2017届高三物理一轮复习 第3章 牛顿运动定律 第3讲 牛顿运动定律的综合应用知能提升演练
高考物理一轮复习:3-1《牛顿第一定律、牛顿第三定律》ppt课件
题的能力.
实验四:验证牛顿第二 定律
2.本章复习关注两点: (1)对力和运动关系的认识历程、牛顿运动 定律、惯性、作用力、反作用力的概念, 规律的理解和辨析.
(2)以生产、生活和科学实验中有关的命题
背景,考查应用牛顿运动定律分析实际问
题的能力.
高三物理一轮复习
第三章 牛顿运动定律 第1节 牛顿第一定律 牛顿第三定律
考点阐释
1.作用力与反作用力的“三同、三异、三无关”
2.应用牛顿第三定律时应注意的问题
(1)定律中的“总是”二字说明对于任何物体,在任何 条件下牛顿第三定律都是成立的.
考点二 对牛顿第三定律的理解
考点阐释
不同点
(2)牛顿第三定律说明了作用力和反作用力中,若一个产生或消失, 则另一个必然同时产生或消失.
D.摩托车转弯时,车手一方面要控制适当的速度,另一方面要 制适当的速度,另一方面要将身体稍微向
将身体稍微向里倾斜,通过调控人和车的惯性达到转弯的目的 里倾斜,调控人和车的重心位置,但整体
答案 解析
的惯性不变,选项D错误.
考点一 对牛顿第一定律的理解
题组设计
3.(2014·高考北京卷)伽利略创造的
把实验、假设和逻辑推理相结合的
用细绳把小球悬挂起来,当小球静止时,下列
说法中正确的是
()
A.小球受到的重力和细绳对小球的拉力是一 对作用力和反作用力
B.小球受到的重力和小球对细绳的拉力是一 对作用力和反作用力
C.小球受到的重力和细绳对小球的拉力是一 对平衡力
D.小球受到的重力和小球对细绳的拉力是一 对平衡力
答案 解析 图片显/隐
考
考点一 对牛顿第一定律的理解
点 考点二 对牛顿第三定律的理解
物理一轮复习 第三章 牛顿运动定律 第一讲 牛顿第一定律 牛顿第三定律课时作业
第一讲牛顿第一定律牛顿第三定律[A组·基础题]一、单项选择题1.关于牛顿第一定律的说法中,正确的是( )A.由牛顿第一定律可知,物体在任何情况下始终处于静止状态或匀速直线运动状态B.牛顿第一定律只是反映惯性大小的,因此也叫惯性定律C.牛顿第一定律反映了物体不受外力作用时的运动规律,因此,物体在不受力时才有惯性D.牛顿第一定律既揭示了物体保持原有运动状态的原因,又揭示了运动状态改变的原因解析:根据牛顿第一定律,物体在任何时候都有惯性,故选项C错;不受力时惯性表现为使物体保持静止状态或匀速直线运动状态,故选项A错;牛顿第一定律还揭示了力与运动的关系,即力是改变物体运动状态的原因,所以选项D正确;牛顿第一定律并不能反映物体惯性的大小,故选项B错.答案:D2.(2017·山东枣庄八中期中)在“鸟巢欢乐冰雪季"期间,花样滑冰中的男运动员托举着女运动员一起滑行,对于此情景,下列说法正确的是( )A.由于男运动员稳稳地托举着女运动员一起滑行,所以男运动员对女运动员的支持力大于女运动员受到的重力B.男运动员受到的重力和冰面对他的支持力是一对平衡力C.女运动员对男运动员的压力与冰面对男运动员的支持力是一对作用力和反作用力D.男运动员对冰面的压力与冰面对他的支持力是一对作用力和反作用力解析:男运动员稳稳地托举着女运动员一起滑行,在水平面内运动,竖直方向没有加速度,所以男运动员对女运动员的支持力等于女运动员受到的重力,故A错误.男运动员除了受到重力、冰面对他的支持力外,还受到女运动员对他的压力,三个力平衡,故B错误.女运动员对男运动员的压力与男运动员对女运动员的支持力,是一对作用力和反作用力,故C错误.男运动员对冰面的压力与冰面对他的支持力是一对作用力和反作用力,故D正确.答案:D3.如图所示,物块P与木板Q叠放在水平地面上,木板Q对物块P的支持力的反作用力是( )A.物块P受到的重力B.地面对木板Q的弹力C.物块P对木板Q的压力D.地球对木板Q的吸引力解析:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上,所以Q对P的支持力的反作用力是P对Q的压力,选项C正确.答案:C4.(2017·江西上饶横峰中学月考)有人设计了一种交通工具,在平板车上装了一个电风扇,风扇运转时吹出的风全部打到竖直固定在小车中间的风帆上,靠风帆受力而向前运动,如图所示.对于这种设计,下列说法正确的是()A.根据牛顿第二定律,这种设计能使小车运动B.根据牛顿第三定律,这种设计不能使小车运动C.根据牛顿第三定律,这种设计能使小车运动D.以上说法均不正确解析:风扇向前吹出风时,风扇也受到风给的反作用力,方向向后,同时风给风帆一个向前的力;也就是说小车受到风帆给的一个向前的力,还有风扇给的一个向后的力,大小相等,方向相反,风帆和风扇都是小车的一部分,所以小车受到的合力为零,小车不能运动,所以可以通过牛顿第三定律来说明,故选B。
高考物理一轮复习_第3章_牛顿运动定律_第3讲_牛顿运动定律的综合应用
梳理深化 强基
多思维课建堂模 热素点养
②滑块在水平面上:
滑块做匀减速运动. 第三步:选择合适的方法及公式→利用正交分解法、牛顿 运动定律及运动学公式列式求解.
梳理1.(单选)关于超重和失重的下列说法中,正确的是( ). A.超重就是物体所受的重力增大了,失重就是物体所受 的重力减小了 B.物体做自由落体运动时处于完全失重状态,所以做自 由落体运动的物体不受重力作用 C.物体具有向上的速度时处于超重状态,物体具有向下 的速度时处于失重状态 D.物体处于超重或失重状态时,物体的重力始终存在且 不发生变化
梳理深化 强基
多思维课建堂模 热素点养
解析 物体具有向上的加速度时处于超重状态,具有向下 的加速度时处于失重状态,超重和失重并非物体的重力 发生变化,而是物体对支持物的压力或对悬挂物的拉力 发生了变化,综上所述,A、B、C均错,D正确. 答案 D
梳理深化 强基
多思维课建堂模 热素点养
2.(单选)下列实例属于超重现象的是
梳理深化 强基
多思维课建堂模 热素点养
3.(2013·新课标卷Ⅰ,14)(单选)如图3-3-1是伽利略1604 年做斜面实验时的一页手稿照片,照片左上角的三列数 据如下表.表中第二列是时间,第三列是物体沿斜面运 动的距离,第一列是伽利略在分析实验数据时添加的. 根据表中的数据.伽利略可以得出的结论是 ( ).
(1)超重时物体的重力大于mg. ( )
(2)失重时物体的重力小于mg. ( )
(3)加速度大小等于g的物体处于完全失重状态. ( )
(4)物体处于超重或失重状态,由加速度的方向决定,与
速度方向无关.
( )
答案 (1)× (2)× (3)× (4)√
2017届高三物理一轮复习 第3章牛顿运动定律课件
人教版 ·高考总复习
路漫漫其修远兮 吾将上下而求索
Hale Waihona Puke 第一部分第三章同步复习讲练
牛顿运动定律
1
高 考 导 航
2
考 点 梳 理
2
热 点 透 析
高考导航
最新考纲 1.牛顿运动定 律、牛顿运动 定律的应用 Ⅱ 2.超重和失 重 Ⅰ 实验四:验证 牛顿运动定律
考向瞭望 1.利用牛顿运动定律求力和加速度, 并进一步确定物体的运动状态是高 考中的热点,特别是牛顿运动定律 与弹力、摩擦力结合起来考查的几 率较大。 2.考纲中对超重和失重的要求是Ⅰ 级,但此考点属于高考的热点。 3.应用牛顿运动定律解决两类动力 学问题是高考中必考的内容。
热点透析
• 热点综述:牛顿运动定律是高中物理的核心 内容且牛顿运动定律的应用是高考的高频考 点,其中牛顿第二定律贯穿整个高中阶段, 是牛顿运动定律的重中之重。
• 命题透视:高考对牛顿运动定律的应用,一 般与图象(运动图象、力图象)结合考查,常常 与叠加体、连接体等物理模型综合考查,也 常常与实际问题联系在一起考查。高考对牛 顿运动定律的考查方式有多个角度。 • 名师点拨:熟练掌握牛顿运动定律,正确分 析受力和运动情况,是正确解题的关键。理 解掌握加速度与质量、加速度与力的关系,
高中物理一轮复习教案 第3章 牛顿运动定律 第3节 牛顿运动定律的综合应用
返回 [深化理解] 1.不管物体的加速度是否沿竖直方向,只要其加速度在竖直 方向上有分量,物体就会处于超重或失重状态。 2.发生超重、失重现象时,物体的重力依然存在,且不发生 变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了 变化,即视重发生了变化。 3.整体法和隔离法的选取与所研究的问题及连接体的组成特 点有关。如用滑轮连接的两物体加速度大小相同,但方向 往往不同,常采用隔离法。
整体的加速度 a 减小,因为 m、m′不变,所以 Tb 减小,Ta
增大,A、D 正确。
答案:AD
返回
二 研究好——题型·考法·技巧
返回
高考对本节内容的考查,主要集中在对超重和失重的理 解、临界极值问题分析、整体法与隔离法的应用,通常以选 择题的形式呈现,难度一般,而应用牛顿第二定律和运动学 规律分析板块模型和传送带模型问题,既是难点,又是热点, 题型有选择题,也有计算题,难度较大。
橡皮泥以后,两段绳的拉力 Ta 和 Tb 的变化情况是 ( )
A.Ta 增大
B.Tb 增大
C.Ta 减小
D.Tb 减小
解析:设最左边的物体质量为 m,最右边的物体质量为 m′,
整体质量为 M,整体的加速度 a=MF ,对最左边的物体分析,
Tb=ma,对最右边的物体分析,有 F-Ta=m′a,解得 Ta=F -m′a。在中间物体上加上橡皮泥,由于原拉力 F 不变,则
最大加速度,处于超重状态,故 A、D 错误;由 F-mg=ma,
可得 F=mg+ma,则当 a=1.5 m/s2 时体重计的示数最大,
故 C 正确,D 错误。
答案:C
3.(多选)如图所示用力 F 拉 A、B、C 三个
高三物理一轮复习第三章++牛顿运动定律
第三章⎪⎪⎪牛顿运动定律[备考指南]第1节牛顿第一定律__牛顿第三定律(1)牛顿第一定律是实验定律。
(×))(2)在水平面上运动的物体最终停下来,是因为水平方向没有外力维持其运动的结果。
(×)(3)运动的物体惯性大,静止的物体惯性小。
(×)(4)物体的惯性越大,状态越难改变。
(√)(5)作用力与反作用力可以作用在同一物体上。
(×)(6)作用力与反作用力的作用效果不能抵消。
(√)(1)伽利略利用“理想实验”得出“力是改变物体运动状态的原因”的观点,推翻了亚里士多德的“力是维持物体运动的原因”的错误观点。
(2)英国科学家牛顿在《自然哲学的数学原理》著作中提出了“牛顿第一、第二、第三定律”。
·要点一牛顿第一定律的理解1.惯性的两种表现形式(1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动)。
(2)物体受到外力时,惯性表现为运动状态改变的难易程度。
惯性大,物体的运动状态较难改变;惯性小,物体的运动状态容易改变。
2.对牛顿第一定律的四点说明(1)明确惯性的概念:牛顿第一定律揭示了一切物体所具有的一种固有属性——惯性。
(2)揭示力的本质:力是改变物体运动状态的原因,而不是维持物体运动状态的原因。
-(3)理想化状态:牛顿第一定律描述的是物体不受外力时的状态,而物体不受外力的情形是不存在的。
在实际情况中,如果物体所受的合外力等于零,与物体不受外力时的表现是相同的。
(4)与牛顿第二定律的关系:牛顿第一定律和牛顿第二定律是相互独立的。
力是如何改变物体运动状态的问题由牛顿第二定律来回答。
牛顿第一定律是经过科学抽象、归纳推理总结出来的,而牛顿第二定律是一条实验定律。
[多角练通]1.关于牛顿第一定律的说法中,正确的是()A.由牛顿第一定律可知,物体在任何情况下始终处于静止状态或匀速直线运动状态B.牛顿第一定律只是反映惯性大小的,因此也叫惯性定律C.牛顿第一定律反映了物体不受外力作用时的运动规律,因此,物体在不受力时才有惯性D.牛顿第一定律既揭示了物体保持原有运动状态的原因,又揭示了运动状态改变的原因~解析:选D根据牛顿第一定律,物体在任何时候都有惯性,故选项C错;不受力时惯性表现为使物体保持静止状态或匀速直线运动状态,故选项A错;牛顿第一定律还揭示了力与运动的关系,即力是改变物体运动状态的原因,所以选项D正确;牛顿第一定律并不能反映物体惯性的大小,故选项B错。
高三第一轮复习-牛顿运动定律第3讲
《金版新学案》
第三章 第3讲 牛顿运动定律的综合应用
夯实 双基 考点梳理 基础自测 一 两类动力学的基本问题
考向 聚焦
方法 荟萃 考能 提升
《金版新学案》
二 动力学中的图像问题
三 对超、失重的分析及理解 名师支招 攻克难点
知能演练
导航页
结束放映 结束放映
考向一 两类动力学的基本问题
a2
x3
x2
返回导航页
《金版新学案》
结束放映
考向二 动力学中的图像问题
《金版新学案》
返回导航页
结束放映
《金版新学案》
返回导航页
结束放映
《金版新学案》
返回导航页
结束放映
《金版新学案》
返回导航页
结束放映
《金版新学案》
返回导航页
结束放映
《金版新学案》
返回导航页
结束放映
《金版新学案》
返回导航页
( 《金版新学案》
返回导航页
结束放映
《金版新学案》
返回导航页
结束放映
《金版新学案》
返回导航页
结束放映
《金版新学案》
返回导航页
结束放映
《金版新学案》
返回导航页
结束放映
《金版新学案》
返回导航页
结束放映
《金版新学案》
返回导航页
结束放映
分析过程
v0=8 m/s
a1
x1 6.5 m
v0=8 m/s
《金版新学案》
返回导航页
结束放映
名师支招 攻克难点—牛顿运动定律中的临界 和极值问题
《金版新学案》
返回导航页
结束放映
高考物理第一轮复习教案 第三章 牛顿运动定律
考力和运动的综合题,重点考查综合运用知识的能力,如为使物体变为某一运动状态,应选择怎样的施力方案;
二是联系实际,以实际问题为背景命题,重点考查获取并处理信息,去粗取精,把实际问题转化成物理问题的
能力。
§1 牛顿第一定律 牛顿第三定律
一、牛顿第一定律 1.牛顿第一定律(惯性定律)的内容 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
看,要求准确理解牛顿第一定律;加深理解牛顿第二定律,熟练掌握其应用,尤其是物体受力分析的方法;理
解牛顿第三定律;理解和掌握运动和力的关系;理解超重和失重。本章内容的高考试题每年都有,对本章内容
单独命题大多以选择、填空形式出现,趋向于用牛顿运动定律解决生活、科技、生产实际问题。经常与电场、
磁场联系,构成难度较大的综合性试题,运动学的知识往往和牛顿运动定律连为一体,考查推理能力和综合分
45
高考物理第一轮复习教案
第三章 牛顿运动定律
张建设编写
这个定律有两层含义: (1)保持匀速直线运动状态或静止状态是物体的固有属性;物体的运动不需要用力来维持。 (2)要使物体的运动状态(即速度包括大小和方向)改变,必须施加力的作用,力是改变物体运动状态的 原因,是使物体产生加速度的原因。 2.牛顿第一定律的几点说明 (1)物体不受外力是该定律的条件。 (2)物体总保持匀速直线运动或静止状态是结果。 (3)惯性:一切物体都有保持原有运动状态的性质。 惯性是一切物体都具有的性质,是物体的固有属性,与物体的运动状态及受力情况无关。 惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。 质量是物体惯性大小的惟一量度。 (4)牛顿第一定律描述的是物体在不受任何外力时的状态,而不受外力的物体是不存在的。物体不受外力 和物体所受合外力为零是有区别的。 (5)牛顿第一定律成立的参考系是惯性参考系。 (6)应注意: ①牛顿第一定律不是实验直接总结出来的,是牛顿以伽利略的理想斜面实验为基础,加之高度的抽象思维, 概括总结出来的,不可能由实际的实验来验证; ②牛顿第一定律不是牛顿第二定律的特例,而是不受外力时的理想化状态。 例 1.下列说法正确的是 A.运动得越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大 B.小球在做自由落体运动时,惯性不存在了 C.把一个物体竖直向上抛出后,能继续上升,是因为物体仍受到一个向上的冲力 D.物体的惯性仅与质量有关,质量大的惯性大,质量小的惯性小 解析:惯性是物体保持原来运动状态的性质,仅由质量决定,与它的受力状况与运动状况均无关。一切物 体都有惯性。答案:D 例 2. 火车在长直水平轨道上匀速行驶,车厢内有一个人向上跳起,发现仍落回到车上原处(空气阻力不 计),这是因为 A.人跳起后,车厢内的空气给人一个向前的力,这力使他向前运动 B.人跳起时,车厢对人一个向前的摩擦力,这力使人向前运动 C.人跳起后,车继续向前运动,所以人下落后必定向后偏一些,只是由于时间很短,距离太小,不明显而 已。 D.人跳起后,在水平方向人和车水平速度始终相同 解析:人向上跳起,竖直方向做竖直上抛运动,水平方向不受外力作用,由于惯性,所以水平方向与车速 度相同,因而人落回原处。 答案:D 例 3. 下面说法正确的是 A.静止或做匀速直线运动的物体一定不受外力的作用 B.物体的速度为零时一定处于平衡状态 C.物体的运动状态发生变化时,一定受到外力的作用 D.物体的位移方向一定与所受合力方向一致 解析:物体不受外力时一定处于静止或匀速运动状态,但处于这些状态时不一定不受外力作用,所以 A 错; 物体是否处于平衡状态是看其受力是否为零,而不是看它的速度是否为零,如竖直上抛物体到达最高点时速度
高三物理一轮复习必考部分第3章牛顿运动定律第3节牛顿运动定律的综合应用教师用书
第3节牛顿运动定律的综合应用知识点1超重和失重1.实重和视重:(1)实重:物体实际所受的重力,与物体的运动状态无关.(2)视重:①当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的丞蛰称为视重.②视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力.1.整体法当连接体内(即系统内)各物体的加速度相同时,可以把系统内的所有物体看成一个整径,分析其受力和运动情况,运用牛顿第二泄律对整佐列方程求解的方法.2.隔离法当求系统内物体间相互作用的内力时,常把某个物体从系统中隔离出来,分析苴受力和运动情况,再用牛顿第二左律对矚出来的物体列方程求解的方法.3.外力和内力如果以物体系统为研究对象,受到系统之外的物体的作用力,这些力是该系统受到的处左,而系统内各物体间的相互作用力为内力.应用牛顿第二左律列方程时不考虑内力.如果把某物体隔离出来作为研究对象,则原来的内力将转换为隔离体的外力.1.正误判断(1)超重说明物体的重力增大了.(X)(2)失重说明物体的重力减小了.(X)(3)物体超重时,加速度向上,速度也一泄向上.(X)(4)物体失重时,也可能向上运动.(J)(5)应用牛顿运动上律进行整体分析时,可以分析内力.(X)(6)物体完全失重时,说明物体的重力为零.(X)2.(对超重和失重的理解)(2014 •北京高考)应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入.例如平伸手掌托起物体,由静止开始竖直向上运动,直至将物体抛出.对此现象分析正确的是()【导学号:96622047]A.手托物体向上运动的过程中,物体始终处于超重状态B.手托物体向上运动的过程中,物体始终处于失重状态C.在物体离开手的瞬间,物体的加速度大于重力加速度D.在物体藹开手的瞬间,手的加速度大于重力加速度【答案】D3.(完全失重状态的应用)如图3-3-1所示,A.万两物体叠放在一起,以相同的初速度上抛(不计空气阻力).下列说法正确的是()图3-3-1A.在上升和下降过程中月对万的压力一立为零B.上升过程中月对万的压力大于物体受到的重力C.下降过程中月对万的压力大于月物体受到的重力D.在上升和下降过程中月对万的压力等于川物体受到的重力【答案】A4.(整体法与隔离法的应用)两个物体川和5质量分别为加和处,互相接触放在光滑水平而上,如图3-3-2所示,对物体兔施以水平的推力只则物体月对物体万的作用力等于()【导学号:96622018]图3- 3- 2A・处+皿尸 B.岛+处尸nkC. FD. ~F【答案】B[核心精讲]1.不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.2.物体是否处于超重或失重状态,与物体向上运动还是向下运动无关,决左于物体具有向上的加速度还是向下的加速度,这也是判断物体超重或失重的根本依据所在.3.当物体处于完全失重状态时,重力只有使物体产生a=g的加速度效果,不再有其他效果.此时,平常一切由重力产生的物理现彖都会完全消失,如天平失效、液体不再产生压强和浮力等.[题组通关]1.为了节省能量,某商场安装了智能化的电动扶梯.无人乘坐时,扶梯运转得很慢;有人站上扶梯时,它会先慢慢加速,再匀速运转.一顾客乘扶梯上楼,恰好经历了这两个过程,如图3-3-3所示.下列说法中正确的是()图3-3-3A.顾客始终受到三个力的作用B.顾客始终处于超重状态C.顾客对扶梯作用力的方向先指向左下方,再竖宜向下D.顾客对扶梯作用力的方向先指向右下方,再竖直向下C当扶梯加速向上运动时,顾客受竖直向下的重力、竖直向上的支持力、水平向右的摩擦力三个力作用,且处于超重状态;当顾客匀速上升时,只受重力和支持力两个力作用,且此时不超重,也不失重,顾客对扶梯作用力竖直向下:加速上升过程中,顾客对扶梯作用力是向下的压力和向左的摩擦力的合力,方向斜向左下方,故C正确,A、B、D均错误.2.(2015 •重庆高考)若货物随升降机运动的-r图象如图3-3・4所示(竖直向上为正),则货物受到升降机的支持力尸与时间C关系的图象可能是()【导学号:96622019]图3-3-4【答案】B根据“ r图象可知电梯的运动情况:加速下降一匀速下降一减速下降一加速上升一匀速上升一减速上升,根据牛顿第二泄律尸一昭可判断支持力尸的变化情况: 失重一等于重力一超重一超重一等于重力一失重,故选项B正确.[名师微博]三个技巧:1.物体向上加速或向下减速时,超重.2.物体向下加速或向上减速时,失重.3.物体的加速度如果不沿竖直方向,只要英加速度在竖直方向上有分量,物体就处于超重或失重状态.[核心精讲]1.方法概述(1)整体法是指对物理问题的整个系统或过程进行研究的方法.(2)隔离法是指从整个系统中隔离出某一部分物体,进行单独研究的方法.2.涉及隔离法与整体法的具体问题类型(1)涉及滑轮的问题图3- 3- 5若要求绳的拉力,一般都必须采用隔离法.例如,如图3-3-5所示,绳跨过左滑轮连接的两物体虽然加速度大小相同,但方向不同,故采用隔离法.(2)水平面上的连接体问题①这类问题一般多是连接体(系统)各物体保持相对静止,即具有相同的加速度.解题时, 一般采用先整体、后隔离的方法.②建立坐标系时也要考虑矢量正交分解越少越好的原则,或者正交分解力,或者正交分解加速度.3.解题思路(1)分析所研究的问题适合应用整体法还是隔离法.(2)对整体或隔离体进行受力分析,应用牛顿第二楚律确是整体或隔离体的加速度.(3)结合运动学方程解答所求解的未知物理量.[师生共研]•考向1涉及滑轮的连接体问题卜例如图3-3-6所示的装置叫做阿特伍徳机,是阿特伍徳创制的一种著需力学实验装宜,用来研究匀变速直线运动的规律.绳子两端的物体下落(上升)的加速度总是小于自由落体的加速度g,同自由落体相比,下落相同的髙度.所花费的时间要长,这使得实验者有足够的时间从容的观测、研究.已知物体月、万的质量相等均为•也物体C的质量为皿轻绳1与轻滑轮间的摩擦不计,绳子不可伸长,如果加="/,求:图3- 3- 6(1)物体万从静止开始下落一段距离的时间与其自由落体下落同样的距离所用时间的比值:(2)系统由静I匕释放后运动过程中物体Q对万的拉力大小.【规范解答】(1)设物体的加速度为a,绳子中的张力为尸,对物体E,F-Mg=Ma,对BC整体»(J/+ zz?)g— F= m) a,m联立解得:&=刃珏・1 §将22?= 4^代入得a=9・1物体万从静止开始下落一段距离,h=2at\1自由落体下落同样的距离,h=2§t^解得二、/1=3.即物体B从静止开始下落一段距离的时间与苴自由落体下落同样的距离所用时间的比值为3.8 (2)设万对Q的拉力为7;对物体G由牛顿运动泄律,mg-T=ma,解得T=mg-ma=^ mg.8由牛顿第三左律,物体Q对方的拉力为§昭・8【答案】(1)3⑵咖g•考向2水平方向上运动的连接体问题卜例魁(多选)(2015 •全国卷II)在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为吕的加速度向东行驶时,连接某两相邻车2厢的挂钩尸和Q间的拉力大小为尺当机车在西边拉着车厢以大小为的加速度向西行驶时. 尸和Q间的拉力大小仍为尸不讣车厢与铁轨间的摩擦,每肖车厢质量相同,则这列车厢的节数可能为()A.8 B・ 10C. 15D. 18BC设该列车厢与尸相连的部分为尸部分,与Q相连的部分为0部分.设该列车厢有n2节,0部分为心节,每节车厢质量为加当加速度为◎时,对Q有F= t当加速度为&2时,对尸有尸=(C—心)两a,联立得2/2=5/21.当尽=2, A=4, A=6时,刀=5, n=10, n = 15,由题中选项得该列车厢节数可能为10或15,选项B、C正确.1.处理连接体问题时,整体法与隔离法往往交叉使用,一般的思路是先用整体法求加速度,再用隔离法求物体间的作用力.2.隔离法分析物体间的作用力时,一般应选受力个数较少的物体进行分析.[题组通关]3.如图3-3-7所示,在建筑工地,工人用两手对称水平使力将两长方体水泥制品夹紧并以加速度a竖直向上匀加速搬起,其中月的质量为皿万的质量为3皿水平作用力为尸,月、万之间的动摩擦因数为“,在此过程中,A.万间的摩擦力为()【导学号:96622050]图3-3-7A.uFB. 2 “尸3C. 2加(g+a)D.血(g+a)D由于乩万相对静止,故月、万之间的摩擦力为静摩擦力,A、B错误:设工人对月、B 在竖直方向上的摩擦力为f,以月、万整体为研究对象可知在竖直方向上有2區一伽+3m)g= (加+3皿)&,设万对月的摩擦力方向向下,大小为& ,对£由牛顿第二立律有Fz_F;—mg =ma,解得F=Mg+a), D正确,C错误.4.(多选)(2017・苏州模拟)质量分别为"和皿的物块形状大小均相同,将它们通过轻绳和光滑泄滑轮连接,如图3 3 8甲所示,沿斜面方向的绳子在各处均平行于倾角为" 的斜而,〃恰好能静止在斜而上,不考虑"、皿与斜而之间的摩擦.若互换两物块位置,按图乙放置,然后释放“,斜而仍保持静止.则下列说法正确的是()甲乙图3-3-8A.轻绳的拉力等于膽B.轻绳的拉力等于昭C.M运动的加速度大小为(1-sin $M—mD.M运动的加速度大小为~^~gBC按题图甲放置时,M静止,贝'J Mgsin c=mg,按题图乙放苣时,由牛顿第二定律得J倉一昭sin " = (.!/+”) a,联立解得a=(1 —sin a ) g:对也由牛顿第二定律得T~agsin a =/na,解得故A、D错误,B、C」l:确.[核心精讲]临界或极值条件的标志1•有些题目中有“刚好”、'‘恰好”、'‘正好”等字眼,明显表明题述的过程存在着临界点:2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态;3.若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;4.若题目要求“最终加速度”、“稳左加速度”等,即是求收尾加速度或收尾速度.[师生共研]»例R (2014 •上海高考)如图3-3-9,水平地而上的矩形箱子内有一倾角为0的固泄斜面,斜而上放一质量为皿的光滑球.静止时,箱子顶部与球接触但无压力.箱子由静止开始向右做匀加速运动,然后改做加速度大小为“的匀减速运动直至静止,经过的总路程为s, 运动过程中的最大速度为V.图3- 3- 9(1)求箱子加速阶段的加速度大小$ :(2)若Q^tan 0,求减速阶段球受到箱子左壁和顶部的作用力.【合作探讨】(1)若球不受箱子的作用力,箱子减速的加速度越为多大?提示:球不受箱子的作用力,只受重力昭和斜而的支持力斤,则有:mg=Fas 0, Asin 可得:ao=^tan(2)卫航an 0时,球受到箱子哪个壁的作用?a>航an 〃时呢?提示:a"tan 0时,球受到箱子左壁水平向右的作用力,a>航an “时,球受到箱子顶部竖直向下的作用力.【规范解答】(1)由匀变速直线运动的公式有v= = 2a f s’,/=2as:,且s’+±=sa/解得:a' =2as—/⑵假设球刚好不受箱子作用,应满足Asin 0 = m细、尺cos 〃=昭,解得ao=gtan “, 箱子减速时加速度水平向左,当a>gtan 〃时,箱子左壁对球的作用力为零,顶部对球的力不为零.此时球受力如图由牛顿第二左律得& cos 0 = F+ mg& sin ° =maa tan解得F=av【答案】(1)巫F(2)0文档从网络中收集,已重新整理排版.word版本可编借•欢迎下载支持.[题组通关]文档从网络中收集,已重新整理排版.word版本可编辑•欢迎下载支持.5.如图3-3-10所示,质虽:为lkg的木块川与质呈:为2 kg的木块万叠放在水平地而上, A.方间的最大静摩擦力为2 N,歹与地而间的动摩擦因数为0.2.用水平力尸作用于5则月、万保持相对静止的条件是(&取10 m/s3)()【导学号:96622051】图3-3-10A.虑12 NB.虑10 NC.虑9 ND.虑6 NA当久万间有最大静摩擦力(2 N)时,对£由牛顿第二左律知,加速度为2 m/s:,对 A.万整体应用牛顿第二左律有:尸一〃(皿+血)^=(皿+他)日,解得F=12N, A.万保持相对静止的条件是虑12 N, A正确,B、C、D错误.6.如图3-3-11所示,劲度系数为R的轻质弹簧的一端固泄在墙上,另一端与宜于水平而上、质量均为加的物体乩万接触C4与方和弹簧均未连接),弹簧水平且无形变.用水平力尸缓慢推动物体,在弹性限度内弹簧长度被压缩了及,此时物体静止.已知物体£与水平而间的动摩擦因数为“,物体万与水平而间的摩擦不计.撤去尸后,物体月、方开始向左运动,月运动的最大距离为4及,重力加速度为&则()图3-3-11A.撤去尸后,物体川和万先做匀加速运动,再做匀减速运动1B.撤去尸后,物体刚运动时的加速度大小为2^sC.当物体乩万一起开始向左运动距离加后分离U mgD.当物体£、万一起开始向左运动距离x=& — k后分离D撤去尸后,在物体离开弹簧的过程中,弹簧弹力是变力,物体先做变加速运动,离开弹簧之后川做匀变速运动,故A项错;刚开始时,由加一 P mg=2ma可知B项错误:当乂Pmg万分离时,加速度为零,速度最大,此时弹簧弹力尸弹=皿=g巫=一r,所以当物体乂U mg万一起开始向左运动距离x=x-~后分离,C项错误、D项正确.。
高考物理一轮总复习 必修部分 第3章 牛顿运动定律 第3讲 牛顿运动定律的综合应用课件
2.超重、失重和完全失重的比较
知识点 2 牛顿定律的应用 Ⅱ 整体法和隔离法
(1)整体法 当连接体内(即系统内)各物体的 加速度 相同时,可以把系统内的所有物体看成一个 整体 ,分析 其受力和运动情况,运用牛顿第二定律对 整体 列方程求解的方法。
(2)隔离法 当求系统内物体间相互作用的 内力 时,常把某个物体从系统中 隔离 出来,分析其受力和运动情 况,再用牛顿第二定律对 隔离 出来的物体列方程求解的方法。
1.[2015·贵州五校联考]如图所示,与轻绳相连的物体 A 和 B 跨过定滑轮,质量 mA<mB,A 由静止释 放,不计绳与滑轮间的摩擦,则在 A 向上运动的过程中,轻绳的拉力( )
总结升华
判断超重和失重现象的三个技巧 (1)从受力的角度判断 当物体受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时处于失重状态,等于零 时处于完全失重状态。 (2)从加速度的角度判断 当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力 加速度时处于完全失重状态。 (3)从速度变化角度判断 ①物体向上加速或向下减速时,超重; ②物体向下加速或向上减速时,失重。
(1)手托物体向上运动的过程,始终加速吗? 提示:不是,可以减速。
(2)物体离开手的瞬间,受什么力的作用? 提示:只受重力作用。
尝试解答 选 D。 手托物体抛出的过程,必有一段加速过程,其后可以减速,可以匀速,当手和物体匀速运动时,物体 既不超重也不失重;当手和物体减速运动时,物体处于失重状态,选项 A 错误;物体从静止到运动,必有 一段加速过程,此过程物体处于超重状态,选项 B 错误;当物体离开手的瞬间,物体只受重力,此时物体 的加速度等于重力加速度,选项 C 错误;手和物体分离之前速度相同,分离之后手速度的变化率比物体速 度的变化率大,物体离开手的瞬间,手的加速度大于重力加速度,故 D 正确。
2017届高三物理一轮复习 第3章 牛顿运动定律 第1讲 牛顿第一定律 牛顿第三定律课件
考点一
试题
解析
3. 一列以速度 v 匀速行驶的列车内有一水
NO.1 梳理主干
由于列车原来做匀速运 动,小球和列车保持相对 静止,现在列车要减速, 动,C、D 错;又因列车 要向南拐弯,桌子跟着列 车向南拐弯,而小球由于 惯性要保持原来的运动 状态,所以小球相对桌面 向北运动, A 对,B 错.
平桌面,桌面上 A 处有一相对桌面静止的 小球.由于列车运动状态的改变,车厢中 从 A 点运动到 B 点,则说明列车是减速且 在向南拐弯的图是 ( A )
填准记牢
NO.2 题组训练 提升能力
考点一
试题
解析
NO.1 梳理主干
填准记牢
NO.2 题组训练 提升能力
1. (多选)科学家关于物体运动的研究对树立 正确的自然观具有重要作用. 下列说法符合 历史事实的是 ( BCD ) A.亚里士多德认为,必须有力作用在物体 上,物体的运动状态才会改变 B.伽利略通过“理想实验”得出结论:一 旦物体具有某一速度,如果它不受力,它将 以这一速度永远运动下去 C.笛卡儿指出:如果运动中的物体没有受 到力的作用, 它将继续以同一速度沿同一直 线运动,既不停下来也不偏离原来的方向 D.牛顿认为,物体具有保持原来匀速直线 运动状态或静止状态的性质
NO.2 题组训练 提升能力
2.意义:建立了相互作用物体之间的联系及作用力与 反作
用力 的相互依赖关系.
考点二
NO.1 梳理主干
填准记牢
1.作用力与反作用力的“三同、三异、三无关”
NO.2 题组训练 提升能力
考点二
2.作用力和反作用力与一对平衡力的对比分析
NO.1 梳理主干
填准记牢
NO.2 题组训练 提升能力
高三物理一轮复习 第3章 牛顿运动定律 3 牛顿运动定律的综合应用
(2)从加速度的角度判断:当物体具有向上的加速度时处于 超重状态;具有向下的加速度时处于失重状态;向下的加速度 恰好等于重力加速度时处于完全失重状态.
2.隔离法 当求系统内物体间_相__互__作__用__的__内__力___时,常把某个物体从 系统中_隔__离__出来,分析其受力和运动情况,再用牛顿第二定 律对__隔__离___出来的物体列方程求解的方法.
3.外力和内力
如果以物体系统为研究对象,受到系统之外的物体的作用 力,这些力是该系统受到的__外__力__,而系统内各物体间的相互 作用力为_内__力__.应用牛顿第二定律列方程时不考虑内力.如
【答案】 B
考向一 超重与失重现象 1.超重并不是重力增加了,失重并不是重力减小了,完 全失重也不是重力完全消失了.在发生这些现象时,物体的重 力依然存在,且不发生变化,只是物体对支持物的压力(或对 悬挂物的拉力)发生了变化(即“视重”发生变化). 2.只要物体有向上或向下的加速度,物体就处于超重或 失重状态,与物体向上运动还是向下运动无关.
【解析】 由题知体重计的示数为40 kg时,人对体重计 的压力小于人的重力,故处于失重状态,实际人受到的重力 并没有变化,A错;由牛顿第三定律知B错;电梯具有向下的 加速度,但不一定是向下运动,C错;由牛顿第二定律mg- FN=ma,可知a=g5,方向竖直向下,D对.
【答案】 D
【名师点睛】 判断超重与失重现象的三个技巧
提示:(1)火箭加速上升阶段,具有向上的加速度,处于超 重状态.
(2)火箭停止工作后上升阶段具有向下的加速度,处于失重 状态.
高考物理一轮复习课件专题三:牛顿运动定律的综合应用
• 方法二:假定某力沿某一方向,用运动 规律进行验算,若算得正值,说明此力与假
• 2.“极限法”分析动力学问题
•
在物体的运动状态变化过程中,往往
达到某个特定状态时,有关的物理
•
量将发生突变,此状态叫临界状态.
相应的待求物理量的值叫临界
• 2.
• 解析:在施加外力F前,对AB整体受力 分析可得:2mg=kx1,A、B两物体分离时 ,B物体受力平衡,两者加速度恰好为零, 选项A、B错误;对物体A:mg=kx2,由于 x1-x2=h,所以弹簧的劲度系数为k=mg/h ,选项C正确;在 B与A分离之前,由于弹
• 图3-3-7 •2-1 如图3-3-7所示,光滑水平面上放置 质量分别为m、2m的A、B两个物 •• 体解,析A:、当B间A、的B最之大间静恰摩好擦不力发为生μ相m对g,滑现动用 水时平力拉F最力大F拉,B此,时使,AB对以于同A一物体所受的合外
【例3】如图3-3-8所示,一辆卡车后面用轻绳拖着
• 擦因数相同.当用水平力F作用于图3B-上3-3且两 物块共同向右加速运动时,弹簧的伸
【例1】 如图3-3-4所示,质量为m的球与弹簧Ⅰ和 水平细线Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P、 Q.球静止时,Ⅰ中拉力大小为F1,Ⅱ中拉力大小为 F2,当仅剪断Ⅰ、Ⅱ中的一根的瞬间时,球的加速 度a应是( )
压力
橡皮 绳
较大
一般不 能突变
只有拉 力没有
压力
• 当物不体受处力处突然变化时,物体的加速既度可有
轻弹 计 相等
一般不 拉力也
1.
图3-3-1 如图3-3-1所示,A、B两木块间连一轻质弹簧,A、B质量相等,一起静 止地放在一块光滑木板上,若将此木板突然抽去,在此瞬间,A、B两木块 的加速度分别是( )
高三物理一轮复习 第三章牛顿运动定律牛顿运动定律的综合应用课件
一题一得 超重和失重现象,只决定于物体在竖直方向上 的加速度,与物体的运动方向无关.进行定性分析问题时,一 定要对物体的运动过程进行分析,特别是物体在竖直方向上的 加速度,从而判定物体视重变化.
如图所示,轻质弹簧的上端固定在电梯的天 花板上,弹簧下端悬挂一个小铁球,在电梯运行时,乘客发现 弹簧的伸长量比电梯静止时的伸长量小,这一现象表明( )
重计示数的变化情况.下表记录了几个特定时刻体重计的示数
(表内时间不表示先后顺序):
时间
t0 t1 t2 t3
体重计示数(kg) 45.0 50.0 40.0 45.0
若已知 t0 时刻电梯静止,则( ) A.t1 和 t2 时刻电梯的加速度方向一定相反 B.t1 和 t2 时刻物体的质量并没有发生变化,但所受重力 发生了变化
考点三 考查临界与极值问题 从一物理过程转入另一物理过程中,将出现临界与极值问 题.题中常用“刚好”“恰好”“最大”“最小”等语言叙 述. 常出现的临界条件为:(1)相互接触的物体之间、绳子或杆 的弹力为零;(2)相对静止的物体间静摩擦力达到最大,通常在 计算中取最大静摩擦力等于滑动摩擦力.
物理思想方法:用极限法分析临界问题
A.电梯一定是在下降 B.电梯可能是在上升 C.电梯的加速度方向一定是向上 D.乘客一定处在失重状态
【答案】BD
【解析】因“弹簧的伸长量比电梯静止时的伸长量小”, 所以小球所受的合外力向下,加速度向下,乘客处于失重状态, C 错误,D 正确;仅知加速度的方向,无法判断电梯的运动方 向,其运动方向有两种可能,即上升或下降,A 错误,B 正确.
考点二 超重、失重和视重 物体处于失重状态还是超重状态,仅由加速度的方向决 定,而与物体的速度方向无关.无论物体处于超重还是失重状 态,物体本身的重力并未发生改变.物体处于完全失重时,由 于重力产生的一切物理现象都将消失.
高三物理第一轮复习教案第三单元 牛顿运动定律
《高三第一轮复习教案》:第三单元:牛顿运动定律回顾:1、静力学问题的解题基本思路是(核心求解问题:共点力的平衡):确定对象,受力分析,选取坐标,正交分解,立出方程,联立求解。
基本方法:整体法,隔离法2、运动学问题的解题基本思路是(核心求解问题:匀变速直线运动的规律):确定对象,运动分析,画出草图,选择规律,立式求解。
基本方法:函数式计算(选公式),图象应用而动力学问题既研究受力又研究运动,是前两部分内容的综合1、牛顿第一定律(1)内容(2)注意:A、力不是运动的原因,即运动可以不受力的作用。
B、力是改变物体运动状态的原因,即产生a。
C、运动的原因是物体具有惯性。
(惯性是物体保持原运动状态的能力)D、一切物体都具有惯性,惯性的大小仅由质量决定。
例题分析:1、关于伽利略的理想实验,下列说法正确的是(BD )A、只要接触而相当光滑,物体就能在水平面上一直做匀速直线运动B、这个实验实际上是永远无法何等到的C、利用气垫导轨,就能使实验成功D、虽然是想像中的实验,但是它是建立在可靠的事实基础上的2、下列说法正确的是( C )A、大卡车的速度小,轿车的速度大,所以轿车的惯性大B、汽车在速度大的时候比在速度小的时候难以停下所以汽车速度大时的惯性大C、乒乓球可以被快速地来回抽杀,是因为其惯性小的缘故D、用同样的力骑自行车,车胎没气时速度增加得慢,运动状态难以改变,因此,比有气时的惯性大3、理想实验有时更能深刻地反映自然规律,伽利略设想了一个是理想实验,其中有一个实验事实,其余是推论。
①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度;②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面;③如果没有摩擦,小球将上升到原来的高度;④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面做匀速运动(1)请将上述理想实验的设计步骤按照正确的顺序排列②③①④ (只要填写序号)(2)在上述的设想步骤中,有的属于可靠的事实,有的则是理想的推论,下列关于事实和推论的分类正确的是( B )A、①是事实,②③④是推论B、②是事实,①③④是推论C、③是事实,①②④是推论D、④是事实,①②③是推论学生练习:1、在车厢顶板上用细线挂一小球,车内的观察者,根据观察到的现象,判断正确的是(BCD )A、若细线保持竖直,车一定是静止的B、若细线保持竖直,车可能在做匀速直线运动C、若细线向右偏斜,车可能向左转弯D、若细线的前偏,车可能向前减速2、如图所示,车厢在平直轨道上匀加速向左行驶,车厢顶落有油滴滴落在车厢地板上,车厢地板O点位于A点的正下方,则当滴管依次滴下三滴油时,下列说法正确的是( C )A、这三滴油依次落在O点的右方,且一滴比一滴高O点远B、这三滴油依次落在O点的右方,且一滴比一滴高OC、这三滴油依次落在O点的右方,且在同一个位置上D、这三滴油依次落都在O点上3、关于惯性,下列说法中正确的是()A、推动原来静止的物体比推动正在运动的物体所需的力大,所以静止的物体惯性大B、正在行驶的质量相同的两辆汽车,速度大的不易停下来,所以速度大的物体惯性大C、自由下落的物体处于完全失重状态,所以这时物体的惯性消失了D、以上说法均不正确4、伽利略的斜面实验证明了()A、使物体运动必须有力的作用,没有力作用的物体将静止B、使物体静止必须有力的作用,没有力的作用物体就运动C、物体没有外力的作用,一定处于静止状态D、物体不受外力的作用时,总保持原来的匀速直线运动状态或静止状态2、牛顿第三定律(1)内容(2)注意:A、作用力与反作用力必定是相同性质的力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律的综合应用[随堂反馈]1.在探究超重和失重规律时,某体重为G的同学站在一压力传感器上完成一次下蹲动作.传感器和计算机相连,经计算机处理后得到压力F随时间t变化的图象,则下列图象中可能正确的是( )解析:未下蹲时,该同学对传感器的压力等于其重力;下蹲的初始阶段,该同学从静止开始做加速运动,其加速度方向竖直向下,处于失重状态,对传感器的压力小于其重力;速度达到最大后,又做减速运动,其加速度方向竖直向上,处于超重状态,对传感器的压力大于其重力,D正确.答案:D2.(多选)(2015·高考海南卷)如图所示,升降机内有一固定斜面,斜面上放一物块.开始时,升降机做匀速运动,物块相对于斜面匀速下滑.当升降机加速上升时( )A.物块与斜面间的摩擦力减小B.物块与斜面间的正压力增大C.物块相对于斜面减速下滑D.物块相对于斜面匀速下滑解析:开始时,木块匀速运动,有mg sin θ=F f,F N=mg cos θ,F f=μmg cos θ,得μ=tan θ.当升降机加速上升时,对物块受力分析,如图所示,其中F f′=μF N′,沿水平与竖直分解各力,得F f′cos θ=F N′sin θ,即木块水平方向合力为零,说明木块在水平方向做匀速运动.又因为木块始终没有离开斜面,因此,物块相对斜面一定做匀速运动,C错误,D正确.由上面分析可知物块具有向上的加速度,即F N′cos θ+F f′sin θ-mg=ma,解得F N′=m(g+a)cos θ>F N,F f′=μF N′=μm(g+a)cos θ>F f,A错误,B正确.答案:BD3.如图甲所示,绷紧的水平传送带始终以恒定速率v1顺时针运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示.已知v2>v1,则( )A .t 2时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离达到最大C .0~t 2时间内,小物块受到的摩擦力方向先向右后向左D .0~t 3时间内,小物块始终受到大小不变的摩擦力作用解析:由图象知物块先向左减速,后反向加速到v 1再做匀速直线运动,t 1时刻离A 距离最大,A 错误;t 2时刻二者相对静止,故t 2时刻物块相对传送带滑动距离最大,B 正确;0~t 2时间内摩擦力方向一直向右,C 错误;在0~t 2时间内摩擦力为滑动摩擦力,大小不变,在t 2~t 3时间内物块做匀速运动,此过程摩擦力为零,D 错误.答案:B4.(2014·高考山东卷)研究表明,一般人的刹车反应时间(即图甲中“反应过程”所用时间)t 0=0.4 s ,但饮酒会导致反应时间延长.在某次试验中,志愿者少量饮酒后驾车以v 0=72 km/h 的速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L =39 m .减速过程中汽车位移s 与速度v 的关系曲线如图乙所示,此过程可视为匀变速直线运动.重力加速度g 取10 m/s 2.求:(1)减速过程汽车加速度的大小及所用时间; (2)饮酒使志愿者的反应时间比一般人增加了多少;(3)减速过程汽车对志愿者作用力的大小与志愿者重力大小的比值.解析:(1)设减速过程中汽车加速度的大小为a ,所用时间为t ,由题可得初速度v 0=72 km/h =20 m/s ,末速度v t =0,位移s =25 m ,由运动学公式得v 20=2as ①t =v 0a②联立①②式,代入数据得a =8 m/s 2③t =2.5 s ④(2)设志愿者反应时间为t ′,反应时间的增加量为Δt ,由运动学公式得L =v 0t ′+s ⑤ Δt =t ′-t 0⑥联立⑤⑥式,代入数据得Δt =0.3 s ⑦(3)设志愿者所受合力的大小为F ,汽车对志愿者作用力的大小为F 0,志愿者质量为m ,由牛顿第二定律得F =ma ⑧由平行四边形定则得F 20=F 2+(mg )2⑨ 联立③⑧⑨式,代入数据得F 0mg =415⑩答案:(1)8 m/s 22.5 s (2)0.3 s (3)4155.如图所示,木板与水平地面间的夹角θ可以随意改变,当θ=30°时,可视为质点的一小物块恰好能沿着木板匀速下滑.若让该小物块从木板的底端以大小恒定的初速率v 0沿木板向上运动,随着θ的改变,小物块沿木板滑行的距离s 将发生变化,重力加速度为g .(1)求小物块与木板间的动摩擦因数.(2)当θ角满足什么条件时,小物块沿木板滑行的距离最小,并求出此最小值. 解析:(1)当θ=30°时,对物块受力分析:mg sin θ=μF NF N -mg cos θ=0则动摩擦因数μ=tan θ=tan 30°=33. (2)当θ变化时,设物块的加速度为a , 则mg sin θ+μmg cos θ=ma 物块的位移为s ,则v 20=2as 则s =v 202g sin θ+μcos θ令tan α=μ,则当α+θ=90°时s 最小, 即θ=60°,小物块沿木板滑行的距离最小 s min =v 202g sin 60°+μcos 60° =3v 24g .答案:(1)33 (2)θ=60°3v 24g[课时作业]一、单项选择题1.如图所示,光滑水平面上放置着质量分别为m 、2m 的A 、B 两个物体,A 、B 间的最大静摩擦力为μmg .现用水平拉力F 拉B ,使A 、B 以同一加速度运动,则拉力F 的最大值为( )A .μmgB .2μmgC .3μmgD .4μmg解析:当A 、B 之间恰好不发生相对滑动时力F 最大,此时,对于A 物体所受的合力为μmg ,由牛顿第二定律知a A =μmgm=μg ;对于A 、B 整体,加速度a =a A =μg ,由牛顿第二定律得F =3ma =3μmg .答案:C2.(2016·衡水调研)如图甲所示,在木箱内粗糙斜面上静止一个质量为m 的物体,木箱竖直向上运动的速度v 与时间t 的变化规律如图乙所示,物体始终相对斜面静止.斜面对物体的支持力和摩擦力分别为N 和f ,则下列说法正确的是( )A .在0~t 1时间内,N 增大,f 减小B .在0~t 1时间内,N 减小,f 增大C .在t 1~t 2时间内,N 增大,f 增大D .在t 1~t 2时间内,N 减小,f 减小解析:在0~t 1时间内,由图乙可知,物体做加速运动,加速度逐渐减小,设斜面倾角为θ,对物体受力分析,在竖直方向上有N cos θ+f sin θ-mg =ma 1,在水平方向上有N sin θ=f cos θ,因加速度减小,则支持力N 和摩擦力f 均减小.在t 1~t 2时间内,由图乙可知,物体做减速运动,加速度逐渐增大,对物体受力分析,在竖直方向上有mg -(N cos θ+f sin θ)=ma 2,在水平方向上有N sin θ=f cos θ,因加速度增大,则支持力N 和摩擦力f 均减小,故选D. 答案:D3.(2014·高考福建卷)如图所示,滑块以初速度v 0沿表面粗糙且足够长的固定斜面从顶端下滑,直至速度为零.对于该运动过程,若用h 、s 、v 、a 分别表示滑块的下降高度、位移、速度和加速度的大小,t 表示时间,则下列图象最能正确描述这一运动规律的是( )解析:设滑块与斜面间的动摩擦因数为μ,斜面倾角为θ,滑块在表面粗糙的固定斜面上下滑时做匀减速直线运动,加速度不变,其加速度的大小为a =μg cos θ-g sin θ,故D 项错误;由速度公式v =v 0-at 可知,v -t 图象应为一条倾斜的直线,故C 项错误;由位移公式s =v 0t -12at 2可知,B 项正确;由位移公式及几何关系可得h =s sin θ=(v 0t -12at 2)sinθ,故A 项错误. 答案:B4.如图所示,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg ,m B =2 kg ,A 、B 之间的动摩擦因数μ=0.2,开始时F =10 N ,此后逐渐增加,在增大到45 N 的过程中,g 取10 m/s 2,则(设A 、B 间最大静摩擦力等于滑动摩擦力)( )A.当拉力F<12 N时,两物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12 N时,开始相对滑动C.两物体间从受力开始就有相对运动D.两物体间始终没有相对运动解析:当A、B间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A、B才会发生相对运动.此时对B有所以F fmax=μm A g=12 N,而F fmax=m B a,a=6 m/s2,即两者开始相对运动时的加速度为6 m/s2,此时对A、B整体有F=(m A+m B)a=48 N,即F>48 N时,A、B才会开始相对运动,故选项A、B、C错误,D正确.答案:D5.某马戏团演员做滑杆表演,已知竖直滑杆上端固定,下端悬空,滑杆的重力为200 N.在杆的顶部装有一拉力传感器,可以显示杆顶端所受拉力的大小.已知演员在滑杆上做完动作之后,先在杆上静止了0.5 s,然后沿杆下滑,3.5 s末刚好滑到杆底端,并且速度恰好为零,整个过程中演员的v-t图象和传感器显示的拉力随时间的变化情况如图所示,g取10 m/s2,则下述说法正确的是( )A.演员的体重为800 NB.演员在第1 s内一直处于超重状态C.滑杆所受的最小拉力为620 ND.滑杆所受的最大拉力为900 N解析:演员在滑杆上静止时,传感器显示的拉力800 N等于演员重力和滑杆的重力之和,演员的体重为600 N,选项A错误.演员在第1 s内先静止后加速下滑,加速下滑处于失重状态,选项B错误.演员加速下滑时滑杆所受的拉力最小,加速下滑的加速度a1=3 m/s2,对演员,由牛顿第二定律有mg-F f1=ma1,解得F f1=420 N.对滑杆,由平衡条件得,最小拉力F1=420 N+200 N=620 N,选项C正确.减速下滑时滑杆所受的拉力最大.减速下滑的加速度a2=1.5 m/s2,对演员,由牛顿第二定律有F f2-mg=ma2,解得F f2=690 N.对滑杆,由平衡条件得,最大拉力F2=690 N+200 N=890 N,选项D错误.答案:C二、多项选择题6.(多选)质量为m的物体放置在升降机内的台秤上,现在升降机以加速度a在竖直方向上做匀变速直线运动.若物体处于失重状态,则( )A.升降机加速度方向竖直向下B.台秤示数减少maC.升降机一定向上运动D.升降机一定做加速运动解析:物体处于失重状态,加速度方向一定竖直向下,但速度方向可能向上,也可能向下,故A对,C、D错.由mg-F N=ma可知台秤示数减少ma,选项B对.答案:AB7.(2014·高考山东卷)一质点在外力作用下做直线运动,其速度v随时间t变化的图象如图所示.在图中标出的时刻中,质点所受合力的方向与速度方向相同的有( )A.t1B.t2C.t3D.t4解析:本题考查的是速度图象.速度图象中某点的切线的斜率表示加速度.t1时刻速度为正,加速度也为正,合力与速度同向;t2时刻速度为正,加速度为负,合力与速度反向;t3时刻速度为负,加速度也为负,合力与速度同向;t4时刻速度为负,加速度为正,合力与速度反向,选项A、C正确.答案:AC8.如图所示,水平传送带A、B两端相距x=3.5 m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4 m/s,到达B端的瞬时速度设为v B.下列说法中正确的是( )A.若传送带不动,v B=3 m/sB.若传送带逆时针匀速转动,v B一定等于3 m/sC.若传送带顺时针匀速转动,v B一定等于3 m/sD.若传送带顺时针匀速转动,v B有可能等于3 m/s解析:当传送带不动时,物体从A到B做匀减速运动,a=μg=1 m/s2,物体到达B点的速度v B=v2A-2ax=3 m/s.当传送带逆时针匀速转动时,物体滑上传送带后所受摩擦力不变,物体以相同的加速度一直减速至B,v B=3 m/s.当传送带顺时针匀速转动时,传送带的速度不同,物体滑上传送带后的运动情况不同.如果传送带速度大于4 m/s,则物体可能一直加速,也可能先加速后匀速;当传送带速度等于4 m/s时,物体匀速;当传送带速度小于4 m/s 时,物体可能一直减速,也可能先减速后匀速.答案:ABD9.三角形传送带以1 m/s的速度逆时针匀速转动,两边的传送带长都是2 m,且与水平方向的夹角均为37°.现有两个小物块A、B从传送带顶端都以1 m/s的初速度沿传送带下滑,物块与传送带间的动摩擦因数均为0.5.下列说法正确的是( )A.物块A先到达传送带底端B.物块A、B同时到达传送带底端C .物块A 、B 运动的加速度大小不同D .物块A 、B 在传送带上的划痕长度不相同解析:因摩擦因数0.5<tan 37°,所以A 、B 受力情况相同,均受重力、支持力、沿斜面向上的摩擦力,故A 、B 的加速度相同,运动时间相同,将同时到达底端,故选项A 、C 错,B 正确;由于小物块A 与传送带的运动方向相同,小物块B 与传送带的运动方向相反,故物块A 、B 在传送带上的划痕长度不相同,选项D 正确. 答案:BD 三、非选择题10.(2014·高考上海卷)如图,水平地面上的矩形箱子内有一倾角为θ的固定斜面,斜面上放一质量为m 的光滑球.静止时,箱子顶部与球接触但无压力.箱子由静止开始向右做匀加速运动,然后改做加速度大小为a 的匀减速运动直至静止,经过的总路程为s ,运动过程中的最大速度为v .(1)求箱子加速阶段的加速度大小a ′.(2)若a >g tan θ,求减速阶段球受到箱子左壁和顶部的作用力. 解析:(1)由匀变速直线运动的公式有v 2=2a ′s 1,v 2=2as 2,且s 1+s 2=s解得a ′=av 22as -v2(2)假设球刚好不受箱子作用,受力如图甲所示,应满足F N sin θ=ma 0,F N cos θ=mg ,解得a 0=g tan θ.箱子减速时加速度水平向左,当a >g tan θ时,箱子左壁对球的作用力为零,顶部对球的力不为零,此时球受力如图乙所示. 由牛顿第二定律得F N ′cos θ=F +mg F N ′sin θ=ma解得F =m ⎝⎛⎭⎪⎫a tan θ-g答案:(1)av 22as -v2(2)0 m ⎝⎛⎭⎪⎫a tan θ-g11.(2016·武汉武昌区调研)在风洞实验室里,一根足够长的均匀直细杆与水平面成θ=37°角固定,质量为m =1 kg 的小球穿在细杆上静止于细杆底端O ,如图甲所示.开启送风装置,有水平向右的恒定风力F 作用于小球上,在t 1=2 s 时刻风停止.小球沿细杆运动的部分v -t 图象如图乙所示,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,忽略浮力.求:(1)小球在0~2 s 内的加速度a 1和2~5 s 内的加速度a 2; (2)小球与细杆间的动摩擦因数μ和水平风力F 的大小. 解析:(1)取沿杆向上为正方向,由图乙可知 在0~2 s 内:a 1=v 1-v 0t 1=15 m/s 2(方向沿杆向上) 在2~5 s 内:a 2=v 2-v 1t 2=-10 m/s 2(方向沿杆向下) (2)有风力时的上升过程,对小球受力分析有F cos θ-μ(mg cos θ+F sin θ)-mg sin θ=ma 1停风后的上升阶段,有 -μmg cos θ-mg sin θ=ma 2 综上解得μ=0.5,F =50 N.答案:(1)15 m/s 2,方向沿杆向上 10 m/s 2,方向沿杆向下 (2)0.5 50 N12.(2016·河南十校联考)如图所示,与水平方向成37°角的传送带以恒定速度v =2 m/s 沿顺时针方向转动,两传动轮间距L =5 m .现将质量为1 kg 且可视为质点的物块以v 0=4 m/s 的速度沿传送带向上的方向自底端滑上传送带.物块与传送带间的动摩擦因数为μ=0.5,g 取10 m/s 2,已知si n 37°=0.6,cos 37°=0.8,计算时,可认为滑动摩擦力近似等于最大静摩擦力,求物块在传送带上上升的最大高度.解析:刚滑上传送带时,物块相对传送带向上运动,受到的摩擦力沿传送带向下,将匀减速上滑,直至与传送带等速,由牛顿第二定律得mg sin θ+μmg cos θ=ma 1 则a 1=g (sin θ+μcos θ)=10 m/s 2位移x 1=v 20-v22a 1=0.6 m物块与传送带相对静止瞬间,由于最大静摩擦力F f =μmg cos θ<mg sin θ,相对静止状态不能持续,物块速度会继续减小.此后,物块受到的滑动摩擦力沿传送带向上,但合力沿传送带向下,故继续匀减速上升,直到速度为零, 由mg sin θ-μmg cos θ=ma 2 得a 2=g (sin θ-μcos θ)=2 m/s 2位移x 2=v 22a 2=1 m则物块沿传送带上升的最大高度为H =(x 1+x 2)sin 37°=0.96 m.答案:0.96 m。