高一数学集合较难题(完整资料)
集合经典填空题难题 (含答案)
1. 已知集合A=,612⎭⎬⎫⎩⎨⎧∈-∈N x N x 用列举法表示集合A= _________ 2. 为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下图: 明文 密文 密文 明文, 现在加密密钥为y=log a (x+2),如下所示:明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得明文“6”,问“接受方接到密文”4“,则解密后得到明文为________3. 已知A={x ||x -1|<c c >0}, B={x ||x -3|>4} 且A ∩B=φ 则满足条件的c 的集合为 _______________.4. 设集合A={5,log 2(a +3)},集合B={a,b }.若A ∩B={2},则_______=B A .5. 点(x,y )在映射f 下的象是(2x-y ,2x+y ),点(4,6)在映射f 下的原象为______.6. }|{}034|{},4|||{2B A x A x x x x x B x x A ∉∈>+-=<=且则集合设集合=_________.7. a ,B A },a x |x {B },4x 2|x {A 则实数且满足已知集合∅≠<=≤≤-=的取值范围是____________.8. _____._____},1 3|{},41|{==<>=<<=Q P Q P x x x Q x x P 则或若9. ________N )M (},4,3,2,1{N },R x ,21x |x {M ,R U U ==∈+≤== C 则设10. 设集合}0|{1121=++=c x b x a x A ,}0|{2222=++=c x b x a x B ,则方程)(1121c x b x a ++0)(2222=++c x b x a 的解集为____________。
高一数学集合较难题(完整资料)
此文档下载后即可编辑高一数学集合较难题一、选择题:1.全集U R =,集合{|112},{|21,},M x Z x N x x k k N +=∈-≤-≤==+∈则图1中阴影部分所示集合的元素共有( )个A .1B .2C .3D .无穷多2.设全集U={2,3,2a +2a-3},A={|a+1|,2},A C U ={5},则a 的值为( )A 、2B 、-3或1C 、-4D 、-4或23. 已知集合{1,2}{21}M N a a M ==∈-,,则M N ⋂=( )A .}1{B . }2,1{C . }3,2,1{D .空集 4.记全集},,111|{N x x x U ∈<≤=则满足}9,7,5,1{}10,97531{=⋂P C U ,,,,的所有集合P 的个数是( )A.4B.6C.8D.165.已知集合{}{}221,,20R A y y x x B x x x =+=+-∈=>,则下列正确的是( )A .{}1,AB y y => B.{}2A B y y =>C.{}21A B y y ⋃=-<<D. {}21A B y y y ⋃=<>-或6.设全集为R ,}3x 3|x {B }5x 3x |x {A <<-=><=,或,则( )A. R B A R C =B. R B A R C =C. R B A R R C C =D. R B A =7.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为( )A .[1,2)-B .[1,2]-C .[0,3]D .[0,3)8.已知不等式8.03)1(4)54(22>+-+-+x k x k k 对任何实数x 都成立,则关于x 的方程0108)2(2232=-+-+k x k x ( )A.有两个相等的实根B. 有两个不等的实根C.无实根 有无实根不确定9.满足)3,}(,,,,,{},{132121≥∈⊂⊆-≠n N n a a a a a P a a n n 21,a a 21,a a 的集合P 共有( ) A.123--n 个 B. 122--n 个 C. 121--n 个 D. 12-n 个10. 设集合{|||1,}A x x a x R =-<∈,{|||2,}.B x x b x R =->∈若,A B ⊆则实数a,b 满足A. ||3a b +≤B.||3a b +≥C. ||3a b -≤D. ||3a b -≥二、填空题:1.已知集合},,0{},,,{y x B y x xy x A =+=,且A =B ,则=x ___________,=y ___________.2.},9,1{)()(},2{,,},9,8,7,6,5,4,3,2,1{11==⊆⊆=B C A C B A I B I A I}8,6,4{)(1=B A C ,则=)(1B C A ___________。
高一数学集合试题答案及解析
高一数学集合试题答案及解析1.已知A={1,3,a},B={1,a2},且A∪B={1,3,a},求a.【答案】a=±或a=0.【解析】由A∪B={1,3,a}且A={1,3,a}知B A,所以a2∈A,故有a2=3,或a2=a解得a=±,或a=0或a=1.又由元素互异性可知,a≠1且a≠3,所以a=±或a=0.【考点】本题主要考查集合性质,集合的并集。
点评:已知并集或交集,求参数问题,往往需要利用集合中元素的互异性加以检验。
2.已知U={x|-1≤x≤3},A={x|-1<x<3},B={x|x2-2x-3=0},C={x|-1≤x<3},则下列关系正确的是 ()A. A=BB.B=CC.(B) CD.A C【答案】A【解析】B={-1,3},A={-1,3},∴A=B.【考点】本题主要考查集合的子集,集合的补集。
点评:综合题,综合应用集合、方程及不等式知识解题。
3.设U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是 ()A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}【答案】D【解析】由Venn图可知阴影部分表示的集合为B∩(A)={2,4}.【考点】本题主要考查集合的交集,集合的补集。
点评:读图视图能力的考查,近几年有增加趋势。
4.集合S={x|x≤10,且x∈N*},A S,B S,且A∩B={4,5},(B)∩A={1,2,3},(A)∩(B)={6,7,8},求集合A和B.【答案】A={1,2,3,4,5},B={4,5,9,10}.【解析】如下图所示.因为A∩B={4,5},所以将4,5写在A∩B中.因为(B)∩A={1,2,3},所以将1,2,3写在A中.因为(B)∩(A)={6,7,8},所以将6,7,8写在S中A,B外.因为(B)∩A与(B)∩(A)中均无9,10,所以9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.【考点】本题主要考查集合的交集,集合的补集。
高一数学必修一难题知识点
高一数学必修一难题知识点:写一篇文章(step by step thinking)题目背景高中数学是学生们学习的一门重要学科,其中必修一是数学基础知识的重要组成部分。
在学习过程中,我们会遇到各种难题,需要通过逐步思考和解决来掌握相应的知识点。
本文将介绍一道高一数学必修一的难题,以步骤化的思考过程来解决。
题目描述已知函数 f(x) = x^2 + 2x + 1,求解方程 f(x) = 0 的解。
解题步骤步骤一:理解方程首先,我们需要理解所给方程的含义。
方程 f(x) = 0 表示函数 f(x) 的取值为零时对应的 x 值。
我们需要找到满足 f(x) = 0 的 x 值。
步骤二:写出方程根据题目要求,函数 f(x) = x^2 + 2x + 1,我们将其代入方程 f(x) = 0,得到 x^2 + 2x + 1 = 0。
步骤三:判断方程类型通过观察方程,我们可以发现它是一个二次方程。
二次方程的一般形式为 ax^2 + bx + c = 0,其中 a、b、c 是已知数且a ≠ 0。
将方程 x^2 + 2x + 1 = 0 与一般形式进行对比,我们可以得出 a = 1,b = 2,c = 1。
步骤四:求解方程根据二次方程求解公式,我们可以计算出方程 x^2 + 2x + 1 = 0 的解。
求解公式为 x = (-b ± √(b^2 - 4ac)) / (2a)。
将 a、b、c 的值代入公式,我们可以计算出 x = (-2 ± √(2^2 - 411)) / (2*1)。
化简得 x = (-2 ± √(4 - 4)) / 2,继续化简得 x = (-2 ± √0) / 2。
由于根号内为 0,因此方程的解只有一个,即 x = -2 / 2,最终得到解 x = -1。
步骤五:验证解的正确性为了验证我们得到的解的正确性,我们将解 x = -1 代入方程 f(x) = 0 中进行验证。
高一数学集合的概念试题答案及解析
高一数学集合的概念试题答案及解析1.(本小题10分)若,求实数的值.【答案】或.【解析】首先直接由元素与集合的关系,知或,即可计算出实数的值;然后由集合的确定性、互异性、无序性,分别验证所求的的值是否符合要求即可得出答案.试题解析:或或.当时,,,,适合条件;当时,,,,适合条件.从而,或.【考点】元素与集合的基本关系.2.集合的子集中,含有元素的子集共有A.2个B.4个C.6个D.8个【答案】B【解析】。
【考点】子集的概念。
3.设实数集为全集,.(1)当时,求及;(2)若,求实数的取值范围.【答案】(1),;(2)【解析】(1)首先解出集合,然后求出、即可;(2)若,则,,然后对分与两类进行讨论,可得到参数的取值范围.试题解析:(1) 1分当时, 2分4分6分(2)由(1)可知 7分由可知 8分当时,即时成立 9分当,即时, 10分此时要使,须有 11分综上可知的取值范围是:.【考点】1.集合的运算;2.子集的性质.4.设全集,集合,则()A.B.C.D.【答案】B【解析】,,所以答案为:.【考点】集合的补集和交集.5.若则等于【答案】1【解析】因为,所以,但,只有b=0,根据集合中元素的互异性,只有a=-1,故=1.【考点】集合的概念,指数运算。
点评:中档题,利用集合相等,确定a,b,进一步求。
6.下列各组对象中不能构成集合的是()A.大名三中高一(2)班的全体男生B.大名三中全校学生家长的全体C.李明的所有家人D.王明的所有好朋友【答案】D【解析】分析四个答案中所列的对象是否满足集合元素的确定性和互异性,即可得到答案.解:A中,大名三中高一(2)班的全体男生,满足集合元素的确定性和互异性,故可以构造集合; B 中,大名三中全校学生家长的全体,满足集合元素的确定性和互异性,故可以构造集合; C中,李明的所有家人,满足集合元素的确定性和互异性,故可以构造集合;D中,王明的所有好朋友,不满足集合元素的确定性,故不可以构造集合;故选D【考点】集合点评:本题以判断对象能否构成集合为载体考查了集合元素的性质,熟练掌握集合元素的确定性和互异性,是解答的关键.7.在“①高一数学课本中的难题;②所有的正三角形;③方程的实数解”中,能够表示成集合的是()A.②B.③C.②③D.①②③【答案】C【解析】集合有三个特点:确定性、无序性和不重复性。
高一数学集合练习题及答案
高一数学集合的练习题及答案1、集合的概念集合是集合中的不定的原始概念,教材中集合的概念行了描述性明:“一般地,把一些能确定的不同的象看成一个整体,就个整体是由些象的全体构成的集合〔或集〕〞。
理解句,把握4个关:象、确定的、不同的、整体。
象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一一象的,它关注的是些象的全体。
确定的――集合元素确实定性――元素与集合的“附属〞关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意有限集和无限集是非空集合来的。
我理解起来并不困。
我把不含有任何元素的集合叫做空集,做Φ。
理解它不妨思考一下“0与Φ〞及“Φ与{Φ}〞的关系。
几个常用数集N、N*、N+、Z、Q、R要牢。
3、集合的表示方法1〕列法的表示形式比容易掌握,并不是所有的集合都能用列法表示,同学需要知道能用列法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素多但呈一定的律的有限集,如{1,2,3,⋯,100}③呈一定律的无限集,如{1,2,3,⋯,n,⋯}●注意a与{a}的区●注意用列法表示集合,集合元素的“无序性〞。
2〕特征性描述法的关是把所研究的集合的“特征性〞找准,然后适当地表示出来就行了。
但关点也是点。
学多加就可以了。
另外,弄清“代表元素〞也是非常重要的。
如{x|y=x2},{y|y=x2},{〔x,y〕|y=x2}是三个不同的集合。
4、集合之的关系●注意区分“附属〞关系与“包含〞关系“附属〞关系是元素与集合之的关系。
“包含〞关系是集合与集合之的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“〞等符号,会用Venn描述集合之的关系是根本要求。
●注意辨清Φ与{Φ}两种关系。
5、集合的运算集合运算的过程,是一个创造新的集合的过程。
在这里,我们学习了三种创造新集合的方式:交集、并集和补集。
一方面,我们应该严格把握它们的运算规那么。
同时,我们还要掌握它们的运算性质:CU A UA B B A A B B ACU AC U(C U A)A A A A A AA B A C U BA A A A AB C U AU A B A A B B B还要尝试利用Venn图解决相关问题。
高中数学难题(含答案)
东莞龙文教育高中数学试卷(24)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个项是符合题目要求的。
1.若集合M={-1,0,1},N={0,1,2},则M ∩N 等于 A .{0,1} B .{-1,0,1} C .{0,1,2} D .{-1,0,1,2} 2.i 是虚数单位1+i 3等于 A .i B .-i C .1+i D .1-i 3.若a ∈R ,则“a=1”是“|a|=1”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 A .6 B .8 C .10D .125.阅读右图所示的程序框图,运行相应的程序,输出的结果是 A .3 B .11 C .38 D .1236.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的 取值范围是 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)7.如图,矩形ABCD 中,点E 为边CD 的重点,若在矩形ABCD 内部随 机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A .14 B .13C . 12D . 238.已知函数f (x )=。
若f (a )+f (1)=0,则实数a 的值等于A .-3B .-1C .1D .39.若a ∈(0,2),且sin 2a+cos2a=14,则tana 的值等于A .22 B .33C .2D .310.若a>0,b>0,且函数f (x )=3242x ax bx --在x=1处有极值,则ab 的最大值等于A .2B .3C .6D .911.设圆锥曲线I 的两个焦点分别为F 1,F 2,若曲线I 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线I 的离心率等于 A .1322或B .223或C .122或D .2332或12.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n+k 丨n∈Z},k=0,1,2,3,4。
高一数学必修一第一章集合与函数概念练习题难题带答案
高一数学集合与函数概念一.选择题(共30小题)1.已知f(x)=lnx﹣+2,若对∀x1∈(0,1],∀x2∈[﹣1,1],都有f(x1)≥g(x2),则a的取值范围为()A.(﹣∞,2﹣e]B.(﹣2,2﹣e]C.D.2.已知集合,若B⊆A,则实数m的取值范围为()A.(4,+∞)B.[4,+∞)C.(2,+∞)D.[2,+∞)3.已知函数,对任意的x∈R恒有,且在区间上有且只有一个x0使得f(x0)=3,则ω的最大值为()A.B.8C.D.4.已知f(x)=32x﹣(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,2﹣1)C.(﹣1,2﹣1)D.(﹣2﹣1,2﹣1)5.已知f(x)=x2+px+q和是定义在上的函数,对任意的x∈A,存在常数x0∈A,使f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),则f(x)在A上的最大值为()A.B.C.5D.6.已知f(x)为奇函数,当x∈[0,1]时,f(x)=1﹣2|x﹣|,当x∈(﹣∞,﹣1],f(x)=1﹣e﹣1﹣x,若关于x的不等式f(x+m)>f(x)有解,则实数m的取值范围为()A.(﹣1,0)∪(0,+∞)B.(﹣2,0)∪(0,+∞)C.(﹣﹣ln2,﹣1)∪(0,+∞)D.(﹣﹣ln2,0)∪(0,+∞)7.我们把形如的函数因其图象类似于汉字“囧”字,故生动地称为“囧函数”,并把其与y 轴的交点关于原点的对称点称为“囧点”,以“囧点”为圆心凡是与“囧函数”有公共点的圆,皆称之为“囧圆”,则当a=1,b=1时,所有的“囧圆”中,面积的最小值为()A.2πB.3πC.4πD.12π8.在下列四个函数中,当x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是()A.f(x)=B.f(x)=x2 C.f(x)=2x D.f(x)=9.集合M={x|x∈Z且},则M的非空真子集的个数是()A.30个B.32个C.62个D.64个10.设集合P={3,4,5},Q={4,5,6,7},定义P⊕Q={(a,b)|a∈P,b∈Q},则P⊕Q的真子集个数()A.23﹣1B.27﹣1C.212D.212﹣111.已知定义在R上的函数f(x)=﹣(x﹣1)3,则不等式f(2x+3)+f(x﹣2)≥0的解集为()A.(﹣∞,]B.(0,]C.(﹣∞,3]D.(0,3]12.已知函数f(x)=x2﹣2(a+1)x+a2,g(x)=﹣x2+2(a﹣1)x﹣a2+2,记H1(x)=,H2(x)=,则H1(x)的最大值与H2(x)的最小值的差为()A.﹣4B.4C.a2﹣a+4D.a2+a+813.若关于x的不等式e2x﹣alnx≥a恒成立,则实数a的取值范围是()A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]14.设函数f(x)的定义域为R,满足2f(x)=f(x+2),且当x∈[﹣2,0)时,f(x)=﹣x(x+2).若对任意x∈(﹣∞,m],都有f(x)≤3,则m的取值范围是()A.(﹣∞,]B.(﹣∞,]C.[,+∞)D.[,+∞)15.已知函数f(x)=,若|f(x)|≥mx恒成立,则实数m的取值范围为()A.[2﹣2,2]B.[2﹣2,1]C.[2﹣2,e]D.[2﹣2,e]16.设集合S={1,2,3,…,2020},设集合A是集合S的非空子集,A中的最大元素和最小元素之差称为集合A的直径.那么集合S所有直径为71的子集的元素个数之和为()A.71•1949B.270•1949C.270•37•1949D.270•72•194917.已知k∈R,设函数,若关于x的不等式f(x)≥0在x∈R上恒成立,则k的取值范围为()A.[0,e2]B.[2,e2]C.[0,4]D.[0,3]18.已知函数若关于x的不等式在R上恒成立,则实数a的取值范围为()A.B.C.[0,2]D.19.已知若f[(m﹣1)f(x)]﹣2≤0在定义域上恒成立,则m的取值范围是()A.(0,+∞)B.[1,2)C.[1,+∞)D.(0,1)20.设函数f(x)的定义域为R,满足f(x+2)=2f(x),且当x∈(0,2]时,f(x)=﹣x(x﹣2).若对任意x∈(﹣∞,m],都有,则m的取值范围是()A.(﹣∞,]B.(﹣∞,]C.(﹣∞,7]D.(﹣∞,]21.已知函数,g(x)=ax2+2x+a﹣1.若对任意的x1∈R,总存在实数x2∈[0,+∞),使得f(x1)=g(x2)成立,则实数a的取值范围为()A.B.C.D.22.已知函数f(x)=ax2﹣bx+c(a<b<c)有两个零点﹣1和m,若存在实数x0,使得f(x0)>0,则实数m的值可能是()A.x0﹣2B.C.D.x0+323.设函数f(x)=﹣x(x﹣a)2(x∈R),当a>3时,不等式f(﹣k﹣sinθ﹣1)≥f(k2﹣sin2θ)对任意的k∈[﹣1,0]恒成立,则θ的可能取值是()A.﹣B.C.﹣D.24.已知函数,若对任意,都有f(x+m)≥3f(x),则实数m的取值范围是()A.[4,+∞)B.C.[3,+∞)D.25.若关于x的不等式≤1在区间(1,2]上恒成立,则实数a的取值范围为()A.(0,ln2]B.(﹣∞,ln2]C.(ln2,+∞)D.(﹣∞,1]26.对于函数y=f(x),若存在区间[a,b],当x∈[a,b]时的值域为[ka,kb](k>0),则称y=f(x)为k倍值函数.若f(x)=e x+2x是k倍值函数,则实数k的取值范围是()A.(e+1,+∞)B.(e+2,+∞)C.(e+,+∞)D.(e+,+∞)27.已知函数f(x)=(x>2),若f(x)恒成立,则整数k的最大值为()A.2B.3C.4D.528.若存在,使得不等式2xlnx+x2﹣mx+3≥0成立,则实数m的最大值为()A.B.C.4D.e2﹣129.设|AB|=10,若平面上点P满足对任意的λ∈R,恒有,则一定正确的是()A.B.C.D.∠APB≤90°30.已知函数y=f(x)为定义域R上的奇函数,且在R上是单调递增函数,函数g(x)=f(x﹣5)+x,数列{a n}为等差数列,且公差不为0,若g(a1)+g(a2)+…+g(a9)=45,则a1+a2+…+a9=()A.45B.15C.10D.0二.填空题(共5小题)31.设a为实数,对任意k∈[﹣1,1],当x∈(0,4]时,不等式6lnx+x2﹣9x+a≤kx恒成立,则a的最大值是.32.已知实数x,y>0,则的最大值为.33.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),且当0≤x≤1时,f(x)=log2(x+a),若对于x属于[0,1]都有3,则实数t的取值范围为34.已知二次函数f(x)=ax2+bx+c,且4c>9a,若不等式f(x)>0恒成立,则的取值范围是.35.已知a1,a2,a3与b1,b2,b3是6个不同的实数,若关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解集A是有限集,则集合A中,最多有个元素.三.解答题(共5小题)36.已知定义在R上的函数f(x)满足:①对任意实数x,y,都有f(x+y)=f(x)•f(y);②对任意x>0,都有f (x)>1.(1)求f(0),并证明f(x)是R上的单调增函数;(2)若|f(|x﹣2a+1|)﹣f(|x﹣a|+1)|=f(|x﹣a|+1)﹣f(|x﹣2a+1|)对x∈R恒成立,求实数a的取值范围;(3)已知g(x)=,方程g(x)+2+|g(x)﹣2|﹣2mx=4f(0)有三个根x1<x2<x3,若x3﹣x2=2(x2﹣x1),求实数m.37.设集合A,B是非空集合M的两个不同子集.(1)若M={a1,a2},且A是B的子集,求所有有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},且A的元素个数比B的元素个数少,求所有有序集合对(A,B)的个数.38.已知集合A={x|2x2﹣5x﹣12≥0},B={y|y=3x+1(x>0)}.(1)求集合A∩B,(∁R A)∪B;(2)若集合C={x|m﹣2≤x≤2m}且(∁R A)∩C=C,求m的取值范围.39.已知a∈R,函数f(x)=(﹣x2+ax)•e x.(1)a=2时,求函数f(x)的单调区间;(2)若函数f(x)在(﹣1,1)上单调递增,求a的取值范围.40.已知函数f(x)=(log2x)2+4log2x+m,x∈[,4],m为常数.(Ⅰ)设函数f(x)存在大于1的零点,求实数m的取值范围;(Ⅱ)设函数f(x)有两个互异的零点α,β,求m的取值范围,并求α•β的值.参考答案与试题解析一.选择题(共30小题)1.【解答】解:g′(x)=x(x﹣2),∴﹣1<x<0时,g′(x)>0,0<x<1时,g′(x)<0,g(x)max=g(0)=2,∴f(x)=lnx﹣+ex≥2在(0,1]恒成立,即a≤xlnx+ex2﹣2x在(0,1]恒成立,令h(x)=xlnx+ex2﹣2x(0<x≤1),h′(x)=lnx+2ex﹣1,h″=+2e≥恒成立,∴h′(x)在x∈(0,1]单调递增,又x→0时,h(x)→﹣∞,h(1)=e﹣2>0,故存在x0∈(0,1],使得0<x<x0,h′(x)<0,x0<x<1,h′(x)>0,即h′(x0)=lnx0+2ex0﹣1=0,解得x0=,∴h(x)min=h()=﹣+e•()2﹣2•=﹣,∴a≤﹣,故选:D.2.【解答】解:由题得A={x|x>2或x<﹣2},∵m>0,∴B={x|m<x<2m}且B≠∅,∵B⊆A,∴m≥2或2m≤﹣2,解得m≥2,即m∈[2,+∞),故选:D.3.【解答】解:由题意知,k1,k2∈Z,则,k,k'∈Z,其中k=k2﹣k1,k'=k1+k2=k+2k1,故k与k'同为奇数或同为偶数.f(x)在上有且只有一个最大值,且要求ω最大,则区间包含的周期应该最多,所以,得0<ω≤8,即≤8,所以k≤4当k=4时,ω=,k'为偶数,φ=,此时x+∈(,),当x1+=0.5π或2.5π或6.5π时,f(x0)=3都成立,舍去;当k=3时,ω=,k'为奇数,φ=,此时x+∈(,),当且仅当x+=2.5π时,f(x0)=3成立.故ω的最大值为,故选:C.4.【解答】解:令3x=t(t>0),则g(t)=t2﹣(k+1)t+2,若x∈R时,f(x)恒为正值,则g(t)=t2﹣(k+1)t+2>0对t>0恒成立.∴①或②解①得:﹣1<k<﹣1+;解②得:k≤﹣1.综上,实数k的取值范围是(﹣∞,2﹣1).故选:B.5.【解答】解:由已知函数f(x)=x2+px+q和g(x)=x+在区间[1,]上都有最小值f(x0),g(x0),又因为g(x)=x+在区间[1,]上的最小值为g(2)=4,f(x)min=f(2)=g(2)=4,所以得:,即:,所以得:f(x)=x2﹣4x+8≤f(1)=5.故选:C.6.【解答】解:若x∈[﹣1,0],则﹣x∈[0,1],则f(﹣x)=1﹣2|﹣x﹣|=1﹣2|x+|,∵f(x)是奇函数,∴f(﹣x)=1﹣2|x+|=﹣f(x),则f(x)=2|x+|﹣1,x∈[﹣1,0],若x∈[1,+∞),则﹣x∈(﹣∞,﹣1],则f(﹣x)=1﹣e﹣1+x=﹣f(x),则f(x)=e﹣1+x﹣1,x∈[1,+∞),作出函数f(x)的图象如图:当m>0时,f(x+m)的图象向左平移,此时f(x+m)>f(x)有解,满足条件.当m<0时,f(x+m)的图象向右平移,当f(x+m)的图象与f(x)在x>1相切时,f′(x)=e x﹣1,此时对应直线斜率k=2,由e x﹣1=2,即x﹣1=ln2,得x=ln2+1.此时y=e x﹣1﹣1=e ln2+1﹣1﹣1=2﹣1=1,即切点坐标为(1+ln2,1),设直线方程为y=2(x﹣a)此时1=2(1+ln2﹣a),即=1+ln2﹣a,得a=+ln2,0<﹣m<+ln2,得﹣﹣ln2<m<0,综上﹣﹣ln2<m<0或m>0综上m的取值范围是(﹣﹣ln2,0)∪(0,+∞),故选:D.7.【解答】解:当a=1,b=1时,函数的定义域为{x|x≠±1,x∈R},且为偶函数,其图象如图所示.函数图象与y轴的交点为B(0,﹣1),其关于原点的对称点为C(0,1),所以“囧点”为(0,1),即“囧圆”的圆心为C(0,1).要求所有“囧圆”的面积的最小值,只需求所有“囧圆”的半径的最小值.由图知,“囧函数”有三部分组成,其图象关于y轴对称,故只需考虑y轴及y轴右侧的函数图象.当圆C过点B时,其半径为2,这是和x轴下方的函数图象有公共点的所有“囧圆”中,半径的最小值;当圆C和x轴上方且y轴右侧的函数图象有公共点A时,设A(m,),(其中m>1),则点A到圆心C的距离的平方为d2=m2+(﹣1)2,令=t,(t>0),则d2=(1+)2+(t﹣1)2=t2++﹣2t+2=(t﹣)2﹣2(t﹣)+4,再令t﹣=μ,(其中μ∈R),则d2=μ2﹣2μ+4=(μ﹣1)2+3≥3,所以当圆C和x轴上方且y轴右侧的函数图象有公共点时,最小半径为.又2>,综上可知,在所有的“囧圆”中,半径的最小值为.故所有的“囧圆”中,圆的面积的最小值为3π.故选:B.8.【解答】解:当x1>x2>1时,能使成立的函数是凸函数,其图象类似:所以选项正确;B,C,D都不正确.故选:A.9.【解答】解:由题意集合M={x|x∈Z且}={x|x=0,1,2,3,5,11},由对于含有n个元素的集合,利用公式2n﹣2计算出M的非空真子集个数,∴M的非空真子集的个数是26﹣2=62,故选:C.10.【解答】解:由所定义的运算可知,集合P⊕Q中元素(x,y)中的x取自3,4,5三个的一个,y取自4,5,6,7四个的一个,故根据乘法原理,P⊕Q中实数对的个数是:3×4=12,∴P⊕Q的所有真子集的个数为212﹣1.故选:D.11.【解答】解:令t=x﹣1,则f(t+1)=,则f(t+1)是奇函数,则当t≥0时,y==﹣t3=﹣t3=﹣t3=﹣1﹣t3,为减函数,∴当x≥1时,f(x)为减函数,即g(x)=f(x+1)是奇函数,则f(2x+3)+f(x﹣2)≥0等价为f(2x+2+1)+f(x﹣3+1)≥0,即g(2x+2)+g(x﹣3)≥0,则g(2x+2)≥﹣g(x﹣3)=g(3﹣x),则2x+2≤3﹣x,得3x≤1,x≤,即原不等式的解集为(﹣∞,],故选:A.12.【解答】解:f(x)﹣g(x)=2x2﹣4ax+2a2﹣2=2(x﹣a﹣1)(x﹣a+1).故当x≥a+1或x≤a﹣1时,f(x)≥g(x);当a﹣1<x<a+1时,f(x)<g(x).又H1(x)=,H2(x)=,,,∴,.设H1(x)的最大值为A,H2(x)的最小值为B.结合二次函数的性质可知,A=H1(a﹣1)=(a﹣1)2+2(a﹣1)(a﹣1)﹣a2+2=3﹣2a;B=H2(a+1)=(a+1)2﹣2(a+1)(a+1)+a2=﹣2a﹣1.故A﹣B=3﹣2a﹣(﹣2a﹣1)=4.∴H1(x)的最大值与H2(x)的最小值的差为4.故选:B.13.【解答】解:当a<0时,f(x)=e2x﹣alnx为(0,+∞)的增函数,f(x)无最小值,不符合题意;当a=0时,e2x﹣alnx≥a即为e2x≥0显然成立;当a>0时,f(x)=e2x﹣alnx的导数为f′(x)=2e2x﹣,由于y=2e2x﹣在(0,+∞)递增,设f′(x)=0的根为m,即有a=2me2m,当0<x<m时,f′(x)<0,f(x)递减;当x>m时,f′(x)>0,f(x)递增,可得x=m处f(x)取得极小值,且为最小值e2m﹣alnm,由题意可得e2m﹣alnm≥a,即﹣alnm≥a,化为m+2mlnm≤1,设g(m)=m+2mlnm,g′(m)=1+2(1+lnm),当m=1时,g(1)=1,m>1时,g′(m)>0,g(m)递增,可得m+2mlnm≤1的解为0<m≤1,则a=2me2m∈(0,2e2],综上可得a∈[0,2e2],故选:C.14.【解答】解:函数f(x)的定义域为R,满足2f(x)=f(x+2),可得f(0)=2f(﹣2)=0,当x∈[﹣2,0)]时,函数f(x)在[﹣2,﹣1)上递增,在(﹣1,0)上递减,所以f(x)max=f(﹣1)=1,由2f(x﹣2)=f(x),可得当图象向右平移2个单位时,最大值变为原来的2倍,最大值不断增大,由f(x)=f(x+2),可得当图象向左平移2个单位时,最大值变为原来的倍,最大值不断变小,当x∈[﹣4,﹣2)时,f(x)max=f(﹣3)=,当x∈[0,2)时,f(x)max=f(1)=2,当x∈[2,4)时,f(x)max=f(3)=4,设x∈[2,4)时,x﹣4∈[﹣2,0),f(x﹣4)=﹣(x﹣4)(x﹣2)=f(x),即f(x)=﹣4(x﹣4)(x﹣2),x∈[2,4),由﹣4(x﹣4)(x﹣2)=3,解得x=或x=,根据题意,当m≤时,f(x)≤3恒成立,故选:A.15.【解答】解:作出函数|f(x)|的图象如图所示;当x≤0时;令x2+2x+2=mx,即x2+(2﹣m)x+2=0,令△=0,即(2﹣m)2﹣8=0,解得,结合图象可知,;当x>0时,令e2x﹣1=mx,则此时f(x)=e2x﹣1,h(x)=mx相切,设切点,则,解得m=2,观察可知,实数m的取值范围为.故选:A.16.【解答】解:设集合A中最大元素为a,最小元素为b,所以满足b﹣a=71的组合有2020﹣71=1949个,集合A中元素最多为72个,而集合A中包含a,b所有子集元素之和个数为2+3+4+ (72)设m=2+3+4+......+72,则m=72+71+70+ (2)所以2m=74+74+74+……+74=74×270,即m=37×270,因此,集合S所有直径为71的子集的元素个数之和为270•37•1949.故选:C.17.【解答】解:(1)当x≤1时,f(x)=x2﹣2kx+2k,∴f(x)的对称轴为x=k,开口向上.①当k<1时,f(x)在(﹣∞,k)递减,(k,1)递增,∴当x=k时,f(x)有最小值,即f(k)≥0,∴0≤k<1;②当k≥1时,f(x)在(﹣∞,1)上递减,∴当x=1时,f(x)有最小值,即f(1)=1,∴1≥0显然成立,此时k≥1.综上得,k≥0;(2)当x>1时,f(x)=(x﹣k﹣1)e x+e3,∴f'(x)=(x﹣k)e x,①′当k≤1时,f(x)在(1,+∞)上递增,∴f(x)>f(1)=﹣ke+e3≥0,∴k≤e2,∴此时k≤1;②′当k>1时,f(x)在(1,k)递减,(k,+∞)递增,∴f(x)≥f(k)=﹣e k+e3≥0,∴k≤3,∴此时1<k≤3.综上:0≤k≤3,∵关于x的不等式f(x)≥0在x∈R上恒成立,则k的取值范围为0≤k≤3,故选:D.18.【解答】解:(1)当x≤1时,f(x)=x2﹣2ax+2a,∴f(x)的对称轴为x=a,开口向上.①当a<1时,f(x)在(﹣∞,a)递减,(a,1)递增,∴当x=a时,f(x)有最小值,即f(a)=﹣a2+2a≥,解得0≤a<1;②当a≥1时,f(x)在(﹣∞,1)上递减,∴当x=1时,f(x)有最小值,即f(1)=1≥,∴1≤a≤2.综合①②得:当x≤1时,0≤a≤2;(2)当x>1时,f(x)=2x﹣alnx,∴f'(x)=2﹣=,①′当a≤0时,f'(x)>0,f(x)在(1,+∞)上递增,∴f(x)>f(1)=2≥,∴a≤4,∴此时a≤0;②′当0<≤1,即0<a≤2时,f(x)在(1,+∞)上递增,同理可得0<a≤2;③′当>1,即a>2时,f(x)在(1,)递减,(,+∞)递增,∴f(x)≥f()=a﹣aln≥,∴ln≤,解得2<a≤2.综合①′②′③′得:当x>1时,a≤2;∵关于x的不等式在R上恒成立,∴0≤a≤2,故选:C.19.【解答】解:∵,∴当﹣1<x<8时,log3(x+1)∈(﹣∞,2),|log3(x+1)|∈[0,2),x∈(﹣1,0)时,f(x)=|log3(x+1)|单调递减,x∈(0,8)时,f(x)单调递增,且当x=﹣时,f(x)=2①.当x≥8时,f(x)=单调递减且f(x)∈(0,2]②,其图象如下:若f[(m﹣1)f(x)]﹣2≤0,则f[(m﹣1)f(x)]≤2,∴(m﹣1)f(x)≥﹣,当f(x)=0时,m∈R;当f(x)>0时,m﹣1>,当f(x)→+∞时,→0,∴m﹣1≥0,解得:m≥1.故选:C.20.【解答】解:当x∈(0,2]时,函数f(x)在(0,1)上递增,在(1,2)上递减,所以f(x)max=f(1)=1,由2f(x﹣2)=f(x),可得当图象向右平移2个单位时,最大值变为原来的2倍,最大值不断增大,由f(x)=f(x+2),可得当图象向左平移2个单位时,最大值变为原来的倍,最大值不断变小,当x∈(﹣2,0]时,f(x)max=f(﹣1)=,当x∈(2,4]时,f(x)max=f(3)=2,当x∈(4,6]时,f(x)max=f(5)=4,设x∈(6,8]时,x﹣6∈(0,2],f(x﹣6)=﹣(x﹣6)(x﹣8)=f(x),即f(x)=﹣8(x﹣6)(x﹣8),x∈(6,8],由﹣8(x﹣6)(x﹣8)=,解得x=或x=,根据题意,当m≥时,f(x)≤恒成立,故选:B.21.【解答】解:由题意,函数f(x)图象如下:结合图象,可知函数f(x)的值域为(,+∞).∵对任意的x1∈R,总存在实数x2∈[0,+∞),使得f(x1)=g(x2)成立,∴函数f(x)的值域是函数g(x)在区间[0,+∞)上值域的子集.①当a=0时,g(x)=2x﹣1,此时g(x)在区间[0,+∞)上值域为[﹣1,+∞),满足题意;②当a<0时,二次函数g(x)=ax2+2x+a﹣1开口朝下,很明显不符合题意;③当a>0时,对称轴x=﹣<0,g(0)=a﹣1,此时g(x)在区间[0,+∞)上值域为[a﹣1,+∞),则必须a﹣1≤,即a≤.即0<a≤满足函数f(x)的值域是函数g(x)在区间[0,+∞)上值域的子集.综上所述,可得实数a的取值范围为[0,].故选:A.22.【解答】解:∵﹣1是函数f(x)=ax2﹣bx+c的一个零点,∴a+b+c=0,∵a<b<c,则a<0,c>0,∵﹣1×m=<0,∴m>0.由a<b,a<0,得<1①,由0=a+b+c>a+b+b=a+2b,得﹣<,即>﹣②,由①②得:﹣<<1.函数f(x)=ax2﹣bx+c的图象是开口向下的抛物线,其对称轴方程为x=,则﹣<<.∴零点﹣1到对称轴的距离d∈(,),另一零点为m>0,∴m﹣(﹣1)=m+1=2d∈(,3),因为f(x0)>0,所以x0∈(﹣1,m),故0<m﹣x0<(2d)min,∴x0<m+x0,综合四个选项,实数m的值可能是+x0.故选:C.23.【解答】解:由f(x)=﹣x(x﹣a)2,得f'(x)=﹣(3x﹣a)(x﹣a).令f'(x)=0,得或x=a,当a>3时,,∴f(x)在区间,[a,+∞)上单调递减,在区间上单调递增;当a>3时,,则f(x)在区间(﹣∞,1]上为减函数,又k∈[﹣1,0],sinθ∈[﹣1,1],则﹣2≤﹣k﹣sinθ﹣1≤1,∴﹣1≤k2﹣sin2θ≤1.∵f(﹣k﹣sinθ﹣1)≥f(k2﹣sin2θ)对任意的k∈[﹣1,0]恒成立,∴对任意的k∈[﹣1,0]恒成立,∴恒成立,∴,即,∴θ的可能取值是.故选:D.24.【解答】解:∵f(﹣x)==﹣f(x),∴函数,为R上的奇函数,又x≥0时,f(x)=x2为增函数,∴f(x)为定义域R上的增函数.又f()=3,∴f(x+m)≥3f(x)=f(x),∵对任意,f(x+m)≥3f(x)=f(x),f(x)为定义域R上的增函数,∴m≥[(﹣1)x]max=(﹣1)(+3),即(1﹣)m=m≥3(﹣1),解得:m≥2.即实数m的取值范围是[2,+∞),故选:B.25.【解答】解:关于x的不等式不等式≤1在区间(1,2]上恒成立⇔关于x的不等式a(x﹣1)2≤lnx在区间(1,2]上恒成立.显然当a≤0时,关于x的不等式不等式≤1在区间(1,2]上恒成立当a>0时,在同一坐标系内分别作出y=a(x﹣1)2,y=lnx的图象,所以关于x的不等式a(x﹣1)2≤lnx在区间(1,2]上恒成立.⇔A点的位置不低于B点的位置⇔ln2≥a(2﹣1)2⇔0<a≤ln2.综上,实数a的取值范围为(﹣∞,ln2].故选:B.26.【解答】解:f(x)在定义域R内单调递增,∴f(a)=ka,f(b)=kb,即e a+2a=ka,e b+2b=kb,即a,b为方程e x+2x=kx的两个不同根,∴,设g(x)=,,∴0<x<1时,g′(x)<0;x>1时,g′(x)>0,∴x=1是g(x)的极小值点,∴g(x)的极小值为:g(1)=e+2,又x趋向0时,g(x)趋向+∞;x趋向+∞时,g(x)趋向+∞,∴k>e+2时,y=k和y=g(x)的图象有两个交点,方程有两个解,∴实数k的取值范围是(e+2,+∞).故选:B.27.【解答】解:当k=5,x=3时,f(x)=f(3)==1+ln2,==,∴f(x)<,故k =5不成立;当k=4,x=3时,f(x)=f(3)=1+ln2<=2,所以k=4也不成立;当k=3时,f(x)>(x>2)⇔1+ln(x﹣1)﹣(1﹣)×3>0,令g(x)=1+ln(x﹣1)﹣3+,x>2则g′(x)=﹣=,∴2<x<4时,g′(x)<0;x>4时,g′(x)>0,∴g(x)在(2,4)上递减,在(4,+∞)上递增,∴g(x)min=g(4)=ln3﹣1>0,∴k=3时,f(x)>在(2,+∞)上恒成立,符合题意.故整数k的最大值为3.故选:B.28.【解答】解:由存在,使得不等式2xlnx+x2﹣mx+3≥0成立,得:m≤2lnx+x+,x∈[,e]有解,令y=2lnx+x+,则y′=,故x∈(,1)时,y′<0,函数是减函数,x∈(1,e)时,y′>0,函数是增函数,故x=时,y=3e+﹣2,x=e时,y=2+e+,又(3e+﹣2)﹣(2+e+)=2e﹣4﹣>0,故函数y=2lnx+x+的最大值是3e+﹣2,m≤3e+﹣2,故选:A.29.【解答】解:以线段AB的中点为原点,以AB所在的直线为x轴,以其中垂线为y轴,建立直角坐标系,则A(﹣5,0)、B(5,0)、设点P(x,y),则,,则,即有(2x+10﹣10λ)2+4y2≥64,整理为以为元的一元二次不等式,即100λ2﹣(200+40x)λ+4x2+40x+4y2+36≥0,由于上述不等式对任意λ∈R恒成立,则△≤0必然成立,△=(200+40x)2﹣4×100×(4x2+40x+4y2+36)≤0,解得|y|≥4,即y≥4或者y≤﹣4,动点P位于直线y=4上或其上方部分,或者直线y=﹣4上或者其下方的区域内,用动态的观点看问题,我们让点P位于点(﹣5,4)处,则,故A错误;让点P位于点(0,4)处,则,故B错误;此时,|AB|=10,用余弦定理计算,∠APB>90°故D错误;我们进一步确定C选项的正确性,,,则,其中x∈R,y2≥16,故x2+y2﹣25≥x2+16﹣25≥﹣9,即,故C正确.故选:C.30.【解答】解:根据题意,函数y=f(x)为定义域R上的奇函数,则有f(﹣x)+f(x)=0,设h(x)=g(x)﹣5=f(x﹣5)+(x﹣5),若g(a1)+g(a2)+…+g(a9)=45,即f(a1﹣5)+a1+f(a2﹣5)+a2+…+f(a9﹣5)+a9=45,变形可得f(a1﹣5)+(a1﹣5)+f(a2﹣5)+(a2﹣5)…+f(a9﹣5)+(a9﹣5)=0,即h(a1﹣5)+h(a2﹣5)+…+h(a9﹣5)=0,又由y=f(x)为定义域R上的奇函数,则h(x)=f(x﹣5)+(x﹣5)关于点(5,0)对称,而数列{a n}为等差数列,且公差不为0,则有a1+a9=10,变形有a5=5,则a1+a2+…+a9=9a5=45;故选:A.二.填空题(共5小题)31.【解答】解:对任意k∈[﹣1,1],当x∈(0,4]时,不等式6lnx+x2﹣9x+a≤kx恒成立,即f(x)=kx+9x﹣x2﹣a ﹣6lnx≥0恒成立,令g(k)=xk+9x﹣x2﹣a﹣6lnx,∵x∈(0,4],∴g(k)在k∈[﹣1,1]上单调递增,∴g(k)min=g(﹣1)≥0即可,g(k)≥g(k)min=g(﹣1)≥0,又∵g(﹣1)=﹣x+9x﹣x2﹣a﹣6lnx=﹣x2+8x﹣6lnx﹣a(x∈(0,4]),令ρ(x)=﹣x2+8x﹣6lnx﹣a,则ρ′(x)=﹣2x+8﹣==(﹣x2+4x﹣3)=﹣(x﹣3)(x﹣1),令ρ′(x)=0,得x=3或x=1,∴x∈(0,1)时,ρ′(x)<0,ρ(x)单调递减;x∈(1,3)时,ρ′(x)>0,ρ(x)单调递增;x∈((3,4)时,ρ′(x)<0,ρ(x)单调递减;ρ(1)=﹣1+8﹣a=7﹣a,ρ(4)=﹣16+32﹣6ln4﹣a=16﹣6ln4﹣a,∴解得a≤7,故答案为:7.32.【解答】解:=令分子等于0,△=0,即(10t2﹣1)y2+2(t﹣1)y+14t2+2t﹣1=0,再令△=0,t2(2t+1)(14t﹣5)=0解得t=0或t=﹣或t=,①﹣==≤0,当且仅当即时等号成立;②+==≥0,当且仅当即时等号成立;综上,最大值为,故答案为:33.【解答】解:由题意,f(x)为周期为4的函数,且是奇函数.0在函数定义域内,故f(0)=0,得a=1,所以当0≤x≤1时,f(x)=log2(x+1),当x∈[﹣1,0]时,﹣x∈[0,1],此时f(x)=﹣f(﹣x)=﹣log2(﹣x+1),又知道f(x+2)=﹣f(x)=f(﹣x),所以f(x)以x=1为对称轴.且当x∈[﹣1,1]时f(x)单调递增,当x∈[1,3]时f(x)单调递减.当x∈[﹣1,3]时,令f(x)=1﹣log23,得x=﹣,或x=,所以在[﹣1,3]内当f(x)>1﹣log23时,x∈[﹣,].设g(x)=﹣,若对于x属于[0,1]都有,因为g(0)=∈[﹣,].,故g(x)∈[﹣,].①当<0时,g(x)在[0,1]上单调递减,故g(x)∈[t﹣,]⊆[﹣,].得t≥0,无解.②0≤t≤1时,,此时g(t)最大,g(1)最小,即g(x)∈[t﹣1,]⊆[﹣,].得t∈[0,1].③当1<t≤2时,即,此时g(0)最小,g(t)最大,即g(x)∈[,]⊆[﹣,].得t∈(1,2],④当t>2时,g(x)在[0,1]上单调递增,故g(x)∈[,t﹣]⊆[﹣,].解得,t∈(2,3],综上t∈[0,3].故填:[0,3].34.【解答】解:若不等式f(x)>0恒成立,则,又由4c>9a,∴设x=,y=,则,则==1+,令z=,则z表示区域内的点(x,y)与P(1,﹣2)连线的斜率,因为A(﹣3,),所以k P A==﹣,设直线PB:y=k(x﹣1)﹣2,联立得x2﹣4kx+4k+8=0,△=16k2﹣16k﹣32=0⇒k=﹣1,k=2,由图可知,z∈(﹣∞,﹣)∪(2,+∞),故答案为(﹣∞,﹣)∪(3,+∞).35.【解答】解:令f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|,将关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解的个数的问题转化为两个函数图象交点个数的问题不妨令a1<a2<a3,b1<b2<b3,由于f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|=,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|=,考查两个函数,可以看到每个函数都是由两条射线与两段拆线所组成的,且两条射线的斜率对应相等,两条线段的斜率对应相等.当a1,a2,a3的和与b1,b2,b3的和相等时,此时两个函数射线部分完全重合,这与题设中方程的解集是有限集矛盾不妨令a1,a2,a3的和小于b1,b2,b3的和即a1+a2+a3<b1+b2+b3,﹣a1﹣a2﹣a3>﹣b1﹣b2﹣b3,两个函数图象射线部分端点左右位置不同,即若左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在左,右边射线端点一定在右,反之亦然.不妨认为左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在左,右边射线端点一定在右,且射线互相平行,中间线段也对应平行,如图A点在左,F点在右,此时若B,C点在线段AD的上方,则只有一个交点;若BC线段位置在如图位置,则有三个交点,探究知,当a1,a2,a3的值依次是1、4、5,b1,b2,b3的值分别是2、3、6,可得到如图的图象,所以此两函数在本题条件下,最多有三个元素:故两函数图象最多有三个交点,即方程的解集是有限集时,最多有三个元素,故答案为:3.三.解答题(共5小题)36.【解答】解:(1)令x=0,y=1,则代入条件①,得:f(1)=f(0)•f(1)又f(1)≠0,则f(0)=1,设x1<x2,则f(x1)﹣f(x2)=f(x1)﹣f(x2﹣x1+x1)=f(x1)﹣f(x2﹣x1)•f(x1)=f(x1)[1﹣f(x2﹣x1)],因为任意x>0,都有f(x)>1,则1﹣f(x2﹣x1)<0,令y=﹣x,则f(0)=f(x)•f(﹣x)=1且x>0,都有f(x)>1>0,故f(﹣x)=>0,则对任意x∈R都有f(x)>0,则f(x1)>0,所以f(x1)﹣f(x2)<0,所以:f(x)是R上的单调增函数;(2)由条件|f(|x﹣2a+1|)﹣f(|x﹣a|+1)|=f(|x﹣a|+1)﹣f(|x﹣2a+1|)恒成立;可化为f(|x﹣a|+1)≥f(|x﹣2a+1|),即:|x﹣2a+1|≤|x﹣a|+1,即:|x﹣2a+1|﹣|x﹣a|≤1,对x∈R恒成立.因:|x﹣2a+1|﹣|x﹣a|≤|a﹣1|,故只需|a﹣1|≤1.解得0≤a≤2.(3)设G(x)=2,显然﹣1≤x≤1,∴max{g(x),G(x)}={g(x)+G(x)+|g(x)﹣G(x)|},方程g(x)+2+|g(x)﹣2|﹣2mx=4f(0)|等价于2max{g(x),G(x)}=2mx+4,即:max{g(x),G(x)}=mx+2,∵g(x)=,且G(x)可改写为:G(x)=,由﹣2x>2⇒﹣1≤x<﹣,又当x∈[0,1]时,x2﹣1≤2,∴max{g(x),G(x)}=,于是﹣2x=mx+2⇒x=﹣(﹣1≤x<﹣),∴0≤m<2﹣2,由2=mx+2⇒x=0或x=﹣,∵x1<x2<x3,∴x1=﹣,x2=﹣,x3=0,由已知条件x3﹣x2=2(x2﹣x1),∴2x1=3x2,即m2+3m﹣2=0⇒m=,又0≤m<2﹣2,∴m=.37.【解答】解:(1)若集合B含有2个元素,即B={a1,a2},则A=∅,{a1},{a2},则(A,B)的个数为3;若集合B含有1个元素,则B有种,不妨设B={a1},则A=∅,此时(A,B)的个数为×1=2.综上,(A,B)的个数为5.(3分)(2)集合M有2n个子集,又集合A,B是非空集合M的两个不同子集,则不同的有序集合对(A,B)的个数为2n(2n﹣1).(5分)若A的元素个数与B的元素个数一样多,则不同的有序集合对(A,B)的个数为:+=+…+()2﹣(),(7分)又(x+1)n(x+1)n的展开式中x n的系数为+…+()2,且(x+1)n(x+1)n=(x+1)2n的展开式中x n的系数为,所以=+…+()2=,因为=2n,所以当A的元素个数与B的元素个数一样多时,有序集合对(A,B)的个数为﹣2n.(9分)所以当A的元素个数比B的元素个数少时,有序集合对(A,B)的个数为:=.(10分)38.【解答】解:集合A={x|2x2﹣5x﹣12≥0}={x|x≤﹣或x≥4},B={y|y=3x+1(x>0)}={y|y>2}.(1)集合A∩B={x|x≥4},∁R A={x|﹣<x<4},∴(∁R A)∪B={x|x>﹣};(2)若集合C={x|m﹣2≤x≤2m},且(∁R A)∩C=C,∴C⊆∁R A,∴,解得<m<2;当C=∅时,m﹣2>2m,解得∴m<﹣2;综上,m的取值范围是m<﹣2或<m<2.39.【解答】解:(1)a=2时,f(x)=(﹣x2+2x)•e x的导数为f′(x)=e x(2﹣x2),由f′(x)>0,解得﹣<x<,由f′(x)<0,解得x<﹣或x>.即有函数f(x)的单调减区间为(﹣∞,﹣),(,+∞),单调增区间为(﹣,).(2)函数f(x)=(﹣x2+ax)•e x的导数为f′(x)=e x[a﹣x2+(a﹣2)x],由函数f(x)在(﹣1,1)上单调递增,则有f′(x)≥0在(﹣1,1)上恒成立,即为a﹣x2+(a﹣2)x≥0,即有x2﹣(a﹣2)x﹣a≤0,则有1+(a﹣2)﹣a≤0且1﹣(a﹣2)﹣a≤0,解得a≥.则有a的取值范围为[,+∞).40.【解答】解:(Ⅰ)函数f(x)=(log2x)2+4log2x+m,x∈[,4],m为常数.令t=log2x,∵x∈[,4],∴t∈[﹣3,2]则由已知,若f(x)存在大于1的零点,即g(t)在t∈(0,2]时有零点g(t)表示的二次函数开口向上,对称轴为t0=﹣2,所以若g(t)在t∈(0,2]时有零点,即⇒﹣12≤m<0即m的取值范围为[﹣12,0,(Ⅱ)若f(x)有两个相异的零点,即g(t)在t∈[﹣3,2]时有两个相异零点∴g(t)表示的二次函数开口向上,对称轴为t0=﹣2∴即m的取值范围为[3,4),此时,方程g(t)=t2+4t+m=0的两根t1+t2=﹣4即,第31页(共31页)。
高一数学集合知识点及练习题
高一数学集合知识点及练习题由一个或多个元素所构成的叫做集合,集合是数学中一个基本概念,它是集合论的研究对象。
这次小编给大家整理了高一数学集合知识点及练习题,供大家阅读参考。
(一)1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合” 。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合 A={a,b,c}。
a、b、c 就是集合 A 中的元素,记作a∈A,相反,d 不属于集合 A,记作 d?A。
有一些特殊的集合需要记忆:非负整数集(即自然数集)N 正整数集 N_或 N+整数集 Z 有理数集 Q 实数集 R集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。
如{x?R|x-3>2}, {x|x-3>2}, {(x,y) |y=x2+1}③语言描述法:例: {不是直角三角形的三角形}例:不等式 x-3>2 的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y) |y=x2+3x+2}与 B={y|y=x2+3x+2}不同。
集合 A 中是数组元素(x,y),集合 B 中只有元素 y。
3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合 A={1,2},集合 B={2,1},则集合A=B。
例题:集合 A= {1,2},B= {a,b},若 A=B,求 a、b 的值。
解:,A=B注意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
实用文档之高一数学集合练习题及答案
实用文档之"高一数学集合的练习题及答案"一、、知识点:本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。
在进行集合间的运算时要注意使用Venn图。
本章知识结构1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。
理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。
确定的――集合元素的确定性――元素与集合的“从属”关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。
我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做Φ。
理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。
几个常用数集N、N*、N+、Z、Q、R要记牢。
3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)③呈现一定规律的无限集,如{1,2,3,…,n,…}●注意a与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。
但关键点也是难点。
学习时多加练习就可以了。
另外,弄清“代表元素”也是非常重要的。
如{x|y =x 2}, {y|y =x 2}, {(x ,y )|y =x 2}是三个不同的集合。
4、集合之间的关系●注意区分“从属”关系与“包含”关系 “从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。
(完整)高一数学集合较难题
高一数学集合较难题一、选择题:1.全集U R =,集合{|112},{|21,},M x Z x N x x k k N +=∈-≤-≤==+∈则图1中阴影部分所示集合的元素共有( )个A .1B .2C .3D .无穷多2.设全集U={2,3,2a +2a-3},A={|a+1|,2},A C U ={5},则a 的值为( )A 、2B 、-3或1C 、-4D 、-4或23. 已知集合{1,2}{21}M N a a M ==∈-,,则M N ⋂=( )A .}1{B . }2,1{C . }3,2,1{D .空集 4.记全集},,111|{N x x x U ∈<≤=则满足}9,7,5,1{}10,97531{=⋂P C U ,,,,的所有集合P 的个数是( )A.4B.6C.8D.165.已知集合{}{}221,,20R A y y x x B x x x =+=+-∈=>,则下列正确的是( )A .{}1,AB y y => B.{}2A B y y =>C.{}21A B y y ⋃=-<<D. {}21A B y y y ⋃=<>-或6.设全集为R ,}3x 3|x {B }5x 3x |x {A <<-=><=,或,则( )A. R B A R C =B. R B A R C =C. R B A R R C C =D. R B A =7.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为( )A .[1,2)-B .[1,2]-C .[0,3]D .[0,3)8.已知不等式8.03)1(4)54(22>+-+-+x k x k k 对任何实数x 都成立,则关于x 的方程0108)2(2232=-+-+k x k x ( )A.有两个相等的实根B. 有两个不等的实根C.无实根 有无实根不确定9.满足)3,}(,,,,,{},{132121≥∈⊂⊆-≠n N n a a a a a P a a n n 21,a a 21,a a 的集合P 共有( ) A.123--n 个 B. 122--n 个 C. 121--n 个 D. 12-n 个10. 设集合{|||1,}A x x a x R =-<∈,{|||2,}.B x x b x R =->∈若,A B ⊆则实数a,b 满足A. ||3a b +≤B.||3a b +≥C. ||3a b -≤D. ||3a b -≥二、填空题:1.已知集合},,0{},,,{y x B y x xy x A =+=,且A =B ,则=x ___________,=y ___________.2.},9,1{)()(},2{,,},9,8,7,6,5,4,3,2,1{11==⊆⊆=B C A C B A I B I A I }8,6,4{)(1=B A C ,则=)(1B C A ___________。
高一数学集合试题答案及解析
高一数学集合试题答案及解析1.已知全集为U,A∩B =B,且,则下列各式中一定错误的是()A.(A)=B.(A) =C.(A)(B)=D.A(B)【答案】D【解析】因为全集为U,A∩B =B,且,所以,必有,利用韦恩图知选D.【考点】本题主要考查空集、交集、并集、补集的概念。
点评:注意运用韦恩图,数形结合,易于理解。
B={x|x+4<-x},则集合B=()2.已知A∩B=B,且A={x|},若AA.{x|-2≤x<3}B.{x|-2<x<3}C.{x|-2<x≤3}D.{x|-2≤x≤3}【答案】AB={x|x<-2},结合数轴可知选A。
【解析】已知条件即A B,且A={x|x<3},CA【考点】本题主要考查交集、补集的概念、集合的表示方法。
点评:此题考查了交集、补集的概念,简单不等式的解法,主要结合数轴解题。
3.设集合A=,B=,当时,求.【答案】【解析】由已知必有,∴,或,当时集合B中的元素,且,与集合中元素的互异性矛盾,当时集合B适合题意,∴时得到.【考点】本题主要考查交集、并集的概念、集合中元素的性质。
点评:此题考查了集合的交、并运算,探究求得a,利用集合中元素的互异性,确定取舍。
细心解方程。
P=()4.设全集U=R,P={},则UA.{B.{}C.D.【答案】C【解析】集合P=,由数轴分析易得.选C。
【考点】本题主要考查补集的概念。
点评:注意数形结合。
是解答此类问题的常用方法。
5.下面四个命题:(1)集合N中的最小元素是1:(2)方程的解集含有3个元素;(3)(4)满足的实数的全体形成集合。
其中正确命题的个数是______________【答案】2.【解析】集合N中的最小元素是0,不是1,(1)不正确;方程的解为,所以(2)正确;空集中不含任何元素,所以(3)不正确;即,所以(4)正确,故正确命题的个数是2.【考点】本题主要考查集合的基本概念及集合的表示方法。
高一数学集合练习题及答案
高一数学集合的练习题及答案一、、知识点:本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。
在进行集合间的运算时要注意使用Venn图。
本章知识结构1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。
理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。
确定的――集合元素的确定性――元素与集合的“从属”关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。
我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做Φ。
理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。
几个常用数集N、N*、N+、Z、Q、R要记牢。
3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)③呈现一定规律的无限集,如{1,2,3,…,n,…}●注意a与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。
但关键点也是难点。
学习时多加练习就可以了。
另外,弄清“代表元素”也是非常重要的。
如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。
4、集合之间的关系●注意区分“从属”关系与“包含”关系“从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn 图描述集合之间的关系是基本要求。
高一数学集合练习题及答案有详解
高一数学集合练习题及答案有详解1.已知A={x|3-3x>0},则下列各式正确的是( )A.3∈AB.1∈AC.0∈AD.-1A【解析】集合A表示不等式3-3x>0的解集.显然3,1不满足不等式,而0,-1满足不等式,故选C.【答案】C2.高考资源网下列四个集合中,不同于另外三个的是( )A.{y|y=2} B.{x=2}C.{2} D.{x|x2-4x+4=0}【解析】{x=2}表示的是由一个等式组成的集合.故选B.【答案】B3.下列关系中,正确的个数为________.①∈R;②Q;③|-3|N*;④|-|∈Q.【解析】本题考查常用数集及元素与集合的关系.显然∈R,①正确;Q,②正确;|-3|=3∈N*,|-|=Q,③、④不正确.【答案】24.已知集合A={1,x,x2-x},B={1,2,x},若集合A与集合B相等,求x的值.【解析】因为集合A与集合B相等,所以x2-x=2.∴x=2或x=-1.当x=2时,与集合元素的互异性矛盾.当x=-1时,符合题意.∴x=-1.一、选择题(每小题5分,共20分)1.下列命题中正确的( )①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}可以用列举法表示.A.只有①和④ B.只有②和③C.只有② D.以上语句都不对【解析】{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.【答案】C2.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}【解析】集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.【答案】B3.已知集合A={x∈N*|-≤x≤},则必有( )A.-1∈A B.0∈AC.∈A D.1∈A【解析】∵x∈N*,-≤x≤,∴x=1,2,即A={1,2},∴1∈A.故选D.【答案】D4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为( )A.0 B.2C.3 D.6【解析】依题意,A*B={0,2,4},其所有元素之和为6,故选D.【答案】D二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.【解析】由互异性知a2≠1,即a≠±1,故实数a不能取的值的集合是{1,-1}.【答案】{1,-1}6.已知P={x|2<x<a,x∈N},已知集合P中恰有3个元素,则整数a=________.【解析】用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.【答案】6三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.【解析】(1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2<x<6},无限集.(3)用描述法表示该集合为M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5B,求a的值.【解析】因为5∈A,所以a2+2a-3=5,解得a=2或a=-4.当a=2时,|a+3|=5,不符合题意,应舍去.当a=-4时,|a+3|=1,符合题意,所以a=-4.9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若Axx至多有一个元素,求实数a的取值范围.【解析】(1)∵A中有两个元素,∴方程ax2-3x-4=0有两个不等的实数根,∴即a>-.∴a>-,且a≠0.(2)当a=0时,A={-};当a≠0时,若关于x的方程ax2-3x-4=0有两个相等的实数根,Δ=9+16a=0,即a =-;若关于x的方程无实数根,则Δ=9+16a<0,即a<-;故所求的a的取值范围是a≤-或a=0.1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于( )A.{x|x≥3}B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}【解析】B={x|x≥3}.画数轴(如下图所示)可知选B.【答案】B2.高考资源网已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=( )A.{3,5} B.{3,6}C.{3,7} D.{3,9}【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.【答案】D3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.【解析】设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.∴只参加甲项的有25人,只参加乙项的有20人,∴仅参加一项的有45人.【答案】454.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值.【解析】∵A∩B={9},∴9∈A,∴2a-1=9或a2=9,∴a=5或a=±3.当a=5时,A={-4,9,25},B={0,-4,9}.此时A∩B={-4,9}≠{9}.故a=5舍去.当a=3时,B={-2,-2,9},不符合要求,舍去.经检验可知a=-3符合题意.一、选择题(每小题5分,共20分)1.集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为( ) A.0 B.1C.2 D.4【解析】∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4,故选D.【答案】D2.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=( )A.Ø B.{x|x<-}C.{x|x>} D.{x|-<x<}【解析】S={x|2x+1>0}={x|x>-},T={x|3x-5<0}={x|x<},则S∩T={x|-<x<}.故选D.【答案】D3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=( )A.{x|x≥-1} B.{x|x≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【答案】A4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是( ) A.1 B.2C.3 D.4【解析】集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或M={a1,a2,a4}.故选B.【答案】B二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.【解析】A=(-∞,1],B=[a,+∞),要使A∪B=R,只需a≤1.【答案】a≤16.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.【解析】由于{1,3}∪A={1,3,5},则A⊆{1,3,5},且Axx至少有一个元素为5,从而Axx其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.【答案】4三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.【解析】由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.若x2-1=3则x=±2;若x2-1=5,则x=±;综上,x=±2或±.当x=±2时,B={1,2,3},此时A∩B={1,3};当x=±时,B={1,2,5},此时A∩B={1,5}.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范围.【解析】由A∩B=Ø,(1)若A=Ø,有2a>a+3,∴a>3.(2)若A≠Ø,如图:∴,解得≤a≤2.综上所述,a的取值范围是{a|≤a≤2或a>3}.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【解析】设单独参加数学的同学为x人,参加数学化学的为y人,单独参加化学的为z 人.依题意解得∴同时参加数学化学的同学有8人,答:同时参加数学和化学小组的有8人.1.集合{a,b}的子集有( )A.1个B.2个C.3个D.4个【解析】集合{a,b}的子集有Ø,{a},{b},{a,b}共4个,故选D.【答案】D2.下列各式中,正确的是( )A.高考资源网2∈{x|x≤3} B.2{x|x≤3}C.2⊆{x|x≤3} D.{2}{x|x≤3}【解析】2表示一个元素,{x|x≤3}表示一个集合,但2不在集合中,故2∉{x|x≤3},A、C不正确,又集合{2}{x|x≤3},故D不正确.【答案】B3.集合B={a,b,c},C={a,b,d},集合A满足A⊆B,A⊆C.则集合A的个数是________.【解析】若A=Ø,则满足A⊆B,A⊆C;若A≠Ø,由A⊆B,A⊆C知A是由属于B且属于C的元素构成,此时集合A可能为{a},{b},{a,b}.【答案】44.已知集合A={x|1≤x<4},B={x|x<a},若A⊆B,求实数a的取值集合.【解析】将数集A表示在数轴上(如图所示),要满足A⊆B,表示数a的点必须在表示4的点处或在表示4的点的右边,所以所求a的集合为{a|a≥4}.一、选择题(每小题5分,共20分)1.集合A={x|0≤x<3且x∈Z}的真子集的个数是( )A.5 B.6C.7 D.8【解析】由题意知A={0,1,2},其真子集的个数为23-1=7个,故选C.【答案】C2.在下列各式中错误的个数是( )①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1}A.1 B.2¥资%源~网C.3 D.4【解析】①正确;②错.因为集合与集合之间是包含关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选A.【答案】A3.已知集合A={x|-1<x<2},B={x|0<x<1},则( )A.A>B B.ABC.BA D.A⊆B【解析】如图所示,,由图可知,故选C.【答案】C4.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若,则A≠Ø.其中正确的有( )A.0个 B.1个C.2个 D.3个【解析】①空集是它自身的子集;②当集合为空集时说法错误;③空集不是它自身的真子集;④空集是任何非空集合的真子集.因此,①②③错,④正确.故选B.【答案】B二、填空题(每小题5分,共10分)5.已知Ø{x|x2-x+a=0},则实数a的取值范围是________.【解析】∵Ø{x|x2-x+a=0},∴方程x2-x+a=0有实根,∴Δ=(-1)2-4a≥0,a≤.【答案】a≤6.已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m=________.【解析】∵B⊆A,∴m2=2m-1,即(m-1)2=0∴m=1,当m=1时,A={-1,3,1},B ={3,1}满足B⊆A.【答案】1三、解答题(每小题10分,共20分)7.设集合A={x,y},B={0,x2},若A=B,求实数x,y.【解析】从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A=B,则x=0或y=0.(1)当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.(2)当y=0时,x=x2,解得x=0或x=1.由(1)知x=0应舍去.综上知:x=1,y=0.8.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.【解析】由x2+x-6=0,得x=2或x=-3.因此,M={2,-3}.若a=2,则N={2},此时NM;若a=-3,则N={2,-3},此时N=M;若a≠2且a≠-3,则N={2,a},此时N不是M的子集,故所求实数a的值为2或-3.9.(10分)已知集合M={x|x=m+,m∈Z},N={x|x=-,n∈Z},P={x|x=+,p∈Z},请探求集合M、N、P之间的关系.【解析】M={x|x=m+,m∈Z}={x|x=,m∈Z}.N={x|x=-,n∈Z}=P={x|x=+,p∈Z}={x|x=,p∈Z}.∵3n-2=3(n-1)+1,n∈Z.∴3n-2,3p+1都是3的整数倍加1,从而N=P.而6m+1=3×2m+1是3的偶数倍加1,∴MN=P.。
通用版高一数学集合经典大题例题
(每日一练)通用版高一数学集合经典大题例题单选题1、已知集合U=R,集合A={x∈R|x≤1},B={x∈R||x−2|≤1},则(C U A)∩B=()A.(1,3)B.(1,3]C.[1,3]D.[1,3)答案:B解析:利用集合的补集和交集运算求解.因为集合U=R,且A={x∈R|x≤1},所以∁R A={x∈R|x>1},又B={x∈R||x−2|≤1}={x∈R|1≤x≤3},所以(C U A)∩B=(1,3],故选:B2、已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}答案:A解析:首先进行并集运算,然后进行补集运算即可.由题意可得:M∪N={1,2,3,4},则∁U(M∪N)={5}.故选:A.3、若集合A={1,m2},集合B={2,4},若A∪B={1,2,4},则实数m的取值集合为()A.{−√2,√2}B.{2,√2}C.{−2,2}D.{−2,2,−√2,√2}答案:D解析:由题中条件可得m2=2或m2=4,解方程即可.因为A={1,m2},B={2,4},A∪B={1,2,4},所以m2=2或m2=4,解得m=±√2或m=±2,所以实数m的取值集合为{−2,2,−√2,√2}.故选:D.解答题4、在“①A∩B=∅,②A∩B≠∅”这两个条件中任选一个,补充在下列横线中,求解下列问题:已知集合A={x|2a−3<x<a+1},B={x|0<x≤1}.(Ⅰ)若a=0,求A∪B;(Ⅱ)若________(在①,②这两个条件中任选一个),求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答记分.答案:(1){x|−3<x≤1};(2)若选①,(−∞,−1]∪[2,+∞);若选②,(−1,2)解析:(1)由a=0得到A={x|−3<x<1},然后利用并集运算求解.(2)若选A∩B=∅,分A=∅和A≠∅两种情况讨论求解;若选A∩B≠∅,则由{2a−3<a+12a−3<1a+1>0求解.(1)当a=0时,A={x|−3<x<1},B={x|0<x≤1};所以A ∪B ={x|−3<x ≤1}(2)若选①,A ∩B =∅,当A =∅时,2a −3≥a +1,解得a ≥4,当A ≠∅时,{a <42a −3≥1 或{a <4a +1≤0,解得:2≤a <4或a ≤−1, 综上:实数a 的取值范围(−∞,−1]∪[2,+∞).若选②,A ∩B ≠∅,则{2a −3<a +12a −3<1a +1>0 ,即{a <4a <2a >−1,解得:−1<a <2,所以实数a 的取值范围(−1,2).小提示:易错点睛:本题考查利用集合子集关系确定参数问题,易错点是要注意:∅是任何集合的子集,所以要分集合B =∅和集合B ≠∅两种情况讨论,考查学生的逻辑推理能力,属于中档题.5、已知集合A ={x |ax 2+2x +1=0,a ∈R },(1)若A 只有一个元素,试求a 的值,并求出这个元素;(2)若A 是空集,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.答案:(1)详见解析;(2)a >1;(3)a =0或a ≥1解析:(1)根据方程为一次方程与二次方程分类讨论,对应求解得结果,(2)根据方程无解条件列不等式,解得结果,(3)A 中至多只有一个元素就是A 为空集,或有且只有一个元素,所以求(1)(2)结果的并集即可.(1)若A 中只有一个元素,则方程ax 2+2x +1=0有且只有一个实根,当a =0时,方程为一元一次方程,满足条件,此时x =-12,当a≠0,此时△=4-4a=0,解得:a=1,此时x=-1,(2)若A是空集,则方程ax2+2x+1=0无解,此时△=4-4a<0,解得:a>1.(3)若A中至多只有一个元素,则A为空集,或有且只有一个元素,由(1),(2)得满足条件的a的取值范围是:a=0或a≥1.小提示:本题考查方程的解与对应集合元素关系,考查基本分析求解能力,属基础题.。
高一上集合综合难题训练(含答案解析)
17.对于任意两个正整数 ,定义某种运算 ,法则如下:当 都是正奇数时, ;当 不全为正奇数时, ,则在此定义下,集合 的真子集的个数是()
A. B. C. D.
18.已知集合 , ,则 ()
A. B. C. D.
19.已知集合 ,集合 ,若 ,则实数 的取值范围为________.
(2)若 中至多有一个元素,求实数 的取值范围.
38.已知集合 ,
(1)若 ,求实数a的取值范围;
(2)若 ,求实数a的取值范围.
39.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4,给出如下四个结论:
①2 016∈[1];②-3∈[3];③若整数a,b属于同一“类”,则a-b∈[0];④若a-b∈[0],则整数a,b属于同一“类”.
12.定义集合运算: .设 , ,则集合 的所有元素之和为()
A.0B.2C.3D.61来自.用列举法表示集合 =________.
14.已知集合 , ,定义集合 ,则 中元素的个数为().
A.77B.49C.45D.30
15.已知集合 ,则满足条件 的集合 的个数为()
A.1B.2C.3D.4
16.设 , ,若 ,求实数 组成的集合的子集个数有
25.已知非空集合 满足以下两个条件:
(ⅰ) , ;
(ⅱ) 的元素个数不是 中的元素, 的元素个数不是 中的元素,
则有序集合对 的个数为
A. B. C. D.
26.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()
A.{x|2<x≤3}B.{x|2≤x≤3}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此文档下载后即可编辑
高一数学集合较难题
一、选择题:
1.全集U R =,集合{|112},{|21,},M x Z x N x x k k N +=∈-≤-≤==+∈则图1中阴
影部分所示集合的元素共有( )个
A .1
B .2
C .3
D .无穷多
2.设全集U={2,3,2
a +2a-3},A={|a+1|,2},A C U ={5},则a 的值为( )
A 、2
B 、-3或1
C 、-4
D 、-4或2
3. 已知集合{1,2}{21}M N a a M ==∈-,,则M N ⋂=( )
A .}1{
B . }2,1{
C . }3,2,1{
D .空集 4.记全集},,111|{N x x x U ∈<≤=则满足}9,7,5,1{}10,97531{=⋂P C U ,,,,
的所有集合P 的个数是( )
A.4
B.6
C.8
D.16
5.已知集合{}{}221,,20R A y y x x B x x x =+=+-∈=>,则下列正确的是( )
A .{}1,A
B y y => B.{}2A B y y =>
C.{}21A B y y ⋃=-<<
D. {}21A B y y y ⋃=<>-或
6.设全集为R ,}3x 3|x {B }5x 3x |x {A <<-=><=,或,则( )
A. R B A R C =
B. R B A R C =
C. R B A R R C C =
D. R B A =
7.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为( )
A .[1,2)-
B .[1,2]-
C .[0,3]
D .[0,3)8.已知不等式
8.03)1(4)54(22>+-+-+x k x k k 对任何实数x 都成立,则关于x 的方程0108)2(2232=-+-+k x k x ( )
A.有两个相等的实根
B. 有两个不等的实根
C.无实根 有无实根不确定
9.满足)3,}(,,,,,{},{132121≥∈⊂⊆-≠
n N n a a a a a P a a n n 21,a a 21,a a 的集合P 共有( ) A.123--n 个 B. 122--n 个 C. 121--n 个 D. 12-n 个
10. 设集合{|||1,}A x x a x R =-<∈,{|||2,}.B x x b x R =->∈若,A B ⊆则实数a,b 满足
A. ||3a b +≤
B.||3a b +≥
C. ||3a b -≤
D. ||3a b -≥
二、填空题:
1.已知集合},,0{},,,{y x B y x xy x A =+=,且A =B ,则=x ___________,=y ___________.
2.},9,1{)()(},2{,,},9,8,7,6,5,4,3,2,1{11==⊆⊆=B C A C B A I B I A I
}8,6,4{)(1=B A C ,则=)(1B C A ___________。
3.已知集合}121{},0310{2-≤≤+=≥-+=m x m x B x x x A ,当∅=B A 时,实数m 的取值范围是___________。
4. }02{},01{},023{222=+-==-+-==+-=mx x x C a ax x x B x x x A ,若C C A A B A == ,,求.,m a
5.给定三元集合},,1{2x x x -,则实数x 的取值范围是___________。
6.若集合},,012{2R x R a x ax x A ∈∈=++=中只有一个元素,则a =___________。
7. 已知集合M 与P 满足},,{c b a P M =⋃,当P M ≠时,),(P M 与),(M P 看作不同的一对,则这样的),(P M 对的个数是 .
8.用列举法表示集合=⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧∈≠++++=R z y x xyz xyz xyz xy xy z z y y x x u u ,,,0,| . 9.已知集合}065|{2<+-=t t t M ,41log 141log 1
7131+=x ,则x 与M 的关系是 .
10. 已知集合},,023|{2R x x ax x A ∈=+-=,
(1)若A 是空集,则实数a 的取值范围是 .
(2)若A 仅含一个元素(即A 是单元素集),则实数a 的取值范围是 .
11. 已知集合}1,,3110log 21|{1>∈-≤<-
=n N n n M n
,则M 的非空真子集个数是 .
12. 已知集合},,2|{2R x x x y y A ∈--==},,122|{2R x x x y y B ∈++==则=⋂B A .
13. 定义集合A 与B 的新运算:}|{B A x B x A x x B A ⋂∉∈∈=*且或,则=**A B A )( .
14. 若规定1210{,,,}E a a a =的子集12{,,,}n k k k a a a 为E 的第k 个子集,其中
1211222n k k k k --=+++,
则(1) 13{,}a a 是E 的第 个子集;(2)E 的第211个子集是 . 三、解答题:
1.(1){1,2,3,4,5,6,7,8,9,10}A =,求集合A 的所有子集的元素的和的和.
(2) {1,2,3,4,5,
,100}A =,求集合A 的所有子集的元素的和的和.
2.设},,|{22Z b a b a X X A ∈+==,A X X ∈21,,求证:A X X ∈⨯21
3.设},,,|{22Z y Z x y x a a A ∈∈-==求证:),(12Z k A k ∈∈-).(24Z k A k ∈∉-
4.若集合},4,1{a A =,},1{2a B =,问是否存在这样的实数a 使得},2,1{2a a B A =⋃与},,1{a B A =⋂同时成立?
5. 设集合}2][|{2
=-=x x x A ,}2|{<=x x B ,求B A ⋂与B A ⋃(其中][x 表示不超过实数x 之值的最大整数)
6.设集合},,,569|{Z c b a c b a x x A ∈++==,},,,653|{Z r q p r q p x x B ∈++==, 求证:A=B
7. 设集合},2|{a x x A ≤≤-=},32|{A x x y y B ∈+==,},|{2
A x x z z C ∈==,若,
B
C ⊆求a 的取值范围.
8. 已知集合},,,|{2
2Z n Z m n m x x P ∈∈-==},,12|{Z k k x x A ∈-==
},,24|{Z k k x x B ∈-==求证(1)P A ≠⊂ (2)Φ=⋂P B (3)若P P P ∈αβ∈β∈α则,,。