2-2广义逆矩阵
矩阵论广义逆

矩阵论广义逆矩阵是线性代数中的重要概念,广义逆是矩阵论中的一个关键概念。
在矩阵论中,广义逆用于解决矩阵方程的求解问题。
本文将介绍矩阵论中的广义逆以及其应用。
1. 广义逆的定义在矩阵论中,矩阵的广义逆是指对于任意矩阵A,存在一个矩阵X,满足以下条件:1) AXA=A2) XAX=X3) (AX)^T=AX4) (XA)^T=XA广义逆的存在性和唯一性是矩阵论中的一个重要问题,对于满足以上条件的矩阵X,我们称其为A的广义逆,记作A⁺。
2. 广义逆的性质广义逆具有以下性质:1) AA⁺A=A2) A⁺AA⁺=A⁺3) (A⁺)^T=A⁺4) (AA⁺)^T=AA⁺广义逆的性质使得它在矩阵方程的求解中具有重要作用。
3. 广义逆的应用广义逆在矩阵方程的求解中有广泛的应用,下面介绍其中几个常见的应用:3.1 线性方程组的求解对于线性方程组Ax=b,如果A的广义逆A⁺存在,那么方程的解可以表示为x=A⁺b。
广义逆的存在性保证了线性方程组的解的存在性,并且通过广义逆的计算,可以得到解的一个特解。
3.2 最小二乘问题的求解最小二乘问题是指在给定线性方程组Ax=b无解时,求解使得||Ax-b||^2最小的x。
如果A的广义逆A⁺存在,那么最小二乘问题的解可以表示为x=A⁺b。
广义逆的计算可以通过奇异值分解等方法来实现。
3.3 线性回归分析线性回归分析是统计学中的一种重要方法,用于建立自变量与因变量之间的线性关系。
在线性回归分析中,广义逆可以用于求解回归系数,得到最佳拟合直线,并用于预测和推断。
4. 广义逆的计算方法广义逆的计算方法有多种,常见的包括伪逆法、奇异值分解法等。
伪逆法是通过对矩阵A进行分解或变换,得到A的伪逆矩阵。
奇异值分解法则是通过对矩阵A进行奇异值分解,得到A的伪逆矩阵。
这些计算方法都是基于矩阵的特征和性质进行推导和求解的。
5. 广义逆的应用举例以线性方程组的求解为例,假设有如下线性方程组:2x+y=3x+3y=9将其转化为矩阵形式为:A=[2 1; 1 3]b=[3; 9]求解线性方程组的解可以通过计算广义逆来实现。
矩阵的广义逆

矩阵的广义逆矩阵的广义逆,也称为矩阵的伪逆或摩尔-彭若斯广义逆,是指对于任意一个矩阵A,存在一个矩阵A+,使得满足AA+A = A和A+AA+ = A+。
有时也会写作A†来表示矩阵A的广义逆。
对于一个非方阵矩阵,它的伪逆可以分为两种情况:1. 如果矩阵 A 的行数小于列数,那么 A 的伪逆定义为满足 A A+ A = A 的矩阵 A+。
而对于方阵矩阵,它的伪逆和逆矩阵可以等价。
即 A A-1 A = A。
矩阵的广义逆具有以下的性质:1. A+ 也是广义逆矩阵。
即 A++ = A+。
2. A+ 的列空间就是 A 的列空间的伪逆。
即Col(A+) = Col(A)⊥。
其中⊥ 表示正交补。
6. 若 A 是满秩的,则其广义逆 A+ 就是其逆 A-1。
广义逆的应用相当广泛,其中一个典型的例子就是矩阵最小二乘问题。
在最小二乘问题中,我们需要求解一个线性方程组 Ax = b,其中矩阵 A 不一定满秩。
在这种情况下,我们可以使用广义逆来求解这个问题。
具体方法是通过求解矩阵 (ATA)+ ATb 来得到线性方程组的近似解。
由于经过广义逆变换后的矩阵 A+ 可以在秩不足的情况下仍然存在,因此我们可以使用广义逆来获得一个较好的近似解。
同时,广义逆还可以用于求解线性回归、广义线性回归和主成分分析等问题。
总之,矩阵的广义逆是线性代数中一个非常常用的概念,具有广泛应用和重要的数学意义。
通过理解和掌握广义逆的性质和应用,可以帮助我们更好地处理线性方程组等问题,从而有效提高数据分析和科学计算的效率和准确性。
广义逆矩阵(Pseudoinverse)神经网络

广义逆矩阵(Pseudoinverse)在神经网络学习算法中的应用早在20世纪20年代初期,E.H.Moor 就提出了广义逆矩阵的概念,但长期以来广义逆矩阵的研究却没有受到人们的注意。
直到1955年,随着科学技术的迅猛发展,特别是电子计算机的出现,推动了计算科学的进步。
R.Penrose又独立提出广义逆矩阵的概念后,情况才开始发生了变化。
由于广义逆矩阵在测量学,统计学等多领域中得到了广泛应用,产生了巨大的推动力量,使其在之后的近四十年的时间得到了迅猛发展,形成了完整的理论体系。
一.广义逆矩阵若A为非奇异矩阵,则线性方程组Ax=b的解为x=A1-b,其中A的逆矩阵A1-满足A1-A=A A1-=I(I为单位矩阵)。
若A是奇异阵或长方阵,Ax=b可能无解或有很多解。
若有解,则解为x=Xb+(I-XA)у,其中у是维数与A 的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用A g-、A-或A1-等符号表示,有时简称广义逆或伪逆。
当A 非奇异时,A1-也满足A A1-A=A,且x= A1-b+(I- A1-A)у= A1-b。
故非异阵的伪逆矩阵就是它的逆矩阵,说明伪逆矩阵确是通常逆矩阵概念的推广。
1955年R.彭罗斯证明了对每个m×n阶矩阵A,都存在唯一的n×m阶矩阵X,满足:①AXA=A;②XAX=X;③(AX)H=AX;④(XA)H=XA。
通常称X为A的穆尔-彭罗斯广义逆矩阵,简称M-P逆,记作A1-。
当A非奇异时,A1-也满足①~④,因此M-P逆也是通常逆矩阵的推广。
在矛盾线性方程组Ax=b的最小二乘解中,x=A1-b是范数最小的一个解。
若A是n阶方阵,k为满足(图1)的最小正整数(rank为矩阵秩的符号),记作k=Ind(A),则存在唯一的n阶方阵X,满足:(1) AkXA=Ak;(2) XAX=X;(3) AX=XA。
通常称X为A的德雷津广义逆矩阵,简称D逆,记作Ad,A(d)或AD等。
广义逆矩阵的计算方法及意义

广义逆矩阵的计算方法及意义广义逆矩阵是矩阵理论中的一个非常重要的概念,它不仅在数值计算中具有重要意义,而且在优化理论、信号处理以及系统控制等领域也广泛应用。
本文将从广义逆矩阵的定义、计算方法及其意义等方面阐述这一重要概念。
一、广义逆矩阵的定义广义逆矩阵的定义是指,对于任意的一个矩阵A ∈ Rm×n,若存在一个矩阵A+ ∈ Rn×m,使得下列两个条件成立,即:A × A+ × A = AA+ × A × A+ = A+则称A+为A的广义逆矩阵。
其中,A+也满足下列两个条件:(A × A+)T = A × A+(A+ × A)T = A+ × A需要注意的是,如果A的列线性无关,则A+实际上就是A的逆矩阵。
二、广义逆矩阵的计算方法广义逆矩阵的计算方法有以下几种:(1)矩阵求导法矩阵求导法是一种比较简单的计算广义逆矩阵的方法。
它的基本思想是,将A与A的转置相乘,得到一个对称矩阵B,然后对B进行求导,最终就可以得到广义逆矩阵A+。
但是,这种方法的计算复杂度较高,适用范围也比较狭窄。
(2)奇异值分解法奇异值分解法是一种较广泛使用的计算广义逆矩阵的方法。
该方法的基本思想是,将A进行奇异值分解,得到A = UΣVT,然后对Σ进行逆运算,得到Σ+,最后通过A+ = VΣ+UT,就可以得到广义逆矩阵A+。
(3)正交交替投影法正交交替投影法是一种可以解决较大规模矩阵计算问题的方法。
该方法的基本思想是,通过Von Neumann展开,将广义逆矩阵的计算转化为一个正交投影问题,然后利用正交的性质以及平衡收敛的原理,不断迭代求解,最终得到广义逆矩阵A+。
三、广义逆矩阵的意义广义逆矩阵作为一种重要的矩阵理论工具,具有许多重要的应用意义,下面我们对其进行简单的介绍:(1)最小二乘法在数据处理的过程中,经常会出现数据不完备或者存在噪声的情况。
2-2 广义逆矩阵

§2 矩阵的广义逆一、广义逆矩阵的概念定义1 设任意一个矩阵n m R A ⨯∈,若存在矩阵m n R X ⨯∈,满足 AXA =A (1) XAX =X (2) (AX )T =AX (3) (XA )T =XA (4) 这四个方程中的一个、两个、三个或全部,则称X 为A 的广义逆矩阵。
由上面的定义可知,广义逆矩阵有15C C C C 44342414=+++中之多。
本节介绍应用广泛的减号广义逆和加号广义逆。
定义2 对矩阵n m R A ⨯∈,一切满足方程组A AXA =的矩阵X ,称为矩阵A 的减号逆或g-逆。
记为-A 。
例如,⎪⎭⎫ ⎝⎛=010001B ,⎪⎭⎫ ⎝⎛=100001C 都是⎪⎪⎭⎫ ⎝⎛=010101A 的减号逆。
下面的定理解决了-A 的存在性和构造性问题。
定理1(秩分解) 设A 为n m ⨯矩阵,()rank A r =,若Q O O O I P A r ⎪⎭⎫ ⎝⎛=, 或⎪⎪⎭⎫ ⎝⎛=--O O O I AQ P r 11 这里P ,Q 分别为n n m m ⨯⨯,的可逆阵,则12221121---⎪⎭⎫ ⎝⎛=P G G G I Q A r (5) 其中222112,,G G G 是相应阶数的任意矩阵。
证明 设X 为A 的广义逆,则有Q O O O I P Q O O O I QXP O O O I P A AXA r r r ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⇔= ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⇔O O O I O O O I QXP O O O I r r r 若记⎪⎪⎭⎫ ⎝⎛=22211211G G G G QXP 则上式,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⇔00000011r I G r I G =⇔11 于是, 12221121--⎪⎪⎭⎫ ⎝⎛=⇔=P G G G I Q X A AXA r 其中222112,,G G G 任意. 证毕.定理1不但表明矩阵的减号逆总是存在的,通常也是不唯一的,而且还给出了计算减号逆的方法。
浅介几种广义逆矩阵及其应用

浅介几种广义逆矩阵及其应用矩阵理论既是学习经典数学的基础,又是一门最有实用价值的数学理论。
其中所涉及到的一个重要分支——广义逆矩阵,有许多好的性质和用途,已成为许多领域研究并解决问题的强有力工具,是矩阵理论在最近几十年中的新成就之一。
本文主要介绍[]几种常用广义逆矩阵的基本知识及广义逆矩阵在生产生活中的应用。
标签:广义逆矩阵;基本介绍;应用1 背景介绍广义逆产生于线性方程组求解的实际需要,其思想可追溯到1903年E.I.弗雷德霍姆所研究的关于积分算子的一种广义逆,随后由E.H.Moore在1920年提出任意矩阵的广义逆定义,然而在其后的30年却未能引起人们关注,直到1955年,R.Penrose定义了Moore的广义逆矩阵之后,广义逆矩阵的发展才开拓了一片新的天地。
后来人们证明Moore和R.Penrose的两种广义逆矩阵是等价的,因而被称为M一P广义逆矩阵。
至此,广义逆矩阵正式诞生,此后的逐步发展也使其具有了广泛的应用。
2 几种常见广义逆矩阵的简单介绍我们引用方便的M—P方法来定义广义逆矩阵:设任意复数矩阵Amn,如果存在复数矩阵Bnm,满足M-P方程,即(1)ABA=A(2)BAB=B(3)(AB)H=AB(4)(BA)H=BA的全部或一部分,则称B为A的广义逆矩阵。
由此易推算广义逆矩阵有15种。
在这里,重点研究和介绍五种,即:A-、自反广义逆Ar-,极小范数广义逆Am-,最小二乘广义逆Al-及伪逆矩阵A+。
2.1 A-满足方程(1)的记为A-,其重要性质有:(1)A广义逆的转置等于A转置的广义逆,即(AT)-=(A-)T;(2)若复方阵A满秩,那么A的逆等于A的广义逆,且A-唯一;(3)秩(A)≤秩(A-);(4)秩(A)=秩(AA-)=秩(A-A);(5)线性方程组Ax=b有解(相容)当且仅当AA-b=b。
2.2 自反广义逆Ar-满足方程(1)和(2)的是自反广义逆。
若X、Y都是A的广义逆矩阵,则Z=XAY是A的自反广义逆。
广义逆矩阵

广义逆矩阵许多书籍和期刊文章都提到了广义逆矩阵,或者称之为广义反矩阵。
它是一种强大而又具有广泛应用的数学工具,用于解决复杂的方程组。
广义逆矩阵概念最初源自20世纪30年代,最初是由美国数学家和物理学家约翰芬奇发明的。
他称其为“广义反矩阵”,它和传统的逆矩阵有很多共同点,但也有很多不同之处。
广义逆矩阵是指一个任意维数的方阵,该方阵乘以之前的方阵可以得到一个对角矩阵,称作对角矩阵的逆矩阵。
它也可以描述为一个方阵,该方阵乘以另一个方阵给出一个单位矩阵,称作单位矩阵的逆矩阵。
表达式一般可以写作A^-1=B,其中A是一个任意维数的方阵,B是A的广义逆矩阵。
广义逆矩阵有许多应用,它可以用于求解方程组,而无需解析解的方法。
也可以用于信号处理和图像处理,以及几何建模。
此外,它还可以用于机器学习,深度学习和神经网络。
许多学术期刊上的文章都着重讨论了广义逆矩阵的特性、表示形式和应用。
其中包括《The Journal of Mathematical Analysis and Applications》中的《An Efficient Algorithm for Computing Generalized Inverse Matrices》,该文章探讨了一种计算广义逆矩阵的有效算法;《 Linear Algebra and Its Applications》中的《On Computing the Generalized Inverse Matrix》,则讨论了计算广义逆矩阵的一些经典算法;《Journal of Computational and Applied Mathematics》中的《A Generalized Inverse Matrix Algorithm andIts Application in Image Processing》则探讨了广义逆矩阵在图像处理中的应用。
总之,广义逆矩阵是一种强大的数学工具,它可以用于求解复杂的方程组,可以应用于信号处理、图像处理、机器学习和神经网络等领域。
矩阵论第8章广义逆矩阵及其应用

由定义不难看出:
A A{1,2} A{1} ;A A{1,3} A{1} ;A A{1,4} A{1} .
1 例 8.1.1 设 A 1
1
0 0 0
,
B
1 0
0 1
0 0
,
C
1 0
0 0
0 1
,由于
ABA A, ACA A ,
所以, B 与 C 均为 A 的减号逆.
同理 G1 A G2 A .
所以 G1 G1 AG1 G1 AG2 G2 AG2 G2 ,
故加号逆是唯一的.
8.1.3 广义逆矩阵的计算: 1. 减号逆 AGA A
定 理 8.1.2 设 A 是 m n 矩 阵 , rank( A) r , 非 奇 异 矩 阵
P C mm , Q C nn
本章着重介绍几种常见的广义逆矩阵及其在解线性方程组中 的应用.
8.1 矩阵的几种广义逆
8. 1. 1 广义逆矩阵的基本概念
定 义 8.1.1 设 A C mn 为 任 意一个 复 数 矩阵 , 如果 存 在复 矩 阵
G C nm ,满足 AGA A , GAG G ,
(8.1.1) (8.1.2)
P
3 0 2
2 0 1
7 1 1 0 4 g31
0 1
1 g32
0
10
3 7g31 g31
2 4g31
2 7g32 g32 ,
1 4g32
其中, g31 , g32 是任意常数.
特别地,取 g31 0, g32 0 ,得 A 的一个减号逆:
A
3 0
2
2 0 . 1
1 2
3 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2 矩阵的广义逆一、广义逆矩阵的概念定义1 设任意一个矩阵n m R A ⨯∈,若存在矩阵m n R X ⨯∈,满足 AXA =A (1) XAX =X (2)(AX )T =AX (3)(XA )T =XA (4) 这四个方程中的一个、两个、三个或全部,则称X 为A 的广义逆矩阵。
由上面的定义可知,广义逆矩阵有15C C C C 44342414=+++中之多。
本节介绍应用广泛的减号广义逆和加号广义逆。
定义2 对矩阵n m R A ⨯∈,一切满足方程组A AXA =的矩阵X ,称为矩阵A 的减号逆或g-逆。
记为-A 。
例如,⎪⎭⎫ ⎝⎛=010001B ,⎪⎭⎫ ⎝⎛=100001C 都是⎪⎪⎭⎫ ⎝⎛=010101A 的减号逆。
下面的定理解决了-A 的存在性和构造性问题。
定理1(秩分解) 设A 为n m ⨯矩阵,()rank A r =,若Q O O O I P A r ⎪⎭⎫ ⎝⎛=, 或⎪⎪⎭⎫ ⎝⎛=--O O O I AQ P r 11这里P ,Q 分别为n n m m ⨯⨯,的可逆阵,则12221121---⎪⎭⎫ ⎝⎛=P G G G I Q A r (5) 其中222112,,G G G 是相应阶数的任意矩阵。
证明 设X 为A 的广义逆,则有Q O O O I P Q O O O I QXP O O O I P A AXA r r r ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⇔= ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⇔O O O I O O O I QXP O O O I r r r 若记⎪⎪⎭⎫ ⎝⎛=22211211G G G G QXP 则上式,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⇔00000011r I G r I G =⇔11 于是, 12221121--⎪⎪⎭⎫ ⎝⎛=⇔=P G G G I Q X A AXA r 其中222112,,G G G 任意. 证毕.定理1不但表明矩阵的减号逆总是存在的,通常也是不唯一的,而且还给出了计算减号逆的方法。
推论:若A 右逆,则1211---⎪⎪⎭⎫ ⎝⎛=P G I Q A m ; 若A 左逆,则()1112n A Q I G P ---=。
例 1 设⎪⎭⎫ ⎝⎛-=210121A , 求-A 。
解 经过初等变换可得 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛00100002100050110010210010010000010000011021001121032I I A 于是⎪⎭⎫ ⎝⎛-=-10211P,⎪⎪⎭⎫ ⎝⎛-=-1002105011Q 故 ⎪⎪⎭⎫ ⎝⎛+-+--+--=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=---21121121121121212241251025110211001100210501t t t t t t t t t t t P G I Q A 其中21,t t 是任意数。
再如:,0011⎪⎭⎫ ⎝⎛=A 则任意a a A ,001⎪⎭⎫ ⎝⎛=-. 推论(1)对任意矩阵n m A ⨯,-A 总是存在且不唯一,全体记为{}1A . 一般情况:设Q P A n m ,,⨯是奇异方阵,且PAQ B =,-A 是A 的减号逆,则{}111B P A Q ∈---,1)(---=P A PA ,---=A Q AQ 1)(。
(2)-A 唯一⇔A 为可逆矩阵。
此时1--=A A (正则逆);(3)r AA rank A A rank A rank A rank ===≥---)()()()(,且()()()T R A R AA R AA -==;()()N A A N A -=。
Q C I Q A A P G I P AA r r ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=----00,00 11 (4)------AA I A A I AA A A m n ,, ,都是幂等矩阵,且r A rank AA rank A A rank AA tr A A tr =====----)()()()()(。
(5)若()(),()()T R B R A R C R A ⊂⊂,则B A C T -与-A 的选择无关;(6)--=)()(T T A A ;(7)T T A A A A -)(与广义逆-)(A A T 的选择无关(选择合适的逆);(8),)(A A A A A A T T =- ,)(T T T T A A A A A A =-若P 正定,则,)()(A PA A PA A A T T =-()()T T T T A PA A PA A A -=;(9)A A AGA A A AGA T T =⇔=;(10)⎩⎨⎧≠===-+-+-0,0,0,)(1λλλλλλA A ; (11));()())((A rank AB rank A A AB AB =⇔=-);()()(B rank AB rank B AB AB B =⇔=-(12)A A ≠--)(,如⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1001,0101B A ,则A B B A ≠=--但,。
证明)4(~)1(,(10)可以从定理1和广义逆的定义得到证明。
(5)的证明如下, 由)()()(T T T T T T A A A A A A A AA A ----=⇒=⇒=.(6)由()()T T R A R A A =,知存在矩阵B ,使得AB A A T T =。
于是,T T A A A A -)(=()T T T T T T B A A A A A AB B A AB -=,与-)(A A T 的选择无关。
(7)记A A A A A A F T T -=-)(,利用广义逆的定义,可以验证:,0=F F T 于是0=F .第一式得证。
同理可证其它两式。
(8)必要性是显然的,下面证充分性。
设0=-⇒=A A AGA A A A AGA A T T T T ,因为O A A AGA A E G A A AGA A A G A A AGA A AGA T T T T T T T T T =--=--=--))(())(()()(所以, 0=-A AGA , 也就是A AGA =.定理2 设有一固定的-A ,则A 的减号逆的通式为(1)W V W A A I AA I V A G n m ,,)()(----+-+=是相应的任意矩阵;(2)V AVAA A V A G ,----+=是相应的任意矩阵。
证明(1)由W A A A I A A AA I AV A AA AGA n m )()(----+-+=AW A AA AW A A AV AA AV A A ---+-+=A AWA AWA AVA AVA A =-+-+=知G 是A 的减号逆。
反之,设G 是A 的某个减号逆,令--=-=VAA W A G V ,,并注意到O A A A AA AGA A A G A AVA =-=-=-=--)(有WA A I AA I V A VAA A A I AA I V A A AVA A A G A G n m n m )()()()()()(------------+-+=-+-+=--+=(2)由A AUA AUA A A AUAA AA AUA A AA AGA =-+=-+=--- 即证G 是A 的减号逆;反之,设G 是A 的某个减号逆,令--=A G V ,并注意到 -----------=-=AA AA A AGAA A AA A G A A AVAA A )(O AA A AA A =-=----,有---------+=---+=AVAA A V A AA A G A A A G A G )()( 证毕.定理1和定理2以后都称为矩阵A 的减号逆的一般表达式。
推论:,()()AA B B A R B R A --=∀⇔⊂。
证明:由,()()AA B B A R B R A --=∀⇒⊂;反之由()()R B R A ⊂⇒ A At At AA B AA t At B ∀===⇒∃=--,,B ,即证结论.下面的两个定理圆满地解决了用广义逆矩阵表示相容线性方程组解集的问题。
定理3 设b Ax =为一相容方程组,则(1)对任一广义逆-A ,b A x -=必为解;(2)齐次方程组0=Ax 的通解为z A A I x )(--=,这里z 为任意的向量,-A 为任意固定的一个广义逆;(3)b Ax =的通解为 z A A I b A x )(---+=其中-A 为任一固定的广义逆,z 为任意向量.证明(1)由相容性假设知,存在0x ,使b Ax =0。
故对任一-A ,b Ax Ax AA b A A ===--00)(,即b A x -=为解。
(2)设0x 是0=Ax 的任一解,即00=Ax ,那么0000)()(x A A I Ax A x A A I x ----=+-=即任一解都取z A A I )(--的形式。
反过来,对任意的z ,因0)()(=-=---z A AA A z A A I A 。
故z A A I )(--必为解.(3)任取定一个广义逆-A ,有(1)知b A x -=1为方程组b Ax =的一个特解。
由(2)知z A A I x )(2--=为齐次方程组00=Ax 的通解。
依非齐次线性方程组的解结构定理知,21x x +为b Ax =的通解。
证毕。
定理4 设b Ax =为相容线性方程组,且0≠b ,那么,当-A 取遍A 的所有广义逆时,b A x -=构成了该方程组的全部解。
证明证明由两部分组成。
其一,要证对每一个-A ,b A x -=为b Ax =的解,这已在前一定理中证明过了。
其二,要证b Ax =的任意解0x ,必存在一个-A ,使b A x -=0,由定理3知,存在A 的一个广义逆G 及0z ,使得00)(z GA I Gb x -+=因0≠b ,故总存在矩阵U ,使Ub z =0。
例,可取T T b b b z U 10)(-=。
于是Hb b U GA I G Ub GA I Gb x ∆=-+=-+=))(()(0 其中,U GA I G H )(-+=。
易验证H 为一个-A 。
定理得证。
注:(1)两个定理给出了相容线性方程组解(用广义逆表示)的两种形式,一种-A 固定,另一种-A 不固定。
(2)相容线性方程组b Ax =有唯一解的充分必要条件是A 列满秩。
定理 5 (Penrose 定理) 设q m q p n m C B A ⨯⨯⨯,,,则矩阵方程C AXB = (6)有解的充要条件是C B CB AA =-- (7) 且在有解的情况下,其通解为-----+=AYBB A Y CB A X (8)其中p n R Y ⨯∈是任意矩阵。