高一数学(函数单调性的概念)

合集下载

高一数学 函数单调性讲解

高一数学 函数单调性讲解

高中数学必修一函数——单调性考纲解读: 了解单调函数及单调区间的意义,掌握判断函数单调性的方法;掌握增,减函数的意义,理解函数单调函数的性质。

能力解读:函数单调性的判断和函数单调性的应用。

利用函数单调性判断方法来判断函数的单调性,利用函数的单调性求解函数的最值问题。

掌握并熟悉抽象函数以及符合函数的单调性判断方法。

知识要点:1.函数单调性的定义, 2.证明函数单调性; 3.求函数的单调区间4.利用函数单调性解决一些问题; 5.抽象函数与函数单调性结合运用一、单调性的定义(1)设函数)(x f y =的定义域为A ,区间A I ⊆如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间(2)设函数)(x f y =的定义域为A如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为)(x f y =的最大值;如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为)(x f y =的最小值。

二、函数单调性的证明重点:函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须 先求函数的定义域; (1)定义法求单调性函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即)(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;定义法判断单调性:如果用定义证明)(x f y =在某区间I 上的单调性,那么就要用严格的四个步骤,即①取值;②作差;③判号(关键化成因式的乘积);④下结论。

高一数学讲义函数的单调性

高一数学讲义函数的单调性

函数的单调性、知能点全解:知能点一: 函数单调性的定义 1、图形描述:从函数2x y =的图象(图1)看到:图象在 y 轴的右侧部分是从左向右连续上升的,也就 是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果任取21,x x [)0,∈+∞,得到1y =)(1x f ,2y =)(2x f ,那么当1x <2x 时,有1y <2y 。

这时我们就说函数)(x f =2x 在[0,+ ∞)上是增函数。

图象在y 轴的左侧部分是从左向右连续下降的,也就是说, 当x 在区间(],0-∞上取值时,随着x 的增大,相应的y 值反而随着减小,即如果任取21,x x (],0∈-∞,得到1y =)(1x f ,2y =)(2x f ,那么当1x <2x 时,有1y >2y 。

这时我们就说函数)(x f =2x 在(-∞,0)上是减函数. 2、定量描述对于函数)(x f 的定义域I 内某个区间D 上的任意两个自变量的值21,x x , (1)若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在区间D 上是增函数; (2)若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在区间D 上是减函数。

3、单调性与单调区间若函数y =)(x f 在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间。

此时也说函数是这一区间上的单调函数。

在单调区间上,增函数的图象是上升的,减函数的图象是下降的。

特别提醒:1、函数是增函数还是减函数,是对定义域内某个区间而言的。

有的函数在一些区间上是增函数,而在另一些区间上不是增函数.例如函数2x y =(图1),当x ∈[0,+∞)时是增函数,当x ∈(-∞,0)时是减函数。

而有的函数在整个定义域上都是单调的,如图2。

高一数学单调性知识点总结

高一数学单调性知识点总结

高一数学单调性知识点总结在高中数学学习中,单调性是一个非常重要的概念。

单调性可以帮助我们理解函数的增减趋势以及函数图像的形状。

在本文中,我们将总结高一数学中与单调性相关的知识点,并探讨其应用。

一、函数的单调性函数的单调性是指函数在定义域内的增减趋势。

具体来说,我们可以分为递增和递减两种情况进行讨论。

1. 函数的递增性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)<f(b),那么我们称函数为递增函数。

简单来说,递增函数的函数值随着自变量的增大而增大。

通过求导可以帮助我们判断函数的递增性。

如果函数的导数大于零,则函数递增;如果导数小于零,则函数递减;如果导数等于零,则函数在该区间内的单调性不确定,需要进行进一步的分析。

2. 函数的递减性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)>f(b),那么我们称函数为递减函数。

递减函数的函数值随着自变量的增大而减小。

二、函数图像的单调性分析在图像上观察函数的单调性,可以通过以下几个方面来判断。

1. 函数图像在某个区间内递增或递减通过观察函数图像,在某个区间内如果图像整体上升,则该区间内函数递增;如果图像整体下降,则该区间内函数递减。

2. 函数图像在特定点的切线斜率通过求导函数,可以得到函数的导函数。

根据导函数的正负性,可以判断函数图像在特定点的切线斜率的正负。

如果导函数大于零,则函数图像在该点的切线斜率大于零,即函数递增;如果导函数小于零,则函数图像在该点的切线斜率小于零,即函数递减。

3. 函数图像的拐点与极值点在函数图像上,拐点和极值点可能对函数的单调性产生影响。

如果在拐点或极值点的左侧函数递增,在右侧函数递减,或者相反,那么拐点或极值点就是函数单调性发生改变的点。

三、应用举例单调性是数学中的一个重要概念,有许多实际应用。

1. 市场需求曲线在经济学中,市场需求曲线通常被认为是递减函数。

这意味着当商品价格上涨时,需求量下降;当价格下降时,需求量增加。

高一数学人必修件时函数的单调性

高一数学人必修件时函数的单调性
单调递减
对于函数$f(x)$,在区间$I$内,若对任意$x_1, x_2 in I$,当$x_1 < x_2$时, 都有$f(x_1) geq f(x_2)$,则称函数$f(x)$在区间$I$上单调递减。
判定方法及性质
01
02
判定方法:通过求导或 差分来判断函数的单调 性。若函数在某区间内 导数(或差分)大于0, 则函数在该区间内单调 递增;若导数(或差分 )小于0,则函数在该区 间内单调递减。
拓展延伸:其他类型函数单调性探讨
分段函数的单调性
复合函数的单调性
分段函数在不同区间内的单调性可能不同 ,需要分别讨论。
复合函数的单调性取决于内外函数的单调 性,遵循“同增异减”的原则。
抽象函数的单调性
高次函数和三角函数的单调性
对于抽象函数,可以通过给定的性质或条 件来判断其单调性。
典型例题分析与解答
例题2
求函数$y = cos(x^2 - 2x)$的单调递减区间。
分析
由于余弦函数在$[0, pi]$内单调递减,因此我们需要找到满足$0 leqslant x^2 - 2x leqslant pi$的$x$的取值范围。
解答
解不等式得$x^2 - 2x geqslant 0$和$x^2 - 2x leqslant pi$,解得$x leqslant 0$或$x geqslant 2$, 且$x^2 - 2x + 1 = (x - 1)^2 leqslant 1 + pi$,所以函数$y = cos(x^2 - 2x)$的单调递减区间为$[ sqrt{1 + pi}, 0] cup [2, 1 + sqrt{1 + pi}]$。
02
余切函数$y = cot x$在区间 $[kpi, kpi + pi]$($k in mathbf{Z}$)内单调递减。

高一数学已知单调性知识点

高一数学已知单调性知识点

高一数学已知单调性知识点在高中数学课程中,单调性是一个重要的概念。

它在解决函数的最大值、最小值以及方程的根等问题时扮演着重要的角色。

在本文中,我们将介绍高一数学课程中已知的一些与单调性相关的知识点。

一、函数的单调性定义在讨论函数的单调性之前,我们首先需要了解函数的单调性是如何定义的。

对于一个定义在区间上的函数f(x),如果满足对于任意的x₁和x₂(x₁<x₂),都有f(x₁)≤f(x₂)或者f(x₁)≥f(x₂),那么我们称函数f(x)在区间上是单调递增的或者单调递减的。

如果对于任意的x₁和x₂(x₁<x₂),都有f(x₁)<f(x₂)或者f(x₁)>f(x₂),则我们称函数f(x)在区间上是严格单调递增的或者严格单调递减的。

二、函数的单调性判定1. 导数法在高一数学中,我们学习了求函数的导数的方法。

利用导数,我们可以判断函数的单调性。

对于一个在开区间(a,b)上可导的函数f(x),如果f'(x)>0,那么函数f(x)在区间(a,b)上是单调递增的;如果f'(x)<0,那么函数f(x)在区间(a,b)上是单调递减的。

2. 函数图像法除了利用导数,我们还可以通过观察函数的图像来判断其单调性。

当我们观察函数图像时,如果图像上的任意两点,连接这两点的线段都与x轴的正方向成锐角或者直角,那么函数在这一段区间上是单调递增的;如果连接这两点的线段都与x轴的正方向成锐角或者钝角,那么函数在这一段区间上是单调递减的。

三、单调性定理在高一数学中,我们学习了一些与函数的单调性相关的定理,其中最重要的是费马定理和罗尔定理。

1. 费马定理费马定理是关于函数极值的一个重要定理。

如果函数f(x)在[a,b]上是单调递增的,并且在(a,b)内可导,那么对于任意的[c,d]⊂(a,b),函数f(x)在[c,d]的极值点唯一,且必然在端点处取得。

2. 罗尔定理罗尔定理是关于函数根的一个重要定理。

高一函数的单调性知识点

高一函数的单调性知识点

高一函数的单调性知识点函数的单调性是数学中的一个重要概念,它描述了函数在定义域上的增减情况。

了解函数的单调性有助于我们更好地理解和运用函数,下面就是关于高一函数的单调性知识点的详细介绍。

一、函数的递增和递减区间在讨论函数的单调性时,首先需要了解函数的递增和递减区间。

我们将函数在定义域上递增(或递减)的部分称为函数的递增(或递减)区间。

1. 函数的递增区间对于函数 f(x),如果对于任意两个 x1 和 x2(x1 < x2),都有 f(x1)< f(x2),那么 f(x) 在 [x1, x2] 上递增。

我们可以通过求函数的导数来确定函数的递增区间。

2. 函数的递减区间对于函数 f(x),如果对于任意两个 x1 和 x2(x1 < x2),都有 f(x1) > f(x2),那么 f(x) 在 [x1, x2] 上递减。

同样地,我们可以通过求函数的导数来确定函数的递减区间。

二、函数单调性的判定在大部分情况下,我们可以通过函数的导数来判定函数的单调性。

具体而言,可以根据函数导数的正负性来确定函数的单调性。

1. 函数导数的正负性如果函数 f(x) 的导数在某个区间内恒大于 0,则 f(x) 在该区间上递增;如果导数恒小于 0,则 f(x) 在该区间上递减。

通过求导数,我们可以得到函数的递增区间和递减区间。

2. 临界点和极值点函数的单调性与其临界点和极值点也有密切关系。

在函数的临界点和极值点处,其单调性会发生改变。

- 临界点:函数 f(x) 在定义域上的某个点 x=c 处,如果 f'(c)=0 或者f'(c) 不存在,那么点 c 称为函数的临界点。

在临界点之间,函数的单调性可能会改变。

- 极值点:函数 f(x) 在定义域上的某个点 x=c 处,如果存在一个邻域,使得对于临界点 x 不等于 c,在该邻域内 f(c) 是 f(x) 的最大值或最小值,那么点 c 称为函数的极值点。

高一数学重要知识点【函数的单调性】.doc

高一数学重要知识点【函数的单调性】.doc

高一数学重要知识点【函数的单调性】高一数学学习对大家来说很重要,想要取得好成绩必须要掌握好课本上的知识点,为了帮助大家掌握高一数学知识点,下面为大家带来高一数学重要知识点【函数的单调性】,希望对大家掌握数学知识有所帮助。

1、单调函数对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1x2时,都有不等式f(x1)(或)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与区间紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的整体性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设x1、x2[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以正逆互推.5、复合函数y=f[g(x)]的单调性若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减.简称同增、异减.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。

因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.6、证明函数的单调性的方法(1)依定义进行证明.其步骤为:①任取x1、x2M且x1(或)f(x2);③根据定义,得出结论.(2)设函数y=f(x)在某区间内可导.如果f(x)0,则f(x)为增函数;如果f(x)0,则f(x)为减函数.为大家带来了高一数学重要知识点【函数的单调性】,希望大家能够熟记这些数学知识点,更多的高一数学知识点请查阅。

高中数学函数的单调性

高中数学函数的单调性

(一)知识内容1.函数单调性的定义:①如果函数()f x 对区间D 内的任意12,x x ,当12x x <时都有()()12f x f x <,则称()f x 在D 内是增函数;当12x x <时都有()()12f x f x >,则()f x 在D 内时减函数.②设函数()y f x =在某区间D 内可导,若()0f x '>,则()y f x =为x D ∈的增函数;若()0f x '<,则()y f x =为x D ∈的减函数.2.单调性的定义①的等价形式:设[]12,,x x a b ∈,那么()()()12120f x f x f x x x ->⇔-在[],a b 是增函数;()()()12120f x f x f x x x -<⇔-在[],a b 是减函数;()()()12120x x f x f x --<⎡⎤⎣⎦()f x ⇔在[],a b 是减函数.3.复合函数单调性的判断:“同增异减”4.函数单调性的应用.利用定义都是充要性命题.即若()f x 在区间D 上递增(递减)且1212()()f x f x x x <⇔<(1x 2,x D ∈); 若()f x 在区间D 上递递减且1212()()f x f x x x <⇔>.(1x 2,x D ∈). ①比较函数值的大小②可用来解不等式.③求函数的值域或最值等(二)主要方法1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集;2.判断函数的单调性的方法有: ⑴用定义;用定义法证明函数单调性的一般步骤:①取值:即设1x ,2x 是该区间内的任意两个值,且12x x <②作差变形:通过因式分解、配方,有理化等方法,向有利于判断差的符号的方向变形.③定号:确定差12()()f x f x -(或21()()f x f x -)的符号,若符号不确定,可以进行分类讨论. ④下结论:即根据定义得出结论,注意下结论时不要忘记说明区间. ⑵用已知函数的单调性; ⑶利用函数的导数;函数的单调性⑷如果()f x 在区间D 上是增(减)函数,那么()f x 在D 的任一非空子区间上也是增(减)函数; ⑸图象法;⑹复合函数的单调性结论:“同增异减” ; 复合函数的概念:如果y 是u 的函数,记作()y f u =,u 是x 的函数,记为()u g x =,且()g x 的值域与()f u 的定义域的交集非空,则通过u 确定了y 是x 的函数[()]y f g x =,这时y 叫做x 的复合函数,其中u 叫做中间变量,()u f u =叫做外层函数,()u g x =叫做内层函数. 注意:只有当外层函数()f u 的定义域与内层函数()g x 的值域的交集非空时才能构成复合函数[()]f g x . ⑺奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性. ⑻互为反函数的两个函数具有相同的单调性.⑼在公共定义域内,增函数()f x +增函数()g x 是增函数;减函数()f x +减函数()g x 是减函数;增函数()f x -减函数()g x 是增函数;减函数()f x -增函数()g x 是减函数.⑽函数(0,0)by axa b x =+>>在,⎛⎫-∞+∞ ⎪⎪⎝⎭或上单调递增;在0⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝或上是单调递减.3.证明函数单调性的方法:⑴利用单调性定义①;⑵利用单调性定义②(三)典例分析【例1】如图是定义在区间[5,5]-上的函数()y f x =,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?【例2】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.【例3】根据函数单调性的定义,证明函数3()1f x x =-+在(,)-∞+∞上是减函数.【例4】证明函数()f x =【例5】证明函数3y x =在定义域上是增函数.【例6】求下列函数的单调区间:⑴ |1|y x =-;⑵ 1y x x=+(0x >).【例7】求下列函数的单调区间:⑴|1||24|y x x =-++;⑵ 22||3y x x =-++【例8】作出函数2||y x x =-的图象,并结合图象写出它的单调区间.【例9】讨论函数2()1xf x x =-(11)x -<<的单调性.【例10】讨论函数2()23f x x ax =-+在(2,2)-内的单调性.拓展:若2()23f x x px =++在(,1]-∞是减函数,在[1,)+∞上是增函数,则(1)f =______【例11】讨论函数y 的单调性.【例12】求函数212y x x =++的单调区间.【例13】设1n >,()f x 是定义在有限集合{}1,2,3,,A n =上的单调递增函数,且对任何,x y A ∈,有()()()()f x f x f y f y =.那么,( ) A .2n = B .3n = C .4n = D .5n ≥【例14】若()f x 是R 上的减函数,且()f x 的图象经过点(03)A ,和点(31)B -,,则不等式|(1)1|2f x +-<的解集为( ). A .(3)-∞,B .(2)-∞,C .(03),D .(12)-,【例15】函数21x y x =-(x ∈R ,1x ≠)的递增区间是( )A .2x ≥B .0x ≤或2x ≥C .0x ≤D .1x ≤x【例16】已知2()()2x x af x a a a -=⋅--(0a >且1a ≠)是R 上的增函数.则实数a 的取值范围是( ). A .(01), B .()(01)2+∞,,C .)+∞D .)(01)2⎡+∞⎣,,【例17】已知()f x 是定义在(0,)+∞上的增函数,且当*n ∈N 时,*()f n ∈N ,[()]3f f n n =,则(1)(2)f f += .【例18】求函数1()f x x x=+,0x >的最小值.点评 由对函数1(),0f x x x x=+>的分析,可以很快得到函数2(),0af x x a x=+>的性质:⑴函数()f x 为奇函数;⑵函数()f x 在x a <-上为增函数,在0a x -<<上为减函数,在0x a <<上为减函数,在x a >上为 增函数;⑶函数()f x 在0x >上有最小值为2a ,在0x <上有最大值为2a -.【例19】求函数y =【例20】求函数y =【例21】已知()f x 是定义在+R 上的增函数,且()()()xf f x f y y=-.⑴求证:(1)0f =,()()()f xy f x f y =+;⑵若(2)1f =,解不等式1()()23f x f x -≤-.【例22】已知函数()f x 对任意实数x ,y 均有()()()f x y f x f y +=+.且当x >0时,()0f x >,试判断()f x 的单调性,并说明理由.【例23】已知给定函数()f x 对于任意正数x ,y 都有()f xy =()f x ·()f y ,且()f x ≠0,当1x >时,()1f x <.试判断()f x 在(0,)+∞上的单调性,并说明理由.【例24】设a 是实数,2()()21xf x a x =-∈+R , ⑴试证明对于任意a ,()f x 为增函数;⑵试确定a 值,使()f x 为奇函数.。

高一数学 函数的单调性

高一数学 函数的单调性

f(x)在区间[-1,0][1,2]上是增函数
f (x )
1
求差可以判断两 数大小关系,还 有其他的方法吗?
f (x )
1
È ô f( x )>0 Ê ±£ ¬ ¿ É Ó Ã Ç ó É Ì
1
f (x ) 1 f (x ) 2
1 2
µ Ä ° ì ² ¨ À ´ ± È
f (x ) f (x ) 1 Ð ½ Ï £ ¬ È ô ´ ó Ó Ú 1£ º Ô ò f (x ) > f (x ) È ô ¡ Ó Ú f ( x ) f (x ) 2 f (x ) 1 Ó 1Ô ò f (x )< f (x ) £ ¬ ´ Ó ¶ ø Å Ð ¶ Ï É Ì ë 1µ Ä ´ ó Ð ¡ f (x ) 2
观察演示并思考问题 :
想看看函数的图象吗?
函数单调性的概念:
一般地,设函数f(x)定义域为I:
1. 如果对于属于定义域I内某个区间的 任意任意两个自变量 值x x 当x x 时 都有f(x ) f(x ),
, , 1 2
1
2
,
1
2
称函数 f(x)在这个区间上是增函数。 2. 如果对于属于定义域I内某个区间的任意自变量
两个值x x2 , 当x1 x 2时, 都有f(x 1, 1 ) f(x2 ),
称函数 f(x)在这个区间上是减函数。
观察函数的单调区间
在X ∈(0,+∞)为增函数 在X ∈(-∞,0)为减函数
f(x)的单调区间有[-2,-1][-1,0][0,1][1,2] f(x)在区间[-2,-1][0,1]上是减函数
1 2
1 2
பைடு நூலகம்

高一数学函数的单调性知识点

高一数学函数的单调性知识点

高一数学知识点函数的单调性一、函数单调性知识结构【知识网络】1.函数单调性的定义,2.证明函数单调性;3.求函数的单调区间4.利用函数单调性解决一些问题;5.抽象函数与函数单调性结合运用二、重点叙述1. 函数单调性定义(一)函数单调性概念(1)增减函数定义一般地,设函数y=f(x)的定义域为I,对于定义域I内某个区间D上的任意两个自变量的值x1、x2 :如果当x1<x2时,都有f(x1 ) <f(x2 ),那么就说函数y=f(x)在区间D上是增函数;如果当x1<x2时,都有f(x1 ) >f(x2 ),那么就说函数y=f(x)在区间D上是减函数。

如果函数在区间D上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间D叫做的单调区间。

(2)函数单调性的内涵与外延⑴函数的单调性也叫函数的增减性。

函数的单调性是对某个区间而言的,是一个局部概念。

⑵由函数增减性的定义可知:任意的x1、x2∈D,① x1<x2 ,且f(x1 ) <f(x2 ),y=f(x)在区间D上是增函数;(可用于判断或证明函数的增减性)② y=f(x)在区间D上是增函数,且x1<x2 , f(x1 ) <f(x2 ) ;(可用于比较函数值的大小)③ y=f(x)在区间D上是增函数,且f(x1 ) <f(x2 ), x1<x2。

(可用于比较自变量值的大小)2. 函数单调性证明方法证明函数单调性的方法有:定义法(即比较法);导数法。

实际上,用导数方法证明一般函数单调性是很便捷的方法,定义法是基本方法,常用来证明解决抽象函数或不易求导的函数的单调性。

(1)定义法:利用增减函数的定义证明。

在证明过程中,把数式的大小比较转化为求差比较(或求商比较)。

⑴转化为求差比较证明程序:①设任意的x 1、x 2∈D,使x 1<x 2 ;②求差—变形—判断正负;此为关键步骤,变形大多要“因式分解”。

求差:; 变形:化简、因式分解; 判断:差的符号的正或负。

高一函数的单调性的知识点

高一函数的单调性的知识点

高一函数的单调性的知识点函数是数学中的重要概念之一,而在高一阶段学习的数学中,函数的单调性是一个重要的知识点。

下面我们将详细介绍高一函数的单调性的相关知识。

一、函数的单调性定义函数的单调性是指函数在定义域上的变化趋势。

具体来说,若对于定义域上的任意两个数x₁和x₂,当x₁<x₂时,函数f(x₁)的值与函数f(x₂)的值之间的关系。

如果函数在定义域上满足这种关系,我们称之为函数的单调性。

二、单调递增与单调递减函数的单调性可分为单调递增和单调递减两种情况。

1. 单调递增函数f(x)在定义域上,当x₁<x₂时,如果f(x₁)≤f(x₂),则函数f(x)是单调递增的。

例如,对于函数f(x)=x²,在整个实数范围上,无论取哪两个不相等的实数x₁和x₂,当x₁<x₂时,f(x₁)≤f(x₂)恒成立。

因此,函数f(x)=x²是单调递增的。

2. 单调递减函数f(x)在定义域上,当x₁<x₂时,如果f(x₁)≥f(x₂),则函数f(x)是单调递减的。

例如,对于函数f(x)=1/x,在定义域(0,+∞)上,当x₁<x₂时,f(x₁)≥f(x₂)恒成立。

因此,函数f(x)=1/x是单调递减的。

三、判断函数的单调性的方法我们可以通过函数图像、导数和函数的增减性来判断函数的单调性。

1. 函数图像法通过画出函数的图像,观察图像随x的变化趋势,判断函数的单调性。

例如,对于函数f(x)=x³,我们可以绘制出函数的图像。

通过观察图像可知,当x₁<x₂时,f(x₁)≤f(x₂)恒成立,因此函数f(x)=x³是单调递增的。

2. 导数法对于一元函数f(x),如果其导数f'(x)的值恒大于0(或小于0),则函数f(x)是单调递增的(或递减的)。

例如,对于函数f(x)=2x²-3x,我们首先求出其导数f'(x)=4x-3。

通过观察导数的值可知,f'(x)在整个实数范围上恒大于0,也就是说函数f(x)是单调递增的。

高一数学函数单调性知识点

高一数学函数单调性知识点

高一数学函数单调性知识点随着高中数学课程的深入,函数的概念成为重中之重。

而在函数中,单调性的概念也是非常重要的一个知识点。

掌握函数的单调性不仅可以帮助我们更好地理解和应用函数,还可以在解题过程中起到一定的指导作用。

下面,我们就来了解一下高一数学中关于函数单调性的知识点。

一、函数单调性的定义在介绍函数单调性之前,我们先来回顾一下函数的定义。

函数是两个集合之间的一种对应关系,通常用字母表示,比如f(x)。

数学上,我们把自变量的每个值称为定义域中的一个元素,而函数值称为值域中的一个元素。

函数的单调性指的是函数值的增减趋势。

如果一个函数在定义域上是递增的,那么我们称其为递增函数;如果一个函数在定义域上是递减的,那么我们称其为递减函数。

如果一个函数既不递增也不递减,我们称其为非单调函数。

二、函数单调性的判断方法1. 利用导数的符号判断函数的单调性高中数学中,我们常常通过求函数的导数来判断函数的单调性。

函数的导数是函数在某一点的变化率,可以帮助我们推断函数在该点的单调性。

具体的判断方法如下:- 若导数大于零,则函数递增;- 若导数小于零,则函数递减;- 若导数等于零,则函数在该点不增不减,可能是极值点。

通过这种方法,我们可以将函数图像分成若干个区间,在每个区间内判断函数的单调性。

2. 利用函数的一阶导数和二阶导数判断函数的单调性有些函数的导数难以求解,此时我们可以通过一阶导数和二阶导数的符号来判断函数的单调性。

具体的判断方法如下:- 若一阶导数大于零,而二阶导数小于零,则函数递减;- 若一阶导数大于零,而二阶导数大于零,则函数递增;- 若一阶导数小于零,而二阶导数小于零,则函数递增;- 若一阶导数小于零,而二阶导数大于零,则函数递减;通过这种方法,我们可以更加准确地判断函数的单调性。

三、函数单调性的应用1. 函数单调性在最值问题中的应用函数的单调性在求最值问题中经常被用到。

当我们需要求函数在某个区间上的最大值或最小值时,可以通过函数的单调性来限定最值的位置。

高一数学必修1函数的单调性

高一数学必修1函数的单调性

讨论函数f(x)=
(a≠0,-1<x<1)的单调性.
解:设-1<x1<x2<1,
那么f(x1)-f(x2)=

.
∵-1<x1<x2<1, ∴|x1|<1,|x2|<1,x2-x1>0,
-1<0, -1<0,|x1x2|<1, 即-1<x1x2<1,∴x1x2+1>0.

>0.
因此,当a>0时,f(x1)-f(x2)>0. 即f(x1)>f(x2),此时函数f(x)在(-1,1)上为减函数; 当a<0时,f(x1)-f(x2)<0, 即f(x1)<f(x2),此时函数f(x)在(-1,1)上为增函数.
讨论函数f(x)= [思路点拨]
(a>0)的单调性.
[课堂笔记] ∵f(x)=

∴函数的定义域为{x|x∈R且x≠1}.
法一:(定义法)任取x1,x2∈R,且x1,x2均不为1,x1<x2

那么f(x1)-f(x2)=(a+
)-(a+
)


.
①设x1<x2<1,x1-1<0,x2-1<0,x2-x1>0,a>0, ∴f(x1)-f(x2)>0,即f(x1)>f(x2). ②设1<x1<x2,x2-1>0,x1-1>0,x2-x1>0,a>0, ∴f(x1)-f(x2)>0,即f(x1)>f(x2). ∴函数f(x)在(-∞,1)和(1,+∞)上均为减函数.
答案:D
4. y = 的递减区间是
区间是
.
,y=
的递减
解析:y=

=-1+
,
∴y=
的递减区间是(-1,+∞)和(-∞,-1).
要使函数y=
有意义,那么
≥0,且1+x≠0,
∴-1<x≤1

高中数学函数的单调性(解析版)

高中数学函数的单调性(解析版)

1.增函数、减函数的定高中数学函数的单调性(解析版)义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.单调性、单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分开写,不能用并集符号“∪”连接,也不能用“或”连接,只能用“,”或“和”隔开.2.常用结论结论1:增函数与减函数形式的等价变形y=f(x)在区间D上是增函数⇔对∀x1<x2,都有f(x1)<f(x2)⇔(x1-x2)[f(x1)-f(x2)]>0⇔f(x1)-f(x2)x1-x2>0;y=f(x)在区间D上是减函数⇔对∀x1<x2,都有f(x1)>f(x2)⇔(x1-x2)[f(x1)-f(x2)]<0⇔f(x1)-f(x2)x1-x2<0.结论2:单调性的运算性质(1)函数y=f(x)与函数y=f(x)+C(C为常数)具有相同的单调性.(2)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反.(3)在公共定义域内,函数y=f(x)(f(x)>0)与()ny f x=和y(4)在公共定义域内,函数y=f(x)(f(x)≠0)与y=1f(x)单调性相反.(5)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数.(6)若f(x),g(x)均为区间A上的增(减)函数,且f(x)>0,g(x)>0,则f(x)•g(x)也是区间A上的增(减)函数.结论3:复合函数的单调性复合函数y=f[g(x)]的单调性与y=f(u)和u=g(x)的单调性有关.若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.简记:“同增异减”.结论4:奇函数与偶函数的单调性奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.结论5:对勾函数与飘带函数的单调性对勾函数:f(x)=ax+bx(ab>0)(1)当a >0,b >0时,f (x )在(-∞,-b a ],b a ,+∞)上是增函数,在[-b a ,0),(0b a ]上是减函数;(2)当a <0,b <0时,f (x )在(-∞,-b a ],b a ,+∞)上是减函数,在[-b a ,0),(0b a]上是增函数;飘带函数:f (x )=ax +bx(ab <0)(1)当a >0,b <0时,f (x )在(-∞,0),(0,+∞)上都是增函数;(2)当a <0,b >0时,f (x )在(-∞,0),(0,+∞)上都是减函数;考点一确定函数的单调性或单调区间【方法总结】确定函数的单调性或单调区间的常用方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数确定函数的单调性或单调区间.(2)定义法:先求定义域,再利用单调性的定义确定函数的单调性或单调区间.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性确定函数的单调性或单调区间.【例题选讲】[例1](1)下列函数中,在区间(0,+∞)内单调递减的是()A .y =1x -xB .y =x 2-xC .y =ln x -xD .y =e x -x答案A解析对于选项A ,y 1=1x 在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x-x 在(0,+∞)内是减函数,故选A .(2)下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是()A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-xD .f (x )=ln(x +1)答案C解析由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.(3)函数f (x )=|x 2-3x +2|的单调递增区间是()A .32,+B .1,32和[2,+∞)C .(-∞,1]和32,2D ∞,32和[2,+∞)答案B解析y =|x 2-3x +2|2-3x +2,x ≤1或x ≥2,x 2-3x +2),1<x <2.如图所示,函数的单调递增区间是1,32和[2,+∞).(4)函数y =x 2+x -6的单调递增区间为__________,单调递减区间为____________.答案[2,+∞)(-∞,-3]解析令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数.令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数,∴y =x 2+x -6的单调递减区间为(-∞,-3],单调递增区间为[2,+∞).(5)函数y =log 12(x 2-3x +2)的单调递增区间为__________,单调递减区间为____________.答案(-∞,1)(2,+∞)解析令u =x 2-3x +2,则原函数是y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.所以函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴为x =32,且开口向上,所以u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数,而y =log 12u 在(0,+∞)上是单调减函数,所以y =log 12(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).【对点训练】1.给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是()A .①②B .②③C .③④D .①④1.答案B解析①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log 12(x +1)在(0,1)上递减;③结合图象可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x +1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.下列四个函数中,在x ∈(0,+∞)上为增函数的是()A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x |2.答案C解析当x >0时,f (x )=3-x 为减函数;当xf (x )=x 2-3x 为减函数,当x时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.3.若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是()A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=ln(x +1)3.答案C解析根据条件知,f (x )在(0,+∞)上单调递减.对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ;对于B ,f (x )=e x 在(0,+∞)上单调递增,排除B ;对于C ,f (x )=1x 在(0,+∞)上单调递减,C 正确;对于D ,f (x )=ln(x +1)在(0,+∞)上单调递增,排除D .4.函数f (x )=|x -2|x 的单调减区间是()A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)4.答案A解析由于f (x )=|x -2|x2-2x ,x ≥2,x 2+2x ,x <2,结合图象可知函数的单调减区间是[1,2].5.设函数f (x ),x >0,,x =0,1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是()A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]5.答案B解析由题知,g (x )2,x >1,,x =1,x 2,x <1,可得函数g (x )的单调递减区间为[0,1).故选B .6.函数y =22311(3x x -+的单调递增区间为()A .(1,+∞)B ∞,34CD .34,+6.答案B 解析令u =2x 2-3x+1=-18.因为u =-18在∞,34上单调递减,函数y在R 上单调递减.所以yx 2-3x +1∞,34上单调递增,即该函数的单调递增区间为∞,34.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为()A .(-∞,1]B .[3,+∞)C .(-∞,-1]D .[1,+∞)7.答案B 解析设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).8.函数f (x )=ln(x 2-2x -8)的单调递增区间是()A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)8.答案D解析由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).又函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).考点二比较函数值或自变量的大小【方法总结】比较函数值大小的思路:比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.【例题选讲】[例2](1)设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是()A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)答案A 解析因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2).又因为函数f (x )在[0,+∞)上是增函数.所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2).(2)已知奇函数f (x )在R 上是增函数.若a =-f b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为()A .a <b <cB .b <a <cC .c <b <aD .c <a <b答案C解析由f (x )是奇函数可得a =-f f (log 25).因为log 25>log 24.1>log 24=2>20.8,且函数f (x )是增函数,所以c <b <a .(3)已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则()A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0答案B解析因为函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.故选B .(4)已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则()A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )答案C解析由题意可知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),又|a |=ln π>1,|b |=(ln π)2>|a |,|c |=12ln π,且0<12ln π<|a |,故|b |>|a |>|c |>0,∴f (|c |)>f (|a |)>f (|b |),即f (c )>f (a )>f (b ).(5)若2x +5y ≤2-y +5-x ,则有()A .x +y ≥0B .x +y ≤0C .x -y ≤0D .x -y ≥0答案B解析设函数f (x )=2x -5-x ,易知f (x )为增函数,又f (-y )=2-y -5y ,由已知得f (x )≤f (-y ),∴x ≤-y ,∴x +y ≤0.【对点训练】9.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =b =f (2),c =f (3),则a ,b ,c 的大小关系为()A .c >a >bB .c >b >aC .a >c >bD .b >a >c9.答案D解析由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .10.已知函数f (x )在R 上单调递减,且a =33.1,b ,c =ln 13,则f (a ),f (b ),f (c )的大小关系为()A .f (a )>f (b )>f (c )B .f (b )>f (c )>f (a )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )10.答案D解析因为a =33.1>30=1,0<b =1,c =ln 13<ln 1=0,所以c <b <a ,又因为函数f (x )在R 上单调递减,所以f (c )>f (b )>f (a ),故选D .考点三解函数不等式【方法总结】含“f ”不等式的解法:首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.【例题选讲】[例3](1)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f x 的取值范围是()A B .13,C D .12,答案D解析因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<0≤2x -1<13,解得12≤x <23.(2)已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R )()A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)答案D解析由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).(3)定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为________.答案[0,1)解析因为函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,所以函数在[-2,2]上单调递增,所以-2≤2a -2<a 2-a ≤2,解得0≤a <1.(4)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是()A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)答案B解析2=1+1=f(3)+f(3)=f(9),由f(x)+f(x-8)≤2,可得f[x(x-8)]≤f(9),因为f(x)是定义在(0,+∞)>0,-8>0,(x-8)≤9,解得8<x≤9.(5)设函数f(x)=ln(1+|x|)-11+x2,则使得f(x)>f(2x-1)成立的x的取值范围是()AB∞(1,+∞)C-13,D∞答案A解析∵f(-x)=ln(1+|-x|)-11+(-x)2=f(x),∴函数f(x)为偶函数.∵当x≥0时,f(x)=ln(1+x)-11+x2,在(0,+∞)上y=ln(1+x)递增,y=-11+x2也递增,根据单调性的性质知,f(x)在(0,+∞)上单调递增.综上可知:f(x)>f(2x-1)⇔f(|x|)>f(|2x-1|)⇔|x|>|2x-1|⇔x2>(2x-1)2⇔3x2-4x+1<0⇔13<x<1.故选A.【对点训练】11.定义在R上的奇函数y=f(x)在(0,+∞)上单调递增,且0,则满足f log19x>0的x的集合为________.11.答案(1,3)解析由题意,y=f(x)为奇函数且0,所以0,又y=f(x)在(0,+∞)上单调递增,则y=f(x)在(-∞,0)上单调递增,于是x>0,x>或x<0,x>x>0,x>12x<0,x>-12,解得0<x<13或1<x<3.12.已知函数f(x)=ln x+x,若f(a2-a)>f(a+3),则正数a的取值范围是________.12.答案(3,+∞)解析因为f(x)=ln x+x在(0,+∞)上是增函数,2-a>a+3,2-a>0,+3>0,解得-3<a<-1或a>3.又a>0,所以a>3.13.设函数f(x)x,x<2,2,x≥2.若f(a+1)≥f(2a-1),则实数a的取值范围是(B)A.(-∞,1]B.(-∞,2]C.[2,6]D.[2,+∞)13.答案B解析易知函数f(x)在定义域(-∞,+∞)上是增函数,∵f(a+1)≥f(2a-1),∴a+1≥2a-1,解得a≤2.故实数a的取值范围是(-∞,2].14.设函数f(x)-x,x≤0,,x>0,则满足f(x+1)<f(2x)的x的取值范围是()A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)14.答案D解析因为f (x )-x ,x ≤0,,x >0,所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x ,此时x ≤-1;当2x <0且x +1>0时,f (2x )>1,f (x +1)=1,满足f (x +1)<f (2x ),此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).故选D .15.已知f (x )2-4x +3,x ≤0,x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.15.答案(-∞,-2)解析作出函数f (x )的图象的草图如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2.考点四求参数的取值范围【方法总结】求参数的值或取值范围的思路:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.求参数时需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子区间上也是单调的.【例题选讲】[例4](1)如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,那么a 的取值范围是________.答案(-∞,-2]解析二次函数的对称轴方程为x =-a -13,由题意知-a -13≥1,即a ≤-2.(2)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.答案[-1,+∞)解析设1<x 1<x 2,∴x 1x 2>1.∵函数f (x )在(1,+∞)上是增函数,∴f (x 1)-f (x 2)=x 1-a x 1+a 2-2-a x 2+(x 1-x 2.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1.∴a 的取值范围是[-1,+∞).(3)若函数f (x )=a |b -x |+2的单调递增区间是[0,+∞),则实数a ,b 的取值范围分别为__________.答案(0,+∞),0解析因为|b -x |=|x -b |,y =|x -b |的图象如下:因为f (x )的单调递增区间为[0,+∞),所以b =0,a >0.(4)已知函数f (x )ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是()A .14,12B .14,12C .0,12D .12,1答案B解析由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 0<<1,12a ≥1,a ×12-1-14≥log a 1-1,即0<a <1,0<a ≤12,a ≥14.所以a ∈14,12.(5)已知函数f (x )=log 12(x 2-ax +3a )在[1,+∞)上单调递减,则实数a 的取值范围是________.答案-12,2解析令t =g (x )=x 2-ax +3a ,易知f (t )=log 12t 在其定义域上单调递减,要使f (x )=log 12(x 2-ax +3a )在[1,+∞)上单调递减,则t =g (x )=x 2-ax +3a 在[1,+∞)上单调递增,且t =g (x )=x 2-ax +3a >0,--a 2≤1,g 1>0,a ≤2,a >-12,即-12<a ≤2.【对点训练】16.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是()A -14,+∞B .-14,+∞C .-14,0D .-14,016.答案D解析当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,得-14≤a <0.综上所述,得-14≤a ≤0.故选D .17.若f (x )=x +a -1x +2(-2,+∞)上是增函数,则实数a 的取值范围是________.17.答案(-∞,3)解析f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.18.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是(D)A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]18.答案D解析函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].19.已知f (x )-a )x +1,x <1,x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.19.答案32,解析由已知条件得f (x )为增函数,-a >0,>1,2-a×1+1≤a ,解得32≤a <2,∴a 的取值范围是32,20.已知函数f (x )x 2-ax -5,x ≤1,x >1是R 上的增函数,则实数a 的取值范围是()A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)20.答案C解析若f (x )是R -a2≥1,<0,12-a ×1-5≤a1,解得-3≤a ≤-2.21.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是()A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)21.答案D解析作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a≥4或a +1≤2,即a ≤1或a ≥4,故选D .22.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.22.解析(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x1+2)(x2+2)>0,x1-x2<0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在(-∞,-2)内单调递增.(2)任取x1,x2∈(1,+∞),且x1<x2,则f(x1)-f(x2)=x1x1-a-x2x2-a=a(x2-x1)(x1-a)(x2-a).因为a>0,x2-x1>0,又由题意知f(x1)-f(x2)>0,所以(x1-a)(x2-a)>0恒成立,所以a≤1.所以0<a≤1.所以a的取值范围为(0,1].23.已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1,②当x>0时,f(x)>-1.(1)求f(0)的值,并证明f(x)在R上是单调增函数.(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.23.解析(1)令x=y=0,得f(0)=-1.在R上任取x1>x2,则x1-x2>0,f(x1-x2)>-1.又f(x1)=f[(x1-x2)+x2]=f(x1-x2)+f(x2)+1>f(x2),所以函数f(x)在R上是单调增函数.(2)由f(1)=1,得f(2)=3,f(3)=5.由f(x2+2x)+f(1-x)>4得f(x2+x+1)>f(3),又函数f(x)在R上是增函数,故x2+x+1>3,解得x<-2或x>1,故原不等式的解集为{x|x<-2或x>1}.。

高一数学导数与函数的单调性与极值

高一数学导数与函数的单调性与极值

高一数学导数与函数的单调性与极值函数的单调性和极值是数学中的重要概念,对于理解函数的性质和解决实际问题都具有重要意义。

在这篇文章中,我们将探讨高一数学中导数与函数的单调性和极值的概念、性质及其应用。

一、导数与函数的单调性函数的单调性是指函数在定义域上的变化趋势。

在数学中,导数是描述函数变化率的重要工具。

1.1 导数的定义对于函数 y=f(x),若函数在点 x0 处可导,则导数 f'(x0) 的定义如下:f'(x0) = lim(h->0) [f(x0+h) - f(x0)] / h其中,lim 表示极限,h 为自变量的增量。

1.2 单调性的判定通过导数的符号来判断函数的单调性:若在某一区间内,f'(x)>0,函数单调递增;若在某一区间内,f'(x)<0,函数单调递减;若在某一区间内,f'(x)=0,函数在该区间内可能有极值点。

1.3 单调性的应用函数的单调性在实际问题的建模和求解中具有重要应用,例如在经济学中,可以利用函数的单调性来研究供求关系、市场行为等问题。

在求解最优化问题时,函数的单调性也是一个重要考虑因素。

二、导数与函数的极值函数的极值包括最大值和最小值,用于描述函数的局部极限。

2.1 极值点的定义对于函数 y=f(x),若存在 a,使得 f(a) 是函数在该点上的最大值或最小值,则称 a 为函数的极值点,而 f(a) 称为函数的极值。

2.2 极值点的判定通过导数的性质来判断函数的极值点:1) 若 f'(x) 在 a 点两侧变号,则 a 点是函数的极值点;2) 若 f'(x) 在 a 点两侧保持符号相同,则 a 点不是函数的极值点。

2.3 极值点的应用函数的极值在实际问题的求解中起着重要的作用。

例如,在工程中优化设计问题,可以通过求解函数的极值来找到最优解。

在生物学中,可以利用极值点来研究生物体的最佳生长环境。

总结:通过学习导数与函数的单调性和极值,我们可以更深入地理解函数的性质和变化趋势。

新高一数学单调性知识点

新高一数学单调性知识点

新高一数学单调性知识点单调性是数学中一个重要的概念,它在函数的研究中有着重要的应用。

本文将对新高一数学单调性知识点进行详细阐述,帮助读者全面掌握这一概念。

一、函数的单调性函数的单调性指的是函数在定义域上的增减情况。

简单来说,如果函数随着自变量的增大而增大,那么它是递增的;如果函数随着自变量的增大而减小,那么它是递减的。

在数学中,通常将递增和递减统称为单调性。

二、递增函数和递减函数的判断方法要判断一个函数的单调性,我们可以通过它的导数来进行分析。

对于可导函数,我们只需要判断导数的正负性。

如果导数大于零,说明函数是递增的;如果导数小于零,说明函数是递减的。

三、单调性的应用1. 极值点的判断对于函数的极值点,也可以通过单调性来进行判断。

如果函数在某一区间内递增,并且在这个区间内存在一个极值点,那么这个极值点一定是函数的最大值;反之,如果函数在某一区间内递减,并且在这个区间内存在一个极值点,那么这个极值点一定是函数的最小值。

2. 不等式的求解单调性在不等式的求解中也有着广泛的应用。

例如,对于不等式f(x) > 0,如果已知函数f(x)是递增的,我们可以通过求解f(x) = 0的解,然后根据函数的单调性判断不等式的解集。

四、注意事项1. 定义域的确定在研究函数的单调性时,需要先确定函数的定义域。

因为函数的单调性只在定义域上有意义。

2. 函数图像的绘制为了更好地理解和掌握函数的单调性,可以通过绘制函数的图像来直观地观察函数的增减情况。

图像的曲线越接近水平线,说明函数的单调性越弱。

五、总结本文介绍了新高一数学单调性的基本概念和判断方法,并且阐述了单调性在函数极值点判断和不等式求解中的应用。

读者可以通过理论学习和实践练习,逐步深入理解和掌握这一知识点,为后续数学学习打下坚实的基础。

六、延伸拓展除了单调性,函数的其他性质如奇偶性、周期性等也是数学中的重要内容。

在学习过程中,读者可以继续深入研究这些概念,并与单调性进行比较和联系,提升对函数性质的理解和应用能力。

高一数学上函数的单调性知识点

高一数学上函数的单调性知识点

高一数学上函数的单调性知识点函数的单调性是高一数学中重要的知识点之一。

对于一个给定的函数,我们可以通过研究它的单调性来了解函数的增减变化规律。

在本篇文章中,将介绍函数的单调性的基本概念、判断方法和应用。

一、函数的单调性的概念函数的单调性是指函数在定义域内的增减变化规律。

基本上,函数的单调性可以分为三种情况:递增、递减和不变。

当函数的值随着自变量的增加而增加时,我们称该函数为递增函数。

相反地,当函数的值随着自变量的增加而减少时,我们称该函数为递减函数。

若函数在自变量取值范围内既递增又递减,或者在某些区间内递增,在其他区间内递减,我们则称该函数是不变函数。

二、函数单调性的判断方法判断函数的单调性,一般可以通过函数的导数、变化率和二阶导数等方法进行推导。

1. 函数的导数法对于给定的函数f(x),我们通过求函数的导数f'(x)来判断函数的单调性。

若函数在定义域内的导数恒大于0,则函数递增;若导数恒小于0,则函数递减。

例如,对于函数f(x) = x^2,求导得到f'(x) = 2x。

由于函数的导数f'(x)在定义域内恒大于0,所以该函数是递增的。

2. 函数的变化率法利用函数的变化率来判断函数的单调性是另一种常用的方法。

对于给定的函数f(x),通过计算任意两个点(x1, f(x1))和(x2, f(x2))之间的斜率来判断函数的单调性。

若对于任意两个不同的点(x1, f(x1))和(x2, f(x2)),斜率k = (f(x2) - f(x1)) / (x2 - x1) 恒大于0,则函数递增;若斜率k恒小于0,则函数递减。

若存在某些点斜率为0,则表示函数的区间不变。

例如,对于函数f(x) = 2x + 1,选择两个不同的点(-1, f(-1))和(1,f(1)),计算斜率为(3 - (-1)) / (1 - (-1)) = 2 > 0,故该函数是递增的。

3. 函数的二阶导数法二阶导数法是判断函数的单调性的另一种常见方法。

高一数学函数的单调性与最值

高一数学函数的单调性与最值

§2.2函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M (1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示对?x1,x2∈D,x1≠x2,f x1-f x2x1-x2>0?f(x)在D上是增函数;对?x1,x2∈D,x1≠x2,(x1-x2)·[f(x1)-f(x2)]>0?f(x)在D上是增函数.减函数类似.2.写出函数y=x+ax(a>0)的增区间.提示(-∞,-a]和[a,+∞).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R上的函数f(x),有f(-1)<f(3),则函数f(x)在R上为增函数.(×)(2)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(3)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(4)所有的单调函数都有最大值和最小值.(×)题组二教材改编2.如图是函数y=f(x),x∈[-4,3]的图象,则下列说法正确的是()A.f(x)在[-4,-1]上是减函数,在[-1,3]上是增函数B.f(x)在区间(-1,3)上的最大值为3,最小值为-2C.f(x)在[-4,1]上有最小值-2,有最大值3D.当直线y=t与f(x)的图象有三个交点时-1<t<2答案C3.函数y=2x-1在[2,3]上的最大值是______.答案24.若函数f(x)=x2-2mx+1在[2,+∞)上是增函数,则实数m的取值范围是________.答案(-∞,2]解析由题意知,[2,+∞)?[m ,+∞),∴m ≤2.题组三易错自纠5.函数f (x)=12log (-2x 2+x)的单调增区间是________;f (x)的值域是________.答案14,12[3,+∞)6.函数y =f (x)是定义在[-2,2]上的减函数,且f (a +1)<f(2a),则实数a 的取值范围是________.答案[-1,1)解析由条件知-2≤a +1≤2,-2≤2a ≤2,a +1>2a ,解得-1≤a<1.7.设函数f (x)=x 2+1x,x ≥1,ax ,x<1是单调函数.则a 的取值范围是________;若f (x)的值域是R ,则a =________.答案(0,2]2解析当x ≥1时,f (x)=x 2+1x=x +1x ,则f ′(x)=1-1x 2≥0恒成立,∴f (x)在[1,+∞)上单调递增,∴f (x)min =f(1)=2,当x<1时,f (x)=ax ,由于f (x)是单调函数,∴f (x)=ax 在(-∞,1)上也单调递增,且ax ≤2恒成立,∴a>0,a ≤2,故a 的取值范围为(0,2],∵当x ≥1时,f (x)≥2,由f (x)的值域是R ,可得当x =1时,ax =2,故a =2.确定函数的单调性命题点1求具体函数的单调区间例1(1)(2019·郴州质检)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)答案D解析由x2-2x-8>0,得f(x)的定义域为{x|x>4或x<-2}.设t=x2-2x-8,则y=ln t为增函数.要求函数f(x)的单调递增区间,即求函数t=x2-2x-8的单调递增区间(定义域内).∵函数t=x2-2x-8在(4,+∞)上单调递增,在(-∞,-2)上单调递减,∴函数f(x)的单调递增区间为(4,+∞).故选D.(2)设函数f(x)=1,x>0,0,x=0,-1,x<0,g(x)=x2f(x-1),则函数g(x)的单调递减区间是__________.答案[0,1)解析由题意知g(x)=x2,x>1,0,x=1,-x2,x<1,该函数图象如图所示,其单调递减区间是[0,1).命题点2判断或证明函数的单调性例2讨论函数f(x)=axx-1(a>0)在(-∞,1)上的单调性.解方法一?x1,x2∈(-∞,1),且x1<x2,f(x)=a x-1+1x-1=a1+1x-1,f(x1)-f(x2)=a 1+1x1-1-a1+1x2-1=a x2-x1x1-1x2-1,由于x1<x2<1,∴x 2-x 1>0,x 1-1<0,x 2-1<0,故当a>0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴函数f (x)在(-∞,1)上单调递减.方法二f ′(x)=a x -1-axx -12=-a x -12,∵(x -1)2>0,a>0,∴f ′(x)<0,故a>0时,f (x)在(-∞,1)上是减函数.思维升华确定函数单调性的四种方法(1)定义法:利用定义判断.(2)导数法:适用于初等函数、复合函数等可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.跟踪训练1(1)(2019·北京)下列函数中,在区间(0,+∞)上单调递增的是()A .y =12x B .y =2-xC .y =12log xD .y =1x答案A解析y =12x =x ,y =2-x =12x ,y =12log x ,y =1x 的图象如图所示.由图象知,只有y =12x 在(0,+∞)上单调递增.(2)函数f (x)=|x -2|x 的单调递减区间是________.答案[1,2]解析f (x)=x 2-2x ,x ≥2,-x 2+2x ,x<2.画出f (x)的大致图象(如图所示),由图知f (x)的单调递减区间是[1,2].(3)函数f (x)=110log(6x 2+x -1)的单调增区间为________.答案-∞,-12解析由6x 2+x -1>0得,f (x)的定义域为x |x<-12或x>13.由复合函数单调性知f (x)的增区间即y =6x 2+x -1的减区间(定义域内),∴f(x)的单调增区间为-∞,-12.函数单调性的应用命题点1比较函数值的大小例3(1)若函数f (x)=x 2,设a =log 54,b =15log 13,c =152,则f (a),f (b),f (c)的大小关系是()A .f (a)>f (b)>f (c)B .f (b)>f (c)>f (a)C .f (c)>f (b)>f (a)D .f (c)>f (a)>f (b)答案D解析因为函数f (x)=x 2在(0,+∞)上单调递增,而0<15log 13=log 53<log 54<1<152,所以f (b)<f (a)<f (c).故选 D.(2)已知定义在R 上的函数f (x)=2|x -m|+1(m ∈R)为偶函数.记a =f (log 22),b =f (log 24),c =f(2m),则a,b,c的大小关系为()A.a<b<c B.c<a<bC.a<c<b D.c<b<a答案B解析∵定义在R上的函数f(x)=2|x-m|+1(m∈R)为偶函数,∴m=0,∴f(x)=2|x|+1,∴当x∈(-∞,0)时,f(x)是减函数,当x∈(0,+∞)时,f(x)是增函数.∵a=f(log22)=f(1),b =f(log24)=f(2),c=f(2m)=f(0),∴a,b,c的大小关系为c<a<b.命题点2求函数的最值例4(1)函数f(x)=13x-log2(x+2)在区间[-1,1]上的最大值为________.答案3解析由于y=13x在R上单调递减,y=log2(x+2)在[-1,1]上单调递增,所以f(x)在[-1,1]上单调递减,故f(x)在[-1,1]上的最大值为f(-1)=3.(2)(2020·深圳模拟)函数y=x2+4x2+5的最大值为________.答案25解析令x2+4=t,则t≥2,∴x2=t2-4,∴y=tt2+1=1t+1t,设h(t)=t+1t,则h(t)在[2,+∞)上为增函数,∴h(t)min=h(2)=52,∴y≤152=25(x=0时取等号).即y最大值为25.命题点3解函数不等式例5(1)已知函数f(x)=x3,x≤0,ln x+1,x>0,若f(2-x2)>f(x),则实数x的取值范围是________.答案(-2,1)解析根据函数f(x)的图象可知,f(x)是定义在R上的增函数.∴2-x2>x,∴-2<x<1. (2)已知函数f(x)=ln x+2x,若f(x2-4)<2,则实数x的取值范围是______________.答案(-5,-2)∪(2,5)解析因为函数f(x)=ln x+2x在定义域(0,+∞)上单调递增,且f(1)=ln1+2=2,所以由f(x2-4)<2得,f(x2-4)<f(1),所以0<x2-4<1,解得-5<x<-2或2<x< 5.命题点4求参数的取值范围例6(1)已知f(x)=3a-1x+4a,x<1,log a x,x≥1是(-∞,+∞)上的减函数,则实数a的取值范围是()A.(0,1) B.0,13C.17,13 D.17,1答案C解析由f(x)是减函数,得3a-1<0,0<a<1.3a-1×1+4a≥log a1,∴17≤a<13,∴实数a的取值范围是17,13.(2)已知函数f(x)=x2+12a-2,x≤1,a x-a,x>1,若f(x)在(0,+∞)上单调递增,则实数a的取值范围为________.答案(1,2]解析由题意,得12+12a-2≤0,则a≤2,又y=a x-a(x>1)是增函数,故a>1,所以a的取值范围为1<a≤2.(3)已知函数y=log a(2-ax)在[0,1]是减函数,则实数a的取值范围是________.答案(1,2)解析设u=2-ax,∵a>0且a≠1,∴函数u 在[0,1]上是减函数.由题意可知函数y =log a u 在[0,1]上是增函数,∴a>1.又∵u 在[0,1]上要满足u>0,∴2-a ×1>0,2-a ×0>0,得a<2.综上得1<a<2.思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)求最值.(3)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(4)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较.②需注意若函数在区间[a ,b]上是单调的,则该函数在此区间的任意子集上也是单调的.③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2(1)(2019·唐山模拟)已知函数f (x)为R 上的减函数,则满足f|1x |<f(1)的实数x的取值范围是________.答案(-1,0)∪(0,1)解析因为f (x)在R 上为减函数,且f 1|x|<f (1),所以1|x|>1,即0<|x|<1,所以0<x<1或-1<x<0.(2)函数f (x)=1x,x ≥1,-x 2+2,x<1的最大值为________.答案2解析当x ≥1时,函数f (x)=1x为减函数,所以f (x)在x =1处取得最大值,为f (1)=1;当x<1时,易知函数f (x)=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x)的最大值为 2.(3)已知函数y =12log (6-ax +x 2)在[1,2]上是增函数,则实数a 的取值范围为________.答案[4,5)解析设u =6-ax +x 2,∵y=12log u为减函数,∴函数u在[1,2]上是减函数,∵u=6-ax+x2,对称轴为x=a2,∴a2≥2,且u>0在[1,2]上恒成立.∴a≥4,6-2a+4>0,解得4≤a<5,∴实数a的取值范围是[4,5).1.下列函数中,在区间(0,+∞)上为增函数的是() A.y=ln(x+2)B.y=-x+1C.y=12x D.y=x+1x答案A解析函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f(x)=1-1x-1()A.在(-1,+∞)上单调递增B.在(1,+∞)上单调递增C.在(-1,+∞)上单调递减D.在(1,+∞)上单调递减答案B解析f(x)图象可由y=-1x图象沿x轴向右平移一个单位长度,再向上平移一个单位长度得到,如图所示.3.(2019·沧州七校联考)函数f(x)=log0.5(x+1)+log0.5(x-3)的单调递减区间是() A.(3,+∞)B.(1,+∞)C.(-∞,1)D.(-∞,-1)答案A解析由已知易得x+1>0,x-3>0,即x>3,f(x)=log0.5(x+1)+log0.5(x-3)=log0.5(x+1)(x-3),x>3,令t=(x+1)(x-3),则t在[3,+∞)上单调递增,又0<0.5<1,∴f(x)在(3,+∞)上单调递减.4.若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则实数a的取值范围是()A.(-1,0)∪(0,1)B.(-1,0)∪(0,1] C.(0,1)D.(0,1]答案D解析因为f(x)=-x2+2ax在[1,2]上是减函数,所以a≤1,又因为g(x)=ax+1在[1,2]上是减函数,所以a>0,所以0<a≤1.5.已知函数f(x)=x|x+2|,则f(x)的单调递减区间为() A.[-2,0]B.[-2,1]C.[-2,-1]D.[-2,+∞)答案C解析由于f(x)=x|x+2|=x2+2x,x≥-2,-x2-2x,x<-2,当x≥-2时,y=x2+2x=(x+1)2-1,显然,f(x)在[-2,-1]上单调递减;当x<-2时,y=-x2-2x=-(x+1)2+1,显然,f(x)在(-∞,-2)上单调递增.综上可知,f(x)的单调递减区间是[-2,-1].6.(2020·青岛模拟)已知定义在R上的奇函数f(x)在[0,+∞)上单调递减,若f(x2-2x+a)<f(x +1)对任意的x∈[-1,2]恒成立,则实数a的取值范围为()A.-∞,134B.(-∞,-3)C.(-3,+∞) D.134,+∞答案D解析依题意得f(x)在R上是减函数,所以f(x2-2x+a)<f(x+1)对任意的x∈[-1,2]恒成立,等价于x2-2x+a>x+1对任意的x∈[-1,2]恒成立,等价于a>-x2+3x+1对任意的x∈[-1,2]恒成立.设g(x)=-x2+3x+1(-1≤x≤2),则g(x)=-x-322+134(-1≤x≤2),当x=32时,g(x)取得最大值,且g(x)max=g 32=134,因此a>134,故选 D.7.(多选)已知π为圆周率,e为自然对数的底数,则() A.πe<3e B.3e-2π<3πe-2 C.logπe<log3e D.πlog3e>3logπe 答案CD解析已知π为圆周率,e为自然对数的底数,∴π>3>e>2,∴π3e>1,πe>3e,故A错误;∵0<3π<1,0<e-2<1,∴3πe-2>3π,∴3e-2π>3πe-2,故B错误;∵π>3,∴logπe<log3e,故C正确;由π>3,可得log3e>logπe,则πlog3e>3logπe,故D正确.8.函数y=-x2+2|x|+1的单调递增区间为________,单调递减区间为________.答案(-∞,-1]和[0,1](-1,0)和(1,+∞)解析由于y=-x2+2x+1,x≥0,-x2-2x+1,x<0,即y=-x-12+2,x≥0,-x+12+2,x<0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为(-1,0)和(1,+∞).9.如果函数f(x)=ax2+2x-3在区间(-∞,4)上单调递增,则实数a的取值范围是______________.答案-14,0解析当a=0时,f(x)=2x-3在定义域R上是单调递增的,故在(-∞,4)上单调递增;当a≠0时,二次函数f(x)的对称轴为x=-1a,因为f(x)在(-∞,4)上单调递增,所以a<0,且-1a ≥4,解得-14≤a<0.综上,实数a的取值范围是-14,0.10.(2019·福州质检)如果函数f(x)=2-a x+1,x<1,a x,x≥1满足对任意x1≠x2,都有f x1-f x2x1-x2>0成立,那么实数a的取值范围是________.答案32,2解析对任意x1≠x2,都有f x1-f x2x1-x2>0,所以y=f(x)在R上是增函数.所以2-a>0,a>1,2-a×1+1≤a,解得32≤a<2.故实数a的取值范围是32,2.11.试判断函数f(x)=x3-1x在(0,+∞)上的单调性,并加以证明.证明方法一设0<x1<x2,f(x)=x3-1x=x2-1x,f(x1)-f(x2)=x21-x22-1x1-1x2=(x1-x2)·x1+x2+1x1x2.∵x2>x1>0,∴x1-x2<0,x1+x2+1x1x2>0.∴f(x1)-f(x2)<0,即f(x1)<f(x2).故f(x)在(0,+∞)上单调递增.方法二f′(x)=2x+1x2.当x>0时,f′(x)>0,故f(x)在(0,+∞)上为增函数.12.已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且x>0时,f(x)<0.(1)求证:f(x)在R上是奇函数;(2)求证:f(x)在R上是减函数;(3)若f(1)=-23,求f(x)在区间[-3,3]上的最大值和最小值.(1)证明∵函数f(x)对于任意x,y∈R总有f(x)+f(y)=f(x+y),令x=y=0得f(0)=0,令y=-x得f(-x)=-f(x),∴f(x)在R上是奇函数.(2)证明在R上任取x1>x2,则x1-x2>0,f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2),∵x>0时,f(x)<0,∴f(x1-x2)<0,∴f(x1)<f(x2),∴f(x)在R上是减函数.(3)解∵f(x)是R上的减函数,∴f(x)在[-3,3]上也是减函数,∴f(x)在[-3,3]上的最大值和最小值分别为f(-3)和f(3),而f(3)=3f(1)=-2,f(-3)=-f(3)=2,∴f(x)在[-3,3]上的最大值为2,最小值为- 2.13.若存在正数x使2x(x-a)<1成立,则实数a的取值范围是________.答案(-1,+∞)解析由题意可得,存在正数x使a>x-12x成立.令f(x)=x-12x,该函数在(0,+∞)上为增函数,可知f(x)的值域为(-1,+∞),故a>-1时,存在正数x使原不等式成立.14.设函数f (x)=-x 2+4x ,x ≤4,log 2x ,x>4.若函数y =f (x)在区间(a ,a +1)上单调递增,则实数a的取值范围是__________________.答案(-∞,1]∪[4,+∞)解析作函数f (x)的图象如图所示,由图象可知f (x)在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.15.(2019·石家庄模拟)已知函数f (x)=2021x-2021-x+1,则不等式f (2x -1)+f (2x)>2的解集为____________.答案14,+∞解析由题意知,f (-x)+f (x)=2,∴f (2x -1)+f (2x)>2可化为f (2x -1)>f (-2x),又由题意知函数f (x)在R 上单调递增,∴2x -1>-2x ,∴x>14,∴原不等式的解集为14,+∞.16.已知函数f (x)=lg x +ax -2,其中a 是大于0的常数.(1)求函数f (x)的定义域;(2)当a ∈(1,4)时,求函数f (x)在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x)>0,试确定实数a 的取值范围.解(1)由x +a x -2>0,得x 2-2x +a x>0.①当a>1时,x 2-2x +a>0恒成立,定义域为(0,+∞);②当a =1时,定义域为{x|x>0且x ≠1};③当0<a<1时,定义域为{x|0<x<1-1-a 或x>1+1-a}.(2)设g(x)=x+ax-2,当a∈(1,4),x∈[2,+∞)时,g(x)=x+ax-2在[2,+∞)上是增函数.∴f(x)=lg x+ax-2在[2,+∞)上是增函数,∴f(x)=lg x+ax-2在[2,+∞)上的最小值为f(2)=lg a2.(3)对任意x∈[2,+∞)恒有f(x)>0,即x+ax-2>1对x∈[2,+∞)恒成立.∴a>3x-x2,x∈[2,+∞).设h(x)=3x-x2,x∈[2,+∞),则h(x)=3x-x2=-x-322+94在[2,+∞)上是减函数,∴h(x)max=h(2)=2.∴a>2.即实数a的取值范围是(2,+∞).。

高中数学函数单调性的判定和证明方法

高中数学函数单调性的判定和证明方法

高中数学函数单调性的判定和证明方法函数的单调性判定是数学函数研究中的重要内容,它可以帮助我们更深入地理解函数的性质和特征。

本文将详细介绍高中数学中常用的函数单调性判定和证明方法。

一、函数的单调性概念在讨论函数的单调性之前,我们首先要了解函数的增减性和单调性的概念。

1.增减性设函数f(x)在区间[a,b]上有定义,若对于任意的x1,x2在[a,b]上,当x1小于x2时,有f(x1)小于f(x2),则称函数f(x)在[a,b]上为增函数;若对于任意的x1,x2在[a,b]上,当x1小于x2时,有f(x1)大于f(x2),则称函数f(x)在[a,b]上为减函数。

2.单调性设函数f(x)在区间[a,b]上有定义,若对于任意的x1,x2在[a,b]上,当x1小于x2时,有f(x1)小于等于f(x2),则称函数f(x)在[a,b]上为递增函数;若对于任意的x1,x2在[a,b]上,当x1小于x2时,有f(x1)大于等于f(x2),则称函数f(x)在[a,b]上为递减函数。

二、判定函数单调性的方法根据函数的定义,我们可以得出一些判定函数单调性的常用方法。

1.导数法如果函数f(x)在区间(a,b)上是单调的,那么它在该区间上的导数f'(x)恒大于0(或恒小于0),即函数的增减性与导数的正负性相同。

因此,通过求函数的导数并研究导数的正负性可以得出函数的单调性。

以f(x)为例,通过以下步骤可以判断f(x)的单调性:(1)求函数f(x)的导数f'(x)。

(2)研究f(x)的导数f'(x)在区间(a,b)上的正负性。

(3)若f'(x)在区间(a,b)上恒大于0(或恒小于0),则f(x)在(a,b)上递增(或递减)。

(4)若f'(x)在区间(a,b)上既大于0又小于0,或在一些点上为0,则f(x)在(a,b)上不是单调函数。

2.函数表和图像法函数表和图像法是直观判断函数单调性的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考3:如图为函数f(x)在定义域I y f ( x) 内某个区间D上的图象,对于该 y f ( x2 ) 区间上任意两个自变量x1和x2, f ( x1 ) 当x1<x2时,f(x1)与 f(x2)的大小关 o x1 x2 x 系如何? 思考4:我们把具有上述特点的函数称为增函数, 那么怎样定义“函数f(x)在区间D上是增函数”? 对于函数定义域I内某个区间D上的任意两个 自变量x1,x2的值,若当x1<x2时,都有f(x1) < f(x2), 则称函数f(x)在区间D上是增函数.
1
2
3
t
知识探究(一)
考察下列两个函数:
(1)
f ( x) x ; (2) f ( x) x ( x 0)
2
y
y
o
x o x
思考1:这两个函数的图象分别是什么?二者有何 共同特征? 思考2:如果一个函数的图象从左至右逐渐上升, 那么当自变量x从小到大依次取值时,函数值y的 变化情况如何?
知识探究(二)
考察下列两个函数:
(1)
f ( x) x ; (2) f ( x) x ( x 0)
2
y
y
o
x
o
x
思考1:这两个函数的图象分别是什么?二者有何 共同特征?
思考2:仿照右图及下面的增 函数定义,那么我们该怎样 为“函数y=f(x)在区间D上是 减函数”下定义?
y
y f ( x)
理论迁移
例1 如图是定义在闭区间 y
[-5,6]上的函数y=f(x)
的图象,根据图象说出 y=f(x) 的单调区间,以 及在每一单调区间上, 函数y=f(x) 是增函数还 -3 -5 o 1 3 6 x
是减函数.
[-5,-3),[-3,1),[1,3),[3,6]
单调增区间:[-3,1), [3,6] 单调减区间:[-5,-3),[1,3)
所以,函数 f(x)=1/x 在 (0,+∞)上是减函数.
证明总结:
利用定义确定或证明函数f(x)在给定的 区间D上的单调性的一般步骤:
1.取值:
在给定区间内任取x1,x2∈D,且x1<x2;
2.作差:
f(x1)-f(x2) ;
3.定号:
确定f(x1)-f(x2) 的符号;
4.判断:
①若f(x1)-f(x2) <0,则函数f(x)在给定区间上 为增函数;若② f(x1)-f(x2)>0,则函数f(x)在给定区间 上为减函数函数.
1.根据图象写出函数y=f(x)的 单调区间.
2.判断函数 f(x)=-(1/x ) 在(-∞, 0)上的单调性.
课后作业:
P78 : 3,4, 6.
谢谢大家
ห้องสมุดไป่ตู้再 见!
例2:判断函数 f(x)=1/x 在 (0,+∞)上 的单调性.
解:任取x1,x2∈ (0,+∞),且x1<x2,那么 f(x1)=1/x1, f(x2)=1/x2
则 f(x1)- f(x2) = (1/x1)- (1/x2)
=(x2-x1)/x1x2 由x1,x2∈ (0,+∞),得x1x2>0,又由x1<x2得, x2-x1 >0, 所以(x2-x1)/x1x2 >0 所以 f(x1)- f(x2) >0 ,即f(x1) > f(x2)
f ( x1 )
f ( x2 )
x2 x
o
x1
对于函数定义域I内某个区间D上的任意两个 自变量x1,x2的值,若当x1<x2时,都有f(x1) < f(x2), 则称函数y=f(x)在区间D上是增函数.
对于函数定义域I内某个区间D上的任意两个自 变量x1, x2的值,若当x1<x2时,都有f(x1) > f(x1), 则称函数f(x)在区间D上是减函数.
礼县白河农业中学
高 一 数 学
(基础模块) 主讲教师 王小龙
问题提出
德国有一位著名的心理学家艾宾浩斯,对人类 的记忆牢固程度进行了有关研究.他经过测试,得 到了以下一些数据:
时间间隔 刚记 20分 60分 8-9 1天 2天 6天 一个 t 后 后 月后 忆完 钟后 钟后 小时 后 毕 后 记忆量y 100 58.2 44.2 35.8 33.7 27.8 25.4 21.1 (百分比)
以上数据表明,记忆量y是时间 间隔t的函数. 艾宾浩斯根据这 些数据描绘出了著名的“艾宾 浩 斯遗忘曲线”,如图.
y
100 80
60 40
20
o
1
2
3
t
思考1:当时间间隔t逐渐增 y 大你能看出对应的函数值y 100 80 有什么变化趋势?通过这个 60 试验,你打算以后如何对待 40 20 刚学过的知识? o 思考2:“艾宾浩斯遗忘曲线” 从左至右是逐渐下降的,对此, 我们如何用数学观点进行解释?
相关文档
最新文档