双鸭山市20172018学年高二上期中考试数学文试题含答案

合集下载

2017-2018年黑龙江省双鸭山一中高二(上)期中数学试卷及参考答案(文科)

2017-2018年黑龙江省双鸭山一中高二(上)期中数学试卷及参考答案(文科)

2. (5 分)命题“∀x∈R,x2≠x”的否定是(
A.∀x∉R,x2≠x B.∀x∈R,x2=x C.∃x∉R,x2≠x D.∃x∈R,x2=x 3. (5 分)抛物线 y=﹣ x2 的准线方程是( A. B.y=2 C. D.y=﹣2 )
4. (5 分)已知命题:p:对任意 x∈R,总有|x|≥0,q:x=1 是方程 x+2=0 的根; 则下列命题为真命题的是( ) D.p∧q
10. (5 分)已知双曲线
=1(a>0,b>0)的一个焦点为 F(2,0) ,且 )
双曲线的渐近线与圆(x﹣2)2+y2=3 相切,则双曲线的方程为( A. ﹣ =1 B. ﹣ =1 C. ﹣y2=1 D.x2﹣ =1
11. (5 分) 已知 x, y 满足约束条件
, 若 z=ax+y 的最大值为 4, 则 a= (
第2页(共18页)
16. (5 分)若点 O 和点 F 分别为椭圆 任意一点,则 • 的最小值为
+ .
=1 的中心和左焦点,点 P 为椭圆上
三、解答题(本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演 算步骤. ) 17. (10 分)设直线 l 经过 2x﹣3y+2=0 和 3x﹣4y﹣2=0 的交点,且与两坐标轴围 成等腰直角三角形,求直线 l 的方程. 18. (12 分)若抛物线 y2=﹣2px(p>0)上有一点 M,其横坐标为﹣9,它到焦 点的距离为 10,求抛物线方程和点 M 的坐标. 19. (12 分)已知圆 C: (x﹣1)2+(y﹣2)2=2,过点 P(2,﹣1)作圆 C 的切线, 切点为 A,B. (1)求直线 PA,PB 的方程; (2)求过 P 点的圆 C 的切线长. 20. (12 分)设命题 p:实数 x 满足 x2﹣4ax+3a2<0,其中 a>0;命题 q:实数 x 满足 x2﹣5x+6≤0. (1)若 a=1,且 p 与 q 均是真命题,求实数 x 的取值范围; (2)若 p 是 q 成立的必要不充分条件,求实数 a 的取值范围. 21. (12 分)已知椭圆 上. ( I)求 C 的方程; ( II)直线 l 不经过原点 O,且不平行于坐标轴,l 与 C 有两个交点 A,B,线段 AB 中点为 M,证明:直线 OM 的斜率与直线 l 的斜率乘积为定值. 22. (12 分)如图,设抛物线 y2=2px(p>0)的焦点为 F,抛物线上的点 A 到 y 轴的距离等于|AF|﹣1, (Ⅰ)求 p 的值; (Ⅱ)若直线 AF 交抛物线于另一点 B,过 B 与 x 轴平行的直线和过 F 与 AB 垂直 的直线交于点 N,AN 与 x 轴交于点 M,求 M 的横坐标的取值范围.

2017-2018学年高二(上)期中数学试卷(文科)带答案精讲

2017-2018学年高二(上)期中数学试卷(文科)带答案精讲

2017-2018学年高二(上)期中数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.24.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.27.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.259.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.13.(5分)=.14.(5分)若正数a,b满足a+b=1,则+的最小值为.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.16.(5分)给出下列命题:以下命题正确的是(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.17.(5分)过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)【分析】分别求出集合A和集合B中不等式的解集,求出两个解集的公共部分即为两个集合的交集.【解答】解:由集合B可知x﹣1>0即x>1;由集合A可知|x|≤2即﹣2≤x≤2.所以B∩A={x|1<x≤2}故选C.【点评】本题是一道以求不等式的解集为平台,求集合交集的基础题,也是高考中的基本题型.2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b【分析】根据平面的基本性质,可判断A;根据面面垂直的性质定理可判断B;根据线面平行的判定定理可判断C;根据异面直线夹角的定义,可判断D【解答】解:三条直线两两相交,则这三条直线确定一个平面或三个平面,故A 错误;若平面α⊥β,且α∩β=l,由面面垂直的性质定理可得:过α内一点P与l垂直的直线垂直于平面β,故B正确;若直线m与平面α内的一条直线平行,则m∥α或m⊂α,故C错误;若直线a与直线b平行,且直线a⊥l,则l⊥b,故D错误;故选:B【点评】本题考查的知识点是命题的真假判断与应用,平面的基本性质,面面垂直的性质定理,线面平行的判定定理,异面直线夹角的定义,难度不大,属于基础题.3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.2【分析】首先根据已知题意分析圆心与半径.通过直线与圆相交构造一个直角三角形.直角边分别为半弦长,弦心距.斜边为半径.按照勾股定理求出半弦长,然后就能求出弦长.【解答】解:根据题意,圆为x2+y2﹣4y=0故其圆心为(0,2),半径为:2圆心到直线的距离为:d==由题意,圆的半径,圆心到直线的距离,以及圆的弦长的一半构成直角三角形故由勾股定理可得:l=2=2故选:B.【点评】本题考查直线与圆的方程的应用,首先根据圆分析出圆的要素,然后根据直线与圆相交时构造的直角三角形按照勾股定理求出结果.属于基础题4.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件【分析】对两个条件,“cosA+sinA=cosB+sinB”与“C=90°”的关系,结合三角函数的定义,对选项进行判断【解答】解:“C=90°”成立时,有A+B=90°,故一定有“cosA+sinA=cosB+sinB”成立又当A=B时cosA+sinA=cosB+sinB”成立,即“cosA+sinA=cosB+sinB”得不出“C=90°”成立所以“cosA+sinA=cosB+sinB”是“C=90°”的必要非充分条件故选B.【点评】本题考查充要条件,解答本题要熟练理解掌握三角函数的定义,充分条件,必要条件的定义,且能灵活运用列举法的技巧对两个命题的关系进行验证,本题考查了推理论证的能力,解题时灵活选择证明问题的方法是解题成功的保证.5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.2【分析】由三视图想象出空间几何体,代入数据求值.【解答】解:如图所示,四面体为正四面体.是由边长为1的正方体的面对角线围成.其边长为,则其表面积为4×(××)=2.故选D.【点评】本题考查了学生的空间想象力,属于中档题.7.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=【分析】由题意以及框图的作用,直接推断空白框内应填入的表达式.【解答】解:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是P=.故选:D.【点评】本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力,属于基础题.8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.25【分析】根据等差数列的性质,我们可将a k=a1+a2+a3+…+a7,转化为a k=7a4,又由首项a1=0,公差d≠0,我们易得a k=7a4=21d,进而求出k值.【解答】解:∵数列{a n}为等差数列且首项a1=0,公差d≠0,又∵a k=(k﹣1)d=a1+a2+a3+…+a7=7a4=21d故k=22故选A【点评】本题考查的知识点是等差数列的性质,其中根据a4是数列前7项的平均项(中间项)将a k=a1+a2+a3+…+a7,化为a k=7a4,是解答本题的关键.9.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣【分析】条件“||=||”是向量模的等式,通过向量的平方可得向量的数量积|2=||2,•=0,可得出垂直关系,接下来,如由直线与圆的方程组成方程组求出A、B两点的坐标,势必计算很繁,故采用设而不求的方法.【解答】解:由||=||得||2=||2,•=0,⊥,三角形AOB为等腰直角三角形,圆心到直线的距离为,即=,a=±2,故选C.【点评】若非零向量,,满足||=||,则.模的处理方法一般进行平方,转化成向量的数量积.向量是既有大小,又有方向的量,它既有代数特征,又有几何特征,通过向量可以实现代数问题与几何问题的互相转化,所以向量是数形结合的桥梁.10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3【分析】利用函数f(x)的单调性以及f(0)=3,f(3)=﹣1,求出集合P,Q 的解集,利用充分条件和必要条件的定义进行求解.【解答】解:∵f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,∴不等式﹣1<f(x+t)<3,等价为f(3)<f(x+t)<f(0),即3>x+t>0,解得﹣t<x<3﹣t,即P={x|﹣t<x<3﹣t}.由f(x)<﹣1得f(x)<f(3),即x>3,∴Q={x|x>3},∵“x∈P”是”x∈Q”的充分不必要条件,∴﹣t≥3,即t≤﹣3.故选:C.【点评】本题主要考查函数单调性的应用,考查充分条件和必要条件的应用,利用函数的单调性先求解集合P,Q的等价条件是解决本题的关键.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为12.【分析】由方差的性质得2(k2+3),2(k2+3)…2(k8+3)的方差为22×3=12.【解答】解:∵数据组k1,k2…k8的平均数为3,方差为3,∴2(k2+3),2(k2+3)…2(k8+3)的方差为:22×3=12.故答案为:12.【点评】本题考查方差的求法,是中档题,解题时要认真审题,注意方差性质的合理运用.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.【分析】甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题,先做出甲和乙都抽到判断题的概率,根据对立事件的概率公式得到结果.【解答】(2)甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题, ∵甲、乙二人依次都抽到判断题的概率为, ∴甲、乙二人中至少有一人抽到选择题的概率为1﹣= 故答案为:. 【点评】本小题主要考查等可能事件的概率计算及分析和解决实际问题的能力,考查对立事件的概率.13.(5分)= .【分析】考查已知条件和要求的表达式,不难得到结果.【解答】解:因为1﹣sin 2x=cos 2x ,所以又=,所以= 故答案为:【点评】本题是基础题,考查同角三角函数的基本关系式的应用,考查计算能力.14.(5分)若正数a ,b 满足a +b=1,则+的最小值为 . 【分析】变形利用基本不等式即可得出.【解答】解:∵正数a ,b 满足a +b=1,∴(3a +2)+(3b +2)=7.∴+===,当且仅当a=b=时取等号. ∴+的最小值为. 故答案为:.【点评】本题考查了基本不等式的性质,属于中档题.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.【分析】等比数列{a n}中,公比q=2,可得a1a10=a2a9=...=a5a6=.由log2a1+log2a2+...+log2a10=35,利用对数的运算性质可得log2(a1a2 (10)==35,化为=27,可得a1.再利用等比数列的前n项和公式即可得出.【解答】解:∵等比数列{a n}中,公比q=2,∴a1a10=a2a9=…=a5a6=.∵log2a1+log2a2+…+log2a10=35,∴log2(a1a2…a10)==35,∴=27,∴a1=.∴a1+a2+…+a10==.故答案为:.【点评】本题考查了对数的运算性质、等比数列的性质通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.16.(5分)给出下列命题:以下命题正确的是①③④(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.【分析】根据向量加减法的平行四边形法则及菱形的性质可判断①,根据向量数量积的定义,及充要条件的定义,可判断②;根据否命题的定义,可判断③;根据向量数量积运算法则及向量模的定义,可判断④【解答】解:①非零向量、满足||=||=||,则以,为邻边的平行四边形为菱形,且,的夹角为60°,根据菱形的对角线平分对角,可得与的夹角为30°,故①正确; ②•>0,、的夹角为锐角或0,故•>0,是、的夹角为锐角的必要不充分条件,故②错误;③命题“若m 2+n 2=0,则m=0且n=0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故③正确;④若()===0,即,即AB=AC ,则△ABC 为等腰三角形,故④正确.故答案为:①③④【点评】本题以命题的真假判断为载体考查了向量加减法的平行四边形法则及菱形的性质,向量数量积的定义,充要条件的定义,否命题的定义,向量数量积运算法则及向量模的定义,是向量与逻辑的综合应用,难度中档.17.(5分)过点(2,3)且与直线l 1:y=0和l 2:都相切的所有圆的半径之和为 42 .【分析】设出圆的圆心坐标与半径,利用条件列出方程组,求出圆的半径即可.【解答】解:因为所求圆与y=0相切,所以设圆的圆心坐标(a ,r ),半径为r ,l 2:化为3x ﹣4y=0. 所以,解②得a=﹣r ,或a=3r ,由a=﹣r 以及①可得:a 2+14a +13=0,解得a=﹣1或a=﹣13,此时r=3或r=39, 所有半径之和为3+39=42.由a=3r以及①可得:9r2﹣18r+13=0,因为△=﹣144,方程无解;综上得,过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为:42.故答案为:42.【点评】本题考查圆的方程的求法,计算准确是解题的关键,考查计算能力.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.【分析】(I)利用sin(C﹣A)=1,求出A,C关系,通过三角形内角和结合sinB=,求出sinA的值;(II)通过正弦定理,利用(I)及AC=,求出BC,求出sinC,然后求△ABC 的面积.【解答】解:(Ⅰ)因为sin(C﹣A)=1,所以,且C+A=π﹣B,∴,∴,∴,又sinA>0,∴(Ⅱ)如图,由正弦定理得∴,又sinC=sin(A+B)=sinAcosB+cosAsinB=∴【点评】本小题主要考查三角恒等变换、正弦定理、解三角形等有关知识,考查运算求解能力.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.=4a n+2,①由S n+1则当n≥2时,有S n=4a n﹣1+2,②=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),①﹣②得a n+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.【分析】(1)利用三角形中位线的性质,证明线线平行,从而可得线面平行;(2)先证明BD⊥平面PAC,即可证明平面PBD⊥平面PAC;(3)利用四棱锥P﹣ABCD的体积等于时,求出四棱锥P﹣ABCD的高为PA,利用PA⊥AB,即可求PB的长.【解答】(1)证明:∵在△PBD中,O、M分别是BD、PD的中点,∴OM是△PBD的中位线,∴OM∥PB,…(1分)∵OM⊄平面PAB,PB⊂平面PAB,…(3分)∴OM∥平面PAB.…(4分)(2)证明:∵底面ABCD是菱形,∴BD⊥AC,…(5分)∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.…(6分)∵AC⊂平面PAC,PA⊂平面PAC,AC∩PA=A,∴BD⊥平面PAC,…(8分)∵BD⊂平面PBD,∴平面PBD⊥平面PAC.…(10分)(3)解:∵底面ABCD是菱形,AB=2,∠BAD=60°,∴菱形ABCD的面积为,…(11分)∵四棱锥P﹣ABCD的高为PA,∴,得…(12分)∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB.…(13分)在Rt△PAB中,.…(14分)【点评】本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.【分析】(Ⅰ)利用点到直线的距离公式,结合勾股定理,建立方程,根据圆C 的面积小于13,即可求圆C的标准方程;(Ⅱ)分类讨论,设出直线方程与圆的方程联立,利用韦达定理,再假设∥,则﹣3(x1+x2)=y1+y2,即可得出结论.【解答】解:(I)设圆C:(x﹣a)2+y2=R2(a>0),由题意知,解得a=1或a=,…(3分)又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x﹣1)2+y2=4.…(6分)(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立,消去y得:(1+k2)x2+(6k﹣2)x+6=0,…(9分)∴△=(6k﹣2)2﹣24(1+k2)=3k2﹣6k﹣5>0,解得或.x 1+x2=,y1+y2=k(x1+x2)+6=,=(x1+x2,y1+y2),,假设∥,则﹣3(x1+x2)=y1+y2,∴,解得,假设不成立.∴不存在这样的直线l.…(13分)【点评】本题考查圆的方程,考查直线与圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,综合性强.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.【分析】(1)结合韦达定理用m把α,β的和、乘积表示出来,代入所求化简即可;(2)利用定义进行证明,在判断结果的符号时,要适当结合第一问m与α,β间的关系,将m用α,β替换,根据α,β与x1,x2的大小关系进行化简判断符号.(3)先假设存在,根据已知构造出取最值时的等式,只要取等号的条件存在,即存在.【解答】解:(1)由题意得,故.(2)∀x1,x2∈[α,β],x1<x2,可得,因为(x1﹣α)(x2﹣β)≤0,(x1﹣β)(x2﹣α)<0,两式相加得2x1x2﹣(α+β)(x1+x2)+2αβ<0;又因为,∴(x2﹣x1)[4x1x2﹣4﹣m(x1+x2)]<0.所以f(x1)﹣f(x2)<0,所以函数f(x)在[α,β]上为增函数.(3)函数在[α,β]上为增函数,所以.当且仅当时,等号成立,此时f(β)=2,即.结合可得m=0.综上可得,存在实数m=0满足题意.【点评】本题综合考查了函数的零点与方程的根之间的关系,即利用函数的观点解决方程的问题,或利用方程思想来解决函数问题.属于综合题,有一定难度.。

2016-2017年黑龙江省双鸭山一中高二(上)期中数学试卷和答案(文科)

2016-2017年黑龙江省双鸭山一中高二(上)期中数学试卷和答案(文科)

2016-2017学年黑龙江省双鸭山一中高二(上)期中数学试卷(文科)一.选择题(共60分)1.(5分)直线x+y﹣1=0的倾斜角为()A.B.C. D.2.(5分)已知命题p:∀x∈R,a x>0(a>0且a≠1),则()A.¬p:∀x∈R,a x≤0 B.¬p:∀x∈R,a x>0C.¬p:∃x0∈R,a>0 D.¬p:∃x0∈R,a≤03.(5分)圆:x2+y2﹣4x+6y=0的圆心坐标和半径分别为()A.(﹣2,3),13 B.(﹣2,3),C.(2,﹣3),D.(2,﹣3),13 4.(5分)已知直线l1:x+ay+6=0和直线l2:(a﹣2)x+3y+2a=0,若l1∥l2则a=()A.3 B.﹣1或3 C.﹣1 D.1或﹣35.(5分)两圆x2+y2﹣1=0和x2+y2﹣4x+2y﹣4=0的位置关系是()A.内切B.相交C.外切D.外离6.(5分)直线3x+4y﹣5=0与圆2x2+2y2﹣4x﹣2y+1=0的位置关系是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心7.(5分)设实数x、y满足不等式组,则x+3y的最大值是()A.﹣4 B.4 C.0 D.78.(5分)空间直角坐标系中,点M(1,﹣2,3)与点N(﹣1,2,3)的对称关系是()A.关于z轴对称B.关于y轴对称C.关于原点对称D.关于平面xOy对称9.(5分)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°10.(5分)设l,m,n为三条不同的直线,α为一个平面,下列命题中正确的个数是()①若l⊥α,则l与α相交②若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α③若l∥m,m∥n,l⊥α,则n⊥α④若l∥m,m⊥α,n⊥α,则l∥n.A.1 B.2 C.3 D.411.(5分)已知直线l1:3x+4y﹣3=0,l2:6x+8y+n=0,则“n=14 是“l1,l2之间距离为2”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件12.(5分)在平面直角坐标系xOy中,圆C的方程为(x﹣2)2+(y﹣3)2=36,直线l:y=kx+5与圆C相交于A,B两点,M为弦AB上一动点,以M为圆心,4为半径的圆与圆C总有公共点,则实数k的最小值为()A.1 B.C.﹣D.0二.填空题(共20分)13.(5分)过P(2,0)且与直线x﹣2y+3=0平行的直线方程为.14.(5分)已知实数x,y满足x2+y2﹣4x+6y+4=0,则的最小值是.15.(5分)若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°,(O为坐标原点),则r=.16.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,动点P在x轴上,动点M,N分别在圆C1和圆C2上,则|PM|+|PN|的最小值是.三.解答题(共70分)17.(10分)已知直线l经过A(1,﹣1)、B(0,﹣2)两点,(1)求直线l的方程;(2)若直线l被圆C:(x﹣a)2+y2=4所截,截得的弦长为,求实数a的值.18.(12分)已知命题p:方程x2+y2﹣ax+y+1=0表示圆;命题q:方程2ax+(1﹣a)y+1=0表示斜率大于1的直线,若p∨q为真命题,p∧q为假命题,求a 的取值范围.19.(12分)如图,正三棱柱ABC﹣A1B1C1中,E是AC中点.(1)求证:平面BEC1⊥平面ACC1A1(2)求证:AB1∥平面BEC1.20.(12分)已知圆C1:x2+y2﹣2x+10y﹣24=0与圆C2:x2+y2+2x+2y﹣8=0(1)求两圆的公共弦长;(2)求以两圆公共弦为直径的圆的方程.21.(12分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.22.(12分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.2016-2017学年黑龙江省双鸭山一中高二(上)期中数学试卷(文科)参考答案与试题解析一.选择题(共60分)1.(5分)直线x+y﹣1=0的倾斜角为()A.B.C. D.【解答】解:设直线x+y﹣1=0的倾斜角为θ.由直线x+y﹣1=0化为y=﹣x+1,∴tanθ=﹣,∵θ∈[0,π),∴θ=.故选:C.2.(5分)已知命题p:∀x∈R,a x>0(a>0且a≠1),则()A.¬p:∀x∈R,a x≤0 B.¬p:∀x∈R,a x>0C.¬p:∃x0∈R,a>0 D.¬p:∃x0∈R,a≤0【解答】解:全称命题的否定是特称命题,∴命题p:∀x∈R,a x>0(a>0且a≠1):¬p:∃x0∈R,a≤0.故选:D.3.(5分)圆:x2+y2﹣4x+6y=0的圆心坐标和半径分别为()A.(﹣2,3),13 B.(﹣2,3),C.(2,﹣3),D.(2,﹣3),13【解答】解:圆:x2+y2﹣4x+6y=0,即圆:(x﹣2)2+(y+3)2 =13,故圆心坐标和半径分别为(2,﹣3),,故选:C.4.(5分)已知直线l1:x+ay+6=0和直线l2:(a﹣2)x+3y+2a=0,若l1∥l2则a=()A.3 B.﹣1或3 C.﹣1 D.1或﹣3【解答】解:∵直线l2的斜率存在,l1∥l2,∴.∴,化为a2﹣2a﹣3=0.解得a=3或﹣1.当a=3时,l1与l2重合,应舍去.∴a=﹣1.故选:C.5.(5分)两圆x2+y2﹣1=0和x2+y2﹣4x+2y﹣4=0的位置关系是()A.内切B.相交C.外切D.外离【解答】解:圆x2+y2﹣1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆;圆x2+y2﹣4x+2y﹣4=0表示以O2(2,﹣1)点为圆心,以R2=3为半径的圆;∵|O1O2|=∴R2﹣R1<|O1O2|<R2+R1,∴圆x2+y2﹣1=0和圆x2+y2﹣4x+2y﹣4=0相交故选:B.6.(5分)直线3x+4y﹣5=0与圆2x2+2y2﹣4x﹣2y+1=0的位置关系是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心【解答】解:将圆的方程化为标准方程得:(x﹣1)2+(y﹣)2=,∴圆心(1,),半径r=,∵圆心到直线3x+4y﹣5=0的距离d==0<=r,则直线与圆相交且直线过圆心.故选:D.7.(5分)设实数x、y满足不等式组,则x+3y的最大值是()A.﹣4 B.4 C.0 D.7【解答】解:作出不等式对应的平面区域,设z=x+3y,得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线的截距最大,此时z最大.由,得C(1,1),此时z的最大值为z=1+3×1=4;故选:B.8.(5分)空间直角坐标系中,点M(1,﹣2,3)与点N(﹣1,2,3)的对称关系是()A.关于z轴对称B.关于y轴对称C.关于原点对称D.关于平面xOy对称【解答】解:在空间直角坐标系Oxyz中,设点(1,﹣2,3)关于z轴的对称点为P(x,y,3),则x+1=0,﹣2+y=0,解得x=﹣1,y=2.∴在空间直角坐标系Oxyz中点(1,﹣2,3)关于z轴的对称点是(﹣1,2,3).故选:A.9.(5分)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.10.(5分)设l,m,n为三条不同的直线,α为一个平面,下列命题中正确的个数是()①若l⊥α,则l与α相交②若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α③若l∥m,m∥n,l⊥α,则n⊥α④若l∥m,m⊥α,n⊥α,则l∥n.A.1 B.2 C.3 D.4【解答】解:由于直线与平面垂直是相交的特殊情况,故命题①正确;由于不能确定直线m,n的相交,不符合线面垂直的判定定理,命题②不正确;根据平行线的传递性.l∥n,故l⊥α时,一定有n⊥α.即③正确;由垂直于同一平面的两直线平行得m∥n,再根据平行线的传递性,即可得l∥n.即④正确.故正确的有①③④共3个.故选:C.11.(5分)已知直线l1:3x+4y﹣3=0,l2:6x+8y+n=0,则“n=14 是“l1,l2之间距离为2”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:l1:3x+4y﹣3=0,l2:3x+4y+=0,若n=14,则=7,则l1,l2之间距离为d==2,是充分条件,若l1,l2之间距离为2,则d==2,解得:n=14或n=﹣26,不是必要条件,故选:A.12.(5分)在平面直角坐标系xOy中,圆C的方程为(x﹣2)2+(y﹣3)2=36,直线l:y=kx+5与圆C相交于A,B两点,M为弦AB上一动点,以M为圆心,4为半径的圆与圆C总有公共点,则实数k的最小值为()A.1 B.C.﹣D.0【解答】解:由题意:圆C的方程为(x﹣2)2+(y﹣3)2=36,圆心为(2,3),半径r=6,直线l:y=kx+5,恒过点(0,5)与圆C必相交A,B两点,M为弦AB上一动点,以M为圆心,4为半径的圆与圆C总有公共点,圆C到M的距离d需满足:d≥2,即2≤解得:k≥0,故得实数k的最小值为0.故选:D.二.填空题(共20分)13.(5分)过P(2,0)且与直线x﹣2y+3=0平行的直线方程为2y﹣x+2=0.【解答】解:∵直线直线x﹣2y+3=0的斜率为,∴过点P(2,0)且与直线x﹣2y+3=0平行的直线斜率为,所以直线的方程为:y﹣0=(x﹣2),即2y﹣x+2=0.故答案为:2y﹣x+2=0.14.(5分)已知实数x,y满足x2+y2﹣4x+6y+4=0,则的最小值是﹣3.【解答】解:x2+y2﹣4x+6y+4=0等价为(x﹣2)2+(y+3)2=3,则圆心C(2,﹣3),半径R=3.的几何意义为圆上的点到原点距离.原点到圆心的距离d=,则圆上点到圆的最小值为|R﹣d|=﹣3,则的最小值为﹣3.故答案为﹣315.(5分)若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°,(O为坐标原点),则r=2.【解答】解:若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)交于A、B两点,O为坐标原点,且∠AOB=120°,则圆心(0,0)到直线3x﹣4y+5=0的距离d=rcos=r,即=r,解得r=2,故答案为:2.16.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,动点P在x轴上,动点M,N分别在圆C1和圆C2上,则|PM|+|PN|的最小值是5﹣4.【解答】解:如图所示,圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标C2(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即为﹣4=5﹣4.故答案为:5﹣4.三.解答题(共70分)17.(10分)已知直线l经过A(1,﹣1)、B(0,﹣2)两点,(1)求直线l的方程;(2)若直线l被圆C:(x﹣a)2+y2=4所截,截得的弦长为,求实数a的值.【解答】解:(1)由题意,k AB==﹣1,∴直线l的方程y=﹣x﹣2,即x+y+2=0;(2)∵直线l被圆C:(x﹣a)2+y2=4所截,截得的弦长为,∴圆心到直线的距离d=,∴=,∴a=0或﹣4.18.(12分)已知命题p:方程x2+y2﹣ax+y+1=0表示圆;命题q:方程2ax+(1﹣a)y+1=0表示斜率大于1的直线,若p∨q为真命题,p∧q为假命题,求a 的取值范围.【解答】解:若x2+y2﹣ax+y+1=0表示圆,则a2+1﹣4>0,解得:a∈(﹣∞,)∪(,+∞),故命题p:a∈(﹣∞,)∪(,+∞),若方程2ax+(1﹣a)y+1=0表示斜率大于1的直线,则>1解得:a∈(﹣∞,﹣1)∪(1,+∞),故命题q:a∈(﹣∞,﹣1)∪(1,+∞),若p∨q为真命题,p∧q为假命题,则p,q一真一假;当p真q假时,a∈(﹣∞,)∪(,+∞)且a∈[﹣1,1],不存在满足条件的a值;当p假q真时,a∈[﹣,]且a∈(﹣∞,﹣1)∪(1,+∞),故a∈[﹣,﹣1)∪(1,]19.(12分)如图,正三棱柱ABC﹣A1B1C1中,E是AC中点.(1)求证:平面BEC1⊥平面ACC1A1(2)求证:AB1∥平面BEC1.【解答】(本题满分为12分)证明:(1)∵ABC﹣A1B1C1是正三棱柱,∴AA1⊥平面ABC,∴BE⊥AA1.∵△ABC是正三角形,E是AC中点,∴BE⊥AC,∴BE⊥平面ACC1A1.∴BE⊂平面BEC1∴平面BEC1⊥平面ACC1A1…(6分)(2)连B1C,设BC1∩B1C=D.∵ABC﹣A1B1C1是正三棱柱,∴BCC1B1是矩形,D是B1C的中点.∵E是AC的中点,∴AB1∥DE.∵DE⊂平面BEC1,AB1⊄平面BEC1,∴AB1∥平面BEC1.…(12分)20.(12分)已知圆C1:x2+y2﹣2x+10y﹣24=0与圆C2:x2+y2+2x+2y﹣8=0(1)求两圆的公共弦长;(2)求以两圆公共弦为直径的圆的方程.【解答】解:(1)由两圆C1:x2+y2﹣2x+10y﹣24=0与圆C2:x2+y2+2x+2y﹣8=0,作差得,两圆C1,C2方公共弦方程为x﹣2y+4=0,∴圆C1圆心(1,﹣5)到直线(公共弦)的距离为d==3.∴弦长=2=2.(2)x﹣2y+4=0与x2+y2+2x+2y﹣8=0联立可得5y2﹣12y=0,∴y=0或,y=0时,x=﹣4,y=时,x=,∴以两圆公共弦为直径的圆的圆心坐标为(﹣,),半径为,∴以两圆公共弦为直径的圆的方程为(x+)2+(y﹣)2=.21.(12分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.【解答】证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC⊂平面AEC,∴平面AEC⊥平面BED;解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC=x,GB=GD=,∵BE⊥平面ABCD,∴BE⊥BG,则△EBG为直角三角形,∴EG=AC=AG=x,则BE==x,∵三棱锥E﹣ACD的体积V===,解得x=2,即AB=2,∵∠ABC=120°,∴AC2=AB2+BC2﹣2AB•BCcosABC=4+4﹣2×=12,即AC=,在三个直角三角形EBA,EBD,EBC中,斜边AE=EC=ED,∵AE⊥EC,∴△EAC为等腰三角形,则AE2+EC2=AC2=12,即2AE2=12,∴AE2=6,则AE=,∴从而得AE=EC=ED=,∴△EAC的面积S==3,在等腰三角形EAD中,过E作EF⊥AD于F,则AE=,AF==,则EF=,∴△EAD的面积和△ECD的面积均为S==,故该三棱锥的侧面积为3+2.22.(12分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为[﹣,]∪{﹣,}.。

2017-2018学年高二(上)期中数学试卷带答案精讲

2017-2018学年高二(上)期中数学试卷带答案精讲

2017-2018学年高二(上)期中数学试卷一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目的要求的.请将答案填涂在答题卡上对应题号后的框内,答在试卷上无效)1.(5分)用“辗转相除法”求得459和357的最大公约数是()A.3 B.9 C.17 D.512.(5分)以下赋值语句书写正确的是()A.2=a B.a=a+1 C.a*b=2 D.a+1=a3.(5分)某学校高中部组织赴美游学活动,其中高一240人,高二260人,高三300人,现需按年级抽样分配参加名额40人,高二参加人数为()A.12 B.13 C.14 D.154.(5分)有下面的程序,运行该程序,要使输出的结果是30,在处应添加的条件是()A.i>12 B.i>10 C.i=14 D.i=105.(5分)在样本方差的计算公式s2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2]中,数字10和20分别表示样本的()A.样本容量,方差 B.平均数,样本容量C.标准差,平均数 D.样本容量,平均数6.(5分)如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为()A.B.C.D.7.(5分)将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为91,现场做的7个得分的茎叶图(如图)后来有一个数据模糊,无法辨认,在图中用x表示,则x的值为()A.0 B.4 C.5 D.78.(5分)在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为()A.B.C.D.9.(5分)从有2个红球和2个黒球的口袋内任取2个球,互斥而不对立的两个事件是()A.至少有一个黒球与都是黒球B.至少有一个红球与都是红球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球10.(5分)下表提供了某厂节能降耗技术改造后在生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:若根据上表提供的数据用最小二乘法可求得y对x的回归直线方程是=0.7x+0.35,则表中m的值为()A.4 B.4.5 C.3 D.3.511.(5分)学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次是[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数和平均成绩分别是()A.45,67 B.50,68 C.55,69 D.60,7012.(5分)用秦九韶算法计算多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6在x=﹣4时的值时,V3的值为()A.﹣845 B.220 C.﹣57 D.34二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题卡对应题号的位置上,答错位置、书写不清,模棱两可均不得分)13.(5分)假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.14.(5分)将二进制数101101(2)化为十进制数,结果为;再将结果化为8进制数,结果为.15.(5分)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于.16.(5分)某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填,输出的s=.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.请将答案填在答题卡上对应题号的指定区域内)17.(10分)如图,在Rt△ABC中,AB=4,BC=3,点P在边BC上沿B→C运动,求△ABP的面积小于4的概率.18.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.19.(12分)甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.20.(12分)某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.(Ⅰ)求图中a的值,并估计日需求量的众数;(Ⅱ)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.(ⅰ)将S表示为x的函数;(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.21.(12分)运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.22.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x +a ,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:b=,a=﹣b .参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目的要求的.请将答案填涂在答题卡上对应题号后的框内,答在试卷上无效)1.(5分)用“辗转相除法”求得459和357的最大公约数是()A.3 B.9 C.17 D.51【分析】用459除以357,得到商是1,余数是102,用357除以102,得到商是3,余数是51,用102除以51得到商是2,没有余数,得到两个数字的最大公约数是51.【解答】解:∵459÷357=1…102,357÷102=3…51,102÷51=2,∴459和357的最大公约数是51,故选D.【点评】本题考查辗转相除计算最大公约数,本题是一个基础题,是在算法案例中出现的一个案例,近几年在新课标中出现,学生掌握的比较好,若出现一定会得分.2.(5分)以下赋值语句书写正确的是()A.2=a B.a=a+1 C.a*b=2 D.a+1=a【分析】根据赋值语句的格式,逐一进行分析,即可得到答案.【解答】解:由赋值语句的格式我们可知,赋值语句的赋值号左边必须是一个变量,而右边的运算符号与平常书写的运算符号有所不同.A中左侧是常数,不是变量,格式不对;B中满足赋值语句的格式与要求,正确;C与D中左侧是运算式,不对;故选:B.【点评】本题考查赋值语句,通过对赋值语句定义和格式的把握直接进行判断即可,属于基础题.3.(5分)某学校高中部组织赴美游学活动,其中高一240人,高二260人,高三300人,现需按年级抽样分配参加名额40人,高二参加人数为()A.12 B.13 C.14 D.15【分析】根据分层抽样的定义,即可得到结论.【解答】解:∵高一240人,高二260人,高三300人,∴按年级抽样分配参加名额40人,高二参加人数为×40=13,故选:B.【点评】本题考查了分层抽样的定义和应用问题,是基础题.4.(5分)有下面的程序,运行该程序,要使输出的结果是30,在处应添加的条件是()A.i>12 B.i>10 C.i=14 D.i=10【分析】先根据输出的结果推出循环体执行的次数,再根据s=2+4+6+…+10=30得到程序中UNTIL后面的“条件”.【解答】解:因为输出的结果是30,即s=2+4+6+…+10,需执行5次,则程序中UNTIL后面的“条件”应为i>10.故选B.【点评】本题主要考查了直到型循环语句,语句的识别问题是一个逆向性思维,一般认为学习是从算法步骤(自然语言)至程序框图,再到算法语言(程序).如果将程序摆在我们的面前时,从识别逐个语句,整体把握,概括程序的功能.5.(5分)在样本方差的计算公式s2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2]中,数字10和20分别表示样本的()A.样本容量,方差 B.平均数,样本容量C.标准差,平均数 D.样本容量,平均数【分析】方差计算公式:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],n表示样本容量,为平均数,根据此公式即可得到答案.【解答】解:由于S2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2],所以样本容量是10,平均数是20.故选:D.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.(5分)如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为()A.B.C.D.【分析】根据题意,在图中的四个方格中填入数字的方法种数共有43种,对于A、B两个方格,由于其大小有序,则可以在l、2、3、4中的任选2个,大的放进A 方格,小的放进B方格,由组合数公式计算可得其填法数目,对于另外两个方格,每个方格有4种情况,由分步计数原理可得其填法数目,最后由分步计数原理,计算可得填入A方格的数字大于B方格的数字的填法种数,利用古典概型的概率计算公式求概率.【解答】解:根据题意,在图中的四个方格中填入数字的方法种数共有44=256种,对于A、B两个方格,可在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,有C42=6种情况,对于另外两个方格,每个方格有4种情况,则共有4×4=16种情况,则填入A方格的数字大于B方格的数字的不同的填法共有16×6=96种,则填入A方格的数字大于B方格的数字的概率为p=.故选D.【点评】本题考查古典概型及其概率计算公式,考查排列、组合的运用,注意题意中数字可以重复的条件,这是易错点,此题是基础题,也是易错题.7.(5分)将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为91,现场做的7个得分的茎叶图(如图)后来有一个数据模糊,无法辨认,在图中用x表示,则x的值为()A.0 B.4 C.5 D.7【分析】根据茎叶图提供的数据,去掉1个最高分和1个最低分后,利用公式求平均数可得x的值.【解答】解:选手的7个得分中去掉1个最高分96,去掉1个最低分86,剩余5个得分为88,93,90,94,(90+x);它们的平均分为=91,∴x=0;故选:A.【点评】本题考查了利用茎叶图求平均数的问题,是基础题.8.(5分)在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为()A.B.C.D.【分析】使2x∈[2,4]的区间为[1,2],由此能求出使得2x∈[2,4]的概率.【解答】解:∵2=2¹,4=22∴使2x∈[2,4]的区间为[1,2],∵x∈[1,6],且[1,6]长为5,[1,2]长为1∴使得2x∈[2,4]的概率p=.故选:B.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意几何概型的合理运用.9.(5分)从有2个红球和2个黒球的口袋内任取2个球,互斥而不对立的两个事件是()A.至少有一个黒球与都是黒球B.至少有一个红球与都是红球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球【分析】利用互斥事件和对立事件的概念求解.【解答】解:在A中,至少有一个黒球与都是黒球能同时发生,两个事件不是互斥事件;在B中,至少有一个红球与都是红球能同时发生,两个事件不是互斥事件;在C中,至少有一个黒球与至少有1个红球能同时发生,两个事件不是互斥事件;在D中,恰有1个黒球与恰有2个黒球不能同时发生,可以同时不发生,两个事件是互斥而不对立事件.故选:D.【点评】本题考查互斥而不对立的两个事件的判断,是基础题,解题时要认真审题,注意互斥事件和对立事件的概念的合理运用.10.(5分)下表提供了某厂节能降耗技术改造后在生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:若根据上表提供的数据用最小二乘法可求得y对x的回归直线方程是=0.7x+0.35,则表中m的值为()A.4 B.4.5 C.3 D.3.5【分析】先求样本中心点,再代入回归直线方程,即可求得m的值.【解答】解:由题意,,∵y对x的回归直线方程是=0.7x+0.35,∴2.5+0.25m=3.15+0.35,∴m=4.故选A.【点评】本题考查回归直线方程,解题的关键是利用回归直线方程恒过样本中心点,属于基础题.11.(5分)学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次是[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数和平均成绩分别是()A.45,67 B.50,68 C.55,69 D.60,70【分析】根据频率分布直方图,利用频率、频数与样本容量的关系,求出该班的学生数,再计算平均成绩.【解答】解:根据频率分布直方图,得;低于60分的频率是(0.005+0.01)×20=0.3,所以该班的学生人数为=50,;所以,该班的平均成绩为:30×0.005×20+50×0.01×20+70×0.02×20+90×0.015×20=68.故选:B.【点评】本题考查了频率分布直方图的应用问题,也考查了频率=的应用问题,考查了求平均数的计算问题,是基础题目.12.(5分)用秦九韶算法计算多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6在x=﹣4时的值时,V3的值为()A.﹣845 B.220 C.﹣57 D.34【分析】由于多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6=(((((3x+5)x+6)x+79)x﹣8)x+35)x+12,可得当x=﹣4时,v0=3,v1=3×(﹣4)+5=﹣7,v2,v3即可得出.【解答】解:∵多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6=(((((3x+5)x+6)x+79)x﹣8)x+35)x+12,当x=﹣4时,∴v0=3,v1=3×(﹣4)+5=﹣7,v2=﹣7×(﹣4)+6=34,v3=34×(﹣4)+79=﹣57.故选:C.【点评】本题考查了秦九韶算法计算多项式的值,考查了计算能力,属于基础题.二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题卡对应题号的位置上,答错位置、书写不清,模棱两可均不得分)13.(5分)假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号785,667,199,507,175(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.【分析】找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.【解答】解:找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916它大于800要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.故答案为:785、667、199、507、175【点评】抽样方法,随机数表的使用,考生不要忽略.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.14.(5分)将二进制数101101(2)化为十进制数,结果为45;再将结果化为8进制数,结果为55(8).【分析】根据二进制转化为十进制的方法,分别用每位数字乘以权重,累加后即可得到结果;根据“除8取余法”的方法转化为对应的八进制数即可得到结果.【解答】解:101101(2)=1×20+0×21+1×22+1×23+0×24+1×25=1+4+8+32=45..又45=8×5+5,∴45=55(8)故答案为:45,55.(8)【点评】本题以进位制的转换为背景考查算法的多样性,解题的关键是熟练掌握进位制的转化规则,属于基础题.15.(5分)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于60.【分析】根据比例关系设出各组的频率,在频率分布表中,频数的和等于样本容量,频率的和等于1,求出前三组的频率,再频数和建立等量关系即可.【解答】解:设第一组至第六组数据的频率分别为2x,3x,4x,6x,4x,x,则2x+3x+4x+6x+4x+x=1,解得,所以前三组数据的频率分别是,故前三组数据的频数之和等于=27,解得n=60.故答案为60.【点评】本小题考查频率分布直方图的基础知识,熟练基本公式是解答好本题的关键,属于基础题.16.(5分)某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填i<7(或i≤6),输出的s=51.【分析】由题意该程序框图实际上是求该6名队员在最近三场比赛中投进三分球总数,故循环次数为6,由于第一次进行循环时,循环变量的初值为1,步长为1,故最后一次进入循环的终值应为6,故不难得到判断框中的条件及输出结果.【解答】解:由题意该程序框图实际上是求该6名队员在最近三场比赛中投进三分球总数,故判断框应填i≤6或i<7,输出s的值为:9+13+11+7+5+6=51.故答案为:i<7(或i≤6),51.【点评】本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.请将答案填在答题卡上对应题号的指定区域内)17.(10分)如图,在Rt△ABC中,AB=4,BC=3,点P在边BC上沿B→C运动,求△ABP的面积小于4的概率.【分析】利用线段的长度与面积的关系,直接利用几何概型求解即可.【解答】解:点P在BC边上沿B→C运动,落在BC上的任何一点都是等可能的.全部基本事件可用BC表示.…(2分)设事件M 为“△ABC面积小于4”,则事件M包含的基本事件可用长度为2的线段BP 表示,…(4分)由几何概型可知:即所求事件的概率为.…(10分)【点评】本题主要考查了几何概型.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关解.18.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【分析】(Ⅰ)先判断出这是一个古典概型,所以求出基本事件总数,“至少参加一个社团”事件包含的基本事件个数,从而根据古典概型的概率计算公式计算即可;(Ⅱ)先求基本事件总数,即从这5名男同学和3名女同学中各随机选1人,有多少中选法,这个可利用分步计数原理求解,再求出“A1被选中,而B1未被选中”事件包含的基本事件个数,这个容易求解,然后根据古典概型的概率公式计算即可.【解答】解:(Ⅰ)设“至少参加一个社团”为事件A;从45名同学中任选一名有45种选法,∴基本事件数为45;通过列表可知事件A的基本事件数为8+2+5=15;这是一个古典概型,∴P(A)=;(Ⅱ)从5名男同学中任选一个有5种选法,从3名女同学中任选一名有3种选法;∴从这5名男同学和3名女同学中各随机选1人的选法有5×3=15,即基本事件总数为15;设“A1被选中,而B1未被选中”为事件B,显然事件B包含的基本事件数为2;这是一个古典概型,∴.【点评】考查古典概型的概念,以及古典概型的概率的求法,分步计数原理的应用.19.(12分)甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.【分析】由题意知本题是一个几何概型,试验发生包含的所有事件对应的集合是Ω={(x,y)|0<x<60,0<y<60}做出集合对应的面积是边长为60的正方形的面积,写出满足条件的事件A═{(x,y)|0<x<60,0<y<60,|x﹣y|≤15}对应的集合和面积,根据面积之比得到概率.【解答】解:由题意知本题是一个几何概型,∵试验发生包含的所有事件对应的集合是Ω={(x,y)|0<x<60,0<y<60}集合对应的面积是边长为60的正方形的面积SΩ=60×60,而满足条件的事件对应的集合是A={(x,y)|0<x<60,0<y<60,|x﹣y|≤15}得到S A=60×60﹣(60﹣15)×(60﹣15)∴两人能够会面的概率P==,∴两人能够会面的概率是.【点评】本题的难点是把时间分别用x,y坐标来表示,从而把时间长度这样的一维问题转化为平面图形的二维面积问题,转化成面积型的几何概型问题.20.(12分)某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.(Ⅰ)求图中a的值,并估计日需求量的众数;(Ⅱ)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.(ⅰ)将S表示为x的函数;(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.【分析】(I)根据所有小矩形的面积之和为1,求得第四组的频率,再根据小矩形的高=求a的值;(II)利用分段函数写出S关于x的函数;根据S≥3400得x的范围,利用频率分布直方图求数据在范围内的频率及可得概率.【解答】解:(Ⅰ)由直方图可知:(0.013+0.015+0.017+a+0.030)×10=1,∴a=0.025,∵,∴估计日需求量的众数为125件;(Ⅱ)(ⅰ)当100≤x<130时,S=30x﹣20(130﹣x)=50x﹣2600,当130≤x≤150时,S=30×130=3900,∴;(ⅱ)若S≥3400由50x﹣2600≥3400得x≥120,∵100≤x≤150,∴120≤x≤150,∴由直方图可知当120≤x≤150时的频率是(0.030+0.025+0.015)×10=0.7,∴可估计当天纯利润S不少于3400元的概率是0.7.【点评】本题考查了由频率分布直方图求频率与众数,考查了分段函数的值域与定义域,在频率分布直方图中小矩形的高=,所有小矩形的面积之和为1.21.(12分)运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.【分析】(I)算法的功能是求f(x)=的值,根据输入实数x 的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7求得a 、b ;(II )分别在不同的段上求得函数的值域,再求并集.【解答】解:(Ⅰ)由程序框图知:算法的功能是求f (x )=的值,∵输入x=﹣1<0,输出f (﹣1)=﹣b=2,∴b=﹣2.∵输入x=3>0,输出f (3)=a 3﹣1=7,∴a=2. ∴. (Ⅱ)由(Ⅰ)知:①当x <0时,f (x )=﹣2x >1,∴; ②当x ≥0时,f (x )=2x ﹣1>1,∴x >1.综上满足不等式f (x )>1的x 的取值范围为或x >1}.【点评】本题借助考查选择结构程序框图,考查了分段函数求值域,解题的关键是利用程序框图求得分段函数的解析式.22.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x +a ,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:b=,a=﹣b .【分析】(1)利用题目条件直接画出散点图即可.(2)利用条件求解回归直线方程的参数,即可.(3)利用回归直线方程求解推出结果即可.【解答】解:(1)散点图如图所示,…(3分)(2)由表中数据得:=52.5,=3.5,=3.5;=54,∴===0.7,,==3.5﹣0.7×3.5=1.05,∴=0.7x+1.05 …(8分)(3)将x=10代入回归直线方程,得=0.7×10+1.05=8.05(小时)预测加工10个零件需要8.05小时.…(12分)【点评】本题考查回归直线方程的求法,散点图的画法,考查计算能力.。

2017-2018学年高二上学期期中数学试卷(文科) Word版含解析

2017-2018学年高二上学期期中数学试卷(文科) Word版含解析

2017-2018学年高二上学期期中试卷(文科数学)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.数列﹣,,,,…的一个通项公式可能是( )A .B .C .D .2.已知△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,a=,b=,B=60°,那么∠A 等于( )A .135°B .45°C .135°或45°D .60° 3.设a >b ,则下列不等式中恒成立的是( )A .<B .a 3>b 3C .>D .a 2>b 24.若等差数列{a n }的前n 项和为S n ,且S 6=3,a 4=2,则a 5等于( )A .5B .6C .7D .85.已知变量x ,y 满足约束条件,则的取值范围是( )A .[2,5]B .(﹣∞,2]∪[5,+∞)C .(﹣∞,3]∪[5,+∞)D .[3,5]6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,则角A 是( )A .B .C .D .7.设等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,则S 12等于( )A .8B .10C .12D .148.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,则△ABC 的形状是( )A .等腰三角形B .钝角三角形C .直角三角形D .等腰三角形或直角三角形9.若两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且,则等于( )A .2B .C .D .10.某企业生产甲、乙两种产品均需用A 、B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨) 128A .12万元B .16万元C .17万元D .18万元 11.若等差数列{a n }的公差为2,且a 5是a 2与a 6的等比中项,则该数列的前n 项和S n 取最小值时,n 的值等于( ) A .4B .5C .6D .712.定义算式⊗:x ⊗y=x (1﹣y ),若不等式(x ﹣a )⊗(x+a )<1对任意x 都成立,则实数a 的取值范围是( )A .﹣1<a <1B .0<a <2C .D .二、填空题(本大题共4小题,每小题5分,共20分.)13.不等式x 2+x ﹣2>0的解集为 .14.在数列{a n }中,若a 1=1,a n+1=2a n (n ≥1),则该数列的通项a n = .15.已知△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,a=1,c=,∠A=30°,则b 等于 .16.下列命题中:①在△ABC 中,sinA >sinB ,则A >B ;②若a >0,b >0,a+b=4,则的最大值为3;③已知函数f (x )是一次函数,若数列{a n }的通项公式为a n =f (n ),则该数列是等差数列;④数列{b n }的通项公式为b n =q n ,则数列{b n }的前n 项和S n =.正确的命题的序号是 .三、解答题(本大题6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,平面四边形ABCD 中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°.(1)求BD 的长;(2)求∠ADC 的度数.18.已知等差数列{a n }中,a 1+a 4=10,a 3=6. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,求数列{b n }的前n 项和S n .19.连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162dm 2(版心是指图中的长方形阴影部分,dm 为长度单位分米),上、下两边各空2dm ,左、右两边各空1dm .(1)若设版心的高为xdm ,求海报四周空白面积关于x 的函数S (x )的解析式;(2)要使海报四周空白面积最小,版心的高和宽该如何设计?20.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2ccosA+a=2b .(Ⅰ)求角C 的值;(Ⅱ)若a+b=4,当c 取最小值时,求△ABC 的面积.21.已知f (x )=x 2+ax+b ,a ,b ∈R ,若f (x )>0的解集为{x|x <0或x >2}.(Ⅰ)求a ,b 的值;(Ⅱ)解不等式f (x )<m 2﹣1.22.已知数列{a n }的前n 项和为S n =. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设T n 为数列{b n }的前n 项和,其中b n =,求T n ;(Ⅲ)若存在n ∈N *,使得T n ﹣λa n ≥3λ成立,求出实数λ的取值范围.2017-2018学年高二上学期期中试卷(文科数学)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.数列﹣,,,,…的一个通项公式可能是( )A .B .C .D .【考点】数列的函数特性.【分析】利用符号为(﹣1)n 与绝对值为即可得出.【解答】解:数列﹣,,,,…的一个通项公式可能是a n =(﹣1)n.故选:D .【点评】本题考查了数列的通项公式,参考老头老娘了与计算能力,属于基础题.2.已知△ABC中,a、b、c分别是角A、B、C的对边,a=,b=,B=60°,那么∠A等于()A.135°B.45°C.135°或45°D.60°【考点】正弦定理.【分析】结合已知条件a=,b=,B=60°,由正弦定理可得,可求出sinA,结合大边对大角可求得A【解答】解:a=,b=,B=60°,由正弦定理可得,a<b A<B=60°A=45°故选B【点评】本题考查正弦定理和大边对大角定理解三角形,属于容易题3.设a>b,则下列不等式中恒成立的是()A.<B.a3>b3C.>D.a2>b2【考点】不等式比较大小.【分析】A.取a=2,b=﹣1时不成立;B.利用函数y=x3在R上单调递增即可判断出正误.C.取a=2,b=1时不成立;D.取a=1,b=﹣2时不成立.【解答】解:A.取a=2,b=﹣1时不成立;B.由于函数y=x3在R上单调递增,∵a>b,∴a3>b3,成立.C.取a=2,b=1时不成立;D.取a=1,b=﹣2时不成立.故选:B.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.4.若等差数列{a n }的前n 项和为S n ,且S 6=3,a 4=2,则a 5等于( )A .5B .6C .7D .8 【考点】等差数列的前n 项和.【分析】利用等差数列的通项公式与求和公式即可得出. 【解答】解:设等差数列{a n }的公差为d ,∵S 6=3,a 4=2,∴6a 1+d=3,a 1+3d=2,解得a 1=﹣7,d=3. 则a 5=﹣7+3×4=5, 故选:A .【点评】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.5.已知变量x ,y 满足约束条件,则的取值范围是( )A .[2,5]B .(﹣∞,2]∪[5,+∞)C .(﹣∞,3]∪[5,+∞)D .[3,5]【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用的几何意义是区域内的点到原点的斜率,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图,则的几何意义是区域内的点到原点的斜率, 由图象知OC 的斜率最小,OA 的斜率最大,由得,即A (1,5),此时OA 的斜率k=5,由得,即C (2,4),此时OC 的斜率k==2,即2≤≤5,则的取值范围是[2,5],故选:A .【点评】本题主要考查线性规划的应用,利用的几何意义是区域内的点到原点的斜率是解决本题的关键.6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,则角A 是( )A .B .C .D .【考点】余弦定理.【分析】直接利用余弦定理化简求解即可.【解答】解:在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,由余弦定理可得:cosA=,解得A=.故选:A .【点评】本题考查余弦定理的应用,考查计算能力.7.设等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,则S 12等于( )A .8B .10C .12D .14 【考点】等比数列的前n 项和.【分析】直接利用等比数列的性质,化简求解即可.【解答】解:等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,可得S 4,S 8﹣S 4,S 12﹣S 8,也是等比数列,S 12﹣S 8===8.S 12=14. 故选:D .【点评】本题考查等比数列的简单性质的应用,考查计算能力.8.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,则△ABC 的形状是( )A .等腰三角形B .钝角三角形C .直角三角形D .等腰三角形或直角三角形【考点】三角形的形状判断.【分析】利用正弦定理转化求解三角形的角的关系,判断三角形的形状即可.【解答】解:在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,可得,可得sin2A=sin2B . 可得2A=2B 或2A+2B=π,即:A=B 或A+B=;故选:D .【点评】本题考查正弦定理的应用,三角形的形状的判断,考查计算能力.9.若两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且,则等于( )A .2B .C .D .【考点】等差数列的性质.【分析】利用===,即可得出结论.【解答】解: =====,故选C.【点评】本题考查等差数列通项的性质,考查等差数列的求和公式,比较基础.10.某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元【考点】简单线性规划的应用.【分析】设每天生产甲乙两种产品分别为x,y吨,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.【解答】解:设每天生产甲乙两种产品分别为x,y吨,利润为z元,则,目标函数为 z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,∴z=3x+4y=6+12=18.max即每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元,故选:D.【点评】本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.11.若等差数列{an }的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和Sn取最小值时,n的值等于()A.4 B.5 C.6 D.7【考点】等差数列与等比数列的综合.【分析】由题意可得,运用等差数列的通项公式和等比数列的中项的性质,解方程可得a1,结合已知公差,代入等差数列的通项可求,判断数列的单调性和正负,即可得到所求和的最小值时n的值.【解答】解:由a5是a2与a6的等比中项,可得a52=a2a6,由等差数列{an}的公差d为2,即(a1+8)2=(a1+2)(a1+10),解得a1=﹣11,a n =a1+(n﹣1)d=﹣11+2(n﹣1)=2n﹣13,由a1<0,a2<0,…,a6<0,a7>0,…可得该数列的前n项和Sn取最小值时,n=6.故选:C.【点评】等差数列与等比数列是高考考查的基本类型,本题考查等差数列的通项公式的运用,同时考查等比数列的中项的性质,以及等差数列的单调性和前n项和的最小值,属于中档题.12.定义算式⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x+a)<1对任意x都成立,则实数a的取值范围是()A.﹣1<a<1 B.0<a<2 C.D.【考点】二次函数的性质.【分析】由已知中算式⊗:x⊗y=x(1﹣y),我们可得不等式(x﹣a)⊗(x+a)<1对任意x都成立,转化为一个关于x的二次不等式恒成立,进而根据二次不等式恒成立的充要条件,构造一个关于a的不等式,解不等式求出实数a的取值范围.【解答】解:∵x⊗y=x(1﹣y),∴若不等式(x﹣a)⊗(x+a)<1对任意x都成立,则(x﹣a)(1﹣x﹣a)﹣1<0恒成立即﹣x2+x+a2﹣a﹣1<0恒成立则△=1+4(a2﹣a﹣1)=4a2﹣4a﹣3<0恒成立解得故选D【点评】本题考查的知识点是二次函数的性质,其中根据二次不等式ax2+bx+c<0恒成立充要条件是a<0,△<0构造一个关于a的不等式,是解答本题的关键.二、填空题(本大题共4小题,每小题5分,共20分.)13.不等式x2+x﹣2>0的解集为{x|x<﹣2或x>1} .【考点】一元二次不等式的解法.【分析】不等式x2+x﹣2>0化为:(x+2)(x﹣1)>0,解出即可得出.【解答】解:不等式x2+x﹣2>0化为:(x+2)(x﹣1)>0,解得x>1或x<﹣2.∴不等式x2+x﹣2>0的解集为{x|x<﹣2或x>1}.故答案为:{x|x<﹣2或x>1}.【点评】本题考查了一元二次不等式的解法,考查了推理能力与计算能力,属于基础题.14.在数列{an }中,若a1=1,an+1=2an(n≥1),则该数列的通项an= 2n﹣1.【考点】等比数列的通项公式.【分析】由题意可得,该数列是以1为首项,以2为公比的等比数列,由此求得它的通项公式.【解答】解:由于在数列{a n }中,若a 1=1,a n+1=2a n (n ≥1),则该数列是以1为首项,以2为公比的等比数列,故它的通项公式为 a n =1×2n ﹣1=2n ﹣1,故答案为 2n ﹣1.【点评】本题主要考查等比数列的定义和通项公式,属于基础题.15.已知△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,a=1,c=,∠A=30°,则b 等于 1或2 .【考点】正弦定理.【分析】由已知及余弦定理可得b 2﹣3b+2=0,进而可解得b 的值.【解答】解:∵a=1,c=,∠A=30°,∴由余弦定理a 2=b 2+c 2﹣2bccosA ,可得:1=b 2+3﹣2×b ×,整理可得:b 2﹣3b+2=0,∴解得:b=1或2. 故答案为:1或2.【点评】本题主要考查了余弦定理在解三角形中的应用,属于基础题.16.下列命题中:①在△ABC 中,sinA >sinB ,则A >B ;②若a >0,b >0,a+b=4,则的最大值为3;③已知函数f (x )是一次函数,若数列{a n }的通项公式为a n =f (n ),则该数列是等差数列;④数列{b n }的通项公式为b n =q n ,则数列{b n }的前n 项和S n =.正确的命题的序号是 ①②③ .【考点】命题的真假判断与应用;基本不等式;数列的函数特性;正弦定理.【分析】逐项判断.①利用正弦定理易得;②先平方在利用基本不等式即可;③由等差数列的函数特征易得;④易知当q=1时,结论不正确.【解答】解:①由正弦定理,当sinA>sinB时,由 a>b,故有A>B,所以①为真;②≤9+(a+3)+(b+2)=18,所以“=”当且仅当“”成立,故②为真;③由等差数列的通项公式的函数特征知③正确;④易知,当q=1时结论不正确.总上可得①②③正确.故答案为:①②③.【点评】本题考查了正弦定理,基本不等式,等差数列的通项以及等比数列的前n项和问题.其中第2个命题的判断是本题难点.属于中档题.三、解答题(本大题6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,平面四边形ABCD中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°.(1)求BD的长;(2)求∠ADC的度数.【考点】余弦定理;正弦定理.【分析】(1)方法一:在△BCD中,由题意和正弦定理求出BD;方法二:由∠BDC=30°求出BC,利用条件和余弦定理列出方程,求出BD;(2)在△ABD中,利用条件和余弦定理求出cos∠ADB的值,结合图象求出∠ADC的度数.【解答】解:(1)方法一:在△BCD中,由正弦定理得:,即…解得BD=3…方法二:由已知得∠BDC=30°,故…由余弦定理得:BD2=CD2+BC2﹣2CDBCcos∠BCD= …∴BD=3…(2)在△ABD 中,由余弦定理得:…∴∠ADB=45° … 由已知∠BDC=30°…∴∠ADC=∠ADB+∠BDC=45°+30°=75°…【点评】本题考查正弦、余弦定理在解三角形中的应用,考查一题多解,化简、计算能力.18.已知等差数列{a n }中,a 1+a 4=10,a 3=6. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,求数列{b n }的前n 项和S n .【考点】数列递推式;数列的求和.【分析】(I )利用等差数列的通项公式即可得出. (II )利用“裂项求和”方法即可得出.【解答】解:(Ⅰ)设公差为d ,∵a 1+a 4=10,a 3=6.∴,解得, ∴数列{a n }的通项公式为a n =2n .(Ⅱ)由(Ⅰ)知,从而,∴.【点评】本题考查了等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.19.连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162dm2(版心是指图中的长方形阴影部分,dm为长度单位分米),上、下两边各空2dm,左、右两边各空1dm.(1)若设版心的高为xdm,求海报四周空白面积关于x的函数S(x)的解析式;(2)要使海报四周空白面积最小,版心的高和宽该如何设计?【考点】函数模型的选择与应用.【分析】(1)由已知版心的高为xdm,则版心的宽为dm,求出海报四周空白面积.(2)利用基本不等式求解即可.【解答】(本小题满分12分)解:(1)由已知版心的高为xdm,则版心的宽为dm…故海报四周空白面积为,…即S(x)=2x++8,x>0…(2)由基本不等式得:…当且仅当时取等号…∴要使海报四周空白面积最小,版心的高应该为18 dm、宽为9 dm…【点评】本题考查实际问题选择函数的模型,基本不等式的应用,考查计算能力.20.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b.(Ⅰ)求角C的值;(Ⅱ)若a+b=4,当c取最小值时,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】方法一:(Ⅰ)利用正弦定理、诱导公式、两角和的正弦公式化简已知的式子,由内角的范围和特殊角的三角函数值求出角C;(Ⅱ)利用余弦定理列出方程,由条件和完全平方公式化简后,利用基本不等式求出c的最小值,由面积公式求出△ABC的面积;方法二:(Ⅰ)利用余弦定理化简已知的式子得到边的关系,由余弦定理求出cosC的值,由内角的范围和特殊角的三角函数值求出角C;(Ⅱ)利用余弦定理列出方程,结合条件消元后,利用一元二次函数的性质求出c的最小值,由面积公式求出△ABC的面积.【解答】解:方法一:(Ⅰ)∵2ccosA+a=2b,∴2sinCcosA+sinA=2sinB,…∵A+B+C=π,∴2sinCcosA+sinA=2sin(A+C),…即 2sinCcosA+sinA=2sinAcosC+2cosAsinC,…∴sinA=2sinAcosC,…∵sinA≠0,∴cosC=,…又∵C是三角形的内角,∴C=.…(Ⅱ)由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2﹣ab,…∵a+b=4,故c2=a2+b2﹣ab=(a+b)2﹣3ab=16﹣3ab,…∴(当且仅当a=b=2时等号成立),…∴c的最小值为2,故.…方法二:(Ⅰ)∵2ccosA+a=2b,∴,…∴b2+c2﹣a2+ab=2b2,即 c2=a2+b2﹣ab,…∴,…又∵C是三角形的内角,∴c=.…(Ⅱ)由已知,a+b=4,即b=4﹣a,由余弦定理得,c 2=a 2+b 2﹣ab=(a+b )2﹣3ab ,…∴c 2=16﹣3a (4﹣a )=3(a ﹣2)2+4,…∴当a=2时,c 的最小值为2,故. …【点评】本题考查正弦、余弦定理,三角恒等变换中的公式,以及求最值的方法:基本不等式、一元二次函数的性质,考查一题多解,化简、变形能力.21.已知f (x )=x 2+ax+b ,a ,b ∈R ,若f (x )>0的解集为{x|x <0或x >2}.(Ⅰ)求a ,b 的值;(Ⅱ)解不等式f (x )<m 2﹣1. 【考点】二次函数的性质.【分析】(Ⅰ)利用方程的根,列出方程组,即可求解a ,b 的值;(Ⅱ)化简不等式为乘积的形式,通过因式的根的大小对m 讨论,求解不等式的解集即可.【解答】(本小题满分12分)解:(Ⅰ)根据题意可知,方程x 2+ax+b=0两根分别为0,2,…将两根代入方程得∴.…(Ⅱ)由(Ⅰ)可知不等式f (x )<m 2﹣1为x 2﹣2x <m 2﹣1, 即[x ﹣(1﹣m )][x ﹣(1+m )]<0,…∴当m=0时,1﹣m=1+m ,不等式的解集为Φ;…当m >0时,1﹣m <1+m ,不等式的解集为{x|1﹣m <x <1+m}; … 当m <0时,1+m <1﹣m ,不等式的解集为{x|1+m <x <1﹣m}.… (如上,没有“综上所述…”,不扣分)【点评】本题考查二次函数的简单性质的应用,考查分类讨论思想以及转化思想的应用,考查计算能力.22.已知数列{a n }的前n 项和为S n =. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设T n 为数列{b n }的前n 项和,其中b n =,求T n ;(Ⅲ)若存在n ∈N *,使得T n ﹣λa n ≥3λ成立,求出实数λ的取值范围.【考点】数列递推式;数列的求和.【分析】(Ⅰ)由已知数列的前n 项和,利用a n =S n ﹣S n ﹣1(n ≥2)求数列的通项公式;(Ⅱ)把b n =变形,利用裂项相消法化简,代入S n =得答案;(Ⅲ)把a n 、T n 代入T n ﹣λa n ≥3λ,分离参数λ,利用不等式求得最值得答案.【解答】解:(Ⅰ)当n ≥2时,a n =S n ﹣S n ﹣1==n ,当n=1时,a 1=S 1=1也符合上式,∴a n =n ;(Ⅱ)∵,∴=;(Ⅲ)∵存在n ∈N *,使得T n ﹣λa n ≥3λ成立,∴存在n ∈N *,使得成立,即有解,∴,而,当n=1或n=2时取等号,∴λ的取值范围为.【点评】本题考查数列递推式,训练了裂项相消法求数列的前n 项和,训练了利用分离参数法求解数列恒成立问题,是中档题.。

高二数学上学期期中试题文9

高二数学上学期期中试题文9

2017—2018学年度高二第一学期期中考试数学(文科)试题(试卷分值:150分 考试时间:120分钟 )注意事项:第Ⅰ卷所有选择题的答案必须用2B 铅笔涂在答题卡中相应的位置,第Ⅱ卷的答案必须用0.5毫米黑色签字笔写在答题卡的相应位置上,否则不予计分。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 以一个等边三角形的底边所在的直线为旋转轴旋转一周所得的几何体是A. 一个圆柱B. 一个圆锥C. 两个圆锥D. 一个圆台2. 下列命题正确的是A. 棱柱的侧面都是长方形B. 棱柱的所有面都是四边形C. 棱柱的侧棱不一定相等D. 一个棱柱至少有五个面3. 用斜二测画法画一个水平放置的平面图形的直观图为如图所示的等腰三角形,其中1OA OB ==,则原平面图形的面积为A. 1 32D. 2 4. 某几何体的三视图如图所示,则其表面积为A. 2πB. 3πC. 4πD. 5π5. 下列命题正确的是A. 四边形确定一个平面B. 两两相交且不共点的三条直线确定一个平面C. 经过三点确定一个平面D. 经过一条直线和一个点确定一个平面6. 已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列正确的是A. 若//m α,//n α,则//m nB. 若αγ⊥,βγ⊥,则//αβC. 若//m α,//m β,则//αβD. 若m α⊥,n α⊥,则//m n7. 已知圆锥的表面积为6,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为8. 已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为A. B. C. D.9. 直线20x y -+=的倾斜角为A. 30︒B. 45︒C. 60︒D. 135︒10. 已知圆C 的圆心(2,3)-,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程为A. 22460x y x y +-+=B. 224680x y x y +-++=C. 22460x y x y +--=D. 224680x y x y +-+-=11. 已知点(1,3)P 与直线l :10x y ++=,则点P 关于直线l 的对称点坐标为A. (3,1)--B. (2,4)C. (4,2)--D. (5,3)--12. 如图,正方体1111ABCD A BC D -中,有以下结论:①//BD 平面11CB D ; ②1AC BD ⊥; ③1AC ⊥平面11CB D ;④直线11B D 与BC 所成的角为45︒.其中正确的结论个数是A. 1B. 2C. 3D. 4第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.)13. 已知圆C :222220x y x y +++-=和直线l :20x y -+=,则圆心C 到直线l 的距离为 .14. 在正方体1111ABCD A BC D -的各条棱中,与直线1AA 异面的棱有 条.15. 直线210x ay +-=与直线(1)10a x ay ---=平行,则a 的值是 .16. 已知正方体1111ABCD A BC D -的一个面1111A B C D A ,B ,C ,D 都在半球面上,则正方体1111ABCD A BC D -的体积为 .三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤. 第17题10分,第18~22题每题12分)17. (本小题满分10分)已知菱形ABCD 中,(4,7)A -,(6,5)C -,BC 边所在的直线经过点(8,1)P -.(1)求AD 边所在的直线方程;(2)求对角线BD 所在的直线方程.18. (本小题满分12分)已知动圆C 经过点(1,2)A -,(1,4)B -.(1)求周长最小的圆的一般方程;(2)求圆心在直线240x y --=上的圆的标准方程.19. (本小题满分12分)四边形ABCD 是正方形,O 是正方形的中心,PO ⊥平面ABCD ,E 是PC 的中点.(1)求证:PA ∥平面BDE ;(2)求证:BD PC ⊥.20. (本小题满分12分)如图,多面体ABCDE 中,//BE CD ,BE BC ⊥,AB AC =,平面BCDE ⊥平面ABC ,M 为BC 的中点.(1)若N 是线段AE 的中点,求证://MN 平面ACD ;(2)若1BE =,2BC =,3CD =,求证:DE ⊥平面AME .21. (本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,1BC =,E ,F 分别为11AC ,BC 的中点. (1)求证:平面ABE ⊥平面11B BCC ;(2)求证:在棱AC 上存在一点M ,使得平面1//C FM 平面ABE ;(3)求三棱锥E ABC -的体积.22. (本小题满分12分)如图组合体中,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截面(过圆柱的轴,截圆柱所得的截面),C 是圆柱底面圆周上不与A ,B 重合的一个点.(1)求证:无论点C 如何运动,平面1A BC ⊥平面1A AC ;(2)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比.数学(文科)参考答案一、选择题(每小题5分,共60分)1. C2. D3. A4. B5. B6. D7. A8. C9. B 10. A 11.C 12.D二、填空题(每小题5分,共20分)12或0 16.三、解答题(第17题10分,第18~22题每题12分)17. (1)直线AD斜率为5(1)268AD BC PCk k k---====-,由点斜式方程,得72(4)y x-=+,即2150x y-+=;(2)对角线互相垂直,1157(5)646BDACkk=-=-=----,线段AC的中点为(1,1),由点斜式方程,得51(1)6y x-=-,即5610x y-+=18. (1)以线段AB为直径的圆的周长最小,AB中点坐标(0,1),AB=圆的标准方程为22(1)10x y+-=,一般方程为22290x y y+--=;(2)线段AB中垂线的斜率为1112431(1)ABkk=-=-=----,中垂线方程为113y x=+,联立方程113240y xx y⎧=+⎪⎨⎪--=⎩,得圆心坐标(3,2),半径r=标准方程为22(3)(2)20x y-+-=19. (1)连接AC,OE,则AC经过正方形中心点O,由O是AC的中点,E是PC的中点,得//OE PA,又OE⊂平面BDE,PA⊄平面BDE,所以//PA平面BDE;(2)由PO⊥平面ABCD,得PO BD⊥,又正方形对角线互相垂直,即BD AC⊥,PO AC O=点,PO⊂平面PAC,所以BD⊥平面PAC,得BD PC⊥.20. (1)取AB的中点H,连接MH,NH,由N是AE的中点,得//NH BE,又//BE CD ,得//NH CD ,NH ⊄平面ACD ,所以//NH 平面ACD ,同理可证,//MH 平面ACD ,而MHNH H =点,所以平面//MNH 平面ACD , 从而//MN 平面ACD ;(2)连接AM ,DM ,EM ,由AB AC =,M 为BC 的中点,得AM BC ⊥,又平面BCDE ⊥平面ABC ,平面BCDE 平面ABC BC =,AM ⊂平面ABC ,所以AM ⊥平面BCDE ,则AM DE ⊥,由勾股定理,在Rt EBM ∆中,1BE =,112BM BC ==,得EM ,在Rt DCM ∆中,3CD =,112CM BC ==,得DM 在直角梯形BCDE 中,由平面几何知识计算得DE ==,所以222E M D E D M +=,即EM DE ⊥,而AM EM M =点,所以DE ⊥平面AME .21. (1)由侧棱垂直于底面,1BB ⊥平面ABC ,得1BB AB ⊥,又AB BC ⊥,1BC BB B =点,所以AB ⊥平面11B BCC ,从而平面ABE ⊥平面11B BCC ;(2)取AC 中点M ,连接1C M ,FM ,由F 为BC 的中点,知//FM AB ,FM ⊄平面ABE ,得//FM 平面ABE ,因为1//AM C E ,1AM C E =,所以四边形1AMC E 为平行四边形,则1//C M AE ,1C M ⊄平面ABE ,得1//C M 平面ABE ,而1CM F M M =点, 平面1//C FM 平面ABE ,即存在AC 中点M ,使得平面1//C FM 平面ABE ;(3)点E 到底面的距离即为侧棱长12AA =,在Rt ABC ∆中,2AC =,1BC =,AB BC ⊥,所以AB =11122ABC S AB BC ∆=⋅==,所以12323E ABC V -=⨯=. 22. (1)由条件,AB 为底面圆的直径,C 是圆柱底面圆周上不与A 、B 重合的一个点,所以AC BC ⊥,又圆柱母线1AA ⊥平面ABC ,则1AA BC ⊥,1A AAC A =点,所以BC ⊥平面1AAC ,从而平面1A BC ⊥平面1A AC ; (2)设圆柱的母线长为h ,底面半径为r ,则圆柱的体积为2r h π,当点C 是弧AB 的中点时,ABC ∆为等腰直角三角形,面积为2r , 三棱锥1A ABC -的体积为221133r h r h ⨯⨯=, 三棱柱111A B C ABC -的体积为2r h ,则四棱锥111A BCC B -的体积为2221233r h r h r h -=, 四棱锥111A BCC B -与圆柱的体积比为23π.。

2017-2018学年第一学期高二级(文科)数学期中考试答案

2017-2018学年第一学期高二级(文科)数学期中考试答案

2017-2018学年度第二学期高二级文科数学期中试题答案一、选择题:CBCA DADC BDCB 二、填空题:13.1; 14.b 21+a 41 ;15,-1;16.26、【命题意图】本试题主要考查了对数、指数的比较大小的运用,采用中间值大小比较方法.【解析】ln ln 1e π>=,51log 2log 2<,1212z e -===,故选答案A.9、【解析】由12n n S a +=可知 ,当1n =时得211122a S == 当2n ≥时,有12n n S a += ① 12n n S a -= ②①-②可得122n n n a a a +=-即132n n a a +=,故该数列是从第二项起以12为首项,以32为公比的等比数列,故数列通项公式为2113()22nn a -⎧⎪=⎨⎪⎩(1)(2)n n =≥, 故当2n ≥时,1113(1())3221()3212n n n S ---=+=- 当1n =时,11131()2S -==,故选答案B本题还有其它方法11.圆222210x x y y -+-+=的圆心为M(1,1),半径为1,从外一点(3,2)P 向这个圆作两条切线,则点P 到圆心M 的距离等于5,每条切线与PM 的夹角的正切值等于21,所以两切线夹角的正切值为1242tan 1314θ⋅==-,该角的余弦值等于35,选B.(不排除其它方法)15、答案:1-(y 的系数是负的);三、解答题 17.解:(1)211cos 22cos 1212cos 2cos 22+-++=++A A A A 2c o s c o s 22A A += ……2分505153212592=⋅+⋅= ……………… 5分 (2),2,4sin 21===b A bc S ABC ∆中,54cos 1sin 2=-=A A ……… 7分代入解得5=c …… 8分 由余弦定理得: 1753522254cos 222=⨯⨯⨯-+=-+=A bc c b a ………10分 17=∴a ………11分18. 【解析】(1)由312S =,530S =得:11331251030a d a d +=⎧⎨+=⎩……2分解得:12,2a d ==……4分 所以2n a n =.……5分 (2)因为11111()(1)(1)(21)(21)22121n n a a n n n n ==--+-+-+……7分所以1111133557(21)(21)n T n n =++++⨯⨯⨯-⋅+111111111[()()()()]21335572121n n =-+-+-++--+……9分 11(1)22121n n n =-=++.……11分 19【解析】(1)由已知得1//2EF AB EF AB =且 取AD 的中点G,连结GH,GF则1GH//2AB AB =且GH//,EF GH EF GH EFGH ∴=∴且即为平行四边形FG//EH ,,平面且平面EH ADF FG ADF ⊄⊂∴E H∥平面EAD …………4分 (2)EH ABCD ⊥平面,且FG//EH,FG ABCD FG ADF ∴⊥⊂平面且平面ADF ABCD ∴⊥平面平面 …………8分(3) 由(1)(2)可得,平行四边形EFGH 为矩形, ∴HG ⊥FG,有∵HG⊥AD,∴HG⊥平面EAD ∴EF⊥平面EAD ,∴EF 为三棱锥E-ADE 的高且EF=GH=1,又因为1=××21=ΔEG AD S EAD ,∴31=1•1•31=AFD E V -. …………12分20(一)直接法(除了原点)的轨迹方程为所以点,设根据垂径定理020)2(),2(),(),2(),,(),(90222=-+∴=--∙=--∙=∙∴--==∴=∠x y x M y x x y x y x y x y x y x M OMC点评:挖掘圆的几何特征:圆是以圆心为对称中心的中心对称图形,一定联想垂径分弦定理,挖掘出CM OA ⊥,再把CM OA ⊥坐标化的方法:(优选方法(1) (1)向量转化法:0CM OA ⋅=;(2)斜率转化法:分类有无斜率利用1CM OA k k ⋅=-;(3)勾股定理:222OM MC OC +=直接法:根据已知条件找到一个等式,只要将有关的点代入等式,等式里除了所求点的坐标为(x,y),其它点的坐标已知,化简此等式就是所求点的轨迹方程(二)定义法(除了原点))的轨迹方程为(所以点),半径中点(圆心为)为直径的圆(除了原点的轨迹为以点,设根据垂径定理11-1||211,0),(9022=+∴==∴=∠y x M OC r OC OC M y x M OMC定义法:根据圆、椭圆、双曲线、抛物线的定义,判断点的轨迹符合每个曲线的性质,在使用待定系数法求出轨迹方程,CM OA ⊥∴点M 在以OC 为直径的圆上(下略)这是:利用圆的性质(直径所对的圆周角是直角的逆定理) (三)相关点代入法(除了原点))即()(((上在曲线(点中点为设11-42)224)24)2),(22220220),(,),(22222020220000000000=+=+-∴=+-∴=+-⎩⎨⎧==∴⎪⎪⎩⎪⎪⎨⎧=+==+=∴y x y x y x y x y x A y y xx y y y x x x OA M y x A y x M相关点代入法:已知某点A 的曲线方程,找出所求点P 坐标与点A 坐标之间的关系,用点P 坐标表示点A 坐标,代入点A 所在的曲线方程并化简。

2017_2018学年高二数学上学期期中联考试题

2017_2018学年高二数学上学期期中联考试题

年高二上学期期中考试数学试题2017.11本试卷分I 卷选择题(60分)II 卷非选择题(90分),满分150分,时间120分钟第I 卷(选择题60分)一.选择题:本大题共12个小题每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.在△ABC 中,a =3,b =5,sin A =13,则sin B =()A.15B.59C.53D .1 2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为()A .锐角三角形B .直角三角形C .钝角三角形D .不确定 3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于()A .8B .10C .12D .144. 如图从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于()1)m -2180(.B 1)m -3240(.A 1)m+330(.1)m D -3120(.C 5.在△ABC 中,若a 2-b 2=3bc 且sin A +B sin B=23,则A =()A.π6B.π3C.2π3D.5π66.已知等差数列{a n }的公差为-2,且a 2,a 4,a 5成等比数列,则a 2=()A .-4B .-6C .-8D .87.有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要()A .6秒钟B .7秒钟C .8秒钟D .9秒钟8.若a >b >0,c <d <0,则一定有()A.a d >b cB.a d <b cC.a c >b dD.a c <b d9.若数列{a n }的通项公式是a n =(-1)n·(3n -2),则a 1+a 2+…+a 10=()A .15B .12C .-12D .-1510. 某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B .16万元C .17万元D .18万元11. 已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则()A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>012. 若直线2ax +by -2=0(a >0,b >0)平分圆x 2+y 2-2x -4y -6=0的周长,则2a +1b 的最小值是()A .2-2B.2-1C .3+22D .3-2 2第II 卷(非选择题共90分)二.填空题:本大题共4个小题,每小题5分,共20分,把答案填在题横线上 13. 已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则a =________.14.已知不等式(k -2)x 2-2(k -2)x -4<0恒成立,则实数k 的取值范围是________. 15. 在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________.16.在△ABC 中,sin A ,sin B ,sin C 依次成等比数列,则B 的取值范围是________. 三.解答题:本大题共6个小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤17.(本小题满分10分)已知f (x )=-3x 2+a (6-a )x +6. (1)解不等式f (1)>0 ,求a 的范围(2)若不等式f (x )>b 的解集为(-1,3),求实数a 、b 的值. 18.(本小题满分12分)。

【精品】2018年黑龙江省双鸭山一中高二上学期期中数学试卷带解析答案(理科)

【精品】2018年黑龙江省双鸭山一中高二上学期期中数学试卷带解析答案(理科)

2017-2018学年黑龙江省双鸭山一中高二(上)期中数学试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)下列说法中不正确的是()A.平面α的法向量垂直于与平面α共面的所有向量B.一个平面的所有法向量互相平行C.如果两个平面的法向量垂直,那么这两个平面也垂直D.如果、与平面α共面且⊥,⊥,那么就是平面α的一个法向量2.(5分)抛物线x=﹣2y2的准线方程是()A.B.C.D.3.(5分)如图,空间四边形OABC中,,点M在上,且OM=2MA,点N为BC中点,则=()A.B.C.D.4.(5分)两圆x2+y2﹣4x+2y+1=0与x2+y2+4x﹣4y﹣1=0的公切线有()A.1条 B.2条 C.3条 D.4条5.(5分)已知=(﹣2,1,3),=(﹣1,2,1),若⊥(﹣λ),则实数λ的值为()A.﹣2 B.C.D.26.(5分)若双曲线的离心率为,则其渐近线方程为()A.y=±2x B.C. D.7.(5分)已知F是椭圆+=1(a>b>0)的左焦点,A为右顶点,P是椭圆上一点,且PF⊥x轴,若|PF|=|AF|,则该椭圆的离心率是()A.B.C.D.8.(5分)在棱长均为1的平行六面体ABCD﹣A1B1C1D1中,∠BAD=90°,∠A1AB=∠A1AD=60°,则=()A.B.C.2 D.9.(5分)若过点(﹣,0)的直线L与曲线y=有公共点,则直线L的斜率的取值范围为()A.[﹣,]B.[﹣,0]C.[0,]D.[0,]10.(5分)已知双曲线与直线y=2x有交点,则双曲线的离心率的取值范围是()A.(1,)B.(1,)∪(,+∞)C.(,+∞) D.[,+∞)11.(5分)已知AB为圆O:(x﹣1)2+y2=1的直径,点P为直线x﹣y+1=0上任意一点,则的最小值为()A.1 B.C.2 D.12.(5分)以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y 0>0)满足=,则﹣S()A.2 B.4 C.1 D.﹣1二、填空题(本大题共4小题,每题5分,满分20分.)13.(5分)若=(2,3,m),=(2n,6,8)且,为共线向量,则m+n=.14.(5分)经过点A(5,2),B(3,﹣2),且圆心在直线2x﹣y﹣3=0上的圆的方程为.15.(5分)过抛物线y2=4x的焦点F且倾斜角为的直线与抛物线交于A,B两点,则FA•FB的值为.16.(5分)已知AB是椭圆:的长轴,若把该长轴2010等分,过每个等分点作AB的垂线,依次交椭圆的上半部分于P1,P2,…,P2009,设左焦点为F1,则(|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|)=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)求与椭圆+=1有公共焦点,并且离心率为的双曲线方程.18.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ABC=,D是棱AC的中点,且AB=BC=BB1=2.(1)求证:AB1∥平面BC1D;(2)求异面直线AB1与BC1所成的角.19.(12分)设直线ax﹣y+3=0与圆(x﹣1)2+(y﹣2)2=4相交于A,B两点.(1)若,求a的值;(2)求弦长AB的最小值.20.(12分)已知抛物线E:y2=2px(p>0)上一点M(x0,4)到焦点F的距离.(1)求抛物线E的方程;(2)若抛物线E与直线y=kx﹣2相交于不同的两点A、B,且AB中点横坐标为2,求k的值.21.(12分)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,BC⊥PB,△BCD为等边三角形,PA=BD=,AB=AD,E为PC的中点.(1)求AB;(2)求平面BDE与平面ABP所成二面角的正弦值.22.(12分)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交z轴负半轴于点Q,且+=,过A,Q,F2三点的圆的半径为2.过定点M(0,2)的直线l与椭圆C交于G,H 两点(点G在点M,H之间).(I)求椭圆C的方程;(Ⅱ)设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH 为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.2017-2018学年黑龙江省双鸭山一中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)下列说法中不正确的是()A.平面α的法向量垂直于与平面α共面的所有向量B.一个平面的所有法向量互相平行C.如果两个平面的法向量垂直,那么这两个平面也垂直D.如果、与平面α共面且⊥,⊥,那么就是平面α的一个法向量【解答】解:对于A,根据平面法向量的定义,可知,平面α的法向量垂直于与平面α共面的所有向量;是正确的;对于B,一个平面的所有法向量与平面都垂直,所以都互相平行,故B正确;对于C,如果两个平面的法向量垂直,根据线面垂直的性质定理和判定定理可以判断这两个平面也垂直;故C正确;对于D,如果、与平面α共面且⊥,⊥,当、共线时,就不是平面α的一个法向量;故D错误.故选:D.2.(5分)抛物线x=﹣2y2的准线方程是()A.B.C.D.【解答】解:∵抛物线x=﹣2y2的标准方程为y2=﹣x故2p=﹣即p=则抛物线x=﹣2y2的准线方程是故选:D.3.(5分)如图,空间四边形OABC中,,点M在上,且OM=2MA,点N为BC中点,则=()A.B.C.D.【解答】解:由题意=++=+﹣+=﹣++﹣=﹣++又=,=,=∴=﹣++故选:B.4.(5分)两圆x2+y2﹣4x+2y+1=0与x2+y2+4x﹣4y﹣1=0的公切线有()A.1条 B.2条 C.3条 D.4条【解答】解:因为圆x2+y2﹣4x+2y+1=0化为(x﹣2)2+(y+1)2=4,它的圆心坐标(2,﹣1),半径为2;圆x2+y2+4x﹣4y﹣1=0化为(x+2)2+(y﹣2)2=9,它的圆心坐标(﹣2,2),半径为3;因为=5=2+3,所以两个圆相外切,所以两个圆的公切线有3条.故选:C.5.(5分)已知=(﹣2,1,3),=(﹣1,2,1),若⊥(﹣λ),则实数λ的值为()A.﹣2 B.C.D.2【解答】解:因为,,所以,由,所以,得﹣2(λ﹣2)+1﹣2λ+9﹣3λ=0⇒λ=2,故选:D.6.(5分)若双曲线的离心率为,则其渐近线方程为()A.y=±2x B.C. D.【解答】解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选:B.7.(5分)已知F是椭圆+=1(a>b>0)的左焦点,A为右顶点,P是椭圆上一点,且PF⊥x轴,若|PF|=|AF|,则该椭圆的离心率是()A.B.C.D.【解答】解:由于PF⊥x轴,则令x=﹣c,代入椭圆方程,解得,y2=b2(1﹣)=,y=,又|PF|=|AF|,即=(a+c),即有4(a2﹣c2)=a2+ac,即有(3a﹣4c)(a+c)=0,则e=.故选:B.8.(5分)在棱长均为1的平行六面体ABCD﹣A1B1C1D1中,∠BAD=90°,∠A1AB=∠A1AD=60°,则=()A.B.C.2 D.【解答】解:∵在棱长均为1的平行六面体ABCD﹣A1B1C1D1中,∠BAD=90°,∠A1AB=∠A1AD=60°,∴=,∴=()2=+2||•||cos60°+2||•||cos60°=1+1+1+2×+2×=5,∴||=.故选:D.9.(5分)若过点(﹣,0)的直线L与曲线y=有公共点,则直线L的斜率的取值范围为()A.[﹣,]B.[﹣,0]C.[0,]D.[0,]【解答】解:由y=,得x2+y2=1(﹣1≤x≤1,y≥0),作出图象如图,设过点(﹣,0)且与半圆x2+y2=1(﹣1≤x≤1,y≥0)相切的直线的斜率为k(k>0),则直线方程为y=k(x+),即kx﹣y+.由,解得k=(k>0).∴直线L的斜率的取值范围为[0,].故选:D.10.(5分)已知双曲线与直线y=2x有交点,则双曲线的离心率的取值范围是()A.(1,)B.(1,)∪(,+∞)C.(,+∞) D.[,+∞)【解答】解:如图所示,∵双曲线的渐近线方程为,若双曲线与直线y=2x有交点,则应有,∴,解得.故选:C.11.(5分)已知AB为圆O:(x﹣1)2+y2=1的直径,点P为直线x﹣y+1=0上任意一点,则的最小值为()A.1 B.C.2 D.【解答】解:由=(+)•(+)=2+•(+)+•=||2﹣r2,即为d2﹣r2,其中d为圆外点到圆心的距离,r为半径,因此当d取最小值时,的取值最小,可知d的最小值为=,故的最小值为2﹣1=1.故选:A.12.(5分)以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y 0>0)满足=,则﹣S()A.2 B.4 C.1 D.﹣1【解答】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P(x,y),记F 1(﹣3,0),F2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,∴5﹣4y2=20,解得:y=或y=(舍),∴P(3,),∴直线PF1方程为:5x﹣12y+15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.二、填空题(本大题共4小题,每题5分,满分20分.)13.(5分)若=(2,3,m),=(2n,6,8)且,为共线向量,则m+n=6.【解答】解:=(2,3,m),=(2n,6,8)且,为共线向量,∴,∴∴m+n=6故答案为:614.(5分)经过点A(5,2),B(3,﹣2),且圆心在直线2x﹣y﹣3=0上的圆的方程为(x﹣2)2+(y﹣1)2=10.【解答】解:过点A(5,2),B(3,﹣2)的直线AB的斜率为:k AB==2,∴直线AB的垂直平分线斜率为k=﹣,垂直平分线方程为y﹣0=﹣(x﹣4),即y=﹣x+2;与直线2x﹣y﹣3=0联立,解得:x=2,y=1,即所求圆的圆心坐标为C(2,1),又所求圆的半径r=|CA|==,则所求圆的方程为(x﹣2)2+(y﹣1)2=10.故答案为:(x﹣2)2+(y﹣1)2=10.15.(5分)过抛物线y2=4x的焦点F且倾斜角为的直线与抛物线交于A,B两点,则FA•FB的值为8.【解答】解:过抛物线y2=4x的焦点F且倾斜角为的直线方程为y=x﹣1,联立,得x2﹣6x+1=0,△=36﹣4=32>0,设A(x1,y1),B(x2,y2),则x1+x2=6,x1x2=1,F(1,0),FA•FB=•=•=•=(x1+1)(x2+1)=x1x2+(x1+x2)+1=1+6+1=8.故答案为:8.16.(5分)已知AB是椭圆:的长轴,若把该长轴2010等分,过每个等分点作AB的垂线,依次交椭圆的上半部分于P1,P2,…,P2009,设左焦点为F1,则(|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|)=.【解答】解:椭圆:的长轴2a=4,设右焦点为F2,由椭圆的定义可得|F1P i|+|F2P i|=2a,(1≤i≤2009,i∈N),由题意知点P1,P2,…,P n关于y轴成对称分布,∴|F1P i|+|F1P2010﹣i|=2a,﹣1|F1P1005|=a,|F1A|+|F1B|=2a,|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|=2a×1004+2a+a=2011a=4022,(|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|)=,故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)求与椭圆+=1有公共焦点,并且离心率为的双曲线方程.【解答】解:根据题意,椭圆的标准方程为+=1,其焦点坐标为(±,0),则要求双曲线的焦点坐标为(±,0),设其方程为﹣=1,且c=,又由要求双曲线的离心率为,即e===,得a=2,b2=c2﹣a2=1,故要求双曲线的方程为:.18.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ABC=,D是棱AC的中点,且AB=BC=BB1=2.(1)求证:AB1∥平面BC1D;(2)求异面直线AB1与BC1所成的角.【解答】解:(1)如图,连接B1C交BC1于点O,连接OD.∵O为B1C的中点,D为AC的中点,∴OD∥AB1.∵AB1⊄平面BC1D,OD⊂平面BC1D,∴AB1∥平面BC1D.(2)建立如图所示的空间直角坐标系B﹣xyz.则B(0,0,0)、A(0,2,0)、C1(2,0,2)、B1(0,0,2).∴=(0,﹣2,2)、=(2,0,2).cos===,设异面直线AB1与BC1所成的角为θ,则cosθ=,∵θ∈(0,),∴θ=.19.(12分)设直线ax﹣y+3=0与圆(x﹣1)2+(y﹣2)2=4相交于A,B两点.(1)若,求a的值;(2)求弦长AB的最小值.【解答】解:(1)根据题意,由于圆(x﹣1)2+(y﹣2)2=4的圆心C(1,2),半径等于2,设圆心到直线的距离为d,则d=,若若,则d2+()2=r2,即=1,解可得a=0,(2)根据题意,直线ax﹣y+3=0即y=ax+3,恒过点(0,3),设D(0,3)且(0,3)在圆(x﹣1)2+(y﹣2)2=4的内部,当CD⊥AB时,|AB|最小,此时()2+|CD|2=r2,解可得|AB|=2.即弦长AB的最小值为.20.(12分)已知抛物线E:y2=2px(p>0)上一点M(x0,4)到焦点F的距离.(1)求抛物线E的方程;(2)若抛物线E与直线y=kx﹣2相交于不同的两点A、B,且AB中点横坐标为2,求k的值.【解答】解:(1)∵抛物线E:y2=2px(p>0)上一点M(x0,4)到焦点F的距离.∴,解得x0=2p,∴M(2p,4),∴16=2p×2p,解得p=2,∴抛物线E的方程y2=4x(2)联立,得k2x2﹣(4k+4)x+4=0,∵抛物线E与直线y=kx﹣2相交于不同的两点A、B,∴△=(4k+4)2﹣16k2=32k+16>0,即k>﹣.设A(x1,y1),B(x2,y2),则x1+x2=,∵AB中点横坐标为2,∴==2,解得k=.21.(12分)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,BC⊥PB,△BCD为等边三角形,PA=BD=,AB=AD,E为PC的中点.(1)求AB;(2)求平面BDE与平面ABP所成二面角的正弦值.【解答】解:(1)连接AC,∵PA⊥底面ABCD,BC⊂平面ABCD,∴PA⊥BC,又∵BC⊥PB,PB∩PA=P,∴BC⊥平面PAB,又AB⊂平面PAB,∴BC⊥AB.∵△BCD为等边三角形,AB=AD,∴△ABC≌△ADC,∴∠ACB=30°,∠CAB=60°,又BD=,∴AB=;(2)由(1)知,AC⊥BD,设AC∩BD=O,分别以OC、OD所在直线为x、y轴建立空间直角坐标系.则D(0,,0),B(0,﹣,0),E(,0,),A(,0,0),P(﹣,0,).,,,.设平面BDE的一个法向量为,则,得,取,则;设平面ABP的一个法向量为,则,得,取,则.∴|cos<>|=||=||=.平面BDE与平面ABP所成二面角的正弦值为.22.(12分)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交z轴负半轴于点Q,且+=,过A,Q,F2三点的圆的半径为2.过定点M(0,2)的直线l与椭圆C交于G,H两点(点G在点M,H之间).(I)求椭圆C的方程;(Ⅱ)设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH 为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.【解答】解:(I)因为,所以F1为F2Q中点.设Q的坐标为(﹣3c,0),因为AQ⊥AF2,所以b2=3c×c=3c2,a2=4c×c=4c2,且过A,Q,F2三点的圆的圆心为F1(﹣c,0),半径为2c因为该圆与直线l相切,所以,解得c=1,所以a=2,b=,所以所求椭圆方程为;(Ⅱ)设l的方程为y=kx+2(k>0),与椭圆方程联立,消去y可得(3+4k2)x2+16kx+4=0.设G(x1,y1),H(x2,y2),则x1+x2=﹣∴=(x1﹣m,y1)+(x2﹣m,y2)=(x1+x2﹣2m,y1+y2).=(x1+x2﹣2m,k(x1+x2)+4)又=(x2﹣x1,y2﹣y1)=(x2﹣x1,k(x2﹣x1)).由于菱形对角线互相垂直,则()•=0,所以(x2﹣x1)[(x1+x2)﹣2m]+k(x2﹣x1)[k(x1+x2)+4]=0.故(x2﹣x1)[(x1+x2)﹣2m+k2(x1+x2)+4k]=0.因为k>0,所以x2﹣x1≠0.所以(x1+x2)﹣2m+k2(x1+x2)+4k=0,即(1+k2)(x1+x2)+4k﹣2m=0.所以(1+k 2)(﹣)+4k ﹣2m=0.解得m=﹣,即因为k >,可以使,所以故存在满足题意的点P 且m 的取值范围是[).赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

精选2017-2018学年高二数学上学期期中试题(含解析)

精选2017-2018学年高二数学上学期期中试题(含解析)

2017-2018学年第一学期期中试卷高二数学第一卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卷相应位置上.........1. 已知直线的斜率为,则它的倾斜角为__________.【答案】【解析】斜率为,设倾斜角为,则,有.2. 已知圆的方程为,则它的圆心坐标为__________.【答案】【解析】,圆心坐标为.3. 若直线和平面平行,且直线,则两直线和的位置关系为__________.【答案】平行或异面【解析】若直线和平面平行,且直线,则两直线和的位置关系为平行或异面.4. 已知直线:和:垂直,则实数的值为_________.【答案】【解析】当时,,两条直线不垂直;当时,,两条直线垂直,则,.综上:.5. 已知直线和坐标轴交于、两点,为原点,则经过,,三点的圆的方程为_________.【答案】【解析】直线和坐标轴交于、两点,则,设圆的方程为:,则,解得,圆的方程为,即.6. 一个圆锥的侧面展开图是半径为,圆心角为的扇形,则这个圆锥的高为_________.【答案】【解析】由题得扇形得面积为:,根据题意圆锥的侧面展开图是半径为3即为圆锥的母线,由圆锥侧面积计算公式:所以圆锥的高为7. 已知,分别为直线和上的动点,则的最小值为_________.【答案】【解析】由于两条直线平行,所以两点的最小值为两条平行线间的距离.8. 已知,是空间两条不同的直线,,是两个不同的平面,下面说法正确的有_________.①若,,则;②若,,,则;③若,,,则;④若,,,则.【答案】①④【解析】①若,,符合面面垂直的判定定理,则真确;②若,,,则可能平行,也可能相交,故②不正确;③若,,,则可能平行,也可能异面;③不正确;④若,,,符合线面平行的性质定理,则.正确;填①④.9. 直线关于直线对称的直线方程为_________.【答案】【解析】由于点关于直线的对称点位,直线关于直线对称的直线方程为,即.10. 已知底面边长为,侧棱长为的正四棱柱,其各顶点均在同一个球面上,则该球的体积为_________.【答案】【解析】∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为,又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径,根据球的体积公式,得此球的体积为,故答案为.点睛:本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题;由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径,最后根据球的体积公式,可算出此球的体积.11. 若直线:和:将圆分成长度相同的四段弧,则_________.【答案】【解析】两条直线:和:平行,把直线方程化为一般式:和,圆的直径为,半径,直线被圆所截的弦所对的圆心角为直角,只需两条平行线间的距离为4,圆心到直线的距离为2,圆心到则的距离为,若,则,同样,则,则.12. 已知正三棱锥的体积为,高为,则它的侧面积为_________.【答案】【解析】设正三棱锥底面三角形的边长为,则,底面等边三角形的高为,底面中心到一边的距离为,侧面的斜高为,.13. 已知,,若圆()上恰有两点,,使得和的面积均为,则的范围是_________.【答案】【解析】,使得和的面积均为,只需到直线的距离为2,直线的方程为,圆心到直线的距离为1,当时,圆()上恰有一点到AB的距离为2,不合题意;若时,圆()上恰有三个点到AB的距离为2,不合题意;当时,圆()上恰有两个点到AB的距离为2,符合题意,则................14. 已知线段的长为2,动点满足(为常数,),且点始终不在以为圆心为半径的圆内,则的范围是_________.【答案】第二卷二、解答题:本大题共6小题,共90分.请在答题卷指定区域内作答,...........解答应写出文字说明、证明过程或演算步骤.15. 四棱锥中,,底面为直角梯形,,,,点为的中点.(1)求证:平面;(2)求证:.【答案】(1)见解析(2)见解析【解析】试题分析:证明线面可以利用线面平行的判定定理,借助证明平行四边形,寻求线线平行,进而证明线面平行;证明线线垂直,首先利用线面垂直的判定定理,借助题目所提供的线线垂直条件,证明一条直线与平面内两条相交直线垂直,达成线面垂直,根据线面垂直的定义,然后证明线线垂直.试题解析:证:(1)四边形为平行四边形(2)【点睛】证明线面平行有两种思路:第一寻求线线平行,利用线面平行的判定定理.第二寻求面面平行,本题借助平行四边形和三角形中位线定理可以得到线线平行,进而证明线面平行;证明线线垂直,首先利用线面垂直的判定定理,借助题目所提供的线线垂直条件,证明一条直线与平面内两条相交直线垂直,达成线面垂直,根据线面垂直的定义,然后证明线线垂直.16. 已知平行四边形的三个顶点的坐标为,,.(1)求平行四边形的顶点的坐标;(2)在中,求边上的高所在直线方程;(3)求四边形的面积.【答案】(1)(2)(3)20【解析】试题分析:首先根据平行四边形对边平行且相等,得出向量相等的条件,根据向量的坐标运算,得出向量相等的条件要求,求出点的坐标,求高线方程采用点斜式,利用垂直关系求斜率,球平行四边形的面积可利用两条平行线间的距离也可利用两点间的距离求边长,再根据余弦定理求角,再利用三角形面积公式求面积.试题解析:。

黑龙江省双鸭山市2017_2018学年高二数学上学期期中试题理

黑龙江省双鸭山市2017_2018学年高二数学上学期期中试题理

黑龙江省双鸭山市2017-2018学年高二数学上学期期中试题 理一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列说法中不正确...的是() A .平面α的法向量垂直于与平面α共面的所有向量 B .一个平面的所有法向量互相平行C .如果两个平面的法向量垂直,那么这两个平面也垂直D .如果,与平面α共面且⊥⊥,,那么就是平面α的一个法向量2.抛物线22x y =-的准线方程是 ()1.8A x =1.2B x =1.4C y =-1.4D x =- 3.空间四边形O ABC -中,,,OA a OB b OC c ===,点M 在OA 上,且2,OM MA N=为BC 的中点,则MN 等于 ()121.232A a b c -+211.322B a b c -++112.223C a b c +-221.332D a b c +-4.两个圆222212:4210,:4410O x y x y O x y x y +-++=++--=的公切线有().1A 条 .2B 条 .3C 条 .4D 条5.已知(2,1,3),(1,2,1)a b =-=-,若()a a b λ⊥-,则实数λ的值为().2A -4.3B -14.5C .2D6.若双曲线22221x y a b -=().2A y x =±.B y =1.2C y x =±.2D y x =± 7.已知F 是椭圆22221(0)x y a b a b +=>>的左焦点,A 为右顶点,P 是椭圆上的一点,PF x ⊥轴,若1||||4PF AF =,则该椭圆的离心率是 ()1.4A 3.4B 1.2C 2D 8.在棱长均为1的平行六面体1111ABCD A B C D -中,1190,60BAD A AB A AD ∠=︒∠=∠=︒,则1||AC =()B .2CD 9. 若过点(-5,0)的直线l 与曲线y =1-x 2有公共点,则直线l 的斜率的取值范围为()A .[-12,12]B .[-12,0]C .[0,6]D .[0,12]10. 已知双曲线2222:1(0,0)x y E a b a b-=>>与直线2y x =有交点,则双曲线离心率的取值范围是A B )C +∞)D +∞11. 已知AB 为圆22:(1)1O x y -+=的直径,点P 为直线10x y -+=上的任意一点,则PA PB ⋅的最小值为().1A B .2C D 12. 以椭圆22195x y +=的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别为12,F F ,已知点(2,1M ,双曲线C 上的点000(,)(0,0)P x y x y >>满足11211121||||P F M F F F M F P F F F ⋅⋅=,则12PMF PMF S S-=().1A .3B .2C .4D二、填空题(本大题共4小题,每题5分,满分20分.)13. 若()()2,3,,2,6,8a m b n ==且,a b 为共线向量,则m n +的值为 14. 经过点(5,2),(3,2)A B -,且圆心在直线230x y --=上的圆的方程为15.过抛物线24y x =的焦点F 且倾斜角为4π的直线与抛物线交于,A B 两点,则FA FB ⋅的值为16.已知AB 是椭圆:221(0)43+=>>x y a b 的长轴,若把该长轴2010等分,过每个等分点作AB 的垂线,依次交椭圆的上半部分于122009,,,P P P ,设左焦点为1F ,则111121200911(||||||||||)2010F A F P F P F P F B +++++=三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题10分)求与椭圆x 29+y 24=1有公共焦点,并且离心率为52的双曲线方程.18.(本题12分) 如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =π2,D 是棱AC 的中点,且AB=BC =BB 1=2.(1)求证:AB 1∥平面BC 1D ; (2)求异面直线AB 1与BC 1所成的角.19. ( 本题12分)设直线30ax y -+=与圆22(1)(2)4x y -+-=相交于,A B 两点.(1)若||AB =求a 的值; (2)求弦长AB 的最小值.20. ( 本题12分)已知抛物线2:2(0)E y px p =>上一点0(,4)M x 到焦点F 的距离05||4MF x =. (1)求抛物线E 的方程;(2)若抛物线E 与直线y =kx -2相交于不同的两点A 、B ,且AB 中点横坐标为2,求k 的值.21. (本题12分)如图,在四棱锥ABCD P -中,⊥PA 底面ABCD ,PB BC ⊥,BCD ∆为等边三角形,3==BD PA ,AD AB =,E 为PC 的中点.(1)求AB ;(2)求平面BDE 与平面ABP 所成二面角的正弦值.22. (本题12分)已知椭圆22221x y a b+=的左,右焦点分别为12,F F ,上顶点为A ,过点A与直线2AF 垂直的直线交x 轴负半轴于点Q ,且12220F F F Q +=,过2,,A Q F 三点的圆的半径为2,过点(0,2)M 的直线l 与椭圆交于,G H 两点(G 在,M H 之间)(1)求椭圆的标准方程;(2)设直线l 的斜率0k >,在x 轴上是否存在(,0)P m ,使得以,PG PH 为邻边的平行四边形为菱形?如果存在,求出m 的取值范围,如果不存在,请说明理由.13 614 10)1()2(22=-+-y x 15 8161005201117 1422=-y x18 (1)略 (2)3π 19 (1)0(2)22 20 (1)x y 42= (2)251± 21 (1)1(2)47 22 (1)13422=+y x(2)],63[o -。

2017-2018学年高二(上)期中数学试题及参考答案

2017-2018学年高二(上)期中数学试题及参考答案

2017-2018学年度 高二(上)期中考试数 学 试 题考试时间:100分钟 满分100分一、选择题(每题4分,共40分)1.有一个几何体的三视图如下图所示,这个几何体应是一个 ( )A.棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为 ( )A.B.C.D.3.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。

⑵两条直线没有公共点,则这两条直线平行。

⑶两条直线都和第三条直线垂直,则这两条直线平行。

⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。

其中正确的个数为 ( ) A .0 B .1 C .2 D .34.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对5.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的底面对角线的长分别是9和15,则这个棱柱的侧面积是 ( )A .130B .140C .150D .1606.用半径为R 的半圆卷成一个无底圆锥,则这个无底圆锥的体积为 ( )A3R B3R C3R D3R 7.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为 ( ) A .7 B.6 C.5 D.38.正四面体A —BCD 中E 、F 分别是棱BC 和AD 之中点,则EF 和AB 所成的角( )A .45︒B .60︒C .90︒D .30︒主视图 左视图 俯视图9.已知二面角α-AB -β的平面角为θ,α内一点C 到β的距离为3,到棱AB 的距离为4, 则tanθ等于 ( )A .34B .35CD10.直三棱柱111ABC A B C -中,各侧棱和底面的边长均为a ,点D 是1CC 上任意一点, 连接11,,,A B BD A D AD ,则三棱锥1A A BD -的体积为 ( )A .361a B .3123a C .363a D .3121a 二、填空题(每题4分,共20分)11.一个棱柱至少有 _____个面;面数最少的一个棱锥有 ________个顶点;顶点最少的一个棱台有 ________条侧棱。

黑龙江省双鸭山一中高二(上)期中数学试卷(文科)

黑龙江省双鸭山一中高二(上)期中数学试卷(文科)

黑龙江省双鸭山一中高二(上)期中数学试卷(文科)数学试卷〔文科〕一、选择题〔包括1-12题,每题5分,共60分〕1.〔5分〕〔2021•福州模拟〕某学校为了调查高三年级的200名文科先生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由先生会的同窗随机抽取20名同窗停止调查;第二种由教务处对该年级的文科先生停止编号,从001到200,抽取学号最后一位为2的同窗停止调查,那么这两种抽样的方法依次为〔〕A.分层抽样,复杂随机抽样B.复杂随机抽样,分层抽样C.分层抽样,系统抽样D.复杂随机抽样,系统抽样考点:复杂随机抽样;搜集数据的方法.专题:阅读型.剖析:第一种由先生会的同窗随机抽取20名同窗停止调查,这是一种复杂随机抽样,第二种由教务处对该年级的文科先生停止编号,抽取学号最后一位为2的同窗停止调查,契合采用系统抽样.解答:解:第一种由先生会的同窗随机抽取20名同窗停止调查;这是一种复杂随机抽样,第二种由教务处对该年级的文科先生停止编号,从001到200,抽取学号最后一位为2的同窗停止调查,关于集体比拟多的总体,采用系统抽样,应选D.点评:此题考察复杂随机抽样和系统抽样,关于同一总体采取的两种不同抽样方式,留意两者的相反点和不同点,失掉的样本能够不同,但不论用什么抽样方式,每个集体被抽到的概率相等.2.〔5分〕圆x2+y2+4x﹣6y﹣3=0的圆心和半径区分为〔〕A.〔4,﹣6〕,r=16 B.〔2,﹣3〕,r=4 C.〔﹣2,3〕,r=4 D.〔2,﹣3〕,r=16 考点:圆的普通方程.专题:计算题;直线与圆.剖析:将圆的方程配方成规范方式,结合圆心和半径的公式,即可失掉此题答案.解答:解:将圆x2+y2+4x﹣6y﹣3=0的方程化成规范方式,得〔x+2〕2+〔y﹣3〕2=16 ∴圆x2+y2+4x﹣6y﹣3=0的圆心为C〔﹣2,3〕,半径r=4应选:C点评:此题给出圆的普通式方程,求圆的圆心和半径,着重考察了圆的普通方程、规范方程及其互化等知识,属于基础题.3.〔5分〕〔2021•泸州二模〕某单位有青年职工160人,中年职工人数是老年职工人数的2倍,老、中、青职工共有430人.为了解职工身体状况,现采用分层抽样方法停止调查,在抽取的样本中有青年职工32人,那么该样本中的老年职工人数为〔〕A.16 B.18 C.27 D.36考点:分层抽样方法.专题:计算题.剖析:依据条件中职工总数和青年职工人数,以及中年和老年职工的关系列出方程,解出老年职工的人数,依据青年职工在样本中的个数,算出每个集体被抽到的概率,用概率乘以老年职工的个数,失掉结果.解答:解:设老年职工有x人,中年职工人数是老年职工人数的2倍,那么中年职工有2x,∵x+2x+160=430,∴x=90,即由比例可得该单位老年职工共有90人,∵在抽取的样本中有青年职工32人,∴每个集体被抽到的概率是=,用分层抽样的比例应抽取×90=18人.应选B.点评:此题是一个分层抽样效果,容易出错的是不了解分层抽样的含义或与其它混杂.抽样方法是数学中的一个小知识点,但普通不难,故也是一个重要的得分点,不容错过.4.〔5分〕〔2021•天津〕设x∈R,那么〝x>〞是〝2x2+x﹣1>0〞的〔〕A.充沛而不用要条件B.必要而不充沛条件C.充沛必要条件D.既不充沛也不用要条件考点:必要条件、充沛条件与充要条件的判别.专题:计算题.剖析:求出二次不等式的解,然后应用充要条件的判别方法判别选项即可.解答:解:由2x2+x﹣1>0,可知x<﹣1或x>;所以当〝x>〞⇒〝2x2+x﹣1>0〞;但是〝2x2+x﹣1>0〞推不出〝x>〞.所以〝x>〞是〝2x2+x﹣1>0〞的充沛而不用要条件.应选A.点评:此题考察必要条件、充沛条件与充要条件的判别,二次不等式的解法,考察计算才干.5.〔5分〕〔2021•滨州一模〕如图是2021年在广州举行的全国少数民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差区分为〔〕A84,4.84 B84,1.6 C85,1.6 D85,4....考点:茎叶图;极差、方差与规范差.专题:压轴题;图表型.剖析:依据所给的茎叶图,看出七个数据,依据分数处置方法,去掉一个最高分93和一个最低分79后,把剩下的五个数字求出平均数和方差.解答:解:由茎叶图知,去掉一个最高分93和一个最低分79后,所剩数据84,84,86,84,87的平均数为;方差为.应选C.点评:茎叶图、平均数和方差属于统计局部的基础知识,也是高考的新增内容,考生应惹起足够的注重,确保稳拿这局部的分数.6.〔5分〕回归方程,那么〔〕A.B.15是回归系数a C.1.5是回归系数a D.x=10时,y=0 考点:线性回归方程.专题:概率与统计.剖析:依据回归直线必要样本中心点〔,〕点,代入可判别A的真假;依据回归直线方程为=bx+a中,一次项系数是回归系数b,常数项为回归系数a,可判别B,C的真假;依据回归直线的意义,可判别D的真假.解答:解:回归直线必要样本中心点〔,〕点,故,即A正确;回归直线方程为=bx+a中,一次项系数是回归系数b,常数项为回归系数a,故﹣15是回归系数a,故B错误;1.5是回归系数b,故C错误;x=10时,y的预告值为0,但y值不一定为0,故D错误应选A点评:此题考察的知识点是线性回归方程,熟练掌握线性回归方程的基本概念是解答的关键.7.〔5分〕〔2021•陕西〕如图中,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,P为该题的最终得分.当x1=6,x2=9,p=8.5时,x3等于〔〕A.11 B.10 C.8D.7考点:选择结构.专题:创新题型.剖析:应用给出的顺序框图,确定该题最后得分的计算方法,关键要读懂该框图给出的循环结构以及循环结构内嵌套的条件结构,弄清三个分数中差距小的两个分数的平均分作为该题的最后得分.解答:解:依据提供的该算法的顺序框图,该题的最后得分是三个分数中差距小的两个分数的平均分.依据x1=6,x2=9,不满足|x1﹣x2|≤2,故进入循环体,输入x3,判别x3与x1,x2哪个数差距小,差距小的那两个数的平均数作为该题的最后得分.因此由8.5=,解出x3=8.应选C.点评:此题考察先生对算法基本逻辑结构中的循环结构和条结构的看法,考察先生对赋值语句的了解和看法,考察先生对顺序框图表示算法的了解和看法才干,考察先生的算法思想和复杂的计算效果.8.〔5分〕将二进制110101〔2〕转化为十进制为〔〕A.106 B.53 C.55 D.108 考点:排序效果与算法的多样性.专题:计算题.剖析:此题的考察点为二进制与十进制数之间的转换,只需我们依据二进制转换为十进制方法逐位停止转换,即可失掉答案.解答:解:110101〔2〕=1+1×22+1×24+1×25=53,应选B.点评:二进制转换为十进制方法:按权相加法,行将二进制每位上的数乘以权〔即该数位上的1表示2的多少次方〕,然后相加之和即是十进制数.大家在做二进制转换成十进制需求留意的是:〔1〕要知道二进制每位的权值;〔2〕要能求出每位的值.9.〔5分〕〔2021•东城区一模〕命题〝∃x0∈R,使log2x0≤0成立〞的否认为〔〕A.∃x0∈R,使log2x0>0成立B.∃x0∈R,使log2x0≥0成立C.∀x0∈R,均有log2x0≥0成立D.∀x0∈R,均有log2x0>0成立考点:命题的否认.专题:阅读型.剖析:特称命题〝∃x0∈R,使log2x0≤0成立〞的否认是:把∃改为∀,其它条件不变,然后否认结论,变为一个全称命题.即〝∀x0∈R,均有log2x0>0成立〞.解答:解:特称命题〝∃x0∈R,使log2x0≤0成立〞的否认是全称命题〝∀x0∈R,均有log2x0>0成立〞.应选D.点评:此题考察特称命题的否认方式.10.〔5分〕〔2021•丹东一模〕直线被圆x2+y2﹣4y=0所截得的弦长为〔〕A.1B.2C.D.考点:直线和圆的方程的运用.专计算题.题:剖析:首先依据题意剖析圆心与半径.经过直线与圆相交结构一个直角三角形.直角边区分为半弦长,弦心距.斜边为半径.依照勾股定理求出半弦长,然后就能求出弦长.解答:解:依据题意,圆为x2+y2﹣4y=0故其圆心为〔0,2〕,半径为:2圆心到直线的距离为:由题意,圆的半径,圆心到直线的距离,以及圆的弦长的一半构成直角三角形故由勾股定理可得:解得:l=2故答案为:2点评:此题考察直线与圆的方程的运用,首先依据圆剖析出圆的要素,然后依据直线与圆相交时结构的直角三角形依照勾股定理求出结果.属于基础题.11.〔5分〕〔2021•广东〕先后抛掷两枚平均的正方体骰子〔它们的六个面区分标有点数1、2、3、4、5、6〕,骰子朝上的面的点数区分为X、Y,那么log2X Y=1的概率为〔〕A.B.C.D.考点:等能够事情的概率.专题:计算题.剖析:先转化出X、Y之间的关系,计算出各种状况的概率,然后比拟即可.解答:解:∵log2X Y=1∴Y=2X,满足条件的X、Y有3对而骰子朝上的点数X、Y共有36对∴概率为=应选C.点评:假设一个事情有n种能够,而且这些事情的能够性相反,其中事情A出现m种结果,那么事情A的概率P〔A〕=.12.〔5分〕〔2021•辽宁〕在长为12cm的线段AB上任取一点C.现作一矩形,邻边长区分等于线段AC,CB的长,那么该矩形面积大于20cm2的概率为〔〕A.B.C.D.考点:几何概型.专题:计算题;压轴题.剖析:设AC=x,那么BC=12﹣x,由矩形的面积S=x〔12﹣x〕>20可求x的范围,应用几何概率的求解公式可求解答:解:设AC=x,那么BC=12﹣x矩形的面积S=x〔12﹣x〕>20∴x2﹣12x+20<0∴2<x<10由几何概率的求解公式可得,矩形面积大于20cm2的概率P==应选C点评:此题主要考察了二次不等式的解法,与区间长度有关的几何概率的求解公式的运用,属于基础试题二、填空题〔包括13-16题,每题5分,共20分〕13.〔5分〕圆C1:〔x﹣2〕2+〔y﹣1〕2=10与圆C2:〔x+6〕2+〔y+3〕2=50交于A、B两点,那么AB所在的直线方程是2x+y=0.考点:相交弦所在直线的方程.专题:计算题;方程思想.剖析:所求AB所在直线方程,实践是两个圆交点的圆系中的特殊状况,方程之差即可求得结果.解答:解:圆C1:〔x﹣2〕2+〔y﹣1〕2=10与圆C2:〔x+6〕2+〔y+3〕2=50相减就得公共弦AB所在的直线方程,故AB所在的直线方程是﹣16x﹣8y﹣40=﹣40,即2x+y=0故答案为:2x+y=0点评:此题考察相交弦所在直线的方程,是基础题.14.〔5分〕阅读左面的算法顺序,写出顺序运转的结果.〔1〕该顺序中运用的是〝IF﹣THEN﹣ELSE〞格式的条件语句;〔2〕假定x=6,那么p= 2.1;假定x=20,那么p=10.5.考点:伪代码.专题:阅读型.剖析:〔1〕由中的伪代码,可以剖析出顺序的功用是应用双分支条件结构计算分段函数的值,采用的是〝IF﹣THEN﹣ELSE〞格式的条件语句〔2〕将x=6和x=20区分代入,先判别能否满足条件,进而选择对应的函数解析式,代入可得答案.解解:〔1〕由中的伪代码,可得答:这是一个双分支条件结构采用的是〝IF﹣THEN﹣ELSE〞格式的条件语句〔2〕假定x=6,满足条件那么p=6×0.35=2.1假定x=20,不满足条件那么p=10×0.35+〔20﹣10〕×0.7=10.5故答案为:〝IF﹣THEN﹣ELSE〞,2.1,10.5点评:此题考察的知识点是伪代码,其中剖析出顺序的功用,并能将其转化为对应的数学模型是解答的关键.15.〔5分〕在以下四个结论中,正确的有①②④〔填序号〕.①假定A是B的必要不充沛条件,那么¬B也是¬A的必要不充沛条件;②〝〞是〝一元二次不等式ax2+bx+c≥0的解集为R〞的充要条件;③〝x≠1〞是〝x2≠1〞的充沛不用要条件;④〝x≠0〞是〝x+|x|>0〞的必要不充沛条件.考点:必要条件、充沛条件与充要条件的判别.专题:计算题.剖析:由于原命题与其逆否命题等价,所以①正确;〝〞⇔〝一元二次不等式ax2+bx+c≥0的解集为R.所以②成立;x≠1推不出x2≠1,反例:x=﹣1⇒x2=1,所以③不成立.x≠0推不出x+|x|>0,但x+|x|>0⇒x>0⇒x≠0,所以④成立.解答:解:①∵A是B的必要不充沛条件,∴B⇒A,∴¬A⇒¬B,∴¬B也是¬A的必要不充沛条件,故①正确;②∵〝〞⇔〝一元二次不等式ax2+bx+c≥0的解集为R〞的充要条件,∴〝〞是〝一元二次不等式ax2+bx+c≥0的解集为R〞的充要条件.故②正确;③〝x≠1〞不能推出〝x2≠1〞反例:x=﹣1⇒x2=1,〝x2≠1〞⇒〝x≠1,或x≠﹣1〞,故〝x≠1〞是〝x2≠1〞的不充沛不用要条件,故③错误;x≠0推不出x+|x|>0,反例x=﹣2⇒x+|x|=0.但x+|x|>0⇒x>0⇒x≠0,∴〝x≠0〞是〝x+|x|>0〞的必要不充沛条件.故④正确故答案为:①②④点此题考察必要条件、充沛条件和充要条件的判别,解题时要仔细审题,细心解答.评:16.〔5分〕〔2021•天津〕设m,n∈R,假定直线l:mx+ny﹣1=0与x轴相交于点A,与y 轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,那么△AOB面积的最小值为3.考点:直线与圆相交的性质;直线的普通式方程.专题:计算题.剖析:由圆的方程找出圆心坐标和半径r,由直线l被圆截得的弦长与半径,依据垂径定理及勾股定理求出圆心到直线l的距离,然后再应用点到直线的距离公式表示出圆心到直线l的距离,两者相等列出关系式,整理后求出m2+n2的值,再由直线l与x轴交于A点,与y轴交于B点,由直线l的解析式区分令x=0及y=0,得出A的横坐标及B的纵坐标,确定出A和B的坐标,得出OA及OB的长,依据三角形AOB为直角三角形,表示出三角形AOB的面积,应用基本不等式变形后,将m2+n2的值代入,即可求出三角形AOB面积的最小值.解答:解:由圆x2+y2=4的方程,失掉圆心坐标为〔0,0〕,半径r=2,∵直线l与圆x2+y2=4相交所得弦CD=2,∴圆心到直线l的距离d==,∴圆心到直线l:mx+ny﹣1=0的距离d==,整理得:m2+n2=,令直线l解析式中y=0,解得:x=,∴A〔,0〕,即OA=,令x=0,解得:y=,∴B〔0,〕,即OB=,∵m2+n2≥2|mn|,当且仅当|m|=|n|时取等号,∴|mn|≤,又△AOB为直角三角形,∴S△ABC=OA•OB=≥=3,那么△AOB面积的最小值为3.故答案为:3点评:此题考察了直线与圆相交的性质,触及的知识有:点到直线的距离公式,垂径定理,勾股定理,直线的普通式方程,以及基本不等式的运用,当直线与圆相交时,经常依据垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距结构直角三角形,应用勾股定理俩来处置效果.三、解答题〔包括17-22题,共70分〕17.〔10分〕〔2021•江西模拟〕某校从参与高一年级期末考试的先生中抽出60名先生,将其效果〔均为整数〕分红六段[40,50〕,[50,60〕…[90,100]后画出如下局部频率散布直方图.观察图形的信息,回答以下效果:〔1〕求第四小组的频率,并补全这个频率散布直方图;〔2〕估量这次考试的及格率〔60分及以上为及格〕战争均分.考点:频率散布直方图.专题:计算题;图表型.剖析:〔1〕在频率分直方图中,小矩形的面积等于这一组的频率,依据频率的和等于1树立等式解之即可;〔2〕60及以上的分数所在的第三、四、五、六组,从而求出抽样先生效果的合格率,再应用组中值预算抽样先生的平均分即可.解答:解:〔Ⅰ〕由于各组的频率和等于1,故第四组的频率:f4=1﹣〔0.025+0.015*2+0.01+0.005〕*10=0.3〔Ⅱ〕依题意,60及以上的分数所在的第三、四、五、六组,频率和为〔0.015+0.03+0.025+0.005〕*10=0.75所以,抽样先生效果的合格率是75% 应用组中值预算抽样先生的平均分45•f1+55•f2+65•f3+75•f4+85•f5+95•f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71估量这次考试的平均分是71.点评:此题主要考察了频率及频率散布直方图,考察运用统计知识处置复杂实践效果的才干,数据处置才干和运意图识.18.〔12分〕圆C:x2+y2﹣4x﹣6y+12=0,求过点A〔3,5〕的圆的切线方程.考点:直线与圆的位置关系.专题:直线与圆.剖析:由圆的方程求出圆心和半径,易得点A在圆外,当切线的斜率不存在时,切线方程为x=3.当切线的斜率存在时,设切线的斜率为k,写出切线方程,应用圆心到直线的距离等于半径,解出k,可得切线方程.解解:圆C:x2+y2﹣4x﹣6y+12=0,即〔x﹣2〕2+〔y﹣3〕2=1,表示以〔2,3〕为圆答:心,半径等于1的圆.由于点A〔3,5〕到圆心的距离等于=,大于半径1,故点A在圆的外部.当切线的斜率不存在时,切线方程为x=3契合题意.当切线的斜率存在时,设切线斜率为k,那么切线方程为y﹣5=k〔x﹣3〕,即kx﹣y ﹣3k+5=0,所以,圆心到切线的距离等于半径,即=1,解得k=﹣,此时,切线为3x+4y+11=0.综上可得,圆的切线方程为x=3,或3x+4y+11=0.点评:此题考察求圆的切线方程得方法,留意切线的斜率不存在的状况,属于中档题.19.〔12分〕假定a∈[﹣1,1],b∈[﹣1,1],求关于x的方程x2+ax+b2=0有实根的概率.考点:几何概型.专题:计算题.剖析:这是一个几何概型效果,关于x的方程x2+ax+b2=0有实根依据判别式大于等于零,可以失掉a和b之间的关系,写出对应的集合,做出面积,失掉概率.解答:解:∵﹣1≤a≤1,﹣1≤b≤1,事情对应的集合是Ω={〔a,b〕|﹣1≤a≤1,﹣1≤b≤1}对应的面积是sΩ=4,∵关于x的方程x2+ax+b2=0有实根,∴a2﹣4b2≥0〔a+2b〕〔a﹣2b〕≥0,事情对应的集合是A={〔a,b〕|﹣1≤a≤1,﹣1≤b≤1,〔a+2b〕〔a﹣2b〕≥0} 对应的图形的面积是:s A=2××1×1=1∴P=,故关于x的方程x2+ax+b2=0有实根的概率为:.点评:古典概型和几何概型是我们学习的两大约型,古典概型要求可以罗列出一切事情和发作事情的个数,而不能罗列的就是几何概型,概率的值是经过长度、面积、和体积的比值失掉.20.〔12分〕设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.假定¬p是¬q的充沛不用要条件,务实数a的取值范围.考点:必要条件、充沛条件与充要条件的判别;命题的真假判别与运用.专不等式的解法及运用.题:剖析:由题意可得q是命题p的充沛不用要条件,设A={x|x2﹣4ax+3a2<0,a>0},B={x|},那么由题意可得B⊊A,化简A、B,依据区间端点间的大小关系,求得实数a的取值范围.解答:解:假定¬p是¬q的充沛不用要条件,∴命题q是命题p的充沛不用要条件.设A={x|x2﹣4ax+3a2<0,a>0}={x|a<x<3a},B={x|}={x|2<x≤3},那么由题意可得B⊊A.∴,解得1<a≤2,故实数a的取值范围为〔1,2].点评:此题主要考察充沛条件、必要条件、充要条件的定义,一元二次不等式的解法,表达了等价转化的数学思想,属于基础题.21.〔12分〕〔2021•安徽模拟〕一个平均的正四面面子上区分涂有1、2、3、4四个数字,现随机投掷两次,正四面面子朝下的数字区分为b、c.〔Ⅰ〕记z=〔b﹣3〕2+〔c﹣3〕2,求z=4的概率;〔Ⅱ〕假定方程x2﹣bx﹣c=0至少有一根a∈1,2,3,4,就称该方程为〝美丽方程〞,求方程为〝美丽方程〞的概率.考点:等能够事情的概率.专题:计算题.剖析:〔I〕由于我们要将平均的面上区分涂有1、2、3、4四个数字的正四面体随机投掷两次,故基身手情共有4×4=16个,然后求出z=4时,基身手情的个数,代入古典概型公式即可失掉结果.〔II〕分类讨论方程根区分为1,2,3,5时,基身手情的个数,然后代入古典概型公式即可失掉结果.解答:解:〔Ⅰ〕由于是投掷两次,因此基身手情〔b,c〕共有4×4=16个当z=4时,〔b,c〕的一切取值为〔1,3〕、〔3,1〕所以〔Ⅱ〕①假定方程一根为x=1,那么1﹣b﹣c=0,即b+c=1,不成立.②假定方程一根为x=2,那么4﹣2b﹣c=0,即2b+c=4,所以.③假定方程一根为x=3,那么9﹣3b﹣c=0,即3b+c=9,所以.④假定方程一根为x=4,那么16﹣4b﹣c=0,即4b+c=16,所以.综合①②③④知,〔b,c〕的一切能够取值为〔1,2〕、〔2,3〕、〔3,4〕所以,〝美丽方程〞共有3个,方程为〝美丽方程〞的概率为点评:此题考察的知识是等能够性事情的概率,求出基身手情的总数和满足某个事情的基身手情个数是解答此题的关键.22.〔12分〕〔2021•株洲模拟〕在直角坐标系xOy中,以坐标原点O为圆心的圆与直线:相切.〔1〕求圆O的方程;〔2〕假定圆O上有两点M、N关于直线x+2y=0对称,且,求直线MN的方程;〔3〕圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.考点:直线与圆的位置关系;等比数列的性质;向量在几何中的运用.专题:直线与圆.剖析:〔1〕应用点到直线的距离公式求出半径r,从而求得圆O的方程.〔2〕用点斜式设出MN的方程为y=2x+b,由条件求出圆心O到直线MN的距离等于=1,由1=,求出b的值,即可失掉MN的方程.〔3〕由题意可得|PA|•|PB|=|PO|2 ,设点P〔x,y〕,代入化简可得x2=y2+2.由点P 在圆内可得x2+y2<4,可得0≤y2<1.化简=2〔y2﹣1〕,从而求得的取值范围.解答:解:〔1〕半径r==2,故圆O的方程为x2+y2=4.〔2〕∵圆O上有两点M、N关于直线x+2y=0对称,故MN的斜率等于直线x+2y=0斜率的负倒数,等于2,设MN的方程为y=2x+b,即2x﹣y+b=0.由弦长公式可得,圆心O到直线MN的距离等于=1.由点到直线的距离公式可得1=,b=±,故MN的方程为2x﹣y±=0.〔3〕圆O与x轴相交于A〔﹣2,0〕、B〔2,0〕两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,∴|PA|•|PB|=|PO|2 ,设点P〔x,y〕,那么有•=x2+y2,化简可得x2=y2+2.由点P在圆内可得x2+y2<4,故有0≤y2<1.∵=〔﹣2﹣x,﹣y〕•〔2﹣x,﹣y〕=x2+y2﹣4=2〔y2﹣1〕∈[﹣2,0〕.即的取值范围是[﹣2,0〕.点评:此题主要考察等比数列的定义和性质,直线和圆的位置关系,两个向量的数量积的定义,属于中档题.。

黑龙江省双鸭山三十一中2017-2018学年高二上学期期中考试数学(文)试卷word版 含答案

黑龙江省双鸭山三十一中2017-2018学年高二上学期期中考试数学(文)试卷word版 含答案

三十一中学2017—2018(1)学期中高二学年数学(文)试题( 考试时间: 120分钟满分: 150分 )一、选择题(每题5分,共60分)1.命题“∃x 0≤0,使得x 02≥0”的否定是 ( )A .∀x≤0,x 2<0B .∀x≤0,x 2≥0C .∃x 0>0,x 02>0D .∃x 0<0,x 02≤02. 抛物线24y x =的焦点坐标为( ) A. ()0,1B. ()0,2 C. ()2,0 D. ()1,03.满足()()f x f x ='的一个函数是 ( ) A. ()1f x x =- B. ()f x x = C. ()xf x e = D. ()1f x =4.“若2a ≥,则24a ≥”的逆否命题是()A. 若2a ≤,则24a ≤B. 若24a <,则2a <C. 若24a ≤,则2a ≥D. 若2a ≥,则24a <5.函数的单调递减区间是 ( ) A.B C. D.6. 设,则 “”是“”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件7. 已知焦点在x 轴上的椭圆2213x y m +=的离心率为12,则m =( ) A. 6B. 4D. 28.曲线在点A 处的切线与直线平行,则点A 的坐标为()a x x x f +-=12)(3),2(),2,(+∞--∞),2(+∞)2,(--∞)2,2(-A. B. C. D.9.双曲线2214x y -=的渐近线方程为() A. 2y x =± B. y x =± C. 12y x =±D. 4y x =± 10.函数()y f x =的图象如图,则其导函数()'y f x =的图象可能是( )A. B. C. D.11.设f (x )=xlnx ,若f′(x 0)=2,则x 0等于() A. e 2 B. e C.D. ln212.函数在上的最大值是( )A. B. C. D.二、填空题(每题5分,共4题 共20分)13.设4)(2+=ax x f ,若2)1('=f ,则a 的值 __________.14.如果椭圆上一点P 到一个焦点的距离为6,那么点P 到另外一个焦点的距离是____________15、若命题p :f(x)=x 2-2x +4>m(x ∈R)恒成立为真命题,则m 的取值范围_____________16.设()(),f x g x 分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()0f x g x f x g x ''+>且()30f -=,则不等式()()0f x g x <的解集是____________.三、解答题(共70分)17(本题满分10分)已知命题p :方程220x x m -+=有两个不相等的实数根;命题q :函数(2)1y m x =+-是R 上的单调增函数.若“p 或q ”是真命题,“p 且q ”是假命题,求实数m 的取值范围.18.(本题满分12分)已知函数.(Ⅰ)求函数的单调递增区间; (Ⅱ)求函数在的最大值和最小值.19.(本题满分12分)已知椭圆C 的两焦点分别为()()1200F F 、,长轴长为6, ⑴求椭圆C 的标准方程;⑵已知过点(0,2)且斜率为1的直线交椭圆C 于A 、B 两点,求线段AB 的长度。

2017-2018学年高二上学期期中数学(文科)试卷 Word版含解析

2017-2018学年高二上学期期中数学(文科)试卷 Word版含解析

2017-2018学年高二(上)期中试卷(文科数学)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.△ABC 中,a=1,b=,A=30°,则B 等于( )A .60°B .60°或120°C .30°或150°D .120°2.已知数列…,则2是这个数列的( )A .第6项B .第7项C .第11项D .第19项3.已知{a n }是等比数列,a 2=2,a 5=,则公比q=( )A .B .﹣2C .2D .4.已知等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值是( )A .55B .95C .100D .不确定5.命题“若x >1,则x >0”的否命题是( )A .若x ≤1,则x ≤0B .若x ≤1,则x >0C .若x >1,则x ≤0D .若x <1,则x <06.若变量x ,y 满足约束条件,则z=x ﹣2y 的最大值为( )A .4B .3C .2D .17.若0<a <b ,且a+b=1,则在下列四个选项中,较大的是( )A .B .a 2+b 2C .2abD .b8.△ABC 中,sinA=2sinCcosB ,那么此三角形是( )A .等边三角形B .锐角三角形C .等腰三角形D .直角三角形9.设S n 是等差数列{a n }的前n 项和,若=,则=( )A .B .C .D .10.等差数列{a n }的前三项依次为a ﹣1,a+1,2a+3,则此数列的第n 项a n =( )A .2n ﹣5B .2n ﹣3C .2n ﹣1D .2n+111.设a >0,b >0.若3是3a 与3b 的等比中项,则的最小值为( )A .4B .2C .1D .12.若{a n }是等差数列,首项a 1>0,a 5+a 6>0,a 5a 6<0,则使前n 项和S n >0成立的最大自然数n 的值是() A .6 B .7 C .8 D .10二、填空题(每小题5分,满分20分,将答案填在答题纸上)13.已知等差数列{a n }的公差d=﹣2,a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99的值是 .14.已知点(3,﹣1)和(﹣4,﹣3)在直线3x ﹣2y+a=0的同侧,则a 的取值范围是 .15.不等式2x 2﹣x ﹣1>0的解集是 .16.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若sinA=,b=sinB ,则a= .三、解答题:17.若不等式ax 2+5x ﹣2>0的解集是,求不等式ax 2﹣5x+a 2﹣1>0的解集.18.△ABC 中,BC=7,AB=3,且=. (1)求AC 的长;(2)求∠A 的大小.19.已知{a n }是等差数列,其中a 1=25,a 4=16(1)求{a n }的通项;(2)求a 1+a 3+a 5+…+a 19值.20.已知{a n }是公差不为零的等差数列,a 1=1且a 1,a 3,a 9成等比数列.(1)求数列{a n }的通项;(2)求数列{2a n }的前n 项和S n .21.一缉私艇发现在北偏东45°方向,距离12nmile 的海面上有一走私船正以10nmile/h 的速度沿东偏南15°方向逃窜.缉私艇的速度为14nmile/h ,若要在最短的时间内追上该走私船,缉私艇应沿北偏东45°+α的方向去追,求追击所需的时间和α角的正弦值.22.设数列{a n }的前n 项和为S n ,且满足S n =2﹣a n ,n=1,2,3,….(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,且b n+1=b n +a n ,求数列{b n }的通项公式.2017-2018学年高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.△ABC 中,a=1,b=,A=30°,则B 等于( )A .60°B .60°或120°C .30°或150°D .120°【考点】正弦定理.【分析】由正弦定理可得,求出sinB 的值,根据B 的范围求得B 的大小.【解答】解:由正弦定理可得,∴,∴sinB=.又 0<B <π,∴B= 或,故选B .2.已知数列…,则2是这个数列的( )A .第6项B .第7项C .第11项D .第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n 2﹣a n ﹣12=3从而利用等差数列通项公式a n 2=2+(n ﹣1)×3=3n ﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n 2﹣a n ﹣12=3,又∵a 12=2,∴a n 2=2+(n ﹣1)×3=3n ﹣1,令3n ﹣1=20,则n=7.故选B .3.已知{a n }是等比数列,a 2=2,a 5=,则公比q=( )A .B .﹣2C .2D .【考点】等比数列.【分析】根据等比数列所给的两项,写出两者的关系,第五项等于第二项与公比的三次方的乘积,代入数字,求出公比的三次方,开方即可得到结果.【解答】解:∵{a n }是等比数列,a 2=2,a 5=,设出等比数列的公比是q ,∴a 5=a 2•q 3,∴==,∴q=,故选:D .4.已知等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值是( )A .55B .95C .100D .不确定【考点】等差数列的前n 项和;等差数列的通项公式.【分析】由等差数列的性质,结合a 3+a 17=10求出a 10,代入前19项的和得答案.【解答】解:在等差数列{a n }中,由a 3+a 17=10,得2a 10=10,∴a 10=5.∴.故选:B .5.命题“若x >1,则x >0”的否命题是( )A .若x ≤1,则x ≤0B .若x ≤1,则x >0C .若x >1,则x ≤0D .若x <1,则x <0【考点】四种命题.【分析】根据否命题的定义:“若p 则q”的否命题是:“若¬p ,则¬q”,所以应该选A .【解答】解:根据否命题的定义,x >1的否定是:x ≤1;x >0的否定是:x ≤0,所以命题“若x >1,则x >0”的否命题是:“若x ≤1,则x ≤0”.故选A .6.若变量x ,y 满足约束条件,则z=x ﹣2y 的最大值为( )A .4B .3C .2D .1【考点】简单线性规划的应用.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x ﹣2y 表示直线在y 轴上的截距,只需求出可行域直线在y 轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x ﹣2y ⇒y=x ﹣z ,由图可知,当直线l 经过点A (1,﹣1)时,z 最大,且最大值为z max =1﹣2×(﹣1)=3.故选:B .7.若0<a<b,且a+b=1,则在下列四个选项中,较大的是()A.B.a2+b2 C.2ab D.b【考点】不等式比较大小.【分析】根据两个数的和是1,和两个数的大小关系,得到b和的大小关系,根据基本不等式得到B,C两个选项的大小关系,再比较B,D的大小.【解答】解:∵a+b=10<a<b所以a<b>所以D答案>A答案;C答案一定不大于B答案;B:a2+b2=(1﹣b)2+b2,D:b,所以B﹣D=(1﹣b)2+b2﹣b=2b2﹣3b+1=(b﹣1)(2b﹣1),又<b<1,∴B﹣D=(b﹣1)(2b﹣1)<0,即B<D;所以D最大故选D.8.△ABC中,sinA=2sinCcosB,那么此三角形是()A.等边三角形B.锐角三角形C.等腰三角形D.直角三角形【考点】三角形的形状判断.【分析】由三角形的内角和及诱导公式得到sinA=sin(B+C),右边利用两角和与差的正弦函数公式化简,再根据已知的等式,合并化简后,再利用两角和与差的正弦函数公式得到sin(B﹣C)=0,由B与C都为三角形的内角,可得B=C,进而得到三角形为等腰三角形.【解答】解:∵A+B+C=π,即A=π﹣(B+C),∴sinA=sin(B+C)=sinBcosC+cosBsinC.又sinA=2cosBsinC,∴sinBcosC+cosBsinC=2cosBsinC.变形得:sinBcosC﹣cosBsinC=0,即sin(B﹣C)=0.又B和C都为三角形内角,∴B=C,则三角形为等腰三角形.故选C.9.设S n 是等差数列{a n }的前n 项和,若=,则=( )A .B .C .D .【考点】等差数列的前n 项和.【分析】根据等差数列的前n 项和公式,用a 1和d 分别表示出s 3与s 6,代入中,整理得a 1=2d ,再代入中化简求值即可.【解答】解:设等差数列{a n }的首项为a 1,公差为d ,由等差数列的求和公式可得且d ≠0,∴,故选A .10.等差数列{a n }的前三项依次为a ﹣1,a+1,2a+3,则此数列的第n 项a n =( )A .2n ﹣5B .2n ﹣3C .2n ﹣1D .2n+1【考点】等差数列的通项公式.【分析】由题意结合等差数列的性质求得a ,则等差数列的首项和公差可求,代入通项公式得答案.【解答】解:∵等差数列{a n }的前三项依次为a ﹣1,a+1,2a+3,∴2(a+1)=(a ﹣1)+(2a+3),解得:a=0.∴等差数列{a n }的前三项依次为﹣1,1,3,则等差数列的首项为﹣1,公差为d=2,∴a n =﹣1+(n ﹣1)×2=2n ﹣3.故选:B .11.设a >0,b >0.若3是3a 与3b 的等比中项,则的最小值为( )A .4B .2C .1D . 【考点】基本不等式.【分析】利用等比中项即可得出a 与b 的关系,再利用“乘1法”和基本不等式的性质即可得出.【解答】解:∵3是3a 与3b 的等比中项,∴32=3a •3b =3a+b ,∴a+b=2.a >0,b >0.∴===2.当且仅当a=b=1时取等号.故选B .12.若{a n }是等差数列,首项a 1>0,a 5+a 6>0,a 5a 6<0,则使前n 项和S n >0成立的最大自然数n 的值是( )A .6B .7C .8D .10【考点】等差数列的性质;数列的求和.【分析】由已知结合等差数列的单调性可得a 5+a 6>0,a 6<0,由求和公式可得S 8<0,S 7>0,可得结论.【解答】解:∵{a n }是等差数列,首项a 1>0,a 5+a 6>0,a 5a 6<0,∴a 5,a 6必定一正一负,结合等差数列的单调性可得a 5>0,a 6<0,∴S 11==11a 6<0,S 10==5(a 5+a 6)>0,∴使前n 项和S n >0成立的最大自然数n 的值为10.故选D .二、填空题(每小题5分,满分20分,将答案填在答题纸上)13.已知等差数列{a n }的公差d=﹣2,a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99的值是 ﹣82 .【考点】等差数列的前n 项和.【分析】由等差数列的性质得a 3+a 6+a 9+…+a 99=(a 1+a 4+a 7+…+a 97)+33×2d ,由此能求出结果.【解答】解:∵等差数列{a n }的公差d=﹣2,a 1+a 4+a 7+…+a 97=50,∴a 3+a 6+a 9+…+a 99=(a 1+a 4+a 7+…+a 97)+33×2d=50+33×2×(﹣2)=﹣82.故答案为:﹣82.14.已知点(3,﹣1)和(﹣4,﹣3)在直线3x ﹣2y+a=0的同侧,则a 的取值范围是 (﹣∞,﹣11)∪(6,+∞) .【考点】二元一次不等式(组)与平面区域.【分析】由已知点(3,﹣1)和(﹣4,﹣3)在直线3x ﹣2y+a=0的同侧,我们将A ,B 两点坐标代入直线方程所得符号相同,则我们可以构造一个关于a 的不等式,解不等式即可得到答案.【解答】解:若(3,﹣1)和(﹣4,﹣3)在直线3x ﹣2y ﹣a=0的同侧则[3×3﹣2×(﹣1)+a]×[3×(﹣4)+2×3+a]>0即(a+11)(a ﹣6)>0解得a ∈(﹣∞,﹣11)∪(6,+∞)故答案为:(﹣∞,﹣11)∪(6,+∞).15.不等式2x 2﹣x ﹣1>0的解集是 .【考点】一元二次不等式的解法.【分析】把不等式的左边分解因式后,根据两数相乘同号得正的取符号法则,得到2x+1与x ﹣1同号,可化为两个不等式组,分别求出两不等式组的解集的并集即可得到原不等式的解集.【解答】解:不等式2x 2﹣x ﹣1>0,因式分解得:(2x+1)(x ﹣1)>0,可化为:或,解得:x >1或x <﹣,则原不等式的解集为.故答案为:16.已知△ABC的内角A,B,C所对的边分别为a,b,c,若sinA=,b=sinB,则a= .【考点】正弦定理.【分析】由已知利用正弦定理即可计算得解.【解答】解:∵sinA=,b=sinB,∴由正弦定理可得:a===.故答案为:.三、解答题:17.若不等式ax2+5x﹣2>0的解集是,求不等式ax2﹣5x+a2﹣1>0的解集.【考点】一元二次不等式的应用.【分析】由不等式的解集与方程的关系,可知,2是相应方程的两个根,利用韦达定理求出a的值,再代入不等式ax2﹣5x+a2﹣1>0易解出其解集.【解答】解:由已知条件可知a<0,且是方程ax2+5x﹣2=0的两个根,…由根与系数的关系得:解得a=﹣2…所以ax2﹣5x+a2﹣1>0化为2x2+5x﹣3<0,…化为:(2x﹣1)(x+3)<0…解得,…所以不等式解集为…18.△ABC中,BC=7,AB=3,且=.(1)求AC的长;(2)求∠A的大小.【考点】正弦定理;余弦定理.【分析】(1)由已知利用正弦定理即可得解AC的值.(2)由已知利用余弦定理可求cosA的值,结合A的范围,根据特殊角的三角函数值即可得解.【解答】解:(1)由正弦定理,可得: =,可得:AC==5.(2)由余弦定理可得:cosA===﹣,由于A ∈(0°,180°),可得:A=120°.19.已知{a n }是等差数列,其中a 1=25,a 4=16(1)求{a n }的通项;(2)求a 1+a 3+a 5+…+a 19值.【考点】等差数列的前n 项和;等差数列的通项公式.【分析】(1)由题意和等差数列的通项公式可得公差,可得通项公式;(2)可得a 1+a 3+a 5+…+a 19是首项为25,且公差为﹣6的等差数列,共有10项,由等差数列的求和公式可得.【解答】解:(1)设等差数列{a n }的公差为d ,则a 4=a 1+3d ,代值可得16=25+3d ,解得d=﹣3,∴a n =25﹣3(n ﹣1)=28﹣3n ;(2)由题意可得a 1+a 3+a 5+…+a 19是首项为25,且公差为﹣6的等差数列,共有10项,∴20.已知{a n }是公差不为零的等差数列,a 1=1且a 1,a 3,a 9成等比数列.(1)求数列{a n }的通项;(2)求数列{2a n }的前n 项和S n .【考点】等差数列与等比数列的综合.【分析】(1)由题意得关于公差d 的方程,求出公差d 的值,即可得到数列{a n }的通项公式.(2)利用等差数列的求和公式,即可得出结论.【解答】解:(1)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列,得,解得d=1,或d=0(舍去),故{a n }的通项a n =1+(n ﹣1)×1=n ;(2)由(1)得:数列{2a n }是以2为首项,以2为公差的等差数列,故S n =2n+=n (n+1).21.一缉私艇发现在北偏东45°方向,距离12nmile 的海面上有一走私船正以10nmile/h 的速度沿东偏南15°方向逃窜.缉私艇的速度为14nmile/h ,若要在最短的时间内追上该走私船,缉私艇应沿北偏东45°+α的方向去追,求追击所需的时间和α角的正弦值.【考点】解三角形的实际应用;余弦定理.【分析】由图A ,C 分别表示缉私艇,走私船的位置,设经过 x 小时后在B 处追上,则有 AB=14x ,BC=10x ,∠ACB=120°从而在△ABC 中利用余弦定理可求追击所需的时间,进一步可求α角的正弦值.【解答】解:设A ,C 分别表示缉私艇,走私船的位置,设经过 x 小时后在B 处追上,…则有 AB=14x ,BC=10x ,∠ACB=120°.∴(14x )2=122+(10x )2﹣240xcos120°…∴x=2,AB=28,BC=20,…∴.所以所需时间2小时,.…22.设数列{a n }的前n 项和为S n ,且满足S n =2﹣a n ,n=1,2,3,….(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,且b n+1=b n +a n ,求数列{b n }的通项公式.【考点】数列递推式;数列的应用.【分析】(1)由S n =2﹣a n ,知S 1=2﹣a 1,a n =S n ﹣S n ﹣1=(2﹣a n )﹣(2﹣a n ﹣1),得,由此能求出数列{a n }的通项公式.(2)由b n+1=b n +a n ,且,知b n ﹣1﹣b n =()n ﹣1,由此利用叠加法能求出. 【解答】解:(1)∵S n =2﹣a n ,∴当n=1时,S 1=2﹣a 1,∴a 1=1,当n ≥2时,S n ﹣1=2﹣a n ﹣1,∴a n =S n ﹣S n ﹣1=(2﹣a n )﹣(2﹣a n ﹣1),得,∴数列{a n }是以a 1=1为首项,为公比的等比数列,∴数列{a n }的通项公式是.(2)由b n+1=b n +a n ,且,∴b n ﹣1﹣b n =()n ﹣1,则,,,…,b n ﹣b n ﹣1=()n ﹣2, 以上n 个等式叠加得:==2[1﹣()n﹣1]=2﹣,=1,∴.∵b1。

黑龙江省双鸭山市2017_2018学年高三数学上学期期中试题文Word版含答案

黑龙江省双鸭山市2017_2018学年高三数学上学期期中试题文Word版含答案

()
A.
C. { x | 2 x 2, x R }
B. { x | 1 x 1, x R } 2
D . { x | 2 x 1, x R }
2. 下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是(

A . y x 1 B . y tan x C . y x3
D .y
2
x
3. 已知复数 z 满足 (z 1)i 1 i ,则 z ( )
1
3
3
3
3
11. 已知定义在 R 上的函数 f ( x) 为偶函数,且满足 f ( x) f ( x 4) ,当 0 x 2 时
f (x) x2 ,若数列 an 的前 n 项和 Sn 满足 2 S n
1
a n 1 , a1
,则 f (a5 ) ( )
2
A. 4
B
.3 C .2
D
.1
12. 已知 M 是 ABC 内的一点, 且 AB AC 4 3, BAC 30 ,若 MBC , MCA, MAB
黑龙江省双鸭山市 2017-2018 学年高三数学上学期期中试题文
第Ⅰ卷(选择题 共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有
一个是符合题目要求的.
1. 已知集合 A { x | x(x 1) 0, x R} , B { x | 1 x 2, x R} ,那么集合 A B 2
此三棱锥外接球的表面积为 __________.
15. 若数数列列{ aann} 满满足足 a1 2, an 1 1 a n (n N * ) ,则该数列的前 1 an
2018 项的乘积是

2017-2018学年高二上学期期中数学试卷 Word版含解析

2017-2018学年高二上学期期中数学试卷 Word版含解析

2017-2018学年高二上学期期中数学试卷一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.103.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=04.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=16.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.2017-2018学年高二上学期期中数学试卷参考答案与试题解析一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α考点:空间中直线与平面之间的位置关系.专题:阅读型.分析:根据空间中直线与平面的位置关系可得答案.解答:解:根据空间中直线与平面的位置关系可得:b可能与平面α相交,也可能b与平面相交α,故选D.点评:解决此类问题的关键是熟练掌握空间中点、直线以及平面之间的位置关系.2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.10考点:斜率的计算公式.专题:计算题.分析:因为过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,所以,两直线的斜率相等.解答:解:∵直线2x+y﹣1=0的斜率等于﹣2,∴过点A(﹣2, m)和B(m,4)的直线的斜率K也是﹣2,∴=﹣2,解得,故选 B.点评:本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.3.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=0考点:圆的切线方程.专题:直线与圆.分析:首先讨论斜率不存在的情况,直线方程为x=﹣1满足条件.当斜率存在时,设直线方程为:y﹣5=k (x+1).利用圆心到直线的距离等于半径解得k的值,从而确定圆的切线方程.解答:解:①斜率不存在时,过点M(﹣1,5)的直线方程为x=﹣1.此时,圆心(1,2)到直线x=﹣1的距离d=2=r.∴x=﹣1是圆的切线方程.②斜率存在时,设直线斜率为k,则直线方程为:y﹣5=k(x+1).即kx﹣y+k+5=0.∵直线与圆相切,∴圆心到直线的距离.解得,.∴直线方程为5x+12y﹣55=0.∴过点M(﹣1,5)且与圆相切的直线方程为x=﹣1或5x+12y﹣55=0.故选:C.点评:本题考查直线与圆相切的性质,点到直线的距离公式等知识的运用.做题时容易忽略斜率不存在的情况.属于中档题.4.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用线面平行和线面垂直的性质和判定定理对四个选项逐一解答.A选项用垂直于同一条直线的两个平面平行判断即可;B选项用两个平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;C选项用线面垂直的性质定理判断即可;D选项由线面平行的性质定理判断即可.解答:解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.点评:本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=1考点:轨迹方程.专题:直线与圆.分析:设圆上任意一点为(x1,y1),中点为(x,y),则,由此能够轨迹方程.解答:解:设圆上任意一点为(x1,y1),中点为(x,y),则代入x2+y2=4得(2x﹣4)2+(2y+2)2=4,化简得(x﹣2)2+(y+1)2=1.故选A.点评:本题考查点的轨迹方程,解题时要仔细审题,注意公式的灵活运用.6.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π考点:旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:使△ABC绕直线BC旋转一周,则所形成的几何体是一个底面半径为4,高为3的一个圆锥,代入圆锥体积公式,可得答案.解答:解:将△ABC绕直线BC旋转一周,得到一个底面半径为4,高为3的一个圆锥,故所形成的几何体的体积V=×π×42×3=16π,故选:D点评:本题考查的知识点是旋转体,其中分析出旋转得到的几何体形状及底面半径,高等几何量是解答的关键.7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.考点:由三视图求面积、体积.专题:计算题.分析:利用三视图的数据,直接求解三棱柱的表面积.解答:解:因为正三棱柱的三视图,其中正(主)视图是边长为2的正方形,棱柱的侧棱长为2,底面三角形的边长为2,所以表面积为:2×+2×3×2=12+2.故选C.点评:本题考查几何体的三视图的应用,几何体的表面积的求法,考查计算能力.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1考点:抛物线的应用.专题:函数的性质及应用.分析:本题可以设出点C的坐标(a,a2),求出C到直线AB的距离,得出三角形面积表达式,进而得到关于参数a的方程,转化为求解方程根的个数(不必解出这个跟),从而得到点C的个数.解答:解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d=,有三角形ABC的面积为2可得:=|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故应选:A点评:本题考查了截距式直线方程,点到直线的距离公式,三角形的面积的求法,就参数的值或范围,考查了数形结合的思想二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为x2+(y﹣1)2=1.考点:圆的标准方程.专题:直线与圆.分析:利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.解答:解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.点评:本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为11cm.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:利用面积之比是相似比的平方,求出截取棱锥的高,然后求出截面与底面的距离.解答:解:设截取棱锥的高为:h,则,∴h=5,所以截面与底面的距离:16﹣5=11cm故答案为:11cm点评:本题是基础题,考查面积之比是选上比的平方,考查计算能力,空间想象能力.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为12π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.解答:解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球O的表面积为4π×3=12π.故答案为:12π.点评:本题考查球的表面积的求法,考查空间想象能力、计算能力.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.考点:平面与平面垂直的性质.专题:计算题;空间位置关系与距离.分析:由题意,两个矩形的对角线长分别为5,=2,利用余弦函数,即可求出cosα:cosβ.解答:解:由题意,两个矩形的对角线长分别为5,=2,∴cosα==,cosβ=,∴cosα:cosβ=,故答案为:.点评:本题考查平面与平面垂直的性质,考查学生的计算能力,比较基础.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=±.考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.解答:解:圆心C(2,2),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d==,解得a=±,故答案为:±.点评:本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.考点:圆的标准方程;直线与圆的位置关系.专题:计算题;直线与圆.分析:(I)设圆E的方程为x2+y2+Dx+Ey+F=0,将A、B、C的坐标代入,建立关于D、E、F的方程组,解之即可得到△ABC的外接圆E的方程;(II)化圆E为标准方程,得圆心为E(1,2),半径r=1.设直线l方程为y=kx,由点到直线的距离公式和垂径定理建立关于k的方程,解之得到k=1或7,由此即可得到直线l的方程.解答:解:(I)设圆E的方程为x2+y2+Dx+Ey+F=0∵A(2,2)、B(1,3)、C(1,1)都在圆E上∴,解之得因此,圆E的方程为x2+y2﹣2x﹣4y+4=0;(II)将圆E化成标准方程,可得(x﹣1)2+(y﹣2)2=1∴圆心为E(1,2),半径r=1设直线l方程为y=kx,则圆心E到直线l的距离为d=∵直线l与圆E相交所得弦的长为,∴由垂径定理,得d2+()2=r2=1可得d2=,即=,解之得k=1或7∴直线l的方程是y=x或y=7x.点评:本题给出三角形ABC三个顶点,求它的外接圆E的方程,并求截圆所得弦长为的直线方程.着重考查了直线的方程、圆的方程和直线与圆的位置关系等知识,属于中档题.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.考点:直线与平面垂直的性质;直线与平面平行的判定.专题:计算题;证明题;空间位置关系与距离.分析:(I)根据三角形中位线定理,证出DE∥BC,再由线面平行判定定理即可证出DE∥面PBC;(II)连结PD,由等腰三角形“三线合一”,证出PD⊥AB,结合DE⊥AB证出AB⊥平面PDE,由此可得AB ⊥PE;(III)由面面垂直性质定理,证出PD⊥平面ABC,得PD是三棱锥P﹣BEC的高.结合题中数据算出PD=且S△BEC=,利用锥体体积公式求出三棱锥P﹣BEC的体积,即得三棱锥B﹣PEC的体积.解答:解:(I)∵△ABC中,D、E分别为AB、AC中点,∴DE∥BC∵DE⊄面PBC且BC⊂面PBC,∴DE∥面PBC;(II)连结PD∵PA=PB,D为AB中点,∴PD⊥AB∵DE∥BC,BC⊥AB,∴DE⊥AB,又∵PD、DE是平面PDE内的相交直线,∴AB⊥平面PDE∵PE⊂平面PDE,∴AB⊥PE;(III)∵PD⊥AB,平面PAB⊥平面ABC,平面PAB∩平面ABC=AB∴PD⊥平面ABC,可得PD是三棱锥P﹣BEC的高又∵PD=,S△BEC=S△ABC=∴三棱锥B﹣PEC的体积V=V P﹣BEC=S△BEC×PD=点评:本题在三棱锥中求证线面平行、线线垂直,并求锥体的体积.着重考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.考点:直线与平面平行的判定;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离.分析:(Ⅰ)先根据线面垂直的性质证明出BB1⊥A1C1.进而根据菱形的性质证明出A1C1⊥B1D1.最后根据线面垂直的判定定理证明出A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.先证明OC1∥AE和OC1=AE,推断出AOC1E为平行四边形,进而推断AO∥C1E,最后利用线面平行的判定定理证明出AO∥平面BC1D.(Ⅲ)先由E为BD中点,推断出BD⊥C1E,进而根据C1D=C1B,推断出ME⊥BD,进而根据OM⊥BD,推断出BD∥B1D1.直角三角形OC1E中利用射影定理求得OM.解答:解:(Ⅰ)依题意,因为四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,所以BB1⊥底面A1B1C1D1.又A1C1⊂底面A1B1C1D1,所以BB1⊥A1C1.因为A1B1C1D1为菱形,所以A1C1⊥B1D1.而BB1∩B1D1=B1,所以A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.依题意,AA1∥CC1,且AA1=CC1,AA1⊥AC,所以A1ACC1为矩形.所以OC1∥AE.又,,A1C1=AC,所以OC1=AE,所以AOC1E为平行四边形,则AO∥C1E.又AO⊄平面BC1D,C1E⊂平面BC1D,所以AO∥平面BC1D.(Ⅲ)在△BC1D内,满足OM⊥B1D1的点M的轨迹是线段C1E,包括端点.分析如下:连接OE,则BD⊥OE.由于BD∥B1D1,故欲使OM⊥B1D1,只需OM⊥BD,从而需ME⊥BD.又在△BC1D中,C1D=C1B,又E为BD中点,所以BD⊥C1E.故M点一定在线段C1E上.当OM⊥C1E时,OM取最小值.在直角三角形OC1E中,OE=1,,,所以.点评:本题主要考查了线面平行和线面垂直的判定定理的应用.考查了学生基础知识的综合运用.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是1.考点:二项式系数的性质.专题:计算题;二项式定理.分析:在展开式的通项公式,令x的指数为3,利用(ax+1)5的展开式中x3的系数是10,即可实数a的值.解答:解:(ax+1)5的展开式的通项公式为T r+1=,则∵(ax+1)5的展开式中x3的系数是10,∴=10,∴a=1.故答案为:1.点评:二项展开式的通项公式解决二项展开式的特定项问题的重要方法.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为4.考点:棱锥的结构特征.专题:空间位置关系与距离.分析:根据侧面展开图求解得出,再利用直角三角形求解.解答:解:∵正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,∴侧面展开为下图连接AA得:RT△中,长度为4,∴△AEF的周长的最小值为4,故答案为:4,点评:本题考查了空间几何体中的最小距离问题,属于中档题.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是(0,].考点:棱锥的结构特征.专题:空间位置关系与距离.分析:运用图形得||=||,再根据向量求解.解答:解:0为BD中点,∵AB=BC=CD=DA=BD=1,∴|OA|=|OB|=,||=||==,θ∈(0°,180°]∴AC的取值范围是(0,]故答案为:(0,]点评:本题考查了向量的运用求解距离,属于中档题.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].考点:直线与圆的位置关系.专题:直线与圆.分析:根据直线和圆的位置关系,利用数形结合即可得到结论.解答:解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是5.考点:点到直线的距离公式.专题:直线与圆.分析:先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5点评:本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.考点:直线与平面垂直的判定.专题:空间位置关系与距离.分析:(I)由线面垂直得A1A⊥AB,再由AB⊥AC,能证明AB⊥面A1CC1.(II)由AB∥DE,在△ABC中,E是棱BC的中点,推导出D是线段AC的中点.(III)由已知条件推导出A1C⊥AC1,AB⊥A1C,从而得到A1C⊥面ABC1,由此能证明EF⊥AC1.解答:(I)证明:∵AA1⊥底面ABC,∴A1A⊥AB,(2分)∵AB⊥AC,A1A∩AC=A,∴AB⊥面A1CC1.(4分)(II)解:∵面DEF∥面ABC1,面ABC∩面DEF=DE,面ABC∩面ABC1=AB,∴AB∥DE,(7分)∵在△ABC中,E是棱BC的中点,∴D是线段AC的中点.(8分)(III)证明:∵三棱柱ABC﹣A1B1C1中,A1A=AC,∴侧面A1ACC1是菱形,∴A1C⊥AC1,(9分)由(Ⅰ)得AB⊥A1C,∵AB∩AC1=A,∴A1C⊥面ABC1,(11分)∴A1C⊥BC1.(12分)又∵E,F分别为棱BC,CC1的中点,∴EF∥BC1,(13分)∴EF⊥AC1.(14分)点评:本题考查直线与平面垂直的证明,考查点的位置的确定,考查异面直线垂直的证明,解题时要认真审题,注意空间思维能力的培养.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.考点:直线与圆的位置关系.专题:综合题.分析:(Ⅰ)分两种情况:当直线l的斜率存在时,设出直线l的斜率为k,由P的坐标和设出的k写出直线l的方程,利用点到直线的距离公式表示出P到直线l的距离d,让d等于1列出关于k的方程,求出方程的解即可得到k的值,利用求出的k和P写出直线l的方程即可;当直线l的斜率不存在时,得到在线l的方程,经过验证符合题意;(Ⅱ)由利用两点间的距离公式求出圆心C到P的距离,再根据弦长|MN|的一半及半径,利用勾股定理求出弦心距d,发现|CP|与d相等,所以得到P为MN的中点,所以以MN为直径的圆的圆心坐标即为P的坐标,半径为|MN|的一半,根据圆心和半径写出圆的方程即可;(Ⅲ)把已知直线的方程代入到圆的方程中消去y得到关于x的一元二次方程,因为直线与圆有两个交点,所以得到△>0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围,利用反证法证明:假设符合条件的a存在,由直线l2垂直平分弦AB得到圆心必在直线l2上,根据P与C的坐标即可求出l2的斜率,然后根据两直线垂直时斜率的乘积为﹣1,即可求出直线ax﹣y+1=0的斜率,进而求出a的值,经过判断求出a的值不在求出的范围中,所以假设错误,故这样的a不存在.解答:解:(Ⅰ)设直线l的斜率为k(k存在)则方程为y﹣0=k(x﹣2).又圆C的圆心为(3,﹣2),半径r=3,由,解得.所以直线方程为,即3x+4y﹣6=0;当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件;(Ⅱ)由于,而弦心距,所以d=,所以P为MN的中点,所以所求圆的圆心坐标为(2,0),半径为|MN|=2,故以MN为直径的圆Q的方程为(x﹣2)2+y2=4;(Ⅲ)把直线ax﹣y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a﹣1)x+9=0.由于直线ax﹣y+1=0交圆C于A,B两点,故△=36(a﹣1)2﹣36(a2+1)>0,即﹣2a>0,解得a<0.则实数a的取值范围是(﹣∞,0).设符合条件的实数a存在,由于l2垂直平分弦AB,故圆心C(3,﹣2)必在l2上.所以l2的斜率k PC=﹣2,而,所以.由于,故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.点评:此题考查学生掌握直线与圆的位置关系,灵活运用点到直线的距离公式及两点间的距离公式化简求值,考查了分类讨论的数学思想,以及会利用反证法进行证明,是一道综合题.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(Ⅰ)由圆的方程找出圆心坐标,设出圆心关于直线l的对称点的坐标,由直线l的斜率,根据两直线垂直时斜率的乘积为﹣1求出直线C1C2的斜率,由圆心及对称点的坐标表示出斜率,等于求出的斜率列出一个关系式,然后利用中点坐标公式,求出两圆心的中点坐标,代入直线l的方程,得到另一个关系式,两关系式联立即可用m表示出a与b,把表示出的a与b代入圆C2的方程即可;(Ⅱ)由表示出的a与b消去m,得到a与b的关系式,进而得到圆C2的圆心在定直线上;分公切线的斜率不存在和存在两种情况考虑,当公切线斜率不存在时,容易得到公切线方程为x=0;当公切线斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,根据点到直线的距离公式表示出圆心(a,b)到直线y=kx+b的距离d,当d等于圆的半径2|m|,化简后根据多项式为0时各项的系数为0,即可求出k与b的值,从而确定出C2所表示的一系列圆的公切线方程,这样得到所有C2所表示的一系列圆的公切线方程.解答:解:(Ⅰ)∵圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,∴圆心为(2,3m),设它关于直线l:y=x+m﹣1的对称点为(a,b),则,解得a=2m+1,b=m+1,∴圆C2的圆心为(2m+1,m+1),∴圆C2的方程为:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2,∴C1关于l对称的圆C2的方程:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2.(Ⅱ)根据(Ⅰ)得圆C2的圆心为(2m+1,m+1),令,消去m得x﹣2y+1=0,它表示一条直线,故C2的圆心在一条定直线上,①当公切线的斜率不存在时,易求公切线的方程为x=0;②当公切线的斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,∴=2|m|,即:(1﹣4k)m2+2(2k﹣1)(k+b﹣1)m+(k+b﹣1)2=0∵直线y=kx+b与圆系中的所有圆都相切,所以上述方程对所有的m值都成立,∴所以有:,解得,∴C2所表示的一系列圆的公切线方程为:y=,∴故所求圆的公切线为x=0或y=.点评:此题考查了直线与圆的位置关系,以及关于点与直线对称的圆的方程.此题的综合性比较强,要求学生审清题意,综合运用方程与函数的关系,掌握直线与圆相切时圆心到直线的距离等于半径,在作(Ⅱ)时先用消去参数的方法求定直线的方程,然后采用分类讨论的数学思想分别求出C2所表示的一系列圆的公切线方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双鸭山市2017-2018学年度上学期高(二) 数学(文科)
学科期中考试试题
第I 卷 (选择题, 共60分)
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有
一项是符合题目要求的.) 1.直线2x +y -1=0的斜率为( )
A.2
B.-2
C.
21 D.2
1- 2.命题“∀x ∈R ,x 2≠x ”的否定是( )
A.∀x ∉R ,x 2≠x
B.∀x ∈R ,x 2=x
C.∃x ∉R ,x 2≠x
D.∃x ∈R ,x 2=x
3.抛物线y =-1
8
x 2的准线方程是( )
A.x =132
B.y =2
C.y =1
32
D.y =-2
4.已知命题p :对任意x ∈R ,总有|x |≥0;q :x =1是方程x +2=0的根.则下列命题为真命题的是( )
A. p ∧﹁q
B.﹁p ∧q
C.﹁p ∧﹁q
D.p ∧q 5.若双曲线x 2a 2-y 2
b
2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )
A.
73 B.54 C.43 D.53
6.已知椭圆
)0>(1=+252
2
2m m y x 的左焦点为)0,4(1-F ,则=m ( ) A.9 B.4 C.3 D.2
7..已知F 1,F 2分别为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则
=∆21PF F S ( )
A.32
B.
3 C.33 D.3
8.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )
A .π
B .4π
C .8π
D .9π
9.已知椭圆x 2a 2+y 2
b 2=1(a >b >0)的两顶点为A (a,0),B (0,b ),且左焦点为F ,△F AB 是以角B
为直角的直角三角形,则椭圆的离心率e 为( )
A.
3-12 B.5-12 C.1+54 D.3+1
4
10.已知双曲线x 2a 2-y 2
b 2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+
y 2=3相切,则双曲线的方程为( )
A.x 29-y 213=1
B.x 213-y 29=1
C.x 23-y 2=1
D. x 2
-y 2
3=1 11.已知x ,y 满足约束条件⎩⎪⎨⎪
⎧x -y ≥0,x +y ≤2,y ≥0.
若z =ax +y 的最大值为4,则a =( )
A .3
B .2
C .-2
D .-3
12.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2
b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、
右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )
A.13
B.12
C.23
D.34
第Ⅱ卷 (非选择题, 共90分)
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.) 13.设m 是常数,若点F (0,5)是双曲线y 2m -x 2
9=1的一个焦点,则m =_______. 14.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,
则y
x
的最大值为________.
15.过两圆x 2+y 2-x -y -2=0与x 2+y 2+4x -4y -8=0的交点和点(3,1)的圆的方程是_______.
16.若点O 和点F 分别为椭圆x 24+y 2
3=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP
→的最大值为_______.
三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本题满分10分)
设直线l 经过2x -3y +2=0和3x -4y -2=0的交点,且与两坐标轴围成等腰直角三角
形,求直线l的方程.
18.(本题满分12分)
若抛物线y2=-2px(p>0)上有一点M,其横坐标为-9,它到焦点的距离为10,求抛物线方程和点M的坐标.
19.(本题满分12分)
已知圆C:(x-1)2+(y-2)2=2,过点P(2,-1)作圆C的切线,切点为A,B.
(1)求直线P A,PB的方程;
(2)求过P点的圆C的切线长.
20.(本题满分12分)
设命题p:实数x满足x2-4ax+3a2<0,其中a>0;命题q:实数x满足x2-5x+6≤0.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q成立的必要条件,求实数a的取值范围.
21.(本题满分12分)
已知椭圆()2222:10x y C a b a b
+=>> 的离心率为2,点(在C 上.
(I )求C 的方程;
(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.
22.(本题满分12分)
如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (1)求p 的值;
(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.
高二数学(文科)期中试题答案
二、选择题
三、填空题
13. 16 14. 3 15.x 2
+y 2
-13
3
x +y +2=0 16. 6
三、解答题
17.(本题满分10分)
【解】 设所求的直线方程为(2x -3y +2)+λ(3x -4y -2)=0,
整理得(2+3λ)x -(4λ+3)y -2λ+2=0, 由题意,得2+3λ
3+4λ=±1,
解得λ=-1,或λ=-5
7.
所以所求的直线方程为x -y -4=0,或x +y -24=0.
18. (本题满分12分)
【解】 由抛物线定义,焦点为F ⎝ ⎛⎭⎪⎫
-p 2,0,则准线为x =p 2.由题意,设M 到准线的距离为|MN |,则|MN |=|MF |=10,
即p
2-(-9)=10.∴p =2.
故抛物线方程为y 2=-4x ,将M (-9,y )代入y 2=-4x ,解得y =±6, ∴M (-9,6)或M (-9,-6).
19.(本题满分12分)
【解】 (1)切线的斜率存在,设切线方程为y +1=k (x -2),即kx -y -2k -1=0.
圆心到直线的距离等于2,即|-k -3|
k 2
+1
=2,∴k 2-6k -7=0,解得k =7或k =-1,
故所求的切线方程为y +1=7(x -2)或y +1=-(x -2),
即7x -y -15=0或x +y -1=0.
(2)在Rt △P AC 中|P A |2=|PC |2-|AC |2=(2-1)2+(-1-2)2-2=8, ∴过P 点的圆C 的切线长为2 2.
20.(本题满分12分)
【解】 (1)由x 2-4ax +3a 2<0,得(x -3a )·(x -a )<0,又a >0,所以a <x <3a , 当a =1时,1<x <3,即p 为真命题时,实数x 的取值范围是1<x <3, 由x 2-5x +6≤0得2≤x ≤3,所以q 为真时,实数x 的取值范围是2≤x ≤3. 若p ∧q 为真,则2≤x <3,所以实数x 的取值范围是[2,3).
(2)设A ={x |a <x <3a },B ={x |2≤x ≤3},由题意可知q 是p 的充分条件,则B
A ,
所以⎩⎨⎧
0<a <2,3a >3
⇒1<a <2,所以实数a 的取值范围是(1,2).
21.(本题满分12分)
22.(本题满分12分)
【解】 (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p
2=1,即p =2.
(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1. 因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0), 由⎩⎨⎧
y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0, 故y 1y 2=-4,所以B ⎝ ⎛⎭
⎪⎫1
t 2,-2t .
又直线AB 的斜率为2t
t 2-1,故直线FN 的斜率为-t 2-12t ,从而得直线FN :y
=-t 2-12t (x -1),直线BN :y =-2
t ,所以N ⎝ ⎛⎭
⎪⎫t 2+3t 2-1,-2t .
设M (m,0),由A ,M ,N 三点共线得2t t 2-m =2t +2t
t 2-t 2+3t 2
-1,于是m =2t 2t 2-1=2+2
t 2-1

所以m <0或m >2.
经检验,m <0或m >2满足题意.
综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).。

相关文档
最新文档