X射线光电子能谱分析法
X射线光电子能谱分析
X射线光电子能谱分析(X-ray photoelectron spectroscopy analysis)1887年,Heinrich Rudolf Hertz发现了光电效应。
二十年后的1907年,P.D. Innes用伦琴管、亥姆霍兹线圈、磁场半球(电子能量分析仪)和照像平版做实验来记录宽带发射电子和速度的函数关系。
待测物受X光照射后内部电子吸收光能而脱离待测物表面(光电子),透过对光电子能量的分析可了解待测物组成,XPS主要应用是测定电子的结合能来实现对表面元素的定性分析,包括价态。
XPS(X射线光电子能谱)的原理是用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来。
被光子激发出来的电子称为光电子。
可以测量光电子的能量,以光电子的动能为横坐标,相对强度(脉冲/s)为纵坐标可做出光电子能谱图。
从而获得试样有关信息。
X射线光电子能谱因对化学分析最有用,因此被称为化学分析用电子能谱(Electron Spectroscopy for Chemical Analysis)。
其主要应用:1,元素的定性分析。
可以根据能谱图中出现的特征谱线的位置鉴定除H、He以外的所有元素。
2,元素的定量分析。
根据能谱图中光电子谱线强度(光电子峰的面积)反应原子的含量或相对浓度。
3,固体表面分析。
包括表面的化学组成或元素组成,原子价态,表面能态分布,测定表面电子的电子云分布和能级结构等。
4,化合物的结构。
可以对内层电子结合能的化学位移精确测量,提供化学键和电荷分布方面的信息。
5,分子生物学中的应用。
Ex:利用XPS鉴定维生素B12中的少量的Co。
应用举例:1.确定金属氧化物表面膜中金属原子的氧化状态;2.鉴别表面石墨或碳化物的碳;(一)X光电子能谱分析的基本原理:X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。
该过程可用下式表示:hn=Ek+Eb+Er 其中: hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。
X射线光电子能谱分析方法及原理(XPS)
半导体工业
晶体缺陷分析、界面性质研究 等。
环境科学
大气污染物分析、土壤污染研 究等。
X射线光电子能谱分析的优缺点
1 优点
提供元素化学状态信息、非破坏性分析、高表面敏感性。
2 ห้องสมุดไป่ตู้点
样品需真空处理、分析深度有限、昂贵的设备和维护成本。
总结和展望
X射线光电子能谱分析是研究材料表面的有力工具。未来,随着仪器和技术的 不断进步,XPS将在更多领域发挥重要作用。
X射线光电子能谱分析方 法及原理(XPS)
X射线光电子能谱分析(XPS)是一种表面分析技术,通过测量材料的X射线光 电子能谱来研究材料的电子结构和化学组成。
X射线光电子能谱分析的基本 原理
XPS基于光电效应,探测材料与X射线相互作用所放出的光电子。通过测量光 电子能量和强度,可以推断材料表面元素的化学态。
X射线光电子能谱分析的仪器和实验设备
XPS仪器
包含X射线源、光电子能谱仪 和数据处理系统。
电子枪
产生高能电子束,用于激发材 料表面。
光电子能谱仪
测量光电子的能量和角度,用 于分析材料的电子结构。
X射线光电子能谱分析的样品准备方法
1 表面清洗
去除杂质和氧化层,以确保准确测量。
2 真空处理
在超高真空条件下进行实验,避免气体影响。
3 固定样品
使用样品架或夹具将样品固定在仪器中。
X射线光电子能谱分析的数据处理和解 析方法
峰面积计算
根据光电子峰的面积计算元素含量。
能级分析
通过分析光电子的能级分布,推断材料的化学状态。
谱峰拟合
将实验谱峰与已知标准进行拟合,确定元素的化学态和含量。
X射线光电子能谱分析的应用领域
X射线光电子能谱分析法
X射线光电子能谱分析法X射线光电子能谱分析法(XPS)是一种常用的表面分析技术,它通过测量材料表面的X射线光电子能谱来研究材料的化学组成、表面形貌以及表面电子结构等信息。
XPS技术具有高表面分辨率、高化学分辨率和宽能量范围等优点,被广泛应用于材料科学、表面科学和界面科学等领域。
下面将详细介绍XPS的原理、仪器结构、测量步骤以及应用。
XPS的原理:XPS基于光电效应,即当光子与物质相互作用时,能够使物质中的电子获得足够的能量从而被抛出。
通过测量被抛出的光电子的能量以及其强度,可以得到材料表面的各种信息。
XPS谱图由两个平行的轴表示,一个是电子能量轴,用来表示光电子的能量,另一个是计数轴,用来表示光电子的强度。
XPS的仪器结构:XPS的典型仪器结构包括光源、透镜系统、分析室、光电子能谱仪、多道分析器和检测器等部分。
其中,光源产生具有特定能量和强度的X射线,透镜系统用于聚焦X射线到样品表面,分析室用于保持真空环境,并可进行样品的表面清洁和预处理,光电子能谱仪用于测量光电子能谱,多道分析器用于对光电子的能量进行分析,检测器用于测量光电子的强度。
XPS的测量步骤:1.样品表面处理:对于有机材料,样品表面可能存在有机污染物,需要通过加热或离子轰击等方法进行表面清洁。
对于无机材料,一般不需要进行表面处理。
2.真空抽取:将样品放入真空室中,并进行抽取,以保证测量时的真空环境。
3.光源和透镜系统调节:调节光源的能量和透镜系统的聚焦,使其能够产生精确的X射线束。
4.测量样品表面:将样品置于X射线束中,测量样品表面的X射线光电子能谱。
5.数据分析:对测量得到的光电子能谱进行分析,得到材料的化学组成、表面形貌以及表面电子结构等信息。
XPS的应用:1.表面化学组成分析:XPS可以确定材料表面的元素组成和化学状态,对于催化剂、薄膜材料等具有重要意义。
2.表面形貌研究:通过测量不同位置的XPS谱图,可以了解材料表面的形貌特征,如晶体结构、晶粒尺寸等。
X射线光电子能谱
光电子 (e-)
X射线 (h)
与电子所在壳层的平均半径r,入射光子的频率和受激原子的原子序数Z有关。 一般来说,在入射光子的能量一定的情况下: 1、同一原子中半径越小的壳层,光电效应截面越大;电子结合能与入射光子的 能量越接近,光电效应截面越大。 2、不同原子中同一壳层的电子,原子序数越大,光电效应截面越大。
h A A*, e
光电子 (e-)
X射线 (h)
在某些情况下,还会引起俄歇电子的发 射。(为什么?)俄歇电子发射对于材 料的结构分析很有用处。
X射线光电子能谱分析的基本原理
1、光电效应(光致发射或者光电离):
当光子与材料相互作用时,从原子中各 个能级发射出的光电子的数目是不同的, 有一定的几率。光电效应的几率用光电 截面表示,定义为某能级的电子对入 射光子的有效能量转移面积,或者一定 能量的光子从某个能级激发出一个光电 子的几率。
Eb h Ek
对于固体材料,电子的结合能定义为把电子从所在的能级转移到费米能级(0K 时固体能带中充满电子的最高能级)所需要的能量。另外,固体中电子从费米能 级跃迁到自由电子能级(真空能级)所需要的能量成为逸出功,即功函数。所以, 入射光子的能量h分为三部分:电子结合能Eb,逸出功Ws,自由电子的动能Ek。 所以:
另外,原子中的电子既有轨道运动又有自旋运动。它们之间存在着耦合(电磁相
互)作用,使得能级发生分裂。对于 >0的内壳层,这种分裂可以用内量子数j来
表示。其数值为:
j
l ms
l
1 2
所以:对于 =0,j=1/2。对于 >0,则j= +½或者 -½。也就是说,除了s能 级不发生分裂外,其他能级均分裂为两个能级:在XPS谱图中出现双峰。
X射线光电子能谱分析法
X射线光电子能谱分析法X射线光电子能谱分析法(X-ray photoelectron spectroscopy,XPS)是一种非常重要的表面分析技术,广泛应用于材料科学、化学、表面物理、生物技术和环境科学等领域。
本文将对X射线光电子能谱分析法进行详细介绍,包括基本原理、仪器分析系统和应用领域。
一、基本原理X射线光电子能谱分析法是利用X射线照射固体表面,使其产生光电子信号,并通过测量光电子的动能和数量,来确定样品表面的化学成分及其状态。
其主要基于光电效应(photoelectric effect)和X射线物理过程。
光电效应是指当光子入射到固体物质表面的时候,会将表面电子激发到导带或导带以上的能级上,并逃离固体形成受激电子。
这些逃逸的电子称为光电子,其动能与入射光子的能量有关。
X射线物理过程主要包括光子的透射、散射和与原子内电子的相互作用等。
当X射线入射到固体表面时,会发生漫反射和荧光特性,造成信号的背景噪声。
同时,X射线的能量足够高,可以与样品的内层电子发生作用,如光电子相对能谱(Photoelectron RELative Energies)和化学平移分量(Chemical Shift)等。
二、仪器分析系统X射线光电子能谱分析系统包括光源、样品室、分析仪和检测器等。
光源常用的是具有较窄X射线能谱线宽的准单色X射线源,如AlKα线或MgKα线。
样品室的真空度一般要达到10^-8Pa左右,以避免空气对样品的干扰。
分析仪是用于测量光电子动能和数量的关键部件,常见的配备有放大器、电子能谱仪和角度分辨收集器等。
放大器将来自检测器的信号放大,并进行滤波处理以滤除高频噪声。
电子能谱仪是用于测量光电子动能的装置,一般包括一个径向入射、自由运动的光电子束和一个动能分析系统。
角度分辨收集器则用于测量光电子的角度分布。
检测器用于测量光电子的数量,常见的有多种类型的二极管(如能量分辨二极管和多道分析器)和面向瞬态X射线源的时间分辨仪器。
X射线光电子能谱及其应用简介
XPS应用
化合态识别
❖化合态识别-光电子峰
S的2p峰在不同化学状态下的结合能值
XPS应用
化合态识别
XPS应用
化合态识别
❖化合态识别-光电子峰
Ti及TiO2中2p3/2峰的峰位及2p1/2和2p3/2之间的距离
XPS应用
化合态识别
❖化合态识别-光电子峰
C1s在不同化学状态下半峰高宽的变化
CF4
C6H6
CO
CH4
半 峰 高 宽 0.52
0.57
0.65
0.72
(eV)
THANkS
结合能( Eb):电子克服原子核束缚和周围电子的作
用,到达费米能级所需要的能量。
费米(Fermi)能级:T=0K固体能带中充满电子的最高能级
真空能级:K电子达到该能级时完全自由而不受核的作用
2021/10/10
Page 2
XPS的基本原理
2021/10/10
Page 3
XPS基本原理
对于固体样品,计算结合能的参考点不 是选真空中的静止电子,而是选用费米 能级,由内层电子跃迁到费米能级消耗 的能量为结合能 Eb,由费米能级进入 真空成为自由电子所需的能量为功函数 Φ,剩余的能量成为自由电子的动能Ek,
2021/10/10
12
筒镜形电子能量分析器
筒镜分析器示意图
2021/10/10
13
真空系统
电子能谱仪的真空系统有两个基本功能。
1、使样品室和分析 器保持一定的真空 度,以便使样品发 射出来的电子的平 均自由程相对于谱 仪的内部尺寸足够 大,减少电子在运 动过程中同残留气 体分子发生碰撞而 损失信号强度。
hv=Ek+Eb+Φ
X射线光电子能谱(XPS)
X射线光电子能谱(XPS)X射线光电子能谱是利用波长在X射线范围的高能光子照射被测样品,测量由此引起的光电子能量分布的一种谱学方法。
样品在X射线作用下,各种轨道电子都有可能从原子中激发成为光电子,由于各种原子、分子的轨道电子的结合能是一定的,因此可用来测定固体表面的电子结构和表面组分的化学成分。
在后一种用途时,一般又称为化学分析光电子能谱法(Electron Spectroscopy for Chemical Analysis,简称)。
与紫外光源相比,X射线的线宽在以上,因此不能分辨出分子、离子的振动能级。
此外,在实验时样品表面受辐照损伤小,能检测周期表中除和以外所有的元素,并具有很高的绝对灵敏度。
因此是目前表面分析中使用最广的谱仪之一。
7.3.1 谱图特征图7.3.1为表面被氧化且有部分碳污染的金属铝的典型的图谱。
其中图(a)是宽能量范围扫描的全谱,主要由一系列尖锐的谱线组成;图(b)则是图(a)低结合能端的放大谱,显示了谱线的精细结构。
从图我们可得到如下信息:1.图中除了和谱线外,和两条谱线的存在表明金属铝的表面已被部分氧化并受有机物的污染。
谱图的横坐标是轨道电子结合能。
由于X射线能量大,而价带电子对X射线的光电效应截面远小于内层电子,所以主要研究原子的内层电子结合能。
由于内层电子不参与化学反应,保留了原子轨道特征,因此其电子结合能具有特定值。
如图所示,每条谱线的位置和相应元素原子内层电子的结合能有一一对应关系,不同元素原子产生了彼此完全分离的电子谱线,所以相邻元素的识别不会发生混淆。
这样对样品进行一次宽能量范围的扫描,就可确定样品表面的元素组成。
2.从图7.3.1(b)可见,在和谱线高结合能一侧都有一个肩峰。
如图所标示,主峰分别对应纯金属铝的和轨道电子,相邻的肩峰则分别对应于中铝的和轨道电子。
这是由于纯铝和中的铝所处的化学环境不同引起内层轨道电子结合能向高能方向偏移造成的。
这种由于化学环境不同而引起内壳层电子结合能位移的现象叫化学位移。
X射线光谱与电子能谱分析法
X射线光谱与电子能谱分析法首先,我们来看一下X射线光谱的原理和应用。
X射线光谱是指物质在X射线照射下,通过对X射线的吸收和辐射进行分析来获取物质结构和性质的方法。
这种方法主要依赖于物质对X射线的吸收和散射过程,通过对X射线吸收谱、荧光谱和散射谱的分析可以得到物质的化学成分和晶体结构。
因此,X射线光谱在材料科学、地质学、化学等领域被广泛应用。
X射线光谱的应用非常广泛。
例如,在材料科学中,通过X射线光谱可以研究材料的晶体结构和相变行为,从而了解材料的力学性能和热学性能。
在地质学中,可以通过X射线光谱来分析岩石和矿物的成分和结构,从而帮助地质学家了解地球的历史演变和地质构造。
在化学中,可以通过分析X射线吸收谱来确定化合物中的元素种类和含量,从而揭示化学反应的机理和热力学性质。
接下来,我们来看一下电子能谱的原理和应用。
电子能谱是指通过测量物质中电子能级的分布情况来研究物质结构和性质的方法。
这种方法主要利用物质中原子和分子的电子能级的离散性,通过测量电子的能级和能量来研究物质的能带结构和价带特性。
因此,电子能谱在固体物理学、化学和生物学等领域被广泛应用。
电子能谱的应用也非常广泛。
例如,在固体物理学中,可以通过电子能谱来揭示材料的电子结构和能带特性,从而理解材料的导电机制和光学性质。
在化学中,可以通过电子能谱来研究分子的轨道结构和化学反应的机理,从而探索分子的化学性质和反应性质。
在生物学中,可以通过电子能谱来研究蛋白质和DNA分子的结构和功能,从而了解生物分子的结构和功能。
最后,我们来比较一下X射线光谱和电子能谱这两种分析方法。
首先,X射线光谱主要研究物质的晶体结构和元素成分,而电子能谱主要研究物质的电子能带结构和能带特性。
其次,X射线光谱需要通过X射线的吸收和辐射来分析物质,而电子能谱则是通过电子的能级和能量来分析物质。
另外,X射线光谱通常需要使用X射线生成设备和光谱仪器,而电子能谱则需要使用电子能谱仪进行测量。
(完整版)X射线光电子能谱分析
结合能( EB):电子克服原子核束缚和周围电子的作 用,到达费米能级所需要的能量。
XPS的基本原理
2. 光电离几率和XPS的信息深度 (1)光电离几率 ➢ 定义
光电离几率(光电离截面):一定能量的光子在与原 子作用时,从某个能级激发出一个电子的几率; ➢ 影响因素 与电子壳层平均半径,入射光子能量,原子序数有 关;
➢ AES大都用电子作激发源,因为电子激发得到的 俄歇电子谱强度较大。
光电子能谱仪实验技术
1.X射线激发源
XPS中最常用的X射线源主要由灯丝、栅极和阳极 靶构成。
X射线源的主要指标是强度和线宽,一般采用K 线,因为它是X射线发射谱中强度最大的。在X射线 光电子能谱中最重要的两个X射线源是Mg和Al的特征 K射线.
种基于光电效应的电子能谱,它是利 用X射线光子激发出物质表面原子的内 层电子,通过对这些电子进行能量分 析而获得的一种能谱。
这种能谱最初是被用来进行化学分析 ,因此它还有一个名称,即化学分析
电子能谱( ESCA,全称为Electron Spectroscopy for Chemical Analysis)
XPS的基本原理
化学位移 1. 定义
由于化合物结构的变化和元素氧化状态的变化引 起谱峰有规律的位移称为化学位移 2. 化学位移现象起因及规律 (1)原因
内层电子一方面受到原子核强烈的库仑作用而具 有一定的结合能,另一方面又受到外层电子的屏蔽 作用。因而元素的价态改变或周围元素的电负性改 变,则内层电子的结合能改变。
XPS的基本原理
➢ 与氧化态关系
光电子能谱仪实验技术
光电子能谱仪的结构 电子能谱仪主要由激发源、电子能量分析
光电子能谱仪实验技术
X射线光电子能谱分析方法及原理(XPS)
XPS谱图中伴峰的鉴别:
(在XPS中化学位移比较小,一般只有几ev,要想对 化学状态作出鉴定,首先要区分光电子峰和伴峰)
• 光电子峰:在XPS中最强(主峰)一般比较对称且半宽
度最窄。
• 俄歇电子峰:Auger有两个特征:
1.Auger与X-ray源无关,改变X-ray,Auger不变。
2.Auger是以谱线群的形式出现的。
XPS谱图的解释步骤:
• 在XPS谱图中首先鉴别出C1s、O1s、C(KLL) 和 O(KLL)的谱峰(通常比较明显)。
• 鉴别各种伴线所引起的伴峰。 • 先确定最强或较强的光电子峰(或俄歇电子
峰),再鉴定弱的谱线。 • 辨认p、d、f自旋双重线,核对所得结论。
XPS 的特点:
• 可以分析除H和He以外的所有元素。
• 相邻元素的同种能级的谱线相隔较远,相互干扰 较少,元素定性的标识性强。
• 能够观测化学位移,化学位移同原子氧化态、原 子电荷和官能团有关。化学位移信息是利用XPS进 行原子结构分析和化学键研究的基础。
• 可作定量分析,即可测定元素的相对浓度,又可 测定相同元素的不同氧化态的相对浓度。
• 是一种高灵敏超微量表面分析技术,样品分析的 深度约为20Å,信号来自表面几个原子层,样品量 可少至10-8g,绝对灵敏度高达10-18g。
实际测量时,利用标准样品的基准谱线来校正
被测谱线的结合能,称为内标法:
Eb(测)=Ek(标)+Eb(标)-Ek(测)
(其中, Ek(标)和Eb(标)已知, Ek(测)可由谱仪测出)
• 化学位移:又称结合能位移,原子的内层电子结合
能随原子周围化学环境变化的现象称为化学位移。
影响化学位移的因素有: (如图所示)。
X射线光电子能谱的原理及应用XPS
X射线光电子能谱的原理及应用(XPS)(一)X光电子能谱分析的基本原理X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。
该过程可用下式表示:hn=Ek+Eb+Er 其中: hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。
其中Er很小,可以忽略。
对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,式(103)又可表示为:hn=Ek+Eb+Φ (10.4)Eb= hn- Ek-Φ (10.5)仪器材料的功函数Φ是一个定值,约为4eV,入射X光子能量已知,这样,如果测出电子的动能Ek,便可得到固体样品电子的结合能。
各种原子,分子的轨道电子结合能是一定的。
因此,通过对样品产生的光子能量的测定,就可以了解样品中元素的组成。
元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小可以确定元素所处的状态。
例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。
因此,利用化学位移值可以分析元素的化合价和存在形式。
(二)电子能谱法的特点( 1 )可以分析除H 和He 以外的所有元素;可以直接测定来自样品单个能级光电发射电子的能量分布,且直接得到电子能级结构的信息。
( 2 )从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称作“原子指纹”。
它提供有关化学键方面的信息,即直接测量价层电子及内层电子轨道能级。
而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定性的标识性强。
( 3 )是一种无损分析。
( 4 )是一种高灵敏超微量表面分析技术。
X射线光电子能谱分析法
第十四页,编辑于星期六:十三点 五十三分。
* 第十五页,编辑于星期六:十三点 五十三分。
*
第十六页,编辑于星期六:十三点 五十三分。
电子结合能
* 第十七页,编辑于星期六:十三点 五十三分。
X射线光电子能谱分析法
X-ray photoelectron spectroscopy
光电子的能量分布曲线:采用特定元素某 一X光谱线作为入射光,实验测定的待测元素激发
终态效应
弛豫是一种终态效应。
多重分裂电子的震激(Shake up)和震离(Shake off)等激
发状态。
在XPS谱图上表现为除正常光电子主峰外还会出现若 干伴峰,可由此判断各种可能的相互作用获得体系的 结构信息。
*
第九页,编辑于星期六:十三点 五十三分。
多重分裂(静电分裂)
当原子或自由离子的价壳层拥有未配对的 自旋电子,那么光致电离所形成的内壳层 空位便将同价轨道未配对自旋电子发生耦 合,使体系出现不只一个终态,相应于每 个终态在XPS谱图上将有一条谱线对应这 就是多重分裂
*
第十三页,编辑于星期六:十三点 五十三分。
Cu震激特征
Cu/CuO/Cu2O系列化合物用通常的结合能 位移或俄歇参数来鉴别是困难的,但是这 三种化合物中Cu的2p3/2和2p1/2电子谱线 的震激伴峰却明显不同,其中Cu和Cu2O没 有2p3/2谱线的震激伴峰,而CuO却有明显 的震激伴峰。
震激特征在与顺磁物质关联的过渡金属氧 化物中是十分普遍的,有机物中碳的震激 峰与芳香或不饱和结构相关。
正因如此不少元素的原子在它们处在不同化合物分 子中的X-射线内层光电子的结合能值并没有什么区别。
如果观测它们的价电子谱,有可能根据价电子线的结 合能的变化和价电子线的峰形变化的规律,来判断该 元素在不同化合物分子中的化学状态及有关的分子结 构。
X射线光电子能谱分析分析
一、X射线光电子能谱的测量原理X射线光电子能谱(X-ray photoelectron Spectroscopy,简称XPS)也就是化学分析用电子能谱(Electron Spectroscopy for Chemical Analysis,简称ESCA),它是目前最广泛应用的表面分析方法之一,主要用于成分和化学态的分析。
用单色的X射线照射样品,具有一定能量的入射光子同样品原子相互作用,光致电离产生了光电子,这些光电子从产生之处输运到表面,然后克服逸出功而发射,这就是X射线光电子发射的三步过程。
用能量分析器分析光电子的动能,得到的就是x射线光电子能谱。
根据测得的光电子动能可以确定表面存在什么元素以及该元素原子所处的化学状态,这就是x射线光电子谱的定性分析。
根据具有某种能量的光电子数量,便可知道某种元素在表面的含量,这就是x射线光电子谱的定量分析。
为什么得到的是表面信息呢?这是因为:光电子发射过程的后两步,与俄歇电子从产生处输运到表面然后克服逸出功而发射出去的过程是完全一样的,只有深度极浅范围内产生的光电子,才能够能量无损地输运到表面,用来进行分析的光电子能量范围与俄歇电子能量范围大致相同。
所以和俄歇谱一样,从X射线光电子谱得到的也是表面的信息,信息深度与俄歇谱相同。
如果用离子束溅射剥蚀表面,用X射线光电子谱进行分析,两者交替进行,还可得到元素及其化学状态的深度分布,这就是深度剖面分析。
X射线电子能谱仪、俄歇谱仪和二次离子谱仪是三种最重要的表面成分分析仪器。
X射线光电子能谱仪的最大特色是可以获得丰富的化学信息,三者相比,它对样品的损伤是最轻微的,定量也是最好的。
它的缺点是由于X射线不易聚焦,因而照射面积大,不适于微区分析。
不过近年来这方面已取得一定进展,分析者已可用约100 μm直径的小面积进行分析。
最近英国VG公司制成可成像的X射线光电子谱仪,称为“ESCASCOPE”,除了可以得到ES-CA谱外,还可得到ESCA像,其空间分辨率可达到10μm,被认为是表面分析技术的一项重要突破。
X射线光谱分析方法介绍
2.X射线光谱
(1) 连续X射线光谱
电子→靶原子,产生连 续的电磁辐射,连续的X射 线光谱;成因:
大量电子的能量转换是 一个随机过程,多次碰撞;
阴极发射电子方向差异 ,能量损失随机;
Ee
eU
1 2
m0
Im K Z i U 2
10:27:28
(2)X射线特征光谱
特征光谱产生: 碰撞→跃迁↑(高) →空穴→跃迁↓(低)
multiple crystal powder diffraction analysis 三、单晶衍射分析法
single crystal diffraction analysis
10:27:28
一、 晶体特性
property of crystal
晶体:原子、离子、分子在空间周期性排列而构成的固态物 ,三维空间点阵结构;点阵 + 结构基元; 晶胞:晶体中空间点阵的单位,晶体结构的最小单位; 晶胞参数:三个向量a、b、c,及夹角、、 ; r,s,t;1/r,1/s,1/t:晶面在三个晶轴上的截数和倒易截数 1/r∶1/s∶1/t=h∶k∶l;晶面(110)与C 轴平行;
固体试样时,采用 m = l /
( :密度);
10:27:28
X射线的吸收
X射线的强度衰减:吸收+散射;
总的质量衰减系数m : m = m + m
m :质量吸收系数; m :质量散射系数;
m
kZ 43
NA Ar
NA:Avogadro常数;Ar :相对原子质量;k:随吸收限
改变的常数;Z:吸收元素的原子序数; :波长;
利用X射线使气体电离的作 用,辐射能转化电能;
闪烁计数器:
(完整版)X射线光电子能谱分析(XPS)
第18章X射线光电子能谱分析18.1 引言固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。
目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。
AES 分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。
SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。
但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。
本章主要介绍X射线光电子能谱的实验方法。
X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。
该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。
由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。
三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。
XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。
XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。
目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。
在XPS谱仪技术发展方面也取得了巨大的进展。
在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6μm大小, 使得XPS在微区分析上的应用得到了大幅度的加强。
图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。
在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。
X射线光电子能谱分析
Eb
0k时固体能带中充 满电子旳最高能级
hv Ek Eb 功函数
为预防样品上正电荷积累,固体样品必须保持和谱仪旳良 好电接触,两者费米能级一致。样品与仪器触电电位差。
实际测到旳电子动能为:
Ek' Ek (sp s ) hv Eb sp
Eb hv Ek' sp
仪器功函数
hv Ek Eb 功函数来自D.多重分裂:原子电离后空位与自旋电子发生偶合,得 到不同终态,相应每一种终态,在图谱上将有一条谱 线。
配位体相同步,多重分裂与未成对电子数正有关。多重 分裂谱线能量差与配位体离子电负性有关,能够用于 判断价态。
E.能量损失谱线:光电子穿过样品表面时, 同原子间发生非弹性碰撞、损失能量后 在图谱上出现旳伴峰。
§7.1 电子能谱旳基本原理
基本原理就是光电效应。 在高于某特定频率旳电磁波照射下,物质内部旳电 子会被光子激发出来即光生电。
自由原子旳光电效应能量关系
hv Ek Eb
对孤立原子或分子, Eb 就是把
电子从所在轨道移到真空需旳 能量,是以真空能级为能量零 点旳。
对固体样品,必须考虑晶体势场和表面势场对光电子 旳束缚作用,一般选用费米(Fermi)能级为参照点。
第七章 电子能谱
X-射线光电子能谱仪,是一种表面分析技术, 主要用来表征材料表面元素及其化学状态。 基本原理:使用X-射线与样品表面相互作用, 利用光电效应,激发样品表面发射光电子, 利用能量分析器,测量光电子动能, 根据BE.bE=hhvv-KE.Ek' -W.spF进而得到激发电子旳结合能 。
我们就是为了得到样品旳结合能!
能量分析器
电子能量分析器其作用是探测样品发射出来旳不同 能量电子旳相对强度。它必须在高真空条件下工作 即压力要低于10-3帕,以便尽量降低电子与分析器 中残余气体分子碰撞旳几率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50000 40000 30000 20000 10000 0 292 290 288 286 COOH C=O C-OH
Intensity /Counts
50000 40000 30000 20000 10000 COOH C=O C-OH C-C
35000 30000 25000 20000 15000 10000 5000 0 292 290 288 286 284 282 COOH C=O
合物体系中失活前后谱图变
化对比。
07:28:23
固体化合物表面分析
三种铑催化
剂X射线电子能
谱对比分析;
07:28:23
纳米碳管氧化
80000 70000 60000
Intensity /Counts
A
90000 80000 70000
Intensity /Counts
100000
B C-C
Intensity /Counts
07:28:23
[4+2]
[2+2]
07:28:23
吡啶在单晶硅表面的吸附:B酸和L酸测定 样品处于-90oC,吸附吡啶后用XPS记录N 1s 峰。有二个, 彼此相隔2eV,均属氧化态。Eb 高的与B酸有关,Eb 低的与L 酸有关
B酸意味着表面有质子存在,吡啶中的N接受质子而氧化。这 样吡啶分子吸附在B位时带正电
07:28:22
07:28:22
07:28:22
电子结合能
07:28:22
X射线光电子能谱分析法
X-ray photoelectron spectroscopy
光电子的能量分布曲线:采用特定元
素某一X光谱线作为入射光,实验测定的待 测元素激发出一系列具有不同结合能的电 子能谱图,即元素的特征谱峰群; 谱峰:不同轨道上电子的结合能或电
3. 电负性对化学位移的影响
三氟乙酸乙酯 电负性:F>O>C>H 4个碳元素所处化学环境不同;
07:28:22
重要数据库 NIST X-ray Photoelectron Spectroscopy Database
NIST X-ray Photoelectron Spectroscopy Database ,Data compiled and evaluated by Charles D. Wagner, Alexander V. Naumkin, Anna Kraut-Vass, Juanita W. Allison, Cedric J. Powell, and John R. Rumble, Jr. /xps/main_search_me nu.aspx
07:28:22
电子能谱法:光致电离; A + h A+* + e
紫外(真空)光电子能谱 X射线光电子能谱 Auger电子能谱
h
h
h
单色X射线也可激发多种核内电子或不同能级上的电子, 产生由一系列峰组成的电子能谱图,每个峰对应于一个原子 能级(s、p、d、f);
07:28:22
电离过程——一次过程 弛豫过程——二次过程
07:28:22
初态效应与终态效应
通常认为初态效应是造成化学位移的原因,所以 随着元素形式氧化态的增加,从元素中出射的光 电子的EB亦会增加。对大多数样品而言,∆EB仅 以初态效应项表示是足够的。 终态效应
弛豫是一种终态效应。 多重分裂电子的震激(Shake up)和震离(Shake off)等 激发状态。 在XPS谱图上表现为除正常光电子主峰外还会出现若 干伴峰,可由此判断各种可能的相互作用获得体系的 结构信息。
Cd 3d
07:28:22
N 1s
07:28:22
多电子激发
在光电发射中由于内壳层形成空位,原子中心电 位发生突然变化将引起价壳层电子的跃迁。 如果价壳层电子跃迁到更高能级的束缚态,则称 之为电子的震激(Shake up)。 如果价壳层电子跃迁到非束缚的连续状态成了自 由电子,则称此过程为电子的震离(Shake off)。 震激和震离的特点是它们均属单极激发和电离电 子激发过程只有主量子数改变跃迁发生只可能是 ns→n’s, np→n’p 。电子的角量子数和自旋量子 数均不变。
07:28:22
07:28:22
4. X射线光电子能谱分析法的应用
(1) 元素定性分析 各元素的电子结合 能有固定值,一次扫描 后,查对谱峰,确定所
含元素(H、He除外);
(2) 元素定量分析 一定条件下,峰强 度与含量成正比,精密 度1-2%; 产物有氧化现象
07:28:22
特殊样品的元素分析
电子结合能大(动能小);
峰强度比符合碳数比。
07:28:23
非晶态NiB、NiP合金中的电荷转移
B1S
187.1eV 188.2eV
纯B
Ni-B
B 1s正位移 B给Ni电子
Ni-B/SiO2
180 185 190 195 200 205
电子 结 合 能 (eV)
P2P
130.0 eV 纯P
Ni-P
物理位移:固体的热效应与表面荷电的作用引起的谱峰位移 化学位移:原子所处化学环境的变化引起的谱峰位移 产生原因: (1)价态改变:内层电子受核电荷的库仑力和荷外其他电子 的屏蔽作用;电子结合能位移Eb; 结合能随氧化态增高而增加, 化学位移增大;为什么? (2)电负性:三氟乙酸乙酯中碳 元素的
07:28:22
自由电子产生过程的能量关系: h = Eb+ Ek+ Er ≈ Eb+ Ek Eb:电子电离能(结合能); Ek:电子的动能; Er :反冲动能 光电离几率(光电离截面):一定能量的光子在与原子作用 时,从某个能级激发出一个电子的几率; 与电子壳层平均半径,入射光子能量,原子序数有关; 轻原子: 1s / 2 s ≈20 重原子: 同壳层 随原子序数的增加而增大; 电子逃逸深度:逸出电子的非弹性散射平均自由程; :金属0.5~2nm;氧化物1.5~4nm ;有机和高分子4~10nm ; 通常:取样深度 d = 3 ;表面无损分析技术;
L酸意味着表面存在接受电子对的部位,吡啶中的N有一对自 由电子,可与L酸共价或配位,这样吡啶中的N的外层电子总 的说远离了些,N也氧化了。但不及B酸位上接受质子而氧化 的强烈
功函数
为防止样品上正电荷积累,固体样品必须保持 和谱仪的良好电接触,两者费米能级一致。
实际测到的电子动能为:
Ek' Ek (sp s ) hv Eb sp
Eb hv E sp
' k
仪器功函数
hv Ek Eb
07:28:22
功函数
光电离几率和电子逃逸深度
X射线光电子能谱分析法
X-ray electron spectroscopy
07:28:22
电子能谱的基本原理
基本原理就是光电效应。
能量关系可表示:
hv Eb Ek Er
电子结合能
电子动能 原子的反冲能量 1 *2 E r M ma
2
忽略 Er (<0.1eV)得
hv Ek Eb
07:2后状态的能量差:
Eb= E2 – E1
气态试样: Eb=真空能级 – 电子能级差 固态试样:(选Fermi能级为参比能级)
Eb= h –sa – Ek' ≈ h –sp – Ek
Fermi能级:0K固体能带中充满电子的最高能级; 功函数:电子由Fermi能级自由能级的能量; 每台仪器的sp固定,与试样无关,约3 ~ 4eV;Ek可由实 验测出,故计算出Eb 后确定试样元素,定性基础。
07:28:22
光电子谱线
07:28:22
价电子结构
各原子内层电子几乎仍保持在它们原来的原子轨 道上运行,只有价电子才形成有效的分子轨道而 属于整个分子。 正因如此不少元素的原子在它们处在不同化合物 分子中的X-射线内层光电子的结合能值并没有什 么区别。 如果观测它们的价电子谱,有可能根据价电子线 的结合能的变化和价电子线的峰形变化的规律, 来判断该元素在不同化合物分子中的化学状态及 有关的分子结构。
P 2p无位移 无电子转移
145
Ni-P/SiO2
125
130
135
140
电子结合能 (eV)
07:28:23
表面吸附状态
呋喃在Ru(001)单晶表面的吸附态
07:28:23
呋喃在Si(100)单晶上的化学吸附态
O
(a) C 1 s and (b) O 1s spectra obtained from the furan chemisorbed on Si(100). These spectra were measured at the photon energy of 330 and650 eV. The model is illustrated along with the adsorbed furan. The largest spheres are Si, the middle-size spheres are C (block sphere), and the smallest are O (gray sphere).
07:28:22
多重分裂(静电分裂)
当原子或自由离子的价壳层拥有未配对的 自旋电子,那么光致电离所形成的内壳层 空位便将同价轨道未配对自旋电子发生耦 合,使体系出现不只一个终态,相应于每 个终态在XPS谱图上将有一条谱线对应这 就是多重分裂 多重分裂现象可以研究分子中未成对电子 的存在情况。
07:28:22
90000 80000 70000 60000 50000 40000 30000 20000