理解和运用单项式与多项式相乘的法则时应注意哪几点?

合集下载

沪教版七年级上册 整式乘法-带答案

沪教版七年级上册 整式乘法-带答案
2.单项式与多项式乘法法则及其应用
3.多项式与多项式相乘法则的推导
教学难点:
1.分清单项式与单项式相乘中,幂的运算法则
2.单项式与多项式相乘时结果的符号的确定
3.多项式与多项式相乘的应用
考点及考试要求:
1. 单项式与单项式相乘的法则,能够熟练地进行单项式的乘法计算
2. 单项式与多项式相乘的法则及推导
2、已知:多项式 与3x+1的积中含 项的系数为10,且积中不含x项,求a、b的值。
a=3,b=-1
自我测试
一、选择题:
1、下列说法中,不正确的是( D )
A.单项式乘以单项式,其结果一定仍是单项式
B.两个单项式相乘,积的系数是这两个单项式系数的积
C.两个单项式相乘,每一个因式所含字母都在结果里出现
方法提炼
1、展开式中不含某一项,说明该项的系数为0
2、整式的乘法会联合同类项出考题,所以要熟练掌握理解定义
3、运用整式乘法的运算规律,可以简化运算
巩固练习
一、填空题:
1、 .2
2、
3、 =
4、 。
5、若 ,则A=__________。
二、选择题:
1、若多项式 ,则a、b的值为( D )
A.a=2,b=3 B. a=2,b=-3 C. a=-2,b= -3 D. 都不对
(1)原式= (2)原式= (3)原式=
2、计算:
(1)
(2)
(3)
(4)
分析:观察原式和计算结果,会发现积的最高次项和常数项恰好分别是两个因式的最高次项的乘积和两个常数项的乘积,比较两个代数式的同次项的方法,特别是比较其最高次项和常数项的方法,在考试中经常用到。
解:(1)原式= (2)原式=

华师大版数学八年级上册《单项式与多项式相乘》说课稿2

华师大版数学八年级上册《单项式与多项式相乘》说课稿2

华师大版数学八年级上册《单项式与多项式相乘》说课稿2一. 教材分析华师大版数学八年级上册《单项式与多项式相乘》这一节内容,是在学生已经掌握了单项式和多项式的概念,以及它们的加减运算的基础上进行讲解的。

这部分内容主要让学生了解和掌握单项式与多项式相乘的法则,并能够熟练地进行计算。

教材通过例题和练习题的形式,帮助学生理解和巩固这一知识点。

在教材的编写上,注重了知识的递进性和学生的实际情况,使学生能够更好地理解和运用这一部分内容。

二. 学情分析在教学《单项式与多项式相乘》这一节内容时,我了解到学生们在之前的学习中已经掌握了单项式和多项式的基本概念和运算方法,对于新的知识有一定的接受能力。

但是,由于学生们在之前的学习中,对于数学的抽象思维能力培养还不够,所以在学习这一部分内容时,可能会感到有些困难。

因此,在教学过程中,我需要注重引导学生理解和掌握单项式与多项式相乘的法则,并通过大量的练习题,让学生熟练地进行计算。

三. 说教学目标1.知识与技能目标:让学生理解和掌握单项式与多项式相乘的法则,能够熟练地进行计算。

2.过程与方法目标:通过例题和练习题的讲解,培养学生的数学抽象思维能力,提高学生的解题能力。

3.情感态度与价值观目标:让学生在学习的过程中,体验到数学的乐趣,激发学生学习数学的兴趣。

四. 说教学重难点1.教学重点:单项式与多项式相乘的法则。

2.教学难点:如何引导学生理解和掌握单项式与多项式相乘的法则,以及如何让学生熟练地进行计算。

五. 说教学方法与手段在教学《单项式与多项式相乘》这一节内容时,我将采用讲解法、例题解析法、练习法等教学方法。

同时,利用多媒体教学手段,如PPT等,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过复习单项式和多项式的概念和运算方法,引出本节课的内容——单项式与多项式相乘。

2.讲解:讲解单项式与多项式相乘的法则,并通过PPT展示相关的例题,让学生直观地理解知识。

3.练习:让学生通过练习题,巩固所学知识,并及时给予解答和指导。

单项式与多项式相乘知识点

单项式与多项式相乘知识点

单项式与多项式相乘一、知识结构二、重点、难点分析本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。

1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即其中,可以表示一个数、一个字母,也可以是一个代数式.2.利用法则进行单项式和多项式运算时要注意:(1)多项式每一项都包括前面的符号,例如中的多项式,共有两项,就是.运用法则计算时,一定要强调积的符号. (2)单项式必须和多项式中的每一项相乘,不能漏乘多项式中的任何一项.因此,单项式与多项式相乘的结果是一个多项式,其项数与因式中多项式的项数相同.(3)对于混合运算,要注意运算顺序,同时要注意:运算结果如有同类项要合并,从而得出最简结果.3﹒根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的符号; 4﹒非零单项式乘以不含同类项的多项式,乘积仍然是多项式;积的项数与所乘多项式的项数相等;5﹒对于含有乘方、乘法、加减法的混合运算的题目,要注意运算顺序;也要注意合并同类项,得出最简结果.三、教法建议1.单项式与多项式相乘的基本依据是乘法分配律,故在本课开始先讲述乘法分配律,由有理数过渡到字母.2.由乘法分配律过渡到单项乘多项式的法则时,也可以采用以下代换的方法,如计算:(-4x2)·(2x2+3x-1).设m=-4x2,a=2x2,b=3x,c=-1,∴(-4x2)·(2x2+3x-1)=m(a+b+c)=ma+mb+mc=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)=-8x4-12x3+4x2.这样过渡较自然,同时也渗透了一些代换的思想.3.单项式与多项式相乘,积仍是多项式,它的项数与多项式的项数相同.这是单项式与多项式相乘的结果,这个结果也是我们掌握法则的关键.一般说来,对于一个运算法则的掌握应从分析结果开始,分析结果的结构,分析结果与各算式的关系,这样才能较好地掌握法则.教学设计示例一、教学目标1.理解和掌握单项式与多项式乘法法则及推导.2.熟练运用法则进行单项式与多项式的乘法计算.3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的数学美.二、学法引导1.教学方法:讲授法、练习法.2.学生学法:学习单项式与多项式相乘的运算法则是运用了“转化”的数学思想方法,利用分配律把单项式乘以多项式问题转化为前面学过的单项式与单项式相乘;最后再合并同类项,故在学习中应充分利用这种方法去解题.三、重点·难点·疑点及解决办法(一)重点单项式与多项式乘法法则及其应用.(二)难点单项式与多项式相乘时结果的符号的确定.(三)解决办法复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项式乘单项式后符号确定的问题.四、课时安排一课时.五、教具学具准备投影仪、胶片.六、师生互动活动设计1.设计一道可运用乘法分配律进行简便运算的题目,让学生复习乘法分配律,并为引入单项式与多项式的乘法法则打下良好的基础.2.通过面积分割法,形象直观地引入单项式与多项式的乘法法则,并引导学生用文字语言概括出其结论.3.通过举例,教师分析、讲解并示范板书全过程,让学生规范解题过程,再通过反复的练习巩固所学过的法则.七、教学步骤(一)明确目标本节课重点学习单项式与多项式的乘法法则及其应用.(二)整体感知单项式乘以多项式的乘法运算主要是将它转化为单项式与单项式的乘法运算,放首先应适当复习并掌握单项式与单项式的乘法运算方法,再在计算过程中注意单项式与多项式相乘后的符号问题.(三)教学过程1.复习导入复习:(1)叙述单项式乘法法则.(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)(2)什么叫多项式?说出多项式的项和各项系数.2.探索新知,讲授新课简便计算:引申:计算,基中m、a、b、c都是单项式,因为式中字母都表示数,故分配律对代数式也适用,则引导学生用学过的长方形面积知识加以验证,把宽为m,长分别是a、b、c的三个小长方形拼成大长方形,研究图形面积的整体与部分关系.由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.例1 计算:(1)(2)说明:计算按课本,讲解时,要紧扣法则:①用单项式遍乘多项式的各项,不要漏乘.②要注意符号,多项式的每一项包括它前面的符号.③“把所得积相加”时,不要忘了加上加号.例2 化简:化简按课本,化街时直接写成省略加号的代数和,注意正确表达,做完乘法后,要合并同类项.练习:错例辨析(1)(2)(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为(四)总结、扩展1.由学生叙述单项式与多项式相乘法则,并回答积仍是多项式,积的项数与多项式因式的项数相同.2.考点剖析:单项式乘以多项式这一知识点在中考试卷中都是以与其他知识综合命题的形式考查的.但它是多项式乘法、因式分解、分式通分、解分式方程等知识的重要基础.故必须掌握好.如。

人教版数学八年级上册《单项式乘单项式和单项式乘多项式》说课稿2

人教版数学八年级上册《单项式乘单项式和单项式乘多项式》说课稿2

人教版数学八年级上册《单项式乘单项式和单项式乘多项式》说课稿2一. 教材分析《单项式乘单项式和单项式乘多项式》是人教版数学八年级上册的一章内容。

这一章主要介绍了单项式乘以单项式和单项式乘以多项式的运算法则。

通过这一章的学习,学生能够掌握单项式乘法的运算方法,并能够运用到实际问题中。

在教材中,首先介绍了单项式的定义和特点,然后引出了单项式乘以单项式的运算法则。

接着,通过实例的讲解和练习,让学生理解和掌握单项式乘以多项式的运算法则。

最后,通过巩固练习和拓展应用,使学生能够熟练运用所学知识解决实际问题。

二. 学情分析在八年级的学生中,他们已经学过单项式的定义和特点,对基本的数学运算也有一定的了解。

但是,对于单项式乘以多项式的运算,他们可能还存在一些困难和模糊的地方。

因此,在教学过程中,需要通过实例的讲解和练习,让学生清晰地理解和掌握单项式乘法的运算方法。

同时,八年级的学生已经具备了一定的逻辑思维和解决问题的能力,他们可以通过实例的分析和练习,逐步掌握单项式乘法的运算规律。

因此,在教学过程中,可以引导学生通过自主学习和合作交流,提高他们对单项式乘法的理解和运用能力。

三. 说教学目标1.知识与技能目标:学生能够理解单项式乘以单项式和单项式乘以多项式的运算法则,并能够运用到实际问题中。

2.过程与方法目标:学生能够通过实例的分析和练习,掌握单项式乘法的运算方法,并能够运用到实际问题中。

3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:学生能够理解和掌握单项式乘以单项式和单项式乘以多项式的运算法则。

2.教学难点:学生能够理解和掌握单项式乘以多项式的运算规律,并能够运用到实际问题中。

五. 说教学方法与手段在教学过程中,我会采用以下方法和手段:1.实例讲解:通过具体的实例,让学生理解和掌握单项式乘法的运算方法。

2.练习巩固:通过练习题目的布置和讲解,让学生巩固所学知识,并能够运用到实际问题中。

单项式与多项式相乘完整版课件PPT

单项式与多项式相乘完整版课件PPT

三.选择
下列计算错误的是( D ) (A)5x(2x2-y)=10x3-5xy (B)-3xa+b •4xa-b=-12x2a (C)2a2b•4ab2=8a3b3 (D)(-xn-1y2)•(-xym)2=xnym+2
=(-xn-1y2)•(x2y2m=) -xn+1y2m+2
四:解方程
7x-(x–3)x–3x(2–x)=(2x+1)x+6
2.4(a-
4a-4b+4
b3+.13)x=(_2_x_-_y_2_)_=____6__x__2__-__3__x__y__2_____________
4.-3x(2x-5y+6z)=__-_6_x_2_+1_5_x_y_-_1_8_xz____ 5.(-2a2)2(-a-2b+c)=-_4_a_5_-_8_a4_b_+_4_a_4_c__
3.不要出现漏乘现象,运算要有顺序。
注:
单项式与多项式相乘时,分两个阶段: ①按乘法分配律把乘积写成单项式 与单项式乘积的代数和的形式; ②单项式的乘法运算。
作业:
一、教科书P104习题14.1第3(4)、4题。
二、已知 a 2 ,b 3 求
3ab(a2b ab2 ab) ab2 (2a2 3ab 2a) 的值。
想一想
如何进行单项式的乘法运算? 单项式的系数? 相同字母的幂? 只在一个单项式里含有的字母?
(系数×系数)×(同字母幂相乘)×单独的幂
计算
( 2a2b3c) (-3ab) = -6a3b4c
问题: 怎样算简便?
6(1 1 1) 236
=6×
1 2
+6×

湘教版数学七年级下册2.1.4《单项式与多项式相乘》说课稿

湘教版数学七年级下册2.1.4《单项式与多项式相乘》说课稿

湘教版数学七年级下册2.1.4《单项式与多项式相乘》说课稿一. 教材分析《单项式与多项式相乘》是湘教版数学七年级下册第2.1.4节的内容。

本节课主要让学生掌握单项式与多项式相乘的法则,并能运用这一法则解决实际问题。

这一内容是初中数学中的基础,对于学生后续学习代数方程、不等式等知识有着重要的影响。

二. 学情分析面对七年级的学生,他们对数学已有一定的认识和基础,但在单项式与多项式相乘方面可能还存在一定的困难。

因此,在教学过程中,我们需要关注学生的实际情况,引导学生通过自主学习、合作交流等方式,理解和掌握单项式与多项式相乘的法则。

三. 说教学目标1.知识与技能目标:让学生掌握单项式与多项式相乘的法则,能够正确进行计算。

2.过程与方法目标:通过自主学习、合作交流等环节,培养学生解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极思考、勇于探索的精神。

四. 说教学重难点1.教学重点:单项式与多项式相乘的法则。

2.教学难点:如何引导学生理解和运用单项式与多项式相乘的法则解决实际问题。

五. 说教学方法与手段在本节课中,我将采用自主学习、合作交流、讲解演示等教学方法。

同时,利用多媒体教学手段,如PPT、动画等,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考单项式与多项式相乘的方法。

2.自主学习:让学生自主探究单项式与多项式相乘的法则,引导学生发现规律。

3.合作交流:学生分组讨论,分享各自的解题方法,互相学习,共同进步。

4.讲解演示:教师对单项式与多项式相乘的法则进行讲解,并通过PPT、动画等手段进行演示。

5.巩固练习:设计一些练习题,让学生运用所学知识解决问题,巩固所学内容。

6.课堂小结:教师引导学生总结本节课所学的知识,加深对单项式与多项式相乘法则的理解。

7.课后作业:布置一些相关的作业,让学生进一步巩固所学知识。

七. 说板书设计板书设计要清晰、简洁,能够突出单项式与多项式相乘的法则。

单项式与多项式相乘的运算法则

单项式与多项式相乘的运算法则

单项式与多项式相乘的运算法则英文回答:When multiplying a monomial and a polynomial, we can apply the distributive property to each term in the polynomial. The distributive property states that for any real numbers a, b, and c, the product of a and the sum of b and c is equal to the sum of the products of a and b, and a and c. In other words, a(b + c) = ab + ac.To illustrate this, let's consider the monomial 2x and the polynomial 3x^2 + 4x + 5. To find the product of these two expressions, we can distribute the 2x to each term in the polynomial:2x(3x^2 + 4x + 5) = 2x 3x^2 + 2x 4x + 2x 5。

= 6x^3 + 8x^2 + 10x.So the product of 2x and the polynomial 3x^2 + 4x + 5is 6x^3 + 8x^2 + 10x.中文回答:当我们将一个单项式与一个多项式相乘时,我们可以将分配律应用于多项式中的每一项。

分配律规定,对于任何实数a、b和c,a与b和c的和的乘积等于a与b的乘积与a与c的乘积的和。

换句话说,a(b + c) = ab + ac。

为了说明这一点,让我们考虑一个单项式2x和一个多项式3x^2 + 4x + 5。

1.4整式的乘法单项式与多项式相乘(教案)

1.4整式的乘法单项式与多项式相乘(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了单项式与多项式相乘的基本概念、步骤和在实际数学题中的应用。通过实践活动和小组讨论,我们加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
举例:在计算3x * (2x^2 - 4x + 1)的过程中,可能会将6x^3和-12x^2合并为-6x^2,导致结果错误。
(3)多项式乘以多项式的初步认识:本节课虽以单项式与多项式相乘为主,但学生需对多项式乘以多项式的概念有所了解,为后续学习打下基础。
针对以上教学难点,教师应采取以下方法帮助学生突破:
五、教学反思
在本次教学过程中,我深刻地感受到了学生在学习单项式与多项式相乘这一知识点时的困惑和挑战。首先,我发现学生们在符号处理上容易出现错误,尤其是在处理负号和指数时。这让我意识到,在后续的教学中,我需要更加重视对学生进行符号运算的训练,强调符号的运用规则。
另外,我在教学过程中发现,学生们在合并同类项这一环节也存在着一定的困难。为了帮助学生克服这一难点,我尝试通过举例和对比分析,让学生更直观地理解如何合并同类项。但我也认识到,仅仅依靠讲解和举例可能还不够,我需要在课后设计一些针对性的练习题,让学生在练习中掌握这一技能。
3.重点难点解析:在讲授过程中,我会特别强调符号处理和合并同类项这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与单项式与多项式相乘相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过具体的数学题目,让学生亲自操作,演示单项式与多项式相乘的基本原理。

部审湘教版七年级数学下册教学设计2.1.4 第1课时《单项式与多项式相乘》教学设计

部审湘教版七年级数学下册教学设计2.1.4 第1课时《单项式与多项式相乘》教学设计

部审湘教版七年级数学下册教学设计2.1.4 第1课时《单项式与多项式相乘》教学设计一. 教材分析《单项式与多项式相乘》是湘教版七年级数学下册第2.1.4节的内容,本节课主要让学生掌握单项式与多项式相乘的法则,并能灵活运用解决实际问题。

教材通过例题和练习题,引导学生探究并发现单项式与多项式相乘的规律,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析七年级的学生已经学习了单项式和多项式的相关知识,对基本的代数运算有所了解。

但学生在解决实际问题时,往往不能灵活运用所学知识。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的应用能力。

三. 教学目标1.知识与技能目标:让学生掌握单项式与多项式相乘的法则,能正确进行计算。

2.过程与方法目标:通过探究单项式与多项式相乘的规律,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.教学重点:单项式与多项式相乘的法则。

2.教学难点:如何引导学生发现并运用单项式与多项式相乘的规律。

五. 教学方法1.启发式教学:教师通过提问、引导,激发学生的思考,让学生主动探究单项式与多项式相乘的规律。

2.小组讨论:学生分组讨论,共同解决问题,培养学生的团队合作意识。

3.案例分析:教师出示实际问题,引导学生运用所学知识解决,提高学生的应用能力。

六. 教学准备1.教学课件:制作课件,展示单项式与多项式相乘的例题和练习题。

2.练习题:准备相关的练习题,巩固学生的知识点。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)教师通过提问,回顾单项式和多项式的相关知识,引导学生进入本节课的主题。

2.呈现(10分钟)教师出示单项式与多项式相乘的例题,引导学生观察并思考:如何进行计算?3.操练(10分钟)教师引导学生进行小组讨论,共同解决例题。

在讨论过程中,教师适时给予提示和指导。

单项式与多项式乘法

单项式与多项式乘法

学校塘坊初中章节13. 2,.1编号005编制:向辉审核:陈元海审批:时间2010/9/13整式的乘法(二)单项式乘以多项式导学案一、学习目标(一)知识目标1.经历探索单项式与多项式乘法的运算法则的过程,会进行简单的单项式与多项式的乘法运算.2.理解单项式与多项式相乘的算理,体会乘法分配律及转化思想的作用.(二)能力目标1.发展有条理思考和语言表达能力.2.培养学生转化的数学思想.(三)情感目标在探索单项式与多项式乘法运算法则的过程中,获得成就感,建立学习数学的信心和勇气.二、教学重难点(一)教学重点:单项式与多项式相乘的乘法法则及应用.(二)教学难点:灵活运用单项式与多项式相乘的乘法法则.四、教学过程Ⅰ.提出问题,引入新课整式包括什么?整式的乘法,我们上一节课学习了其中的一部分——单项式与单项式相乘.你认为整式的乘法还应学习哪些内容呢?很好!我们这节课就接着来学习整式的乘法——单项式与多项式相乘. Ⅱ.探究新知(1)算一算6×(2)利用面积的不同表示方式或乘法分配律转化为单项式与单项式相乘,探索单项式与多项式相乘的乘法法则乘法分配律对于含有字母的代数也同样适用,因为代数式中的字母所表示的也是数,即m(a+b+c)=ma+mb+mc这一结论还可以用长方形的面积给以说明(1)用不同的方法表示下面长方形的面积ma b c看图回答:①大长方形的长是___________,面积是___________②Ⅰ、Ⅱ、Ⅲ三个小长方形的面积分别是____________③由(1)、(2)得出等式__________根据以上方法,请同学们计算2ab·(a2b-2ab2+3)解:2ab·(a2b-2ab2+3)=2ab·a2b +2ab·(-2ab2)+ 2ab×3 (乘法分配律)=2a3b2-4a2 b3+6ab (单项式与单项式相乘)同学们考虑,怎样叙述单项式与多项式相乘的法则?其实,单项式与多项式相乘,就是利用乘法分配律转化为单项式与单项式相乘,这样新知识就转化成了我们学过的知识.这种“转化”的思想是我们学习数学非常重要的一种思想.我们在处理一些问题时经常用到它,例如新知识学习转化为我们学过的、熟悉的知识;复杂的知识转化为几个简单的知识等.我们通过画面面积的不同表达方法和乘法分配律,得出了单项式乘以多项式的运算法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加,下面我们来看它的具体运用.Ⅲ、应用举例 例1 计算明确单项式乘多项式每一步的算理,体会由单项式与多项式相乘的方法(1) 2ab (5a 2b+3ab 2); (2)-2a(2a 2-3a-1)(3)(32ab 2-2ab) 21ab (4)(-12xy 2-10xy 2+21y 3)(-6xy 3) 例2 计算-2a 2·(ab+b 2)-5a(a 2b-ab 2)解法1: -2a 2·(ab+b 2)-5a(a 2b-ab 2)=-2a 3b-2a 2b 2-5a 3b+5a 2b 2=-7a 3b+3a 2b 2解法2: -2a 2·(ab+b 2)-5a(a 2b-ab 2)=-(2a 3b+2a 2b 2)-(5a 3b-5a 2b 2)=-2a 3b-2a 2b 2-5a 3b+5a 2b 2=-7a 3b+3a 2b 2先由学生讨论解题方法,然后由教师指定两人板演,并根据学生的板演情况指出:解法1将2a 2与5a 前面的“-”看成性质符号,解法2将2a 2与5a 前面的“-”看成运算符号。

《多项式的乘法》教案

《多项式的乘法》教案

《多项式的乘法》教案第一课时教学目标知识与技能1.知道利用乘法分配律可以将单项式乘多项式转化为单项式乘单项式.2.会进行单项式乘多项式的计算.过程与方法1.通过面积的计算领会用长方形面积图或乘法的分配律说明单项式与多项式相乘的法则.2.经历探究单项式乘多项式法则的过程,发展有条理的思维和语言表达能力. 情感、态度与价值观1.理解整式的乘法运算的原理,体会乘法分配律的作用和转化思想.2.注意学生学习积极性,主动性的调动,增强学生学习数学重点难点重点单项式与多项式相乘的法则.难点单项式的系数的符号是负号时的情况.教学设计一、回顾交流,课堂演练1.口述单项式乘以单项式法则.2.口述乘法分配律.3.课堂演练,计算:(1)(-5x )·(3x )2(2)(-3x )·(-x )(3)31xy ·32xy 2 (4)-5m 2·(-31mn )(5)-51x 2y 4-2x 2y ·(-21x 2y 2) 二、创设情境,引入新课 小明作了一幅水彩画,所用纸的大小如图1,她在纸的左右两边各留了61a 米的空白,请同学们列出这幅画的画面面积是多少?【学生活动】小组合作,讨论.【情境问题】夏天将要来临,有3家超市以相同价格n (单位:元/台)销售A 牌空调,他们在一年内的销售量(单位:台)分别是x ,y ,z ,请你采用不同的方法计算他们在这一年内销售这种空调的总收入.【学生活动】分四人小组,与同伴交流,寻求不同的表示方法.方法一:首先计算出这三家超市销售A 牌空调的总量(单位:台),再计算出总的收入(单位:元).即:n (x +y +z ).方法二:采用分别计算出三家超市销售A 牌空调的收入,然后再计算出他们的总收入(单位:元).总结规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.例题解析:例10 计算:2112412()()();x y xy x ∙-+ 2212442()()().b b ab -∙- 例11 求 22212442()-()x x y y x x y ∙-∙-的值,其中x =2,y =-1. 三、范例学习,应用所学1、计算:(-2a 2)·(3ab 2-5ab 3).解:原式=(-2a 2)(3ab 2)-(-2a 2)·(5ab 3)=-6a 3b 2+10a 3b 32、化简:-3x 2·(13xy -y 2)-10x ·(x 2y -xy 2) 解:原式=-x 3y +3x 2y 2-10x 3y +10x 2y 2=-11x 3y +13x 2y 23、解方程:8x (5-x )=19-2x (4x -3)40x -8x 2=19-8x 2+6x40x-6x=19 34x=19x=19 34四、随堂练习,巩固深化计算:(1)5x2·(2x2-3x3+8)(2)-16x·(x2-3y)(3)-2a2·(12ab3+b3)(4)(23x2y3-16xy)·12xy2五、课堂总结,发展潜能1.单项式与多项式相乘法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.第二课时教学目标知识与技能1.经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算.2.进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力.过程与方法在解决问题的过程中,注重与他人合作,培养学生的语言表达能力.情感、态度与价值观培养学生语言表达能力,以及与他人沟通、交往的能力.重点难点重点掌握多项式的乘法法则并加以运用.难点探索多项式乘法的法则,注意多项式乘法的运算中“漏项”和“符号”的问题.教学设计一、创设情境,操作感知【动手操作】首先,在硬纸板上用直尺画出一个矩形,并且分成如下图所示的四部分,标上字母.拿出准备好的硬纸板,画出上图1,并标上字母.根据图中的数据,求一下这个矩形的面积.计算出它的面积为:(m+b)×(n+a).将纸板上的矩形沿你所画竖着的线段将它剪开,分成如下图两部分,如下图.剪开之后,分别求一下这两部分的面积,再求一下它们的和.求出第一块的面积为m(n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).继续沿着横的线段剪开,将图形分成四部分,如图3,然后再求这四块长方形的面积.求出S1=mn;S2=nb;S3=am;S4=ab,它们的和为S=mn+nb+am+ab.依据上面的操作,求得的图形面积,探索(m+b)(n+a)应该等于什么?(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab,因为我们三次计算是按照不同的方法对同一个矩形的面积进行了计算,那么,两次的计算结果应该是相同的,所以(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.多项式与多项式相乘,用第一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.例题解析:例12 计算:(1)(2x+y)(x-3y);(2)(2x+1)(3x2-x-5);(3)(x+a)(x+b).例13 计算:1)(a+b)(a-b);(2)(a+b)2 ;(3)(a-b)2.【探究时空】一块长m米,宽n米的玻璃,长宽各裁掉a米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?二、法则应用下面我们利用法则来做计算.计算(1)(3x+1)(x+2)(2)(x-8y)(x-y)(3)(x+y)(x2-xy+y2)解:(1)(3x+1)(x+2)(2)(x-8y)(x-y)= 3x2·x+(3x)·2+1·x+1×2 =x2-xy - 8x + 8y2= 3x2+6x+x+2 =x2-9xy+8y2= 3x2+7x+x+2(3)(x+y)(x2-xy+y2)=x3-x2y+xy2+x2y-xy2+y3=x3+y3注:不要漏掉任何一项,注意符号巩固练习1.(1)(2x+1)(x+3):(2)(m+2m)(m-3m)=2x2+7x+3 =m2-m(3)(a-1)2(4)(a+3b)(a-3b)=a2-2a+1 =a2-9b2(5)(2x2 -1)(x-4)(6)(x2+3)(2x-5)= 2x3+8x2+x-4 =2x3-5x2-6x-15三、课堂总结,发展潜能1.多项式与多项式相乘,应充分结合导图中的问题来理解多项式与多项式相乘的结果,利用乘法分配律来理解(m+n)与(a+b)相乘的结果,导出多项式乘法的法则.2.多项式与多项式相乘,第一步要先进行整理,在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘,多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号.。

整式的乘法优秀教案

整式的乘法优秀教案

整式的乘法【课时安排】3课时【第一课时】【教学目标】(一)教学知识点1.经历探索单项式与单项式相乘的运算法则的过程,会进行单项式与单项式相乘的运算。

2.理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的思想。

(二)能力训练要求1.发展有条理的思考和语言表达能力。

2.培养学生转化的数学思想。

(三)情感与价值观要求在探索单项式与单项式相乘的过程中,利用乘法的运算律将问题转化,使学生从中获得成就感,培养学习数学的兴趣。

【教学重点】单项式与单项式相乘的运算法则及其应用。

【教学难点】灵活地进行单项式与单项式相乘的运算。

【教学过程】(一)创设问题情景,引入新课:[师]整式的运算我们在前面学习过了它的加减运算,还记得整式的加减法是如何运算的吗?[生]如果遇到有括号,利用去括号法则先去括号,然后再根据合并同类项法则合并同类项。

[师]很棒!其实整式的运算就像数的运算,除了加减法,还应有整式的乘法,整式的除法。

下面我们先来看投影片中的问题:1.为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画。

受他的启发,京京用两张同样大小的纸,精心制作了两幅画,如图6-1所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有81x 米的空白。

图6-1(1)第一幅画的画面面积是 平方米;(2)第二幅画的画面面积是 平方米。

[生]从图形我们可以读出条件,第一个画面的长、宽分别为x 米,mx 米;第二个画面的长、宽分别为mx 米、(x -81x -81x)即43x 米。

因此,第一幅画的画面面积是x·(mx)平方米;第二幅画的画面面积是(mx)·(43x)平方米。

[师]我们一起来看这两个运算:x·(mx),(mx)·(43x)。

这是什么样的运算。

[生]x ,mx ,43x 都是单项式,它们相乘是单项式与单项式相乘。

[师]大家都知道整式包括单项式和多项式,从这节课开始我们就来研究整式的乘法。

初一下册数学知识点:整式的运算知识点总结

初一下册数学知识点:整式的运算知识点总结

初一下册数学知识点:整式的运算知识点总结整式的运算是初一下学期学习的第一章内容,主要讲解了整式的概念、同底数幂的乘法、同底数幂的除法、整式的乘除法、平方差公式、完全平方公式等。

通过对本篇知识点的学习,相信同学们对整式的运算有了更深的把握,同时也为今后学习数学打下扎实的基础!初一下册数学知识点:整式的运算第四章整式的运算一、整式单项式和多项式统称整式。

a)由数与字母的积组成的代数式叫做单项式。

单独一个数或字母也是单项式。

b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。

c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)a)几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项。

其中,不含字母的项叫做常数项。

一个多项式中,次数最高项的次数,叫做这个多项式的次数.b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。

多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。

多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.b)括号前面是-号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

二、同底数幂的乘法(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;b) 指数是1时,不要误以为没有指数;c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;d)当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为整数);e)公式还可以逆用: (m、n均为整数)a)幂的乘方法则: (m,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

33单项式与多项式相乘教案

33单项式与多项式相乘教案

33单项式与多项式相乘教案教学目标:1. 理解单项式与多项式相乘的概念和意义。

2. 掌握单项式与多项式相乘的运算法则。

3. 能够正确计算单项式与多项式相乘的结果。

教学重点:1. 单项式与多项式相乘的概念和意义。

2. 单项式与多项式相乘的运算法则。

教学难点:1. 理解并掌握单项式与多项式相乘的运算法则。

2. 正确计算单项式与多项式相乘的结果。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入单项式和多项式的概念。

2. 解释单项式与多项式相乘的意义。

二、新课讲解(15分钟)1. 讲解单项式与多项式相乘的运算法则。

2. 通过示例演示单项式与多项式相乘的计算过程。

三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学内容。

四、总结与反思(5分钟)1. 总结单项式与多项式相乘的概念和运算法则。

2. 学生分享自己在课堂练习中的体会和困惑。

五、布置作业(5分钟)1. 布置相关的作业题,让学生进一步巩固单项式与多项式相乘的知识。

教学反思:本节课通过导入、新课讲解、课堂练习、总结与反思和布置作业等环节,帮助学生理解和掌握单项式与多项式相乘的概念和运算法则。

在课堂练习环节,学生能够通过独立完成练习题,巩固所学内容。

在总结与反思环节,学生能够分享自己的学习体会和困惑,有助于进一步理解和掌握知识。

通过布置作业,让学生在课后进一步巩固单项式与多项式相乘的知识。

在教学过程中,教师应及时解答学生的疑问,关注学生的学习情况,确保教学效果的达成。

33单项式与多项式相乘教案六、案例分析(10分钟)1. 提供几个具体的单项式与多项式相乘的案例。

2. 让学生分组讨论,运用所学运算法则计算案例结果。

3. 各小组汇报讨论结果,教师点评并总结。

七、拓展与应用(15分钟)1. 引导学生思考单项式与多项式相乘在实际问题中的应用。

2. 提供几个实际问题,让学生运用所学知识解决问题。

八、课堂小结(5分钟)1. 回顾本节课所学内容,总结单项式与多项式相乘的概念、运算法则及应用。

《整式的乘法》知识全解

《整式的乘法》知识全解

《整式的乘法》知识全解课标要求1、探索并了解单项式与单项式、单项式与多项式和多项式与多项式(仅指一次式之间以及一次式与二次式相乘)相乘的法则,并运用它们进行运算;2、让学生主动参与到探索过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望与能力。

知识结构1、单项式乘单项式,用各单项式系数的积,作为积的系数;用相同字母的指数和,作为积里这个字母的指数;只在一个单项式里含有的字母,连同它的指数也作为积的一个因式。

2、单项式与多项式相乘,先用单项式去乘多项式的每一项,再把所得积相加。

3、多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

内容解析1.单项式乘以单项式:法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式中出现的字母,连同它的指数作为积的一个因式。

解读:(1)单项式的乘法可分为三步:①把它们的系数相乘,包括符号的计算;②同底数幂相乘;③单独字母的处理。

三部分的乘积作为计算的结果。

(2)积的系数等于各系数的积,这部分是有理数的乘法运算,应先确定符号再计算绝对值;相同字母相乘,是同底数幂的乘法,按法则进行计算;注意不要把只在一个单项式中含有的字母去掉。

(3)单项式与单项式相乘其结果仍是单项式。

2.单项式乘以多项式:法则:单项式乘以多项式,就是用单项式去乘多项式的每一项再把所得的积相加。

即()(,,,)m a b c am bm cm m a b c ++=++都是单项式。

解读:(1)单项式与多项式相乘,实质上是将单项式看成一个整体对多项式运用乘法分配律。

(2)单项式乘以多项式,结果是一个多项式,其项数与多项式的项数相同,计算时要注意符号问题,多项式中的每一项都包含它前面的符号,同时还要注意单项式的符号。

3.多项式乘以多项式:法则:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。

最新人教版初中八年级上册数学《单项式与单项式、多项式相乘》精品教案

最新人教版初中八年级上册数学《单项式与单项式、多项式相乘》精品教案

14.1.4 整式的乘法第1课时 单项式与单项式、多项式相乘1.探索并了解单项式与单项式、单项式与多项式相乘的法则,并运用它们进行运算.(重点)2.熟练应用运算法则进行计算.(难点)一、情境导入1.教师引导学生回忆幂的运算公式.学生积极举手回答:同底数幂的乘法公式:a m ·a n =am +n (m ,n 为正整数).幂的乘方公式:(a m )n =a mn (m ,n 为正整数).积的乘方公式:(ab )n =a n b n (n 为正整数).2.教师肯定学生的回答,并引入课题——单项式与单项式、多项式相乘.二、合作探究探究点一:单项式乘以单项式 【类型一】 直接利用单项式乘以单项式法则进行计算计算:(1)(-23a 2b )·(56ac 2); (2)(-12x 2y )3·3xy 2·(2xy 2)2; (3)-6m 2n ·(x -y )3·13mn 2(y -x )2. 解析:运用幂的运算法则和单项式乘以单项式的法则计算即可.解:(1)(-23a 2b )·(56ac 2)=-23×56a 3bc 2=-59a 3bc 2; (2)(-12x 2y )3·3xy 2·(2xy 2)2=-18x 6y 3×3xy 2×4x 2y 4=-32x 9y 9;(3)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13m 3n 3(x -y )5=-2m 3n 3(x -y )5. 方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.【类型二】 单项式乘以单项式与同类项的综合已知-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项,求m 2+n 的值.解析:根据-2x 3m +1y 2n与7x n -6y -3-m 的积与x 4y 是同类项可得出关于m ,n 的方程组,进而求出m ,n 的值,即可得出答案.解:∵-2x3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项,∴⎩⎪⎨⎪⎧3m +1+n -6=4,2n -3-m =1,解得:⎩⎪⎨⎪⎧m =2,n =3,∴m 2+n =7.方法总结:单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项,列出二元一次方程组.【类型三】 单项式乘以单项式的实际应用有一块长为x m ,宽为y m 的矩形空地,现在要在这块地中规划一块长35x m ,宽34y m 的矩形空地用于绿化,求绿化的面积和剩下的面积.解析:先求出长方形的面积,再求出矩形绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xy m 2,矩形空地绿化的面积是35x ×34y =920xy (m)2,则剩下的面积是xy -920xy =1120xy (m 2).方法总结:掌握长方形的面积公式和单项式乘单项式法则是解题的关键.探究点二:单项式乘以多项式【类型一】 直接利用单项式乘以多项式法则进行计算计算:(1)(23ab 2-2ab )·12ab ; (2)-2x ·(12x 2y +3y -1). 解析:先去括号,然后计算乘法,再合并同类项即可.解:(1)(23ab 2-2ab )·12ab =23ab 2·12ab -2ab ·12ab =13a 2b 3-a 2b 2;(2)-2x ·(12x 2y +3y -1)=-2x ·12x 2y +(-2x )·3y -(-2x )·1=-x 3y +(-6xy )-(-2x )=-x 3y -6xy +2x .方法总结:单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【类型二】 单项式乘以多项式乘法的实际应用一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米. (1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解:(1)防洪堤坝的横断面积S =12[a +(a +2b )]×12a =14a (2a +2b )=12a 2+12ab .故防洪堤坝的横断面积为(12a 2+12ab )平方米; (2)堤坝的体积V =Sh =(12a 2+12ab )×100=50a 2+50ab .故这段防洪堤坝的体积是(50a 2+50ab )立方米.方法总结:通过本题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘多项式的运算法则是解题的关键.【类型三】 化简求值先化简,再求值:3a (2a 2-4a +3)-2a 2(3a +4),其中a =-2.解析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解:3a (2a 2-4a +3)-2a 2(3a +4)=6a 3-12a 2+9a -6a 3-8a 2=-20a 2+9a ,当a =-2时,原式=-20×4-9×2=-98.方法总结:在做乘法计算时,一定要注意单项式的符号和多项式中每一项的符号,不要搞错.【类型四】 单项式乘多项式,利用展开式中不含某一项求未知系数的值如果(-3x )2(x 2-2nx +23)的展开式中不含x 3项,求n 的值. 解析:原式先算乘方,再利用单项式乘多项式法则计算,根据结果不含x 3项,求出n 的值即可.解:(-3x )2(x 2-2nx +23)=(9x 2)(x 2-2nx +23)=9x 4-18nx 3+6x 2,由展开式中不含x 3项,得到n =0.方法总结:单项式与多项式相乘,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.三、板书设计单项式与单项式、多项式相乘1.单项式与单项式相乘法则:单项式与单项式相乘就是它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.2.单项式与多项式相乘的法则:单项式与多项式相乘,只要将单项式分别乘以多项式的每一项,再将所得的积相加.本节知识的重点是让学生理解单项式与单项式、多项式相乘的法则,并能应用.这就必须要求学生对乘法的分配律以及幂的运算法则有一定的基础,因此课前可以要求学生先复习该部分的知识,同时在上新课前也可以通过练习题让学生回忆知识.对于运算法则的得出,教师通过“试一试”逐步解题,通过计算演示法则的内容,更有利于学生理解运算法则.作者留言:非常感谢!您浏览到此文档。

初中数学_单项式乘以多项式教学设计学情分析教材分析课后反思

初中数学_单项式乘以多项式教学设计学情分析教材分析课后反思

《单项式乘以多项式》教学设计教学目标:1.理解单项式与多项式相乘的法则。

2.能运用单项式与多项式相乘的法则进行计算.3.体会转化、数形结合思想,发展学生的运算能力4.让学生通过自主学习、合作探究获得知识,体验单项式与多项式的乘法运算的规律,享受成功的快乐。

教学重点:单项式与多项式乘法法则及其应用。

教学难点:单项式与多项式相乘时结果的符号确定教法与学法本节课在教学过程中的不同阶段采用不同的教学方法,以适应教学的需要.(1)在新课学习阶段单项式与多项式乘法的法则的推导过程中,采用引导发现法.(2)在新课学习的例题讲解阶段,采用讲练结合法.(3)学习单项式与多项式相乘的运算法则是运用了“转化”的思想,教学过程第一环节:复习旧知,引入新课活动内容:教师依次提出以下几个问题:(1)出示问题:单项式乘法法则是什么?(让学生叙述单项式的乘法法则)(2)出示一道练习题,复习如何进行单项式的乘法运算?①系数相乘为积的系数;②相同字母因式,利用同底数幂的乘法相乘,作为积的因式;③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;④单项式与单项式相乘,积仍是一个单项式;⑤单项式乘法法则,对于三个以上的单项式相乘也适用(3)让学生用式子表示乘法分配律。

(4)利用分配率简便计算。

(由一学生板书,其余学生做在练习本上。

)活动目的:单项式乘以多项式最终转化为单项式乘以单项式,复习问题1、2、3、4的设计是让学生体会所学知识间的关系。

回顾复习以前所学知识,为本节课奠定基础。

引入课题:今天将学习单项式与多项式相乘。

第二环节:借助情境,探究新知:活动内容:给学生提供如下问题情景,并通过问题,引导学生积极探索,发现单项式与多项式相乘的运算法则:1.展示课件:如图所示,这个长方形可分割为宽为m,长分别为a、b、c的三个小长方形,用不同方法求长方形面积.让学生独立思考完成2.提出问题:(1)你是怎样列式表示长方形的面积的?是否有不同的表示方法?其中包含了什么运算?与同伴交流.利用面积的不同表示方法:通过小组交流,学生会发现同一部分的面积有了不同的表示方法,自然会去探究两种表示方法的关系,通过教师适时提出问题,引导学生发现两种不同的运算一方面是包含单项式与单项式乘法、再把所得的积相加,另一方面是单项式与多项式相乘,二者的结果相同,从而发现单项式乘以多项式的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档