函数的图象练习题

合集下载

《第17章 函数及其图象》达标检测卷

《第17章 函数及其图象》达标检测卷

《第17章综合素质评价》一、选择题(每题3分,共30分)1.【2022·乐山】点P(-1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限2.【2022·连云港】函数y=x的取值范围是()A.x≥1B.x≥0C.x≤0D.x≤13.若反比例函数kyx=的图象经过点(-2,3),则此函数的图象也经过点()A.(2,-3)B.(-3,-3)C.(2,3)D.(-4,6)4.【2022·眉山】一次函数y=(2m-1)x+2的值随x的增大而增大,则点P(-m,m)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.【教材P43问题1变式】汽车由A地驶往相距120km的B地,它的平均速度是30km/h,则汽车距B地的路程s(km)与行驶时间t(h)的函数关系式及自变量t的取值范围是()A.s=120-30t(0≤t≤4)B.s=120-30t(t>0)C.s =30t (0≤t ≤4)D.s =30t (t <4)6.【2022·武汉】匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状可能是( )A.B.C.D.7.关于x 的函数y =k (x +1)和()0ky k x=≠在同一坐标系中的图象大致是( ) A.B.C.D.8.【2022·武汉】已知点()()1122,,,A x y B x y 在反比例函数6y x=的图象上,且120x x <<,则下列结论一定正确的是( )A.120y y +<B.120y y +>C.12y y <D.12y y >9.【数形结合】下列图形中,阴影部分面积最大的是( )A.B.C.D.10.如图,已知直线12y x =与双曲线(0)ky k x =>交于A ,B 两点,且点A 的横坐标为4.点C 是双曲线上一点,且纵坐标为8,则△AOC 的面积为( )A.8B.32C.10D.15二、填空题(每题3分,共24分)11.【教材P 35练习T 1变式】点A (2,3)关于x 轴的对称点的坐标为_______. 12.【2022·平项山期末】已知关系式y =35x +20,当x 的值为2时,y 的值等于_______. 13.若反比例函数ky x=的图象经过点(-1,2),则一次函数y =-kx +2的图象一定不经过第_______象限.14.近视眼镜的度数y (度)与镜片焦距x (m )成反比例.已知400度近视眼镜镜片的焦距为0.25m ,则眼镜度数y 与镜片焦距x 之间的函数关系式是_______. 15.反比例函数1ky x=的图象与一次函数2y x b =-+的图象交于点A (2,3)和点B (m ,2).由图象可知,若12y y >,则x 的取值范围是_______.16.【教材P 61例题变式】若方程组()23,312y kx y k x ⎧⎨⎩=-=-+无解,则y =kx -2的图象不经过第_______象限.17.如图,四边形OABC 是长方形,四边形ADEF 是正方形,点A ,D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B ,E 在反比例函数ky x =(k 为常数,k ≠0)的图象上,正方形ADEF 的面积为4,且BF =2AF ,则k 的值为_______.18.【探究规律】如图所示,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断地移动,每次移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…,那么点41n A +(n为自然数)的坐标为_______(用n表示).三、解答题(19~21题每题10分,22~24题每题12分,共66分)19.已知一次函数332y x=-.(1)请在如图所示的平面直角坐标系中画出此函数的图象;(2)求出此函数的图象与坐标轴围成的三角形的面积.20.如图,反比例函数的图象经过点A,B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).(1)求该反比例函数的表达式;(2)求直线BC的表达式.21.在平面直角坐标系xOy中,直线y=x+b与双曲线myx=的一个交点为A(2,4),与y轴交于点B.(1)求m的值和点B的坐标;(2)点P在双曲线myx=上,△OBP的面积为8,直接写出点P的坐标.22.如图,直线y=2x与函数myx=(x>0)的图象交于点A(1,2).(1)求m的值;(2)过点A作x轴的平行线l,直线y=2x+b与直线l交于点B,与函数myx=(x>0)的图象交于点C,与x轴交于点D.①若点C是线段BD的中点,则点C的坐标是_______,b的值是_______;②当BC>BD时,b的取值范围是_______.23.【数学建模】【2022·枣庄】为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AC表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L,从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:(1)在整改过程中,当0≤x<3时,求硫化物的浓度y与时间x的函数表达式;(2)在整改过程中,当x≥3时,求硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L?为什么?24.【数学运算】如图,反比例函数myx=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;S ,求点E的坐标. (2)点E为y轴上一个动点,若5AEB参考答案1.答案:B2.答案:A3.答案:A4.答案:B5.答案:A6.答案:A7.答案:D8.答案:C9.答案:C 10.答案:D 11.答案:(2,-3) 12.答案:90 13.答案:四 14.答案:100y x=15.答案:0<x <2或x >3 16.答案:二 17.答案:-618. 答案:(2n ,1)解析:根据图形分别求出n =1,2,3时对应的点的坐标,然后根据变化规律即可得解.由图可知,n =1时,4×1+1=5,点A 5(2,1);n =2时,4×2+1=9,点A 9(4,1);n =3时,4×3+1=13,点A 13(6,1),所以点()412,1n A n +. 19.解:(1)函数图象如图所示.(2)函数的图象与坐标轴围成的三角形的面积为12332⨯⨯=.20.解:(1)设所求反比例函数的表达式为ky x =(k ≠0). ∵点A (1,3)在此反比例函数的图象,∴31k=,∴k =3.∴该反比例函数的表达式为3y x =.(2)设直线BC 的表达式为()110y k x b k =+≠,点B 的坐标为(m ,1). ∵点B 在反比例函数3y x=的图象上, ∴31m=,∴3m =, ∴点B 的坐标为(3,1).将点B ,C 的坐标分别代入1y k x b =+,得1113,02,k b k b =+⎧⎨=+⎩解得11,2.k b =⎧⎨=-⎩∴直线BC 的表达式为y =x -2. 21.解:(1)∵双曲线my x=经过点A (2,4),∴m =8. ∵直线y =x +b 经过点A (2,4), ∴b =2.∴此直线与y 轴的交点B 的坐标为(0,2). (2)点P 的坐标为(8,1)或(-8,-1). 22.解:(1)∵直线y =2x 与函数my x=(x >0)的图象交于点A (1,2), ∴21m=,∴m =2. (2)①(2,1);-3 ②b>323.解:(1)设所求函数表达式为y =kx +b ,由题图可得12,3 4.5,b k b =⎧⎨+=⎩解得12,2.5.b k =⎧⎨=-⎩∴所求函数表达式为y =-2.5x +12(0≤x <3). (2)∵3×4.5=5×2.7=…=13.5, ∴当x ≥3时,y 是x 的反比例函数, ∴()13.53y x x=≥. (3)该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg/L. 理由:当x =15时,13.50.915y ==. ∵13.5>0,∴y 随x 的增大而减小.∴该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg/L. 24.解:(1)把点A (2,6)的坐标代入my x=,得m =12,则反比例函数的表达式为12y x =.把点B (n ,1)的坐标代入12y x=,得n =12,则点B 的坐标为(2,1). 由直线y =kx +b 过点A (2,6),B (12,1),得26,12 1.k b k b +=⎧⎨+=⎩解得1,27.k b ⎧=-⎪⎨⎪=⎩则一次函数的表达式为172y x =-+.(2)设直线AB 与y 轴的交点为P ,则点P 的坐标为(0,7).设点E 的坐标为(0,a ),∴7PE a =-. ∵5AEBBEPAEPSSS=-=,∴1171272522a a ⨯-⨯-⨯-⨯=. ∴71a -=.∴126,8a a ==.∴点E 的坐标为(0,6)或(0,8).。

19.1.2 函数的图象 人教版数学八年级下册同步练习(含解析)

19.1.2 函数的图象 人教版数学八年级下册同步练习(含解析)

第十九章 一次函数19.1.2 函数的图象基础过关全练知识点1 函数的图象1.【主题教育·中华优秀传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片:用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③立夏和立秋,白昼时长大致相等;④立春是一年中白昼时长最短的节气.其中正确的结论有( )A.1个B.2个C.3个D.4个2.【新独家原创】疫情期间,为保障学校师生安全,某校每天进行全员核酸检测,小邦下课后从教室去160米的检测点做核酸检测,他用了2分钟到达检测点,扫码检测共用了2分钟,做完核酸检测后,他及时回教室,用了2.5分钟.下列图象能正确表示小邦离教室的距离与时间关系的是( )A B C D3.【主题教育·革命文化】为“传承红色基因,共筑中国梦”,八年级的师生开展了共赴井冈山红色革命根据地红色研学之旅,下图描述了汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是( )A.汽车在0~1小时的平均速度是60千米/时B.汽车在2~3小时的速度比0~0.5小时的速度快C.汽车行驶的平均速度为60千米/时D.汽车在0.5~1.5小时的速度是80千米/时4.【跨学科·化学】实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为镭的放射规律的函数图象,据此可计算32 mg镭缩减为1 mg所用的时间大约是 年.5.【教材变式·P83T9变式】小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.如图所示的是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答问题:(1)小明家到学校的路程是多少米?小明在书店停留了多少分钟?(2)本次上学途中,小明一共骑行了多少米?(3)当骑单车的速度超过300米/分时就超过了安全限度.问:在整个上学途中,哪个时间段小明的骑车速度最快?速度在安全限度内吗? (4)小明出发多长时间离家1 200米?知识点2 函数图象的画法6.画出函数y=2x-1的图象.(1)列表:x…-2-10123…y……(2)在如图所示的坐标系中描点并连线;(3)判断点A(-3,-5),B(2,-3),C(3,5)是否在函数y=2x-1的图象上;(4)若点P(m,9)在函数y=2x-1的图象上,求出m的值.知识点3 函数的三种表示方法7.【跨学科·物理】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧的长度y(cm)与所挂重物的质量x(kg)之间的关系式为( )x(kg)0123456y(cm)1212.51313.51414.515A.y=0.5x+12B.y=x+10.5C.y=0.5x+10D.y=x+128.甲、乙两人分别从相距18 km的A、B两地同时相向而行,甲以4 km/h 的平均速度步行,乙以比甲快1 km/h的平均速度步行,相遇而止. (1)求甲、乙两人之间的距离y(km)和所用的时间x(h)之间的函数关系式;(2)求出函数图象与x轴、y轴的交点坐标,画出函数的图象,并求出自变量x的取值范围.9.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x…123579…y…1.983.952.631.581.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整.(1)如图,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为 ;②该函数的一条性质: .能力提升全练10.【主题教育·革命文化】(2022湖南永州中考,10,★☆☆)学校组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈士陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是( )A B C D11.(2021安徽合肥四十五中模拟,6,★★☆)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为( )A B C D12.【主题教育·生命安全与健康】(2022山西太原期末,9,★★☆)骑行是一种健康自然的运动旅游方式,长期坚持骑自行车可增强心血管功能,提高人体新陈代谢和免疫力.下图是骑行爱好者小李某日骑自行车行驶路程(km)与时间(h)的图象,观察图象得到下列信息,其中正确的是( )A.小李实际骑行时间为6 hB.点P表示出发6 h,小李共骑行80 kmC.3~6 h小李的骑行速度比0~2 h慢D.0~3 h小李的平均速度是15 km/h13.(2022山东临沂中考,12,★★☆)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示.下列说法中不正确的是( )A.甲车行驶到距A城240 km处,被乙车追上B.A城与B城的距离是300 kmC.乙车的平均速度是80 km/hD.甲车比乙车早到B城14.(2021黑龙江牡丹江中考,7,★★☆)春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是 天.素养探究全练15.【创新意识】(2022浙江舟山中考)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y(cm)…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论;(3)数学应用:根据研究,当潮水高度超过260 cm时,货轮能够安全进出该港口,请问当天什么时间段适合货轮进出此港口?答案全解全析基础过关全练1.B 由题图可知,从立春到大寒,白昼时长先增大再减小后增大,∴结论①不正确;夏至时白昼时长最长,∴结论②正确;立夏和立秋,白昼时长大致相等,∴结论③正确;冬至是一年中白昼时长最短的节气,∴结论④不正确.故选B.2.C 去做核酸检测时用了2分钟,距离随时间的增加而增大;扫码检测共用了2分钟,离教室的距离没有发生变化;回教室用了2.5分钟,距离随时间的增加而减小.故选C.3.D 汽车在0~0.5小时的速度是30÷0.5=60千米/时,0.5~1.5小时的速度为(110-30)÷(1.5-0.5)=80千米/时,所以0~1小时的平均速度为(60+80)÷2=70千米/时,故A说法错误,不符合题意;汽车在2~3小时的速度为(150-110)÷(3-2)=40千米/时,所以汽车在2~3小时的速度比0~0.5小时的速度慢,故B说法错误,不符合题意;汽车行驶的平均速度为150÷3=50千米/时,故C说法错误,不符合题意;汽车在0.5~1.5小时的速度是80千米/时,故D说法正确,符合题意.故选D.4.答案 8 100解析 由题图可知,经过1 620年时,镭质量缩减为原来的12,经过1 620×2=3 240年时,镭质量缩减为原来的14=122,经过1 620×3=4 860年时,镭质量缩减为原来的18=123,经过1 620×4=6 480年时,镭质量缩减为原来的116=124,∴经过1 620×5=8 100年时,镭质量缩减为原来的125=132,∵32×132=1(mg),∴32 mg镭缩减为1 mg所用的时间大约是8 100年.故答案为8 100.5.解析 (1)根据题图可知,小明家到学校的路程是1 500米,小明在书店停留了12-8=4分钟.(2)1 500+(1 200-600)×2=2 700(米).故本次上学途中,小明一共骑行了2 700米.(3)根据题图可知,从12分钟至14分钟小明的骑车速度最快,这个过程中,骑车速度为(1 500-600)÷(14-12)=450(米/分钟),∵450>300,∴在12分钟至14分钟时,小明的骑车速度超过了安全限度.(4)设小明出发t分钟时,离家1 200米,①根据题图可知,当t=6时,小明离家1 200米;②根据题意,得600+450(t-12)=1 200,解得t=403.∴小明出发6分钟或403分钟时离家1 200米.6.解析 (1)列表:x…-2-10123…y…-5-3-1135…(2)描点并连线,画出函数图象如图所示.(3)把x=-3代入y=2x-1,得y=-7≠-5,把x=2代入y=2x-1,得y=3≠-3,把x=3代入y=2x-1,得y=5,所以点C在函数y=2x-1的图象上,点A和B不在函数y=2x-1的图象上.(4)∵点P(m,9)在函数y=2x-1的图象上,∴9=2m-1,解得m=5.7.A 由题表数据可得出弹簧的长度y(cm)与所挂重物的质量x(kg)之间的关系式为y=0.5x+12.8.解析 (1)y=18-(5x+4x)=-9x+18,故甲、乙两人之间的距离y(km)和所用的时间x(h)之间的函数关系式为y=-9x+18.(2)当x=0时,y=18,当y=0时,-9x+18=0,解得x=2,故函数图象与x轴、y 轴的交点坐标分别为(2,0)、(0,18).列表:x/h02y/km180描点、连线,画出的函数图象如图.自变量x的取值范围为0≤x≤2.9.解析 本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)如图.(2)①1.98.②当x>2时,y随x的增大而减小.能力提升全练10.A 由题意易知,当0≤x<30时,y随x的增大而增大,当30≤x≤90时,y是一个定值,当90<x≤135时,y随x的增大而减小,∴能大致反映y与x关系的是选项A中的图象.11.B 将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小水杯,因而这段时间h不变,当大容器中的水面的高度与小水杯的高度齐平时,开始向小水杯内流水,h随t的增大而增大,当水注满小水杯后,小水杯内水面的高度h不再变化.故选B.12.B A.小李实际骑行时间为5 h,故本选项不合题意;B.点P表示出发6 h,小李共骑行80 km,故本选项符合题意;(km/h),0~2 h小李的骑行C.3~6 h小李的骑行速度为(80-30)÷(6-3)=503=15(km/h),速度为302>15,所以3~6 h小李的骑行速度比0~2 h快,故本选项不合题意;因为503=10(km/h),故本选项不合题意.D.3 h内,小李的平均速度是303故选B.13.D 由题图可知,A城与B城的距离是300 km,故选项B说法正确;甲车的平均速度是300÷5=60(km/h),所以甲车4小时行驶60×4=240 km,即甲车行驶到距A城240 km处,被乙车追上,故选项A说法正确;乙车的平均速度是240÷(4-1)=80(km/h),故选项C说法正确;由题图可知,乙车比甲车早到B城,故选项D说法不正确.故选D.14.答案 10解析 调进化肥的速度是30÷6=5(吨/天),由题图知在第6天时,库存物资有30吨,在第8天时库存物资有20吨,=10(吨/天),所以销售化肥的速度是30―20+5×22所以剩余的20吨化肥完全售出需要20÷10=2(天),故该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是8+2=10(天).故答案为10.素养探究全练15.解析 (1)①补全图象如图:②观察函数图象,当x=4时,y=200,当y的值最大时,x=21.(2)(答案不唯一)该函数的两条性质如下:①当2≤x≤7时,y随x的增大而增大;②当x=14时,y取得最小值,为80.(3)由图象可知,当y=260时,x=5或x=10或x=18或x=23,∴当5<x<10或18<x<23时,y>260,即当5<x<10或18<x<23时,适合货轮进出此港口.。

一次函数的图象专题练习题(最新版) 含答案

一次函数的图象专题练习题(最新版) 含答案

一次函数的图象专题练习题1.画函数图象的方法.可以概括为_______,__ __,__ __三步,通常称为__ __.2.如果点M 在函数y =x -1的图象上,则M 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,0)D .(1,-1)3.(1)若点A(a ,-3)在函数y =-3x的图象上,则a =____; (2)下列各点M (1,2),N (3,32),P (1,-1),Q (-2,-4)中,在函数y =2x x +1的图象上的点是__________. 4. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是( )5. 小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( )6. 某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是()A.小明在公园休息了5分钟B.小明乘出租车用了17分C.小明跑步的速度为180米/分D.出租车的平均速度是900米/分7. 一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()8. 李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程为2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下又聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程s(米)与所用时间t(分)之间的关系如图所示.(1)求a,b,c的值;(2)求李老师从学校到家的总时间.9. 如果两个变量x,y之间的函数关系如图,则函数值y的取值范围是() A.-3≤y≤3 B.0≤y≤2C.1≤y≤3 D.0≤y≤310. 如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度11. 甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4B.3C.2D.112. 有一个水箱,它的容积是500升,水箱内原有水200升,现需将水箱注满,已知每分钟注入水10升.(1)写出水箱内水量Q(升)与时间t(分)的函数关系式;(2)求自变量t的取值范围;(3)画出函数的图象.13.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()14. 如图①,底面积为30 cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为____cm,匀速注水的水流速度为____cm3/s;(2)若“几何体”的下方圆柱的底面积为15 cm2,求“几何体”上方圆柱的高和底面积.答案:1. 描点 连线 描点法2. C3. (1) 1 (2) 点N4. D5. B6. B7. A8. (1)李老师停留地点离他家路程为:2000-900=1100(米),900÷45=20(分).a =20,b =1100,c =20+30=50 (2)20+30+1100110=60(分).答:李老师从学校到家共用60分钟 9. D10. C11. B 点拨:①②④正确12. (1)Q =200+10t (2)令200≤Q≤500,则0≤t≤30 (3)图略13. B14. (1) 14 5(2) “几何体”下方圆柱的高为a ,则a·(30-15)=18×5,解得a =6,所以“几何体”上方圆柱的高为11 cm-6 cm =5 cm ,设“几何体”上方圆柱的底面积为S cm 2,根据题意得5(30-S )=5×(24-18),解得S =24,即“几何体”上方圆柱的底面积为24 cm 2。

一次函数的图象和性质专题练习题

一次函数的图象和性质专题练习题

专题19.2.2一次函数的图象和性质一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.在函数3y x =-的图象上的点是()A .(1,-3)B .(0,3)C .(-3,0)D .(1,-2)【答案】D【解析】A.1-3=-2≠-3,故本选项不在3y x =-的图象上,B.0-3=-3≠3,故本选项不在3y x =-的图象上,C.-3-3=-6≠0,故本选项不在3y x =-的图象上,D.1-3=-2,故本选项在3y x =-的图象上.故选:D .2.函数2y kx =-的图象经过点(3,1)p -,则k 的值为()A .3B .3-C .13D .13-【答案】C【解析】∵函数2y kx =-的图象经过点(3,1)p -,∴3k −2=-1,解得k =13.故选:C .3.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是一次函数y =﹣x ﹣1图象上的点,并且y 1<y 2<y 3,则下列各式中正确的是()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1【答案】D【解析】解:∵一次函数y=﹣x ﹣1中k=﹣1<0,∴y 随x 的增大而减小,又∵y 1<y 2<y 3,∴x 1>x 2>x 3.故选:D .4.在平面直角坐标系中,将直线1:41l y x =--平移后,得到直线2:47l y x =-+,则下列平移作法正确的是()A .将1l 向右平移8个单位B .将1l 向右平移2个单位C .将1l 向左平移2个单位D .将1l 向下平移8个单位【答案】B【解析】A :将直线1:41l y x =--向右平移8个单位得到直线()481y x =---,即直线431y x =-+.B :将直线1:41l y x =--向右平移2个单位得到直线()421y x =---,即直线2:47l y x =-+.C :将直线1:41l y x =--向左平移2个单位得到直线()421y x =-+-,即直线49y x =--.D :将直线1:41l y x =--向下平移8个单位得到直线418y x =---,即直线49y x =--.故选B .5.一次函数35y x =-+的图象经过()A .第一、三、四象限B .第二、三、四象限C .第一、二、三象限D .第一、二、四象限【答案】D【解析】解: 一次函数35y x =-+中,30k =-<,50b =>,∴此一次函数的图象经过一、二、象限.故选:D6.下图为正比例函数()0y kx k =≠的图像,则一次函数y x k =+的大致图像是()A .B .C .D .【答案】B 【解析】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k 的图象与y 轴交于负半轴且经过一、三象限.故选B.7.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是()A .k <3B .k <0C .k >3D .0<k <3【答案】D【解析】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴ ॰䃰< ॰,解得:0<k <3,故选:D .8.如图,已知一次函数y kx b =+,y 随着x 的增大而增大,且0kb <,则在直角坐标系中它的图象大致是()A .B .C .D .【答案】A【解析】∵y 随x 的增大而增大,∴0k >.又∵0kb <,∴0b <,∴一次函数过第一、三、四象限,故选A .9.对于次函数21y x =-,下列结论错误的是()A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x=D .图象经过第一、二、三象限【答案】D【解析】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .10.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是()A .B .C .D .【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx+b 中,k <0,b <0,y 2=bx+k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k <0,k 的取值相矛盾,故本选项错误;故选:C .11.一次函数23y x =-的图像在y 轴的截距是()A .2B .-2C .3D .-3【答案】D【解析】∵23y x =-,即b=-3,∴图像与y 轴的截距为-3,故选:D.12.如果直线y=2x+m 与两坐标轴围成的三角形的面积是4,那么m 的值是()A .4-B .2C .2±D .4±【答案】D【解析】∵当x=0时,y=m ,当y=0时,x=2m -,∴直线y=2x+m 与x 轴和y 轴的交点坐标分别为(2m -,0)、(0,m ),∵直线y=2x+m 与两坐标轴围成的三角形的面积是4,∴12|2m -||m|=4,解得:m=±4,故选:D .13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为()A .35y x =B .910y x =C .34y x =D .y x=【答案】B【解析】解:设直线l 和八个正方形的最上面交点为A ,过A 作AB ⊥y 轴于B ,作AC ⊥x 轴于C ,∵正方形的边长为1,∴OB =3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴12OB•AB =5,∴AB =103,∴OC =103,由此可知直线l 经过(103,3),设直线l 解析式为y =kx ,则3=103k ,解得:k =910,∴直线l 解析式为y =910x ,故选:B .14.在平面直角坐标系中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ;以22A B 为腰作等腰直角三角形223A B B …;按照这样的规律进行下去,那么2019A 的坐标为()A .()2018201821,2-B .()2018201822,2-C .()2019201921,2-D .()2019201922,2-【答案】B【解析】解:如上图,∵点B 1、B 2、B 3、…、B n 在x 轴上,且A 1B 1=B 1B 2,A 2B 2=B 2B 3,A 3B 3=B 3B 4,∵A 1(−1,1),∴A 2(0,2),A 3(2,4),A 4(6,8),…,∴A n (2n−1−2,2n−1).∴A 2019的坐标为(22018−2,22018).故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.一次函数36y x =-+的图象与y 轴的交点坐标是________.【答案】(0,6)【解析】解:根据题意,令0x =,解得6y =,所以一次函数36y x =-+的图象与y 轴的交点坐标是(0,6).故答案为:(0,6).16.一次函数(3)2=-+y k x ,若y 随x 的增大而增大,则k 的取值范围是_________.【答案】3k >【解析】∵一次函数(3)2=-+y k x ,y 随x 的增大而增大,30k ∴->,3k ∴>.k .故答案为:317.已知A(2,1),B(2,4).(1)若直线l:y=x+b与AB有一个交点.则b的取值范围为_______________;(2)若直线l:y=kx与AB有一个交点.则k的取值范围为_______________.【答案】-1≤b≤2;0.5≤k≤2.【解析】解:(1)把A(2,1),代入直线l:y=x+b,得2+b=1,解得b=-1;把B(2,4)代入直线l:y=x+b,的2+b=4,解得b=2;所以:b的取值范围是:-1≤b≤2;(2)把A(2,1),代入直线l:y=kx,得2k=1,解得k=0.5;把B(2,4)代入直线l:y=kx,的2k=4,解得k=2;∴k的取值范围为:0.5≤k≤2.故答案为:-1≤b≤2;0.5≤k≤2.18.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.【答案】一【解析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数2y x =过(0,)和(1,);(2)一次函数3y x =-+(0,)(,0).【答案】(1)0,2;(2)3,3,作图见解析【解析】解:(1)当x=0时,y=2x=0,∴正比例函数y=2x 过(0,0);当x=1时,y=2x=1,∴正比例函数y=2x 过(1,2).故答案为:0;2.(2)当x=0时,y=-x+3=3,∴一次函数y=-x+3过(0,3);当y=0时,有-x+3=0,解得:x=3,∴一次函数y=-x+3过(3,0).故答案为:3;3.20.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.【答案】(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x−2k+6的图象y 随x 的增大而减小,∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.21.如图,已知正比例函数y kx =(0)k ≠经过点(2,4)P .(1)求这个正比例函数的解析式;(2)该直线向上平移4个单位,求平移后所得直线的解析式.【答案】(1)2y x =;(2)24y x =+【解析】解:(1)把(2,4)P 代入y kx =,得42k =,∴2k =,∴这个正比例函数的解析式是2y x =.(2)设平移后所得直线的解析式是y =2x +b ,把(0,4)代入得:4=b ,∴y =2x +4.答:平移后所得直线的解析式是y =2x +4.22.已知一次函数的图象与正比例函数23y x =-的图象平行,且经过点()04,.(1)求一次函数的解析式;(2)若点()8M m -,和()5N n ,在一次函数的图象上,求m ,n 的值.【答案】(1)243y x =-+;(2)283m =;32n =-.【解析】设一次函数的解析式为y=kx+b ,∵一次函数的图象与正比例函数23y x =-的图象平行,∴k=23-,∵一次函数图象经过点(0,4),∴b=4,∴一次函数的解析式为y=23-x+4.(2)∵点()8M m -,和()5N n ,在一次函数的图象上,∴m=23-×(-8)+4=283,5=23-n+4,解得:m=283,n=32-.23.已知一次函数y =-x +3与x 轴,y 轴分别交于A ,B 两点.(1)求A ,B 两点的坐标.(2)在坐标系中画出一次函数y =-x +3的图象,并结合图象直接写出y <0时x 的取值范围.【答案】(1)()3,0A ,()0,3B (2)作图见解析,3x >【解析】(1)令0x =,则3y =,故()0,3B 令0y =,则03x =-+,故()3,0A .(2)如图所示,即为所求,根据图象可得y <0时,3x >.24.如图,直线AB 与x 轴相交于点(3,0)A ,与y 轴相交于点(0,4)B ,点C 是直线AB 上的一个动点.(1)求直线AB 的函数解析式;(2)若AOC ∆的面积是3,求点C 的坐标.【答案】(1)443y x =-+;(2)点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.【解析】解:(1)设直线AB 的解析式为y kx b =+.∵直线过点(3,0)A 和点(0,4)B ,∴30,4.k b b +=⎧⎨=⎩解得4,34.k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为443y x =-+.(2)∵(3,0)A ,∴3AO =,∵AOC ∆的面积是3,∴AOC ∆边OA 上的高为2,∴点C 的纵坐标为2或-2,∵点C 为直线AB 上的点,当4423x -+=时,解得32x =;当4423x -+=-时,解得92x =.∴当AOC ∆的面积是3时,点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.25.在平面直角坐标系中,一次函数122y x =-+的图象交x 轴、y 轴分别于A B 、两点,交直线y kx =于P 。

(完整版)一次函数的图像和性质练习题(可编辑修改word版)

(完整版)一次函数的图像和性质练习题(可编辑修改word版)

一次函数的图像和性质练习题一、填空题1.正比例函数y=kx(k≠0)一定经过点,经过(1,),一次函数y=kx+b(k≠0)经过(0,)点,( ,0) 点.2.直线y =-2x + 6 与x 轴的交点坐标是,与 y 轴的交点坐标是。

与坐标轴围成的三角形的面积是。

3.若一次函数y =mx - (4m - 4) 的图象过原点,则m 的值为.4.如果函数y=x-b的图象经过点P(0,1),则它经过x轴上的点的坐标为.5.一次函数y =-x + 3 的图象经过点(,5)和(2,)6.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)y 随x 的增大而减小.请你写出一个满足上述条件的函数7.在同一坐标系内函数y=2x 与y=2x+6 的图象的位置关系是.8.若直线y=2x+6 与直线y=mx+5 平行,则m= .9.在同一坐标系内函数y=a x+b与y=3x+2平行,则a,b的取值范围是.10.将直线 y= -2x 向上平移 3 个单位得到的直线解析式是,将直线 y= -2x 向下移 3 个单得到的直线解析式是.将直线 y= -2x+3 向下移 2 个单得到的直线解析式是.11.直线y =kx +b 经过一、二、三象限,则k 0,b 0,经过二、三、四象限,则有k 0,b 0,经过一、二、四象限,则有k 0,b 0.12.一次函数y = (k - 2)x + 4 -k 的图象经过一、三、四象限,则k 的取值范围是.13.如果直线y = 3x +b 与y 轴交点的纵坐标为-2 ,那么这条直线一定不经过第象限.14.已知点A(-4,a),B(-2,b)都在一次函数y=1 x+k(k为常数)的图像上,则a与b的大小关2系是a b(填”<””=”或”>”)15.一次函数 y=kx+b 的图象如图所示,看图填空:(1)当x=0时,y=;当x=时,y=0.(2)k= ,b= .(3)当x=5 时,y= ;当y=30 时,x= .二、选择题1.已知函数y = (m + 3)x - 2 ,要使函数值y 随自变量x 的增大而减小,则m 的取值范围是()A.m ≥-3 B.m >-3 C.m ≤-3 D.m <-322. 已知直线 y = kx + b ,经过点 A (x 1,y 1 ) 和点 B (x 2,y 2 ) ,若k < 0 ,且 x 1 < x 2 ,则 y 1 与 y 2 的大小关系是()A. y 1 > y 2B. y 1 < y 2 C. y 1 = y 2D.不能确定3. 若直线 y = mx - 2m - 3 经过第二、三、四象限,则m 的取值范围是()A. m < 32B. - 3< m < 02 C. m > 32 D. m > 04. 一次函数 y = 3x -1 的图象不经过()A.第一象限B.第二象限 C.第三象限 D.第四象限5.如果点 P (a ,b )关于 x 轴的对称点 p ,在第三象限,那么直线 y =a x +b 的图像不经过 ( ) A.第一象限B.第二象限C.第三象限D.第四象限6.若一次函数 y =k x +b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限B.第二象限C.第三象限D.第四象限7. 下列图象中不可能是一次函数 y = mx - (m - 3) 的图象的是()A.B .C.D.8. 两个一次函数 y 1 =ax + b 与 y 2 = bx + a ,它们在同一直角坐标系中的图象可能是()1xA.B .三、解答题1x2C.D.1.已知一次函数 y =(3-k )x -2k +18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与 y 轴的交点在 x 轴的上方; (4) k 为何值时,它的图像平行于直线 y =-x ; (5) k 为何值时,y 随 x 的增大而减小.2. 设一次函数 y = kx + b (k ≠ 0) ,当 x = 2 时, y = -3 ,当 x = -1 时, y = 4 。

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)基础闯关全练1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校的路程s(单位:m)与时间t(单位:min )之间函数关系的大致图象是()A. B. C. D.2.某日上午,静怡同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,静怡立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,静怡继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.3.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速骑行1.5小时后,其中一辆自行车出现故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,骑行1小时后到达目的地,请在如图19-1-2-1所示的平面直角坐标系中画出符合他们骑行的路程s(千米)与骑行时间t (小时)之间的函数图象.4.已知两个变量x和y它们之间的3组对应值如下表所示:x -1 0 1y -1 1 3则y与x对应的函数关系可能是()A.y=x B.y=2x+1 C.y=x²+x+1 D.y=x35.商场进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x(米)与售价y(元)如下表:数量x(米) 1 2 3 4 …售价y(元)8+0.3 16+0.624+0.932+1.2…下列用数量x(米)表示售价y(元)的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x能力提升全练1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始时领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行,最终赢得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.2.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图19-1-2-2反映了这个过程中,小明离家的距离y与时间x之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min3.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x … 1 2 3 5 7 9 …y … 1.983.952.63 1.581.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图19-1-2-3,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象:(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:____________________.三年模拟全练一、选择题1.如图19-1-2-4,在矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D后运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间的函数关系的图象是()A. B. C. D.2.一支蜡烛长20 cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度y(cm)与燃烧时间x(h)之间的函数关系的图象大致为()A. B. C. D.二、填空题3.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图19-1-2-5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是_______分钟.4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y (千米)与慢车行驶的时间t(小时)之间的函数图象如图19-1-2-6所示,则两车相遇时距甲地_______千米.五年中考全练一、选择题1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C. D.2.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定的高度,如图19-1-2-7所示,则下列选项能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A .B .C .D .3.甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y( km)与时间x(h)之间的函数关系如图19-1-2-8所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:504.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图19-1-2-9所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有 ( )A.1个 B.2个 C.3个 D.4个二、填空题5.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的函数关系如图19-1-2-10所示(小玲和妈妈上、下楼以及妈妈将学习用品交给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_______米.核心素养全练1.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图19-1-2-11所示,中国创新综合排名全球第22,创新效率排名全球第_______.2.小红帮弟弟荡秋千(如图19-1-2-12a),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图19-1-2-12b所示.(1)根据函数的定义,请判断变量h是不是关于t的函数.(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义:②秋千摆动第一个来回需多少时间?3.图19-1-2-13①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),若0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间);北京时间7:30 _______ 2:50首尔时间_______12:15 ________(2)图19-1-2-13②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?19.1.2 函数的图象1.B小刚从家到学校的路程s(m)应随他行走的时间t(min)的增大而增大,因而选项A一定错误;而在等车的时候离家的路程不变,因此C、D错误;所以能反映小刚从家到学校行走路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B,故选B.2.C接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上升得快,综合这些信息可知答案为C.3.解析由题意可知,共骑行2.5小时走完全程50千米,所以前1.5小时走了30千米,修车用了0.5小时后继续骑行1小时,走了20千米,由此作图如图所示.4.B将3组x、y的对应值分别代入A、B、C、D四个选项中的函数关系式,都成立的是选项B.5.B依题意得y=(8+0.3)x.故选B.1.B乌龟匀速爬行,兔子因在比赛中间睡觉,导致开始时领先,最后输掉比赛,所以线段表示乌龟比赛中路程与时间的关系,折线表示兔子比赛中路程与时间的关系,跑到终点兔子用的时间多于乌龟所用的时间.A中,乌龟用时多,不合题意:C中,兔子和乌龟用时相同,不合题意;D中,乌龟虽然用时少,但图象显示比赛一开始,乌龟就领先,不合题意,只有B选项符合题意.2.B吃早餐用的时间为25-8=17 min,故选项A错误:食堂到图书馆距离应为0.8-0.6=0.2 km,故选项C 错误;小明从图书馆回家的速度应为108.0=0.08 km/min,故选项D错误,故选B.3.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①1.98.②当x>2时,y随x的增大而减小.一、选择题1.A △APM的面积随x的变化而变化,当点P由A到B,即x由0到1时,y匀速增大至最大值1,当点P由B到C,即x由1到3时,y取得最大值0.5且不变;当点P由C到D,即x由3到4时,y匀速减小.故选A.2.C 由题意,得y=20-5x.∵O≤y≤20,∴ 0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段,当x=0时,y=20;当x=4时,y=0.故选C . 二、填空题 3.答案15解析 根据图象可知上班时走平路、上坡路和下坡路的速度分别为215131和、(千米/分钟),且平路长度为1千米,A ,B 之间距离为1千米,B 与单位之间距离为2千米,所以他从单位到家门口需要的时间是2÷31121151÷+÷+=15(分钟).4.答案 220解析根据题意,结合图象得,OA 段表示两车同时同地同向往乙地行驶5小时后快车到达乙地,AB 段表示慢车继续行驶1小时,快车在乙地停留1小时,由此得慢车速度为(150-120)÷(5-4)=30千米/小时,设快车速度为x 千米/小时,则5x-30×5=150.解得x=60(千米/小时).甲乙两地之间的距离为5×60=300(千米),慢车行驶6小时后,快车准备从乙地返回,此时两车相距120千米,BC 段表示两车走这120千米直至相遇的情况,设6小时后再经过t 1.小时两车相遇,则30t ₁+60t ₁=120,解得t ₁=34,故慢车又行驶了30×34=40千米,所以此时两车相距甲地150+30+40=220千米. 一、选择题1.D 由题意可知,2x+y=10,根据“三角形任意两边之和大于第三边”可得2x >y 且2x <10,解得2.5<x <5,故选D .2.C 因为铁块在水中受到浮力的影响,所以铁块上底面离开水面前读数y 不变,铁块上底面离开水面后y 逐渐增大,铁块下底面离开水面后y 不变.3.B 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h .所以速度为40÷1=40(km/h),故行驶后一半路程的速度是40+20=60( km/h),所以行驶后一半路程所用的时间为40÷60=32(h),因为32h=32×60=40 min ,所以该车一共行驶了1小时40分钟到达乙地,故到达乙地的时间是当天上午10:40.4.A 由图象知,甲4分钟步行了240米,∴甲步行的速度为4240=60(米/分),∴结论①正确;∵乙用了16-4=12分钟迫上甲,乙步行的速度比甲快12240=20(米/分),∴乙步行的速度为60+20=80米/分,∴结论③不正确;∴甲走完全程需要602400=40分钟,乙走完全程需要802400=30分钟,∴结论②不正确,∴乙到达终点时,甲用了34分钟,甲还有40-34=6分钟到达终点,离终点还有60×6=360米,∴结论④不正确.故选A . 二、填空题 5.答案200解析由图可知,小玲用30分钟从家里步行到距家1 200米的学校,因此小玲的速度为40米/分;妈妈在小玲步行10分钟后从家时出发,用5分钟追上小玲,因此妈妈的速度为40×15÷5=120米/分,故妈妈返回家时的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x=40×15,解得x=10,此时小玲已行走了25分钟,共步行了25×40=1 000米,所以距离学校还有1200-1000=200(米). 1.答案3解析从图①可知,创新综合排名全球第22,对应创新产出排名全球第11;从图②可知,创新产出排名全球第11,对应创新效率排名全球第3.2.解析(1)∵对于每一个摆动时间t ,都有唯一一个确定的h 值与其对应,∴变量h 是关于t 的函数.(2)①由题图b 知,当t=0.7时,h=0.5 m ,它的实际意义是秋千摆动0.7 s 时,距离地面的高度为0.5 m .②由题图b 知,秋千摆动第一个来回需2.8 s .3.解析(1)从题图①看出,同一时刻,首尔时间比北京时间早1小时,所以,y 关于x 的函数表达式是y=x+1,O ≤x ≤12.填表如下: 北京时间 7:30 11:15 2:50首尔时8:30 12:15 3:50(2)设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,结合(1)可得,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.。

(完整版)函数图像练习题

(完整版)函数图像练习题

函数图像练习题 1、小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )2、某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离与时间的关系的大致图象是( )3、如图,扇形OAB 动点P 从点A 出发,沿线段B0、0A 匀速运动到点A ,则0P 的长度y 与运动时间t 之间的函数图象大致是( )4、某人进行登山活动,从山脚到山顶,休息一会儿又沿原路返回。

若用横轴表示时间t ,纵轴表示与山脚距离h ,那么反映全程h 与t 的关系的图是( )5.甲、乙两人在一次赛跑中,路程s (米)与所用时间t (秒)的关系如图所示,则下列说法正确的是( )A .甲比乙先出发 B .乙比甲跑的路程多C .甲先到达终点D .甲、乙两人的速度相同6.“龟兔赛跑”讲述了这样一个故事:“领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当醒来时,发现乌龟快到达终点了,于是,急忙追赶,但为时已晚,乌龟还是先到达了终点.……”用s 1,s 2分别表示乌龟和兔子的行程,t 为时间,则下列图象中与故事情节相吻合的图象是( )7. 如图是古代计时器----“漏壶”的示意图在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间。

用x 表示时间,y 表示壶底到水面的高度,下面的哪个图象适合表示一小段时间内y 与x 的函数关系?8、如图所示的曲线,哪个表示y是x 的函数( )y x y x y xy x9.如图所示,一枝蜡烛上细下粗,设这枝蜡烛点燃后剩下的长度为h,点燃时间为t,则能大致刻画出h与t之间函数关系的图象是()10.柿子熟了,从树上落下来,可以大致刻画出柿子下落过程中的速度变化情况的图象是()11.小明家距学校m千米,一天他从家上学,先以a千米/时的速度跑步,后以b千米/时的速度步行,到达学校共用n小时。

第7节 函数的图象(经典练习及答案详解)

第7节 函数的图象(经典练习及答案详解)

第7节函数的图象知识梳理1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换y=f(x)的图象y=-f(x)的图象;y=f(x)的图象y=f(-x)的图象;y=f(x)的图象y=-f(-x)的图象;y=a x(a>0,且a≠1)的图象y=log a x(a>0,且a≠1)的图象.(3)伸缩变换(4)翻折变换1.记住几个重要结论(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称.(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.而言,如果x的系数不是1,常需把系数提出2.图象的左右平移仅仅是相对于...x.来,再进行变换.而言的,利用“上加下减”进行.3.图象的上下平移仅仅是相对于...y.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.()(2)函数y=af(x)与y=f(ax)(a>0且a≠1)的图象相同.()(3)函数y=f(x)与y=-f(x)的图象关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.()答案(1)×(2)×(3)×(4)√解析(1)令f(x)=-x,当x∈(0,+∞)时,y=|f(x)|=x,y=f(|x|)=-x,两者图象不同,(1)错误.(2)中两函数当a≠1时,y=af(x)与y=f(ax)是由y=f(x)分别进行横坐标与纵坐标伸缩变换得到,两图象不同,(2)错误.(3)y=f(x)与y=-f(x)的图象关于x轴对称,(3)错误.2.(多选题)若函数y=a x+b-1(a>0,且a≠1)的图象经过第一、三、四象限,则下列选项中正确的有()A.a>1B.0<a<1C.b>0D.b<0答案AD解析因为函数y=a x+b-1(a>0,且a≠1)的图象经过第一、三、四象限,所以其大致图象如图所示.由图象可知函数为增函数,所以a>1,当x=0时,y=1+b-1=b<0,故选AD.3.在2 h内将某种药物注射进患者的血液中,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减,能反映血液中药物含量Q随时间t变化的图象是()答案B解析依题意知,在2 h内血液中药物含量Q持续增加,停止注射后,Q呈指数衰减,图象B适合.4.(2019·全国Ⅰ卷)函数f(x)=sin x+xcos x+x2在[-π,π]的图象大致为()答案D解析 ∵f (-x )=sin (-x )-x cos (-x )+(-x )2=-f (x ),且x ∈[-π,π],∴f (x )为奇函数,排除A.当x =π时,f (π)=π-1+π2>0,排除B ,C ,只有D 满足. 5.(2021·长沙检测)已知图①中的图象对应的函数为y =f (x ),则图②中的图象对应的函数为( )A.y =f (|x |)B.y =f (-|x |)C.y =|f (x )|D.y =-|f (x )|答案 B解析 观察函数图象可得,②是由①保留y 轴左侧及y 轴上的图象,然后将y 轴左侧图象翻折到右侧所得,结合函数图象的对称变换可得变换后的函数的解析式为y =f (-|x |).6.(2020·重庆联考)已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.答案 (2,8]解析 当f (x )>0时,函数g (x )=log 2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8].考点一 作函数的图象【例1】作出下列函数的图象: (1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|;(3)y =x 2-2|x |-1.解 (1)先作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,再作出y =⎝ ⎛⎭⎪⎫12x的图象中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象,如图①实线部分.(2)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.(3)∵y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图③.感悟升华 1.描点法作图:当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.2.图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.【训练1】分别作出下列函数的图象: (1)y =sin |x |;(2)y =2x -1x -1. 解 (1)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,图象关于y 轴对称,其图象如图①.(2)y =2x -1x -1=2+1x -1,故函数的图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位得到,如图②所示. 考点二 函数图象的辨识1.(2020·浙江卷)函数y =x cos x +sin x 在区间[-π,π]的图象大致为( )答案 A解析 因为f (x )=x cos x +sin x ,则f (-x )=-x cos x -sin x =-f (x ),又x ∈[-π,π],所以f (x )为奇函数,其图象关于坐标原点对称,则C ,D 错误.且x =π时,y =πcos π+sin π=-π<0,知B 错误;只有A 满足. 2.(2021·重庆诊断)函数f (x )=x cos ⎝ ⎛⎭⎪⎫x -π2的图象大致为( )答案 A解析 根据题意,f (x )=x cos ⎝ ⎛⎭⎪⎫x -π2=x sin x ,定义域为R ,关于原点对称.有f (-x )=(-x )sin(-x )=x sin x =f (x ),即函数y =f (x )为偶函数,排除B ,D.当x ∈(0,π)时,x >0,sin x >0,有f (x )>0,排除C.只有A 适合. 3.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,log 13x ,x >1,则函数y =f (1-x )的大致图象是( )答案 D解析 法一先画出函数f (x )=⎩⎨⎧3x ,x ≤1,log 13x ,x >1的草图,令函数f (x )的图象关于y 轴对称,得函数f (-x )的图象,再把所得的函数f (-x )的图象,向右平移1个单位,得到函数y =f (1-x )的图象(图略),故选D.法二 由已知函数f (x )的解析式,得y =f (1-x )=⎩⎨⎧31-x,x ≥0,log 13(1-x ),x <0,故该函数过点(0,3),排除A ;过点(1,1),排除B ;在(-∞,0)上单调递增,排除C.选D.4.函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A.f (x )=x +sin xB.f (x )=cos xxC.f (x )=x ⎝ ⎛⎭⎪⎫x -π2⎝ ⎛⎭⎪⎫x -3π2D.f (x )=x cos x 答案 D解析 从图象看,y =f (x )应为奇函数,排除C ; 又f ⎝ ⎛⎭⎪⎫π2=0,知f (x )=x +sin x 不正确;对于B,f(x)=cos xx ,得f′(x)=-x sin x-cos xx2,当0<x<π2时,f′(x)<0,所以f(x)=cos xx 在⎝⎛⎭⎪⎫0,π2上递减,B不正确;只有f(x)=x cos x满足图象的特征.感悟升华 1.抓住函数的性质,定性分析:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从周期性,判断图象的循环往复;(4)从函数的奇偶性,判断图象的对称性.2.抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题.考点三函数图象的应用角度1研究函数的性质【例2】(多选题)(2021·滨州一模)在平面直角坐标系xOy中,如图放置的边长为2的正方形ABCD沿x轴滚动(无滑动滚动),点D恰好经过坐标原点.设顶点B(x,y)的轨迹方程是y=f(x),则对函数y=f(x)的判断正确的是()A.函数y=f(x)是奇函数B.对任意的x∈R,都有f(x+4)=f(x-4)C.函数y=f(x)的值域为[0,22]D.函数y=f(x)在区间[6,8]上单调递增答案BCD解析由题意得,当-4≤x<-2时,点B的轨迹为以(-2,0)为圆心,2为半径的14圆;当-2≤x <2时,点B 的轨迹为以原点为圆心,22为半径的14圆; 当2≤x <4时,点B 的轨迹为以(2,0)为圆心,2为半径的14圆,如图所示; 以后依次重复,所以函数f (x )是以8为周期的周期函数.由图象可知,函数f (x )为偶函数,故A 错误;因为f (x )的周期为8,所以f (x +8)=f (x ),即f (x +4)=f (x -4),故B 正确; 由图象可知,f (x )的值域为[0,22],故C 正确;由图象可知,f (x )在[-2,0]上单调递增,因为f (x )在[6,8]的图象和在[-2,0]的图象相同,故D 正确.故选BCD.角度2 函数图象在不等式中的应用【例3】 (1)若函数f (x )=log 2(x +1),且a >b >c >0,则f (a )a ,f (b )b ,f (c )c 的大小关系是( ) A.f (a )a >f (b )b >f (c )c B.f (c )c >f (b )b >f (a )a C.f (b )b >f (a )a >f (c )cD.f (a )a >f (c )c >f (b )b(2)(2020·北京卷)已知函数f (x )=2x -x -1,则不等式f (x )>0的解集是( ) A.(-1,1) B.(-∞,-1)∪(1,+∞) C.(0,1)D.(-∞,0)∪(1,+∞)答案 (1)B (2)D解析 (1)由题意可得,f (a )a ,f (b )b ,f (c )c 分别看作函数f (x )=log 2(x +1)图象上的点(a ,f (a )),(b ,f (b )),(c ,f (c ))与原点连线的斜率.结合图象可知,当a >b >c >0时,f (a )a <f (b )b <f (c )c .(2)在同一平面直角坐标系中画出h (x )=2x ,g (x )=x +1的图象如图.由图象得交点坐标为(0,1)和(1,2). 又f (x )>0等价于2x >x +1, 结合图象,可得x <0或x >1.故f (x )>0的解集为(-∞,0)∪(1,+∞).故选D.角度3 求参数的取值范围【例4】 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.(2)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________. 答案 (1)(0,1) (2)(0,1)∪(9,+∞)解析 (1)画出分段函数f (x )的图象如图所示,结合图象可以看出,若f (x )=k 有两个不同的实根,也即函数y =f (x )的图象与y =k 有两个不同的交点,k 的取值范围为(0,1). (2)设y 1=f (x )=|x 2+3x |,y 2=a |x -1|.在同一直角坐标系中作出y 1=|x 2+3x |, y 2=a |x -1|的图象如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点,且4个交点的横坐标都小于1,所以①⎩⎪⎨⎪⎧y =-x 2-3x ,y =a (1-x )(-3<x <0)有两组不同解.消去y 得x 2+(3-a )x +a =0,该方程有两个不等实根x 1,x 2,∴⎩⎪⎨⎪⎧Δ=(3-a )2-4a >0,-3<a -32<0,(-3)2+(3-a )×(-3)+a >0,02+(3-a )×0+a >0,∴0<a <1.②⎩⎪⎨⎪⎧y =x 2+3x ,y =a (x -1)(x >1)有两组不同解. 消去y 得x 2+(3-a )x +a =0有两不等实根x 3、x 4, ∴Δ=a 2-10a +9>0,又∵x 3+x 4=a -3>2,x 3x 4=a >1, ∴a >9.综上可知,0<a <1或a >9.感悟升华 1.利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.2.利用函数的图象可解决某些方程和不等式的求解问题,方程f(x)=g(x)的根就是函数f(x)与g(x)图象交点的横坐标;不等式f(x)<g(x)的解集是函数f(x)的图象位于g(x)图象下方的点的横坐标的集合,体现了数形结合思想.【训练2】(1)设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.(2)(2020·徽州一中期中)已知奇函数f(x)在x≥0时的图象如图所示,则不等式xf(x)<0的解集为________.(3)(多选题)(2021·淄博模拟)关于函数f(x)=|ln|2-x||,下列描述正确的有()A.函数f(x)在区间(1,2)上单调递增B.函数y=f(x)的图象关于直线x=2对称C.若x1≠x2,但f(x1)=f(x2),则x1+x2=4D.函数f(x)有且仅有两个零点答案(1)[-1,+∞)(2)(-2,-1)∪(1,2)(3)ABD解析(1)如图作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知,当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a的取值范围是[-1,+∞).(2)∵xf(x)<0,∴x和f(x)异号,由于f(x)为奇函数,补齐函数的图象如图.当x∈(-2,-1)∪(0,1)∪(2,+∞)时,f(x)>0,当x∈(-∞,-2)∪(-1,0)∪(1,2)时,f(x)<0,∴不等式xf(x)<0的解集为(-2,-1)∪(1,2).(3)函数f(x)=|ln|2-x||的图象如图所示,由图可得,函数f(x)在区间(1,2)上单调递增,A正确;函数y=f(x)的图象关于直线x=2对称,B正确;若x1≠x2,但f(x1)=f(x2),则x1+x2的值不一定等于4,C错误;函数f(x)有且仅有两个零点,D正确.函数图象的活用直观想象是发现和提出问题,分析和解决问题的重要手段,在数学研究的探索中,通过直观手段的运用以及借助直观展开想象,从而发现问题、解决问题的例子比比皆是,并贯穿于数学研究过程的始终,而数形结合思想是典型的直观想象范例.一、根据函数图象确定函数解析式【例1】(2021·长沙检测)已知某函数的图象如图所示,则下列函数中,与图象最契合的是()A.y =sin(e x +e -x )B.y =sin(e x -e -x )C.y =cos(e x -e -x )D.y =cos(e x +e -x )答案 D解析 由函数图象知,函数图象关于y 轴对称,∵y =sin(e x -e -x )为奇函数,图象关于原点对称,B 不正确; 又-1<f (0)<0,但sin 2>0,cos 0=1,故A ,C 不正确; 只有y =cos(e x +e -x )满足图象特征.故选D.素养升华 函数解析式与函数图象是函数的两种重要表示法,图象形象直观,解析式易于研究函数性质,可根据需要,相互转化.二、由图象特征研究函数性质求参数【例2】设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4,若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( ) A.(-∞,1] B.[1,4]C.[4,+∞)D.(-∞,1]∪[4,+∞) 答案 D解析 作出函数f (x )的图象如图所示,由图象可知,要使f (x )在(a ,a +1)上单调递增, 需满足a ≥4或a +1≤2. 因此a ≥4或a ≤1.素养升华 1.运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.2.图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.A级基础巩固一、选择题1.(2020·天津卷)函数y=4xx2+1的图象大致为()答案A解析令f(x)=4xx2+1,则f(x)的定义域为R,且f(-x)=-4xx2+1=-f(x),因此,函数为奇函数,排除C,D.当x=1时,f(1)=42=2>0,排除B.故选A.2.(2021·江南十校模拟)函数f(x)=x cos x2x+2-x在⎣⎢⎡⎦⎥⎤-π2,π2上的图象大致为()答案C解析根据题意,有f(-x)=-x cos x2x+2-x=-f(x),且定义域关于原点对称,则在⎣⎢⎡⎦⎥⎤-π2,π2上,f (x )为奇函数,其图象关于原点对称,排除A ,B ; 又在区间⎝ ⎛⎭⎪⎫0,π2上,x >0,cos x >0,2x >0,2-x >0,则f (x )>0,排除D ,只有C 适合.3.若函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可能是( )答案 D解析 由f (x )在R 上是减函数,知0<a <1.又y =log a (|x |-1)是偶函数,定义域是(-∞,-1)∪(1,+∞).∴当x >1时,y =log a (x -1)的图象由y =log a x 的图象向右平移一个单位得到.因此D 正确.4.下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( ) A.y =ln(1-x ) B.y =ln(2-x ) C.y =ln(1+x ) D.y =ln(2+x )答案 B解析 法一 设所求函数图象上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图象上,所以y =ln(2-x ).法二 由题意知,对称轴上的点(1,0)在函数y =ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A ,C ,D ,选B.5.(2021·豫北名校联考)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=3-2x ,则不等式f (x )>0的解集为( )A.⎝ ⎛⎭⎪⎫-32,32B.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫0,32 D.⎝ ⎛⎭⎪⎫-32,0∪⎝ ⎛⎭⎪⎫32,+∞ 答案 C解析 根据题意,f (x )是定义在R 上的奇函数,当x >0时,f (x )=3-2x ,可得其图象如图,且f (0)=0,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-32=0,则不等式f (x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫0,32.6.若函数f (x )=⎩⎨⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)=( ) A.-12 B.-54 C.-1D.-2答案 C解析 由图象知⎩⎪⎨⎪⎧ln (a -1)=0,b -a =3,得⎩⎪⎨⎪⎧a =2,b =5.∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1.故f (-3)=5-6=-1.7.(多选题)(2021·山东新高考模拟)对于函数f (x )=lg(|x -2|+1),下列说法正确的是( )A.f (x +2)是偶函数B.f (x +2)是奇函数C.f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D.f (x )没有最小值 答案 AC解析 f (x +2)=lg(|x |+1)为偶函数,A 正确,B 错误.作出f (x )的图象如图所示,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值0,C 正确,D 错误.8.若函数y =f (x )的图象的一部分如图(1)所示,则图(2)中的图象所对应的函数解析式可以是( )A.y =f ⎝ ⎛⎭⎪⎫2x -12B.y =f (2x -1)C.y =f ⎝ ⎛⎭⎪⎫12x -12D.y =f ⎝ ⎛⎭⎪⎫12x -1答案 B解析 函数f (x )的图象先整体往右平移1个单位,得到y =f (x -1)的图象,再将所有点的横坐标变为原来的12,得到y =f (2x -1)的图象. 二、填空题9.若函数y =f (x )的图象过点(1,1),则函数y =f (4-x )的图象一定经过点________. 答案 (3,1)解析 由于函数y =f (4-x )的图象可以看作y =f (x )的图象先关于y 轴对称,再向右平移4个单位长度得到.点(1,1)关于y 轴对称的点为(-1,1),再将此点向右平移4个单位长度为(3,1).所以函数y =f (4-x )的图象过定点(3,1).10.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________. 答案 -12解析 函数y =|x -a |-1的大致图象如图所示,∴若直线y =2a 与函数y =|x -a |-1的图象只有一个交点, 只需2a =-1,可得a =-12.11.使log 2(-x )<x +1成立的x 的取值范围是________. 答案 (-1,0)解析 在同一直角坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).12.已知函数f (x )在R 上单调且其部分图象如图所示,若不等式-2<f (x +t )<4的解集为(-1,2),则实数t 的值为________. 答案 1解析 由图象可知不等式-2<f (x +t )<4, 即f (3)<f (x +t )<f (0).又y =f (x )在R 上单调递减,∴0<x +t <3,不等式解集为(-t ,3-t ). 依题意,得t =1.B 级 能力提升13.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在f (x )的图象上;(2)点A ,B 关于原点对称,则称点对(A ,B )是函数f (x )的一个“和谐点对”,(A ,B )与(B ,A )可看作一个“和谐点对”.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x (x <0),2e x (x ≥0),则f (x )的“和谐点对”有( ) A.1个 B.2个C.3个D.4个答案 B解析 作出函数y =x 2+2x (x <0)的图象关于原点对称的图象(如图中的虚线部分),看它与函数y =2e x (x ≥0)的图象的交点个数即可,观察图象可得交点个数为2,即f (x )的“和谐点对”有2个.14.(2020·潍坊质检)已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,f (x +2)=f (x ),当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( ) A.0 B.0或-12 C.-14或12D.0或-14答案 D解析 因为f (x +2)=f (x ),所以函数f (x )的周期为2,如图所示:由图知,直线y =x +a 与函数f (x )的图象在区间[0,2]内恰有两个不同的公共点时,直线y =x +a 经过点(1,1)或与曲线f (x )=x 2(0≤x ≤1)相切于点A ,则1=1+a ,或方程x 2=x +a 只有一个实数根.所以a =0或Δ=1+4a =0,即a =0或a =-14.15.(多选题)(2021·日照模拟)设f (x )是定义在R 上的函数,若存在两个不相等的实数x 1,x 2,使得f ⎝ ⎛⎭⎪⎫x 1+x 22=f (x 1)+f (x 2)2,则称函数f (x )具有性质P .那么下列函数中,具有性质P 的函数为( ) A.f (x )=⎩⎪⎨⎪⎧1x ,x ≠0,0,x =0B.f (x )=|x 2-1|C.f (x )=x 3+xD.f (x )=2|x |答案 ABC解析 对于A ,在函数f (x )的图象上取A (-1,-1),B (0,0),C (1,1),有f (0)=f (-1)+f (1)2成立,故A 正确; 对于B ,在函数f (x )的图象上取A (-2,1),B (0,1),C (2,1),有f (0)=f (-2)+f (2)2成立,故B 正确; 对于C ,在函数f (x )的图象上取A (1,2),B (0,0),C (-1,-2),有f (0)=f (-1)+f (1)2成立,故C 正确; 对于D ,因为f (x )=2|x |,f (x 1)+f (x 2)2=2|x 1|+2|x 2|2≥2|x 1|·2|x 2|=2|x 1|+|x 2|2≥2|x 1+x 22|=f ⎝ ⎛⎭⎪⎫x 1+x 22,又x 1≠x 2,所以f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2恒成立,故D 错误.故选ABC.16.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则n m =________.答案 9解析 如图,作出函数f (x )=|log 3x |的图象,观察可知0<m <1<n且mn =1.若f (x )在[m 2,n ]上的最大值为2,从图象分析应有f (m 2)=2,∴log 3m 2=-2,∴m 2=19.从而m =13,n =3,故n m =9.。

初中数学一次函数的图像专项练习30题(有答案)ok

初中数学一次函数的图像专项练习30题(有答案)ok

一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y 1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( ) A .过点(0,3),(0,﹣)的直线 B .过点(1,5),(0,﹣)的直线C .过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( ) A . B . C . D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( ) A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( ) A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B .C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。

人教版八年级数学下册函数第3课时函数的图象同步练习

人教版八年级数学下册函数第3课时函数的图象同步练习

人教版八年级数学下册函数第3课时函数的图象同步练习第3课时函数的图象基础训练知识点1函数的图象1.下列图象不能表示y是x的函数的是()2.下列四个函数图象中,当x>0时,y随x的增大而减小的是()3.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为-3 ℃B.14时气温最高为8 ℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降4.甲﹨乙两人在操场上赛跑,他们赛跑的路程s(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲﹨乙两人进行1 000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲﹨乙两人跑过的路程相等D.甲先到达终点5.(2016·安徽)一段笔直的公路AC长20 km,途中有一处休息点B,AB长15 km,甲﹨乙两名长跑爱好者同时从点A出发,甲以15 km/h的速度匀速跑至点B,原地休息0.5 h后,再以10 km/h的速度匀速跑至终点C;乙以12 km/h的速度匀速跑至终点C,之后休息.下列选项中,能正确反映甲﹨乙两人出发后2 h内的运动路程y(km)与时间x(h)之间的函数关系的图象是()6.(2016·贵阳)星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续匀速走了60 min后回家,图中的折线段OA—AB—BC 表示她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线的是()知识点2用描点法画函数的图象7.已知点A(2,3)在函数y=ax2-x+1的图象上,则a=()A.1B.-1C.2D.-28.画出函数y=2x-1的图象.(1)列表:x …-1 0 1 …y …-3 -1 1 …(2)描点并连线;(3)判断点A(-3,-5),B(2,-3),C(3,5)是否在函数y=2x-1的图象上;(4)若点P(m,9)在函数y=2x-1的图象上,求出m的值.易错点画函数图象时易忽视自变量的取值范围导致出错9. 某蜡烛原长20 cm,点燃后每小时燃烧5 cm,求剩余的蜡烛长度y(cm)与点燃的时间x(h)之间的函数解析式,并画出函数的图象.提升训练考查角度1利用描点法画函数的图象(描点法)10.(1)画出函数y=x2的图象;(2)画出函数y=x+1的图象;(3)试判断点(-3,-2)是否在上述函数图象上.考查角度2利用图象与情景间的关系互化11.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别为________;(填写序号)(2)请你为剩下的函数图象写出一个适合的情境.探究培优拔尖角度1利用图象反映的信息说明其数学意义12.已知某一函数的图象如图所示,根据图象回答下列问题: (1)确定自变量的取值范围.(2)当x=-4,-2,4时,y的值分别是多少?(3)当y=0,4时,x的值分别是多少?(4)当x取何值时,y的值最大?当x取何值时,y的值最小?(5)当x的值在什么范围内时,y随x的增大而增大?当x的值在什么范围内时,y随x的增大而减小?拔尖角度2利用图象反映的信息说明其实际意义13.某天早晨,张强从家跑步去体育场锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象.根据图象信息解答下列问题:(1)求张强返回时的速度.(2)妈妈比按原速返回提前多少分到家?(3)请直接写出张强与妈妈何时相距1 000米.参考答案1.【答案】C2.【答案】B3.【答案】C解:A.∵由图象可知,在凌晨4时函数图象在最低点,∴凌晨4时气温最低为-3 ℃,故本选项正确;B.∵由图象可知,在14时函数图象在最高点,∴14时气温最高为8 ℃,故本选项正确;C.∵由图象可知,从4时至14时,气温随时间增长而上升,不是从0时,故本选项错误;D.∵由图象可知,14时至24时,气温随时间增长而下降,故本选项正确.故选C.4.【答案】C解:观察函数图象可知:甲﹨乙两人进行1 000米赛跑;甲在前2.5分钟内,比乙慢,而在后面的时间内比乙快;甲跑完全程用时3.25分钟,乙跑完全程用时4分钟,所以甲先到达终点;比赛到2分钟时,甲跑的路程是500米,乙跑的路程是600米,两人跑过的路程不相等,综上可知选项A,B,D正确,选项C错误.5.【答案】A6.【答案】B解:根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.7.【答案】A8.解:(2)如图.(3)当x=-3时,y=2×(-3)-1=-7≠-5;当x=2时,y=2×2-1=3≠-3;当x=3时,y=2×3-1=5.∴点A,B不在函数y=2x-1的图象上,点C在其图象上.(4)∵点P(m,9)在函数y=2x-1的图象上,∴2m-1=9,解得m=5.9.解:根据题意得y=20-5x(0≤x≤4).函数图象如图.10.分析:(1)用描点法(即列表﹨描点﹨连线的方法)画出该函数的图象即可.因为自变量x的取值范围为全体实数,所以在列表时可在x=0的两侧对称地取x的值,然后计算出相应的y的值;(2)同(1)的方法画出即可;(3)将点(-3,-2)的坐标分别代入这两个函数解析式中,看它是否满足这两个函数解析式.解:(1)取自变量的一些值,例如:x=…,-3,-2,-1,0,1,2,3,…,计算出相应的函数值,可列表如下:x …-3 -2 -1 0 1 2 3 …y … 4.5 2 0.5 0 0.5 2 4.5 …由这一系列的对应值,可以得到一系列的有序实数对:…,(-3,4.5),(-2,2),(-1,0.5),(0,0),(1,0.5),(2,2),(3,4.5),….在直角坐标系中,描出这些有序实数对的对应点,用平滑的曲线依次把这些点连接起来,便可得到这个函数的图象,如图①. (2)取自变量的一些值,例如:x=…,-2,-1,0,1,2,…,计算出对应的函数值,可列表如下.x …-2 -1 0 1 2 …y …-1 0 1 2 3 …由这一系列的对应值,可以得到一系列的有序实数对:…,(-2,-1),(-1,0),(0,1),(1,2),(2,3),….在直角坐标系中,描出这些有序实数对的对应点,然后用线连接起来,便可得到这个函数的图象,如图②.(3)将x=-3代入y=x2,得y=×(-3)2=≠-2,所以点(-3,-2)不在函数y=x2的图象上;将x=-3代入y=x+1,得y=-3+1=-2,所以点(-3,-2)在函数y=x+1的图象上.11.解:(1)③,①(2)小芳离开家走了一段路程后来到了一个报亭,在报亭读了一段时间报后,按原路返回家(答案不唯一).12.解:(1)-4≤x≤4.(2)y的值分别是2,-2,0.(3)当y=0时,x的值是-3,-1或4;当y=4时,x的值是1.5.(4)当x=1.5时,y的值最大;当x=-2时,y的值最小.(5)当-2≤x≤1.5时,y随x的增大而增大;当-4≤x≤-2或1.5≤x≤4时,y 随x的增大而减小.13.解:(1)张强返回时的速度是3 000÷(50-30)=150(米/分).(2)妈妈原来的速度是=50(米/分);妈妈提前回家的时间是-50=10(分).(3)分,分,35分.11 / 11。

函数的图像练习题

函数的图像练习题

17.2 函数的图像一、单选题1.一根蜡烛长20cm ,点燃后每时燃烧5cm ,燃烧时剩下的高度h (厘米)与时间t (时)之间的关系图是( )A .B .C .D .2.如图,在平面直角坐标系中,正方形ABCD 的顶点分别为()1,1A 、()1,1B -、()1,1C --、()11D -,,y 轴上有一点()0,2P .作点P 关于点A 的对称点1P ,作点1P 关于点B 的对称点2P ,作点2P 关于点C 的对称点3P ,作点3P 关于点D 的对称点4P ,作点4P 关于点A 的对称点5P ,作点5P 关于点B 的对称点6P ……按如此操作下去,则点2019P 的坐标为( ).A .()0,2B .()2,0C .()0,2-D .()2,0-3.如图,在平面直角坐标系中,点A 在第一象限,OA 与x 轴的夹角为60︒,点P 是x 轴上动点,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有( )A .2个B .3个C .4个D .6个4.在平面直角坐标系中,下列各点位于第四象限的是( ) A .()2019,2020- B .()2019,2020C .()2019,2020--D .()2019,2020-5.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S 与时间t 之间函数关系的是( )A .B .C .D .6.已知直角坐标系中,点324,2x A x -⎛⎫+ ⎪⎝⎭在第四象限,则x 的取值范围( )A .23x <<B .23x -<<C .34x <<D .3x >7.已知点()1,2P m m --在y 轴上,则m 的值是( ) A .1B .2C .-1D .-28.已知点P 的坐标为()3,2-,则点P 到y 轴的距离是( ) A .2B .3C .3-D .2-9.已知点()1,4P a -在第二象限,则a 的取值范围正确的是( ) A .1a >B .1a ≥C .1a ≤D .1a <10.如图所示,半径为2的圆和边长为5的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过的时间为t ,圆与正方形重叠部分(阴影部分)的面积为S ,则S 与t 的函数关系式的大致图象为( )A .B .C .D .二、填空题11.如果点P 在第四象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为 . 12.如图,在平面直角坐标系中,动点P 按图中箭头所示方向依次运动,第1次从点()1,0-运动到点()0,1,第2次运动到点()1,0,第3次运动到点()2,2-,…按这样的运动规律,动点P 第2024次运动到点 .13.在平面直角坐标系中,已知点M (m ﹣1,2m +3)在第二象限,则m 的取值范围是 . 14.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换: ①()(),,a b a b ∆=-;①(),a b O (),a b =--;①()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于 .15.在平面直角坐标系中,如果AB y ∥轴,点A 的坐标为()3,4-,且5AB =,那么点B 的坐标为 . 16.如图,在平面直角坐标系中有一个点1,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A ,…,依照此规律跳动下去,点A 第2023次跳动到点2023A 的坐标为17.对于平面直角坐标系xOy 中的点P (a ,b ),若点P ′的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P ′为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P ′(1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P ′点.且线段PP '的长度为线段OP 长度的3倍,则k 的值 .18.在平面直角坐标系中,点(﹣4,4)在第 象限.19.若点P (a ,b )在第四象限,则点Q (-a ,b -1)在第 象限. 20.点()3,1P a a ++到x 轴距离为3,则点P 到y 轴的距离为 .三、解答题21.2023年前10月,陕西省新能源汽车产量已达82.9万辆,同比增长40.5%,并且全省新能源汽车的“版图”仍在加速扩张中,如图是小明在观察自家购买的某型号新能源纯电动汽车充满电后行驶里程,绘制的蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象,根据图象回答下列问题:(1)当0150x ≤≤时,求汽车每消耗1千瓦时用电量能行驶的路程; (2)求当汽车已行驶180千米时,蓄电池的剩余电量.22.甲、乙两人参加从A 地到B 地的长跑比赛,两人在比赛时所跑的路程y (米)与时间x (分钟)之间的函数关系如图所示,请你根据图象,回答下列问题:(1)____________先到达终点(填“甲”或“乙”);甲的速度是____________米/分钟; (2)甲与乙何时相遇?23.在全民健身环城越野赛中,甲乙两位选手都完成了比赛,甲的行程s (千米)随时间t (小时)变化的图象(全程)如图所示;乙的行程s (千米)随时间t (小时)的函数解析式为10S t =(02t ≤≤).(1)在图中画出乙的行程S (千米)随时间t (小时)的函数图象; (2)环城越野赛的全程是________千米; (3)甲前0.5小时的速度是________千米/小时;24.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y (单位:km )与行驶时间x (单位:h )的对应关系如图所示.(1)求快车和慢车的速度;(2)求出两车相遇后y 与x 之间的关系式; (3)何时两车相距300km ?25.一般来说,市面上某种水果出售量较多时,水果的价格就会降低.这时,将水果进行保鲜存储,等到价格上升之后再出售,可获得更高的出售收入.但是保鲜存储是有成本的,而且成本会随着时间的延长而增大,因此出售水果获得的收益要从出售价格中扣除保鲜存储成本.某水果公司的调研小组收集到去年一段时间内某种水果当日每千克的出售价格和保鲜存储成本的部分数据如下:设水果保鲜存储的时间为t 天(120t ≤≤),当日每千克水果出售价格为1y 元,每千克水果保鲜存储成本为2y 元.(1)根据表格中的数据,第8天每千克水果的收益为______元;(2)通过分析表格中的数据,发现1y ,2y 都可近似看作t 的函数,在平面直角坐标系xOy 中,描出表中各组数值所对应的点()1,t y ,并用平滑曲线连接这些点;(3)结合函数图象,将水果保鲜存储第______天至第______天(结果取整数)时,出售每千克水果所获得的收益超过4元.参考答案:1.B 2.D 3.A 4.D 5.B 6.B 7.A 8.B 9.D 10.B11.()34-,12.()20230,13.312m -<<14.()2,5-15.()3,1--或()3,9- 16.()1012,1012- 17.3± 18.二 19.三 20.1或521.(1)汽车每消耗1千瓦时用电量能行驶的路程为5千米 (2)当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时 22.(1)乙;250(2)甲与乙在12分钟时相遇. 23.(1)图略 (2)20 (3)16 (4)424.(1)快车的速度为90km/h ,慢车的速度为60km/h(2)两车相遇后y与x的关系式为20 150600432060103y x xy x x⎧⎛⎫=-≤<⎪⎪⎪⎝⎭⎨⎛⎫⎪=≤≤⎪⎪⎝⎭⎩(3)出发2h或6h时,两车相距300km 25.(1)7.3;(2)略(3)3,14。

人教版八年级数学下册 19.1.2函数的图像同步练习试题(含答案)

人教版八年级数学下册 19.1.2函数的图像同步练习试题(含答案)

人教版八年级数学下册第十九章19.1.2函数的图像同步练习题1.下列曲线中不能表示y是x的函数的是(C)A B C D2.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离s与时间t之间函数关系的是(B),A),B),C),D)3.如图是九年级某考生做的水滴入一个玻璃容器的示意图(滴水速度保持不变),能正确反映容器中水的高度(h)与时间(t)之间对应关系的大致图象是(D),A),B),C),D)4.如图是护士统计一位甲型H1N1流感疑似病人的体温变化图,这位病人在16时的体温约是(C)A.37.8 ℃B.38 ℃C.38.7 ℃D.39.1 ℃5.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是(C)A.体育场离林茂家2.5 kmB.体育场离文具店1 kmC.林茂从体育场出发到文具店的平均速度是50 m/minD.林茂从文具店回家的平均速度是60 m/min6.均匀地向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的(D),),A),B),C),D)7.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终赢得比赛,下列函数图象可以体现这一故事过程的是(B)8.下列各点在函数y=3x+2的图象上的是(B)A.(1,1) B.(-1,-1)C.(-1,1) D.(0,1)9.已知点A(2,3)在函数y=ax2-x+1的图象上,则a=(A)A.1 B.-1C.2 D.-210.在点P(3,-1),Q(-3,-1),R(-52,0),S(12,4)中,在函数y =-2x +5的图象上的点有(B )A .1个B .2个C .3个D .4个11.如图是济南市8月2日6:00~8月3日6:00的气温随时间变化的图象,根据图象可知:在这一天中,气温T(℃)是(填“是”或“不是”)时间t (h)的函数.12.已知点P(3,m),Q(n ,2)都在函数y =x +b 的图象上,则m +n =5. 13.如图是江津区某一天的气温随时间变化的图象,根据图象回答:在这一天中: (1)气温T(℃)是不是时间t (时)的函数? (2)12时的气温是多少?(3)什么时候气温最高,最高是多少?什么时候气温最低,最低是多少? (4)什么时候气温是4 ℃?解:(1)在气温T 随时间t 的变化过程中有两个变量T 和t ,并且对于t 的每一个值,变量T 都有唯一的值与它对应,符合函数的定义,所以气温T (℃)是时间t (时)的函数.(2)12时的气温是8 ℃.(3)14时的气温最高,是10 ℃;4时的气温最低,是-2 ℃. (4)8时,22时的气温是4 ℃.14.某气象站观察一场沙尘暴从发生到结束的全过程,开始时风速按一定的速度匀速增大,经过荒漠地时,风速增大得比较快.一段时间后,风速保持不变,当沙尘暴经过防风林时,其风速开始逐渐减小,最终停止.如图所示是风速与时间之间的关系的图象.结合图象回答下列问题:(1)沙尘暴从开始发生到结束共经历了多长时间?(2)从图象上看,风速在哪一个时间段增大得比较快,增大的速度是多少? (3)风速在哪一时间段保持不变,经历了多长时间? (4)风速从开始减小到最终停止,风速每小时减小多少?解:(1)沙尘暴从开始发生到结束共经历了41.2小时.(2)风速在5~12小时这个时间段增大得比较快,每小时增大38-1012-5=4(千米/小时).(3)风速在12~26小时这个时间段保持不变,经历了14小时. (4)风速每小时减小3841.2-26=2.5(千米/小时).15.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a ,b 两个情境:① ② ③情境a :小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进. (1)情境a ,b 所对应的函数图象分别是③和①(填写序号); (2)请你为剩下的函数图象写出一个适合的情境.解:情境是小芳离开家不久,休息了一会儿,又走回了家.(答案不唯一)16.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m )与摆动时间t(s )之间的关系如图2所示.(1)根据函数的定义,请判断变量h 是否为关于t 的函数? (2)结合图象回答:①当t =0.7 s 时,h 的值是多少?并说明它的实际意义;②秋千摆动第一个来回需多少时间?解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数.(2)①由图象可知,当t=0.7 s时,h=0.5 m,它的实际意义是秋千摆动0.7 s时,离地面的高度是0.5 m.②由图象可知,秋千摆动第一个来回需2.8 s.17.在如图所示的平面直角坐标系内,画出函数y=-x的图象.(1)列表:18.画出函数y=-x-3的图象.解:列表:19.已知函数y=2x-1.(1)画出函数y=2x-1的图象;(2)判断点A(-3,-5),B(2,-3),C(3,5)是否在函数y=2x-1的图象上?(3)若点P(m,9)在函数y=2x-1的图象上,求出m的值.解:(1)列表:(2)点A,B不在其图象上,点C在其图象上.(3)m=5.20.在如图所示的平面直角坐标系中画出函数y=12x2的图象.解:列表:21.在如图的平面直角坐标系中,画出函数y=|x|的图象.解:列表:10.(1)画出函数y=8x的图象;(2)从函数图象观察,当x<0时,y随x的增大而增大,还是y随x的增大而减小?当x>0呢?解:(1)列表:(2)当x<0时,y随x的增大而减小;当x>0时,y随x的增大而减小.22.(1)在如图所示的平面直角坐标系中画出函数y1=x和y2=x2的图象;(2)观察图象,何时y1>y2?何时y1=y2?何时y1<y2?解:(1)列表:(2)当0<x<1时,y1>y2;当x=0或x=1时,y1=y2;当x<0或x>1时,y1<y2.。

八年级数学下册《函数的图像》练习题及答案(人教版)

八年级数学下册《函数的图像》练习题及答案(人教版)

八年级数学下册《函数的图像》练习题及答案(人教版)班级姓名考号1.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原来的速度返回,父亲在报亭看报10分钟,然后用15分钟返回家,下面给出的图象中表示父亲离家距离与离家时间的函数关系是()A.B.C.D.2.下列各曲线中不能..表示y是x的函数的是()A.B.C.D.3.梦想从学习开始,事业从实践起步.近来,每天登录“学习强国”APP,学精神增能量、看文化长见识已经成为一种学习新风尚.下面是爸爸上周“学习强国”周积分与学习天数的有数据,则下列说法错误的是()学习天数n(天)1234567周积分w(分)55110160200254300350A.在这个变化过程中,学习天数是自变量,周积分是因变量B.周积分随学习天数的增加而增加C.从第3天到第4天,周积分的增长量为50分D.天数每增加1天,周积分的增长量不一定相同4.函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数284x y x =-+的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.x … 4- 3-2- 1- 0 1 2 3 4 … y … 85 2413 a 85 0 b 2- 2413- 85- … 小明根据他的发现写出了以下三个命题:①当22x -≤≤时,函数图象关于直线y x =对称;①2x =时,函数有最小值,最小值为2-;①11x -<<时,函数y 的值随x 点的增大而减小.其中正确的是( )A .①①B .①①C .①①D .①①①5.“利用描点法画出函数图像,探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着探究函数3y x =-,其图像经过( )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限.6.小明和小强两个人开车从甲地出发匀速行驶至乙地,小明先出发.在整个行驶过程中,小明和小强两人的车离开甲地的距离y (千米)与行驶的时间t (小时)之间的函数关系如图所示,有下列结论:①甲、乙两地相距300千米;①小强的车比小明的车晚出发1小时,却早到1个小时;①小强的车出发后1.5小时追上小明的车.其中正确的结论有( )A .①①B .①①C .①①D .①①①7.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录:温度/① 76 78 80 82 84蜂每分钟鸣叫的次数 144 152 160 168 176如果这种数量关系不变,那么当室外温度为88①时,蟋蜂每分钟鸣叫的次数是( )A .178B .184C .190D .1928.如图,在长方形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP 的面积为y ,y 关于x 的函数图象如图2所示,若25b a -=,则长方形ABCD 的周长为( )A .20B .18C .16D .249.如图1,点P 从矩形ABCD 的顶点A 出发,沿A →D →B 以2cm/s 的速度匀速运动到点B ,图2是点P 运动时,PBC 的面积y (cm 2)随时间x (s )变化的关系图像,则a 的值为( )A .8B .6C .4D .310.将盛有凉牛奶的瓶子放在热水中(如图甲所示),通过热传递方式改变牛奶的内能,图乙是凉牛奶与热水的温度随时间变化的图像.假设热水放出热量全部被牛奶吸收,下列回答错误..的是( )A .08min 时,热水的温度随时间的增加逐渐降低;B .08min 时,凉牛奶的温度随时间的增加逐渐上升;C .8min 时,热水和凉牛奶的温度相同;D .0min 时,两者的温度差为80C ︒.二、填空题11.一空水池深4.8m ,现以均匀的速度往进注水,注水时间与水池内水的深度之间的关系如表,由表可知,注满水池所需要的时间为______h . 注水时间()h t0.5 1 1.5 2 2.5 … 水的深度()m h0.8 1.6 2.4 3.2 4 …12.李玲用“描点法”画二次函数2y a bx c =++的图象时,列了如下表格,根据表格上的信息回答问题:该二次函数2y a bx c =++当3x =时,y =________.13.甲、乙两车沿同一平直公路由A 地匀速行驶(中途不停留),前往终点B 地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.下列说法其中正确的结论有 ___________.①A 、B 两地相距210千米;①甲车速度为60千米/小时;①乙车速度为120千米/小时;①乙车共行驶132小时.14.如图1,在菱形ABCD 中,∠A=60°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为_______.15.育红学校七年级学生步行到郊外旅行.七(1)班出发1h 后,七(2)班才出发,同时七(2)班派一名联络员骑自行车在两班队伍之间进行联络,联络员和七(1)班的距离s (km )与七(2)班行进时间t (h )的函数关系图象如图所示.若已知联络员用了2h 3第一次返回到自己班级,则七(2)班需要_________ h 才能追上七(1)班.三、解答题16.如图所示的是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分钟)变化而变化的图像.(1)摩托车从出发到最后停止共经过了多长时间?离家最远的跑离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?17.在一次实验中,马达同学把一根弹簧的上端固定,在其下端悬挂物体,所挂物体的质量与弹簧长度的几组对应值如下:x012345所挂物体质量/kgy182022242628弹簧长度/cm(1)上表反映了哪两个变量之间的关系,并指出哪个是自变量,哪个是因变量;(2)不挂物体时,弹簧长________cm;(3)当所挂物体的质量为7kg时,弹簧长度是多少?(4)当弹簧长度为34cm(在弹性限度内)时,所挂物体的质量是多少?18.上海磁悬浮列车在一次运行中速度V(千米/小时)关于时间t(分钟)的函数图象如图,回答下列问题.(1)列车共运行了___分钟(2)列车开动后,第3分钟的速度是___千米/小时.(3)列车的速度从0千米/小时加速到300千米/小时,共用了___分钟.(4)列车从___分钟开始减速.19.测得一弹簧的长度L (厘米)与悬挂物体的质量x (千克)有下面一组对应值:悬挂物体的质量x (千克) 01 2 3 4 5 6 7 8 弹簧的长度L (厘米) 12 12.5 13 13.5 14 14.5 15 15.5 16试根据表中各对对应值解答下列问题:(1)用代数式表示挂质量为x 千克的物体时的弹簧的长度L .(2)求所挂物体的质量为10千克时,弹簧的长度是多少?(3)若测得弹簧的长度是18厘米,则所挂物体的质量为多少千克?20.如图1,在Rt ABC △中,AC=BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以1cm/s 的速度由F 点出发,沿F E D A B →→→→的路径运动,连接BP ,CP ,BCP 的面积2/cm y 与运动时间/s x 之间的图象关系如图2所示.根据相关信息,解答下列问题:(1)判断EF 的长度;(2)求a ,b 的值;(3)当10x =时,连接,此时与的有怎样的数量关系,请说明理由.1---10CCCCD DDBCD11.312.113.①①①14.2315.216.(1)解:根据距离(千米)随行驶时间(分钟)变化而变化的图像可知摩托车从出发到最后停止共经过了100分钟,离家最远的距离是40千米.(2)解:当020t <≤时,S=10速度为100.5(km /min)20=; 当2050t <≤时401030S =-=速度为40101(km /min)5020-=-; 当50100t <≤时,S=40,速度为400.8(km /min)10050=-; ①20~50分钟这一时段内速度最快,最快速度为1千米/分钟.17.解:表格中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)解:当所挂物体质量为0时,所对应的弹簧长度是18cm故答案为:18;(3)解:由表格中弹簧的长度随所挂物体质量之间的变化关系可知,当所挂物体质量每增加1kg ,弹簧的长度就增长2cm ,所以当所挂物体质量为7kg 时,弹簧的长度为18+2×7=32(cm )答:当所挂物体的质量为7kg 时,弹簧长度是32cm ;(4)解:由弹簧的长度随所挂物体质量之间的变化关系可知,当弹簧长度为34cm 时,所挂物体的质量为34182-=8(kg )答:当弹簧长度为34cm (在弹性限度内)时,所挂物体的质量是8kg .18.(1)解:列车共运行了8分钟;故答案为:8;(2)列车开动后,第3分钟的速度是300千米/小时;故答案为:300;(3)列车的速度从0千米/小时加速到300千米/小时,共用了2分钟;故答案为:2;(4)列车从5分钟开始减速.故答案为:5.19.(1)解①由表格可知,弹簧的长度L 的初始值为12厘米,当弹簧称所挂重物质量x 每增加1千克,弹簧长度L 就增加0.5厘米①L =0.5x +12 ;(2)解:当x =10时,L =0.5x +12=17=0.5×10+12=17(厘米)答①当所挂物体的质量为10千克时,弹簧的长度是17厘米;(3)解:当L = 18厘米时,则18=0.5x + 12 解得①x =12(千克)答①所挂物体质量是12千克.20.(1)解:由图2可知,点P 从点F 到点E 用了5秒 ①()155cm EF =⨯=.(2)解:①四边形CDEF 是正方形①5cm DE EF CD ===①()()55110s a =+÷=由图2可知,点P 从点D 到点A 用了()1313103s a -=-= ①()133cm AD =⨯=①()8cm AC CD AD =+=①8cm AC BC ==当点P 在DE 上时,()2118520cm 22BCP SBC EF =⋅=⨯⨯= ①20b =综上:10,20a b ==;(3)解:当10x =时,如图,点P 和点D 重合 ①四边形CDEF 是正方形①,90CD CF BCD ACF =∠=∠=︒在BCD △和ACF △中 90AC BC BCD ACF CD CF =⎧⎪∠=∠=︒⎨⎪=⎩①()SAS BCD ACF ≌①AF BD =①点P 和点D 重合①AF BP =.。

初中数学一次函数的图像专项练习30题(有答案)

初中数学一次函数的图像专项练习30题(有答案)

初中数学一次函数的图像专项练习30题(有答案)1.本题为选择题,无需改写。

2.在图中,当x>2时,y2>y1,因此结论③正确。

由于y1=kx+b与y2=x+a的图象相交于第三象限,因此a<0,结论②也正确。

而k<0,因此结论①错误。

因此选项C正确。

3.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,应该是选项A。

4.本题为选择题,无需改写。

5.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,斜率的绝对值小于1,应该是选项B。

6.将直线l1和直线l2的方程化简可得y=2x+1和y=-x-1,因此直线l1的斜率为2,直线l2的斜率为-1.由于x+y=0,因此该点在第三部分。

因此选项C正确。

7.根据两个函数的表达式可知它们的图象分别是斜率为负数的直线和斜率为正数的直线,应该是选项B。

8.函数y=2x+3的斜率为2,截距为3,应该是选项A。

9.根据图象可知,选项C表示的是y=-x-1的图象,因此选项C正确。

10.将函数kx-y=2化简可得y=kx-2,因此函数的图象是斜率为正数的直线,截距为-2,应该是选项C。

11.由于b1<b2,因此直线y1在直线y2的下方。

由于k1k2<0,因此直线y1和直线y2的斜率异号,相交于第二象限。

因此选项B正确。

12.根据图象可知,选项D表示的是y=abx的图象,因此选项D正确。

13.根据图象可知,降雨后,蓄水量每天增加5万立方米,因此选项B正确。

14.本题为选择题,无需改写。

15.将y=kx代入y=kx-k可得y=k(x-1),因此函数的图象是斜率为正数的直线,截距为-k,应该是选项C。

16.当x增加时,y的值也会增加,且当x大于某个值时,y会大于2.17.当x增加时,y的值也会增加,但当x大于某个值时,y会小于某个值。

18.当x增加时,y的值也会增加,且当x大于某个值时,y会大于某个值。

19.正确的判断是:①k0;③当x=3时,y1=y2;④当03时,y1>y2.20.当x增加时,y1的值也会增加,且当x大于某个值时,y1会大于y2.21.当y小于某个值时,x的取值范围是一定的,具体取值范围需要根据具体函数图象来确定。

高考理科数学真题练习题函数的图象理含解析

高考理科数学真题练习题函数的图象理含解析

高考数学复习 课时作业10 函数的图象一、选择题1.函数y =-e x的图象( D ) A .与y =e x 的图象关于y 轴对称 B .与y =e x的图象关于坐标原点对称 C .与y =e -x的图象关于y 轴对称 D .与y =e -x 的图象关于坐标原点对称解析:由点(x ,y )关于原点的对称点是(-x ,-y ),可知D 正确. 2.已知函数f (x )=x |x |-2x ,则下列结论正确的是( C ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)解析:将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图.观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.3.(2019·重庆六校联考)函数f (x )=sinπxx2的大致图象为( D )解析:易知函数f (x )=sinπx x2为奇函数且定义域为{x |x ≠0},只有选项D 满足,故选D.4.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( B )A .y =ln(1-x )B .y =ln(2-x )C .y =ln(1+x )D .y =ln(2+x )解析:解法1:设所求函数图象上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图象上,所以y =ln(2-x ).故选B.解法2:由题意知,对称轴上的点(1,0)既在函数y =ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A ,C ,D ,故选B.5.(2019·福建晋江检测)如图,矩形ABCD 的周长为8,设AB =x (1≤x ≤3),线段MN的两端点在矩形的边上滑动,且MN =1,当N 沿A →D →C →B →A 在矩形的边上滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 围成的区域的面积为y ,则函数y =f (x )的图象大致为( D )解析:由题意可知点P 的轨迹为图中虚线所示,其中四个角均是半径为12的扇形.因为矩形ABCD 的周长为8,AB =x ,则AD =8-2x 2=4-x ,所以y =x (4-x )-π4=-(x -2)2+4-π4(1≤x ≤3).显然该函数的图象是二次函数图象的一部分,且当x =2时,y =4-π4∈(3,4),故选D.6.下图是1953~2018年我国年平均气温变化图.根据上图,下列结论正确的是( D )A.1953年以来,我国年平均气温逐年增高B.1953年以来,我国年平均气温在2018年再创新高C.2002年以来,我国年平均气温都高于1983~2012年的平均值D.2002年以来,我国年平均气温的平均值高于1983~2012年的平均值解析:由1953~2018年我国年平均气温变化图可以看出,年平均气温有升高的也有降低的,所以选项A不正确;2018年的年平均气温不是最高的,所以选项B不正确;2014年的年平均气温低于1983~2012年的平均值,所以选项C不正确;2002年以来,只有2012年的年平均气温低于1983~2012年的平均值,所以2002年以来,我国年平均气温的平均值高于1983~2012年的平均值,故选项D正确,故选D.7.设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是( D )A.(1,+∞) B.[1,+∞)C .(-1,+∞)D .[-1,+∞)解析:作出函数f (x )=|x +a |与g (x )=x -1的图象,如图所示,观察图象可知,当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).二、填空题8.(2019·长沙模拟)如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0],14x -22-1,x ∈0,+∞.解析:当x ∈[-1,0]时,设y =kx +b ,由图象得⎩⎪⎨⎪⎧-k +b =0,k ×0+b =1,解得⎩⎪⎨⎪⎧k =1,b =1,所以y =x +1;当x ∈(0,+∞)时,设y =a (x -2)2-1,由图象得0=a ·(4-2)2-1,解得a =14,所以y =14(x -2)2-1.综上可知,f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0],14x -22-1,x ∈0,+∞.9.(2019·内蒙古包头调研)设奇函数f (x )在(0,+∞)上为增函数且f (1)=0,则不等式f x -f -xx<0的解集为(-1,0)∪(0,1).解析:因为f (x )为奇函数,所以不等式f x -f -x x <0化为f xx<0,即xf (x )<0,f (x )的大致图象如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).10.已知定义在R 上的函数f (x )=⎩⎪⎨⎪⎧lg|x |,x ≠0,1,x =0,关于x 的方程f (x )=c (c 为常数)恰有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3=0.解析:方程f (x )=c 有三个不同的实数根等价于y =f (x )与y =c 的图象有三个交点,画出函数f (x )的图象(图略),易知c =1,且方程f (x )=c 的一根为0,令lg|x |=1,解得x =-10或10,故方程f (x )=c 的另两根为-10和10,所以x 1+x 2+x 3=0.11.(2019·河南濮阳一模)设x 1,x 2,x 3均为实数,且π-x 1=log 2(x 1+1),π-x 2=log 3x 2,π-x 3=log 2x 3,则( A )A .x 1<x 3<x 2B .x 3<x 2<x 1C .x 3<x 1<x 2D .x 2<x 1<x 3解析:画出函数y =π-x,y =log 2(x +1),y =log 2x ,y =log 3x 的图象,如图.∵π-x 1=log 2(x 1+1),π-x 2=log 3x 2,π-x 3=log 2x 3,∴由图象可得x 1<x 3<x 2,故选A.12.(2019·河南信阳高三一模)已知函数f (x )(x ∈R )满足f (-x )=8-f (4+x ),函数g (x )=4x +3x -2,若函数f (x )与g (x )的图象共有168个交点,记作P i (x i ,y i )(i =1,2,…,168),则(x 1+y 1)+(x 2+y 2)+…+(x 168+y 168)的值为1_008.解析:函数f (x )(x ∈R )满足f (-x )=8-f (4+x ),可得f (-x )+f (4+x )=8,即函数f (x )的图象关于点(2,4)对称,由函数g (x )=4x +3x -2=4x -2+11x -2=4+11x -2,可知其图象关于点(2,4)对称,∵函数f (x )与g (x )的图象共有168个交点,∴两图象在点(2,4)两边各有84个交点,且两边的点分别关于点(2,4)对称,故得(x 1+y 1)+(x 2+y 2)+…+(x 168+y 168)=(4+8)×84=1 008.尖子生小题库——供重点班学生使用,普通班学生慎用13.(2019·湖北重点高中联考)已知a =(-cos x ,sin x +f (x )),b =(1,-sin x ),且a ∥b ,则函数f (x )在[-π,π]上的大致图象为( A )解析:解法1:因为a ∥b ,所以sin x cos x =sin x +f (x ),所以f (x )=sin x cos x -sin x =sin x (cos x -1).因为f ⎝ ⎛⎭⎪⎫π2=sin π2(cos π2-1)=-1<0,所以排除B ,C ,D.解法2:因为a ∥b ,所以sin x cos x =sin x +f (x ),所以f (x )=sin x cos x -sin x =sin x (cos x -1).当x ∈(-π,0)时,sin x <0,cos x -1<0,所以sin x (cos x -1)>0,所以排除B ,C ,D.14.直线y =m (m >0)与函数y =|log 2x |的图象交于点A (x 1,y 1),B (x 2,y 2)(x 1<x 2),下列结论正确的是①②④(填序号).。

高一下函数与图像练习题

高一下函数与图像练习题

高一下函数与图像练习题一、单项选择题1.椭圆4x2+y2=k上任意两点间的最大距离为8,则k的值为()A.4B.8C.16D.32x2的准线方程是()2.抛物线y=14A.y=-1B.y=-116C.x=-1D.=-1163.双曲线x2-y2=-4的顶点坐标是()A.(0,±1)B.(0,±2)C.(±1,0)D.(±2,0)4.已知点(3,2)在椭圆x2a2+y2b2=1上,则 ( )A.点(-3,-2)不在椭圆上B.点(3,-2)不在椭圆上C.点(-3,2)在椭圆上D.无法判断点(-3,-2),(3,-2),(-3,2)是否在椭圆上5.抛物线y2=8x 的焦点到双曲线y24-x2=1的渐近线的距离为( ) A.55 B.255 C.455D. 56.“直线与双曲线只有一个公共点”是“直线与双曲线相切”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.“直线与双曲线有两个公共点”是“直线与双曲线相交”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.若直线y =kx +3与双曲线x29-y25=1只有一个公共点,则满足条件的k 的值有 ( )A.1个B.2个C.3个D.4个9.设P 是椭圆4x2+y2=4上的点,且到直线x -2=0距离等于32,则点P 的坐标为 ( )A.⎝⎛⎭⎪⎫-12,3 B.⎝ ⎛⎭⎪⎫12,3 C.⎝⎛⎭⎪⎫12,-3,⎝ ⎛⎭⎪⎫12,3D.⎝ ⎛⎭⎪⎫-12,-3,⎝ ⎛⎭⎪⎫-12,3 10.已知方程x2-p +y2q=1表示的曲线是双曲线,则下列椭圆中,与此双曲线共焦点的是 ( ) A.x22q +p +y2q =1 B.x22q +p +y2p =-1 C.x22p +q +y2q =1 D.x22p +q +y2p =-111.若直线y =x +b 经过抛物线x2=4y 的焦点,则b 的值是() A.-2B.-1C.1D.212.若抛物线的焦点为F (0,-2),则其标准方程为 ( )A.y2=-4xB.y2=-8xC.x2=-4yD.x2=-8y13.抛物线x2=-8y的准线是()A.y=2B.y=-2C.x=2D.x=-214.F为抛物线y2=2x的焦点,点P是抛物线上的动点,点A的坐标是(3,2),当|PA|+|PF|取最小值时,点P的坐标是()A.(4,2)B.(-4,2)C.(2,2)D.(-2,2)15.已知双曲线的离心率是方程x2-3x+2=0的一个根,双曲线的中心在坐标原点,一个焦点为直线3x-4y-12=0与x轴的交点,则此双曲线的标准方程为()A.x24-y22=1B.x24-y28=1C.x26-y26=1D.x24-y212=116.双曲线x2-y23=1的渐近线中,斜率较小的一条渐近线的倾斜角是( )A.60°B.90°C.120°D.150°17.“b >a >0”是“椭圆ax2+by2=1的焦点在x 轴上”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件18.抛物线y2=-4x 上有一点到准线的距离等于4,则该点的横坐标为( )A.-4B.-3C.-2D.-119.若椭圆的长轴长为6,离心率e =13,焦点在y 轴上,则椭圆标准方程为( ) A.223632x y +=1 B.2298x y +=1 C.223236x y +=1 D.2289x y +=120.以椭圆x24+y216=1的顶点为顶点,且离心率为2的双曲线方程为( )A.y216-x248=1B.x24-y212=1C.y216-x248=1或x24-y212=1D.x2-y23=121.已知点P (4,2)是直线l 被椭圆22369x y =1所截得的弦的中点,则直线l 的方程是 ( )A.x -2y =0B.x +2y -4=0C.2x +3y +4=0D.x +2y -8=022.如图所示为某双曲线的图象,则|PF1|-|PF2|等于 ( )A.4B.-4C.±4D.±223.设椭圆x29+y216=1的焦点为F1,F2,P 为椭圆上一点,且与F1,F2构成一个三角形,则△PF1F2的周长为 ( )A.16B.18C.8+7D.8+2724.若m∈{1,2,3,4,5},n∈{1,2,3,4},且x2m+y2n=1表示焦点在x轴上的椭圆,则满足条件的椭圆有()A.12个B.0个C.9个D.8个25.平面内到两定点(-3,0)与(3,0)的距离之和等于10的动点M的轨迹方程为()A.x29+y225=1B.x225+y29=1C.x216+y225=1D.x225+y216=126.若双曲线的一个焦点为(5,0),且实半轴长为3,则该双曲线的标准方程为 ( )A.x225 -y29 =1B.x29 -y216 =1C.x216 -y29 =1D.x29 -y216 =1或x216 -y29 =127.若抛物线y =ax2的焦点坐标是108⎛⎫⎪⎝⎭,,则a 的值为() A.16B.8C.4D.228.直线y =2截抛物线x2=4y 所得的弦长为 ( )A.2B.4C.2 2D.4 229.已知抛物线的图象如图所示,直线l 过焦点F (0,1)且倾斜角=45°.若直线l 与抛物线相交于A,B 两点,其中O 为坐标原点,则|AB|等于( )A.4B.6C.2D.830.若椭圆221711x y +=的离心率为e1,双曲线221711x y -=的离心率为e2,抛物线y2=8x 的离心率为e3,则它们的大小关系为 ( ) A.e1>e2>e3 B.e2>e3>e1 C.e2>e1>e3 D.e1>e3>e2 二、填空题31.焦点为(5,0),且与双曲线2214x y -=有相同渐近线的双曲线的标准方程是 .32.已知抛物线y2=tx 的图象上有一点M 的横坐标为4,且到焦点距离为6,则t = .33.(1)虚半轴长为6,且焦点坐标为(-10,0)的双曲线的标准方程为 ;(2)实半轴长为2,离心率为32的双曲线的标准方程是 . 34.若直线y =x +1与椭圆2x2+y2=2相交,则截得的弦长为 .35.AB 为过抛物线y =x2焦点的弦,且|AB|=1,则弦AB 的中点m 到x 轴的距离为 .36.已知斜率为2的直线经过(2,5),(a ,-7)两点,则a = . 37.已知曲线x28+a +y29=1的离心率为12,则a = .38.已知点P (-2,1)在抛物线C :y2=2px 的准线上,其焦点为F ,则直线PF 的斜率是 .39.双曲线2222x y a b=1(a>0,b>0)的顶点坐标为 ,渐近线方程为 .40.将抛物线y2=3x 绕顶点顺时针方向旋转90°,所得的抛物线方程是 .三、解答题(解答题应写出文字说明及演算步骤)41.已知双曲线x2m -y2=1的右焦点F2与抛物线y2=8x 的焦点重合,过双曲线的左焦点F1作倾斜角为α的直线l ,其中cosα=12.若直线l 与双曲线相交于A ,B 两点,求: (1)m 的值与直线l 的方程; (2)△ABF2的面积.42.已知椭圆的焦点在x 轴上,短轴长为12,求椭圆的标准方程.43.已知点A 是抛物线x2=2py (p>0)的对称轴与准线的交点,过点A 作抛物线的两条切线,切点分别为P ,Q (P 点横坐标小于Q 点横坐标).若S △APQ =4,求p 的值.44.求椭圆22179x y +=的长轴长、短轴长、焦点坐标、顶点坐标及离心率.45.如图所示,从抛物线y2=4x 上一点A 引抛物线准线的垂线,垂足为M ,且|AF|=5,其中F 为抛物线的焦点.求△MAF 的面积.答案一、单项选择题1.C2.A3.B4.C5.C6.B7.A8.D9.C10.D11.C12.Dp=2,焦点在y轴的13.A 【提示】由已知得,-2p=-8,则p=4,2负半轴,故其准线方程是y=2,故选A.14.C 【解析】如图所示.过P 作PQ 垂直于准线,Q 为垂足,由抛物线定义知|PQ|=|PF|,∴|PF|+|PA|=|PQ|+|PA|,∴当P ,Q ,A 三点共线时,|PA|+|PQ|最短,此时yP =yA =2,代入y2=2x ,得xP =2,∴P (2,2).15.D16.C 【提示】 a2=1,b2=3,即a =1,b =3.渐近线方程为y =±ba x =±3x ,斜率较小即k =-3,故倾斜角是120°.17.C 【提示】若b >a >0,则1a >1b >0,椭圆x21a +y21b =1的焦点在x 轴上.反之,椭圆ax2+by2=1的焦点在x 轴上,则1a >1b >0,从而b >a >0.18.B 【分析】 因为抛物线上y2=-4x 一点到准线的距离等于-x +2p ,p =2,所以-x +1=4,所以x =-3,故选B.19.D 【提示】由题知a =3,∵c e a=,∴c =1,由c2=a2-b2,解得b =y轴上,∴椭圆的标准方程为22189x y +=,故选D.20.C【提示】椭圆顶点为(0,±4)和(±2,0),若双曲线顶点为(0,±4),则焦点在y 轴上,且a =4,ca =2,∴c =8,∴b2=48,∴双曲线方程为y216-x248=1.若双曲线顶点为(±2,0),则焦点在x 轴上,且a =2,c a =2,∴c =4,∴b2=12,∴双曲线方程为x24-y212=1. 21.D 【解析】设弦端点A (x1,y1),B (x2,y2),则x1≠x2,且122x x +=4,122y y +=2,即x1+x2=8,y1+y2=4.由2211222213691369x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩作差得136(x22-x21)+19(y22-y21)=0,∴136×8(x2-x1)=-19×4(y2-y1),即2121y y x x --=-12,即kAB =-12,∴点斜式方程为y -2=-12(x -4),即x +2y -8=0.22.A 【解析】∵2a =4,且|PF1|-|PF2|>0.∵||PF1|-|PF2||=2a =4,∴|PF1|-|PF2|=4. 23.D 24.B25.D 【提示】 ∵c =3,2a =10,∴a2=25,b2=16,焦点在x 轴上.故选D.26.B 【提示】焦点在x 轴上,c =5,b2=c2-a2=16,双曲线方程为x29 -y216 =1.故选B.27.D 【提示】原方程可化为x2=1a y ,开口向上,p 2 =18 ,p =14 ,1a =2p =12 ,a =2.故选D. 28.D【提示】联立方程组⎩⎪⎨⎪⎧y =2,x2=4y ,解得x =-2 2 或x =2 2 ,∴弦长为4 2 .故选D. 29.D 30.B 二、填空题 31.221205x y -= 32.8 【分析】M 到准线距离为6,得4t+4=6,解得t =8.33.(1)226436x y -=1【解析】b =6,c =10,∴a =8.(2)2245x y -=1或2245y x -=1 【解析】a =2,c a =32,∴c =3,∴b2=c2-a2=5,焦点位置不确定,∴双曲线的标准方程为2245x y -=1或2245y x -=1.34.423 【解析】由22122y x x y =+⎧⎨+=⎩,,得3x2+2x -1=0,∴x1+x2=-23,x1x2=-13,∴弦长=()212x x +=2=423. 35.14 【解析】焦点弦|AB|=|y1+y2|+p =|y1+y2|+12=1,∴|y1+y2|=12,∴122y y +=14,即AB 中点到x 轴距离为14.36.-4 【解析】k =752a ---=2,∴a =-4. 37.-54或438.-14 【提示】 准线方程为x =-2,p =4,焦点F(2,0),则kPF =0-12+2=-14 . 39.(-a ,0),(a ,0) bx -ay =0或bx +ay =0 【提示】 由双曲线的标准方程可知.40.x2=-3y 【提示】原抛物线焦点为304⎛⎫⎪⎝⎭,,旋转后抛物线焦点为304⎛⎫- ⎪⎝⎭,,∴所得抛物线方程为x2=-3y.三、解答题41.解:(1)∵抛物线y2=8x 的焦点坐标为(2,0),∴F2(2,0), ∴m +1=2,∴m =3.故双曲线方程为x23-y2=1,F1(2,0). 又∵cosα=12且α∈[0°,180°),∴α=60°, ∴斜率k =tan60°= 3.∴直线l 的方程为y =3(x +2)即3x -y +23=0.(2)联立⎩⎪⎨⎪⎧y =3(x +2),①x23-y2=1,②①代入②并化简得8x2+36x +39=0,Δ=362-4×8×39=48, ∴|AB|=1+k2Δ8=1+3×488= 3. 又∵点F2到直线l 的距离为d =23+234=23,∴△ABF2的面积S =12|AB|·d =12×3×23=3. 42.24x +23y =143.解:由题意得点A 的坐标为(0,-p2 ),∴设过点A 的切线方程为y =kx -p2 ,与抛物线方程联立得⎩⎪⎨⎪⎧y =kx -p 2,x2=2py x2-2pkx +p2=0.∵直线与抛物线相切, ∴Δ=4p2k2-4p2=0, 解得k =±1,∴⎩⎪⎨⎪⎧x1=-p ,y1=p2,⎩⎪⎨⎪⎧x2=p ,y2=p 2,则P (-p ,p 2 ),Q (p ,p2 ), ∴S △APQ =12 ×2p×p =4, 解得p =2(负值舍去).44.解:∵焦点在y 轴上,且a2=9,b2=7, ∴c2=2.∴a =3,b =7 ,c = 2 ,∴长轴长2a =6,短轴长2b =27 ,焦点坐标为(0,- 2 )和(0,2 ),顶点坐标为(0,-3),(0,3),(-7 ,0),(7 ,0),离心率为e =c a =2345.解:设A(m,n)(m>0,n>0),则p2=1.∵|AF|=|AM|=p2+m=5,∴m=4. 将A(4,n)代入y2=4x得n=4,∴S△MAF=12|AM|·n=12×5×4=10.21。

函数的图象

函数的图象
(3)求当y=0,4时x的值是多少?
解:当y=0时,x的值是-3,-1或4
当y=4时,x=1.5
2.已知某一函数的图象如图所示,根据图象回答下列问题:
(4)当x取何值时y的值最大?当x取何值时y的值最小? 解:当x=1.5时,y的值最大,值为4, 当x=-2时,y的值最小,值为-2。
2.已知某一函数的图象如图所示,根据图象回答下列问题:
列表法表示函数
表格主要能反映对应关系
3、下图测温仪记录的图象,它反映了 北京的春季某天气温T如何随时间t的变化 而变化。
T/℃
8
0 -3
4
14
24 t/小时
图象法表示函数
图象主要能反映什么?
变化 规 律
归纳 表示函数关系的方法:
1、解析法:准确地反映了函数与 自变量之间的数量关系。 2、列表法:具体地反映了函数与 自变量的数值对应关系。
y 练习1.画出下列函数的图象(3)y=2x-1 5 4 ①列表 ②描点 ③连线 3 x … -2 -1 0 1 2 3 … 2 y … -5 -3 -1 1 3 5 … 1 一条直线 x 函数的图象是_______ -4 -3 -2 -1O 1 2 3 4 5 -1 增大 -2 函数y随x的增大而_____ -3 1.判断点A(-2.5,4) 、B(1,3) 、C(2.5,4) -4指出该函数图 象有什么性质? 是否在函数y=2x-1的图象上; 点C 2.点D(17,30)和点E(-8,-17)在函数y=2x-1 的图象上吗?为什么? 点E 3.已知点F(-3,a)和G(b,9)在函数y=2x-1的图象 上,则a=_____,b=______. -7 5
P103思考
课堂练习
1、已知点(-1,2)是函数y=kx的图象上的一点,则k= -2 。 2、下列各点中,在函数y= x 图象上的是( D ) A、(—2,—4) B、(4,4) C、(—2,4) D、(4,2) 3、点A(1,m)在函数y=2x的图象上,则点的坐标是(B ) A、(1,) B、(1,2) C、(1,1) D、(2,1) 4.下列四个点中在函数y=2x—3的图象上有( B )个。 (1,2) , (3,3) , (—1, —1), (1.5,0) A.1 B.2 C.3 D.4

八年级数学下册《函数的图象》练习题及答案(人教版)

八年级数学下册《函数的图象》练习题及答案(人教版)

八年级数学下册《函数的图象》练习题及答案(人教版)班级姓名考号一、单选题1.小明步行到学校参加联欢会,到学校时发现演出道具忘在家中,于是他马上按照原来的速度步行回家取道具,随后骑自行车加快速度返回学校,下面是小明离开家的距离S(米)和时间t(分)的函数图象,那么最符合小明实际情况的大致图象是()A.B.C.D.2.小明晚饭后出门散步,行走的路线如图所示.则小明离家的距离h与散步时间t之间的函数关系可能是()A.B.C.D.3.一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是【】A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了—会儿书,继续向前走了一段,18分钟后开始返回4.下列是y关于x的函数是().A.B.C.D.5.甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法错误的是()A.乙的速度是甲速度的2.5倍B.a=15C.学校到新华书店共3800米D.甲第25分钟到达新华书店6.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A .8.6分钟B .9分钟C .12分钟D .16分钟7.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程y (km )与行进时间t (h )之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;①乙用了4.5个小时到达目的地:①乙比甲迟出发0.5小时;①甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个8.如图1,点P 从菱形ABCD 的顶点A 出发,沿着折线ABCDA 匀速运动,图2是线段AP 的长度y 与时间x 之间的函数关系的图像(不妨设当点P 与点A 重合时,y =0),则菱形ABCD 的面积为( )A .12B .6C .5D .2.59.铅笔每支售价0.20元,在平面直角坐标系内表示小明买1支到10支铅笔需要花费的钱数的图像是( ) A .一条直线 B .一条射线 C .一条线段 D .10个不同的点10.如图,60MAN ∠=︒,点B 在射线AN 上,2AB =.点P 在射线AM 上运动(点P 不与点A 重合),连接BP ,以点B 为圆心,BP 为半径作弧交射线AN 于点Q ,连接PQ .若,AP x PQ y ==,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B.C.D.13.如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,右图为P运动的路与ABP的面积14.学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.15.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是____米/分钟.三、解答题16.写出下列各问题中的函数关系式,并指出自变量的取值范围.(1)如果直角三角形中一个锐角的度数为α,另一个锐角的度数β与α之间的关系;(2)一支蜡烛原长为20cm,每分钟燃烧0.5cm,点燃x(分钟)后,蜡烛的长度y(cm)与x(分钟)之间的关系;(3)有一边长为2cm的正方形,若其边长增加xcm,则增加的面积y(cm2)与x之间的关系.17.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校.他本次上学所用的时间与路程的关系示意图如图所示.(1)小明在书店停留了______分钟;(2)本次上学途中,小明一共行驶的路程为______;(1)在上升或下降过程中,无人机的速度是米/分;20.小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离()m y 与小雪离开出发地的时间()min x 之间的函数图象如图所示,请根据图象解答下列问题:(1)小雪跑步的速度为多少米/分?(2)小松骑自行车的速度为米/分?(3)当小松到家时,小雪离图书馆的距离为多少米?参考答案1.C2.C3.D4.C5.C6.C7.C8.B9.D10.C(3)由图象可知:图象关于直线x =2对称;故答案为:图象关于直线x =2对称;(4)进一步探究函数图象发现:①函数图象与x 轴有2个交点,对应的方程2|x ﹣2|﹣1=0有2个实数根; ①若关于x 的方程2|x ﹣2|﹣1=a 有两个实数根,则a 的取值范围是a >﹣1 故答案为2,2;a >﹣1.20.(1)解:由函数图象可知小雪跑步5分钟的路程为450035001000m -= ①小雪跑步的速度为10005200m /min ÷=;(2)解:由(1)得小雪步行的速度为100m/min设小雪在第t 分钟改为步行①()200100354500t t +-=解得10t =①由函数图象可知,当第10分钟时,小雪改为步行,此时两人相距1000m ①小松骑车的速度为()()4500200101000105300m /min -⨯-÷-=; (3)解:由(2)得小松到家的时间为4500300520min ÷+= ①小雪离图书馆的距离为()45002001010020101500m -⨯-⨯-=.。

2024届新高考数学复习:专项(函数的图象)历年好题练习(附答案)

2024届新高考数学复习:专项(函数的图象)历年好题练习(附答案)

2024届新高考数学复习:专项(函数的图象)历年好题练习[基础巩固]一、选择题1.函数y =2|x |sin 2x 的图象可能是( )A B C D2.为了得到函数y =log 2x -1 的图象,可将函数y =log 2x 图象上所有点的( )A .纵坐标缩短为原来的12 ,横坐标不变,再向右平移1个单位B .纵坐标缩短为原来的12 ,横坐标不变,再向左平移1个单位 C .横坐标伸长为原来的2倍,纵坐标不变,再向左平移1个单位 D .横坐标伸长为原来的2倍,纵坐标不变,再向右平移1个单位3.函数f (x )=e x -e -xx 2 的图象大致为( )4.函数f (x )=sin x +xcos x +x 2在[-π,π]的图象大致为( )5.[2022ꞏ全国乙卷(文),8]如图是下列四个函数中的某个函数在区间[-3,3]的大致图象,则该函数是( )A .y =-x 3+3x x 2+1 B .y =x 3-xx 2+1C .y =2x cos xx 2+1D .y =2sin x x 2+1 6.对于函数f (x )=x +2x +1的图象及性质的下列表述,正确的是( )A .图象上点的纵坐标不可能为1B .图象关于点(1,1)成中心对称C .图象与x 轴无交点D .图象与垂直于x 轴的直线可能有两个交点7.已知图①中的图象对应的函数为y =f (x ),则图②中的图象对应的函数为( )A .y =f (|x |)B .y =f (-|x |)C .y =|f (x )|D .y =-f (|x |)8.[2022ꞏ全国甲卷(理),5]函数y =(3x -3-x )cos x 在区间⎣⎡⎦⎤-π2,π2 的图象大致为( )9.函数y =11-x的图象与函数y =2sin πx (-2≤x ≤4)的图象的所有交点的横坐标之和等于( )A .2B .4C .6D .8 二、填空题10.若函数y =f (x )的图象经过点(2,3),则函数y =f (-x )+1的图象必定经过的点的坐标为________.11.函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x <0的解集为________.12.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.[能力提升]13.如图,点P 在边长为1的正方形边上运动,M 是CD 的中点,当点P 沿A -B -C -M 运动时,点P 经过的路程x 与△APM 的面积y 的函数y =f (x )的图象的形状大致是( )14.(多选)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.则下列函数是一阶整点函数的是( )A .f (x )=sin 2xB .g (x )=x 3C .h (x )=(13 )x D .φ(x )=ln x15.已知函数y =f (x +1)的图象关于直线x =-1对称,当x ∈[-1,+∞)时,f (x +1)是增函数,则不等式f (x -3)-f (x )>0的解集为________.16.已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m , 其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.参考答案1.D 由y =2|x |sin 2x 知函数的定义域为R ,令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin (-2x )=-2|x |sin 2x . ∵ f (x )=-f (-x ),∴ f (x )为奇函数.∴ f (x )的图象关于原点对称,故排除A ,B.令f (x )=2|x |sin 2x =0,解得x =k π2 (k ∈Z ),∴ 当k =1时,x =π2 ,故排除C. 故选D.2.A 把函数y =log 2x 的图象上所有点的纵坐标缩短为原来的12 ,横坐标不变,得到函数y =12 log 2x 的图象,再向右平移1个单位,得到函数y =12 log 2(x -1)的图象,即函数y =log 2(x -1)12=log 2x -1 的图象.3.B ∵ y =e x -e -x 是奇函数,y =x 2是偶函数,∴ f (x )=e x -e -xx 2 是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11 =e -1e >0,排除D 选项.又e>2,∴ 1e <12 ,∴ e -1e >1,排除C 选项. 故选B.4.D ∵f (-x )=sin (-x )-x cos (-x )+(-x )2 =-sin x +xcos x +x 2 =-f (x ), ∴f (x )为奇函数,排除A ;∵f (π)=sin π+πcos π+π2 =π-1+π2>0,∴排除C ;∵f (1)=sin 1+1cos 1+1 ,且sin 1>cos 1,∴f (1)>1,∴排除B.故选D.5.A 对于B 选项,当x =1时,y =0,与图象不符,故B 不符合题意.对于C 选项,当x =3时,y =6cos 310 =35 cos 3.因为cos 3>-1,所以35 cos 3>-35 ,与图象不符,故C 不符合题意.对于D 选项,当x =3时,y =2sin 310 >0,与图象不符,故D 不符合题意.综上,用排除法选A.6.A 函数f (x )=x +2x +1=1+1x +1 ,∵1x +1 ≠0,∴f (x )≠1.故A 正确;显然f (x )的图象关于(-1,1)成中心对称,故B 不正确;∵当x =-2时,f (x )=0,故图象与x 轴有交点,C 不正确;由函数的概念知D 不正确.7.B 图②是由图①y 轴左侧图象保留,左右关于y 轴对称得,故图②对应的详细解析式为y =f (-|x |).8.A 设函数f (x )=(3x -3-x )cos x ,则对任意x ∈[-π2 ,π2 ],都有f (-x )=(3-x -3x )cos(-x )=-(3x -3-x )cos x =-f (x ),所以函数f (x )是奇函数,因此排除B ,D 选项.又f (1)=(3-3-1)cos 1=83 cos 1>0,所以排除C 选项.故选A.9.D 由题意知y =11-x =-1x -1 的图象是双曲线,且关于点(1,0)成中心对称,又y =2sin πx 的周期为T =2ππ =2,且也关于点(1,0)成中心对称,因此两图象的交点也一定关于点(1,0)成中心对称,再结合图象(如图所示)可知两图象在[-2,4]上有8个交点,因此8个交点的横坐标之和x 1+x 2+…+x 8=4×2=8.故选D. 10.(-2,4)详细解析:由题意得f (2)=3,又y =f (x )与y =f (-x )的图象关于y 轴对称,∴y =f (-x )过点(-2,3),∴y =f (-x )+1的图象过点(-2,4).11.⎝⎛⎭⎫-π2,-1 ∪⎝⎛⎭⎫1,π2 详细解析:当x ∈⎝⎛⎭⎫0,π2 时,y =cos x >0. 当x ∈⎝⎛⎭⎫π2,4 时,y =cos x <0. 结合y =f (x ),x ∈[0,4]上的图象知,当1<x <π2 时,f (x )cos x <0.又函数y =f (x )cos x 为偶函数,∴在[-4,0]上,f (x )cos x <0的解集为⎝⎛⎭⎫-π2,-1 , 所以f (x )cos x <0的解集为⎝⎛⎭⎫-π2,-1 ∪⎝⎛⎭⎫1,π2 . 12.(0,1)∪(1,4)详细解析:根据绝对值的意义,y =|x 2-1|x -1 =⎩⎪⎨⎪⎧x +1(x >1或x <-1),-x -1(-1≤x <1). 在直角坐标系中作出该函数的图象,如图中实线所示,根据图象可知,当0<k <1或1<k <4时有两个交点.13.Ay =f (x )=⎩⎪⎨⎪⎧12x ,0≤x <1,34-x4,1≤x <2,54-12x ,2≤x ≤52,画出分段函数的大致图象,如图所示.故选A.14.AD 对于函数f (x )=sin 2x ,它的图象只经过一个整点(0,0),所以它是一阶整点函数,A 正确;对于函数g (x )=x 3,它的图象经过整点(0,0),(1,1),…,所以它不是一阶整点函数,B 错误;对于函数h (x )=⎝⎛⎭⎫13 x ,它的图象经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,C 错误.对于函数φ(x )=ln x ,它的图象只经过一个整点(1,0),所以它是一阶整点函数,D 正确.故选AD.15.⎝⎛⎭⎫-∞,32 详细解析:由题意得f (x )为偶函数,且在[0,+∞)上单调递增,由f (x -3)-f (x )>0得f (x-3)>f (x ),∴|x -3|>|x |,得x <32 .16.(3,+∞) 详细解析:f (x )的大致图象如图所示,若存在b ∈R ,使得方程f (x )=b 有三个不同的根,只需4m -m 2<m ,又m >0,所以m >3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的图象
1.函数y=f(x)的定义域为R,则函数y=f(x-1)与y=f(1-x)的图象关于()
A.直线y=0对称B.直线x=0对称
C.直线y=1对称D.直线x=1对称
答案:D
2.函数y=a|x|,(a>1)的图象是()
解析:作y=a|x|,(a>1)的图象,先作x≥0时,y=a x,(a>1)的图象.因为y=a|x|是偶函数,关于y轴对称,根据对称性作出x<0时函数另一半的图象,对照四个选项即可知,应选B.
答案:B
3.已知函数f(x)=log a(2x+b-1)(a>0,a≠1)的图象如图所示,则a,
b满足的关系是()
A.0<a-1<b<1
B.0<b<a-1<1
C.0<b-1<a<1
D.0<a-1<b-1<1
解析:首先由于函数φ(x)=2x+b-1单调递增,a>1;又-1<f(0)<0,即-1<log a b<0,所以a-1<b<1,故0<a-1<b<1.
答案:A
4.(2010·郑州预测)下列函数的图象经过平移或翻折后不能与函数y=log2x的图象重合的函数是()
A.y=2x B.y=log 1 2 x
C.y=1
2
·4x D.y=log2
1
x
+1
答案:C
5.在函数y =f (x )的定义域内如果存在实数x 0,使得x 0=f (x 0),那么称x 0为函数y =f (x )的不动点,下列图象中表示有且只有2个不动点的函数图象是( )
解析:满足x 0=f (x 0),也就是横坐标与纵坐标相等.A 图、C 图中的函数的不动点只有一个;B 图中的函数的不动点有两个;D 图中的函数的不动点多于两个.
答案:B
6.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能的是( )
答案:C
7.定义在R 上的函数f (x )的图象关于点(-34
,0)对称,对任意的实数x 都有f (x )=-f (x +32
),且f (-1)=1,f (0)=-2,则f (1)+f (2)+…+f (2011)的值为( ) A .-2 B .-1 C .0 D .1
解析:f (x )的图象关于(-34,0)对称,得f (x )+f (-32
-x )=0, 又f (x )=-f (x +32
), 于是f (x )是偶函数,且f (x )=f (x +3)故f (x )是以T =3的周期函数,f (-1)=f (2)=f (1)=1.f (3)=f (0)=2
∴f (1)+f (2)+f (3)+…+f (2011)
=f (1)+670·[f (1)+f (2)+f (3)]=f (1)=1.
故选D.
答案:D
8.使log 2(-x )<x +1成立的x 的取值范围是________.
解析:不等式两侧分别为对数式和代数式,故需考虑数形结合,如图
答案:x ∈(-1,0)
9.若函数y =f (x -1)为奇函数,则y =f (x )的图象的对称中心是________.
答案:(-1,0)
10.(2010·湖北八市3月调研)符号[x ]表示不超过x 的最大整数,如[π]=3,[-1.08]=-2,定义函数f (x )=x -[x ],研究函数f (x )的性质,下列命题中正确的是________.
①函数f (x )的定义域为R ,值域为[0,1]
②方程f (x )=12
有无数个解 ③函数f (x )是周期函数
④函数f (x )是增函数
⑤函数f (x )具有奇偶性
答案:②③
11.方程kx =1-(x -2)2有两个不相等的实根,求实数k 的取值范
围.
解析:设y 1=kx ,①
y 2=1-(x -2)2,②
方程①表示过原点的直线,方程②表示半圆,其圆心为(2,0),半径为1,如图,易知当OA 与半圆相切时,k OA =33.故当0≤k <33时,直线与半圆有两个交点,即0≤k <33时,原方程有两个不相等的实根.
12.已知函数f (x )=log 2(x +1),将函数y =f (x )的图象向左平移一个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变).得到函数y =g (x )的图象.
(1)求函数y =g (x )的解析式及定义域;
(2)求函数F (x )=f (x )-g (x )的最大值.
解析:(1)由已知:将函数f (x )=log 2(x +1)的图象向左平移一个单位,得到y =log 2(x +
2)(x >-2)的图象.再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y =g (x )=2log 2(x +2)(x >-2)的图象.
(2)F (x )=f (x )-g (x )=log 2(x +1)-2log 2(x +2)
=log 2x +1(x +2)2=log 2x +1x 2+4x +4
, 把分子分母同时除以x +1,再根据a 2+b 2≥2ab 求出F (x )≤-2,当且仅当x =0时能够
取到等号.
=F(0)=-2.
所以F(x)
最大值。

相关文档
最新文档