1.2充分条件与必要条件

合集下载

1.2.1 充分条件与必要条件1.2.2 充要条件课件人教新课标

1.2.1 充分条件与必要条件1.2.2 充要条件课件人教新课标
1.2 充分条件与必要条件 1.2.1 充分条件与必要条件
1.2.2 充要条件
课标要求:1.理解充分、必要、充要条件的意义.2.会判断条件与结论之间 的充分(必要、充要)性.
自主学习
知识探究
1.充分条件与必要条件 一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由 p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.
即时训练1-1:(1)(202X·山东卷)已知直线a,b分别在两个不同的平面α,β
内.则“直线a和直线b相交”是“平面α和平面β相交”的( )
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
解析:(1)若a,b相交,则α,β一定相交;若α,β相交,则不能得出a,b相交.故选 A.
方法技能一般地,证明“p成立的充要条件为q”时,在证充分性时应以q为 “已知条件”,p是该步中要证明的“结论”,即q⇒p;证明必要性时则是 以p为“已知条件”,q为该步中要证明的“结论”,即p⇒q.
即时训练 2-1:(1)已知 x,y 都是非零实数,且 x>y,求证: 1 < 1 的充要条件是 xy>0; xy
1b
所以“ab=1”是“l1∥l2”的必要不充分条件,③正确.
④中,y=x2+mx+m+3有两个不同零点⇔Δ=m2-4(m+3)>0⇔m<-2或 m>6. 所以是充要条件,④正确. 答案:(3)①③④
方法技能 充分、必要、充要条件的判断方法 若 p⇒ q,q p,则 p 是 q 的充分不必要条件; 若 p q,q⇒ p,则 p 是 q 的必要不充分条件; 若 p⇒ q,q⇒ p,则 p 是 q 的充要条件; 若 p q,q p,则 p 是 q 的既不充分也不必要条件.

高中数学 第一章 常用逻辑用语 1.2 充分条件与必要条件 1.2.1 充分条件与必要条件学案(含解

高中数学 第一章 常用逻辑用语 1.2 充分条件与必要条件 1.2.1 充分条件与必要条件学案(含解

§1.2充分条件与必要条件1.2.1 充分条件与必要条件学习目标 1.理解充分条件、必要条件的意义.2.会求(判定)某些简单命题的条件关系.3.通过对充分条件、必要条件的概念的理解和运用,培养分析、判断和归纳的逻辑思维能力.知识点一充分条件与必要条件命题真假若“p,则q”为真命题“若p,则q”为假命题推出关系p⇒q p⇏q条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件知识点二充分条件、必要条件与集合的关系思考“x<2”是“x<3”的__________条件,“x<3”是“x<2”的__________条件.答案充分必要梳理A={x|x满足条件p},B={x|x满足条件q}A⊆Bp是q的充分条件q是p的必要条件A⊈Bp是q的不充分条件q是p的不必要条件B⊆Aq是p的充分条件p是q的必要条件B⊈Aq是p的不充分条件p是q的不必要条件特别提醒:(1)p⇒q,q⇏p,p是q的充分不必要条件;(2)p⇏q,q⇒p,p是q的必要不充分条件;(3)p⇏q,q⇏p,p是q的既不充分也不必要条件.1.若p是q的充分条件,则p是唯一的.( ×)2.若q是p的必要条件,则p是q的充分条件( √)3.“若綈p,则綈q”是真命题,则p是q的必要条件.( √) 4.若q不是p的必要条件,则“p⇏q”成立.( √)类型一 充分条件与必要条件的概念例1 (1)判断下列说法中,p 是q 的充分条件的是____________________________________. ①p :“x =1”,q :“x 2-2x +1=0”;②已知α,β是不同的两个平面,直线a ⊂α,直线b ⊂β,p :a 与b 无公共点,q :α∥β; ③设a ,b 是实数,p :“a +b >0”,q :“ab >0”. 考点 充分条件、必要条件的概念及判断 题点 充分条件的判断 答案 ①解析 对①,p ⇒q ;②p ⇏q ;③p ⇏q ,故填①. (2)下列各题中,p 是q 的必要条件的是________. ①p :x 2>2016,q :x 2>2015;②p :ax 2+2ax +1>0的解集是实数集R ,q :0<a <1; ③已知a ,b 为正实数,p :a >b >1,q :log 2a >log 2b >0. 考点 充分条件、必要条件的概念及判断 题点 必要条件的判断 答案 ②③解析 ①q ⇏p ;②p :0≤a <1,故q ⇒p ; ③log 2a >log 2b >0⇒a >b >1, ∴q ⇒p ,故填②③. 引申探究例1(1)中p 是q 的必要条件的是________. 答案 ①②解析 ①x 2-2x +1=0⇒x =1,即q ⇒p ;②⎩⎪⎨⎪⎧α∥β,a ⊂α,b ⊂β⇒a 与b 无公共点,即q ⇒p ;③q ⇏p .故填①②.反思与感悟 充分条件、必要条件的两种判断方法 (1)定义法①确定谁是条件,谁是结论;②尝试从条件推结论,若条件能推出结论,则条件为结论的充分条件,否则就不是充分条件;③尝试从结论推条件,若结论能推出条件,则条件为结论的必要条件,否则就不是必要条件.(2)命题判断法①如果命题:“若p,则q”为真命题,那么p是q的充分条件,同时q是p的必要条件;②如果命题:“若p,则q”为假命题,那么p不是q的充分条件,同时q也不是p的必要条件.跟踪训练1 (1)a>b的一个充分不必要条件是( )A.a2>b2B.|a|>|b|C.1a<1bD.a-b>1考点充分条件、必要条件和充要条件的综合应用题点充分不必要条件的判定答案 D解析a-b>1⇒a-b>0而a-b>0⇏a-b>1,故选D.(2)如果命题“若p,则q”的否命题是真命题,而它的逆否命题是假命题,则p是q的________条件.(填“充分不必要”或“必要不充分”)考点充分条件、必要条件和充要条件的综合应用题点必要不充分条件的判定答案必要不充分解析由逆命题与否命题是等价命题知q⇒p,由原命题与逆否命题的等价性得p⇏q,故p是q的必要不充分条件.类型二充分条件与必要条件的应用例2 已知p:实数x满足x2-4ax+3a2<0,其中a<0;q:实数x满足x2-x-6≤0.若綈p 是綈q的必要条件,求实数a的取值范围.考点充分条件、必要条件的概念及判断题点由充分条件、必要条件求参数的范围解由x2-4ax+3a2<0且a<0,得3a<x<a,所以p:3a<x<a,即集合A={x|3a<x<a}.由x2-x-6≤0,得-2≤x≤3,所以q:-2≤x≤3,即集合B={x|-2≤x≤3}.因为綈q ⇒綈p ,所以p ⇒q ,所以A ⊆B , 所以⎩⎪⎨⎪⎧3a ≥-2,a ≤3,a <0,解得-23≤a <0,所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫-23,0. 引申探究本例中条件“a <0”改为“a >0”,若綈p 是綈q 的充分条件,求实数a 的取值范围. 解 由x 2-4ax +3a 2<0且a >0,得a <x <3a , 所以p :a <x <3a , 即集合A ={x |a <x <3a }. 由x 2-x -6≤0,得-2≤x ≤3, 所以q :-2≤x ≤3, 即集合B ={x |-2≤x ≤3}.因为綈p ⇒綈q ,所以q ⇒p ,所以B ⊆A , 所以⎩⎪⎨⎪⎧3a >3,a <-2,a >0,解得a ∈∅.反思与感悟 (1)设集合A ={x |x 满足p },B ={x |x 满足q },则p ⇒q 可得A ⊆B ;q ⇒p 可得B ⊆A ;p ⇔q 可得A =B ,若p 是q 的充分不必要条件,则A B .(2)利用充分条件、必要条件求参数的取值范围的关键就是找出集合间的包含关系,要注意范围的临界值.跟踪训练2 已知p :x <-2或x >10,q :x 2-2x +1-a 2>0,若p 是q 的必要条件,求负实数a 的取值范围.考点 充分条件、必要条件的概念及判断 题点 由充分条件、必要条件求参数的范围 解 ∵a <0,解不等式得q :x <1+a 或x >1-a , ∵p 是q 的必要条件,∴q ⇒p , ∴⎩⎪⎨⎪⎧1+a ≤-2,1-a ≥10,a <0,解得a ≤-9.故负实数a的取值范围是(-∞,-9].1.“x>0”是“x≠0”的( )A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件考点充分条件、必要条件和充要条件的综合应用题点充分不必要条件的判定答案 A解析∵x>0⇒x≠0,而x≠0⇏x>0,∴x>0是x≠0的充分不必要条件.2.设向量a=(2,x-1),b=(x+1,4),则“x=3”是“a∥b”的( ) A.充分条件B.必要条件C.既不是充分条件,又不是必要条件D.无法判断考点充分条件、必要条件的概念及判断题点充分条件的判断答案 A解析∵a∥b,∴(x-1)(x+1)-8=0,解得x=±3,∴x=3是a∥b的充分条件.3.若a∈R,则“a=1”是“|a|=1”的( )A.充分条件B.必要条件C.既不是充分条件也不是必要条件D.无法判断考点充分条件、必要条件的概念及判断题点充分条件的判断答案 A解析当a=1时,|a|=1成立,但|a|=1时,a=±1,所以a=1不一定成立.∴“a =1”是“|a |=1”的充分条件.4.从“充分条件”“必要条件”中选出适当的一种填空: (1)“ax 2+bx +c =0(a ≠0)有实根”是“ac <0”的________. (2)“△ABC ≌△A ′B ′C ′”是“△ABC ∽△A ′B ′C ′”的________. 考点 充分条件、必要条件的概念及判断 题点 充分条件的判断答案 (1)必要条件 (2)充分条件5.是否存在实数p ,使得x 2-x -2>0的一个充分条件是4x +p <0,若存在,求出p 的取值范围,否则,说明理由.考点 充分条件、必要条件的概念及判断 题点 由充分条件、必要条件求参数的范围 解 由x 2-x -2>0,解得x >2或x <-1. 令A ={x |x >2或x <-1},由4x +p <0,得B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-p4. 由题意得B ⊆A ,即-p4≤-1,即p ≥4,此时x <-p4≤-1⇒x 2-x -2>0,∴当p ≥4时,“4x +p <0”是“x 2-x -2>0”的一个充分条件.1.充分条件、必要条件的判断方法 (1)定义法:直接利用定义进行判断.(2)等价法:“p ⇔q ”表示p 等价于q ,等价命题可以进行转换,当我们要证明p 成立时,就可以去证明q 成立.(3)利用集合间的包含关系进行判断:如果条件p 和结论q 相应的集合分别为A 和B ,那么若A ⊆B ,则p 是q 的充分条件;若B ⊆A ,则p 是q 的必要条件;若A =B ,则p 既是q 的充分条件又是q 的必要条件.2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.一、选择题1.“x为无理数”是“x2为无理数”的( )A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件考点充分条件、必要条件和充要条件的综合应用题点必要不充分条件的判定答案 B解析当x2为无理数时,x为无理数;当x为无理数时,x2不一定为无理数.2.设a,b∈R,则“a+b>2”是“a>1且b>1”的( )A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件考点充分条件、必要条件和充要条件的综合应用题点必要不充分条件的判定答案 B3.“x>0”是“x2+x>0”的( )A.充分不必要条件B.必要不充分条件C.必要条件D.既不充分也不必要条件考点充分条件、必要条件和充要条件的综合应用题点充分不必要条件的判定答案 A解析由x2+x>0⇔x<-1或x>0,知A符合要求.4.“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的( )A.充分不必要条件B.必要不充分条件C.必要条件D.既不充分也不必要条件考点充分条件、必要条件和充要条件的综合应用题点充分不必要条件的判定答案 A解析k=1⇒圆心到直线x-y+k=0的距离d=12<1,即相交,而直线x-y+k=0与圆x2+y2=1相交D⇏k=1,故选A.5.设x∈R,则x>π的一个必要不充分条件是( )A.x>4 B.x<4C.x>3 D.x<3考点充分条件、必要条件和充要条件的综合应用题点必要不充分条件的判定答案 C6.已知命题“若p,则q”,假设其逆命题为真,则p是q的( )A.充分条件B.必要条件C.充分不必要条件D.既不充分也不必要条件考点充分条件、必要条件的概念及判断题点必要条件的判断答案 B解析原命题的逆命题:“若q,则p”,它是真命题,即q⇒p,所以p是q的必要条件.7.在△ABC中,若p:A=60°,q:sin A=32,则p是q的( )A.充分不必要条件B.必要不充分条件C.必要条件D.既不充分也不必要条件考点充分条件、必要条件和充要条件的综合应用题点充分不必要条件的判定答案 A解析因为sin 60°=32,故p⇒q,但sin A=32时,A=60°或120°.8.给出三个条件:①xt2>yt2;②xt>yt;③x2>y2.其中能成为x>y的充分条件的是( ) A.①②③B.②③C.③D.①考点充分条件、必要条件的概念及判断题点充分条件的判断答案 D解析 ①由xt 2>yt 2可知t 2>0,所以x >y ,故①对; ②当t >0时,则x >y ,当t <0时,则x <y ,故②错; ③由x 2>y 2,得x >y 或x <y ,故③错.9.集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +1<0,B ={x |-a <x -b <a },若“a =1”是“A ∩B ≠∅”的充分条件,则实数b 的取值范围是( ) A .[-2,0) B .(0,2] C .(-2,2)D .[-2,2]考点 充分条件、必要条件的概念及判断 题点 由充分条件、必要条件求参数的范围 答案 C解析 A ={x |(x +1)(x -1)<0}={x |-1<x <1},B ={x |b -a <x <b +a },因为a =1,所以B ={x |b -1<x <b +1}, 若A ∩B =∅,则b +1≤-1或b -1≥1, 即b ≤-2或b ≥2, 所以A ∩B ≠∅时,-2<b <2. 二、填空题10.设A ,B 是非空集合,则“A ∩B =A ”是“A =B ”的______条件.(填“充分”“必要”) 考点 充分条件、必要条件的概念及判断 题点 必要条件的判断 答案 必要解析 由A =B ⇒A ∩B =A ,A ∩B =A ⇏A =B , 可知“A ∩B =A ”是“A =B ”的必要条件. 11.下列说法正确的是________.(填序号) ①“x >0”是“x >1”的必要条件;②已知向量m ,n ,则“m ∥n ”是“m =n ”的充分条件; ③“a 3>b 3”是“a >b ”的必要条件;④在△ABC 中,“a >b ”不是“A >B ”的充分条件. 考点 充分条件、必要条件的概念及判断题点必要条件的判断答案①③解析①中,当x>1时,有x>0,所以①正确;②中,当m∥n时,m=n不一定成立,所以②不正确;③a>b能推出a3>b3,即a3>b3是a>b的必要条件,所以③正确;④中,当a>b时,有A>B,所以“a>b”是“A>B”的充分条件,所以④不正确.12.命题p :|x |<a (a >0),命题q :x 2-x -6<0,若p 是q 的充分条件,则a 的取值范围是________,若p 是q 的必要条件,则a 的取值范围是________.考点 充分条件、必要条件的概念及判断题点 由充分条件、必要条件求参数的范围答案 (0,2] [3,+∞)解析 p :-a <x <a ,q :-2<x <3,若p 是q 的充分条件,则(-a ,a )⊆(-2,3),∴⎩⎪⎨⎪⎧ -a ≥-2,a ≤3,∴a ≤2,又a >0,∴a 的取值范围是(0,2].若p 是q 的必要条件,则(-2,3)⊆(-a ,a ),∴⎩⎪⎨⎪⎧ -a ≤-2,a ≥3,∴a ≥3,∴a 的取值范围是[3,+∞).三、解答题13.已知p :x 2-2x -3<0,若-a <x -1<a 是p 的一个必要条件,求使a >b 恒成立的实数b 的取值范围.考点 充分条件、必要条件的概念及判断题点 由充分条件、必要条件求参数的范围解 由于p :x 2-2x -3<0⇔-1<x <3,-a <x -1<a ⇔1-a <x <1+a (a >0).依题意,得{x |-1<x <3}⊆{x |1-a <x <1+a }(a >0),所以⎩⎪⎨⎪⎧ 1-a ≤-1,1+a ≥3,a >0.解得a ≥2,则使a >b 恒成立的实数b 的取值范围是b <2,即(-∞,2).四、探究与拓展14.若“a ≥b ⇒c >d ”和“a <b ⇒e ≤f ”都是真命题,则“c ≤d ”是“e ≤f ”的________条件.(填“充分”或“必要”)考点 充分条件、必要条件的概念及判断题点 充分条件的判断答案 充分解析 因为“a ≥b ⇒c >d ”为真,所以它的逆否命题“c ≤d ⇒a <b ”也为真命题, 又“a <b ⇒e ≤f ”也是真命题,所以“c ≤d ⇒a <b ⇒e ≤f ”,故“c ≤d ”是“e ≤f ”的充分条件.15.已知命题p :对数log a (-2t 2+7t -5)(a >0,且a ≠1)有意义,q :关于实数t 的不等式t 2-(a +3)t +(a +2)<0.(1)若命题p 为真,求实数t 的取值范围;(2)若命题p 是q 的充分条件,求实数a 的取值范围. 考点 充分条件、必要条件的概念及判断题点 由充分条件、必要条件求参数的范围解 (1)因为命题p 为真,则-2t 2+7t -5>0,解得1<t <52, 所以实数t 的取值范围是⎝ ⎛⎭⎪⎫1,52. (2)因为命题p 是q 的充分条件,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫t ⎪⎪⎪ 1<t <52是不等式t 2-(a +3)t +(a +2)<0的解集的子集, 因为方程t 2-(a +3)t +(a +2)=0的两根为1和a +2,所以只需a +2≥52,解得a ≥12, 即实数a 的取值范围为⎣⎢⎡⎭⎪⎫12,+∞.。

1.2充分必要条件及充要条件

1.2充分必要条件及充要条件

4)若A=B ,则甲是乙的充分且必要条件。
作业: 1.设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是 必要而不充分 “a∈N”的____________________条件。 x>1 2.x>2的一个必要而不充分条件是_____________。 充分而不必要 条件q:“直线l的斜率为-2”,则p是q的_____________ 条件。
q : a b c 0.
练 习 2 、 在 直 角 坐 标 系 中 ,2 m 3 m , 2 m ) (
2
在 第 四 象 限 的 充 要 条 件 是 ________________.
课堂小结
(1)充分条件、必要条件、充要条件的概念. (2)判断“若p,则q”命题中,条件p是q的什么条
2
q:x
3x 4;
( 2 ) p : x 3 0, ( 3 ) p : b 4 a c 0 ( a 0 ),
2 2
q : ( x 3)( x 4 ) 0; q : ax bx c 0(a 0)有 实 根 ;
2
( 4 ) p : x 1是 方 程 a x b x c 0的 一 个 根 ,
3.条件p:“直线l在y轴上的截距是在x轴上截距的2倍”,
4.cos “ 条件。

3 2
”是“ 2 k
5 6
必要而不充分 , k Z ” 的___________
5.设p、r都是q的充分条件,s是q的充分必要条件,t是s 充分 的必要条件,t是r的充分条件,那么p是t的_______条件, 充要 r是t的________条件。
(3)有两角相等的三角形是等腰三角形。

1.2 充分条件与必要条件

1.2 充分条件与必要条件

1.2 充分条件与必要条件1. 充分条件的定义如果p成立时,q必然成立,即p⇒q,我们就说,p是q成立的充分条件.(即为使q成立,只需条件p就够了)2. 必要条件的定义如果B成立时,A必然成立,即q⇒p,我们就说,q是p成立的必要条件.(即为使q成立,就必须条件p成立)3. (1)若p⇒q,且q⇒p,则称p是q的充分必要条件,简称充要条件。

说明:①充要条件是互为的;②“p是q的充要条件”也说成“p与q等价” 、③p当且仅当q”等.p⇒q,且q⇒p,则p是q的充要条件;p⇒q,但q⇒p,则p是q的充分而不必要条件;q⇒p,但p⇒q,则p是q的必要而不充分条件;p⇒q,且q⇒p,则p是q的既不充分也不必要条件.当堂训练一、选择题1.命题:“若x2<1,则-1<x<1”的逆否命题是 ( )A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥12.已知集合M={x|0<x<1},集合N={x|-2<x<1},那么“a∈N”是“a∈M”的 ( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.“a>0”是“|a|>0”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.命题“若一个数是负数,则它的平方是正数”的逆命题是 ( ) A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”5.已知集合A={x||x|≤4,x∈R},B={x|x<a},则“A⊆B”是“a>5”的 ( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题6.设α和β为不重合的两个平面,给出下列命题: ①若α内的两条相交直线分别平行于β内的两条相交直线,则α平行于β;②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题...的序号__________(写出所有真命题的序号). 7.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:① s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不 是充分条件;④綈p 是綈s 的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必 要条件.则正确命题序号是________.8.若“x ∈[2,5]或x ∈{x |x <1或x >4}”是假命题,则x 的取值范围是________. 9.已知p :⎩⎪⎨⎪⎧x |⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +2≥0x -10≤0,q :{x |1-m ≤x ≤1+m ,m >0},若q 是p 的必要非充分条件,则实数m 的取值范围是____________. 三、解答题10.已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若綈p 是綈q 的充分而不必要条件,求实数m 的取值范围.11.求证:关于x 的一元二次不等式ax 2-ax +1>0对于一切实数x 都成立的充要条件 是0<a <4.12.已知全集U =R ,非空集合A =⎩⎨⎧⎭⎬⎫x |x -2x -3a +1<0,B =⎩⎨⎧⎭⎬⎫x |x -a 2-2x -a <0.(1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围.同步提升 一、选择题: 1. “()24x k k Z ππ=+∈”是“tan 1x =”成立的( )(A )充分不必要条件. (B )必要不充分条件.(C )充分条件. (D )既不充分也不必要条件. 2. “)(26Z k k ∈+=ππα”是“212cos =α”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.在ABC ∆中,“6A π>”是“1sin 2A >”的( ) A .充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件 4.已知a ,b ,c ,d 为实数,且c >d .则“a >b ”是“a -c >b -d ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 5.设a 、b 是非零实数,那么“a >b ”是“lg(a -b )>0”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.下面四个条件中,使a b >成立的充分而不必要的条件是( ) (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >7.已知p :关于x 的不等式x 2+2ax -a >0的解集是R ,q :-1<a <0,则p 是q 的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件 8. “|x |<2”是“260x x --<”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 9.若p :|x +1|>2,q :x >2,,则┐p 是┐q 成立的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(设集合}21|{<-=x x M ,{|(3)0}N x x x =-<,那么“M a ∈”是“N a ∈”的( ) A .必要而不充分条件 B .充分而不必要条件C .充分必要条件 D .既不充分也不必要条件11.“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.“1a =-”是“直线260a x y -+=与直线4(3)90x a y --+=互相垂直”的( ) .A 充分不必要条件 .B 必要不充分条件.C 充要条件 .D 既不充分也不必要条件13.设m ,n 是平面α内的两条不同直线,l 1,l 2是平面β内两条相交直线,则α⊥β的一个充分不必要条件是( )A .l 1⊥m ,l 1⊥nB .m ⊥l 1,m ⊥l 2C .m ⊥l 1,n ⊥l 2D .m ∥n ,l 1⊥n14.已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G , H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件15.已知,a b 为非零向量,函数()()()f x xa b a xb =+⋅-,则使()f x 的图象为关于y 轴对称的抛物线的一个必要不充分条件是( )A .a b ⊥B .//a bC .||||a b =D .a b =16.已知数列{a n },“对任意的n ∈N *,点P n (n ,a n )都在直线y =3x +2上”是“{a n }为等差数列”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 17.等比数列{a n }中,“a 1<a 3”是“a 5<a 7”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分与不必要条件18.命题甲:x )(21,x-12,22x 成等比数列;命题乙:lg x ,lg(x +1),lg(x +3)成等差数列,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 19. 设{}n a 是等比数列,则“123a <a <a ”是数列{}n a 是递增数列的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件20.若实数,a b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补,记(,),a b a b ϕ-那么(,)0a b ϕ=是a 与b 互补的( )A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件 二、填空题:1.设集合U 是全集,A ⊆U ,B ⊆U ,则“A ∪B =U ”是“B =∁U A ”的________条件. 2、设计如图所示的四个电路图,条件A :“开关S 1闭合”;条件B :“灯泡L 亮”, 图甲:A 是B 的________条件.图乙:A 是B 的________条件. 图丙:A 是B 的________条件.图丁:A 是B 的________条件.3.已知集合A ={x |x >5},集合B ={x |x >a },若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.4.已知函数lg(4)y x =-的定义域为A ,集合{|}B x x a =<,若P :“x A ∈”是Q :“x B ∈”的充分不必要条件,则实数a 的取值范围 . 三、解答题:1.已知数列{a n }的前n 项和S n =p n+q (p ≠0,且q ≠1),求数列{a n }成等比数列的充要条件.2. 已知函数12cos 32)4(sin 4)(2--+=x x x f π,且给定条件p:“24ππ≤≤x ”,(1)求)(x f 的最大值及最小值 (2)若又给条件"2|)(|:"<-m x f q 且p 是q 的充分条件,求实数m 的取值范围。

第一章 1.2 充分条件与必要条件

第一章  1.2 充分条件与必要条件

人教A版数学·选修2-1
返回导航 上页
下页
二、充分必要条件 一般地,如果既有 p⇒q,又有 q⇒p,就记作 p⇔q .此时,我们说,p 是 q 的充 分必要条件,简称 充分必要条件 .显然,如果 p 是 q 的充分必要条件,那么 q 也是 p 的充分必要条件.概括地说,如果 p⇔q,那么 p 与 q 互为充分必要条件.
答案:必要不充分
人教A版数学·选修2-1
返回导航 上页
下页
探究一 充分条件、必要条件、充分必要条件的判断 [典例 1] 指出下列各题中,p 是 q 的什么条件(在“充分不必要条件”“必要不 充分条件”“充分必要条件”“既不充分也不必要条件”中选出一种作答). (1)在△ABC 中,p:∠A>∠B,q:BC>AC; (2)对于实数 x,y,p:x+y≠8,q:x≠2 或 y≠6; (3)在△ABC 中,p:sin A>sin B,q:tan A>tan B; (4)已知 x,y∈R,p:(x-1)2+(y-2)2=0,q:(x-1)·(y-2)=0.
人教A版数学·选修2-1
返回导航 上页
下页
[解析] (1)在△ABC 中,显然有∠A>∠B⇔BC>AC,所以 p 是 q 的充分必要条件. (2)因为 x=2 且 y=6⇒x+y=8,即綈 q⇒綈 p,但綈 p 綈 q,所以 p 是 q 的充
分不必要条件. (3)取 A=120°,B=30°,p q,又取 A=30°,B=120°,q p,所以 p 是 q 的既不充分也不必要条件. (4)因为 p:A={(1,2)},q:B={(x,y)|x=1 或 y=2},A B,所以 p 是 q 的充分 不必要条件.
所以a-2≥-12, a<2

1.2命题及其关系充分条件与必要条件

1.2命题及其关系充分条件与必要条件

解答:(1)∵x2+x+1=
,∴命题为真命题.
(2)真命题.
(3)∵α=β=0时,sin(α+β)=0,sin α+sin β=0, ∴sin(α+β)=sin α+sinβ,∴命题为真命题. (4)∵x=y=10时,3x-2y=10,∴命题为真命题. (5)∵a=0,b=1时,ax+b=1≠0,∴a=0,b=1时,ax+b=0无解, ∴命题为假命题.
是s的必要条件.
现有下列命题:
①s是q的充要条件;②p是q的充分条件,而不是必要条件;③r是q的必要条
件, 而不是充分条件;④綈p是綈s的必要条件, 而不是充分条件;⑤r是s的 充分条件,而不是必要条件. 则正确命题的序号是( A.①④⑤ ) C.②③⑤ ,则s⇔q;p D.②④⑤ q;又p s,
B.①②④
1.3
逻辑联结词全称量词与存在量词
(了解逻辑联结词“或”“且”“非”的含义/理解全称量词与存在量词的意 义/能正确地对含有一个量词的命题进行否定 )
1.命题中的“且”、“或”、“非”叫做逻辑联结词. 2.用来判断复合命题的真假的真值表
真 假 假 假
3. 全称量词与存在量词 (1) 常 见的全称量词有:“任意一个”、“一切”、“每一个”、“任给”、 “所有的”等. (2)常见的存在量词有:“存在一个”、“ 至少 有一个”、“有些”、“有一 个”、“某个”、“有的”等. (3)全称量词用符号“ ∀ ”表示;存在量词用符号“∃”表示.
) B.綈p:∀x∈R,sin x≥1 D.綈p:∀x∈R,sin x>1
解析:命题p是全称命题,全称命题的否定是特称命题. 答案:C
2.设p、q是两个命题,则复合命题“p∨q为真,p∧q为假”的充要条件是(
A.p、q中至少有一个为真 C.p、q中有且只有一个为真 答案:C B.p、q中至少有一个为假 D.p为真、q为假

第1章1.2 充分条件与必要条件

第1章1.2 充分条件与必要条件
第21页
高考调研 ·新课标 ·数学选修2-1
【解析】 对于 A,x>2 且 y>3⇒x+y>5,但 x+y>5 未必能 推出 x>2 且 y>3,如 x=0 且 y=6 满足 x+y>5 但不满足 x>2,故 A 假.
对于 B,A∩B≠∅未必能推出 A B,如 A={1,2},B= {2,3},故 B 为假.
要点 3 充分必要条件 若 A⇔B,则称 A 是 B 的充要条件,同理也称 B 是 A 的充 要条件. 要点 4 “p 是 q 的充要条件”中,p 是条件,q 是2-1
1.命题 A 和 B 的条件关系通常有几类? 答:四类. (1)A 是 B 的充分不必要条件:A⇒B 且 B⇒/ A. (2)A 是 B 的必要不充分条件:A⇒/ B 且 B⇒A. (3)A 是 B 的充要条件:A⇒B 且 B⇒A. (4)A 是 B 的既不充分也不必要条件:A⇒/ B 且 B⇒/ A.
第14页
高考调研 ·新课标 ·数学选修2-1
(4)若方程 x2-x-m=0 无实根,则 Δ=1+4m<0, 即 m<-14. ∵m<-1⇒m<-14;m<-14⇒m<-1, ∴p 是 q 的充分不必要条件.
第15页
高考调研 ·新课标 ·数学选修2-1
题型二 充分、必要、充要条件及相互关系 例 2 已知 p,q 都是 r 的必要条件,s 是 r 的充分条件,q 是 s 的充分条件,那么 (1)s 是 q 的什么条件? (2)r 是 q 的什么条件? (3)p 是 q 的什么条件?
【思路分析】 本题考查充分条件、必要条件、充要条件之间 的关系.
第19页
高考调研 ·新课标 ·数学选修2-1

高中数学选修2-1课件1.2充分条件与必要条件

高中数学选修2-1课件1.2充分条件与必要条件

2:若┐A是┐B的充要条件,┐C是┐B的充要条件,则A为C的
(A )条件
A.充要 B必要不充分 C充分不必要 D不充分不必要
练习4、
1.已知P:|2x-3|>1;q:1/(x2+x-6)>0,
则┐p是┐q的( A )
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
请同学们判断下列命题的真假,并 说明条件和结论有什么关系?
• (1)若x=y,则x2=y2
• (2)若ab = 0,则a = 0 • (3)若x2>1,则x>1 • (4)若x=1或x=2,则x2-3x+2=0
推断符号“ ”的含义
• 如果命题“若p则q”为真,则记作p q (或q p)。
如果命题“若p则q”为假,则记作p q (或q p)。
• a= 0
> ab=0。
要使结论ab=0成立,只要有条件a =0就足够了, “足够”就是“充分”的意思,因此称a =0是
ab=0的充分条件。另一方面如果ab≠0,也不可
能有a =0,也就是要使a =0,必须具备ab=0的条
件,因此我们称ab=0是a =0的必要条件。
充分条件与必要条件的判断
(1)直接利用定义判断:即“若p q成立,
例2:指出下列各组命题中,p是q的什么条件, q是p的什么条件:
(1) p:x-1=0;q:(x-1)(x+2)=0. (2) p:两条直线平行;q:内错角相等. (3) p:a>b;q:a2>b2 (4) p:四边形的四条边相等;
q:四边形是正四边形.
复习
充分条件,必要条件的定义:
若 p q,则p是q成立的_充_分__条件

1.2 充分条件与必要条件(第一课时)教案

1.2 充分条件与必要条件(第一课时)教案

1.2 充分条件与必要条件(第一课时)一、【教材分析】《充分条件与必要条件》是本章的重点内容也是高中数学的重点内容和高考的热点。

现行教学大纲把教学目标定位在“掌握充分条件、必要条件及充要条件的意义”。

充分条件与必要条件是中学数学最重要的数学概念之一,它主要讨论了命题的条件与结论的逻辑关系,目的是为了今后的学习,特别是数学推理的学习打下基础。

这是一节概念课,是高中数学的重点课、难点课。

在现行教材中这节内容被安排在数学选修2-1第一章《常用逻辑用语》中的“命题及其关系”之后。

编写者在数学概念的处理上,贯彻了“淡化形式,注重实质”这一新的教学观,对定义简洁精炼,而对教材的例题、练习题编排比较充分。

实践证明现行教材是比较切合实际的。

因为:①有了“命题及其关系”这节内容的铺垫,这将有助于学生对充分条件、必要条件及充要条件概念的学习理解;②教学时间的前置,让学生有足够的时间来进行滚动的巩固训练,以便达到预期效果。

③题量的增加,使知识在训练中得以巩固。

二、【学情分析】这是一堂新授课,学生在学习本小节时由于是第一次学习充分条件和必要条件,学生学习这一概念时的知识储备不够丰富、逻辑思维能力的训练还不够充分。

所以,学生理解充分条件与必要条件比较困难(特别是必要条件....的理解),需要有足够的理解、消化、训练的时间才能达到熟练掌握的要求。

学习是一个渐进的过程,现行教材在小结与复习中把学生的学习要求规定为“初步掌握充要条件”,而不是一步到位达到高考要求——“掌握充分条件、必要条件及充要条件的意义”。

而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。

三、【教学目标】(一)知识目标:1、正确理解充分条件、必要条件、充要条件三个概念。

2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。

3、在理解定义的基础上,可以自觉地对定义进行转化,转化成推理关系及集合的包含关系。

(二)能力目标:1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。

1.2-充分条件与必要条件-课件-(北师大选修1-1)

1.2-充分条件与必要条件-课件-(北师大选修1-1)
1.充分条件与必要条件
命题真 假 推出关 系
“若p则q”是真命 题
“若p则q”是假命 题
p⇒q
充分 p是 q的 q是 p的 条件 条件 p不是q的 充分 条 件必要 q不是p的 件 条
条件关 系
必要
2.充要条件 (1)如果既有 p⇒q ,又有 q⇒p ,就记作
p⇔q,p是q的充分必要条件,简称 充要 条件. (2)概括地说:如果 p⇔q ,那么p与q互为充要
x +x =2(m+2), 1 2 结合 2 x x = m -1. 1 2
解得 m>5.
所以当 m∈(5,+∞)时,方程 x2-2(m+2)x+m2-1=0 有 两个大于 2 的根.
1.(2013· 湖南文,2)“1<x<2”是“x<2”成立的( A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
(2)必要性:若 a4-b4-2b2=1 成立,则 a4-(b2+1)2=0, 即(a2+b2+1)(a2-b2-1)=0, 因为 a,b 为实数,所以 a2+b2+1≠0,所以 a2-b2-1=0,即 a2 -b2=1. 综上可知:a4-b4-2b2=1 成立的充要条件是 a2-b2=1.
2 2
∴c=-a-b,代入方程 ax +bx+c=0 中可得 ax +bx-a-b=0, 即(x-1)(ax+a+b)=0. 因此,方程有一个根为 x=1. 故关于 x 的 方程 ax2+bx+c=0 有一个根为 1 的充要条件是 a+b+c=0.
题型五、关于多个条件之间充要性的判断
例5、已知p、q都是r的必要条件,s是r的 充分条件,q是s的充分条件.那么:(1)s是q 的什么条件?(2)r是q的什么条件?(3)p是q的

1.2充分条件与必要条件(二)

1.2充分条件与必要条件(二)
充分条件与必要条件(二)
1
按“充分、必要”把条件分类,可以分为四种类型: ⑴充分不必要条件( p q 且 p 緌 q ) ⑵必要不充分条件( p 縬 q 且 p q ) ⑶既不充分也不必要条件( p 烤 q 且 p ⑷充要条件( p q )
q q)
2
如果“若 p , 则 q ”是真命题,且它的逆命题也 是真命题即 p q 且 p q , 我们就说, p 是 q 的充分必要条件,简称充要条件.记为 p q 显然 , 如果 p 是 q 的充要条件 , 那么 q 也是 p 的 充要条件 .概括地说 ,如果 p q ,那么 p 与 q 互为充要 条件. 注:1.“ p 是 q 的充要条件”也说成“ p 与 q 等价” 、 “ p 当且仅当 q ”等.
分别证明,各个击破即可!
11
例2、已知: O的半径为r,圆心O到直线l的距离为d, 求证:d=r是直线l与 O相切的充要条件.
证明:如图,作OP l于点P,则OP=d . (1)充分性(p q):若d=r,则点P在 O上. 在直线l上任取一点Q(异于点P),连接OQ. 则OQ OP r.所以,除点P外直线l上的点 都在 O的外部,即直线l与 O仅有一个 O相切, 公共点P.所以直线l与 O相切.
,
q : xy 0
;

p:a b
,
q:ac bc
.
4
练习
下列各题中, p 是 q 的什么条件? ⑴ p : x2 3x 4 , q : x 3x 4 ; ⑵ p: x 3 0 ,
q : ( x 3)( x 4) =0;
⑶ p : b2 4ac ≥ 0(a 0) ,
1 0, 4. 已知 p : x 3 x 2 0 , q : 2 x x6

1.2充分条件与必要条件 课件(北师大版选修2-1)

1.2充分条件与必要条件 课件(北师大版选修2-1)




教 学
件,求 k 的取值范围. 【解】 由 4x+k≤0,得
x≤-4k;
辨 析



案 设
由 x2-x-2<0,得-1<x<2.
双 基


课 前
设 A={x|x≤-4k},B={x|-1<x<2},



由 p 是 q 的必要条件,得 A⊇B.
课 时


学 课
∴-4k≥2,


∴k≤-8.

探 究




导 学
【思路探究】 分清条件和结论,证明充分性即证“条 作 业
课 件⇒结论”,证明必要性即证“结论⇒条件”.
堂 互 动 探 究
教 师 备 课 资 源
菜单
BS·数学 选修2-1




达 标

前 自
反过来,由一元二次不等式 ax2+bx+c>0 的解集为 R, 课


导 学
课 堂 互 动 探 究
得aΔ>=0b2-4ac<0 , 因此,b2-4ac<0 是一元二次不等式 ax2+bx+c>0 的解 集为 R 的必要不充分条件.
作 业
教 师 备 课 资 源
菜单
BS·数学 选修2-1
不成立.



导 学
因此,“an+1>|an|(n=1,2,…)”是“{an}为递增数列”
作 业
课 的充分不必要条件.

互 动
【答案】 (1)B (2)A


教 师 备 课 资 源
菜单

1.2 充分条件与必要条件

1.2  充分条件与必要条件

充分条件与必要条件预习课本P9~11,思考并完成以下问题1.什么是充分条件、必要条件?2.什么是充要条件?[新知初探]1.充分条件与必要条件2.充要条件(1)定义:若p⇒q且q⇒p,则记作p⇔q,此时p是q的充分必要条件,简称充要条件.(2)条件与结论的等价性:如果p是q的充要条件,那么q也是p的充要条件.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若p是q的充分条件,则p是唯一的()(2)“若綈p,则綈q”是真命题,则p是q的必要条件()(3)若p是q的充要条件,则命题p和q是两个相互等价的命题()答案:(1)×(2)√(3)√2.已知α:“a=±2”;β:“直线x-y=0与圆x2+(y-a)2=2相切”,则α是β的() A.充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:C3.“x =3”是“x 2=9”的________条件(填“充分”或“必要”). 答案:充分4.“ab >0”是“a >0,b >0”的________条件(填“充分”或“必要”). 答案:必要充分条件、必要条件、充要条件的判断[典例] (1)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是 “sin A ≤sin B ”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件(2)设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] (1)由正弦定理,得a sin A =bsin B,故a ≤b ⇔sin A ≤sin B ,选A. (2)构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |.选C.[答案] (1)A (2)C充要条件的判断方法判断p 是q 的什么条件,其实质是判断“若p ,则q ”及其逆命题“若q ,则p ”是真是假,原命题为真而逆命题为假,p 是q 的充分不必要条件;原命题为假而逆命题为真,则p 是q 的必要不充分条件;原命题为真,逆命题为真,则p 是q 的充要条件;原命题为假,逆命题为假,则p 是q 的既不充分也不必要条件,同时要注意反证法的运用.[活学活用]指出下列各组命题中,p 是q 的什么条件.(1)p :四边形的对角线相等,q :四边形是平行四边形;(2)p :(x -1)2+(y -2)2=0,q :(x -1)(y -2)=0.解:(1)∵四边形的对角线相等⇒/ 四边形是平行四边形,四边形是平行四边形⇒/ 四边形的对角线相等,∴p 是q 的既不充分也不必要条件.(2)∵(x -1)2+(y -2)2=0⇒x =1且y =2⇒(x -1)·(y -2)=0, 而(x -1)(y -2)=0⇒/ (x -1)2+(y -2)2=0, ∴p 是q 的充分不必要条件.[典例] 已知p :实数x 满足x 2-x -6≤0.若綈p 是綈q 的必要条件,求实数a 的取值范围.[解] 由x 2-4ax +3a 2<0且a <0得3a <x <a , 所以p :3a <x <a ,即集合A ={x |3a <x <a }. 由x 2-x -6≤0得-2≤x ≤3,所以q :-2≤x ≤3,即集合B ={x |-2≤x ≤3}. 因为綈q ⇒綈p ,所以p ⇒q ,所以A ⊆B , 所以⎩⎪⎨⎪⎧3a ≥-2,a ≤3,a <0⇒-23≤a <0,所以a 的取值范围是⎣⎡⎭⎫-23,0. [一题多变]1.[变条件]本例中条件“a <0”改为“a >0”,若綈p 是綈q 的充分条件,求实数a 的取值范围.解:由x 2-4ax +3a 2<0且a >0得a <x <3a , 所以p :a <x <3a ,即集合A ={x |a <x <3a }. 由x 2-x -6≤0得-2≤x ≤3,所以q :-2≤x ≤3,即集合B ={x |-2≤x ≤3}. 因为綈p ⇒綈q ,所以q ⇒p ,所以B ⊆A , 所以⎩⎪⎨⎪⎧3a ≥3,a ≤-2,⇒a ∈∅.a >02.[变条件]将“q :实数x 满足x 2-x -6≤0”改为“q :实数x 满足x 2+3x ≤0”其他条件不变,求实数a 的取值范围.解:由x 2-4ax +3a 2<0且a <0得3a <x <a . 所以p :3a <x <a ,即集合A ={x |3a <x <a }. 由x 2+3x ≤0得-3≤x ≤0,所以q :-3≤x ≤0,即集合B ={x |-3≤x ≤0}. 因为綈q ⇒綈p ,所以p ⇒q ,所以A ⊆B , 所以⎩⎪⎨⎪⎧3a ≥-3,a ≤0,a <0⇒-1≤a <0.所以a 的取值范围是[-1,0).充分条件与必要条件的应用技巧(1)应用:可利用充分性与必要性进行相关问题的求解,特别是求参数的值或取值范围问题.(2)求解步骤:先把p ,q 等价转化,利用充分条件、必要条件与集合间的包含关系,建立关于参数的不等式(组)进行求解.充要条件的证明[典例] ac <0. [证明] (1)必要性:因为方程ax 2+bx +c =0有一正根和一负根,所以Δ=b 2-4ac >0,x 1x 2=ca<0(x 1,x 2为方程的两根),所以ac <0.(2)充分性:由ac <0可推得Δ=b 2-4ac >0及x 1x 2=ca <0(x 1,x 2为方程的两根).所以方程ax 2+bx +c =0有两个相异实根,且两根异号, 即方程ax 2+bx +c =0有一正根和一负根.综上所述,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.充要条件的证明思路(1)在证明有关充要条件的问题时,通常从“充分性”和“必要性”两个方面来证明.在证明时,要注意:若证明“p 的充要条件是q ”,那么“充分性”是q ⇒p ,“必要性”是p ⇒q ;若证明“p 是q 的充要条件”,则与之相反.(2)证明充要条件问题,其实质就是证明一个命题的原命题和其逆命题都成立.若不易直接证明,可根据命题之间的关系进行等价转换,然后加以证明.[活学活用]已知x ,y 都是非零实数,且x >y ,求证:1x <1y 的充要条件是xy >0. 证明:(1)必要性:由1x <1y ,得1x -1y <0,即y -x xy <0,又由x >y ,得y -x <0,所以xy >0. (2)充分性:由xy >0及x >y , 得x xy >y xy ,即1x <1y. 综上所述,1x <1y的充要条件是xy >0.层级一 学业水平达标1.设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:选D 当数列{a n }的首项a 1<0时,若q >1,则数列{a n }是递减数列;当数列{a n }的首项a 1<0时,要使数列{a n }为递增数列,则0<q <1,所以“q >1”是“数列{a n }为递增数列”的既不充分也不必要条件.故选D.2.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件但不是乙的必要条件,那么( )A .丙是甲的充分条件,但不是甲的必要条件B .丙是甲的必要条件,但不是甲的充分条件C .丙是甲的充要条件D .丙既不是甲的充分条件,也不是甲的必要条件解析:选A 因为甲是乙的必要条件,所以乙⇒甲.又因为丙是乙的充分条件,但不是乙的必要条件,所以丙⇒乙,但乙 丙,如图. 综上,有丙⇒甲,但甲丙,即丙是甲的充分条件,但不是甲的必要条件.3.设a ,b 都是非零向量,下列四个条件中,使a |a|=b|b|成立的充分条件是( )A .a =-bB .a ∥bC.a=2b D.a∥b且|a|=|b|解析:选C对于A,当a=-b时,a|a|≠b|b|;对于B,注意当a∥b时,a|a|与b|b|可能不相等;对于C,当a=2b时,a|a|=2b|2b|=b|b|;对于D,当a∥b,且|a|=|b|时,可能有a=-b,此时a|a|≠b|b|.综上所述,使a|a|=b|b|成立的充分条件是a=2b.4.设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选Aφ=0时,函数f(x)=cos(x+φ)=cos x是偶函数,而f(x)=cos(x+φ)是偶函数时,φ=π+kπ(k∈Z).故“φ=0”是“函数f(x)=cos(x+φ)为偶函数”的充分不必要条件.5.使|x|=x成立的一个必要不充分条件是()A.x≥0 B.x2≥-xC.log2(x+1)>0 D.2x<1解析:选B∵|x|=x⇔x≥0,∴选项A是充要条件.选项C,D均不符合题意.对于选项B,∵由x2≥-x得x(x+1)≥0,∴x≥0或x≤-1.故选项B是使|x|=x成立的必要不充分条件.6.如果命题“若A,则B”的否命题是真命题,而它的逆否命题是假命题,则A是B 的________________条件.解析:因为逆否命题为假,所以原命题为假,即A⇒/ B.又因否命题为真,所以逆命题为真,即B⇒A,所以A是B的必要不充分条件.答案:必要不充分7.条件p:1-x<0,条件q:x>a,若p是q的充分不必要条件,则a的取值范围是________.解析:p:x>1,若p是q的充分不必要条件,则p⇒q,但q p,也就是说,p对应集合是q对应集合的真子集,所以a<1.答案:(-∞,1)8.下列命题:①“x>2且y>3”是“x+y>5”的充要条件;②b2-4ac<0是一元二次不等式ax2+bx+c<0解集为R的充要条件;③“a=2”是“直线ax+2y=0平行于直线x+y=1”的充分不必要条件;④“xy=1”是“lg x+lg y=0”的必要不充分条件.其中真命题的序号为______________.解析:①x>2且y>3时,x+y>5成立,反之不一定,如x=0,y=6.所以“x>2且y>3”是“x+y>5”的充分不必要条件;②不等式解集为R的充要条件是a<0且b2-4ac<0,故②为假命题;③当a=2时,两直线平行,反之,若两直线平行,则a1=21,∴a=2.因此,“a=2”是“两直线平行”的充要条件;④lg x+lg y=lg(xy)=0,∴xy=1且x>0,y>0.所以“lg x+lg y=0”成立,xy=1必成立,反之不然.因此“xy=1”是“lg x+lg y=0”的必要不充分条件.综上可知,真命题是④.答案:④9.下列命题中,判断条件p是条件q的什么条件.(1)p:|x|=|y|,q:x=y;(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;(3)p:四边形的对角线互相平分,q:四边形是矩形;(4)p:圆x2+y2=r2与直线ax+by+c=0相切,q:c2=(a2+b2)r2.解:(1)∵|x|=|y|x=y,但x=y⇒|x|=|y|,∴p是q的必要不充分条件.(2)∵△ABC是直角三角形△ABC是等腰三角形,△ABC是等腰三角形△ABC是直角三角形,∴p是q的既不充分也不必要条件.(3)∵四边形的对角线互相平分四边形是矩形,四边形是矩形⇒四边形的对角线互相平分,∴p是q的必要不充分条件.(4)若圆x2+y2=r2与直线ax+by+c=0相切,则圆心到直线ax+by+c=0的距离等于r,即r=|c|a2+b2,所以c2=(a2+b2)r2;反过来,若c2=(a2+b2)r2,则|c|a2+b2=r成立,说明x 2+y 2=r 2的圆心(0,0)到直线ax +by +c =0的距离等于r , 即圆x 2+y 2=r 2与直线ax +by +c =0相切, 故p 是q 的充要条件.10.已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.证明:(1)充分性:当q =-1时,a 1=p -1. 当n ≥2时,a n =S n -S n -1=p n -1(p -1).当n =1时,上式也成立.于是a n +1a n =p n (p -1)p n -1(p -1)=p ,即数列{a n }为等比数列.(2)必要性:当n =1时,a 1=S 1=p +q . 当n ≥2时,a n =S n -S n -1=p n -1(p -1).∵p ≠0且p ≠1, ∴a n +1a n =p n (p -1)p n -1(p -1)=p .因为{a n }为等比数列,所以a 2a 1=a n +1a n =p =p (p -1)p +q ,∴q =-1.即数列{a n }为等比数列的充要条件为q =-1.层级二 应试能力达标1.“0<a <b ”是“⎝⎛⎭⎫13a >⎝⎛⎭⎫13b”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 当0<a <b 时,⎝⎛⎭⎫13a >⎝⎛⎭⎫13b 成立,所以是充分条件;当⎝⎛⎭⎫13a >⎝⎛⎭⎫13b 时,有a <b ,不能推出0<a <b ,所以不是必要条件,故选A.2.已知直线l ,m ,平面α,且m ⊂α,则( ) A .“l ⊥α”是“l ⊥m ”的必要条件 B .“l ⊥m ”是“l ⊥α”的必要条件 C .l ∥m ⇒l ∥α D .l ∥α⇒l ∥m解析:选B 很明显l ⊥α⇒l ⊥m ,l ⊥m l ⊥α,l ∥ml ∥α,l ∥αl ∥m ,故选B.3.下列说法正确的是( ) A .“x >0”是“x >1”的必要条件B .已知向量m ,n ,则“m ∥n ”是“m =n ”的充分条件C .“a 4>b 4”是“a >b ”的必要条件D .在△ABC 中,“a >b ”不是“A >B ”的充分条件解析:选A A 中,当x >1时,有x >0,所以A 正确;B 中,当m ∥n 时,m =n 不一定成立,所以B 不正确;C 中,当a >b 时,a 4>b 4不一定成立,所以C 不正确;D 中,当a >b 时,有A >B ,所以“a >b ”是“A >B ”的充分条件,所以D 不正确.故选A.4.设p :12≤x ≤1;q :(x -a )(x -a -1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是( )A.⎝⎛⎭⎫0,12B.⎣⎡⎦⎤0,12 C.⎣⎡⎭⎫0,12 D.⎝⎛⎦⎤0,12 解析:选B ∵q :a ≤x ≤a +1,p 是q 的充分不必要条件, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,解得0≤a ≤12.故选B.5.已知关于x 的方程(1-a )x 2+(a +2)x -4=0(a ∈R),则该方程有两个正根的充要条件是________.解析:方程(1-a )x 2+(a +2)x -4=0有两个实根的充要条件是⎩⎪⎨⎪⎧1-a ≠0,Δ≥0,即⎩⎪⎨⎪⎧ a ≠1,(a +2)2+16(1-a )≥0⇔⎩⎪⎨⎪⎧a ≠1,a ≤2或a ≥10.设此时方程的两根分别为x 1,x 2,则方程有两个正根的充要条件是⎩⎪⎨⎪⎧a ≠1,a ≤2或a ≥10,x 1+x 2>0,x 1x 2>0⇔⎩⎪⎨⎪⎧a ≠1,a ≤2或a ≥10,a +2a -1>0,4a -1>0⇔1<a ≤2或a ≥10.答案:(1,2]∪[10,+∞)6.已知“-1<k <m ”是“方程x 2+y 2+kx +3y +k 2=0表示圆”的充分条件,则实数m 的取值范围是________.解析:当方程x 2+y 2+kx +3y +k 2=0表示圆时, k 2+3-4k 2>0,解得-1<k <1, 所以-1<m ≤1,即实数m 的取值范围是(-1,1]. 答案:(-1,1]7.已知p :x 2-8x -20>0,q :x 2-2x +1-a 2>0.若p 是q 的充分条件,求正实数a 的取值范围.解:不等式x 2-8x -20>0的解集为 A ={x |x >10或x <-2};不等式x 2-2x +1-a 2>0的解集为 B ={x |x >1+a 或x <1-a ,a >0}. 依题意p ⇒q ,所以A ⊆B . 于是有⎩⎪⎨⎪⎧a >0,1+a ≤10,1-a ≥-2,解得0<a ≤3.所以正实数a 的取值范围是(0,3].8.求二次函数y =-x 2+mx -1的图象与两端点为A (0,3),B (3,0)的线段AB 有两个不同的交点的充要条件.解:线段AB 的方程为x +y =3,由题意得方程组⎩⎪⎨⎪⎧x +y =3(0≤x ≤3), ①y =-x 2+mx -1, ②在[0,3]上有两组实数解,将①代入②,得x 2-(m +1)x +4=0(0≤x ≤3),此方程有两个不同的实数根,令f (x )=x 2-(m +1)x +4,则二次函数f (x )在x ∈[0,3]上有两个实根,故有:⎩⎪⎨⎪⎧Δ=(m +1)2-16>0,0<m +12<3,f (0)=4>0,f (3)=9-3(m +1)+4≥0,解得3<m ≤103,故m 的取值范围是⎝⎛⎦⎤3,103.简单的逻辑联结词预习课本P14~17,思考并完成以下问题1.课本提到的简单的逻辑联结词有哪些?2.命题p∧q、p∨q以及綈p的真假是如何确定的?[新知初探]1.逻辑联结词,“且”“或”“非”2.“p∧q”“p∨q”“綈p”的真假判断[点睛](1)“或”含义的理解对“或”的理解,可联想集合中“并集”的概念,“x∈A∪B”是指“x∈A”“x∈B”中至少有一个是成立的,即“x∈A,且x∉B”,也可以“x∉A,且x∈B”,也可以“x∈A,且x∈B”.逻辑联结词中的“或”的含义与“并集”中的“或”的含义是一致的,它们都不同于生活用语中的“或”的含义,生活用语中的“或”表示“不兼有”,而数学中的“或”则表示“可兼有但不必兼有”.(2)命题“p∧q”“p∨q”“綈p”真假的记忆①对于“p∧q”,简称为“一假即假”,即p,q中只要有一个为假,则“p∧q”为假;②对于“p∨q”,简称为“一真即真”,即p,q中只要有一个为真,则“p∨q”为真.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)当p是真命题时,“p∧q”为真命题()(2)当p是真命题时,“p∨q”为真命题()(3)若綈p为假命题,则p为真命题()答案:(1)×(2)√(3)√2.命题“矩形的对角线相等且互相平分”是()A.“p∧q”形式的命题B.“p∨q”形式的命题C.“綈p”形式的命题D.以上说法都不对答案:A3.命题“2 016≥2 015”使用的逻辑联结词是________.答案:或4.“p∨q”为真是“p∧q”为真的________条件.(填“充分”“充分不必要”“必要不充分”或“既不充分也不必要”)答案:必要不充分用逻辑联结词联结新命题[典例](1)p:梯形有一组对边平行,q:梯形有一组对边相等;(2)p:-1是方程x2+4x+3=0的解,q:-3是方程x2+4x+3=0的解.[解](1)p∧q:梯形有一组对边平行且有一组对边相等.p∨q:梯形有一组对边平行或有一组对边相等.綈p:梯形没有一组对边平行.(2)p∧q:-1与-3是方程x2+4x+3=0的解.p∨q:-1或-3是方程x2+4x+3=0的解.綈p:-1不是方程x2+4x+3=0的解.用“或”“且”“非”联结两个简单命题时,要正确理解这三个联结词的意义,通常情况下,可以直接使用逻辑联结词联结,有时为了通顺也可以适当添加词语或省略联结词.如甲是运动员兼教练员,就省略了“且”.[活学活用]指出下列命题的构成形式及构成它们的简单命题.(1)方程2x2+1=0没有实数根;(2)12能被3或4整除.解:(1)是“綈p”形式,其中p:方程2x2+1=0有实根.(2)是“p或q”形式,其中p:12能被3整除;q:12能被4整除.含有逻辑联结词的命题的真假判断[典例](1)已知命题p:若x>y,则-x<-y:命题q:若x>y,则x22p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题是()A.①③B.①④C.②③D.②④(2)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是()A.p∧q B.綈p∧綈qC.綈p∧q D.p∧綈q[解析](1)由不等式的性质可知,命题p是真命题,命题q为假命题,故①p∧q为假命题,②p∨q为真命题,③綈q为真命题,则p∧(綈q)为真命题,④綈p为假命题,则(綈p)∨q为假命题,所以选C.(2)依题意,命题p是真命题.由x>2⇒x>1,而x>1⇒/x>2,因为此“x>1”是“x>2”的必要不充分条件,故命题q是假命题,则綈q是真命题,p∧綈q是真命题,选D.[答案](1)C(2)D1.命题结构的两种类型及判断方法(1)从含有联结词“且”“或”“非”或者与之等价的词语上进行判断.(2)若命题中不含有联结词,则从命题所表达的数学意义上进行判断.2.判断命题真假的三个步骤(1)明确命题的结构,即命题是“p∧q”“p∨q”,还是“綈p”;(2)对命题p和q的真假作出判断;(3)由“p∧q”“p∨q”“綈p”的真假判断方法给出结论.[活学活用]分别写出下列含有逻辑联结词的命题的形式,并判断其真假. (1)等腰三角形顶角的平分线平分且垂直于底边; (2)1或-1是方程x 2+3x +2=0的根; (3)A (A ∪B ).解:(1)这个命题是“p ∧q ”的形式,其中p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边,因为p 真,q 真,则“p ∧q ”真,所以该命题是真命题.(2)这个命题是“p ∨q ”的形式,其中p :1是方程x 2+3x +2=0的根,q :-1是方程x 2+3x +2=0的根,因为p 假,q 真,则“p ∨q ”真,所以该命题是真命题.(3)这个命题是“綈p ”的形式,其中p :A ⊆(A ∪B ),因为p 真,则“綈p ”假,所以该命题是假命题.[典例] 已知:p :方程x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.[解] p :⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0,解得m >2.q :Δ=16(m -2)2-16=16(m 2-4m +3)<0, 解得1<m <3.∵p 或q 为真,p 且q 为假.∴p 为真,q 为假,或p 为假,q 为真,即⎩⎪⎨⎪⎧ m >2,m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤2,1<m <3,解得m ≥3或1<m ≤2.故m 的取值范围是(1,2]∪[3,+∞). [一题多变]1.[变条件]本例中将“p ∨q 为真,p ∧q 为假”改为“p ∧q 为真”,求实数m 的取值范围.解:∵“p ∧q ”为真命题, ∴p 为真且q 为真.p :方程x 2+mx +1=0有两个不等的负实根⇔⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0⇔m >2.q :方程4x 2+4(m -2)x +1=0无实根 ⇔Δ=16(m -2)2-16<0⇔1<m <3. ∴实数m 的取值范围为(2,3).2.[变条件]本例中将“q :方程4x 2+4(m -2)x +1=0无实根”改为“q :方程4x 2+4(m -2)x +1=0有两个不等的实数根”,求实数m 的取值范围.解:p :方程x 2+mx +1=0有两个不等的负实数根⇔⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0⇔m >2.q :方程4x 2+4(m -2)x +1=0有两个不等的实根 ⇔Δ=16(m -2)2-16>0 ⇔m >3或m <1.∵p ∨q 为真命题.p ∧q 为假命题, ∴p ,q 为一真一假. ①当p 为真q 为假时,则⎩⎪⎨⎪⎧m >2,1≤m ≤3,解得,2<m ≤3. ②当p 为假q 为真时,则⎩⎪⎨⎪⎧m ≤2,m >3或m <1,解得m <1. 综上所述,实数m 的取值范围是(-∞,1)∪(2,3].解决此类问题的方法,一般是先假设p ,q 分别为真,化简其中的参数取值范围,然后当它们为假时取其补集,最后确定参数的取值范围.当p ,q 中参数的范围不易求出时,也可以利用綈p 与p ,綈q 与q 不能同真同假的特点,先求綈p ,綈q 中参数的范围.层级一 学业水平达标1.“xy ≠0”是指( ) A .x ≠0且y ≠0 B .x ≠0或y ≠0 C .x ,y 至少一个不为0D .x ,y 不都是0解析:选A xy ≠0是指x ,y 均不能为0,故选A. 2.若命题“p 且q ”为假,且綈p 为假,则( ) A .p 或q 为假B .q 假C.q真D.p假解析:选B綈p为假,则p为真,而p∧q为假,得q为假.3.已知全集U=R,A⊆U,B⊆U,如果命题p:3∈(A∪B),则命题“綈p”是()A.3∉AB.3∈(∁U A)∩(∁U B)C.3∈∁U BD.3∉(A∩B)解析:选B由p:3∈(A∪B),可知綈p:3∉(A∪B),即3∈∁U(A∪B),而∁U(A∪B)=(∁U A)∩(∁U B),故选B.4.给定两个命题p,q.若綈p是q的必要而不充分条件,则p是綈q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选A q⇒綈p等价于p⇒綈q,綈p q等价于綈q p,故p是綈q的充分而不必要条件.5.设a,b,c是非零向量,已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c,则下列命题中真命题是()A.p∨q B.p∧qC.(綈p)∧(綈q) D.p∨(綈q)解析:选A对于命题p:因为a·b=0,b·c=0,所以a,b与b,c的夹角都为90°,但a,c的夹角可以为0°或180°,故a·c≠0,所以命题p是假命题;对于命题q:a∥b,b ∥c说明a,b与b,c都共线,可以得到a,c的方向相同或相反,故a∥c,所以命题q是真命题.则p∨q是真命题,p∧q是假命题,綈p是真命题,綈q是假命题,所以(綈p)∧(綈q)是假命题,p∨(綈q)是假命题,故选A.6.命题“若a<b,则2a<2b”的否命题是________________,命题的否定是________________________.解析:命题“若p,则q”的否命题是“若綈p,则綈q”,命题的否定是“若p,则綈q”.答案:若a≥b,则2a≥2b若a<b,则2a≥2b7.已知p:x2-x≥6,q:x∈Z.若“p∧q”“綈q”都是假命题,则x的值组成的集合为________.解析:因为“p∧q”为假,“綈q”为假,所以q为真,p为假.故⎩⎪⎨⎪⎧ x 2-x <6,x ∈Z ,即⎩⎪⎨⎪⎧-2<x <3,x ∈Z.因此,x 的值可以是-1,0,1,2. 答案:{-1,0,1,2}8.已知条件p :(x +1)2>4,条件q :x >a ,且綈p 是綈q 的充分不必要条件,则a 的取值范围是________.解析:由綈p 是綈q 的充分不必要条件,可知綈p ⇒綈q ,但綈q 綈p .由一个命题与它的逆否命题等价,可知q ⇒p 但p q .又p :x >1或x <-3,可知{x |x >a }{x |x <-3或x >1},所以a ≥1.答案:[1,+∞)9.指出下列命题是简单命题还是含逻辑联结词的命题,若是含逻辑联结词的命题,写出构成它的简单命题.(1)两个角是45°的三角形是等腰直角三角形;(2)若x ∈{x |x <1或x >2},则x 是不等式(x -1)·(x -2)>0的解.解:(1)“p 且q ”形式的命题,其中p :两个角是45°的三角形是等腰三角形,q :两个角是45°的三角形是直角三角形.(2)“p 或q ”形式的命题,其中p :若x ∈{x |x <1},则x 是不等式(x -1)(x -2)>0的解,q :若x ∈{x |x >2},则x 是不等式(x -1)(x -2)>0的解.10.命题甲:关于x 的不等式x 2+(a -1)x +a 2≤0的解集为∅,命题乙:函数y =(2a 2-a )x 为增函数.分别求出符合下列条件的实数a 的取值范围:(1)甲、乙至少有一个是真命题; (2)甲、乙中有且只有一个是真命题. 解:甲命题为真时,Δ=(a -1)2-4a 2<0, 即a >13或a <-1,①乙命题为真时,2a 2-a >1,即a >1或a <-12.②(1)甲、乙至少有一个是真命题,即为a <-12或a >13,∴甲、乙至少有一个是真命题时,a 的取值范围是⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫13,+∞.(2)甲、乙有且只有一个是真命题,有两种情况:甲真乙假时,13<a ≤1,当甲假乙真时,-1≤a <-12.∴甲、乙中有且只有一个真命题时,a 的取值范围是⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤13,1.层级二 应试能力达标1.已知p :x +1>2,q :5x -6>x 2,则綈p 是綈q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 设集合A ={x |x +1≤2}={x |x ≤1},B ={x |5x -6≤x 2}={x |x ≤2或x ≥3},由于A B ,所以綈p 是綈q 的充分不必要条件,故选A.2.已知p :函数y =sin 12x 的最小正周期是π,q :函数y =tan x 的图象关于直线x =π2对称,则下列判断正确的是( )A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真解析:选C 很明显p 和q 均是假命题,所以綈q 为真,p ∧q 为假,p ∨q 为假,故选C.3.已知命题p :所有的有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .(綈p )∨qB .p ∧qC .(綈p )∧(綈q )D .(綈p )∨(綈q )解析:选D 由题意,得p 是真命题,q 是假命题,所以(綈p )∨q ,p ∧q ,(綈p )∧(綈q )都是假命题,(綈p )∨(綈q )是真命题,故选D.4.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q解析:选A 綈p :甲没有降落在指定范围;綈q :乙没有降落在指定范围,至少有一位学员没有降落在指定范围,即綈p 或綈q 发生.5.已知p :若数列{a n }的前n 项和S n =n 2+m ,则数列{a n }是等差数列,当綈p 是假命题时,则实数m 的值为________.解析:由于綈p 是假命题,所以p 是真命题.由S n =n 2+m ,得a n =⎩⎪⎨⎪⎧1+m ,n =1,2n -1,n >1,所以1+m =2×1-1,解得m =0.答案:06.已知p :点M (1,2)在不等式x -y +m <0表示的区域内,q :直线2x -y +m =0与直线mx +y -1=0相交,若p ∧q 为真命题,则实数m 的取值范围为________.解析:当p 是真命题时,有1-2+m <0,即m <1; 当q 是真命题时,有2+m ≠0,,即m ≠-2. 又p ∧q 为真命题,所以p 是真命题且q 是真命题, 所以m <1且m ≠-2,所以实数m 的取值范围是(-∞,-2)∪(-2,1). 答案:(-∞,-2)∪(-2,1)7.已知p :-1<log 2x <2,q :⎝⎛⎭⎫23x +a>1,綈q 是綈p 的充分不必要条件,求实数a 的取值范围.解:由-1<log 2x <2,得12<x <4,所以綈p :x ≤12或x ≥4,设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤12或x ≥4; 由⎝⎛⎭⎫23x +a>1,得x +a <0,解得x <-a , 所以綈q :x ≥-a , 设集合B ={x |x ≥-a }.又綈q 是綈p 的充分不必要条件,所以B A , 所以-a ≥4,解得a ≤-4,所以实数a 的取值范围是(-∞,-4].8.已知命题p :x 1和x 2是方程x 2-mx -2=0的两个实根,不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立;命题q :不等式ax 2+2x -1>0有解.若p ∧q 是假命题,綈p 也是假命题.求实数a 的取值范围.解:∵p ∧q 是假命题,綈p 是假命题, ∴命题p 是真命题,命题q 是假命题.∵x 1,x 2是方程x 2-mx -2=0的两个实根,∴⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=-2, ∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=m 2+8, ∴当m =[-1,1]时,|x 1-x 2|max =3.由不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立,可得a 2-5a -3≥3, ∴a ≥6或a ≤-1,∴当命题p 为真命题时,a ≥6或a ≤-1.① 命题q :不等式ax 2+2x -1>0有解, ①当a >0时,显然有解; ②当a =0时,2x -1>0有解; ③当a <0时,∵ax 2+2x -1>0有解, ∴Δ=4+4a >0, ∴-1<a <0.从而命题q :不等式ax 2+2x -1>0有解时,a >-1. 又∵命题q 是假命题,∴a ≤-1.②由①②得,所求a 的取值范围为(-∞,-1].全称量词与存在量词预习课本P21~25,思考并完成以下问题 1.全称量词、全称命题的定义是什么?2.存在量词、特称命题的定义是什么?3.全称命题与特称命题的否定分别是什么命题?[新知初探]1.全称量词与全称命题2.存在量词与特称命题(1)全称命题p:∀x∈M,p(x)的否定綈p:∃x0∈M,綈p(x0);全称命题的否定是特称命题.(2)特称命题p:∃x0∈M,p(x0)的否定綈p:∀x∈M,綈p(x);特称命题的否定是全称命题.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)在全称命题和特称命题中,量词都可以省略()(2)“有的等差数列也是等比数列”是特称命题()(3)“三角形内角和是180°”是全称命题()答案:(1)×(2)√(3)√2.下列全称命题为真命题的是()A.所有的质数是奇数B .∀x ∈R ,x 2+1≥1C .对每一个无理数x ,x 2也是无理数D .所有的能被5整除的整数,其末位数字都是5 答案:B3.命题p :∃x 0∈R ,x 20+2x 0+5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定为綈p :______________.答案:特称命题 假 ∀x ∈R ,x 2+2x +5≥0全称命题与特称命题[典例] (1)凸多边形的外角和等于360°; (2)有的向量方向不定;(3)对任意角α,都有sin 2α+cos 2α=1; (4)矩形的对角线不相等;(5)若一个四边形是菱形,则这个四边形的对角线互相垂直.[解] (1)可以改为所有的凸多边形的外角和等于360°,故为全称命题. (2)含有存在量词“有的”,故是特称命题. (3)含有全称量词“任意”,故是全称命题.(4)可以改为所有矩形的对角线不相等,故为全称命题. (5)若一个四边形是菱形,也就是所有的菱形,故为全称命题.判定命题是全称命题还是特称命题,主要方法是看命题中含有全称量词还是存在量词.要注意的是有些全称命题并不含有全称量词,这时我们就要根据命题涉及的意义去判断.[活学活用]用全称量词或存在量词表示下列语句: (1)不等式x 2+x +1>0恒成立;(2)当x 为有理数时,13x 2+12x +1也是有理数;(3)等式sin(α+β)=sin α+sin β对有些角α,β成立; (4)方程3x -2y =10有整数解.解:(1)对任意实数x ,不等式x 2+x +1>0成立. (2)对任意有理数x ,13x 2+12x +1是有理数.(3)存在角α,β,使sin(α+β)=sin α+sin β成立. (4)存在一对整数x ,y ,使3x -2y =10成立.全称命题、特称命题的真假判断[典例] (1)(全国卷Ⅰ)不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D .有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2D .p 1,p 3(2)若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围是( )A .[-1,3]B .[1,4]C .(1,4)D .(-∞,-1)∪[3,+∞)[解析] (1)画出可行域如图中阴影部分所示,由图可知,当目标函数z =x +2y 经过可行域内的点A (2,-1)时,取得最小值0,故x +2y ≥0,因此p 1,p 2是真命题,选C.(2)由题意知∀x ∈R ,x 2+(a -1)x +1≥0, ∴Δ=(a -1)2-4≤0, 解得-1≤a ≤3.故选A. [答案] (1)C (2)A(1)要判定一个全称命题是真命题,必须对限定集合M 中的每个元素x 验证p (x )成立;但要判定全称命题是假命题,只要能举出集合M 中的一个x 0,使得p (x 0)不成立即可.(2)要判定一个特称命题是真命题,只要在限定集合M 中,能找到一个x 0使p (x 0)成立即可;否则,这个特称命题就是假命题.[活学活用]判断下列命题的真假. (1)p :所有的单位向量都相等; (2)p :任一等比数列{a n }的公比q ≠0; (3)p :∃x 0∈R ,x 20+2x 0+3≤0.解:(1)p 是全称命题,是假命题.若两个单位向量e 1,e 2方向不相同,虽然有|e 1|=|e 2|=1,但e 1≠e 2. (2)p 是全称命题,是真命题.根据等比数列的定义知,任一等比数列中,其每一项a n ≠0,所以其公比q =a n +1a n≠0(n=1,2,3,…).(3)p 是特称命题,是假命题.因为对于綈p :∀x ∈R ,x 2+2x +3>0是真命题,这是因为x 2+2x +3=(x +1)2+2≥2>0恒成立.全称命题与特称命题的否定[典例] (1)>2,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n(2)(浙江高考)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2 B .∀x ∈R ,∀n ∈N *,使得n <x 2 C .∃x ∈R ,∃n ∈N *,使得n <x 2 D .∃x ∈R ,∀n ∈N *,使得n <x 2[解析] (1)因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n ”,故选C.(2)由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式为“∃x ∈R ,∀n ∈N *,使得n <x 2”.[答案] (1)C (2)D(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词, 同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.[活学活用]判断下列命题是全称命题还是特称命题,并写出这些命题的否定.。

1.2 充分条件与必要条件 教学设计 教案

1.2 充分条件与必要条件 教学设计 教案

教学准备1. 教学目标1.知识与技能(1)正确理解充分条件、必要条件、充要条件三个概念.(2)能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系.(3)在理解定义的基础上,可以自觉地对定义进行转化,转化成推理关系及集合的包含关系.2.过程与方法(1)培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性.(2)培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律.(3)培养学生的建构能力:“善建构”,通过反复的观察分析和类比,对归纳出的结论,建构于自己的知识体系中.3.情感、态度与价值观(1)通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受.(2)通过对命题的四种形式及充分条件、必要条件的相对性,培养学生的辩证唯物主义观点.2. 教学重点/难点重点:充分条件、必要条件和充要条件三个概念的定义.难点:必要条件的定义、充要条件的充分必要性3. 教学用具多媒体4. 标签教学过程一、问题导思1.给出下列命题:(1)若x>a2+b2,则x>2ab.(2)若ab=0,则a=0.(3)若整数a是6的倍数,则整数a是2和3的倍数.命题(1)的条件成立,结论一定成立吗?命题(2)中呢?【提示】命题(1)中只要满足条件x>a2+b2,必有结论x>2ab成立;命题(2)中满足条件ab=0,不一定有结论a=0,还可能b=0.命题“如果p,则q”为真命题,我们就说由p成立可以推出q成立,记作p⇒q,读作“p推出q”.这时称p是q的充分条件,q是p的必要条件.2.若设p:整数a是6的倍数,q:整数a是2和3的倍数,则p是q的什么条件?q是p的什么条件?【提示】因为p⇒q且q⇒p,所以p是q的充分条件也是必要条件;同理,q是p的充分条件,也是必要条件.如果p⇒q且q⇒p,则称p是q的充分且必要条件,简称p是q的充要条件,记作p⇔q.p是q的充要条件,又常说成“q当且仅当p”或“p与q等价”二、典例精讲命题方向1 充分条件、必要条件、充要条件的判断例1.(1)(2013·陕西高考)设a,b为向量,则“|a·b|=|a||b|”是“a//b”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)下面四个条件中,使a>b成立的充分不必要条件是( )A.a>b+1 B.a>b-1 C.a2>b2 D.a3>b3【解析】(1)当|a·b|=|a//b|时,若a,b中有零向量,显然a//b;若a,b均不为零向量,则|a·b|=|a||b||cosa,b|=|a||b|,∴|cosa,b|=1,∴a,b=π或0,∴a//b,即|a·b|=|a||b|⇒a//b.当a//b时,a,b=0或π,∴|a·b|=||a||b|cosa,b|=|a||b|,其中,若a,b有零向量也成立,即a//b⇒|a·b|=|a||b|,综上知,“|a·b|=|a||b|”是“a//b”的充分必要条件.(2)若a>b+1,则a>b一定成立;但若a>b,a>b+1不一定成立,因此“a>b+1”是“a>b”的一个充分不必要条件;若a>b-1,则a>b不一定成立,不是充分条件;若a2>b2,则a>b不一定成立,不是充分条件;若a3>b3,则a>b一定成立;若a>b,则a3>b3也一定成立,因此“a3>b3”是“a>b”的一个充要条件.【答案】(1)C(2)A【小结】充分条件、必要条件和充要条件反映了条件p与结论q之间的因果关系,在具体判断时,常用如下方法:(1)定义法:①若p⇒q,但q⇒/p,则p是q的充分不必要条件;②若q⇒p,但p⇒/q,则p是q的必要不充分条件;③若p⇒q,且q⇒p,则p是q的充分必要条件,简称充要条件;④若p⇒/q,且q⇒/p,则p是q的既不充分也不必要条件.(2)集合法:如果p,q分别以集合A、集合B的形式出现,那么p,q之间的关系可以借助集合知识来判断.①若A⊆B,则p是q的充分条件;②若A⊇B,则p是q的必要条件;③若A=B,则p是q的充要条件;④若A⊆B,且B⊆A,则p既不是q的充分条件,也不是q的必要条件,即p是q的既不充分也不必要条件.(3)等价法:当某一命题不易直接判断条件与结论的充要关系时,可以利用原命题与其逆否命题的等价性来判断,即判断其逆否命题是否成立.三、变式训练(1)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)设集合A,B,则A⊆B是A∩B=A成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】(1)若φ=0,则f(x)=cosx是偶函数,但是若f(x)=cos(x+φ)(x∈R)是偶函数,则φ=π也成立.故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.(2)由A⊆B,得A∩B=A;反过来,由A∩B=A,且(A∩B)⊆B,得A⊆B.因此,A⊆B是A∩B=A成立的充要条件.【答案】(1)A(2)C命题方向2 充分条件、必要条件、充要条件的应用例2.是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在,求出p的取值范围;否则,说明理由.【解析】由x2-x-2>0,解得x>2或x<-1.令A={x|x>2或x<-1},由题意得B⊆A,即-≤-1,即p≥4,此时x<-≤-1⇒x2-x-2>0,∴当p≥4时,“4x+p<0”是“x2-x-2>0”的充分条件.【小结】(1)设集合A={x|x满足p},B={x|x满足q},则p⇒q可得A⊆B;q⇒p可得B⊆A;p⇔q可得A=B,若p是q的充分不必要条件,则A⊆B.(2)由x2-2x-3>0得,x<-1或x>3.∴q:B={x|x<-1或x>3}.∵p⇒q而q⇒p,∴A B,∴-≤-1,∴m≥3,即m的取值范围是[3,+∞).命题方向3 充要条件的证明例3.已知数列{an}的前n项和Sn=pn+q(p≠0且p≠1).求证:{an}为等比数列的充要条件是q=-1.【解析】充分性:当q=-1时,Sn=pn-1,当n≥2时,an=Sn-Sn-1=pn-1(p-1),当n=1时,也成立,∴数列{an}的通项公式为an=pn-1(p-1).又∵p≠0且p≠1,∴数列{an}为等比数列.必要性:当n=1时,a1=S1=p+q,当n≥2时,an=Sn-Sn-1=pn-1(p-1).∵p≠0且p≠1,又∵{an}为等比数列,综上可知,{an}是等比数列的充要条件是q=-1.【小结】有关充要条件的证明问题,要分清哪个是条件,哪个是结论,谁是谁的什么条件,由“条件⇒结论”是证明命题的充分性,由“结论⇒条件”是证明命题的必要性.证明要分两个环节:一是证充分性;二是证必要性.四、变式训练已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.【证明】必要性:∵a+b=1,∴a+b-1=0,∴a3+b3+ab-a2-b2=(a+b)(a2-ab+b2)-(a2-ab+b2)=(a+b-1)(a2-ab+b2)=0.充分性:∵a3+b3+ab-a2-b2=0,即(a+b-1)(a2-ab+b2)=0,又ab≠0,∴a≠0且b≠0,∴a2-ab+b2=∴a+b-1=0,即a+b=1.综上可知,当ab≠0时,a+b=1的充要条件是a3+b3+ab-a2-b2=0.五、当堂检测1.如果命题“若A则B”的否命题是真命题,而它的逆否命题是假命题,则A 是B的( )条件.A.充分而不必要的条件 B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件【解析】因为逆否命题为假,那么原命题为假,即A /⇒B,又因否命题为真,所以逆命题为真,即B⇒A,所以A是B的必要不充分条件.【答案】B2.不等式成立的一个充分不必要条件是( )A.-1<x<0或x>1 B.x<-1或0<x<1 C.x>1 D.x >1【解析】画出y=x与y=的图象,两图象的交点为(1,1)、(-1,-1),依图知x->0⇔-1<x<0或x>1,显然x>1;但D/⇒x>1.【答案】D3.若集合A={x|x2-5x+4<0},B={x||x-a|<1},则“a∈(2,3)”是“B⊆A”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】A={x|x2-5x+4<0}={x|1<x<4},B={x|a-1<x<a+1}.若B⊆A,则满足解得2≤a≤3,所以“a∈(2,3)”是“B⊆A”的充分不必要条件,选A.【答案】 A4.已知p:x2-4x-5≤0,q:|x-3|<a(a>0).若p是q的充分不必要条件,求a的取值范围.【解】A={x|x2-4x-5≤0}={x|-1≤x≤5},B={x|-a+3<x<a+3},因为p是q的充分不必要条件,从而有A⊆B.故解得a>4.板书充分条件与必要条件。

高考数学-第一章 §1.2 充分条件与必要条件

高考数学-第一章 §1.2 充分条件与必要条件

充分条件与必要条件考试要求理解必要条件、充分条件与充要条件的含义.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p微思考若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.提示若A B,则p是q的充分不必要条件;若A⊇B,则p是q的必要条件;若A B,则p是q的必要不充分条件;若A=B,则p是q的充要条件;若A⃘B且A⊉B,则p是q的既不充分也不必要条件.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当q是p的必要条件时,p是q的充分条件.(√)(2)已知集合A,B,则A∪B=A∩B的充要条件是A=B.(√)(3)q不是p的必要条件时,“p⇏q”成立.(√)(4)若p⇒q,则p是q的充分不必要条件.(×)题组二教材改编2.“x-3=0”是“(x-3)(x-4)=0”的____________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)答案 充分不必要3.“sin α=sin β”是“α=β”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 必要不充分4.函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是________. 答案 m =-2题组三 易错自纠5.设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 答案 C解析 由x >y 推不出x >|y |,由x >|y |能推出x >y ,所以“x >y ”是“x >|y |”的必要不充分条件. 6.已知p :x >a 是q :2<x <3的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,2]解析 由已知,可得{x |2<x <3}{x |x >a },∴a ≤2.题型一 充分、必要条件的判定例1 (1)已知p :⎝⎛⎭⎫12x <1,q :log 2x <0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 由⎝⎛⎭⎫12x <1知x >0,所以p 对应的x 的范围为(0,+∞),由log 2x <0知0<x <1,所以q 对应的x 的范围为(0,1),显然(0,1)(0,+∞),所以p 是q 的必要不充分条件. (2)“a >2,b >2”是“a +b >4,ab >4”的( ) A .充分不必要条件 B .必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若a>2,b>2,则a+b>4,ab>4.当a=1,b=5时,满足a+b>4,ab>4,但不满足a>2,b>2,所以a+b>4,ab>4⇏a>2,b>2,故“a>2,b>2”是“a+b>4,ab>4”的充分不必要条件.思维升华充分条件、必要条件的两种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q对应的集合之间的包含关系进行判断,多适用于条件中涉及参数范围的推断问题.跟踪训练1 (1)已知a,b,c,d是实数,则“ad=bc”是“a,b,c,d成等比数列”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析当a=b=c=d=0时,ad=bc,但a,b,c,d不成等比数列,当a,b,c,d成等比数列时,ad=bc,则“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.(2)设λ∈R,则“λ=-3”是“直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行,则2λ(1-λ)-6(λ-1)=0,解得λ=1或λ=-3,经检验λ=1或λ=-3时两直线平行,故选A.题型二 充分、必要条件的应用例2 已知集合A ={x |x 2-8x -20≤0},非空集合B ={x |1-m ≤x ≤1+m }.若x ∈A 是x ∈B 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴A ={x |-2≤x ≤10}.由x ∈A 是x ∈B 的必要条件,知B ⊆A . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈A 是x ∈B 的必要条件, 即所求m 的取值范围是[0,3].若将本例中条件改为“若x ∈A 是x ∈B 的必要不充分条件”,求m 的取值范围.解 由x ∈A 是x ∈B 的必要不充分条件,知B A , ∴⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m ≤1+m ,1-m >-2,1+m ≤10,解得0≤m ≤3或0≤m <3,∴0≤m ≤3, 故m 的取值范围是[0,3].思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意 (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.跟踪训练2 (1)使2x ≥1成立的一个充分不必要条件是( )A .1<x <3B .0<x <2C .x <2D .0<x ≤2答案 B解析 由2x≥1得0<x ≤2,依题意由选项组成的集合是(0,2]的真子集,故选B.(2)若关于x 的不等式|x -1|<a 成立的充分不必要条件是0<x <4,则实数a 的取值范围是________. 答案 [3,+∞)解析 |x -1|<a ⇒1-a <x <1+a ,因为不等式|x -1|<a 成立的充分不必要条件是0<x <4,所以(0,4)(1-a ,1+a ),所以⎩⎪⎨⎪⎧ 1-a ≤0,1+a >4或⎩⎪⎨⎪⎧1-a <0,1+a ≥4,解得a ≥3.题型三 充要条件的探求例3 已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解 因为mx 2-4x +4=0是一元二次方程, 所以m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎡⎦⎤-54,1. 因为两方程的根都是整数, 故其根的和与积也为整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m 2-4m -5∈Z .所以m 为4的约数. 又因为m ∈⎣⎡⎦⎤-54,1,所以m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根不是整数; 而当m =1时,两方程的根均为整数, 所以两方程的根均为整数的充要条件是m =1.思维升华 探求充要条件的关键在于转化的等价性,解题时要考虑条件包含的各种情况,保证条件的充分性和必要性.跟踪训练 3 (1)命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1 D .a >1答案 B解析 要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,所以a >4是命题为真的充分不必要条件.(2)(2020·武汉质检)关于x 的方程ax 2+bx +c =0(a ≠0)有一个正根和一个负根的充要条件是________. 答案 ac <0解析 ax 2+bx +c =0(a ≠0)有一个正根和一个负根的充要条件是⎩⎪⎨⎪⎧Δ=b 2-4ac >0,c a <0.即ac <0.课时精练1.“log 2(2x -3)<1”是“4x >8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析由log2(2x-3)<1⇔0<2x-3<2⇔32<x<52,4x>8⇔2x>3⇔x>32,所以“log2(2x-3)<1”是“4x>8”的充分不必要条件,故选A.2.设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件答案A解析由(a-b)a2<0可知a2≠0,则一定有a-b<0,即a<b;但是a<b即a-b<0时,有可能a=0,所以(a-b)a2<0不一定成立,故“(a-b)a2<0”是“a<b”的充分不必要条件,故选A. 3.“|x-1|<2”是“x<3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析由|x-1|<2,可得-1<x<3,∵{x|-1<x<3}{x|x<3},∴“|x-1|<2”是“x<3”的充分不必要条件.4.“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析由ln(x+1)<0⇒0<x+1<1,即-1<x<0,故“x<0”是“ln(x+1)<0”的必要不充分条件,故选B.5.若“x>1”是“不等式2x>a-x成立”的必要不充分条件,则实数a的取值范围是() A.a>3 B.a<3C .a >4D .a <4答案 A解析 若2x >a -x ,即2x +x >a .设f (x )=2x +x ,则函数f (x )为增函数.由题意知“2x +x >a 成立,即f (x )>a 成立”能得到“x >1”,反之不成立.因为当x >1时,f (x )>3,∴a >3.6.已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞) D .(-∞,-1]答案 B解析 由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B.7.(多选)若x 2-x -2<0是-2<x <a 的充分不必要条件,则实数a 的值可以是( ) A .1 B .2 C .3 D .4 答案 BCD解析 由x 2-x -2<0,解得-1<x <2. ∵x 2-x -2<0是-2<x <a 的充分不必要条件, ∴(-1,2)(-2,a ),∴a ≥2. ∴实数a 的值可以是2,3,4. 8.(多选)下列说法正确的是( )A .“ac =bc ”是“a =b ”的充分不必要条件B .“1a >1b ”是“a <b ”的既不充分也不必要条件C .若“x ∈A ”是“x ∈B ”的充分条件,则A ⊆BD .“a >b >0”是“a n >b n (n ∈N ,n ≥2)”的充要条件 答案 BC解析 A 项,ac =bc 不能推出a =b ,比如a =1,b =2,c =0,而a =b 可以推出ac =bc ,所以“ac =bc ”是“a =b ”的必要不充分条件,故错误;B 项,1a >1b 不能推出a <b ,比如12>-13,但是2>-3;a <b 不能推出1a >1b ,比如-2<3,-12<13,所以“1a >1b”是“a <b ”的既不充分也不必要条件,故正确;C 项,因为“x ∈A ”是“x ∈B ”的充分条件,所以x ∈A 可以推出x ∈B ,即A ⊆B ,故正确;D 项,a n >b n (n ∈N ,n ≥2)不能推出a >b >0,比如a =1,b =0,1n >0n (n ∈N ,n ≥2)满足,但是a >b >0不满足,所以必要性不满足,故错误.9.已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 命题p 等价于0<a <4.命题q :对∀x ∈R ,ax 2+ax +1>0等价于⎩⎨⎧a =0,1>0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,则0≤a <4,所以命题p 成立是命题q 成立的充分不必要条件. 10.已知f (x )是R 上的奇函数,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 ∵函数f (x )是奇函数,∴若x 1+x 2=0,则x 1=-x 2,则f (x 1)=f (-x 2)=-f (x 2),即f (x 1)+f (x 2)=0成立,即充分性成立;若f (x )=0,满足f (x )是奇函数,当x 1=x 2=2时,满足f (x 1)=f (x 2)=0,此时满足f (x 1)+f (x 2)=0,但x 1+x 2=4≠0,即必要性不成立.故“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件.11.若x ∈{-1,m }是不等式2x 2-x -3≤0成立的充分不必要条件,则实数m 的取值范围是________. 答案 ⎝⎛⎦⎤-1,32 解析 不等式可转化为(x +1)(2x -3)≤0,解得-1≤x ≤32,由于x ∈{-1,m }是-1≤x ≤32的充分不必要条件,结合集合元素的互异性,得到m ∈⎝⎛⎦⎤-1,32. 12.若实数a ,b 满足a >0,b >0,则“a >b ”是“a +ln a >b +ln b ”成立的________条件.(填“充分不必要”“必要不充分”“充要”“即不充分也不必要”) 答案 充要解析 设f (x )=x +ln x ,显然f (x )在(0,+∞)上单调递增, ∵a >b ,∴f (a )>f (b ),∴a +ln a >b +ln b ,充分性成立;∵a +ln a >b +ln b ,∴f (a )>f (b ),∴a >b ,必要性成立,故“a >b ”是“a +ln a >b +ln b ”成立的充要条件.13.(2021·深圳模拟)对于任意实数x ,〈x 〉表示不小于x 的最小整数,例如〈〉=2,〈-〉=-1,那么“|x -y |<1”是“〈x 〉=〈y 〉”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 令x =,y =,满足|x -y |<1,但〈〉=2,〈〉=1,〈x 〉≠〈y 〉,可知充分性不成立.当〈x 〉=〈y 〉时,设〈x 〉=x +m ,〈y 〉=y +n ,m ,n ∈[0,1),则|x -y |=|n -m |<1,可知必要性成立.所以“|x -y |<1”是“〈x 〉=〈y 〉”的必要不充分条件.故选B.14.已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m =1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________________. 答案 ⎣⎡⎦⎤13,38解析 由2-m >m -1>0,得1<m <32,即q :1<m <32.因为p 是q 的充分条件,所以⎩⎪⎨⎪⎧3a ≥1,4a ≤32,解得13≤a ≤38.15.已知集合A =26113x x x --⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎭⎩≤,B ={x |log 3(x +a )≥1},若“x ∈A ”是“x ∈B ”的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,0]解析 由26113x x --⎛⎫⎪⎝⎭≤,得x 2-x -6≥0,解得x ≤-2或x ≥3,则A ={x |x ≤-2或x ≥3}.由log 3(x +a )≥1,得x +a ≥3,即x ≥3-a ,则B ={x |x ≥3-a }.由题意知B A ,所以3-a ≥3,解得a ≤0.16.已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是________.答案 ⎝⎛⎦⎤0,255 解析 画出|x |+|y |2≤1表示的平面区域(图略),由图可得p 对应的平面区域是一个菱形及其内部,当x >0,y >0时,可得菱形的一边所在的直线的方程为x +y 2=1,即2x +y -2=0.由p 是q 的必要不充分条件,可得圆x 2+y 2=r 2的圆心(0,0)到直线2x +y -2=0的距离d =222+1=255≥r ,又r >0,所以实数r 的取值范围是⎝⎛⎦⎤0,255.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析: p : d r ,
q:
直线 l 与 ⊙O 相切.
要证
p 是 q 的充要条件,就是要证明两个命题成
立: ⑴充分性( p q ) ; ⑵必要性( p q )
分别证明,各个击破即可!
例4、 已知:⊙O的半径为r,圆心O到直线L的距离为d. 求证:d=r是直线L与⊙O相切的充要条件. 证明:如图,作 OP l 于点P,则OP=d。 (1)充分性(p q): 若d=r,则点P在 O上。在直线 l 上任取一点 Q(异于点P),连接OQ。 在 Rt OPQ 中,OQ>OP =r. 所以,除点P外直线 l上的点都在 O的外部, 即直线 l 与 O 仅有一个公共点P。
3.条件p:“直线l在y轴上的截距是在x轴上截距的2倍”,
习题1.2
4.求圆(x-a)2+(y-b)2=r2经过原点的充要条件。
2.求证:△ABC是等边三角形的充要条件是 a2+b2+c2=ab+ac+bc, 这里a,b,c是△ABC的三条边。
前面我们接触了许多概念 : 命题、真命 题、假命题、逆命题、否命题、逆否命题、 充分条件、必要条件、充要条件、„„等这 些概念在问题中是会经常出现的,下面通过 做一些习题来把握以上概念及其相关思考 . 特别是对于充要条件的把握在数学学习 中相当重要 , 有位专家说 : “学不会充要条 件,就等于没学会数学 .”由此可见其重要性 , 充要条件渗透到了数学的各个分支和角落 .
如果p q,那么p与q互为充要条件。
补充练习 1.设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是 必要而不充分 “a∈N”的____________________ 条件。 x>1 2.x>2的一个必要而不充分条件是_____________ 。 条件q:“直线l的斜率为-2”,则p是q的充分而不必要 _____________ 条件。 3 5 4. ___________ “cos ” 是 “ 2k , k Z”的必要而不充分 2 6 条件。 5.设p、r都是q的充分条件,s是q的充分必要条件,t是s 充分 条件, 的必要条件,t是r的充分条件,那么p是t的_______ 充要 条件。 r是t的________
充分不必要 ⑴如图①所示,开关 A 闭合是灯泡 B 亮的__________ 条件; ⑵如图②所示,开关 A 闭合是灯泡 B 亮的必要不充分 __________条件; ⑶如图③所示,开关 A 闭合是灯泡 B 亮的__________ 条件; 充要 ⑷如图④所示,开关 A 闭合是灯泡 B 亮的__________条件.




x P 是 x Q 的充要条件, 求实数 a 的取值范围.
4、a∈R,|a|<3成立的一个必要不充分条件是( ) A.a<3 B.|a|<2 C.a2<9 D.0<a<2
5: 求证:△ABC 是等边三角形的充要 条件是: a2+b2+c2=ab+ac+bc
这里a,b,c是△ABC的三条边. 【解题回顾】充要条件的证明一般分两步:
作业: 1.设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是 必要而不充分 “a∈N”的____________________ 条件。 x>1 2.x>2的一个必要而不充分条件是_____________ 。 条件q:“直线l的斜率为-2”,则p是q的充分而不必要 _____________ 条件。 3 5 4. ___________ “cos ” 是 “ 2k , k Z”的必要而不充分 2 6 条件。 5.设p、r都是q的充分条件,s是q的充分必要条件,t是s 充分 条件, 的必要条件,t是r的充分条件,那么p是t的_______ 充要 条件。 r是t的________
1 0, 4.已知 p : x 3x 2 0 , q : 2 x x6
2
则 p 是 q 的________条件, p 是 q 的________条件.
充分不必要
必要不充分
已知p : 整数a是6的倍数,q:整数a是2和3的倍数。 那么p是q的什么条件? q又是p的什么条件?
一般地,如果既有 p q,又有q p,就记作 pq 此时,我们说, p是q的充分必要条件,简称 充要条件。
如果p q,那么p与q互为充要条件。
练习:p:三角形的三条边相等; q:三角形的三个角相等.
学习小结: “” 表示: “充分”的意义; “” 表示: “必要”的意义; 你会发现有四种类型的条件: ⑴充分但不必要条件(如 p q 且 p 緌 q ) ⑵不充分但必要条件(如 p 縬 q 且 p q ) ⑶既不充分但不必要条件(如 p 烤 q 且 p
q q)
⑷既是充分又是必要条件(如 p q 且 p q )
命题的4种情况:
p、q分别表示某条件
1 )p q且q p
则称条件p是条件q的充分不必要条件
2 )p q且q p
则称 p
则称条件p是条件q的充要条件
4 )p q且q p
则称条件p是条件q的既充分也不必要条件

1、填表 p
证充分性即证A =>B, 证必要性即证B=>A
练习: x x 若关于 x 的方程 4 a 2 4 0 有实 {a|a≤-4} 数解, 则实数 a 的取值范围是___________.
注: 这里求取值范围问题 就是 求充要条 件的问题.
课堂练习: 1.在下列电路图中,开关 A 闭合是灯泡 B 亮的什么条件:

q
y是有理数
x5
y是实数
x3
p是q的什么条件 q是p的什么条件 必要 充分 充分 必要
充分 必要 充分 必要 ab 0 a0 充分 ( x 1)( y 2) 0 x 1且y 2 必要
m,n是奇数 ab x A且x B
m+n是偶数 ab x A B
必要 充分 必要 充分 必要 充分
Q
O
P
l
所以直线 l 与 O相切。
(2)必要性(q p): 若直线 l 与 O相切,不妨设切点为P,则 OP l .d=OP=r.
所以,d=r是直线L与⊙O相切的充要条件.
求证: 关于x的方程ax2+bx+c=0有一根为1的充要
条件是a+b+c=0。
课堂小结 1.充分条件、必要条件、充要条件的概念. 2.判断“若p,则q”命题中,条件p是q的什么条 件. 3.充要条件判断: 4.充要条件的证明:(1)充分性;(2)必要性

x a 2 b 2 x 2ab
(2)若ab 0 ,则 a 0 ;

(3)全等三角形的面积相等; 真
两三角形全等 两三角形面积相等 (4)对角线互相垂直的四边形是菱形; 假
2 ax bx c 0(a 0) 有两个不等的实数解, (5)若方程
则b2 4ac 0 .
x a 2 b2是x 2ab的充分条件
x 2ab是x a 2 b2的必要条件
两三角形全等 两三角形面积相等
两三角形全等是两三角形面积相等的充分条件. 两三角形面积相等是两三角形全等的必要条件.
例1:下列“若p,则q”形式的命题中,哪些 命题中的 p是q 的充分条件? (1)若x 1,则x 4 x 3 0;
复 习 旧 知引 入 新 课
1、命题:可以判断真假的陈述句 可以写成:若p则q。 2、四种命题及相互关系
原命题 若 p则 q 互否 互为 互逆 互逆 逆命题 若 q则 p 逆否 互否
否命题 若 p则 q
逆否命题 若 q则 p
判断下列命题是真命题还是假命题: (1)若 x a 2 b2 ,则 x 2ab ;
既不充分也不必要
继续1
继续2
课堂练习 2 2. 方程 ax bx c 0(a 0) 有实数根是 ac 0 的_________ 必要不充分 条件.
x y 4 x 2 必要不充分 3. 是 的_________条件. xy 4 y 2
课堂练习
3.条件p:“直线l在y轴上的截距是在x轴上截距的2倍”,
2.“ a 1 ”是“函数 f ( x) | x a | 在区间 [1,) 上 为增函数”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 2 2 3. 已 知 P x x 2 x 3 0 , Q = x x (a 1) x a 0 且
例3:下列各题中,哪些p是q的充要条件? (1)p : b 0,q : 函数f ( x ) ax 2 bx c是偶函数; (2)p : x 0,y 0,q : xy 0; (3) p : a b,q : a c b c .
解 : 在(1)(3)中,p q,所以(1)(3)中的p是q的充要条件。在 (2)中,q p,所以(2)中的p不是q的充要条件。
q 的 思考:设p是q的充分不必要条件,则 p是
必要不充分
条件.
例4:已知: ⊙ O的半径为r,圆心O到直线l的距离为d。 求证:d r是直线l与⊙ O相切的充要条件。
O
P
Q
例4 已知: ⊙O 的半径为 r ,圆心 O 到直线 l 的距离为 d . 求证: d r 是直线 l 与 ⊙O 相切的充要条件.
上节课我们研究了两个符号:“” 、 “”
“” 表示: “充分”的意义; “” 表示: “必要”的意义.
对于命题“若 p , 则 q”来说,
⑴“若 p , 则 q ”是真命题记为“ p q ” , 我们说 p 是 q 的充分条件; (“有 p 就可推出 q ”之意) ⑵“若 p , 则 q ”的逆命题是真命题记为“ p q ” , 我们说 p 是 q 的必要条件; (“没有 p 就推不出 q ”之意)
相关文档
最新文档