图形的平移,对称与旋转的技巧及练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,
P′Q′=P′H,
∴AP′+P′Q′=AP′+P′H=AH,
根据垂线段最短可知,PA+PQ的最小值是线段AH的长,
∵AB=4,∠AHB=90°,∠ABH=45°,
∴AH=BH=2 .
故选:D.
【点睛】
考查了轴对称-最短路线问题,解题关键是从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.
故选:B
【点睛】
本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.
10.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据轴对称图形的概念对各选项分析判断即可得解.
【详解】
A、不是轴对称图形,故本选项错误;
图形的平移,对称与旋转的技巧及练习题
一、选择题
1.如图,将 绕点 逆时针旋转 得到 点 的对应点分别为 则 的长为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD.
【详解】
由旋转得到AD=AB=1,∠BAD=90°,
∴BD= = = ,
∴四边形ABFD的周长等于9+1+1=11.
故答案为C.
【点睛】
本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.
14.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
18.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是()
A.21:10B.10:21
C.10:51D.12:01
【答案】C
【解析】
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,
【解析】A.等腰三角形只有一条对称轴;
B.角也只有一条对称轴,是角平分线所在的直线;
C.等边三角形有三条对称轴;
D.锐角三角形的对称轴数量不确定.
故选:C
12.下列图案中既是轴对称又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念判断即可.
【详解】
15.如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为 ,则点 的坐标为()
A. B. C. D.
【答案】D
【解析】
试题分析:根据题意,点A、A′关于点C对称,设点A的坐标是(x,y),则 ,解得 ,∴点A的坐标是 .故选D.
考点:坐标与图形变化-旋转.
16.下列所给图形是中心对称图形但不是轴对称图形的是( )
∴OB'= =1= AB',
∴∠OAB'=30°,
∴∠C'AD=∠AB'O=60°,
在△AC'D和△AB'O中, ,
∴△AC'D≌△B'AO(AAS),
∴AD=OB'=1,C'D=AO= ,
∴OD=AO﹣AD= ﹣1,
∴点C′的坐标为(﹣ , ﹣1);
故选:D.
【点睛】
本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.
【详解】
解:如图,连结PQ,
∵△ABC为等边三角形,
∴∠BAC=60°,AB=AC,
∵线段AP绕点A顺时针旋转60°得到线段AQ,
∴AP=PQ=6,∠PAQ=60°,
∴△APQ为等边三角形,
∴PQ=AP=6,
∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,
∴∠CAP=∠BAQ,
∵在△APC和△ABQ中,AC=AB,∠CAP=∠BAQ,AP=AQ
故选:B.
【点睛】
此题考查了旋转的性质,勾股定理,找到直角是解题的关键.
2.如图, 是等边三角形 内一点,将线段 绕点 顺时针旋转 得到线段 ,连接 .若 , , ,则四边形 的面积为()
A. B. C. D.
【答案】A
【解析】
【分析】
连结PQ,先根据等边三角形的性质和旋转的性质证明△APQ为等边三角形,则P Q=AP=6,再证明△APC≌△AQB,可得PC=QB=10,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式求出面积,最后利用S四边形APBQ=S△BPQ+S△APQ即可解答.
∴EG=AD=4.
故选B.
5.已知点P(a+1, )关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( )
A. B.
C. D.
【答案】C
【解析】
试题分析:∵P( , )关于原点对称的点在第四象限,∴P点在第二象限,∴ , ,解得: ,则a的取值范围在数轴上表示正确的是 .故选C.
考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.
8.如图,在Rt△ABC中,∠CAB=90°,AB=AC,点A在y轴上,BC∥x轴,点B .将△ABC绕点A顺时针旋转的△AB′C′,当点B′落在x轴的正半轴上时,点C′的坐标为( )
A.(﹣ , ﹣1)B.(﹣ , ﹣1)
C.(﹣ , +1)D.(﹣ , ﹣1)
【答案】D
【解析】
【分析】
作C'D⊥OA于D,设AO交BC于E,由等腰直角三角形的性质得出∠B=45°,AE= BC= ,BC=2 = AB,得出AB=2,OA= ,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,由勾股定理得出OB'= =1= AB',证出∠OAB'=30°,得出∠C'AD=∠AB'O=60°,证明△AC'D≌△B'AO得出AD=OB'=1,C'D=AO= ,求出OD=AO﹣AD= ﹣1,即可得出答案.
【详解】
解:作C'D⊥OA于D,设AO交BC于E,如图所示:
则∠C'DA=90°,
∵∠CAB=90°,AB=AC,
∴△ABC是等腰直角三角形,
∴∠B=45°,
∵BC∥x轴,点B( , ﹣ ),
∴AE= BC= ,BC=2 = AB,
∴AB=2,OA= ,
由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,
∴△APC≌△AQB,
∴PC=QB=10,
在△BPQ中,PB2=82=64,PQ2=62=36,BQ2=102=100,
∴PB2+PQ2=BQ2,
∴△PBQ为直角三角形,
∴∠BPQ=90°,
∴S四边形APBQ=S△BPQ+S△APQ= ×6×8+ ×62=24+9
故答案为A..
【点睛】
本题考查了旋转的性质和勾股定理的逆定理,掌握旋转的定义、旋转角以及旋转前、后的图形全等是解答本题的关键.
7.如图,在 中, , , ,将 绕一逆时针方向旋转 得到 ,点 经过的路径为弧 ,则图中阴影部分的面积为( )
A. B. C. D.
【答案】D
【解析】
【分析】
由旋转的性质可得△ACB≌△AED,∠DAB=40°,可得AD=AB=5,S△ACB=S△AED,根据图形可得S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,再根据扇形面积公式可求阴影部分面积.
A.3B.4C.5D.6
【答案】B
【解析】
试题分析:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG的长就是EP+FP的最小值,据此即可求解.
解:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.
∵AE=DG,且AE∥DG,
∴四边形ADGE是平行四边形,
故选C.
3.下列所述图形中,是轴对称图形但不是中心对称图形的是
A.圆B.菱形C.平行四边形D.等腰三角形
【答案】D
【解析】
【分析】
根据轴对称图形与中心对称图形的概念进行判断即可.
【详解】
A、是轴对称图形,也是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项错误;
C、不是轴对称图形,是中心对称图形,故此选项错误;
13.如图,将 沿 方向平移1个单位长度后得到 ,若 的周长等于9,则四边形 的周长等于()
A.13B.12C.11D.10
【答案】C
【解析】
【分析】
先利用平移的性质求出AD、CF,进而完成解答.
【详解】
解:将△ABC沿BC方向平移1个单位得到△DEF,
∴AD=CF=1,AC=DF,
又∵△ABC的周长等于9,
【详解】
A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;
B、不是轴对称图形,是中心对称的图形,故本选项不符合题意;
C、既是轴对称图形,又是中心对称的图形,故本选项符合题意;
D、是轴对称图形,不是中心对称的图形,故本选项不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
D、是轴对称图形,不是中心对称图形,故此选项正确,
故选D.
来自百度文库【点睛】
本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.
4.如图,周长为16的菱形ABCD中,点E,F分别在边AB,AD上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为( )
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、不是轴对称图形,也不是中心对称图形,故本选项错误;
C、是轴对称图形,是中心对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选C.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P,Q分别是BD,AB上的动点,则AP+PQ的最小值为()
A.4B.4 C.2D.2
【答案】D
【解析】
【分析】
作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
【详解】
作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形
③线段不是轴对称图形④矩形是轴对称图形
A.①②③④ B.①②③ C.②④ D.②③④
【答案】C
【解析】解:①叙述不清,正确的应该是“角平分线上任意一点到角的两边的距离相等”;②正确,对称轴是角平分线所在直线;③错误,线段本身也是轴对称图形,有2条对称轴;④正确,非正方形的矩形有两条对称轴,正方形有四条对称轴.故选C.
【详解】
∵将△ABC绕A逆时针方向旋转40°得到△ADE,
∴△ACB≌△AED,∠DAB=40°,
∴AD=AB=5,S△ACB=S△AED,
∵S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,
∴S阴影= = ,
故选D.
【点睛】
本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项正确.
故选:D.
【点睛】
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
11.有两条或两条以上对称轴的轴对称图形是()
A.等腰三角形B.角C.等边三角形D.锐角三角形
【答案】C
A. B. C. D.
【答案】D
【解析】
A.此图形不是中心对称图形,不是轴对称图形,故A选项错误;
B.此图形是中心对称图形,也是轴对称图形,故B选项错误;
C.此图形不是中心对称图形,是轴对称图形,故D选项错误.
D.此图形是中心对称图形,不是轴对称图形,故C选项正确;
故选D.
17.下列说法中正确的是()
9.如图, 是由 经过平移后得到的,则平移的距离不是( )
A.线段 的长度B.线段 的长度
C.线段 的长度D. 两点之向的距离
【答案】B
【解析】
【分析】
平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定
【详解】
∵△DEF是△ABC平移得到
∴A和D、B和E、C和F分别是对应点
∴平移距离为:线段AD、BE、CF的长
相关文档
最新文档