2.1 第1课时 一元二次方程

合集下载

2022-2023北师大版九年级数学上册教案:2.1 认识一元二次方程

2022-2023北师大版九年级数学上册教案:2.1 认识一元二次方程

第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程1.理解一元二次方程及其相关概念,会判断满足一元二次方程的条件.(重点)2.体会方程的模型思想.阅读教材P31~32,完成下列问题:(一)知识探究1.只含有________个未知数,并且都可以化成ax2+bx+c=0(a,b,c为常数,a________)的形式的________方程,这样的方程叫做一元二次方程.2.我们把____________(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中________,________,________分别为二次项、一次项和常数项,________,________分别称为二次项系数和一次项系数.(二)自学反馈1.下列方程中,是一元二次方程的是( )A.x-y2=1 B.x2-1=0C.1x2-1=0 D.x22-x-13=02.将方程(2x+1)x=(3x-2)x+2化简整理写成一般形式后,其中a、b、c分别是( ) A.2-3,1, 2 B.2-3,1,- 2C.3-2,-3, 2D.3-2,1, 2活动1 小组讨论例1判断下列方程是否为一元二次方程:(1)1-x2=0;(2)2(x2-1)=3y;(3)2x2-3x-1=0; (4)1x2-2x=0;(5)(x+3)2=(x-3)2; (6)9x2=5-4x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.判断一个方程是不是一元二次方程,首先需要将方程化简,使方程的右边为0,然后观察其是否具备以下三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.三个条件缺一不可.例2将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:方程(8-2x)(5-2x)=18化成一元二次方程的一般形式是2x2-13x+11=0,其中的二次项系数、一次项系数及常数项分别是2,-13,11.(1)将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整;(2)一元二次方程化为一般形式后,若没有出现一次项bx,则b=0;若没有出现常数项,则c=0.活动2 跟踪训练1.下列方程哪些是一元二次方程?(1)7x 2-6x =0;(2)2x 2-5xy +6y =0; (3)2x 2-13x -1=0;(4)y22=0;(5)x 2+2x -3=1+x 2.2.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x 2-1=4x; (2)4x 2=81;(3)4x(x +2)=25; (4)(3x -2)(x +1)=8x -3.3.已知方程(a -4)x 2-(2a -1)x -a -1=0. (1)a 取何值时,方程为一元二次方程? (2)a 取何值时,方程为一元一次方程?4.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个长方形的长比宽多2,面积是100,求长方形的长x ;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x. 活动3 课堂小结1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式是ax 2+bx +c =0(a ≠0),特别强调a ≠0.【预习导学】 (一)知识探究1.一 ≠0 整式 2.ax 2+bx +c =0 ax 2bx c a b (二)自学反馈 1.D 2.C 【合作探究】 活动2 跟踪训练1.(1)、(4)是一元二次方程.2.(1)5x 2-4x -1=0,二次项系数、一次项系数及常数项分别是5,-4,-1.(2)4x 2-81=0,二次项系数、一次项系数及常数项分别是4,0,-81.(3)4x 2+8x -25=0,二次项系数、一次项系数及常数项分别是4,8,-25.(4)3x 2-7x +1=0,二次项系数、一次项系数及常数项分别是3,-7,1.3.(1)当a -4≠0即a ≠4时,方程为一元二次方程.(2)a -4=0,且2a -1≠0时,原方程为一元一次方程.即a =4时,原方程为一元一次方程.4.(1)根据题意,得4x 2=25,将其化成一元二次方程的一般形式是4x 2-25=0.(2)根据题意,得x(x -2)=100,将其化成一元二次方程的一般形式是x 2-2x -100=0.(3)根据题意,得x =(1-x)2,将其化成一元二次方程的一般形式是x 2-3x +1=0.第2课时 一元二次方程的解1.经历估计一元二次方程解的过程,增进对方程解的认识.2.能根据实际问题建立一元二次方程的数学模型.(难点)阅读教材P33~34,完成下列问题:(一)知识探究1.能使一元二次方程左、右两边都________的未知数的值,叫做一元二次方程的解.2.估计一元二次方程的解,应先确定方程解的大致范围,然后在这一范围内有规律地取一些未知数的值,如果把一个值代入方程使得左边的计算结果________右边的计算结果,把另一个值代入方程使得左边的计算结果________右边的计算结果,那么方程的解就在这两个值________.(二)自学反馈幼儿园某教室矩形地面的长为8 m,宽为5 m,现准备在地面正中间铺设一块面积为18 m2的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?活动1 小组讨论例如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m.如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米?(1)如果设梯子底端滑动x m,那么你能列出怎样的方程?解:根据题意,得72+(x+6)2=102,即x2+12x-15=0.(2)x 0 0.5 1 1.5 2 …x2+12x-15 -15 -8.75 -2 5.25 13 …(3)x … 1.1 1.2 1.3 1.4 …x2+12x-15 …-0.59 0.84 2.29 3.76 …活动2 跟踪训练1.根据下列表格的对应值可知,方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解x的范围是( )x 3.23 3.24 3.25 3.26ax2+bx+c -0.06 -0.02 0.03 0.09A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.262.根据关于x的一元二次方程x2+px+q=0,可列表如下:x 0 0.5 1 1.1 1.2 1.3x2+px+q -15 -8.75 -2 -0.59 0.84 2.29则方程x2+px+q=0的正数解满足( )A.解的整数部分是0,十分位是5B.解的整数部分是0,十分位是8C.解的整数部分是1,十分位是1D.解的整数部分是1,十分位是23.为估算方程x2-2x-8=0的解,填写下表,由此可判断方程x2-2x-8=0的解为________.x -2 -1 0 1 2 3 4x2-2x-8 0 -5 -8 -9 -8 -5 04.某大学为改善校园环境,计划在一块长80 m,宽60 m的长方形场地建一个长方形网球场,网球场占地面积为3 500 m2.四周为宽度相等的人行走道,如图所示,若设人行走道宽为x m.(1)你能列出相应的方程吗?(2)x可能小于0吗?说说你的理由.(3)x可能大于40吗?可能大于30吗?说说你的理由.(4)你知道人行走道的宽是多少吗?说说你的求解过程.活动3 课堂小结1.一元二次方程的解(根)的概念.2.用估算方法求一元二次方程的近似解的步骤:(1)先确定大致范围;(2)再取值计算,逐步逼近.【预习导学】(一)知识探究1.相等 2.小于大于之间(二)自学反馈x 0 0.5 1 1.5 2 2.5(8-2x)(5-2x) 40 28 18 10 4 0故可知所求的宽为1 m.【合作探究】活动2跟踪训练1.C 2.C 3.-2和44.(1)(80-2x)(60-2x)=3 500,即x2-70x+325=0.(2)x的值不可能小于0,因为人行走道的宽度不可能为负数.(3)x的值不可能大于40,也不可能大于30,因为当x>30时,网球场的宽60-2x<0,这是不符合实际的,当然x更不可能大于40.(4)人行走道的宽为5 m,求解过程如下:x 2 3 4 5 6 7 …x2-70x+325 189 124 61 0 -59 -116 …显然,当x=5时,x-70x+325=0,∴人行走道的宽为5 m.。

认识一元二次方程教案

认识一元二次方程教案

认识一元二次方程教案【篇一:2015届九年级数学上册 2.1 认识一元二次方程(第一课时)教学设计 (新版)北师大版】1.认识一元二次方程(一)一、学生知识状况分析学生的知识技能基础:学生在七年级已学过一元一次方程的概念,经历过由具体问题抽象出一元一次方程的过程;学生在八年级已学过二元一次方程组的概念,经历过由具体问题抽象出二元一次方程组的过程;学生已理解了“元”和“次”的含义,具备了学习一元二次方程的基本技能。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验和数学思考,具备了一定的合作与交流的能力。

二、教学任务分析教科书基于学生对方程认识的基础之上,提出了本课的具体学习任务:1、经历抽象一元二次方程概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。

2、会识别一元二次方程及各部分名称。

从数学课堂的远期目标来看,还应该培养学生提出问题、分析问题、解决问题的能力。

三、教学过程分析本节课设计了七个教学环节:第一环节:自主探究问题一;第二环节:自主探究问题二;第三环节:自主探究问题三;第四环节:总结归纳;第五环节:学以致用;第六环节:反思;第七环节:布置作业。

第一环节:自主探究问题一活动内容:出示问题一:幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,根据这一情境,结合已知量你想求哪些量?你能根据条件列出关于这个量的什么关系式?活动目的:提出了半开放性的问题:根据这一情境,结合这些已知量,你想求哪些量?旨在培养学生的问题意识;要求学生根据条件列出关系式,旨在提高学生分析问题的能力、提高学生抽象思维能力,同时也为后续归纳一元二次方程提供材料。

教学要求与效果:教学中,为了帮助学生理解题意,可以首先提出问题:你能找到图中的矩形地面、条形区域和地毯区域吗?并让一生指出对应的三部分;接着要求学生从这一实物图中抽象出几何图形,自己画出所抽象出的几何图形,然后教师呈现第二幅图。

人教版九年级数学上册21.2.1解一元二次方程(第1课时)一等奖优秀教学设计

人教版九年级数学上册21.2.1解一元二次方程(第1课时)一等奖优秀教学设计

人教版义务教育课程标准实验教科书九年级上册
21.2.1解一元二次方程(第1课时)教学设计
一、教材分析
1、地位作用:本节为一元二次方程解法的起始课。

一元二次方程的求解是初中代数学习中非常重要的一部分,而直接开平方法则是解一元二次方程的基础方法,它看似简单,却不容忽视。

首先“直接开平方法解一元二次方程”是配方法解一元二次方程的基础;其次,求解二次函数与x轴交点等问题中都必须应用一元二次方程的解法;同时这一节的教材编写中还突出体现了“换元、转化、类比”等重要的数学思想方法。

因此这一节不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课。

2、教学目标:①了解形如x2=a (a≥0)和(mx+n)2=p(p≥0)的一元二次方程的解法——直接开平方法;
②会用直接开平方法解一元二次方程;
③了解转化、降次思想在解方程中的运用。

3、教学重、难点
教学重点:①解形如x2=a和(mx+n)2=p(p≥0)的方程;
②通过本节课的学习体会换元和转化思想。

教学难点:①解形如(mx+n)2=p(p≥0)的方程。

突破重难点的方法:直接开平方法适用一元二次方程类型的探究,通过根据平方根的意义解形如x2=a (a≥0),知识迁移到根据平方根的意义解形如(mx+n)2=p(p≥0)的方程,做好合适的铺垫,引导学生发现运用直接开平方法解一元二次方程的求解途径,引导学生运用换元、转化思想探求一元二次方程如何用直接开平方法来解,提高探究能力。

二、教学准备:多媒体课件、导学案、
三、教学过程。

2.1认识一元二次方程第1课时教学流程

2.1认识一元二次方程第1课时教学流程

九上数《2.1认识一元二次方程(第1课时)》教学流程
注:“H”指课件中的幻灯片,如“H4”指课件中的第4张幻灯片。

)
前面已学习了一元一次方程及其解
法。

提问学生,简单过。

学生齐读
通过此三题复习一元一次方程的概念及其解法。

(H3)3´
生2´,师1´
探究新知知识点1
通过此活动理解一元二
次方程的概念。

(H4、H5)①头天晚修自学完成;②生展示答案;③师精讲并归纳一元二次方程的概念。

2 通过此环节进一步掌握
一元二次方程的一般形
式及其相关概念。

(H6)
①分组+普做;②对答案,师点评;
③师傅再教徒弟小组合作学习。

内容二)
进一步掌握一元二次方
程的概念(H7)
对本节课所学知识的归
学生自由谈纳总结(H8)。

最新版初中数学教案《一元二次方程 4》精品教案(2022年创作)

最新版初中数学教案《一元二次方程 4》精品教案(2022年创作)

第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程课题第1课时一元二次方程课型新授课教学目标1.要求学生会根据具体问题列出一元二次方程。

通过“未铺地毯区域有多宽〞,“梯子的底端滑动多少米〞等问题的提出,让学生列出方程,体会方程的模型思想,培养学生把文字表达的问题转换成数学语言的能力。

2.通过教师的讲解和引导,使学生抽象出一元二次方程的概念,培养学生归纳分析的能力。

教学重点一元二次方程的概念教学难点如何把实际问题转化为数学方程学情分析本课通过丰富的实例:未铺地毯区域有多宽、梯子的底端滑动多少米,让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想。

学生在以前的学习中已经了解了方程的概念,但对于一元二次方程没有深入的理解。

通过本节课的学习,应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效数学模型。

教学后记教学内容及过程教师活动学生活动一、通过实例引入新课1.在开始新的一个单元的时候,要向学生讲清楚本单元的主要内容和总体目标,这样可以让学生对本单元的内容做到整体把握和概览。

2.进人本单元的第一节:认识一元二次方程? 板书课题,明确本节课的中心任务。

3.播放“未铺地毯区域有多宽〞的课件,说明题目的条件和要求,课件要求制作得精美并且可以清楚得显示出各个量之间的关系。

4.给学生时间思考:如何明确并用数学式子表示出题目中的各个量?5.让学生答复他们的答案是什么,给予点评,让学生核对答案,可以以学生举手示意的方式掌握全班的情况。

6.继续进行下二个问题:板书P31的等式,提出问题:你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的1.认真听讲,对本单元(一元二次方程) 有了一个较好的总体认识,为新的内容的学习作好准备。

2.进入良好的学习状态,在教师的引导下顺利进入到新课的学习中,新颖的标题也引起了学生的兴趣;3.很有兴趣地观看课件,对“未铺地毯区域有多宽〞的问题产生了很强的探究的欲望,但大局部学生不知道如何找到解决问题的方法,新的任务与原来的认知结构发生冲突。

2.1一元二次方程北师大版九年级数学上册习题PPT课件2

2.1一元二次方程北师大版九年级数学上册习题PPT课件2
长a、率b分为别x,称依为题二意4次可项.列系方数【程和为一内( 次项蒙)系数古. 赤峰中考】某品牌手机三月份销售400万部,四月份、五月份销售
量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为x, A.400(1+x2)=90整式方程,满足条件(1).但x的二次项系数含有字母,应分类讨论.
数学·九年级(上)·配北师
解:(1)∵关于 x 的方程(k+1)xk2+1+(k-3)·x-1=0 是一元一次方程,∴
k+1=0, k-3≠0,
或kk2++11+=k1-,3≠0,
解得 k=-1 或 k=0.∴当 k=-1 或 k=0 时,关
于 x 的方程(k+1)xk2+1+(k-3)x-1=0 是一元一次方程.
1T2变式】把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项. 分 C.析1:00观(1察 +等 x)3号=两61边6 ,是关于x的整式方程,满足条件(1).但x的二次项系数含有字母,应分类讨论.
2x)=3600.化为一般形式为x -75x+350=0. 9长知(2.)率识当据为 点k报取x3道,何,根依值为据题时推实意,进际可它福问列是州题方一绿列程元色一为二农元(次业二方发次程) 展方?,程并2写01出8~这2个02一0年元,二福次州方市程2将的完二成次绿项色系农数业、发一展次项项目系总数投、资常6数16项亿.元,已知福州2018年已完成项目投资100亿元.假设后两年该项目投资的平均增
A.400(1+x )=900 B.400(1+2x)=900 9.据报道,为推进福州绿色农业发展,22018~2020年,福州市将完成绿色农业发展项目总投资616亿元,已知福州2018年已完成项目投资100亿元.假设后两年该项目投资的平均增

211《一元二次方程教案》(第1课时).doc

211《一元二次方程教案》(第1课时).doc

22. 1 一元二次方程第一课时一、 教学内容一元二次方程概念及一元二次方程一般式及有关概念. 二、 教学目标了解一元二次方程的概念;一般式a/+bx+c 二0 (aHO )及其派生的概念;应用一元二 次方程概念解决一些简单题H .1. 通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2. 一元二次方程的一般形式及其有关概念.3. 解决一些概念性的题目.4. 通过生活学习数学,并用数学解决生活中的问题來激发学生的学习热情. 三、 重难点关键1. 重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概 念解决问题.2. 难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概 念迁移到一元二次方程的概念.四、 教学过程 (一、)复习引入 学牛活动:列方程.问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺•八寸,两隅相去适一 丈,问户高、广各儿何? ”人意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽 各是多少? 如果假设门的高为x 尺,那么,这个门的宽为 _________ 尺,根据题意,得 __________ 整理、化简,得: __________ ・问题(2)如图,一块四周镶冇宽度相等的花边的地毯, 毯中央的长方形图案的面积为18m2,求花边有多宽?设花边的宽为“ in ,那么地毯屮央长方形图案的 长为 m, 宽 为 _____________ m,根据题意, 得方程: ____________________________________ . 问题(3)观察下面等式:102+112+122=132+142你还能找到其他的五个连续整数,使前三个 数的平方和等于后两个数的平方和吗? 设五个连续整数中第一个为x,那么后四个___________________________________ ,根据题意, 得方程: ___________________________________________________________________ 老师点评并分析如何建立一元二次方程的数学模型,并整理. (二、)探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有儿个未知数?数为 __________ 它的长为8m,宽为5m,如果地(2)按照整式中的多项式的规定,它们最高次数是儿次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x; (2)它们的最高次数都是2次的;(3)都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.-般地,任何一个关于x的一元•二次方程,经过整理,都能化成如下形式ax2+bx+c=0 (aHO).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0 (aHO)后,其屮ax'是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.(阅读练习册P1例题)巩固练习1、下列方程中,一元二次方程冇( )个(1)/ = 3 (2)5酹=3(/・ 1) ⑶丄二/ (+)yz・ A2 =5 (5)5/ ・2x = 5(/ +2)(/ ・ 1)x 4A. 2B. 3 C・ 4 D. 5例1.将方程(8-2x) (5-2x)二18化成一元二次方程的一般形式,并写出其屮的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=O(8工0).因此,方程(8~2x) ( 5~2x)=18必须运用整式运算进行整理,包括去•括号、移项等.解:去扭号,得:40-16x-l 0X+4X2= 18移项,得:4x-26x+22=0其中二次项系数为4, 一次项系数为-26,常数项为22.(三、)巩固练习教材匕练习1、(四、)应用拓展例2.求证:关于x的方程(m2-8m+17) x2+2mx+l=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m収何值,该方程都是一元二次方程,只要证明m2-8m+17 H0即可. 证明:m2-8m+17= (m-4) 2+1•・• (m-4)空0・・・(m-4) 2+1>0, B|J (m-4) 2+1^0・・・不论m取何值,该方程都是一元二次方程.五、归纳小结(学生总结,老师点评)本节课要掌握:(1) 一元二次方程的概念;(2) 一元二次方程的一般形式ax'+bx+c二0 CaHO)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.练习册P H提升:(A组)2.选用作业设计.作业设计一、选择题1.在下列方程中,一元二次方程的个数是().①3x'+7二0 ②ax"+bx+c二0 ③(x-2) (x+5) =x2-l ④3x2-— =0XA. 1个B. 2个C. 3个D. 4个2.px2-3x+p2-q=0是关于x的一元二次方程,则().A. p=lB. p>0C. pHOD. p 为任意实数二、填空题1.____________________________________ 方程3x「3二2x+l的二次项系数为, 一次项系数为 ______________________________________________ ,常数项为2.一元二次方程的一般形式是__________ .3.关于x的方程(旷1) X2+3X=0是一元二次方程,则a的取值范围是 __________ .三、综合提高题1. a满足什么条件时,关于x的方程a (x2+x) =>/3x- (x+1)是一元二次方程?2.关于x的方程(2m2+m) x,,M+3x=6可能是一元二次方程吗?为什么?反思提高:。

九年级数学上册21一元二次方程21.2解一元二次方程21.2.1配方法第一课时用直接开平方解一元二次

九年级数学上册21一元二次方程21.2解一元二次方程21.2.1配方法第一课时用直接开平方解一元二次
第3页
1.方程x2-64=0解是( D)
A.x=8
B.x=-8
C.x=4
D.x1=8 ,x2=-8
2.方程3x2+9=0根为( D)
A.3
B.-3
C.±3
D.无实数根
3.(滨州)以下方程中,一定有实数解是( B)
A.x2+1=0
B.(2x+1)2=0
C.(2x+1)2+3=0
D.( -a)2=a
4.方程(x+1)2=9解是( C)
∵一元二次方程(x-3)2=1两个解恰好分别是等腰△ABC底边长和腰长, ∴①当底边长和腰长分别为4和2时,4=2+2,此时不能组成三角形; ②当底边长和腰长分别是2和4时,4+4>2,此时能组成三角形, ∴△ABC周长为:2+4+4=10.
第8页
12.当m为何值时,方程
是关于x一元二次方程?
第9页
13.已知:x2+4x+y2-6y+13=0,求xx- 2+2yy2的值. 【解】 已知:x2+4x+y2-6y+13=0, 变形得:(x2+4x+4)+(y2-6y+9)=0, 即(x+2)2+(y-3)2=0, 所以x=-2,y=3.
第10页
21.2.1 配方法
第1课时 用直接开平方法解一元二次方程
1.利用直接开平方法解一元二次方程,其依据是__平__方__根__意义,即:假 如x2=p(p>0),则x1=____,x2=_____.
2.形如(ax+m)2=n(n>0)一元二次方程,也可利用直接开平方法求
解,即:先利用平方根意义把原方程转化为两个_____一__元__一__次__方ax程+m=
A.x=1或x=-1
B.x=3或Байду номын сангаас=-3
C.x1=2或x2=-4

数学人教版九年级上册解一元二次方程——配方法.2.1-人教版九年级数学上册一元二次方程-配方法(第1课时)

数学人教版九年级上册解一元二次方程——配方法.2.1-人教版九年级数学上册一元二次方程-配方法(第1课时)
(a-b) ² = 2.根据平方根的意义,解下列方程
(1)x² =4
(2)( x+1) ² =4
(三) 尝试指导,学习新知。 提问:这样的方程你能解吗? x² +2x+1=4
这样的方程呢? x² +2x-3=0
【归纳】
配方法:通过配成完全平方式的方法,得到一元二次方程的解,这样的解法叫做配 方法。配方法的依据:完全平方公式。
巩固新知、知识升华
六、布置作业 (六)布置作业。课本39页练习题1、2题
【 (五)总结】
1.解二次项系数为1的一元二次方程的基本思 路:方程化为( x+m)2=n(n≥0)的形式,。 2、用配方法解一元二次方程的一般步骤: (1)把二次项系数化为1(方程两边同时除 以二次项系数a);(2)移项(把常数项移 到方程的右边); (3)配方(方程两边都加上一次项系数的一 半的平方); (4)开平方(根据平方根意义,方程两边开 平方); (5)求解(解一元一次方程);Fra bibliotek一起探究
对于方程2x ² +4x +1=0 如何用配方法求解呢?试试看
大家谈一谈
用配方法解一元二次方程的步骤是什么?与同学交流你的想法
用配方法解一元二次方程的一般步骤: (1)把二次项系数化为1(方程两边同时除以二次项系数a);(2) 移项(把常数项移到方程的右边); (3)配方(方程两边都加上一次项系数的一半的平方); (4)开平方(根据平方根意义,方程两边开平方); (5)求解(解一元一次方程);
【 (四)合作讨论,自主探究】
1、 配方训练、将下列方程化为( x+m) ² =n(m,n为常数,n≥0)的形式。 (1)x² +2x=48 (2)x² -4x=12 (3)x² -6x+5=0 (4)x² +x-3/4=0

北师大版九年级数学上册说课稿:2.1认识一元二次方程

北师大版九年级数学上册说课稿:2.1认识一元二次方程

北师大版九年级数学上册说课稿:2.1 认识一元二次方程一. 教材分析《认识一元二次方程》是人教版九年级数学上册第二单元的第一课时,也是初中数学的重要内容之一。

本节课的内容主要包括一元二次方程的定义、性质、解法以及应用。

通过本节课的学习,使学生能够了解一元二次方程在实际问题中的应用,培养学生的抽象思维能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的代数基础,掌握了方程、不等式等基本概念。

但在解决实际问题时,还需要进一步引导学生将实际问题转化为数学问题,利用一元二次方程来解决问题。

因此,在教学过程中,要关注学生的学习需求,引导学生积极参与,提高学生的学习兴趣。

三. 说教学目标1.知识与技能目标:理解一元二次方程的定义,掌握一元二次方程的解法,能够应用一元二次方程解决实际问题。

2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题的能力,提高学生的抽象思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:一元二次方程的定义、性质和解法。

2.教学难点:一元二次方程的解法,特别是因式分解法和求根公式的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,培养学生的抽象思维能力。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件和网络资源,提高课堂教学的效果。

六. 说教学过程1.导入新课:通过生活中的实际问题,引导学生发现一元二次方程,激发学生的学习兴趣。

2.自主学习:让学生自主探究一元二次方程的定义和性质,培养学生独立解决问题的能力。

3.合作交流:分组讨论一元二次方程的解法,分享解题心得,提高学生的团队合作精神。

4.教师讲解:针对学生探究过程中遇到的问题,进行讲解和指导,突破教学难点。

5.巩固练习:设计具有针对性的练习题,让学生及时巩固所学知识。

21.2.1第1课时用直接开平方法解一元二次方程课件

21.2.1第1课时用直接开平方法解一元二次方程课件
21.2 解一元二次方程 21.2.1 配方法
第1课时 用直接开平方法解 一元二次方程
一、教学目标
1.会利用开平方法解形如x2=p(p≥0)的方程. 2.初步了解形如(x+n)2=p(p≥0)方程的解法. 3.能根据具体问题的实际意义检验结果的合理性.
二、教学重难点
重点 运用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次 方程.
∴原方程的根为 x1=1+2 5,x2=1-2 5;
(2)原方程可化为(y-2)2=8,直接开平方得 y-2=±2 2, ∴原方程的根为 y1=2+2 2,y2=2-2 2; (3)原方程可化为 4(3x-1)2=9(3x+1)2,两边开平方得 2(3x -1)=±3(3x+1), ∴2(3x-1)=3(3x+1)或 2(3x-1)=-3(3x+1),
∴x1=-53,x2=-115.
例3 已知方程(x-3)2=k2+5的一个根是x=6,求k的 值和另一个根. 解:∵方程(x-3)2=k2+5的一个根是x=6,
∴(6-3)2=k2+5,解得k=±2, ∴原方程为(x-3)2=9, ∴另一个根为x=0.
练习
1.教材P6 练习. 2.若x2-2xy+y2=4,则x-y的值为( C )
提出问题: (1)一个正方体有几个面?若一个正方体的棱长为x dm ,则这个正方体的表面积是多少? (2)本题中的等量关系是什么?请概括该等量关系,列 出方程; (3)你能根据平方根的意义解方程 x2=25吗?本题中负 值为什么要舍去?
探究
对照上面解方Biblioteka (1)的过程,你认为应怎样解方程(x+3)²=5?
(1)一元二次方程与一元一次方程有什么不同?二次是 如何转化为一次的?
(2)请谈谈如何降次.

九年级数学:21.1一元二次方程教案(第一课时)

九年级数学:21.1一元二次方程教案(第一课时)

2.一元二次方程的一般形式:
我们把一元二次方程按未知数的降幂排列有:20(0)
ax bx c a
++=≠.这种形式叫做一元二次方程的一般形式.其中a叫做二次项系数,b叫做一次项系数,c叫做常数项.
想一想:为什么要限制a≠0 ? b、c可以为零吗?强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现,但二次项必须存在,而且左边通常按未知数的次数从高到低排列,特别注意的是“=”的右边必须整理成0。

二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。

浙教版数学七年级下册2.1《二元一次方程》(第1课时)教学设计

浙教版数学七年级下册2.1《二元一次方程》(第1课时)教学设计

浙教版数学七年级下册2.1《二元一次方程》(第1课时)教学设计一. 教材分析《二元一次方程》是浙教版数学七年级下册第2.1节的内容,主要介绍二元一次方程的定义、性质及解法。

这部分内容是学生学习方程的重要组成部分,为后续学习更复杂的方程打下基础。

教材通过实例引入二元一次方程,使学生能够联系实际问题,理解方程的概念。

二. 学情分析七年级的学生已经学习了初一数学的基本知识,对一元一次方程有一定的理解。

但面对二元一次方程,他们可能会有困惑。

因此,在教学过程中,要关注学生的学习心理,引导学生逐步理解二元一次方程的概念和性质。

三. 教学目标1.理解二元一次方程的定义,掌握二元一次方程的解法。

2.能够将实际问题转化为二元一次方程,并求解。

3.培养学生的逻辑思维能力和团队协作能力。

四. 教学重难点1.重难点:二元一次方程的概念和性质,二元一次方程的解法。

2.难点:将实际问题转化为二元一次方程,求解二元一次方程。

五. 教学方法1.情境教学法:通过实例引入二元一次方程,让学生在实际问题中感受方程的作用。

2.启发式教学法:引导学生主动思考,探索二元一次方程的解法。

3.合作学习法:分组讨论,培养学生的团队协作能力。

六. 教学准备1.教学PPT:制作精美的PPT,展示二元一次方程的定义、性质和解法。

2.实例:准备一些实际问题,用于引入和巩固二元一次方程。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示一个实际问题:某商店同时销售A、B两种商品,A 商品每件10元,B商品每件15元。

如果A、B商品的销售总额为240元,销售A商品的数量是B商品的2倍,请列出销售数量的方程。

让学生思考如何解决这个问题,引出二元一次方程的概念。

2.呈现(10分钟)讲解二元一次方程的定义,示例说明二元一次方程的形式。

同时,引导学生回顾一元一次方程的知识,对比二元一次方程的特点。

3.操练(10分钟)让学生分组讨论,尝试解一些简单的二元一次方程。

2.1《认识一元二次方程第1课时》北师大版九年级上册教学课件

2.1《认识一元二次方程第1课时》北师大版九年级上册教学课件

是什么方程?
(1) 5x+3 = 8
(2) x + y = 8
二元一次方程
(3)
2 x
=
5 x-2
分式方程
(4) x2+ 2x = 8
它不是我们已学的方程, 那它是什么方程呢?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
合作探究 问题1:如图,幼儿园某教室矩形地面的长为 8 m,宽为 5 m, 现准备在地面正中间铺设一块面积为 18 m2 的地毯,四周未铺地毯 的条形区域的宽度都相同,你能求出这个宽度吗?
(2)x2+2x – 4=0; (4)3y2 – 4x=7;
(6)(x+2)2=(x – 1)2. 化简后为:6x+3=0
(1)方程中只含有一个未知数; (2)未知数的最高次数是2; (3)整式方程.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
2.根据题意列出一元二次方程: 已知直角三角形的三边长 为三个连续的整数,求它的三边长.(只列方程)
思考:上述三个方程有什么共同特点?
将三个方程分别化简整理得: 2x2-13x+11=0 x2-8x-20=0 x2+12x-15=0
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
议一议
2x2 13x+11 0 x2 8x 20 0
x2 +12x 15 0
共同点
等号两边
未知数
次数
友情提示: (1)二次项系为负数时,一般要化为正数; (2)写一般式时通常按未知数的次数从高到低排列; (3)写系数时要带上前面的符号.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档