《第10课时 幂函数》学案

合集下载

幂函数 优秀教案

幂函数 优秀教案

幂函数优秀教案幂函数教学目标】1.知识与技能:1) 理解幂函数的概念,能够画出幂函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像。

2) 根据常见的幂函数图像,理解幂函数图像的变化情况和性质,并能进行简单的应用。

2.过程与方法:1) 通过观察、总结幂函数的性质,培养学生的识图能力和概括能力。

2) 使学生进一步体会数形结合的思想方法。

3.情感态度与价值观:1) 通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的研究兴趣。

2) 利用计算机,了解幂函数图像的变化规律使学生认识到现代技术在数学认识过程中的作用,从而激发学生的研究欲望。

教学重点】从五个具体幂函数中认识幂函数的一些性质。

教学难点】画五个具体幂函数的图像并由图像概括其性质,体会图像的变化规律。

教法】启发、引导教学过程】一、创设情景,引入新课通过观察几个例子的函数模型,引入新课。

二、互动探究,讲解新课1.幂函数的定义:一般地,函数y=x^α叫做幂函数,其中x为自变量,α为常数。

练:判断下列函数是否为幂函数?1) y=x^4 (2) y=2x^2 (3) y=-x^3 (4) y=2.常见幂函数的图像与性质:自主探究]分别作出函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的图像并观察函数图像,将你发现的结论写在下表内:定义域。

|。

值域。

|。

奇偶性。

|。

单调性。

|。

定点。

|R。

|。

R+。

|。

奇函数。

|。

增函数。

|。

(1,1)。

|R。

|。

R+。

|。

偶函数。

|。

增函数。

|。

(0,0)。

|R。

|。

R。

|。

奇函数。

|。

增函数。

|。

(0,0)。

|R*。

|。

R*。

|。

奇函数。

|。

减函数。

|。

(1,1)。

|R+。

|。

R+。

|。

无奇偶性。

|。

增函数。

|。

(0,0)。

|合作探究]根据上表的内容并结合图像,试总结函数y=x,y=x^2,y=x^3,y=x^-1,y=x^2的共同性质。

归纳:1) 函数y=x,y=x^2,y=x^3,y=x^-1和y=x^2的图像都通过点(1,1)。

幂函数学案

幂函数学案

§6.1 幂函数学习目标1、理解幂函数的概念,会画幂函数y =x ,y =x 2,y =x 3,y =x -1,y =x 的图象; 2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质; 3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.知识点一一般地,函数 叫做幂函数,其中x 是自变量,α是常数. 知识点二五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y =x ;(2)y =12x ;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.2.五个幂函数的性质21知识点三 一般幂函数的图象特征1. 所有的幂函数在(0,+∞)上都有定义,并且图象都过点 .2. 当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象 ;当0<α<1时,幂函数的图象 . 3. 当 时,幂函数的图象在区间(0,+∞)上是减函数. 4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按 从 到 的顺序排列.1.下列函数中不是幂函数的是________. ①y =x 0; ②y =x 3; ③y =2x ; ④y =x -1.2.设⎭⎬⎫⎩⎨⎧-∈3,211,1α,则使函数y =x α的定义域为R 且为奇函数的所有α的值为________.3.当x ∈(0,1) 时,x 2________x -1.(填“>”“=”或“<”)4.已知幂函数f (x )=x α图象过点⎝⎛⎭⎫2,22,则f (4)=________.例1 (1)下列函数:①y =x 3;②xy ⎪⎭⎫⎝⎛=21;③y =4x 2;④y =x 5+1;⑤y =(x -1)2;⑥y =x ;⑦y =a x (a >1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4(2)已知222()2223m y m m x n -=+-+-是幂函数,求m ,n 的值.A.12 B .1 C.32 D .2例2 (1)已知幂函数f (x )=x α的图象过点P ⎝⎛⎭⎫2,14,试画出f (x )的图象并指出该函数的定义域与单调区间.(2)如图所示,C 1,C 2,C 3为幂函数y =x α在第一象限内的图象,则解析式中的指数α依次可以取( )A.43,-2,34 B .-2,34,43 C .-2,43,34 D.34,43,-2例3 比较下列各组数的大小. (1)5.052⎪⎭⎫ ⎝⎛与5.031⎪⎭⎫ ⎝⎛; (2)132-⎪⎭⎫ ⎝⎛-与153-⎪⎭⎫⎝⎛-; (3)1332⎛⎫ ⎪⎝⎭与1413⎛⎫ ⎪⎝⎭.1.以下结论正确的是( )A .当α=0时,函数y =x α的图象是一条直线B .幂函数的图象都经过(0,0),(1,1)两点C .若幂函数y =x α的图象关于原点对称,则y =x α在定义域内y 随x 的增大而增大D .幂函数的图象不可能在第四象限,但可能在第二象限 2.下列不等式成立的是( ) A.12121312--⎛⎫> ⎪⎝⎭⎛⎫ ⎪⎝⎭B.23233423⎛⎫<⎛⎫⎝⎪⎪⎭⎝⎭ C.232⎪⎭⎫ ⎝⎛> 223⎪⎭⎫ ⎝⎛ D .7878819-⎛⎫< ⎪⎝⎭3.函数y =x-3在区间[-4,-2]上的最小值是________.4.若幂函数()22231()m m f x m m x --=--在(0,+∞)上是减函数,则实数m =________. 5.先分析函数23y x =的性质,再画出其图象.1.知识清单: (1)幂函数的定义. (2)几个常见幂函数的图象. (3)幂函数的性质. 2.方法归纳:(1)运用待定系数法求幂函数的解析式.(2)根据幂函数的图象研究幂函数的性质即数形结合思想.1.下列函数中是幂函数的是( )A .y =x 4+x 2B .y =10xC .y =1x3 D .y =x +12.下列幂函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .y =x -2B .y =x-1C .y =x 2D .y =13x3.已知f (x )=12x ,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f (a -1) <f (b -1) B .f (a -1) <f (b -1) <f (b )<f (a ) C .f (a )<f (b )<f (b -1) <f (a -1) D .f (a -1)<f (a )<f (b -1)<f (b ) 4.已知y =(m 2+m -5)x m 是幂函数,且在第一象限内是单调递减的,则m 的值为( ) A .-3 B .2 C .-3或2 D .35.如图所示曲线是幂函数y =x α在第一象限内的图象,已知α取±2,±12四个值,则对应于曲线C 1,C 2,C 3,C 4的指数α依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-126.已知幂函数f (x )=x m -3(m ∈N *)为奇函数,且在区间(0,+∞)上是减函数,则m 等于( ) A .1 B .2 C .1或2 D .37.函数y =12x -1的图象关于x 轴对称的图象大致是( )8.已知2.4α>2.5α,则α的取值范围是________.9.已知幂函数f (x )=(n 2+2n -2)23n nx -(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为________.10.若12(1)a +<12(32)a -,则a 的取值范围是________.11.已知幂函数()x f 的图象过点(9,3),则⎪⎭⎫ ⎝⎛21f =________,函数⎪⎭⎫⎝⎛-11x f 的定义域为________.。

初中幂函数教案

初中幂函数教案

初中幂函数教案教学目标:1. 理解幂函数的定义和性质;2. 学会运用幂函数解决实际问题;3. 培养学生的数学思维能力和解决问题的能力。

教学重点:1. 幂函数的定义和性质;2. 幂函数在实际问题中的应用。

教学难点:1. 幂函数的性质的理解和运用;2. 幂函数在实际问题中的解决方法。

教学准备:1. 教师准备PPT和教学案例;2. 学生准备笔记本和笔。

教学过程:一、导入(5分钟)1. 引导学生回顾函数的概念,复习一次函数和二次函数的定义和性质;2. 提问:一次函数和二次函数的形式分别是什么?它们在实际问题中的应用有哪些?二、新课导入(10分钟)1. 介绍幂函数的定义:一般地,形如y=x^a(a为常数,a≠0)的函数,叫做幂函数;2. 展示幂函数的图像和性质;3. 引导学生观察和分析幂函数的图像和性质,总结幂函数的特点。

三、案例分析(15分钟)1. 给出一个实际问题,如:一个物体从地面上升,上升的距离与时间的关系是什么?2. 引导学生运用幂函数来解决这个问题;3. 引导学生分析问题,确定幂函数的形式和参数;4. 引导学生运用幂函数解决问题,并解释结果。

四、巩固练习(10分钟)1. 给出一些幂函数的题目,让学生独立解答;2. 引导学生分析题目,确定幂函数的形式和参数;3. 引导学生运用幂函数解决问题,并解释结果。

五、课堂小结(5分钟)1. 回顾本节课学习的内容,让学生总结幂函数的定义和性质;2. 提问:幂函数在实际问题中的应用有哪些?六、作业布置(5分钟)1. 布置一些幂函数的题目,让学生课后巩固;2. 鼓励学生思考和探索幂函数在其他实际问题中的应用。

教学反思:本节课通过导入、新课导入、案例分析、巩固练习、课堂小结和作业布置等环节,让学生学习了幂函数的定义和性质,并学会了运用幂函数解决实际问题。

在教学过程中,要注意引导学生观察和分析幂函数的图像和性质,培养学生的数学思维能力和解决问题的能力。

同时,还要鼓励学生思考和探索幂函数在其他实际问题中的应用,提高学生的学习兴趣和积极性。

人教版高中必修一《幂函数》教案

人教版高中必修一《幂函数》教案

人教版高中必修一《幂函数》教案一、教学目标1.了解幂函数的定义和特点;2.学习叠加思想,并掌握简单的幂函数叠加方法;3.能够解决一些实际问题。

二、教学重难点1.幂函数的定义及其特点;2.幂函数的叠加思想;3.幂函数的绘图方法;三、教学过程1.引入幂函数的定义:$y=x^p(p\\in \\mathbb{R})$让学生发现x的取值范围对函数图象的影响,并对函数图象进行描述。

2. 概念讲解1.首先讲解幂函数的定义,指出它是一种基本函数;2.介绍幂函数的性质,让学生知道幂函数的图像不可能横切x轴;3.引入幂函数的叠加思想,让学生知道可以将不同的函数图像叠加在一起。

3. 具体例子讲解1.书写公式,说明函数图象的性质;2.给出幂函数的图象,描出函数的图象;3.确定函数图象的性质,让学生明白函数图象的变化。

4. 例题解析1.给出实际问题,提供数据;2.根据实际问题列出函数式,确定函数图象;3.通过实际问题,解释函数图象的意义。

5. 分组讨论1.将学生分成若干小组,每组做一道练习题;2.每组向其他组展示自己的想法、方法及结果;3.学生之间相互交流,共同探讨出最佳答案。

四、教学方法1.板书法:结合具体例子进行讲解;2.案例法:让学生通过实际问题练习解题思路;3.分组讨论法:提高学生探究问题、思考问题和解决问题的能力。

五、教学帮助1.帮助学生理解定义和性质;2.尤其帮助学生掌握幂函数的叠加思想,找出函数图象的变化规律。

六、课堂反馈1.倾听学生提出的疑问和问题;2.鼓励并指导学生提出自己的解决方案;3.搜集学生反馈,及时调整教学进度和方法。

七、课堂作业1.完成教师布置的作业;2.阅读教材给出的例题;3.自己找出一些幂函数的例子进行探究。

幂函数教案

幂函数教案

幂函数教案幂函数教学设计一、教学内容:本节课主要讲解幂函数的基本概念、性质以及解题方法。

二、教学目标:1. 掌握幂函数的定义及其一般形式。

2. 了解幂函数的图像特点及其变化规律。

3. 能够解决与幂函数相关的实际问题。

三、教学过程:步骤一:导入新课1. 引导学生回顾一元二次函数的知识,并帮助学生发现一元二次函数与平方函数之间的关系。

2. 引导学生思考,如果给定的方程中含有类似于x^n(n为自然数)的项,该如何解决?(请学生回顾类似的方程,并尝试解题)步骤二:讲解幂函数的定义1. 运用幂函数的定义引导学生进行思考:什么样的方程是幂函数?2. 引导学生猜想幂函数的一般形式,即f(x)=x^n,其中n为实数。

3. 张绘制幂函数的图像,并引导学生发现其特点,如:当n>1时,图像呈现递增趋势;当n=1时,图像为直线,并由坐标原点经过;当0<n<1时,图像在原点附近缓慢上升。

步骤三:讲解幂函数的性质1. 解释幂函数的定义域和值域,即当n为偶数时,定义域为R,值域为[0,+∞);当n为奇数时,值域为R。

2. 引导学生发现幂函数与幂函数之间的比较关系,即当0<n<m时,幂函数f(x)=x^n的图像位于幂函数g(x)=x^m的图像之下。

3. 引导学生探究幂函数的奇偶性,即当n为整数时,该幂函数的奇偶性与n的奇偶性一致。

比如,当n为偶数时,函数f(x)=x^n是偶函数;当n为奇数时,函数f(x)=x^n是奇函数。

步骤四:解决幂函数相关的实际问题1. 给学生提供一些实际应用题,如求一块长方形的面积与宽度的关系等,引导学生使用幂函数解决问题。

2. 引导学生分析问题,并运用幂函数的性质进行求解。

3. 鼓励学生自主解决问题,引导学生独立思考并找到解决问题的方法。

四、教学检查及评价:1. 教师可以通过课堂练习、小组讨论等方式进行教学检查,及时发现学生的问题并给予指导。

2. 教师可以根据学生的思考能力和解题情况,评价学生的学习情况,及时提供帮助和改进措施。

高中教案数学幂函数

高中教案数学幂函数

高中教案数学幂函数
教学目标:
1. 了解幂函数的定义和特点。

2. 掌握幂函数的图像特征及其性质。

3. 能够应用幂函数解决相关问题。

教学重点和难点:
重点:幂函数的定义、图像特征和应用。

难点:幂函数的性质和相关变化。

教学准备:
1. 幂函数的教学课件、教材及作业。

2. 幂函数相关的练习题和解析。

3. 白板、彩色笔等教学用具。

教学步骤:
一、导入(5分钟)
1. 引入幂函数的概念,让学生回顾已学过的函数类型。

2. 导出幂函数的定义和表示形式。

二、讲解幂函数的性质和图像特征(15分钟)
1. 介绍幂函数的定义和一般形式。

2. 分析幂函数增减性,根据指数的正负进行分类讨论。

3. 绘制幂函数的图像,让学生观察和分析图像的特点。

三、练习和讨论(20分钟)
1. 学生尝试通过计算和图像观察解答幂函数相关的问题。

2. 针对不同难度的问题,组织学生进行小组讨论和分享解决思路。

四、作业布置和讲解(10分钟)
1. 布置幂函数相关练习题作业,要求学生按时完成并提交。

2. 督促学生积极思考和讨论作业问题,批改及讲解作业结果。

五、课堂总结(5分钟)
1. 总结今天学习的知识点和重点。

2. 提醒学生复习巩固幂函数相关内容,做好课后练习。

教学反思:
通过本节课的教学,学生应该能够掌握幂函数的定义、性质及应用,有利于学生对数学函数的理解和运用。

同时,要引导学生在学习过程中不断思考和探索,培养其解决问题的能力和思维方式。

《幂函数》教案

《幂函数》教案

《幂函数》教案《幂函数》教案《幂函数》教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x 的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f (x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力.(指图说明.)师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……(不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)生:较大的函数值的函数.师:那么减函数呢?生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.(学生可能回答得不完整,教师应指导他说完整.)师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?(学生思索.)学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.(教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?生:不能.因为此时函数值是一个数.师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数.(在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.)师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.师:还有没有其他的关键词语?生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语.师:你答的很对.能解释一下为什么吗?(学生不一定能答全,教师应给予必要的提示.)师:“属于”是什么意思?生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取.师:如果是闭区间的话,能否取自区间端点?生:可以.师:那么“任意”和“都有”又如何理解?生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f (x1)都大于f(x2).师:能不能构造一个反例来说明“任意”呢?(让学生思考片刻.)生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了.师:那么如何来说明“都有”呢?生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f (x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数.师:好极了!通过分析定义和举反例,我们知道要判断函数y=f (x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性.(教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.(用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力.)三、概念的应用例1图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f (x)是增函数还是减函数?(用投影幻灯给出图象.)生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,(增或减).反之不然.例2证明函数f(x)=3x+2在(-∞,+∞)上是增函数.师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.(指出用定义证明的必要性.)师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.(教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.)师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b就等于零;如果a<b,那么它们的差a-b 就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,所以f(x)是增函数.师:他的证明思路是清楚的.一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小.(对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)调函数吗?并用定义证明你的结论.师:你的结论是什么呢?上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.上是减函数.(教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:(1)分式问题化简方法一般是通分.(2)要说明三个代数式的符号:k,x1·x2,x2-x1.要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)四、课堂小结师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?(请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤.五、作业1.课本P53练习第1,2,3,4题.数.=a(x1-x2)(x1+x2)+b(x1-x2)=(x1-x2)[a(x1+x2)+b].(*)+b>0.由此可知(*)式小于0,即f(x1)<f(x2).课堂教学设计说明是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫.《幂函数》教案2教学目标1、使学生掌握的概念,图象和性质。

高中数学《幂函数》教案10 苏教版必修1

高中数学《幂函数》教案10 苏教版必修1

幂函数教案1.教学目标知识目标:(1)掌握幂函数的形式特征,掌握具体幂函数的图象和性质。

(2)能应用幂函数的图象和性质解决有关简单问题。

能力目标:培养学生发现问题,分析问题,解决问题的能力。

情感目标:(1)加深学生对研究函数性质的基本方法和流程的经验。

(2)渗透辨证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法分析问题、解决问题的能力。

2.教学重点:从具体函数归纳认识幂函数的一些性质并简单应用。

教学难点:引导学生概括出幂函数的性质。

3.教学方法和教学手段:探索发现法和多媒体教学 4.教学过程: (一) 问题情境问题1写出下列y 关于x 的函数解析式: ①正方形边长x 、面积y ②正方体棱长x 、体积y ③正方形面积x 、边长y④某人骑车x 秒内匀速前进了1m,骑车速度为y ⑤一物体位移y 与位移时间x ,速度1m/s问题2是否为指数函数?上述函数解析式有什么共同特征?(教师将解析式写成指数幂形式,以启发学生归纳,)板书课题并归纳幂函数的定义。

(二)新课讲解幂函数的定义:一般地,我们把形如α=x y 的函数称为幂函数(power function ),其中x 是自变量,α是常数。

为了加深对定义的理解,请同学们判别下列函数中有几个幂函数? ①y=31x ②y=2x 2我们了解了幂函数的概念以后我们一起来研究幂函数的性质。

问题3幂函数具有哪些性质?用什么方法研究这些性质的呢?我们请同学们回忆一下在前面学习指数函数、对数函数我们一起研究了哪些性质呢?(学生讨论,教师引导)(引发学生作图研究函数性质的兴趣。

函数单调性的判断,既可以使用定义,也可以通过图象解决,直观,易理解。

)在初中我们已经学习了幂函数2,x y x y ==的图象和性质,请同学们在同一坐标系中画出它们的图象。

根据你的学习经历,你能在同一坐标系内画出函数213x y ,x y ==的图象吗? (学生作图,教师巡视。

将学生作图用实物投影仪演示,指出优点和错误之处。

初中数学幂函数教案

初中数学幂函数教案

初中数学幂函数教案教学目标:1. 了解幂函数的定义和性质。

2. 能够解析幂函数的图像和特点。

3. 学会运用幂函数解决实际问题。

教学重点:1. 幂函数的定义和性质。

2. 幂函数的图像和特点。

教学难点:1. 幂函数的图像和特点。

教学准备:1. 教学课件或黑板。

2. 幂函数的图像资料。

教学过程:一、导入(5分钟)1. 引导学生回顾已学的函数知识,如线性函数、二次函数等。

2. 提问:今天我们要学习一种新的函数——幂函数,你们知道幂函数是什么吗?二、新课讲解(20分钟)1. 讲解幂函数的定义:一般地,形如y=x^a(a是常数)的函数,叫做幂函数。

2. 讲解幂函数的性质:(1)当a>0时,幂函数在x>0的区间内是增函数;(2)当a<0时,幂函数在x>0的区间内是减函数;(3)当a=0时,幂函数恒等于0。

3. 展示幂函数的图像,让学生观察和理解幂函数的特点。

三、实例分析(15分钟)1. 给出几个幂函数的实例,如y=x^2、y=x^-1等,让学生分析其图像和性质。

2. 让学生尝试解决实际问题,如计算幂函数在特定点的值,找出幂函数的零点等。

四、练习与讨论(10分钟)1. 布置一些有关幂函数的练习题,让学生独立完成。

2. 引导学生讨论幂函数在实际生活中的应用,如面积、体积计算等。

五、总结与反思(5分钟)1. 让学生总结幂函数的知识点,如定义、性质和应用。

2. 提问:你们觉得幂函数在实际生活中有哪些应用呢?教学延伸:1. 讲解幂函数的进一步性质,如幂函数的导数、积分等。

2. 引导学生学习幂函数在高等数学中的应用。

教学反思:本节课通过讲解和实例分析,使学生掌握了幂函数的定义、性质和应用。

在教学过程中,要注意引导学生主动参与、积极思考,提高学生的数学素养。

同时,结合生活实际,让学生感受数学的趣味性和应用价值。

在课后,加强对学生的辅导和练习,巩固所学知识。

关于幂函数的教案范文

关于幂函数的教案范文

关于幂函数的教案范文教案:幂函数一、教学目标:1.理解幂函数的定义及其特点;2.掌握幂函数的图像特点及变化规律;3.运用幂函数解决实际问题。

二、教学重点与难点:1.理解幂函数的定义及其特点;2.掌握幂函数的图像特点及变化规律。

三、教学准备:1.幂函数相关的教学资料;2.黑板、粉笔;3.幂函数的图像示例。

四、教学过程:Step 1:导入新知(5分钟)1.先导入知识,激发学生的学习兴趣。

可以提问:“你们有没有见过幂函数?”或者“你们对幂函数有什么了解?”2.引导学生思考,引出幂函数的定义。

Step 2:幂函数的定义(10分钟)1.讲解幂函数的定义及其一般形式:y=x^a(a为非零实数,x为正数)。

2.分析幂函数的定义,强调底数为正数,指数为非零实数。

3.提问:“当a为正数、负数和零时,幂函数的图像有什么特点?”解答问题并总结。

Step 3:幂函数的图像特点及变化规律(30分钟)1.通过具体数据的计算,构造幂函数的函数表,并画出函数图像。

2.分析不同指数下的幂函数图像的特点及变化规律。

3.提醒学生关注幂函数图像在定义域内的变化趋势,以及图像与坐标轴的关系。

Step 4:练习与巩固(30分钟)1.完成课本上的练习题,帮助学生熟练掌握幂函数的相关知识。

2.出示一些实际问题,引导学生运用幂函数解决实际问题。

Step 5:拓展与应用(20分钟)1.出示一些拓展问题,让学生运用所学知识解答问题。

2.引导学生对幂函数的应用进行思考和探索,例如:利用幂函数解决生活中的问题,如投资收益的计算等。

五、课堂小结(5分钟)总结本节课所学内容,强调幂函数的定义及其特点,并鼓励学生多进行实际问题的思考与解决。

六、作业布置1.完成课堂上未完成的练习题;2.思考并准备一个幂函数的实际问题,并运用所学知识解答。

七、教学反思通过这节课的教学,学生对幂函数的定义及其图像特点有了更深入的理解,并能运用所学知识解决相关实际问题。

需要注意的是,在教学过程中要注重学生的思维活动,灵活运用教学资源,让学生充分参与到课堂教学中来,提高学习效果。

数学《幂函数》教案

数学《幂函数》教案

数学《幂函数》教案【导语】幂函数是一类特殊的函数,它们都以x为自变量,y为因变量,且y是x的某个非负整数次方的函数(指数函数)。

【预习任务】1.回忆函数概念、函数图像的基本性质;2.了解指数函数与幂函数的区别;3.预习本课幂函数的概念、性质和应用。

【学习目标】1.了解幂函数的基本概念和基本性质;2.掌握幂函数的绘制和变换;3.应用幂函数解决实际问题。

【学习重点】1.幂函数的概念及表达式;2.幂函数的图像及其特征;3.幂函数的应用。

【学习难点】1.幂函数的绘制和变换;2.在实际问题中应用幂函数。

【教学方法】1.理论讲解法;2.示例分析法。

【教学步骤】一、引入新知识教师介绍幂函数的概念和特点,与指数函数的区别,并通过举例进行说明,引起学生兴趣。

二、讲解幂函数的定义和表达式1.定义:y=x^n,其中n为正整数;2.表达式的含义及其特点:表达式中n表示幂指数,当n=1时,即为一次函数;当n>1时,在x>0时为增函数,x<0时为减函数,n<0时为奇函数,n>0时为偶函数。

三、掌握幂函数的图像及其特征1.绘制幂函数y=x^n (n=1,2,3,4)的图像;2.分析幂函数的图像及其特征:幂指数n的大小直接影响曲线的陡峭程度和开口的方向;当n为偶数时,曲线在y轴的正半轴上下对称,当n为奇数时,曲线在原点对称。

四、掌握幂函数的基本变换1.沿x轴方向平移:y=x^n+a (a>0时向上平移,a<0时向下平移);2.纵向伸缩:y=kx^n (k>1时向上伸缩,0<k<1时向下壁缩);3.横向伸缩:y=(x/a)^n (a>1时横向压缩,0<a<1时横向伸展);4.掌握幂函数的基本变换规律。

五、应用幂函数解决实际问题1.通过幂函数解决实际问题;2.对几个幂函数的实例进行讲解。

六、巩固练习练习幂函数的绘制和变换,独立解决实际问题。

【教学反思】本节课主要介绍了幂函数的概念和性质,包括幂函数图像的绘制、基本变换和应用。

幂函数教案

幂函数教案

幂函数教案一、教学目标1. 理解幂函数的定义和性质,能够正确运用幂函数的相关概念;2. 掌握幂函数的图像、性质以及变化规律;3. 能够解决幂函数相关的实际问题。

二、教学重点1. 幂函数的定义和性质;2. 幂函数的图像及其变化规律;3. 幂函数在实际问题中的应用。

三、教学难点1. 幂函数的概念和性质的理解与运用;2. 幂函数图像的绘制及变化规律的总结;3. 幂函数在实际问题中的应用解决。

四、教学过程1. 幂函数的引入(10分钟)教师通过列举一些实际问题,引导学生思考实际问题中的变化规律,并与幂函数进行对比,引入幂函数的概念。

2. 幂函数的定义和性质(20分钟)教师给出幂函数的定义,并介绍幂函数的性质,如定积分的计算、导数的运算规则等。

学生通过课堂讨论和练习题的完成,掌握幂函数的定义和性质。

3. 幂函数的图像及其变化规律(30分钟)教师通过几个具体的例子,演示绘制幂函数的图像,并引导学生总结幂函数图像的特点、变化规律和性质。

4. 幂函数的应用(20分钟)教师给出一些实际问题,引导学生运用所学的幂函数知识解决实际问题。

学生通过讨论和解决问题,加深对幂函数应用的理解和运用。

5. 综合练习与讨论(20分钟)教师布置一些综合练习题,让学生进行个人或小组讨论,并进行答案讲解和讨论。

通过综合练习,巩固所学知识并提高解题能力。

6. 课堂小结(10分钟)教师对本节课的内容进行小结,并强调学生在课后的复习重点和需要注意的问题。

五、教学辅助用具1. 纸笔,用于绘制幂函数的图像。

2. 幂函数的例题和练习题,用于学生的讨论和练习。

六、教学评价与反思在教学过程中,教师应注重激发学生的学习兴趣,通过引入实际问题,让学生主动思考和运用所学知识解决问题。

在练习环节,应鼓励学生进行个人或小组讨论,培养学生的合作能力和解决问题的能力。

同时,教师在讲解过程中,要注重总结幂函数的性质和变化规律,并将其应用到实际问题中,帮助学生理解和运用幂函数知识。

幂函数教案

幂函数教案

幂函数教案幂函数教案一. 教学目标:1. 了解幂函数的定义和性质。

2. 掌握幂函数的图像及其平移、缩放和翻折等变换规律。

3. 学会通过观察和分析,对给定的幂函数进行图像绘制。

4. 理解幂函数的增减性、单调性和奇偶性。

5. 能够解决与幂函数相关的实际问题。

二. 教学内容:1. 幂函数的定义和性质。

2. 幂函数的图像及其平移、缩放和翻折等变换规律。

3. 幂函数的增减性、单调性和奇偶性。

4. 实际问题解决。

三. 教学步骤:步骤一:导入新知识通过一个问题引入幂函数的概念,例如:小明家附近有一块广告牌,它上面的字体每年放大或缩小4倍,求第几年后字体的大小会超过原来的10倍。

步骤二:讲解幂函数的定义和性质1. 引导学生回顾指数的概念,理解幂函数的定义。

2. 讲解幂函数的性质,例如幂函数的函数图像都经过点(0,1),幂函数的增长速度由底数决定等。

步骤三:绘制幂函数的图像及变换规律1. 通过绘制几个幂函数的图像来说明幂函数的变化规律。

2. 引导学生发现幂函数的平移、缩放和翻折等变换规律。

3. 练习绘制给定幂函数的图像。

步骤四:讲解幂函数的增减性、单调性和奇偶性1. 引导学生通过观察图像,探讨幂函数的增减性。

2. 引导学生通过观察图像,探讨幂函数的单调性。

3. 引导学生通过观察图像和计算函数值,探讨幂函数的奇偶性。

步骤五:解决实际问题给学生提供一些与幂函数相关的实际问题,让学生运用所学的知识解决问题,例如:一个小球从高处自由下落,第n次落地时的高度是多少?四. 教学方法1. 探究式教学法:通过引导学生观察、分析、绘制图像等方式,让学生主动探索幂函数的性质和规律。

2. 实践教学法:通过解决实际问题的方式,提高学生对所学知识的应用能力。

3. 演示教学法:通过绘制幂函数的图像等示范,让学生更好地理解幂函数的变换规律。

五. 教学资源1. 幂函数的图像和相关实例。

2. 计算器或电脑及相关数学软件。

3. 实际问题解决的练习题。

幂函数优秀教案

幂函数优秀教案

幂函数优秀教案教案:幂函数一、教学目标:1.理解幂函数的概念及其特点;2.能够画出幂函数图像;3.掌握幂函数的基本性质和运算法则。

二、教学重点:1.幂函数的概念及其特点;2.幂函数的图像;三、教学难点:1.幂函数的性质和运算法则;2.幂函数的应用问题。

四、教学方法:1.课堂讲授法;2.小组合作学习法;3.案例分析法。

五、教学过程:时间内容活动方式教学资源(分钟)1课堂导入1.教师简单介绍幂函数的定义和基本概念,并提出问题,引起学生思考。

幂函数的定义和基本概念2.学生积极回答问题,激发学习兴趣。

10幂函数的定义及其1.学生自愿回答问题,教师进行点拨和引导,帮助学生理解幂函数的定义;幂函数的定义及其特点特点2.教师介绍幂函数的特点:定义域、值域、单调性和奇偶性。

10幂函数图像的1.教师讲解幂函数图像的画法和注意事项;幂函数图像的画法和注意事项画法2.学生跟随教师步骤,画出幂函数的图像。

10幂函数图像的分1.学生分组合作,讨论幂函数图像的特点;幂函数图像的特点析及其特点2.教师引导学生分析幂函数图像的特点,如单调性、奇偶性等。

10幂函数的性质与1.教师讲解幂函数的性质和运算法则;幂函数的性质和运算法则运算法则2.学生积极参与讨论,提出问题,与教师共同探讨幂函数的性质和运算法则。

10幂函数的应用问题1.教师以实例为背景,引导学生解决幂函数的应用问题;幂函数的应用问题2.学生自主思考,带着问题探索解决方法。

10小结与评价1.教师对本节课的内容进行小结,重点强调幂函数图像的特点和性质;无六、教学反思:在本节课中,我采用了多种教学方法和手段,如课堂讲授、小组合作学习和案例分析,以提高学生的学习兴趣和参与度。

通过引入问题、让学生自由讨论等方式,激发了学生的思维,提高了他们对幂函数的理解和运用能力。

同时,通过幂函数的图像,我帮助学生更直观地理解了幂函数的特点和性质。

在下节课中,我将注重培养学生的实际应用能力,希望能够更好地引导学生解决实际问题,提高他们的数学思维水平。

幂函数教学设计(优秀5篇)

幂函数教学设计(优秀5篇)

幂函数教学设计(优秀5篇)1、总体设计说明幂函数是函数教学的最后一个函数,在通过学习了指数函数与对数函数之后,同学们已经基本掌握了研究函数的一般方法,因此幂函数是交给学生自主研究的一个重要的契机。

函数的学习,目的在于通过对几个基本初等函数的研究让学生掌握研究一个陌生函数的方法。

基于以上认识,确定本节课的教学目标如下(1)引导学生从具体实例中概括典型特征,形成幂函数的概念,并用数学符号表示。

(2)运用数学结合的思想,让学生经历从特殊到一般,具体到抽象的研究过程,运动研究函数的一般方法,掌握幂函数的图像特征与性质。

(3)能够利用幂函数的性质比较两个数的大小教学重点与难点如下教学重点:通过让学生经历几个特殊幂函数的研究过程,抽象概括幂函数的图像与性质教学难点:根据具体的幂函数的图像与性质归纳出一般幂函数的图像与性质本节课的教学采用开放式的自主学习方式,通过引导学生对几个具体的幂函数的研究让学生归纳出一般幂函数的图像与性质。

本节课的教学过程分为三个阶段:一是概念建构;二是实验探究;三是性质应用2、教学过程剖析2.1创设情境建构概念问题1(1)正方形的边长a与面积S之间是函数关系吗?(2)正方体的边长a与体积V之间是函数关系吗?学生找到两个变量之间的函数关系,并给出函数的解析式:和师:我们把形如的函数称为幂函数。

直接给出定义,这里其实可以让学生再举几个类似的函数的例子,通过多个实例再让学生抽象幂函数的定义会更好。

师:我们研究问题一般是从特殊到一般,具体到抽象的一个过程,因此我们可以先研究几个特殊的幂函数,比如最特殊,图像长什么样子?生:是一条直线。

师:你确定是一条直线吗?生:是一条直线去掉一个点师:为什么?生:定义域中x不能取到0。

师:我们研究函数一般先看函数的定义域。

师:我们可以先研究的情况,你打算研究为哪些值?【设计意图】引导学生思考如何选取的研究起来比较方便,一般学生会选择为1,2,3来进行研究,实际操作中因为笔者的课堂利用了图形计算器,也可以让学生多取一些值,借助于图形计算器让学生绘制更多幂函数的图像,从而概括得到一般幂函数的图像与性质,这样学生的学习自主性更强,教师可以减少一些介入。

幂函数教学设计

幂函数教学设计

幂函数教学设计一、引言幂函数是高中数学中的重要概念,也是解决实际问题中常常遇到的数学模型之一。

本文将围绕幂函数的定义、性质、图像以及应用展开教学设计,旨在帮助学生全面理解和掌握幂函数的基本知识和应用方法。

二、幂函数的定义1. 引出幂函数的概念,介绍幂函数的定义:幂函数是指形如f(x)=ax^n的函数,其中a为常数,n为整数。

2. 解释幂函数定义中的各个要素:常数a表示底数,整数n表示指数。

3. 引导学生通过例题理解幂函数的定义,并进行练习。

三、幂函数的性质1. 幂函数的单调性:当n为正数时,幂函数随着x的增大而增大;当n为负数时,幂函数随着x的增大而减小。

2. 幂函数的奇偶性:当n为偶数时,幂函数关于y轴对称;当n为奇数时,幂函数关于原点对称。

3. 幂函数的零点:当n为正数时,幂函数存在一个零点;当n为负数时,幂函数不存在零点。

4. 幂函数的图像特点:通过改变底数a和指数n的值,让学生观察和比较不同幂函数的图像特点。

5. 引导学生通过练习题巩固幂函数的性质。

四、幂函数的图像1. 分别以正整数、负整数、分数和零为指数,让学生观察和比较不同指数对幂函数图像的影响。

2. 引导学生通过练习题绘制不同幂函数的图像,并分析其特点。

五、幂函数的应用1. 介绍幂函数在实际问题中的应用:例如,面积与边长的关系、物体的重量与长度的关系等。

2. 通过具体例子引导学生建立幂函数模型,并解决实际问题。

3. 给予学生一些实际问题,并要求他们运用所学的幂函数知识进行求解。

六、归纳总结1. 对幂函数的定义、性质、图像和应用进行总结,并强调幂函数在数学和实际问题中的重要性。

2. 鼓励学生积极思考和提问,加深对幂函数的理解。

3. 对整堂课进行总结和回顾,检测学生对幂函数的掌握情况。

七、课后作业布置一些幂函数相关的作业题目,要求学生运用所学的知识解决问题,并提供答疑时间。

八、教学反思对本节课的教学进行反思和总结,思考如何进一步提高教学效果,以及是否需要调整教学内容和方法。

高中数学 3.3《幂函数》学案 新人教b版必修1

高中数学 3.3《幂函数》学案 新人教b版必修1

3.3幂函数一、教学目标:1、了解幂函数的概念。

2、会画幂函数y=x ,y=x 2,y=x 3,1-=x y ,y=x 21的图象,并了解幂函数的变化情况。

重点:幂函数的定义、图像和性质。

难点:幂函数图像的位置和形状变化。

二、知识梳理1函数y=x 、y=x 2、y=x1的表达式有着共同的特征:幂的 是自变量,指数是 .2、一般地,形如 的函数称为幂函数,其中α为常数。

3、幂函数的性质:(1)(2)(3) 4、幂函数y=x α(α∈R )的图像主要分以下几类:(1)当α=0时,图像是过(1,1)点平行于x 轴但除去(0,1)点的一条断直线。

(2)当α为正偶数时,幂函数为偶函数,图像过第一、二象限及原点。

(3)当α为正奇数时,幂函数为奇函数,图像过第一、三象限及原点。

(4)当α为负偶数时,幂函数为偶函数,图像过第一、二象限但不过原点。

(5)当α为负奇数时,幂函数为奇函数,图像过第一、三象限但不过原点。

(6)当α为正分数时,设为nm (m 、n 是互质的正整数)。

如果m ,n 都为奇数,幂函数为奇函数,图像过第一、三象限及原点;当m 是偶数、n 是奇数时,幂函数是偶函数,图像过第一、二象限及原点;如果m 为奇数、n 为偶数,幂函数是非奇非偶函数,图像过第一象限及原点。

(7)当α为负分数时,设为-nm (m 、n 是互质的正整数)。

如果m ,n 都为奇数,幂函数为奇函数,图像过第一、三象限;当n 是偶数、m 是奇数时,幂函数为非奇非偶函数,图像只在第一象限;如果n 为奇数、m 为偶数,幂函数是偶函数,图像过第一、二象限。

(8)幂函数图像一定不会出现在第四象限,若幂函数图像与坐标轴相交,则交点一定是原点。

三、例题解析题型一 幂函数的概念例1、 下列函数是幂函数的是①y=ax m (a ,m 为非零常数,且a ≠1);②y= 13x +x 2; y=x π;④y= 3(1)x -。

A 、①③ B 、①② C 、③ D 、①③④ 变式训练:在函数21y x=、22y x =、y=1、y=x 2+x 中,幂函数的个数是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10课时 幂函数
【考点概述】
①了解幂函数的概念;
②结合函数1
2
3
21,,,,y x y x y x y y x x
====
=的图像,了解它们的变化情况.
【重点难点】:
掌握常见幂函数的概念、图象和性质,能利用幂函数的单调性比较两个幂值的大小. 【知识扫描】 1. 幂函数的定义
形如_____________()R α∈的函数称为幂函数,其中x 是______,α为______. 2. 幂函数的图象
【热身练习】 1.6.12.02.02
.02,2,2.0,4
.0的大小顺序为 。

2.已知幂函数)(x f y =的图象过点)2,2(,则()f x 的解析式是 。

3. 幂函数
)(x f y =的图象经过点1(2,)8
--,则满足()27f x =的x 的值是 。

4. 幂函数()y f x =的图象过点1
(2,)4
, 则函数()y f x =是 函数。

(奇偶性)
5. 函数
245
()a a f x x
--=(a 为常数)是偶函数,且在(0,)+∞上是减函数,则整数a 的
值是 .
6.幂函数()f x 的图象经过点,则()f x 的值域是 。

【范例透析】 【例1】
若幂函数
9
922
2)352()(+-+-=m m x
m m x f 在(0,+∞)上是减函数,则m
的值为多少?
【例2】 已知函数
223
()m m y x
m Z --=∈在(0,+∞)上是减函数,求函数解析式,并讨
论其单调性与奇偶性.
【例3】
已知函数223
()()m m f x x m Z -++=∈是偶函数,且(3)(5)f f <,求
m 的值,
并确定
()f x 的函数解析式。

【变式训练】
已知幂函数223
()()m m f x x m Z --=∈的图象与x 轴、y 轴都无交点,且关于y 轴对
称,试确定f x ()的解析式.
【例4】已知幂函数()y f x =经过点1(2,)8
, (1)试求函数解析式;
(2)判断函数的奇偶性并写出函数的单调区间;
【巩固练习】
1. 已知幂函数)(x f 的图象过)2
2
,
2(,则=)4(f . 2. 设112,,,222
α⎧⎫∈--⎨⎬⎩

,则使函数
y x α=为偶函数的所有α的和为____________.
3. 如果幂函数
22
1
()(33)m m f x m m x
--=-+的图象不经过原点,则m 的取值
是 .
4.已知幂函数()f x k x α
=⋅的图象过点1,2⎛ ⎝⎭
,则k α+= .
5.幂函数m
m x
x f 32)(-=的图象关于y 轴对称,且在()0,+∞递减,则整数m = .。

相关文档
最新文档