全国2017年4月高等教育自学线性代数(经管类)试题与详细答案

合集下载

线性代数(经管类)参考答案

线性代数(经管类)参考答案

参考答案一.选择题(本大题共 5 小题,每小题 2 分,共 10 分)1—5 C A B B D二. 填空题(本大题共10 小题,每小题 2 分,共 20 分)6. ___6_____.7. 2111⎛⎫⎪⎝⎭8. 13 9. ()10,25,16- 10. ()2,1,0T- 11. -2 12. 3 13. 60 14. 43,55⎛⎫⎪⎝⎭15. 2 三.计算题(本大题共 7 小题,每小题 9 分,共 63 分)16 . 解一 100100010010011001001001a a a b a b D c a b c d d ++==-++--100010001000aa ba b c d a b c a b c d+==++++++++解二 ()()111410111111101101001bD c a d++-=-⋅⋅-+-⋅---a b c d =+++ 17.解: 2AB -A =B -E2∴AB -B =A -E ()2A-E B =A -E()()12-∴B =A -E A-E()()()1-=A -E A -E A +E()=A+E315052432⎛⎫ ⎪B =- ⎪⎪-⎝⎭()12412112412118.,123012001113233012015234T T --⎛⎫⎛⎫⎪ ⎪A B =→--- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭解:12412112032110152340103211001113001113---⎛⎫⎛⎫ ⎪ ⎪→----→-- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭ 1003211100321101032110103211001113001113--⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭ 3211=3211113T -⎛⎫ ⎪X -- ⎪ ⎪-⎝⎭则,331=22111113-⎛⎫⎪X - ⎪ ⎪--⎝⎭故.19.解:()12345,,,,αααααT T T T TA =1114311143113210113121355000003156700000--⎛⎫⎛⎫⎪⎪----- ⎪ ⎪=→⎪ ⎪-⎪⎪-⎝⎭⎝⎭∴向量组的秩=2且1α,2α是一个极大无关组(回答1α,3α;1α,4α;1α,5α也可).20.解:对增广矩阵作初等行变换()101211012110121213140113201132=123450226400000112130113200000b ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-----⎪ ⎪ ⎪A A =→→ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭, 同解方程组为1342342132x x x x x x =---⎧⎨=-+-⎩,34x x ,是自由未知量,特解()*=1200ηT --,,, 导出组同解方程组为13423423x x x x x x =--⎧⎨=-+⎩,34x x ,是自由未知量,基础解系()1=1110ξT--,,,,()2=2301ξT-,,,,通解为*1122=k k ηηξξ++,12k k R ∈,21.解:特征方程()()2200=0212221001a a aλλλλλλλλ-E -A --=---+-=-- 将特征值=1λ代入特征方程有()()=1212210a a E-A ---+-=,则2a =. 故()()()=213=0λλλλE-A ---,特征值为123=2=1=3λλλ,,.1=2λ对应的齐次线性方程组为123000000100100x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,同解方程组为23=0=0x x ⎧⎨⎩,1x 是自由未知量,特征向量1100ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,1ξ单位化为1100p ⎛⎫⎪= ⎪ ⎪⎝⎭,2=1λ对应的齐次线性方程组为123100001100110x x x -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,同解方程组为123=0=x x x ⎧⎨-⎩,3x 是自由未知量,特征向量2011ξ⎛⎫⎪=- ⎪ ⎪⎝⎭,2ξ单位化为2011p ⎛⎫⎪=-⎪⎪⎭,3=3λ对应的齐次线性方程组为123100001100110x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,同解方程组为123=0=x x x ⎧⎨⎩,3x 是自由未知量,特征向量3011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,3ξ单位化为3011p ⎛⎫⎪=⎪⎪⎭, 正交矩阵()123100,,00Q p p p ⎛⎫⎪⎪==⎝,213⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,使得1Q Q -A =Λ.011101110-⎛⎫ ⎪A =- ⎪ ⎪⎝⎭22.解:二次型矩阵()()211=11=21=011λλλλλλ--A -E ---+--令,123=2==1λλλ-得,.1211101=22=121011112000λ-⎛⎫⎛⎫⎪ ⎪-A +E -→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭当时,132333x x x x x x =-⎧⎪∴=-⎨⎪=⎩ 1111ξ-⎛⎫ ⎪∴=- ⎪ ⎪⎝⎭ 则1111-⎛⎫⎪P =-⎪⎪⎭ 23111111==1=111000111000λλ---⎛⎫⎛⎫ ⎪ ⎪A +E --→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭当时,1232233x x x x x x x =-+⎧⎪∴=⎨⎪=⎩ 2110ξ-⎛⎫ ⎪∴= ⎪ ⎪⎝⎭, 3112ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭则2110-⎛⎫⎪P =⎪⎪⎭,3112⎛⎫⎪P =⎪⎪⎭因此=0⎛ ⎪T ⎪ ⎪ ⎪ ⎪⎝⎭,X=TY . 化二次型为2221232f y y y =-++.四.证明题(本大题7分)23.证明:基础解系中向量个数为3.设()()()1123212331232220k k k ααααααααα++++++++=即()()()1231123212332220k k k k k k k k k ααα++++++++=123,,ααα是基础解系,故线性无关,因此123123123202020k k k k k k k k k ++=⎧⎪++=⎨⎪++=⎩,系数行列式21112140112A ==≠,则齐次线性方程组只有零解, 故1230k k k ===.因此1232ααα++,1232ααα++,1232ααα++线性无关. 又()()()1231231231231231232=2=02=2=02=2=0ααααααααααααααααααA ++A +A +A A ++A +A +A A ++A +A +A 则1232ααα++,1232ααα++,1232ααα++也是该方程组的基础解系.说明:1.试卷题目均要求为自学考试真题;2.命题参照自学考试试卷的题型、题量;3.根据课程性质不同,可以更换或调整题型;4.试卷格式统一为:宋体 五号 单倍行距;选择题选项尽量排在一行;其他题型留出适当的答题区域。

(完整版)线性代数(经管类)考试试卷及答案(一)

(完整版)线性代数(经管类)考试试卷及答案(一)

高等教育自学考试全国统一命题考试线性代数(经管类)优化试卷(一)说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题。

每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分.1.设A为3阶方阵,且|A|=2,则| 2A-l | ( )A.-4B.-1C.1D.42.设矩阵A=(1,2),B=,C=,下列矩阵运算中有意义的是( ) A.ACBB.ABCC.BACD.CBA3.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是( ) A.A+A TB.A - A TC.A A TD.A T A4.设2阶矩阵A= ,则A*= ( )5.矩阵的逆矩阵是()6.设矩阵A=,则A中( )A.所有2阶子式都不为零B.所有2阶子式都为零C.所有3阶子式都不为零D.存在一个3阶子式不为零7.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( ) A.A的列向量组线性相关B.A的列向量组线性无关C.A的行向量组线性相关D.A的行向量组线性无关8.设3元非齐次线性方程组Ax=b的两个解为,且系数矩阵A的秩r(A)=2,则对于任意常数k,k1,k2,方程组的通解可表为( )9.矩阵的非零特征值为( )A.4B.3C.2D.l10.4元二次型的秩为( )A.4B.3C.2D.l二、填空题(本大题共10小题.每小题2分.共20分)请在每小题的空格中填上正确答案.错填、不填均无分.11.若i=1,2,3,则行列式=_________________。

12.设矩阵A= ,则行列式|A T A|=_______________。

13.若齐次线性方程组有非零解,则其系数行列式的值为__________________。

14.设矩阵A= ,矩阵B=A – E,则矩阵B的秩r(B)=______________。

全国2017年4月高等教育自学考试高等数学(工本)试题及详细答案

全国2017年4月高等教育自学考试高等数学(工本)试题及详细答案
二、填空题(本大题共 5 小题,每小题 2 分,共 10 分) 6. 已知向量 4,0,3, 2,1,5 ,则 3 .
解答:使用向量积的方法进行计算。因为 3 3 4,0,3 12,0,9 ,故
3 12
2
i
0 9 0i 18 j 12k 0k 60 j 9i 9i 42 j 12k 9,42,12. 1
3 x
j
k
5 2u yx
.
3 x
7. 已知函数 u y e ,则
解答:使用多元函数偏导数乘法法则进行计算。由于 u y e 为连续函数,故
u 2u y 3e x 3 y 2e x . x yx
3 答案整理:郭慧敏 广州大学松田学院
2017 年 4 月 高等数学(工本)
高等数学(工本)试题与详细答案
(课程代码:00023) (不允许使用计算器)
本试卷分为两部分,满分 100 分,考试时间 150 分钟。 第一部分为选择题,1 页至 2 页,共 2 页。应考者必须按试题顺序在“答题卡”上按要求填 涂,答在试卷上无效 。 ....... 第二部分为非选择题,3 页至 4 页,共 2 页。应考者必须按试题顺序在“答题卡”上作答, 答在试卷上无效 。 .......
n 1 n
n
的收敛半径为 R
1

3 ,而收敛域为
3 x 1 3 2 x 4
当 x 4 ,幂级数变为
1 ,显然发散;当 x 2 ,幂级数变为 1
n 1 n 1


n
,显然发散,故
收敛域为 2,4 ,所以选 D.
第一部分 非选择题(共 85 分)

全国2017年4月高等教育(工本)自学考试试题、详细答案及考点分析

全国2017年4月高等教育(工本)自学考试试题、详细答案及考点分析
14. 问在空间的哪些点上,函数 u x3 y3 z3 3xyz 的梯度平行于 y 轴.
解答:使用梯度公式进行计算
grad f x0 , y0 , z0 fxx0 , y0 , z0 i f yx0 , y0 , z0 j fzx0 , y0 , z0 k .
设空间上的点 x0 , y0 , z0 ,则函数 u 的梯度为
u y3ex 2u 3y2ex.
x
yx
考核知识点:高阶偏导数(简单应用); 考核要求:掌握二阶偏导数的求法.
1
1
8. 二次积分 dy y dx 的值是
0
y
.
解答:使用二次积分方法进行计算。由于
1 dy
0
1
y
y
dx
1 0
xy
1 y
1
dy 0
y y2
dy
1 2
y2
1 3
2 答案整理:郭慧敏 广州大学松田学院
2017 年 4 月 高等数学(工本)
C: y y 2 y 4e2x 2e2x 2e2x 4e2x 0 D: y 4 y 4 y 4e2x 4 2e2x 4e2x 16e2x 0
故选 A.
考核知识点:二阶线性微分方程解的结构(领会);
5 答案整理:郭慧敏 广州大学松田学院
2017 年 4 月 高等数学(工本)
(1) w f u, v,u ux, v x;
(2) w f u,u ux, y;
(3) w f u, v,u ux, y, v vx, y .
13. 求曲线 x 2 sin t,y 6 cos t,z 4 sin 2 t 在对应于 t 的点处的法平面方程. 4
B.
4 d
2

线性代数(经管类)

线性代数(经管类)

1【单选题】已知是三阶可逆矩阵,则下列矩阵中与等价的是()。

A、B、C、D、您的答案:D参考答案:D纠错查看解析2【单选题】已知n阶可逆矩阵A、B、C满足ABC=E,则C=A、B-1A-1B、A-1B-1C、BAD、AB您的答案:A参考答案:A纠错查看解析3【单选题】多项式的常数项是().A、-14B、-7C、7D、14您的答案:D参考答案:D纠错查看解析4【单选题】设向量组下列向量中可以表为线性组合的是().A、B、C、D、您的答案:A参考答案:A纠错查看解析5【单选题】设是n阶可逆矩阵,下列等式中正确的是()A、B、C、D、您的答案:D参考答案:D纠错查看解析6【单选题】设A为二阶方阵,B为三阶方阵,且行列式|A|=2,|B|=-1,则行列式|A||B|=A、8B、-8C、2D、-2您的答案:B参考答案:B纠错查看解析7【单选题】设向量组可由向量组线性表出,下列结论中正确的是()。

A、若,则线性相关B、若线性无关,则C、若,则线性相关D、若线性无关,则您的答案:A参考答案:A纠错查看解析8【单选题】设行列式,则A 、B 、C 、D 、您的答案:C 参考答案:C纠错 查看解析9【单选题】若四阶实对称矩阵A 是正定矩阵,则A 的正惯性指数为A 、1B 、2C 、3D 、4您的答案:D 参考答案:D纠错 查看解析10【单选题】若向量级α1=(1,t+1,0),α2=(1,2,0),α3=(0,0,t-1)线性无关,则实数tA、t≠0B、t≠1C、t≠2D、t≠3您的答案:B参考答案:B纠错查看解析11【单选题】已知2阶行列式则A、﹣2B、﹣1C、1D、2您的答案:B参考答案:B纠错查看解析12【单选题】若矩阵中有一个阶子式等于零,且所有阶子式都不为零,则必有().A、B、C、D、您的答案:B参考答案:B纠错查看解析13【单选题】设矩阵,则A、B、C、D、您的答案:B参考答案:B纠错查看解析14【单选题】设阶矩阵满足,则()。

2017年4月 线代

2017年4月 线代

2017年4月高等教育自学考试全国统一命题考试线性代数(经管类) 试卷(课程代码04184)本试卷共3页,满分l00分,考试时间l50分钟。

考生答题注意事项:1.本卷所有试题必须在答题卡上作答。

答在试卷上无效,试卷空白处和背面均可作草稿纸。

2.第一部分为选择题。

必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。

3.第二部分为非选择题。

必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。

4.合理安排答题空间。

超出答题区域无效。

说明:在本卷中。

A T表示矩阵A的转置矩阵。

A*表示矩阵A的伴随矩阵,E是单位矩阵,︱A ︱表示方阵A的行列式,r(A)表示矩阵A的秩。

第一部分选择题一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。

未涂、错涂或多涂均无分。

1.已知2阶行列式−3a2a1+2a2−3b2b1+2b2=6,则a1a2b1b2=A.-6B.-2C.2D.62.若矩阵A中有一个r+1阶子式等于零,且所有r阶子式都不为零,则必有A.r A=rB. r A≥rC. r A<rD. r A=r+13.设向量组α=1,0,0T,β=0,1,0T,下列向量中可以表为α,β线性组合的是A.2,1,0TB.2,1,1TC.2,0,1TD.0,1,1T4.设线性方程组2x1+x2+x3=0kx1+x2+x3=0x1−x2+x3=0有非零解,则k的值为A.-2B.-1C.1D.25.设A=123−1x2001,且A的特征值为1,2,3,则x=A.-2B.2C.3D.4第二部分非选择题二、填空题 (本大题共l0小题。

每小题2分,共20分) 请在答题卡上作答。

6.行列式0002001321350207=__________7.设−10x11−11−11=a1x+a0,则a1=__________8.设A,B为3阶矩阵,且A=2,B=−3,则3A∗B−1=__________9.设A,B均为2阶可逆矩阵,则3A OO B−1=__________10.向量组α1=110T,α2=30−9T,α3=123T的秩为__________11.设3元非齐次线性方程组Ax=b,满足r(A)=2,α1=−120T,α2= 131T为其两个解,则其导出组Ax=0的通解为__________12.设线性方程组x1−2x2+3x3=ax2− x3=bx1+ x3=c有解,则数a,b,c应满足__________13.设3阶矩阵A的特征值为1,-2,3,则A2+E=__________14.若n阶矩阵A满足3E+2A=0,则A必有一个特征值为__________15.二次型f x1,x2,x3=x1x2+x2x3的矩阵为__________三、计算题(本大题共7小题,每小题9分,共63分)16.计算行列式D=1+x1111−x111111+y11111−y17.设矩阵A=121011002,求A2−3A+E18.设矩阵A和B满足AB=A+2B,其中A=301110014,求矩阵B19.求向量组α1=1,2,1,4T,α2=0,3,−1,−3T,α3=1,−2,8,8T,α4=2,3,8,9T的一个极大无关组,并把其余向量用该极大无关组线性表出.20.设线性方程组−x1−4x2+ x3=1kx2− 3x3=3x1+3x2+k+1x3=0确定k取何值时,方程组有唯一解,无解,有无穷多解,并在有无穷多解时求出其通解(要求用其一个特解和导出组的基础解系表示)20.解:A=−1−410k−313k+11314−10−1k+200k+3k−1−11k+321.已知矩阵A=20000101x与B=2000y000−1相似,求(1)常数x与y的值;(2)可逆矩阵P,使得P−1AP=B22.求正交变换x=Qy,将二次型f x1,x2=5x12−4x1x2+5x22化为标准形四、证明题(本大题共l小题,共7分)请在答题卡上作答。

全国自考公共课线性代数(经管类)模拟试卷1(题后含答案及解析)

全国自考公共课线性代数(经管类)模拟试卷1(题后含答案及解析)

全国自考公共课线性代数(经管类)模拟试卷1(题后含答案及解析) 题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 证明题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A是m×n阶矩阵,B是n×m阶矩阵(m≠n),则下列运算结果是n 阶方阵的是( )A.A.BB.AT.BTC.B.ATD.(A+B)T正确答案:B解析:由矩阵乘法的运算定义和矩阵转置的定义可知AT.BT是n阶方阵.答案为B.2.设A是3阶反对称矩阵,即AT=一A,则|A|= ( )A.0B.1C.±1D.0或1正确答案:A解析:由于|A|=|A|=|—A|=(一1)3|A|=一|A|,所以|A|=0.答案为A.3.设A是n阶矩阵,A*是A的伴随矩阵,则( )A.AA*=|A|B.AA*=|A|*C.A*A=|A|D.A*A=|A|*I正确答案:C解析:A.A*=|A|I.答案为C.4.若齐次线性方程组只有零解,则λ应为( ) A.λ=一1B.λ≠一1C.λ=1D.λ≠1正确答案:B解析:齐次线性方程组Ax=0只有零解|A|≠0故λ≠一1时题中齐次线性方程组只有零解.答案为B.5.二次型f=xTAx经过满秩线性变换x=Py可化为二次型yTBy,则矩阵A 与B ( )A.一定合同B.一定相似C.即相似又合同D.即不相似也不合同正确答案:A解析:xTAx=(Py)TA(Py)=yT(PTAP)y=yTBy,即B=pTAp,所以矩阵A与B 一定合同.只有当P是正交矩阵时,由于PT=P-1,所以A与B既相似又合同.答案为A.填空题请在每小题的空格中填上正确答案。

错填、不填均无分。

6.行列式.正确答案:-24解析:7.当k=_______时,仅有零解.正确答案:解析:仅有全解8.设则(A一2E)-1=________.正确答案:解析:故9.齐次线性方程组有非零解,则a=_______。

04184线性代数(经管类)习题集及答案

04184线性代数(经管类)习题集及答案

西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称: 工商企业管理专业代码: Y020202第一部分习题一、选择题3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题319、关于初等矩阵下列结论成立的是()A,都是可逆阵 B.所对应的行列式的值为1 C.相乘仍为初等矩阵D.相加仍为初等矩阵\ 2、10、设2阶矩阵A=「),则人=()第一部分习题 一、选择题1、若〃阶方阵A 的秩为r,则结论(A. IAWOB. IAI=OC. 2、下列结论正确的是()A.若 AB=0,则 A=0 或 B=0. C.两个同阶对角矩阵是可交换的. 3、下列结论错误的是()A. n+1个n 维向量一定线性相关. C. n 个n 维列向量/。

D. n n4,/>/?B. D. B. )成立。

D. r< n若 AB=AC,则 B 二C AB 二 BA n 个n+1维向量一定线性相关一,%线性相关,则同%…= 0 若同%…%| =。

则。

a x a 2 a ya\a2 %4、若 A b? b 3=m ,则2bl 2b 2 2b3=( )G 5 c 33cj 3c2 3c35、设 A, B, C 均为 n 阶方阵,AB=BA, AC=CA,则 ABC=( )6、二次型/(占,々/3)= *:+工;+4事工2-2々工的秩为( )A 、0 B. 1C 、2D 、37、若A 、B 为,邛介方阵,下列说法正确的是()A 、若A,B 都是可逆的,则A+B 是可逆的 B 、若A, B 都是可逆的,则A8是可逆的C 、若A+B 是可逆的,则A-B 是可逆的D 、若A+B 是可逆的,则A, B 都是可逆的A. 6mB. -6mC. 2333m D. -2333/n[3 4J4 一2、f-4 31 (-4 2 ] ( 4 一3、Ax B% C、I D、1-3 1 )U -1J 13 -1J 1-2 1 J11、设片,外是非齐次线性方程组AX = A的两个解,则下列向量中仍为方程组4X = 77解的是()A、月+旦B、4-色C,汽& D、吟也12、向量组囚,。

《线性代数(经管类)》(课程代码04184)校考试题答案

《线性代数(经管类)》(课程代码04184)校考试题答案

《线性代数(经管类)》(课程代码04184)第一大题:单项选择题1、设行列式=1 , =2, 则= ( D )•错误!未找到引用源。

A.—3•错误!未找到引用源。

B.—1•错误!未找到引用源。

C.1•错误!未找到引用源。

D.32、设A为3阶方阵,且已知|-2A|=2,则|A|=( B )•错误!未找到引用源。

A.—1•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.13、设矩阵A,B,C为同阶方阵,则=__B__•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.4、设A为2阶可逆矩阵,且已知= ,则A=( D )•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.5、设A为m×n矩阵,则齐次线性方程组=0仅有零解的充分必要条件是( A )•错误!未找到引用源。

A.A的列向量组线性无关•错误!未找到引用源。

B.A的列向量组线性相关•错误!未找到引用源。

C.A的行向量组线性无关•错误!未找到引用源。

D.A的行向量组线性相关6、已知,是非齐次线性方程组=b的两个不同的解,,是其导出组=0的一个基础解系,,为任意常数,则方程组=b的通解可以表为( A )•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.7、设3阶矩阵A与B相似,且已知A的特征值为2,2,3 则 ||= ( A )•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.7•错误!未找到引用源。

D.128、设A为3阶矩阵,且已知|3A+2E|=0,则A必有一个特征值为( A )•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.9、二次型的矩阵为( C )•错误!未找到引用源。

04184 线性代数(经管类)习题集及答案

04184 线性代数(经管类)习题集及答案

西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。

A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。

全国自考公共课线性代数(经管类)模拟试卷17(题后含答案及解析)

全国自考公共课线性代数(经管类)模拟试卷17(题后含答案及解析)

全国自考公共课线性代数(经管类)模拟试卷17(题后含答案及解析) 题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 证明题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A是一个m×n矩阵,对A施行一次初等列变换得到矩阵B,则B 等于( )A.一个m阶初等矩阵左乘AB.一个n阶初等矩阵右乘AC.一个m阶初等矩阵右乘AD.一个n阶初等矩阵左乘A正确答案:B解析:对矩阵施行一次初等列变换,相当于右乘一个初等矩阵,义根据乘法的定义,右乘矩阵的行数等于矩阵A的列数,因此B是正确的.2.设A,B均为n阶可逆矩阵,则必有( )A.A—B可逆B.BA可逆C.AB--BA可逆D.A+B可逆正确答案:B解析:因A,B均为n阶可逆矩阵,故|A|≠0,|B|≠0因此|B||A|=|BA|≠0,所以BA可逆;当A=B时A—B=O,AB一BA=O,当A=一B时A+B=O.3.设A,B为n阶矩阵,且A,B相似,则以下错误的是( )A.A,B有相同的特征值B.r(A)=r(B)C.A,B有相同的特征向量D.|A|=|B|正确答案:C解析:相似矩阵有相同的特征多项式,有相同的特征值,有相同的秩,有相同的行列式值,但不一定有相同的特征向量,选C.4.设A,B是同阶正交矩阵,则下列命题不正确的是( )A.AB也是正交矩阵B.A*也是正交矩阵C.A+B也是正交矩阵D.A-1也是正交矩阵正确答案:C解析:设A=E,B=一E,则A,B均为正交矩阵,但A+B为零矩阵,不是正交矩阵.5.设A的特征值为1,一1,向量α是属于1的特征向量,β是属于一1的特征向量,则下列论断正确的是( )A.α与β线性相关B.α+β是A的特征向量C.α与β必正交D.α和β线性无关正确答案:D解析:属于不同特征值的特征向量必线性无关,因此选择D.填空题请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017 年 4 月 线性代数(经管类)
线性代数(经管类)试题与详细答案
课程代码:04184
说明:在本卷中,AT 表示矩阵 A 的转置矩阵,A*表示矩阵 A 的伴随矩阵,E 是单位矩阵, |A|表示方阵 A 的行列式,r(A)表示矩阵 A 的秩. 一、单项选择题(本大题共 5 小题,每小题 1 分,共 5 分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸” 的相应代码涂黑。错涂、多涂或未涂均无分。 1. 已知 2 阶行列式 A. 6
所以 r 1 , 2 , 3 2 。 11. 设 3 元非齐次线性方程组 Ax=b 满足 r(A)=2,1 1,2,0 , 2 1,3,1 为其两个
T T
解,则其导出组 Ax=0 的通解为
.
解答:使用非齐次线性方程组解的性质。由于 A1 b , A 2 b ,因此 A1 2 0 , 即 1 2 是 Ax=0 的解,从而 x 1 2 2,1,1 ,即有
6. 行列式
2 0 0 3 1 3 2 5 0 2 0 7

.
解答:使用行列式按行(列)展开法。因为
2 0 0 按第二行展开 2 0 0 3 按第一行展开 3 2 1 4 1 1 1 3 2 111 1 2 8 1 3 2 5 2 0 0 2 0 0 2 0 7
A. 2 B. 1
1 答案整理:郭慧敏 广州大学松田学院
C. 1
D. 2
解答:齐次线性方程组有非零解的 是系数行列式等于零,因此有
2017 年 4 月 线性代数(经管类)
2 k
1 1
1 10
1 1 1
又因为
2 k
1 1
1 1 2 1 k 1 2 k 4 2k
1 1 1
所以 4 2k 0 k 2 ,选 D
1 2 3 5. 设 A 1 x 2 ,且 A 的特征值为 1,2,3,则 x= 0 0 1
A. 2 B. 2 C. 3 D. 4
解答:使用特征值性质。由于 A 等于自身特征值乘积,因此 A 1 2 3 6 ,而
T T
A. 2,1,0
T
B. 2,1,1
T
C. 2,0,1
T
D. 0,1,1
T
解答:由于
2,1,0T
21,0,0 0,1,0 2 0,1,0
T T
T
且其他 B,C,D 选项均无法线性表示,所以选 A。
2 x1 x2 x3 0 4. 设线性方程组 kx1 x2 x3 0 有非零解,则 k 的值为 x x x 0 1 2 3
1 0
所以 x 2 6 x 4 ,选 D
2 3 0 1
1 0
2 0
3 1
A 1 x 2 0 x 2 5 x 2
非选择题部分
注意事项: 用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、填空题(本大题共 10 小题,每小题 2 分,共 31
B
1
1 27 4 36 3
.
解答:使用分块矩阵进行计算。根据逆矩阵的公式 A
1 * A ,其中 A* 为伴随矩阵,可得 A B O O 3 A
.
3A O 1 O B 3 AB
T T
1
B O 1 O 3 A 9 AB
T
10. 向量组 1 1,1,0 , 2 3,0,9 , 3 1,2,3 的秩为 解答:构造向量组的矩阵
1 3 1 1 3 1 1 3 1 1 , 2 , 3 1 0 2 0 3 1 0 3 1 0 9 3 0 9 3 0 0 0
全国 2017 年 4 月高等教育自学考试
3a2 3b2
a1 2a2 b1 2b2
B. 2
,则
a1 b1
a2 b2

C. 2 D. 6
解答:使用行列式的性质。因为
3a2 3b2
所以
a1 2a2 b1 2b2
3
a2 b2
a1 2a2 b1 2b2
c2 2 c1
0 0 0 1
2 答案整理:郭慧敏 广州大学松田学院
2017 年 4 月 线性代数(经管类)
1
7. 设 1
0 1 1
x 1 a1 x a0 ,则 a1 1
.
1
解答:使用三阶行列式公式。由于
1 1 1
因此 a1 2 。
0 1 1
x 1 1 0 x x 0 1 2 x 1
3
a2 b2
a1 b1
3
a1 b1
a2 b2
6
a1 b1
a2 b2
2 ,选 C
2. 若矩阵 A 中有一个 r+1 阶子式等于零,且所有 r 阶子式都不等于零,则必有 A. r A r B.r A r C.r A r D.r A r 1
解答: 根据矩阵秩的定义: 在矩阵 A 中有一个不等于零的 r 阶子式, 且所有 r+1 阶全等于零, 那么矩阵 A 的秩等于 r。而现问题为矩阵 A 中有一个 r+1 阶子式等于零,且所有 r 阶子式都 不等于零,故现矩阵 A 的秩可以等于 r 或大于 r,选 B 3. 设向量组 1,0,0 , 0,1,0 ,下列向量中可以表为 , 线性组合的是
8. 设 A,B 均为 3 阶矩阵,且 A 2 , B 2 ,则 3 A B 解答:使用矩阵行列式的性质。由于
*
1

.
3 A* B 1 33 A* B 1 33 A* B 1 33 A 3A O 9. 设 A,B 均为 2 阶可逆矩阵,则 O B
相关文档
最新文档