验证时域采样定理和频域采样定理__数字信号处理.doc

合集下载

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

时域采样与频域采样 实验报告

时域采样与频域采样  实验报告

实验二 时域采样与频域采样学校:西南大学 班级:通信工程班一、实验目的时域采样理论与频域采样理论就是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理时域采样定理的要点就是采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

频域采样定理的要点就是:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k N X k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为 ()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就就是原序列x(n),即()N x n =x(n)。

如果N>M,()N x n 比原序列尾部多N-M 个零点;如果N<M,z 则()N x n =IDFT[()N X k ]发生了时域混叠失真,而且()N x n 的长度N 也比x(n)的长度M 短,因此。

()N x n 与x(n)不相同。

三、实验程序(1)时域采样理论的验证。

Tp=64/1000;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444、128;alph=pi*50*2^0、5;omega=pi*50*2^0、5;xnt=A*exp(-alph*n*T)、*sin(omega*n*T);Xk=T*fft(xnt,M);yn='xa(nT)';subplot(3,2,1);tstem(xnt,yn);box on;title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1、2*max(abs(Xk))])(Fs=300Hz与Fs=200Hz的程序与上面Fs=1000Hz完全相同。

数字信号处理基础

数字信号处理基础
∆x = D 2b −1
4∆x 3∆x 2∆x ∆x
t
量化误差 量化误差=量化电平-实际电平
最大量化误差为: 其绝对值为:
ε ( n ) max
∆x = ± 2
e = D 2b
一般来说,量化误差很小。通常假设A/D转 换器的位数为无限多,即量化误差为零。
增大程控增益实质上是通过减小动态范围D来减小 离散间隔 ,使得量 化电平更接近真实值
时域乘积对应 频域卷积
+∞
m = −∞

采样结果
ˆ 理想抽样输出为: x(t) =
m=−∞
∑x(t)δ (t −mTs ) = ∑x(mTs )δ (t −mTs )
m=−∞


其频谱为:
1 ∞ 2π ˆ x( jΩ) = x( jΩ− jk ) ∑ Ts k=−∞ Ts
一个连续时间信号经过理想抽样后,其频谱将以抽样频率:
s (t )
时域采样
1
0
Ts
t
采样:就是利用周期性抽样脉冲序列 s (t ) 从连续信号 x(t ) 中抽
取一系列的离散值,得到抽样信号(或称抽样数据信号)即离散 时间信号,以 x(t ) 表示。抽样是模拟信号数字化的第一环节, ˆ 再经幅度量化编码后即得到数字信号 x (n) 。
x(t(t) ) ˆ x
信号数字化出现的问题
主要内容提要
时域采样、混叠和采样定理 量化与量化误差 截断、泄漏和窗函数 频域采样、时域周期延拓和栅栏效应 频率分辨力、整周期截断
引言—— 引言—— 数字信号处理的基本步骤
预处理 A/D 计算机 显示
预处理: 预处理: 电压幅值调理; 滤波; 隔离信号中的直流分量; 解调。 A/D转换: A/D转换: 转换 采样, 量化, 编码等。

数字信号处理实验答案

数字信号处理实验答案

数字信号处理实验答案第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。

实验一系统响应及系统稳定性。

实验二时域采样与频域采样。

实验三用FFT对信号作频谱分析。

实验四IIR数字滤波器设计及软件实现。

实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。

建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。

学习完第六章进行;实验五在学习完第七章后进行。

实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。

10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。

也可以用MA TLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

数字信号处理实验报告

数字信号处理实验报告

《数字信号处理》实验报告课程名称:《数字信号处理》学院:信息科学与工程学院专业班级:通信1502班学生姓名:侯子强学号:02指导教师:李宏2017年5月28日实验一离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号:ˆ()()()a a xt x t p t = 式中()p t 为周期冲激脉冲,$()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为µ()a X j Ω: 上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T。

也即采样信号的频谱µ()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换()()n P t t nT δ∞=-∞=-∑µ1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑µ()()|j a TX j X e ωω=ΩΩ=2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

实验二时域采样与频域采样及MATLAB程序

实验二时域采样与频域采样及MATLAB程序

实验二时域采样与频域采样及MATLAB程序时域采样与频域采样一实验目的1掌握时域连续信号经理想采样前后的频谱变化,加深对时域采样定理的理解2理解频率域采样定理,掌握频率域采样点数的选取原则二实验原理1时域采样定理对模拟信号以T进行时域等间隔采样,形成的采样信号的频谱会以采样角频率为周期进行周期延拓,公式为:利用计算机计算上式并不容易,下面导出另外一个公式。

理想采样信号和模拟信号之间的关系为:对上式进行傅里叶变换,得到:在上式的积分号内只有当时,才有非零值,因此:上式中,在数值上,再将代入,得到:上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变量用代替即可。

2频域采样定理对信号的频谱函数在[0, 2]上等间隔采样N点,得到则有:即N点得到的序列就是原序列以N为周期进行周期延拓后的主值序列,因此,频率域采样要使时域不发生混叠,则频域采样点数N必须大于等于时域离散信号的长度M (即)。

在满足频率域采样定理的条件下,就是原序列。

如果,则比原序列尾部多个零点,反之,时域发生混叠,与不等。

对比时域采样定理与频域采样定理,可以得到这样的结论:两个定理具有对偶性,即“时域采样,频谱周期延拓;频域采样,时域信号周期延拓”。

在数字信号处理中,都必须服从这二个定理。

三实验内容1时域采样定理的验证给定模拟信号,式中,A二444、128,,,其幅频特性曲线如下图示:选取三种采样频率,即,300Hz, 200Hz,对进行理想釆样,得到采样序列:。

观测时间长度为。

分别绘出三种采样频率得到的序列的幅频特性曲线图,并进行比较。

2频域采样定理的验证给定信号:,对的频谱函数在[0, 2]上分别等间隔采样16点和32点,得到和,再分别对和进行IDFT,得到和。

分别画出、和的幅度谱,并绘图显示、和的波形,进行对比和分析。

四思考题如果序列的长度为M,希望得到其频谱在[0, 2]上N点等间隔采样,当时,如何用一次最少点数的DFT得到该频谱采样?五实验报告及要求1编写程序,实现上述要求,打印要求显示的图形2分析比较实验结果,简述由实验得到的主要结论3简要回答思考题4附上程序清单和有关曲线%时域采样Tp二128/1000;%观测时间128ms Fs=1000; T=l/Fs;%采样频率lKIIz M=Tp*Fs;%取样点数128 点n=0:M-l; t=n*T; A=444、128;alph=pi*50*2 0^ 5;omega=pi*50*2 0. 5;xnt=A*exp(-alph*t)、*sin(omega*t);Xk=T*fft(xnt,M);%M=128 点FFT[xnt] subplot(4,2,1);plot (n, xnt) ; xlabel (t) ; ylabel (xa(t)) ; title (原信号波形); k=0:M-l; wk=k/(Tp*Fs);%归一化处理subplot (4,2,2);plot(wk,abs(Xk));title(T*FT[xa(nT)],Fs=lKH z 幅频特性);xlabel (w/\pi) ;ylabel (幅度(III (jf)));Tp二64/1000;%观测时间64ms Fs二1000; T=l/Fs;%采样频率lKHz M=Tp*Fs;%取样点数64 点n=0:M-l;t=n*T; A=444、12&alph=pi*50*2 0^ 5;omega二pi*50*2"0、5;xnt=A*exp(-alph*t)、*sin(omega*t);Xk=T*fft(xnt,M);%M=64 点FFT[xnt] subplot (4,2,3);stem(n,xnt,); xlabel (n) ; ylabel (xa(nT)) ; title(Fs=lKllz 采样序列);k=0:M~l; wk=k/(Tp*Fs);subplot(4,2,4);plot(wk,abs(Xk));title(T*FT[xa(nT)],Fs=lKH z 幅频特性);xlabel (w/\pi) ; ylabel (幅度(III (jf)));Fs=300;T=l/Fs; M=Tp*Fs;n=0:M-l;t=n*T; A=444、128;alph=pi*50*2 0. 5;omega二pi*50*2"0、5;xnt=A*exp(-alph*t)、*sin(omega*t);Xk=T*fft(xnt,M);subplot (4,2,5); stem(n,xnt,、); xlabel(n);ylabel(x2(n)); title(Fs=300Ilz 采样序列);k=0:M-l;wk=k/(Tp*Fs); subplot (4,2,6); plot (wk, abs (Xk)) ;title (T*I?T[xa (r)T) ], Fs=300 Hz 幅频特性);xlabel(w/\pi) ; ylabel ((112 (jf)));Fs=200;T=l/Fs; M=Tp*Fs;n=0:M-l;t=n*T; A=444、128;alph=pi*50*2 0^ 5;omega二pi*50*2"0、5;xnt=A*exp(-alph*t)、*sin(omega*t);Xk=T*fft(xnt,M);subplot (4,2,7); stem(n,xnt,、); xlabel(n);ylabel(x3(n)); title(Fs=2001Iz 采样序列);k=0:M-l;wk=k/(Tp*Fs); subplot(4,2,8);plot(wk,abs(Xk));title(T*FT[xa(nT)],Fs=200 Hz 幅频特性);xlabel (w/\pi) ;ylabel ((H3 (jf))) ;%频域采样M=27;N=32;n=0:M;xn=(n>=0&n<=13)、*(n+1)+(n>=14&n<=26)、*(27-n);%产生x(n)Xk=fft(xn, 1024) ; %1024 点FFT[x(n)]X32k=fft(xn,32); %32 点FFT[x(n)]x32n=ifft(X32k); %32 点IFFT[X32(k)]得到x32(n)X16k=X32k(l:2:N);%隔点抽取X32(k)得到X16(k)xl6n=ifft (X16k,N/2) ;%16 点IFFT[X16(k)]得到xl6(n)k=0: 1023;wk=2*k/1024;%连续频谱图的横坐标取值subplot (3,2,1); plot (wk,abs(Xk));title(FT[x(n)]);xlabel('omega/'pi);ylabel( X(e j\omega)| );axis([0,1,0,200]);subplot(3,2,2);stem(n,xn,、);title(三角波序列x(n)) ; xlabel(n) ; ylabel(x(n));axis([0,32,0,20])k=0:N/2-1; %离散频谱图的横坐标取值subplot (3,2,3); stem(k, abs (X16k) ,、) ; title (16 点频域采样);xlabel(k);ylabel(|X_l_6(k)|);axis([0,8,0,200])n1=0:N/ 2-1;subplot (3,2,4);stem(nl,xl6n,. );title(16IDFT[X_1_6(k)]);x label (n) ; ylabel (x_l_6(n)) ;axis([0,32,0,20])k=0:NT ;%离散频谱图的横坐标取值subplot (3,2,5); stem(k, abs (X32k),、) ; title (32 点频域采样);xlabel(k);ylabel(|X_3_2(k)|);axis([0,16,0,200])nl=0:N1;subplot (3,2,6);stem(nl,x32n,、);title(32IDFT[X_3_2 (k)]);xlabel (n);ylabel (x_3_2(n));axis([0,32,0,20])。

数字信号处理实验(1-7)原始实验内容文档(含代码)

数字信号处理实验(1-7)原始实验内容文档(含代码)

实验要求1.每个实验进行之前须充分预习准备,实验完成后一周内提交实验报告;2.填写实验报告时,分为实验题目、实验目的、实验内容、实验结果、实验小结五项;3.实验报告要求:实验题目、实验目的、实验内容、实验结果四项都可打印;但每次实验的实验内容中的重要代码(或关键函数)后面要用手工解释其作用。

实验小结必须手写!(针对以前同学书写实验报告时候抄写代码太费时间的现象,本期实验报告进行以上改革)。

实验一信号、系统及系统响应实验目的:1. 掌握使用MATLAB进行函数、子程序、文件编辑等基本操作;2. 编写一些数字信号处理中常用序列的3. 掌握函数调用的方法。

实验内容:1.在数字信号处理的基本理论和MATLAB信号处理工具箱函数的基础上,可以自己编写一些子程序以便调用。

(1)单位抽样序列δ(n-n0)的生成函数impseq.m(2)单位阶跃序列u(n-n0)的生成函数stepseq.m(3)两个信号相加的生成函数sigadd.m(4)两个信号相乘的生成函数sigmult.m(5)序列移位y(n)=x(n-n0)的生成函数sigshift.m(6)序列翻褶y(n)=x(-n)生成函数sigfold.m(7)奇偶综合函数evenodd.m(8)求卷积和2.产生系列序列,并绘出离散图。

(1) x1(n)=3δ(n-2)-δ(n+4) -5≤n≤5(2) x3(n)=cos(0.04πn)+0.2w(n) 0≤n≤50其中:w(n)是均值为0,方差为1 的白噪声序列。

3.设线性移不变系统的抽样响应h(n)=(0.9)^n*u(n),输入序列x(n)=u(n)-u(n-10),求系统的输出y(n).实验二 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

验证时域采样定理和频域采样定理__数字信号处理.doc

验证时域采样定理和频域采样定理__数字信号处理.doc

恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚课程设计报告课程名称数字信号课程设计系别:工程技术系专业班级:电子信息工程学号: 09XXXXXX7姓名: XXXXX课程题目:验证时域采样定理和频域采样定理完成日期: 2012年6月29日指导老师:杨亚东2012 年 6 月 29 日验证时域采样定理和频域采样定理摘要数字信号处理是将信号以数字方式表示并处理的理论和技术。

数字信号处理与模拟信号处理是信号处理的子集。

数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。

因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。

而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。

编制Matlab程序,完成以下功能,对给定模拟信号进行时域采样,观察不同采样频率对采样信号频谱的影响,验证时域采样定理;对给定序列进行傅里叶变换,并在频域进行采样,观察不同采样点数对恢复序列的影响,验证频域采样定理;绘制相关信号的波形。

关键字:时域采样,频域采样,数字信号处理,matlab目录一、绪论 (1)二、方案 (1)1.验证时域采样定理 (1)2.频域采样理论的验证。

(2)三、过程论述 (3)1.实验步骤 (3)2.MATLAB实现编程 (3)四、结果分析 (6)1、程序分析 (6)2、原信号的波形及幅度频谱 (6)3、实验结果分析 (6)五、结论 (9)致谢 (11)参考文献 (11)一、绪论数字信号处理是将信号以数字方式表示并处理的理论和技术。

数字信号处理与模拟信号处理是信号处理的子集。

数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。

因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。

而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。

编制Matlab 程序,完成以下功能,对给定模拟信号进行时域采样,观察不同采样频率对采样信号频谱的影响,验证时域采样定理;对给定序列进行傅里叶变换,并在频域进行采样,观察不同采样点数对恢复序列的影响,验证频域采样定理;绘制相关信号的波形。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

时域及频域采样定理

时域及频域采样定理

时域及频域采样定理
时域采样定理(Nyquist定理)表示:在连续时间信号的采样
过程中,为了准确地重构原始信号,采样的频率必须大于等于原始信号最高频率的两倍。

频域采样定理表示:在连续频谱信号的采样过程中,为了准确地还原原始频谱,采样的时间间隔必须小于等于原始信号的最小周期。

时域采样定理保证了信号在采样和重构过程中不存在混叠现象,即采样频率大于等于原始信号最高频率的两倍,可以完整地还原原始信号。

频域采样定理保证了在频谱分析中,通过对信号进行采样得到的频谱能准确地表示原始频谱。

数字信号处理实验二时域采样和频域采样

数字信号处理实验二时域采样和频域采样

数字信号处理实验二时域采样和频域采样 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】实验二-时域采样和频域采样一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理及方法1、时域采样定理的要点:a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓 b)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

2、频域采样定理的要点:a)对信号x(n)的频谱函数X(ej ω)在[0,2π]上等间隔采样N 点则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列。

三、实验内容及步骤1、时域采样理论的验证程序:clear;clcA=;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi;Tp=50/1000;F1=1000;F2=300;F3=200;T1=1/F1;T2=1/F2;T3=1/F3;n1=0:Tp*F1-1;n2=0:Tp*F2-1;n3=0:Tp*F3-1;x1=A*exp(-a*n1*T1).*sin(w0*n1*T1);x2=A*exp(-a*n2*T2).*sin(w0*n2*T2);x3=A*exp(-a*n3*T3).*sin(w0*n3*T3);f1=fft(x1,length(n1)); f2=fft(x2,length(n2)); % f3=fft(x3,length(n3)); %k1=0:length(f1)-1;fk1=k1/Tp; %k2=0:length(f2)-1;fk2=k2/Tp; %k3=0:length(f3)-1;fk3=k3/Tp; %subplot(3,2,1)stem(n1,x1,'.')title('(a)Fs=1000Hz');xlabel('n');ylabel('x1(n)');subplot(3,2,3)stem(n2,x2,'.')title('(b)Fs=300Hz');xlabel('n');ylabel('x2(n)');subplot(3,2,5)stem(n3,x3,'.')title('(c)Fs=200Hz');xlabel('n');ylabel('x3(n)');subplot(3,2,2)plot(fk1,abs(f1))title('(a) FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('·ùè')subplot(3,2,4)plot(fk2,abs(f2))title('(b) FT[xa(nT)],Fs=300Hz');xlabel('f(Hz)');ylabel('·ùè')subplot(3,2,6)plot(fk3,abs(f3))title('(c) FT[xa(nT)],Fs=200Hz');xlabel('f(Hz)');ylabel('·ùè')结果分析:由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNN zWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N Kj k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TF X32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20]) k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box on title('(e) 32点频域采样');xlabel('k'); ylabel('|X_3_2(k)|');axis([0,16,0,200]) n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box on title('(f) 32点IDFT[X_3_2(k)]');xlabel('n'); ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M 时,x 16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

数字信号处理实验三时域及频域采样定理

数字信号处理实验三时域及频域采样定理
这里有一个问题要解释,采样信号的频谱 是将模拟信号的频谱按照采样角频频率为周期,进行周期性延拓形成的,而序列的傅立叶变换是以 为周期,这里是否一致?答案是肯定的。因为按照公式 ,当 时, ,因此序列的傅立叶变换以 为周期,转换到模拟域就是以采样频率 为周期。另外, 是 的折叠频率,如果产生频率混叠,就是在该处附近发生,在数字域中,就是在 附近易产生频谱混叠。有了以上的公式和概念,就可以用计算机研究对模拟信号的采样定理。
Xk1=fft(x1,length(n1)); %采样序列x1(n)的FFT变换
Xk2=fft(x2,length(n2)); %采样序列x2(n)的FFT变换
Xk3=fft(x3,length(n3)); %采样序列x3(n)的FFT变换
k1=0:length(Xk1)-1;
fk1=k1/Tp; %x1(n)的频谱的横坐标的取值
这里给定采样频率如下: ,300Hz,200Hz。分别用这些采样频率形成时域离散信号,按顺序分别用 、 、 表示。选择观测时间 。
3.计算 的傅立叶变换 :
(3.6)
式中, ,分别对应三种采样频率的情况 。采样点数用下式计算:
(3.7)
(3.6)式中, 是连续变量。为用计算机进行数值计算,改用下式计算:
下面分析频域采样定理。对信号x(n)的频谱函数 ,在[0,2π]上等间隔采样N点,得到
(3.4)
则N点IDFT[ ]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列,公式为:
(3.5)
由上式可知,频域采样点数N必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N点IDFT[ ]得到的序列 就是原序列x(n),即 =x(n)。如果N>M, 比原序列尾部多N-M个零点;如果N<M,z则 =IDFT[ ]发生了时域混叠失真,而且 的长度N也比x(n)的长度M短,因此。 与x(n)不相同。

数字信号处理上机实验答案(第三版,第十章)1

数字信号处理上机实验答案(第三版,第十章)1

第十章 上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。

实验一 系统响应及系统稳定性。

实验二 时域采样与频域采样。

实验三 用FFT 对信号作频谱分析。

实验四 IIR 数字滤波器设计及软件实现。

实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。

建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。

学习完第六章进行;实验五在学习完第七章后进行。

实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。

10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。

也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

数字信号处理 实验报告

数字信号处理    实验报告

数字信号处理实验报告实验一 信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、 离散信号及系统响应进行频域分析。

二、实验原理与方法 1. 时域采样定理:对一个连续信号xa(t)进行理想采样的过程如下: xa1(t)=xa(t)p(t)其中xa1(t)为xa(t)的理想采样,p(t)为周期冲击脉冲。

xa1(t)的傅里叶变换Xa1(j Ω)为:11()[()]m Xa j Xa j m s T +∞=-∞Ω=Ω-Ω∑表明Xa1(j Ω)为Xa(j Ω)的周期延拓,其延拓周期为采样角频率(s Ω=2π/T )。

离散信号和系统在时域均可用序列来表示。

2. LTI 系统的输入输出关系: y(n)=x(n)*h(n)=()()m x m h n m +∞=-∞-∑()()()j j j Y e X e H e ωωω=三、实验内容1. 分析采样序列的特性。

1) 取模拟角频w=70.7*pi rad/s ,采样频率fs=1000Hz>2w ,发现无频谱混叠现象。

2) 改变采样频率, fs=300 Hz<2w ,频谱产生失真。

3) 改变采样频率, fs=200Hz<2w,频谱混叠,产生严重失真2. 时域离散信号、系统和系统响应分析。

1) 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。

2) 观察系统ha(n)对信号xc(n)的响应特性。

可发现:信号通过系统,相当于x(n)与系统函数h(n)卷积,时域卷积即对应频域函数相乘。

数字信号处理课程设计

数字信号处理课程设计

数字信号处理课程设计(综合实验)班级:电子信息工程1202X姓名:X X学号:1207050227指导教师:XXX设计时间:2014.12.22—2015.1。

4成绩:评实验一时域采样与频域采样定理的验证实验一、设计目的1。

时域采样理论与频域采样理论是数字信号处理中的重要理论.要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;2. 要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、程序运行结果1。

时域采样定理验证结果:2。

频域采样定理验证结果:三、参数与结果分析1。

时域采样参数与结果分析:对模拟信号()ax t以T进行时域等间隔理想采样,形成的采样信号的频谱会以采样角频率Ωs(Ωs=2π/T)为周期进行周期延拓。

采样频率Ωs必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

() ax t的最高截止频率为500HZ,而因为采样频率不同,得到的x1(n)、x2(n)、x3(n)的长度不同。

频谱分布也就不同。

x1(n)、x2(n)、x3(n)分别为采样频率为1000HZ、300HZ、200HZ 时候的采样序列,而进行64点DFT之后通过DFT分析频谱后得实验图中的图,可见在采样频率大于等于1000时采样后的频谱无混叠,采样频率小于1000时频谱出现混叠且在Fs/2处最为严重。

2.频域采样参数与结果分析:对信号x(n)的频谱函数进行N点等间隔采样,进行N 点IDFT[()NXk]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列。

对于给定的x(n)三角波序列其长度为27点则由频率域采样定理可知当进行32点采样后进应该无混叠而16点采样后进行IFFT得到的x(n)有混叠,由实验的图形可知频域采样定理的正确性.四、思考题如果序列x(n)的长度为M,希望得到其频谱在[0, 2π]上的N点等间隔采样,当N<M 时,如何用一次最少点数的DFT得到该频谱采样?答:通过实验结果可知,可以先对原序列x(n)以N为周期进行周期延拓后取主值区序列,再计算N点DFT则得到N点频域采样。

理解数字信号处理中的频域采样定理

理解数字信号处理中的频域采样定理

理解数字信号处理中的频域采样定理
摘要:采样定理是数字信号处理教学的基石。

时域采样的应用已深入到每个人的数字生活中,因此易于理解和接受。

虽然频域采样定理和时域采样定理具有互易性,但是频域采样的直接应用场合相对较少导致有些同学误以为频域采样仅是时域采样的衍生,从而为理解采样定理的本质制造了障碍。

本文将以雷达一维距离像为例说明人类对现实事物的认知并不总是直接来自时域采样。

频域采样与时域采样具有同等重要的地位。

关键词:数字信号采样定理频域
典型的频域采样定理应用是雷达目标距离像的提取。

对于F-16战斗机,当雷达用不同的频率照射它时,将会得到对应不同频率的反射回波的幅值。

图1是频域采样定理的示意图。

其中,图1.1为频域连续信号、图1.2为频域采样得到的数字信号、图1.3为连续傅立叶变换、图1.4为离散傅立叶变换。

常见的雷达目标识别信号处理过程基本上都是基于频域采样定理展开的。

3 结论
通过分析雷达一维距离像解释了数字信号处理中频域采样定理的重要地位。

时域采样定理和频域采样定理是本科数字信号处理中的重要概念,只有准确理解了时域采样和频域采样之间的对应关系,才有利于理解现代数字信号处理中的空间采样、多变量采样、稀疏采样等的涵义和本质。

参考文献
[1]胡广书.数字信号处理导论[M],2005.
[2]胡广书.现代信号处理教程[M],2004.
[3]赵树杰.雷达信号处理技术[M],2010.。

验证时域采样定理和频域采样定理__数字信号处理.doc

验证时域采样定理和频域采样定理__数字信号处理.doc
恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚 恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚
恍恍惚惚课程设计报告Fra bibliotek课程名称
系 别:
专业班级:
学 号:
姓 名:
数字信号课程设计
工程技术系
电子信息工程
09XXXXXX7
课程题目: 验证时域采样定理和频域采样定理
完成日期:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

实验二 时域采样与频域采样

实验二 时域采样与频域采样

实验二 时域采样与频域采样一:实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用二:实验内容与步骤(1)时域采样理论的验证。

给定模拟信号,)()sin()(0t u t Ae t x t a Ω=-α式中A =444.128,α=502π,0Ω=502πrad/s ,它的幅频特性曲线如图10.2.1现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。

安照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz 。

观测时间选ms T p 50=。

为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。

)()sin()()(0nT u nT Ae nT x n x nT a Ω==-α因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度(点数)用公式s p F T N ⨯=计算。

选FFT 的变换点数为M=64,序列长度不够64的尾部加零。

X (k )=FFT[x (n )] , k =0,1,2,3,-----,M -1式中k 代表的频率为 k Mk πω2=。

要求: 编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。

观察分析频谱混叠失真。

时域采样定理代码:Tp=64/1000;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T.*fft(xnt,M);yn='xa(nT)';subplot(2,3,1);stem(n,xnt,'.');box on;title('(1) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(2,3,4);plot(fk,abs(Xk));title('(2) T*FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])Fs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T.*fft(xnt,M);yn='xa(nT)';subplot(2,3,2);stem(n,xnt,'.');box on;title('(3) Fs=300Hz');k=0:M-1;fk=k/Tp;subplot(2,3,5);plot(fk,abs(Xk));title('(4) T*FT[xa(nT)],Fs=300Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])Fs=200;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T); Xk=T.*fft(xnt,M);yn='xa(nT)';subplot(2,3,3);stem(n,xnt,'.');box on;title('(5) Fs=200Hz');k=0:M-1;fk=k/Tp;subplot(2,3,6);plot(fk,abs(Xk));title('(6) T*FT[xa(nT)],Fs=200Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]实验结果:频域采样定理给定信号如下:⎪⎩⎪⎨⎧≤≤-≤≤+=其它02614271301)(n n n n n x编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32 和16点,得到)()(1632k X k X 和: 32232()() , 0,1,2,31j k X k X e k ωπω=== 16216()() , 0,1,2,15j k X k X e k ωπω===再分别对)()(1632k X k X 和进行32点和16点IFFT ,得到)()(1632n x n x 和:323232()IFFT[()] , 0,1,2,,31x n X k n == 161616()IFFT[()] , 0,1,2,,15x n X k n ==分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x (n)、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚课程设计报告课程名称数字信号课程设计系别:工程技术系专业班级:电子信息工程学号: 09XXXXXX7姓名: XXXXX课程题目:验证时域采样定理和频域采样定理完成日期: 2012年6月29日指导老师:杨亚东2012 年 6 月 29 日验证时域采样定理和频域采样定理摘要数字信号处理是将信号以数字方式表示并处理的理论和技术。

数字信号处理与模拟信号处理是信号处理的子集。

数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。

因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。

而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。

编制Matlab程序,完成以下功能,对给定模拟信号进行时域采样,观察不同采样频率对采样信号频谱的影响,验证时域采样定理;对给定序列进行傅里叶变换,并在频域进行采样,观察不同采样点数对恢复序列的影响,验证频域采样定理;绘制相关信号的波形。

关键字:时域采样,频域采样,数字信号处理,matlab目录一、绪论 (1)二、方案 (1)1.验证时域采样定理 (1)2.频域采样理论的验证。

(2)三、过程论述 (3)1.实验步骤 (3)2.MATLAB实现编程 (3)四、结果分析 (6)1、程序分析 (6)2、原信号的波形及幅度频谱 (6)3、实验结果分析 (6)五、结论 (9)致谢 (11)参考文献 (11)一、绪论数字信号处理是将信号以数字方式表示并处理的理论和技术。

数字信号处理与模拟信号处理是信号处理的子集。

数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。

因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。

而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。

编制Matlab 程序,完成以下功能,对给定模拟信号进行时域采样,观察不同采样频率对采样信号频谱的影响,验证时域采样定理;对给定序列进行傅里叶变换,并在频域进行采样,观察不同采样点数对恢复序列的影响,验证频域采样定理;绘制相关信号的波形。

二、方案1.验证时域采样定理 给定模拟信号a 0()sin()()t x t Ae t u t αΩ-=式中, A=444.128,α=,s rad /2500π=Ω。

现用DFT(FFT)按照xa(t)的幅频特性曲线,选取三种采样频率,即Fs=1 kHz ,300 Hz ,200 Hz 。

观测时间选Tp=64 ms 。

为使用DFT ,首先用下面的公式产生时域离散信号,对三种采样频率,采样序列按顺序用x1(n)、x2(n)、x3(n)表示。

a 0()()e sin()()nT x n x nT A nT u nT αΩ-==因为采样频率不同,得到的x1(n)、 x2(n)、x3(n)的长度不同, 长度(点数)用公式N=Tp ×Fs 计算。

选FFT 的变换点数为M=64,序列长度不够64的尾部加零。

X(k)=FFT[x(n)] , k=0,1,2,3,…,M -1 式中, k 代表的频率为2πk k Mω=要求: 编写实验程序,计算x1(n)、 x2(n)和x3(n)的幅度特性,并绘图显示。

2.频域采样理论的验证。

给定信号如下:1013()2714260n n x n n n +≤≤⎧⎪=-≤≤⎨⎪⎩其它编写程序分别对频谱函数X(ej ω)=FT [x(n)]在区间[0, 2π]上等间隔采样32点和16点,得到X32(k)和X16(k):j 322π32()(e ) , 0,1,2,31k X k X k ωω===j 162π16()(e ), 0,1,2,15k X k X k ωω===再分别对X32(k)和X16(k)进行32点和16点IFFT ,得到x32(n)和x16(n):323232()IFFT[()] , 0,1,2,,31x n X k n == 161616()IFFT[()] , 0,1,2,,15x n X k n ==分别画出X(ej ω)、X32(k)和X16(k)的幅度谱,并绘图显示x(n)、x32(n)和x16(n)的波形,进行对比和分析,验证总结频域采样理论。

提示:(1) 直接调用MATLAB 函数fft 计算X32(k)=FFT [x(n)]32就得到X(ej ω)在[0, 2π]的32点频率域采样X32(k)(2) 抽取X32(k)的偶数点即可得到X(ej ω)在[0, 2π]的16点频率域采样X16(k),即X16(k)=X32(2k), k=0, 1, 2, …, 15。

(3) 当然, 也可以按照频域采样理论,先将信号x(n)以16为周期进行周期延拓,取其主值区(16点),再对其进行16点DFT(FFT), 得到的就是X(ej ω)在[0, 2π]的16点频率域采样X16(k)三、过程论述1.实验步骤(1)画出连续时间信号的时域波形及其幅频特性曲线,信号为f(x)= sin(2*pi*60*t)+cos(2*pi*25*t)+cos(2*pi*30*t);(2)对信号进行采样,得到采样序列,画出采样频率分别为80Hz,120 Hz,150 Hz时的采样序列波形;(3)对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。

(4)对信号进行谱分析,观察与3中结果有无差别。

(5)由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。

2.MATLAB实现编程%实现采样频谱分析绘图函数function fz=caiyang(fy,fs)%第一个输入变量是原信号函数,信号函数fy以字符串的格式输入%第二个输入变量是采样频率fs0=10000; tp=0.1;t=[-tp:1/fs0:tp];k1=0:999; k2=-999:-1;m1=length(k1); m2=length(k2);f=[fs0*k2/m2,fs0*k1/m1]; %设置原信号的频率数组w=[-2*pi*k2/m2,2*pi*k1/m1];fx1=eval(fy);FX1=fx1*exp(-j*[1:length(fx1)]'*w);%求原信号的离散时间傅里叶变换figure% 画原信号波形subplot(2,1,1),plot(t,fx1,'r')title('原信号'), xlabel('时间t (s)')axis([min(t),max(t),min(fx1),max(fx1)]) % 画原信号幅度频谱subplot(2,1,2),plot(f,abs(FX1),'r')title('原信号幅度频谱') , xlabel('频率f (Hz)')axis([-100,100,0,max(abs(FX1))+5]) % 对信号进行采样Ts=1/fs; %采样周期t1=-tp:Ts:tp; %采样时间序列f1=[fs*k2/m2,fs*k1/m1]; %设置采样信号的频率数组t=t1; %变量替换fz=eval(fy); %获取采样序列FZ=fz*exp(-j*[1:length(fz)]'*w);%采样信号的离散时间傅里叶变换figure% 画采样序列波形subplot(2,1,1),stem(t,fz,'.'),title('取样信号') , xlabel('时间t (s)')line([min(t),max(t)],[0,0])% 画采样信号幅度频谱subplot(2,1,2),plot(f1,abs(FZ),'m')title('取样信号幅度频谱') , xlabel('频率f (Hz)')%信号的恢复及频谱函数function fh=huifu(fz,fs)%第一个输入变量是采样序列%第二个输入变量是得到采样序列所用的采样频率T=1/fs; dt=T/10; tp=0.1;t=-tp:dt:tp; n=-tp/T:tp/T;TMN=ones(length(n),1)*t-n'*T*ones(1,length(t));fh=fz*sinc(fs*TMN); % 由采样信号恢复原信号k1=0:999; k2=-999:-1;m1=length(k1); m2=length(k2); w=[-2*pi*k2/m2,2*pi*k1/m1]; FH=fh*exp(-j*[1:length(fh)]'*w); % 恢复后的信号的离散时间傅里叶变换 figure% 画恢复后的信号的波形 subplot(2,1,1),plot(t,fh,'g'), st1=sprintf('由取样频率fs=%d',fs); st2='恢复后的信号';st=[st1,st2]; title(st) , xlabel('时间t (s)') axis([min(t),max(t),min(fh),max(fh)])line([min(t),max(t)],[0,0]) % 画重构信号的幅度频谱 f=[10*fs*k2/m2,10*fs*k1/m1]; %设置频率数组 subplot(2,1,2),plot(f,abs(FH),'g')title('恢复后信号的频谱') , xlabel('频率f (Hz)') axis([-100,100,0,max(abs(FH))+2]); %主函数f1='sin(2*pi*60*t)+cos(2*pi*25*t)+cos(2*pi*30*t)';%输入一个信号 fs0=caiyang(f1,80); %频率max s 2f f <,即 欠采样 fr0=huifu(fs0,80);fs1=caiyang(f1,120);%频率max s 2f f =,临 界采样 fr1=huifu(fs1,120);fs2=caiyang(f1,150);%频率max s 2f f >,即 过采样 fr2=huifu(fs2,150);四、结果分析1、程序分析TMN=ones(length(n),1)*t-n'*T*ones(1,length(t));fh=fz*sinc(fs*TMN); %由采样信号恢复原信号 plot(t,f) %绘制fx 的波形stem(t,f) %绘制一个二维杆图(画离散波形) subpolt(,,) %在一个窗口画多个波形图 f=[10*fs*k2/m2,10*fs*k1/m1]; %设置频率数组 abs(x) %求复数x 的模ones %产生矩阵元素全为1的矩阵 2、原信号的波形及幅度频谱原信号时间t (s)050100原信号幅度频谱频率f (Hz)图1 原信号波形及频谱3、实验结果分析(1) 频率s f <max 2f 时,为原信号的欠采样信号和恢复,采样频率不满足时域采样定理,那么频移后的各相临频谱会发生相互重叠,这样就无法将他们分开,因而也不能再恢复原信号。

相关文档
最新文档