A
同时为1或C、D同时为1时, B
Y
输出Y才等于0。与或非运算 C 是先或运算后非运算的组合。 D
在工程应用中,与或非运算 由与或非门电路来实现,其
A B C
& 1 Y
真值表见书P22表2.2.6所示, D
逻辑符号如图2.2.9所示
图 2.2.9 与 或 非 门 逻 辑 符 号
7. 异或运算 其布尔表达式(逻辑函数式)为
Y A B AB AB
符号“⊕”表示异或运算,即两个输入逻辑变量取值
不同时Y=1,即不同为“1”相同为“0”,异或运算
用异或门电路来实现
其真值表如表2.2.6所示 其门电路的逻辑符号如图2.2.10
表2.2.6 异或逻辑真值
表
输入
输出
A
BY
所示
0
00
A B
=1 YA B
Y
0
11
1
01
1
10
图2.2.10 异或门逻辑符号
真值表推理规则证明方法
第四章数学命题的数学设计一、真值表1、否定(非):, 设P为一个命题,称P为P的否定式,记作p,其真值表如2、合取:设p,q表示两个命题,用逻辑联结词“与”把它们连接起来成为一个新命题“p与q”,记作qp∧。
真值表如下:3、析取:设p,q表示两个命题,用逻辑联结词“或”把它们连接起来成为一个新命题“p或q”,记作qp∨。
真值表如下:4、蕴涵(如果、、、那么、、、):设p,q表示两个命题,用“如果、、、那么、、、”把它们连接起来成为一个新命题“如果p,那么q”,记作qp→。
真值表如下:5、当且仅当(等价式):设p,q 表示两个命题,把q p ↔称为p,q 的等价式,其真值表如下真值表的作用证明重言式、两个命题等价,解决逻辑推理问题 例1 q p q p ∨≡∧例2 q p q p ∨≡→其真值表如下:三、推理规则1、合取规则:p 为真q 为真, q p ∧也为真。
2、分离规则:q p →为真,p 为真,q 也为真(充分条件假言规则)。
3、全称命题为真,则特称命题也为真。
4、r p ,,→→→则r q q p 。
5、是恒真命题r p r q q p ↔→↔∧↔)()(。
6、q(T) (T) p q(T)p ↔7、qp p q q p ↔→→8、(T)p (T) )(q T q p →(否定规则)9、pq q p →→10、(T)q (T) )(p T q p ∨(选言规则)11、qqp p q p ∧∧或(联言规则)12、三段论:推理形式为如果M 是P,S 是M,那么S 是P 。
它的逻辑式为:)()()(P S M S P M →→→∧→。
由真值表可知:)()()(P S M S P M →→→∧→1≡是恒真命题。
凡是恒真命题(重言式)都可作为推理规则。
前面提到的分离规则1)(≡→∧→q p q p ,选言规则1)(≡→∧∨q p q p ,联言规则1)(≡→∧p q p ,也都是恒真命题。
分别证明如下:11)()(31)()()()(21)()()()()(1≡∨≡∨∨≡∨∧≡→∧≡∨∨∨≡∨∧∨≡→∧∨≡∨∨∨≡∨∧∨≡∧∨≡→∧→q p q p p q p p q p q p q p q p q p q p q p q p q p q p q p p q p q q p 、、、四、证明方法1、直接证明:直接从所给论题入手,以公理、定义、定理等为论据,运用逻辑推理规则来论证论题为真的证明方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
AB AB
0
0
1
1
0
0
0
1
0
1
1
1
例题讲解
例 1 写出下列各式的运算结果 (1)1 0 (2)1 0 1 (3)1 0 1
例题讲解
例2 完成下面的真值表
A
B
A
B
0
0
1
1
0
1
1
0
1
0
0
1
1
1
0
0
A+B
A·B
0
0
1
0
1
0
1
1
练习巩固
P18练习1、2
讲授新课
4、等值逻辑式
如果对于逻辑变量的任何一组取值,两个逻辑式 的值都相等,这样的两个逻辑式叫做等值逻辑式。
等值逻辑式可用“=”连接,并称为等式,需要 注意的是,这种相等是状态的相同。
例题讲解
例3 用真值表验证下列等式: (1)A B A B;(2)A (B C) A B A C.
分析 真值表的行数取决于逻辑变量的个数,题目中有两 个逻辑变量,真值表有四行.
解 (1)列出真值表
A
B A+B A B A
B
AB
0
0
0
1
1
1
1
0
1
1
0
1
0
0
1
0
1
0
0
1
0
1
1
1
0
0
0
0
可以看出对于逻辑变量的任何一组值,A B与AB的值都相
同,所以A B AB.
例题讲解
例3 用真值表验证下列等式: (1)A B AB;(2)A (B C) A B AC.
江苏教育出版社 综合高中 数学(第三册) 第11章 逻辑代数初步
逻辑式与真值表
复习巩固
填表:
A
B
A
AB AB A
0
0
0
1
1
0
1
1
讲授新课
1、逻辑代数式
由常量1,0以及逻辑变量经逻辑运算构成的 式子叫做逻辑代数式。简称逻辑式。
例如:A,A(B
等都是逻辑式.
C),
AB
C
D,
1,0
表示常量的1和0及单个变量都看作是逻式.
讲授新课
2、逻辑运算的优先次序:依次为“非运 算”,“乘运算”,“加运算”.
例如:比如 D AB C 的运算顺序应为: 先计算括号的逻辑式,首先要进行括号内的算.
讲授新课
3、真值表
列出逻辑变量的一切可能取值与相应逻辑式的 值的表,叫做逻辑式的真值表.
的值都相同,所以 A (B C) A B AC.
巩固练习
教材P20练习
课堂小结
1、逻辑式和真值表的概念 2、逻辑式的运算;逻辑式的真值表;
会用真值表验证等式是否成立
课后作业
P.20 习题1、2、3
分析 真值表的行数取决于逻辑变量的个数,题目中有两个逻辑 变量,真值表有四行.
解 (2)列出真值表
A
B
C
B+C
A·(B+C)
A·B
A·C
A·B+A·C
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
0
1
1
1
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
可以看出对于逻辑变量的任何一组值,A (B C)与 A B A C