第二节 二重积分的计算法(1)
高等数学A10-2二重积分的计算(1)
10-2 二重积分的计算
(宋)苏轼
寄蜉蝣于天地,
渺沧海之一粟.
哀吾生之须臾,
羡长江之无穷.
10-2 二重积分的计算
第二节 二重积分的计算
一、利用直角坐标计算二重积分 二、利用极坐标计算二重积分 三、小结与思考
10-2 二重积分的计算
一、利用直角坐标系计算二重积分
(1) 在直角坐标系下用平行于 y
坐标轴的直线网来划分区域 D,
则面积元素为
d dxdy
o
D
x
故二重积分可写为
f ( x, y)d f ( x, y)dxdy
D
D
10-2 二重积分的计算
(2) 如果积分区域 D如图所示,那么可用不等式表示为
a x b, 1( x) y 2( x). [X-型]
其中ri 为 ri与 ri ri 的平均值.由此当 ri , i 充分小 时,极坐标系下的面积元素 d rdrd.
10-2 二重积分的计算
其次, 直角坐标系与极坐标系有如下变换关系
x r cos
y
r
sin
最后, 两坐标系下积分区域 D 形状不变,因此有
f ( x, y)d f (r cos , r sin )rdrd .
D
o
10-2 二重积分的计算
D
D
以下我们讨论极坐标下的二重积分的计算.
r 1( ) r 2( )
DD
r 1( )
r 2( ) D
r 2( )
D
o
Ao
Ao
A
r 1( ) 0
高等数学 第九章 第2节 二重积分的计算法(1)(中央财经大学)
第二节 二重积分的计算法(1)一、利用直角坐标系计算二重积分一、利用直角坐标系(right angle 计算二重积分)(2x y ϕ=abD)(1x y ϕ=Dba)(2x y ϕ=)(1x y ϕ=y yy x f x S x x d ),()()()(21∫=ϕϕy )(1x ϕ=)(2x y ϕ= d d ),(d )( )()(21∫∫∫⎟⎠⎞⎜⎝⎛==ba x x ba x y y x f x x S V ϕϕyy x f x S x x d ),()()()(21∫=ϕϕx ϕ=)(1y ϕDcdcd(2x ϕ=)(1y ϕ=DX 型区域的特点: 穿过区域且平行于y 轴的直线与区域边界相交不多于两个交点.Y 型区域的特点:穿过区域且平行于x 轴的直线与区域边界相交不多于两个交点.若区域如图,3D 2D 1D 在分割后的三个区域上分别使用积分公式.321∫∫∫∫∫∫∫∫++=D D D D则必须分割.,X=YY=2X=1YX 2112dxdyy dy2x2xy=y=−y e2−dyey 2∵2d y=2x y =xy =xy −=1例6 改变积分 ∫d x10的次序.原式∫∫−=y dxy x f dy 101),(.解积分区域如图例xy −=222x x y −=例7 改变积分∫∫∫∫−−+xxx dy y x f dx dy y x f dx 20212010),(),(2的次序.原式∫∫−−−=12112),(yy d xy x f d y .解积分区域如图例x+ =−d x y y )二重积分在直角坐标下的计算公式(在积分中要正确选择积分次序)二、小结.),(),()()(21∫∫∫∫=Dbax x dy y x f dx d y x f ϕϕσ.),(),()()(21∫∫∫∫=Ddcy y dx y x f dy d y x f ϕϕσ[Y -型][X -型]谢谢大家!。
二重积分计算法
2
12
22
dy f (x, y)dx dy f (x, y)dx
11
1 y2
2y
计算二重积分时,可以先对x积分后对y积分,也
可以先对y积分后对x积分,先对哪个变量积分,要视
积分域D及被积函数f(x,y)的不同情况而定.
例8 求两个底圆半径相等的直角圆柱面所围成的立体 的体积. 解 : 设圆柱的底半径为R,两个圆柱面的方程为
x2 y2 R2, x2 z2 R2 它们在第一象限的图形如下
二、利用极坐标系计算二重积分
由二重积分的定义知
n
D
f
(x,
y)d
lim
0 i 1
f
(i ,i ) i
极坐标与直角坐标之间的关系
__
__
i ri cos i , i ri sin i
n
lim
0
i1
f
(i
,i
)
i
n_
__ _ _
D
c 1(y)
上式右端的积分叫做先对x、后对y的二次积分,这
个积分也常记作
d 2 (y)
f (x,y)d dy f (x, y)dx 2'
Dc 1(y)来自二重积分化为二次积分时,确定积分限是解题关键.
若将其交换积分次序,先对x积分后对y积分,则其积分 区域如下图
交换积分次序为
2x
dx f (x, y)dy
lim
0
i1
f
(ri
cosi
,
ri
sin
i
)
ri
ri
i
即: f (x, y)d f (r cos ,r sin )rdrd
0902二重积分的计算法-1
b ϕ2( x) f ( x , y )dy ; = dx a ϕ1 ( x )
∫
∫∫ f ( x , y )dσ ∫
D
d ϕ2 ( y) f ( x , y )dx . = dy c ϕ1 ( y )
∫
[混合型] 混合型] (在积分过程中要正确选择积分次序) 在积分过程中要正确选择积分次序) 积分次序
y
A(x)
a
x
y = ϕ2 ( x)
b
x
D
y = ϕ1( x)
b ϕ ( x) ∴ ∫∫ f ( x , y )dσ =∫a dx ∫ϕ 2( x ) f ( x , y )dy . ……二次积分公式 ? 1 二次积分公式
D
◆如果积分区域为:c ≤ y ≤ d , ϕ1 ( y ) ≤ x ≤ ϕ 2 ( y ). 如果积分区域为:
π
练习1 练习 改变下列积分的积分次 序
∫
1 2 x− x2 2 2− x dx f ( x , y )dy + dx f ( x , y )dy . 0 0 1 0
∫
∫
∫
解 积分区域如图: 积分区域如图:
y = 2− x
原式 = ∫0 dy ∫
1
2− y
2
y = 2x − x2
1− 1− y
f ( x , y )dx.
1
o
1
x
2.设f ( x , y )在D上连续 , 其中 D是由直线 y = x , y = a及x = b (b > a )所围成的闭区域 , 证明 :
(1)∫
b x dx a a
∫ f ( x , y )dy = ∫
b b dy y a
二重积分的计算方法
二重积分的计算方法(1)1 利用直角坐标系计算1.1 积分区域为X 型或Y 型区域时二重积分的计算对于一些简单区域上的二重积分,可以直接化成二次积分来解决.在直角坐标系下,被积分函数(,)f x y 在积分区域D 上连续时,若D 为x 型区域(如图1),即{}12(,)()(),D x y x x x ax b ϕϕ=≤≤≤≤,其中12(),()x x ϕϕ在[,]a b 上连续,则有21()()(,)(,)bx ax Df x y d dx f x y dy ϕϕσ=⎰⎰⎰⎰; (1)若D 为y 型区域(如图2),即{}12(,)()(),D x y y y y c y d ψψ=≤≤≤≤,其中12(),()y y ψψ在[,]c d 上连续,则有21()()(,)(,)dy cy Df x y d dy f x y dx ψψσ=⎰⎰⎰⎰.[1] (2)例1 计算22Dy dxdy x⎰⎰,其中D 是由2x =,y x =,及1xy =所围成. 分析 积分区域如图3所示,为x 型区域()1D=,12,x y x y x x ⎧⎫≤≤≤≤⎨⎬⎩⎭.确定了积分区域然后可以利用公式(1)进行求解.解 积分区域为x 型区域()1D=,12,x y x y x x ⎧⎫≤≤≤≤⎨⎬⎩⎭则2221221x x Dy y dxdy dx dy x x=⎰⎰⎰⎰ yyxyD2D121图321213xxy dx x ⎛⎫= ⎪⎝⎭⎰251133x dx x ⎛⎫=- ⎪⎝⎭⎰221412761264x x ⎛⎫=+= ⎪⎝⎭1.2 积分区域非X 型或Y 型区域二重积分的计算当被积函数的原函数比较容易求出,但积分区域并不是简单的x 型或y 型区域,不能直接使用公式(1)或者(2)进行计算,这是可以将复杂的积分区域划分为若干x 型或y 型区域,然后利用公式123(,)(,)(,)(,)DD D D f x y d f x y d f x y d f x y d σσσσ=++⎰⎰⎰⎰⎰⎰⎰⎰ (3)进行计算,例2 计算二重积分Dd σ⎰⎰,其中D 为直线2,2y x x y ==及3x y +=所围成的区域.分析:积分区域D 如图5所示,区域D 既不是x 型区域也不是y 型区域,但是将可D 划分为()(){}12,01,22,13,23x D x y x y x D x y x y y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭=≤≤≤≤-均为x 型区域,进而通过公式(3)和(1)可进行计算.解 D 划分为()1,01,22x D x y x y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭,(){}2,13,23D x y x y y x =≤≤≤≤-则12D D D d d d σσσ=+⎰⎰⎰⎰⎰⎰12230122x x x x dx dy dx dy -=+⎰⎰⎰⎰ 120112322x x dx x dx ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭⎰⎰ 1222013333442x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦y图1.3 被积函数较为复杂时二重积分的计算二重积分化为二次定积分后的计算可以按定积分的求解进行,但是当被积函数较为复杂,虽然能定出积分限,但被积函数的原函数不易求出或根本求不出,这时可根据被积函数划分积分区域,然后进行计算.例3计算二重积分D,其中D 为区域1x ≤,02y ≤≤.分析 由于被积函数含有绝对值,其原函数不能直接求得,以至于不能直接化为二次积分进行计算,观察函数本身,不难发现当我们把积分区域划分为21211x y D x ⎧≤≤=⎨-≤≤⎩,22011y x D x ⎧≤≤=⎨-≤≤⎩两部分后,被积函数在每一个积分区域都可以化为基本函数,其原函数很容易求得.解 区域D 如图6可分为12D D ,其中21211x y D x ⎧≤≤=⎨-≤≤⎩,22011y x D x ⎧≤≤=⎨-≤≤⎩由公式(3)则12DD D =+2212111523x xdx dx π--=+=-⎰⎰⎰⎰2 利用变量变换法计算定理1 设(,)f x y 在有界区域D 上可积,变换():,T x x u v =,(),y y u v =,将,u v 平面按段光滑封闭曲线所围成的区域∆一对一地映成,x y 平面上的区域D ,函数(),x u v ,(),y u v 在∆内分别具有一阶连续偏导数且它们的雅克比行列式()()(),,0,x y J u v u v ∂=≠∂,(),u v ∈∆.则()()()()(,),,,,Df x y d f x u v y u v J u v dudv σ∆=⎰⎰⎰⎰ (4)(4)式叫做二重积分的变量变换公式,2.1 根据被积函数选取新变量使被积函数简化当被积函数较为复杂,这时可以考虑利用变量变换化被积函数为简单函数,原积分区域相应的转化为新的积分区域,进而利用公式进行计算.例4 求x y x yDedxdy -+⎰⎰,其中D 是由0,0,1x y x y ==+=所围曲线(图7)分析 由于被积函数含有e 的指数,且较为复杂,这时可以考虑替换变量,简化被积函数,如果做替换T :,.u x y v x y =+=-在变换T 作用下区域D 的原像∆如图8所示,根据二重积分的变量变换公式,积分计算就简单了.解 做变换()()12:12x u v T y u v ⎧=+⎪⎪⎨⎪=-⎪⎩ ()1,02J u v =>所以12x yux yvDedxdy e dudv -+∆=⎰⎰⎰⎰1012u v v v du e du -=⎰⎰()11012v e e dv -=-⎰ 14e e --=2.2 根据积分区域选择新变量计算二重积分当被积函数比较简单,积分区域却比较复杂时,可考虑积分区域,若有()(),,,u f x y v g x y ==且,m u n v αβ≤≤≤≤,则把xy 平面上的积分区域D 对应到uv 平面上简单的矩形区域∆,然后根据二重积分的变量变换公式(4)进行计算.例5 求抛物线22,y mx y nx ==和直线,y x y x αβ==所围区域D 的面积()D μ.分析 D 的面积()DD dxdy μ=⎰⎰.实际是计算二重积分Ddxdy ⎰⎰,其被积函数很简单,但是积分区域却比较复杂,观察积分区域不难发现22,y y m n x x ==;,y y x x αβ==,如果设2,y yu v x x==,则有,m u n v αβ≤≤≤≤,解 D 的面积()DD dxdy μ=⎰⎰作变换2:u x v T v y u ⎧=⎪⎪⎨⎪=⎪⎩,[][],,m n αβ∆=⨯()()4,,,.uJ u v u v v =∈∆ 所以()()()22334433=6n m D n m udv D dxdy dudv udu v v βαβαμαβ∆--===⎰⎰⎰⎰⎰⎰. 例6 求233Dx dxdy y xy+⎰⎰.22:1,3,,3D xy xy y x y x ====所围区域. 分析 积分区域的处理与上题类似,可以做变量替换T :2,y u xy v x==,它把xy 平面上的区域D 对应到uv 平面上的矩形区域∆.解 令2:u xy T y v x =⎧⎪⎨=⎪⎩在变换T 作用下,区域D 的原像(){},13,13u v u v ∆=≤≤≤≤, ()1,03J u v v=≠ 所以233113Dx dxdy dudv y xy v uv v ∆=⋅++⎰⎰⎰⎰()3311du dv v v uv =+⎰⎰2ln 23=.2.3 利用极坐标变换计算二重积分当被积函数含有()22f x y +、x f y ⎛⎫⎪⎝⎭或y f x ⎛⎫⎪⎝⎭形式或积分区域的边界曲线用极坐标方程来表示比较方便,如圆形及圆形区域的一部分,可考虑用极坐标变换cos :sin x r T y r θθ=⎧⎨=⎩,0,02θθπ≤<∞≤≤ 这个变换除原点和正实轴外是一一对应的(严格来说极坐标变换在原点和正实轴上不是一对一的,但可以证明公式(1)仍然成立),其雅可比行列式为r .(1)如果原点0D ∉,且xy 平面上射线θ=常数与积分区域D 的边界至多交于两点,则∆必可表示为()()12r r r θθ≤≤, αθβ≤≤.则有()()()()21,cos ,sin r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰(5)类似地,若xy 平面上的圆r =常数与积分区域D 的边界至多交于两点,则∆必可表示为()()12r r θθθ≤≤,12r r r ≤≤那么()()()()2211,cos ,sin r r r r Df x y dxdy rdr f r r d θθθθθ=⎰⎰⎰⎰(6)(2)如果原点O 为积分区域D 的内点,D 的边界的极坐标方程为()r r θ=,则∆可表示成()0r r θ≤≤,0θπ≤≤则有()()()20,cos ,sin r Df x y dxdy d f r r rdr πθθθθ=⎰⎰⎰⎰(7)(3)如果原点O 在积分区域D 的边界上,则∆为图()0r r θ≤≤,αθβ≤≤那么()()(),cos ,sin r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰(8)例7计算DI =,其中D 为圆域:221x y +≤分析 观察到积分区域为圆域,被积函数的形式为22()f x y +,且原点为D 的内点,故可采用极坐标变换cos ,01:sin ,02x r r T y r θθθπ=≤≤⎧⎨=≤≤⎩,可以达到简化被积函数的目的.解 作变换cos ,01:sin ,02x r r T y r θθθπ=≤≤⎧⎨=≤≤⎩, 则有DI =2100d πθ=⎰⎰120d πθ⎡=⎣⎰202d πθπ==⎰.例8 计算二重积分Dydxdy ⎰⎰,其中D 是由直线2,0,2x y y =-==,以及曲线x =所围成的平面区域.积分区域D 与1D 分析 首先根据题意,画出积分区域,由于一起围成规则图形正方形,且1D 为半圆区域,根据极坐标变换简化被积函数.解 积分区域如图15所示,1D D +为正方形区域,1D 为半圆区域,则有11DD D D ydxdy ydxdy ydxdy +=-⎰⎰⎰⎰⎰⎰,而12224D D ydxdy dx dy -+==⎰⎰⎰⎰,1:02sin ,2D r πθθπ≤≤≤≤故原式12sin 02sin D ydxdy d r rdr πθπθ=⋅⎰⎰⎰⎰428sin 3d ππθθ=⎰ 281cos 212cos 23422ππθπθ+⎛⎫=-+= ⎪⨯⎝⎭⎰. 2.4 利用广义极坐标变换计算一些二重积分与极坐标类似,作如下广义极坐标变换:cos ,0:sin ,02x ar r T y br θθθπ=≤≤∞⎧⎨=≤≤⎩并且雅可比行列式(),J u v abr = 同样有()(),cos ,sin Df x y dxdy f ar br abrdrd θθθ∆=⎰⎰⎰⎰ (9)例9计算D I =⎰⎰,其中(),0D x y y x a ⎧⎫⎪⎪=≤≤≤≤⎨⎬⎪⎪⎩⎭分析 根据给出被积函数和积分区域的形式,我们可以确定采用广义极坐标变换cos ,01:sin ,02x ar r T y br θπθθ=≤≤⎧⎪⎨=≤≤⎪⎩,可以达到简化积分区域和被积函数的目的.解 作广义极坐标变换cos ,01:sin ,02x ar r T y br θπθθ=≤≤⎧⎪⎨=≤≤⎪⎩,(),J u v abr =由(9)知DI =⎰⎰12d πθ=⎰⎰1206abc d abc ππθ==⎰⎰3 某些特殊函数的计算3.1 利用积分区域的对称性简化二重积分的计算如果D 可以分为具有某种对称性(例如关于某直线对称,关于某点对称)的两部分1D 和2D ,那么有如果(),f x y 在1D 上各点处的值与其在2D 上各对称点处的值互为相反数,那么(),0Df x y d σ=⎰⎰如果(),f x y 在1D 上各点处的值与其在2D 上各对称点处的值恒相等,那么()()()12,2,2,DD D f x y d f x y d f x y d σσσ==⎰⎰⎰⎰⎰⎰[3]例10 计算2Dx ydxdy ⎰⎰,其中D 为双曲线221x y -=及0,1y y ==所围成区域.分析 首先根据题意,在坐标系中划出积分区域,观察到()2,f x y x y =为x 的偶函数,另一方面D 关于y 轴对称,且(),f x y 在1D 在2D 上各点处的值与其在2D 上各对称点处的值恒相等,然后再化为累次积分计算.解 积分区域如图11所示:1D 为D 在第一象限内的部分,D 关于y 轴对称,又()2,f x y x y =为x 的偶函数,由对称性有1222DD x ydxdy x ydxdy =⎰⎰⎰⎰宜选择先对x 后对y 的积分次序 故原式1222DD x ydxdy x ydxdy =⎰⎰⎰⎰12002dy ydx =⎰()3122213y y dy =+⎰()()5212022111515y =+=.3.2 分段函数和带绝对值函数的二重积分计算分段函数:首先画出被被积函数和积分区域的图形,然后根据分段函数表达式将积分区域划分成若干个子区域,是在每个子区域上的被积函数的表达式是唯一的,最后再由性质加以讨论.被积函数带绝对值时,首先去掉绝对值号,同样也将积分区域划分成若干个子区域,使每个子区域上被积函数的取值不变号.例11 求224Dx y dxdy +-⎰⎰,其中D 为229x y +≤围成的区域.分析 被积函数表达式含有绝对值,为了去掉绝对值符号,应将积分区域分成使得22224040x y x y +-≥+-≤及的两部分,在两部分上分别积分后,再相加.O1解 为去绝对值号,将D 分成若干个子区域,即221:4D x y +≤ 222:49D x y ≤+≤在1D 内 222244x y x y +-=-- 在2D 内 222244x y x y +-=+- 故原式224Dx y dxdy +-⎰⎰()()12222244D D x y dxdy x y dxdy =--++-⎰⎰⎰⎰,利用极坐标计算有()()122222448D x y dxdy d r rdr πθπ--=-=⎰⎰⎰⎰ ()()2232220125442D x y dxdy d r rdr πθπ+-=-=⎰⎰⎰⎰ 故原式2541822πππ=+=. 例12 求(),Df x y dxdy ⎰⎰,其中()(),0,0,0,x y ex y f x y -+⎧>>⎪=⎨⎪⎩其他,D 由,,0x y a x y b y +=+==和y b a =+所围成()0b a >>.分析 首先划出积分区域,将区域D 分解为如图所示三个区域,根据被积函数的形式,分别计算出每个积分区域上的积分,再利用二重积分对区域的可加性再相加即得.解 如图12,并由(),f x y 表达式可得123D D D D =.在1D 上有 (),0f x y =,则()1,0D f x y dxdy =⎰⎰.因而()()23x y x y D D I edxdy edxdy -+-+=+⎰⎰⎰⎰()()0a b xab xx y x y a xadx edy dx e dy ---+-+-=+⎰⎰⎰⎰1a b a b ae be e e ----=-+-。
(完整版)第二节二重积分的计算
即等于两个定积分的乘积.
例2 求 x2e y2dxdy, 其中D 是以 (0,0),(1,1),(0,1)
D
为顶点的三角形.
解 因 e y2dy 无法用初等函数表示,
所以, 积分时必须考虑次序.
x2e y2dxdy
1
dy
y x 2e y2 dx
0
0
D
e1 y2
y3 dy
1
1 y2e y2dy2 1 1 2
Oa
b x Oa
bx
f ( x, y)d
b
dx
2 ( x) f ( x, y)dy
a
1 ( x)
D
3. 若区域如图, 则必须分割. 在分割后的三个区域上分别 使用积分公式. (利用积分区域的可加性)
y
D3
D1 D2
O
x
D
D1
D2
D3
例1 求 ( x2 y)dxdy,其中D是抛物线y x2和
0
3
60
6 e
例3 交换积分次序:
1
2 x x2
2
2 x
0 dx0
f ( x, y)dy 1 dx0 f ( x, y)dy
y
解 积分区域:
y2 x
y 2x x2
O
1
2x
原式=
1
dy
2 y
f ( x, y)dx
0
1 1 y2
例4 计算积分 I
1
2 1
dy
1
y
y e x dx
(
x,
y)dx)dy
D
即
f y)dx.
D
c
1( y)
高数讲义第二节二重积分的计算(一)
方法一:将 D 看做 Y 型区域
y x2
y x y2
(4 , 2)
2
y
x y2
0 1
x
(1 , 1)
1 y 2 , y2 x y2
x y d x d y
2 1
d
y
y2 y2
xy d x
D
x y d x d y
2 1
d
y
y2 y2
xy d x
D
1 2
x
2
1 0
y
(
d xd
x2
y
x4
)
1 2
dx
1 x2
0
1 2
(1 ( x3
3
x2)dx x5) 1
5
0
1 15
例 2 求 ( x2 y)dxdy,其中D是由抛物线
D
y x2和 x y2所围平面闭区域.
解:画积分区域 两曲线的交点
x y2
y x2
x
(0,0) y2
, (1,1),
· y M 2 y 2( x )
y
· M 2 y 2( x )
D
D
· M 1 y 1( x )
0a x b x
· M 1 y 1( x )
0 a x bx
类型 I (X 型):D 由直线 x = a , x = b 与曲线
y 1( x ) 和 y 2( x ) 所围成,即
D { ( x, y ) | a x b, 1( x) y 2( x) }
dx
y
A(x)
0
a
z f ( x, y)
y 1( x )
二重积分的计算1
y
D
z = f (x, y)
O
a x0 b x
目录 上页 下页 返回 结束
设曲顶柱的底为
y = ϕ2 (x)
z z = f (x, y)
ϕ1(x) ≤ y ≤ ϕ2 (x) D = (x, y) a ≤ x ≤b
任取 截面积为 故曲顶柱体体积为 平面 截柱体的
y
D
O
a x0 b x y = ϕ1(x)
D
x
∫c d y∫ψ ( y)
1
d
ψ 2 ( y)
c f (x, y) dx O =ψ ( y) x x 1
当被积函数 f (x, y) 在D上变号 变号时,结论仍成立。 变号
目录 上页 下页 返回 结束
说明: 说明 (1) 若积分区域既是 X - 型区域又是Y - 型区域 , 则有
∫∫D
b a d
V = ∫∫ f (x, y) dσ = ∫ A(x)记 d x
ϕ2 (x) f (x,y) dy ]d x = d x = [ f (x,y)dy a ϕ1( x) a ϕ1(x)
b
∫ ∫
D b ϕ2 ( x)
a
作
∫
b
∫
目录
上页
下页
返回
结束
同样, 曲顶柱的底为
D = { (x, y) ψ1( y) ≤ x ≤ψ2 ( y), c ≤ y ≤ d }
−4
y
−2
y2 = x
x
y
=[
12y − 1 y2 − 1 y3 2 3
D
注: 计 ∫∫ 算
2 ] −[ ] = 52 3 −4 −2 f (x, y) dσ 时 若 f (x, y) 可 展 D , 扩 到 1
第二节_二重积分的计算法
第二节_二重积分的计算法二重积分:在平面上规定一个有界闭合区域D,对于D上的每一点P(x,y),都有一个标量函数f(x,y)与之对应。
则二重积分的数值就是由函数f(x,y)在区域D上所有点处的函数值决定的。
二重积分一般可以表示为∬Df(x,y)dA。
计算二重积分的方法主要有以下几种:直角坐标法、极坐标法、换元积分法和累次积分法。
1.直角坐标法:针对矩形、直角三角形、抛物线和折线边界的区域,可以直接使用直角坐标法来计算二重积分。
具体步骤如下:(1)写出二重积分的累加和形式:I=ΣΣf(x,y)ΔA。
(2)将区域D分成若干小矩形,计算每个小矩形的面积ΔA。
(3)在每个小矩形上选择代表点(x,y),计算f(x,y)的函数值。
(4)将函数值与相应小矩形的面积相乘,加和求和即可得到二重积分的数值。
2.极坐标法:当具有极坐标对称性的区域时,采用极坐标法可以简化计算。
具体步骤如下:(1) 确定极坐标变换:x=r*cosθ,y=r*sinθ。
(2) 根据变换的雅可比矩阵计算面积元素dA的极坐标形式:dA=rdrdθ。
(3) 将二重积分转化为极坐标下的累次积分:I=∫∫Df(x,y)dxdy=∫∫Df(r*cosθ,r*sinθ)rdrdθ。
(4)将极坐标下的积分区域和积分限进行变换,然后按照累次积分进行计算。
3.换元积分法:当二重积分区域D的边界方程比较复杂时,可以使用换元积分法来简化计算。
具体步骤如下:(1)根据边界方程对二重积分区域D进行变换,将原来的二重积分区域映射到一个新的坐标系中的区域G。
(2)根据变换的雅可比矩阵,计算新坐标系下的面积元素dA'。
(3) 将二重积分转化为新坐标系下的累次积分:I=∫∫Df(x,y)dxdy=∫∫Gf(x(u,v),y(u,v)),J(u,v),dudv,其中J(u,v)为雅可比行列式。
(4)对新坐标系下的累次积分按照直角坐标法或极坐标法进行计算。
4.累次积分法:当二重积分区域D可以通过垂直于坐标轴的直线进行划分时,可以使用累次积分法进行计算。
第二节二重积分的计算法
第二节二重积分的计算法第二节学习的是二重积分的计算法。
二重积分的计算法可以通过分别采用直角坐标系和极坐标系进行求解。
本文将详细介绍这两种方法的具体步骤。
在直角坐标系中,假设被积函数为f(x,y),要计算其在D上的二重积分,其中D是一个有界区域,可以采用以下步骤进行求解:1.将区域D进行划分,然后选择该划分的一个子区域Di,其面积为ΔA。
2. 在子区域Di内任选一个点(xi, yi),将该点作为积分的取值点。
3. 将函数值f(xi, yi)与子区域的面积ΔA相乘,得到局部的积分量f(xi, yi)ΔA。
4.将所有子区域的局部积分量相加,得到近似的二重积分。
5.使用极限的思想,当划分的子区域趋近无穷小时,近似的二重积分趋近于准确的二重积分。
6.对于具体的函数形式,可以通过积分的性质进行变换,求解更为简便。
在计算二重积分时,需要注意以下几点:1.对于非均匀分布的划分,可以通过增加划分数量来提高近似的准确度。
2.划分的子区域大小越小,计算结果越准确,但也会增加计算的复杂度。
3.当函数比较复杂时,可以选择适当的数值计算方法来求解。
接下来,我们将介绍使用极坐标系进行二重积分的计算方法。
极坐标系中的二重积分采用极坐标系下的面积元素dA=rdrdθ。
具体步骤如下:1.将被积函数f(x,y)转换为极坐标下的形式f(r,θ)。
2.将被积区域D在极坐标系下的范围确定,也即确定r的取值范围和θ的取值范围。
3. 计算面积元素dA,即dA=rdrdθ。
4.将被积函数f(r,θ)与面积元素dA相乘,得到局部的积分量f(r,θ)dA。
5.将所有局部积分量相加,得到近似的二重积分。
6.使用极限的思想,当面积元素dA趋近无穷小时,近似的二重积分趋近于准确的二重积分。
极坐标系的二重积分计算方法可以简化计算过程,特别适用于对称性较强的函数和区域。
在实际应用中,二重积分的计算方法可以进一步推广到多重积分的计算。
多重积分的计算涉及到更高维度的坐标系和更复杂的积分区域,但基本的思想和步骤与二重积分类似。
10.2二重积分的计算(1)
xydx]dy
2
1
[
y
x2 ] y dy 21
2
1
[
y3 2
y ]dy 2
y4 [
8
y2 4
]
12
1
1 8
.
例 2 计算 y 1 x2 y2d , 其中 D 是由直线 D
y x、x 1和 y 1 所围成的闭区域.
解 如图, D 既是 X 型, 又是Y 型.若视为X
型, 则
11
原积分 [ y 1 x2 y2dy]dx 1 x
第二节 二重积分的计算法(1)
一、利用直角坐标系计算二重积分 二、交换二次积分次序 三、对称性、奇偶性的应用
一、利用直角坐标系(right angle coordinate system)计算二重积分
如果积分区域为:a x b, 1( x) y 2( x).
[X-型]
y 2(x)
D
y 1( x)
y2 x 及直线 y x 2所围成的闭区域.
解 如图,
D 既是 X 型, 也是Y 型. 但易见选择前者计算
较麻烦, 需将积分区域划分为两部分来计算, 故选
择后者.
2 y2
xyd
[ 1 y2
xydx]dy
D
2 [ x2 1 2
y]
y y2
2
dy
1 2
2
[ y( y 2)2 y5 ]dy
)(e
y
1 0
)
(e
1)2 .
例 6 求两个底圆半径都等于 R 的直交圆柱面所围
成的立体的体积.
解 设两个圆柱面的方程分别为 x2 y2 R2 及
d
dy
2 ( y) f ( x, y)dx.
10.2 二重积分的计算法
d
二次积分
c
2 ( y)
1 ( y )
f ( x, y )dx dy 的计算:
一. 计算定积分
2 ( y)
1 ( y )
f ( x, y )dx 。此时,由于以 x 作为积分变量,因此需要将二
次函数 f ( x, y ) 中的 x 看作变量,而将另一个变量 y 看作常数(事实上,这思想类
y 。特别地, 1 ( x ) 与 2 ( x) 可能为常数,因为常数也属于函数。再对 x 求积分,
x 的积分下限与积分上限分别为 a 与 b ,它们都是常数。
二次积分
b
a
2 ( x )
1 ( x )
f ( x, y )dy dx 的计算:
一. 计算定积分
2 ( x )
1 ( x )
d c
2 ( y)
1 ( y )
f ( x, y )dx dy dy
c
d
2 ( y)
1 ( y )
f ( x, y )dx
其中, 1 ( y ) 与 2 ( y ) 皆为以 y 为变量的一元函数,不含变量 x ,而 c 与 d 皆为常 数。 注:注意观察积分变量 x, y 的积分下限与积分上限。先对 x 求积分, x 的积分下 限与积分上限分别为 1 ( y ) 与 2 ( y ) ,它们都是以 y 为变量的一元函数,不含变 量x。 特别地, 1 ( y ) 与 2 ( y ) 可能为常数, 因为常数也属于函数。 再对 y 求积分,
别为 x 轴坐标的最小值与最大值,它们皆为常数。
例:设 D 是由直线 x 0 , y 2 , y 2 x 所围成的闭区域,求二重积分 xy d 。
二重积分的计算
y = 1 − x. 所以
∫∫ ∫ ∫ f (x, y)dσ =
1
1− x
dx f (x, y)dy.
0
0
D
y
同理
∫∫ ∫ ∫ f (x, y)dσ =
1
dy
1− y
f (x, y)dx.
0
0
D
x+ y =1
O
x
3.∫∫ f (x, y)dxdy. 其中 D = {(x, y) 0 ≤ y ≤ x, 0 ≤ x ≤ 1}. D
例7.5 交换下列积分次序
1
x2
1.∫0 dx∫0 f (x, y)dy.
解 积分区域如图所示, 所以
1
x2
∫0 dx∫0 f (x, y)dy
1
1
= ∫0 dy∫ y f (x, y)dx.
y
y = x2, x = y
1
D O 1x
∫∫ 例7.6 计算积分 xydσ, 其中D由 y = 1, y = x, x = 2 D
一、利用直角坐标系计算二重积分
利用直角坐标计算二重积分的关键是将二重积 分化为二次积分. 如果积分区域为: a ≤ x ≤ b, ϕ1( x) ≤ y ≤ ϕ2( x).
[X-型]
y = ϕ2(x)
D
y = ϕ1(x)
y = ϕ2(x)
D
y = ϕ1( x)
a
b
a
b
其中函数ϕ1( x) 、ϕ2( x) 在区间 [a,b]上连续.
1.将区域投影至 x轴, 得区间[a,b];
2.由 x = a, x = b得区域的上、下边界曲线 y = ϕ2 ( x),
y = ϕ1 ( x), 则
二重积分的计算法(1)
二、小结
二重积分在直角坐标下的计算公式
f ( x, y)d
b
dx
2 ( x) f ( x, y)dy.
[X型]
D
a
1( x)
f ( x, y)d
d
dy
2 ( y) f ( x, y)dx. [Y型
D
c
1( y)
(在积分中要根据积分区域和被积 函数的特征正确选择积分次序)
练习题
一、 填空题:
例5 计算 yexydxdy, D : x 1, x 2, y 2, xy 1
D
22
解 D是X—型区域 I dx yexydy
要分部积分,不易计算
1
1 x
若先 x 后 y 则须分片
12
22
I dy yexydx dy yexydx
D
0
1 y
11
易见尽管须分片积分,但由于被积函
D
y 1( x)
两个交点.
a
b
a
b
其中函数1( x) 、2( x) 在区间 [a,b]上连续.
f ( x, y)d 的值等于以 D 为底,以曲面 z
D
f (x, y) 为曲顶的柱体的体积.
应用计算“平行截 面面积为已知的立
z
体求体积”的方法,
y
z f (x, y)
A(x0 )
y 2(x)
解 积分区域如图
原式
1 1 y
dy f ( x, y)dx .
00
y 1 x
例 3 改变积分
1
dx
2 x x2
f ( x, y)dy
2
dx
2x f ( x, y)dy的次序.
第二节: 二重积分的计算(一)
D { ( x, y ) | c y d , 1( y) x 2( y) }
y
y
d
·M 1
x 1( y ) D
c
·M 2
x 2( y )
d
x 1( y )
x 2( y )
D
c
· M 1
·M 2
0
x
0
x
特点:用平行于 x 轴的直线自左往右穿过 D 时,与 D 的边界最多只有两个交点。
D : 0 x 1, x2 y x,
y x2
( x2 y)dxdy
1 dx
0
x
x
2
(
x
2
y)dy
D
1
[
x
2
(
x x2 ) 1 ( x x4 )]dx 33 .
0
2
140
例3:计算二重积分 x y d x d y
D
其中 D 是由抛物线 y 2 x 及直线
所围成的闭区域。
b a
d
x
2(x) 1(x)
f (x,
y) d y
累次积分法又俗称 “穿线法”
0
ax
bx
X 型区域
y
• 若 D 是一边平行于坐标轴的
d
矩形区域,如图所示,则
D
c
f (x, y) d x d y
0a
bx
D
b a
d
x
d c
f (x,
y) d y
d c
d
y
b
a
f (x,
y) d x
• 当 D 既是 X 型,又是 Y 型区域时
D
(0,1)为顶点的三角形.
二重积分计算1
y2x y 2xx2
原 式 0 1d1 2 y y 1 y2f(x ,y)d.x
例 3改 变 积 分 0 2adx2 2a a x xx2f(x,y)dy(a0)
的 次 序 .
解:
2a
y 2ax
a
y 2axx2 xaa2y2
a 2a
= 原式
D
a 1(x)
f(x ,y)ddd y 2(y)f(x ,y)d[.x Y-型] c 1(y)
D
在积分中要正确选择积分次序与正确给出积分
限,且定积分中的各种技巧在这里仍然适用。
练习一:将二重积分化成二次积分 If(x,y)dxdy
D: 由四条直线 : x=3,x=5, y
sin ydxd y1dyysin ydx o
Dy
y 0 y2
x
1
0(siynysiny)dy
1si1n
二次积分中的第一次积分要易于计算, 且最终形成只是关于第二个变量的函数。
(练习)将二重积分化成二次积分 If(x,y)dxdy
一、 先对x积分
D
y
b
o
D
ax
b
a
I dya f(x,y)dx
2 先对 y 积分(从下到上)
y
1
xydxdy
dx
x
xydy
D
x
x
xdx ydy
x
1 1(x3 x5)dx 1
20
24
D
3 先对 x 积分(从左到右)
0
1x
xydxdy d y
D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
D1 : 1 ≤ x ≤ y , 1 ≤ y ≤ 2
y D2 : ≤ x ≤ 2, 2 ≤ y ≤ 4 2
4
D2 D D 1
y x= y = 2x 2
2 1
O
y=x x= y
x
1
2
(2) ∫ dx ∫ f ( x, y)dy + dx ∫ ∫ 0 0
1
1
x
2
2 x
0
f ( x, y)dy.
解 积分区域为 D = D + D2 . 1
A( x) = ∫
2 ( x ) 1 ( x )
A( x)
f ( x , y ) dy
O
D
y = 1 ( x )
a x
b
x
A( x) = ∫
2 ( x )
1 ( x )
f ( x , y ) dy
z
z = f ( x, y)
y = 2 ( x)
利用已知平行截面面积 求立体体积的方法: 求立体体积的方法:
I = ∫ dx ∫ y 1 + x y dy x 1 3 1 1 2 2 2 2 1 = ∫ 1 + x y x dx = 3 3 1
2 2 1 1
1
y
1
D
0
1
x
若Y型 D: 1≤ x ≤ y, 1≤ y ≤ 1 型 则计算积分较繁. I = ∫ dy ∫ y 1 + x 2 y 2 dx 则计算积分较繁
R
R2 x2
Dxy
0
0
R x dy .
2 2
=∫
R
0
2 2 2 R x 2 R x ( y) dx 0
1 3 R 2 3 = ∫ (R x )dx = (R x x ) = R . 0 3 0 3 16 3 所求立体 立体的体积为 所求立体的体积为 V = 8 1 = R . V 3
第二节 二重积分的计算法(1)
一、利用直角坐标计算二重积分
一、利用直角坐标计算二重积分 二重积分的几何意义: 二重积分的几何意义
∫∫
D
f ( x , y )dσ 等于以曲面 等于以曲面
z
f ( x, y )
作为顶、 z = f ( x , y ) ≥ 0 作为顶、 该曲面向xoy面的 D作为底, 作为底, 作为底 该曲面向 面的 投影柱面作为侧面的 曲顶柱体的体积 曲顶柱体的体积. 的体积
2
x 2 = ∫ [ y ] y dy 1 23
2
2
2 y=x y 1
o
1
2x
例2 计算
2
∫∫ xydσ
D
,其中D是由抛物线 其中 是由抛物线
y = x 及直线 y = x 2 所围成的区域 所围成的区域.
看作Y型域 解 把D看作 型域 看作 2 D : y ≤ x ≤ y + 2, 1 ≤ y ≤ 2,
型区域): 若D(X型区域 1 ( x ) ≤ y ≤ 2 ( x ) , a ≤ x ≤ b 型区域
则∫∫ f ( x , y )dxdy = ∫ dx ∫
a D b
2 ( x )
1 ( x )
f ( x , y )dy
(先y后x积分)
型区域): 若D为(Y型区域 ψ 1 ( y ) ≤ x ≤ ψ 2 ( y ) , c ≤ y ≤ d 为 型区域
x
o
D
y
不妨设 f ( x , y )y )
∫∫ f ( x , y )dσ
D
即求曲顶柱体的体积. 即求曲顶柱体的体积.
x
o
D
y
积分区域的类型 1. X-型区域 D : 1 ( x ) ≤ y ≤ 2 ( x ) , a ≤ x ≤ b 型区域 y = 2 ( x ) y y = 2 ( x ) y
即D由四条直线 由四条直线 所围成的区域. 所围成的区域
1 2
x
y = x, y = 2x, x = 1, x = 2
若改为先对x后对 积分 若改为先对 后对y积分 后对 积分,
∫
2
1
dx∫
4
2x
x
f ( x, y)dy = ∫ dy∫ f ( x, y)dx
1 1
2
y
+∫ dy ∫ y f ( x, y)dx . y 2
y2 D
分析: 积分, 分析: 若先 y后x积分,则 I = ∫ dx ∫ e dy 后 积分 0 x 无法积分
1 1 y2
解 先x后y积分,Y 型 ) D : 0 ≤ x ≤ y,0 ≤ y ≤ 1 (
y
I = ∫ dy ∫ e dx = ∫ e x 0 dy
y2 y2 y 0 0 0
1
y
1
1
D
D = D1 + D2 +D3
y
D3
D1
由区域可加性,得 由区域可加性,
∫∫ f ( x, y)dσ
D
D2
= ∫∫ f ( x , y )dσ + ∫∫ f ( x , y )dσ + ∫∫ f ( x , y )dσ
D1 D2 D3
o
x
例1 计算
∫∫ xydσ
D
其中D是由直线 其中 是由直线 y=1,
则 ∫∫ f ( x, y)dxdy = ∫ dy ∫
c D
d
ψ2 ( y)
ψ1 ( y )
f ( x, y)dx
( 先对x后y积分 )
求二重积分的方法: 求二重积分的方法: 将二重积分化为两个定积分(二次积分) 将二重积分化为两个定积分(二次积分)
不是X型 或 型 区域 则将D分为几个 区域,则将 若D不是 型(或Y型)区域 则将 分为几个 不是 区域,使它们为 型 或 型 几个区域上的 区域,使它们为X型(或Y型),几个区域上的 积分之和就是所给二重积分的值 积分之和就是所给二重积分的值. 就是所给二重积分的值
1
y+2
1 y 4 3 y 2 2 = [ + y + 2 y ]1 2 4 3 6
5 =5 8
4
6
若把D看作 型域 由于在[0,1]和[1,4]上 若把 看作X型域 由于在 看作 型域, 和 上 下边界的表达式不同,所以要用直线 下边界的表达式不同,所以要用直线 x=1 将D分成两个区域 D1和D2 . 分成两个区域 它们分别用以下不等式表示: 它们分别用以下不等式表示:
D
z
A( x)
设D : 1 ( x ) ≤ y ≤ 2 ( x ) , a≤ x≤b 利用平行截面面积已知, 利用平行截面面积已知, 求立体体积的方法: 求立体体积的方法:
o
z
1 ( x ) 2 ( x ) y
z = f ( x, y)
y = 2 ( x)
取 x ∈ [ a , b ], 有曲边梯形, 则 由定积分的几何意义面积y
D
y = 1 ( x)
y = 1 ( x )
D
o a
b x
a o
bx
特点:穿过 内部且平行于 轴的直线、 内部且平行于y轴的直线 特点:穿过D内部且平行于 轴的直线、 的边界相交不多于两点. 与D的边界相交不多于两点 的边界相交不多于两点
2.Y-型区域 D :ψ 1 ( y ) ≤ x ≤ ψ 2 ( y ) , c ≤ y ≤ d 型区域
D1 : x ≤ y ≤ x,0 ≤ x ≤ 1
D2 y 2 y2 = x D1 D o 4 x 1
D2 : x 2 ≤ y ≤ x , 1 ≤ x ≤ 4
∴ ∫∫ xydσ = ∫∫ xydσ + ∫∫ xydσ
D
D1 D2
y = x2
∴ ∫∫ xydσ = ∫∫ xydσ + ∫∫ xydσ
x
z x2 + y2 = R2
x +z = R
2 2 2
o
y
立体的体积: 立体的体积: V =
∫∫ f ( x, y)dσ = 8V
Dxy
2 2
1
V1 = ∫∫ zdxdy
D
2 2
z = f ( x, y) = R x
= ∫∫ R x dxdy.
Dxy
z
x +y =R
2 2
2
x +z = R
2 2
V = ∫ A ( x )dx
b
A( x)
y
=∫
a b
y = 1 ( x )
O
a
2 ( x ) f ( x , y ) dy dx ∫1 ( x )
b
a x
b
x
∫∫ f ( x, y)dxdy = ∫ dx∫
a D
2 ( x )
1 ( x)
f ( x, y)dy (先对y后x积分 )
D : 1 ( x ) ≤ y ≤ 2 ( x ) , a ≤ x ≤ b.
R 2 2
2
例7 设f ( x ) 在 [ 0, c ] 上连续,证明
∫
c
0
dy ∫ f ( x )dx = ∫ (c x ) f ( x )dx
0 0
y
c
由等式左边, 证 由等式左边,得 D : 0 ≤ x ≤ y, 0 ≤ y ≤ c 改变积分顺序, 改变积分顺序,得
D : x ≤ y ≤ c, 0 ≤ x ≤ c
D
D1
D2
= ∫ dx ∫
0
1
x
x
xydy + ∫ dx ∫
1
4
x x2
xydy
计算比较麻烦! 计算比较麻烦