2016年中考第一轮复习第2讲 整式及因式分解
中考数学一轮复习讲义2__整式
中考数学一轮复习讲义2 代数式代数式的定义:整式的乘法整式的乘除与因式公解幂的运算法则同底数幂的乘法法则:a m·a n=a m+n(m,n都是正整数)幂的乘方法则:(a m)n=a mn(m,n是正整数)积的乘方法则:(ab)n=a n b n(n是正整数)单项式乘以单项式法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式单项式乘以多项式法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加同底数幂的除法法则:a m÷a n=a m-n(a≠0,m,n都是正整数且m>n)零指数幂的意义:a0=1(a≠0)单项式除以单项式法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式多项式除以单项式法则:先把这个多项式的每一项除以这个单项式,再把所得的商相加乘法公式平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2整式的除法因式分解概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式方法公式法平方差公式:a2-b2=(a+b)(a-b)完全平方公式a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2题型一整式的加减运算例1 已知与是同类项,则a b 的值为. 例2 计算:(7x 2+5x -3)-(5x 2-3x +2). 题型二整式的求值例3 已知(a +2)2+|b +5|=0,求3a 2b 一[2a 2b -(2ab -a 2b )-4a 2]-ab 的值.例例5例例7例8例9A.解析:第二个图案中正三角形的个数为: 第三个图案中正三角形的个数为:..,;第n 个图案中正三角形的个数为: 题型四:幂的运算法则及其逆运用 例1 计算2x 3·(-3x )2= .例2 计算[a 4(a 4-4a )-(-3a 5)2÷(a 2)3]÷(-2a 2)2.3313a x y --533b y x -85a +题型五: 整式的混合运算与因式分解例3 计算[(a -2b )(2a -b )-(2a +b )2+(a +b )(a -b )-(3a )2]÷(-2a ).例4 分解因式. (1)m 3-m ; (2)(x +2)(x +3)+x 2-4.例5 分解因式a 2-2ab +b 2-c 2.例6 (1)已知x +y =7,xy =12,求(x -y )2; (2)已知a +b =8,a -b =2,求ab 的值.15.(2011•临沂,2,3分)下列运算中正确的是( ) A 、(﹣ab )2=2a 2b 2B 、(a+b )2=a 2+1C 、a 6÷a 2=a 3D 、2a 3+a 3=3a 316.(2011泰安,2,3分)下列运算正确的是( ) A .3a 2+4a 2=7a 4B .3a 2-4a 2=-a 2C .3a ×4a 2=12a 2D .2222434)3(a a a -=÷17.(2011四川眉山,2,3分)下列运箅正确的是( ) A .2a 2﹣a=aB .(a+2)2=a 2+4C .(a 2)3=a 6D .3)3(2-=-19.(2011•南充,11,3分)计算(π﹣3)0=.20.(2011四川攀枝花,3,3分)下列运算中,正确的是( ) A 、2+3=5 B 、a 2•a=a 3C 、(a 3)3=a 6D 、327=-3中考真题精选21.(2011泰安,5,3分)下列等式不成立的是( ) A .m 2-16=(m -4)(m +4)B .m 2+4m =m (m +4)C .m 2-8m +16=(m -4)2D .m 2+3m +9=(m +3)22.(2011•丹东,4,3分)将多项式x 3﹣xy 2分解因式,结果正确的是( ) A 、x (x 2﹣y 2)B 、x (x ﹣y )2C 、x (x+y )2D 、x (x+y )(x ﹣y )4.(2011天水,4,4)多项式2a 2﹣4ab +2b 2分解因式的结果正确的是( ) A 、2(a 2﹣2ab +b 2)B 、2a (a ﹣2b )+2b 2C 、2(a ﹣b )2D 、(2a ﹣2b )25.(2011江苏无锡,3,3分)分解因式2x 2﹣4x+2的最终结果是( ) A .2x (x ﹣2)B .2(x 2﹣2x+1) C .2(x ﹣1)2D .(2x ﹣2)26.(2011•台湾5,4分)下列四个多项式,哪一个是2x 2+5x ﹣3的因式( ) A 、2x ﹣1B 、2x ﹣3C 、x ﹣1D 、x ﹣37.(2011台湾,24,4分)下列四个多项式,哪一个是33x +7的倍式( ) A .33x 2-49B .332x 2+49C .33x 2+7xD .33x 2+14x10.(2011梧州,6,3分)因式分解x 2y ﹣4y 的正确结果是( ) A 、y (x+2)(x ﹣2)B 、y (x+4)(x ﹣4)C 、y (x 2﹣4)D 、y (x ﹣2)211.(2011河北,3,2分)下列分解因式正确的是( ) A .-a +a 3=-a (1+a 2) B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)213.(2011,台湾省,25,5分)若多项式33x 2﹣17x ﹣26可因式分解成(ax+b )(cx+d ),其中a 、b 、c 、d 均为整数,则|a+b+c+d|之值为何?( ) A 、3B 、10C 、25D 、2914.(2011浙江金华,3,3分)下列各式能用完全平方式进行分解因式的是() A .x 2 +1 B.x 2+2x -1 C.x 2+x +1 D.x 2+4x +415.(2011浙江丽水,3,3分)下列各式能用完全平方公式进行分解因式的是( ) A 、x 2+1 B 、x 2+2x ﹣1 C 、x 2+x +1D 、x 2+4x +4综合验收评估测试题1一、选择题l. 在代数式-2x 2,3xy ,,,0,mx -ny 中,整式的个数为() A .2 B .3 C .4 D. 5 2. 二下列语句正确的是()A .x 的次数是0B .x 的系数是0 C. -1是一次单项式 D .-1是单项式 3.4.5. 6. 7. 8. C .m ≠-1,n 为大于3的整数 D .m ≠-1,n =5二、填空题9. -mx n y 是关于x ,y 的一个单项式,且系数是3,次数是4,则m =,n =. 10. 多项式ab 3-3a 2b 2-a 3b -3按字母a 的降幂排列是.按字母b 的升幂排列是. 11. 当b =时,式子2a +ab -5的值与a 无关. 12. 若-7xy n +1 3x m y 4是同类项,则m +n .13.多项式2ab -5a 2+7b 2加上等于a 2-5ab .b a 3xy -三、解答题14.先化简,再求值:,其中m =-l ,n =.综合验收评估测试题2一、选择题(每小题3分,共30分) 1.计算(a 3)2的结果是 ( ) A .a 5 B .a 6 C .a 8 D .a 9 2.下列运算正确的是 ( )A .a 2·a 3=a 4B .(-a )4=a 4C .a 2+a 3=a 5D .(a 2)3=a 5 3.已知x -3y =-3,则5-x +3y 的值是 ( ) A .0 B .2 C .5 D .8 4.若m +n =3,则2m 2+4mn +2n 2-6的值为 ( ) A .12 B .6 C .3 D .05.如图15-4所示,在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),把余下的部分拼成一个矩形,根据两个图形中阴影部分的面积相等,可以验证 ( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 2 6.下列各式中,与(a -b )2一定相等的是 ( )A .a 2+2ab +b 2B .a 2-b 2C .a 2+b 2D .a 2-2ab +b 0 7.已知x +y =-5,xy =6,则x 2+y 2的值为 ( ) A .1 B .13 C .17 D .25 8.下列从左到右的变形是因式分解的是 ( )A .ma +mb -c =m (a +b )-cB .(a -b )(a 2+ab +b 2)=a 3-b 3C .a 2-4ab +4b 2-1=a (a -4b )+(2b +1)(2b -1)D .4x 2-25y 2=(2x +5y )(2x -5y ) 9.下列各式中,能用平方差公式分解因式的是 ( ) A .-a 2+b 2 B .-a 2-b 2 C .a 2+b 2 D .a 3-b 3 10.如果(x -2)(x -3)=x 2+px +q ,那么p ,q 的值是 ( )A .p =-5,q =6B .p =1,q =-6C .p =1,q =6D .p =5,q =-622222212(52)3(2)2m n mn m n mn mn m n ⎛⎫+---- ⎪⎝⎭13二、填空题(每小题3分,共30分) 11.已知10m =2,10n =3,则103m+2n=.12.当x =3,y =1时,代数式(x +y )(x -y )+y 2的值是 . 13.若a -b =1,ab =-2,则(a +1)(b -1)= . 14.分解因式:2m 3-8m = . 15.已知y =31x -1,那么31x 2-2xy +3y 2-2的值为. 16.计算:5752×12-4252×12= .17 18192021 22(1)m 2n (m23.已知a ,b 是有理数,试说明a 2+b 2-2a -4b +8的值是正数.24.先化简,再求值:(a +b )(a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =2,b =1.25.(1)计算.①(a -1)(a +1);②(a -1)(a 2+a +1);③(a -1)(a 3+a 2+a +1);④(a -1)(a 4+a 3+a 2+a +1). (2)根据(1)中的计算,你发现了什么规律?用字母表示出来. (3)根据(2)中的结论,直接写出下题的结果. ①(a -1)(a 9+a 8+a 7+a 6+a 5+a 4+a 3+a 2+a +1)=; ②若(a -1)·M =a 15-1,则M =; ③(a -b④(226(1) (2) (3) (4)(5)答案:1.D 解析:不是整式,故选D . 2.D 解析:x 的次数是1,系数是1;-1是单项式.故选D .3.C 解析:所含字母相同,并且相同字母的指数也相同的项叫做同类项.故选C :4.D 解析:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.故选D .5.6.B . 7.2n +38.910 1112137b 2. 142×=1.15 50πa 2+100ab .答:美化这块空地共需资金(50πa 2+100ab )元.点拨:根据题意,可以先求出建造花台及种花所需费用,再求出种草的费用,两者相加即为美化这块空地共需的资金.ba1314π4a ⨯参考答案1.B2.B[提示:选项A :a 2·a 3=a 5;选项C :a 2和a 3不能合并;选项D :(a 2)3=a 6.] 3.D[提示:5-x +3y =5-(x -3y )=5-(-3)=8.]4.A [提示:2m 2+4mn +2n 2-6=2(m +n )2-6=2×32-6=12.]5.6.7.8.9.10111213141531(x -3y )2-216] 17181920] 21+1)(2x -1)-=20002-(200022(x +y -8)2.232)2≥0,∴(a -1)=a 2-b 2+b 2-25n -2+…+a 3+a 2+a +1)=a n +1-1. (3)①a 10-1 ②a 14+a 13+a 12+a 11+…+a 3+a 2+a +1 ③a 6-b 6④32x 5-126.解:(1)各层对应的点数依次为:4,8.12,16,20,24;所有层的总点数依次为:4,12,24,40,60.84. (2)4n . (3)2n (n +1). (4)第24层. (5)有,第25层.。
精品 中考数学一轮综合复习 第02课 整式(整式的加减乘除及因式分解)
8.若 m+n=3,则 2m 2 4mn 2n 2 6 的值为( A.12 B.6
C.3
D.0
9.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式 ,如 a b c 就是完 ..... 全对称式.下列三个代数式:① ( a b) ;② ab bc ca ;③ a 2b b 2 c c 2 a .其中是完全对称式的是
例 3.当 x=1 时,代数式 ax 3 bx 2014 等于 2013,则当 x=-1 时,代数式 ax 3 bx 2014 值为多少?
例 4.若多项式 4 x 2 6 xy 2 x 3 y 与 ax 2 bxy 3ax 2by 的和不含二次项,求 a、b 的值。
5
7.若 2 x 3,4 y 5 ,则 2 x 2 y 的值为( A.
3 5
9 3
B.-2
2
3 5 5
D.
6 5
8.已知 a=1.610 ,b=410 ,则 a 2b=(
7 A.210
)
5 C.3.210 14 D.3.210
B.410
14
9.把多项式 ax 2 ax 2a 分解因式,下列结果正确的是( A. a ( x 2)( x 1) B. a ( x 2)( x 1) C. a( x 1) 2
第 4 页 共 8 页
2 (5) 27 x 18 x 3
2 2 (6) 3a 6ab 3b
3 (7) 2 x 8 x
2 (8) x 5 x 6
(9) x 2 12 x 35
(10) ax 2 3ax 28a
(11) x 2 6 x 16
安徽数学中考一轮复习课件:2整式的运算及因式分解
4
考纲解读
考
单元
代
数
式
试
内
容
知 识 条 目
(1)用字母表示数的意义,代数式
(2)代数式的值
考试要求目标
A B C D
√
√
5
考纲解读
考
单元
整
式
与
分
式
试
内
容
考试要求目标
知 识 条 目
(1)整式的概念
(2)整式的加、减运算
A B C D
(3)整数指数幂的意义和基本性质
单项式叫做同类项,常数项是 (填“是”或“不是”)同类项.
(2)合并同类项法则:几个同类项相加,把它们的系数 相加,
所得的结果作为系数,字母和字母的次数都不变 .
(3)去括号法则:a+(b-c)=a+b-c ;a-(b-c)=a-b+c .(口诀:“+”
不变,“-”变号)
(4)整式加减运算可归纳为:先去括号,再合并同类项.
考点精讲
3.整式乘法运算
单项式乘
单项式
单项式乘
多项式
多项式乘
多项式
乘法公式
把系数、同底数幂分别相乘,对于只在一个单项式
里含有的字母,则连同它的指数 作为积的一个因
式
m(a+b)=ma+mb
(m+n)(a+b)=m(a+b)+n(a+b)=ma+mb+na+nb
平方差公式:(a+b)(a-b)=a2-b2
√
(4)乘法公式
(5)整式的乘法运算(多项式相乘仅指一次式之间以及一次式与
第二讲、代数式—整式与因式分解复习讲义
一、知识点归纳 ★整式部分 (1)代数式的分类⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 (2)概念:①代数式: 用______把数与表示数的字母连接而成的式子叫___________.注:单独一个_____或一个_____也是代数式.②代数式的值: 用_____代替代数式的字母计算后所得的_____,叫代数式的________. ③整式: 分母中不含有________的_______式叫整式. ④同类项:条件是 _______________,_____________________.⑤单项式:是数与字母的______.注:★不含_____运算,★★单独的一个_____或____也是单项式.⑥多项式:是几个单项式的______. (3)运算:整式的加减:(实质是去括号,合并同类项)①合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变; ②去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里面各项都不变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都变号.③添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“-”号,括到括号里的各项都变号. 整式的乘除:①单项式相乘:把它们的系数、相同字母分别相乘;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:就是根据分配律用单项式乘以多项式的每一项,在把所得的积相加.mc mb ma c b a m ++=++)(.③多项式与多项式相乘:方法★bn bm an am n m b a +++=++))((方法★★乘法公式(用于多项式乘法的简便运算) 平方差公式:__________))((=-+b a b a ;完全平方公式:___________)(2=+b a ;___________)(2=-b a .④单项式相除:把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的因式.⑤多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加. ⑥幂的运算性质(m 、n 为正整数)____=⋅n m a a ; ____=÷n m a a (0≠a ); _____)(=n m a ;____)(=n ab .10=a )0(≠a ,)0(1≠=-a aa n n . ★分解因式部分:(1)概念:把一个多项式化成几个整式的积的形式,这种式子变形叫做把这个多项式因式分解. (2)常用分解因式方法: ①提取公因式法:_____________=++mc mb ma .其分解步骤为:★确定多项式的公因式:公因式=各项系数的最大公约数与相同字母的最低次幂的积;★★将多项式除以它的公因式从而得到多项式的另一个因式. ②运用公式法:__________22=-b a ;__________222=+±b ab a .注意:★如果多项式中各项含有公因式,应该先提取公因式,再考虑运用公式法;★★公式中的字母,即可以表示一个数,也可以表示一个单项式或者一个多项式. ③分组分解法.多项式四项及以上的考虑用这种方法.(3)分解因式的一般步骤:一提二套三分组,二次三项想十字. 注:必须进行到每一个多项式因式都不能再分解为止. (4)整式乘法与分解因式的区别和联系:互为逆变形 .多项式整式的积因式分解方法 1. 提取公因式法:例:将2x 3n -20x 2n y 3+50x n y 6分解因式. 解:原式=2x n (x 2n -10x n y 3+25y 6) =2x n (x n -5y 3)2 2. 公式法:a 2-b 2=(a -b )(a +b ) a 2±2ab +b 2=(a ±b )2 a 3+b 3=(a +b )(a 2-ab +b )2 a 3-b 3=(a -b )(a 2+ab +b 2)例:64x 6-y 12解:原式=(8x 3+y 6)(8x 3-y 6)=(2x +y 2)(4x 2-2xy 2+y 4)(2x -y 2)(4x 2+2xy 2+y 4) 3. 分组分解法:例:(am +bn )2+(an -bm )2+c 2m 2+c 2n 2解:原式=a 2m 2+b 2n 2+2abmn +a 2n 2+b 2m 2-2abmn +c 2m 2+c 2n 2=a 2m 2+b 2n 2+a 2n 2+b 2m 2+c 2(m 2+n 2) =(m 2+n 2)(a 2+b 2+c 2) 4.十字相乘法:例:12x 2+10xy -12x +5y -9 解:原式=12x 2+(10y -12)x +5y -9 2x 16x 5y -9∴ 原式=(2x +1)(6x +5y -9) 5.配方法:例:将x 4+y 4+z 4-2x 2y 2-2x 2z 2-2y 2z 2分解因式。
中考一轮复习 数学专题02 整式与因式分解(老师版) 教案
专题02 整式与因式分解一.选择题1.(2022·福建)化简()223a 的结果是( ) A .29aB .26aC .49aD .43a【答案】C 【分析】根据幂的乘方和积的乘方进行计算即可.【详解】()()222224339a a a ==,故选:C . 【点睛】本题考查幂的乘方和积的乘方,熟记幂的运算法则是解题的关键.2.(2022·湖南永州)下列因式分解正确的是( )A .()1ax ay a x y +=++B .()333a b a b +=+C .()22444a a a ++=+D .()2a b a a b +=+【答案】B【分析】根据因式分解的方法,提公因式法及公式法依次进行计算判断即可.【详解】解:A 、ax +ay =a (x +y ),故选项计算错误;B 、3a +3b =3(a +b ),选项计算正确;C 、()22442a a a ++=+,选项计算错误;D 、2a b +不能进行因式分解,选项计算错误;故选:B .【点睛】题目主要考查因式分解的判断及应用提公因式法与公式法进行因式分解,熟练掌握因式分解的方法是解题关键.3.(2022·四川内江)下列运算正确的是( )A .a 2+a 3=a 5B .(a 3)2=a 6C .(a ﹣b )2=a 2﹣b 2D .x 6÷x 3=x 2【答案】B【分析】根据合并同类项法则,幂的乘方和同底数幂的除法法则,完全平方公式,进行判断即可.【详解】A.a 2和a 3不是同类项,不能合并,故A 不符合题意;B.(a 3)2=a 6,故B 符合题意;C.(a ﹣b )2=a 2﹣2ab +b 2,故C 不符合题意;D.63633x x x x ÷==﹣,故D 不符合题意.故选:B .【点睛】本题主要考查了整式的运算,熟练掌握合并同类项法则,幂的乘方和同底数幂的除法法则,完全平方公式,是解题的关键.4.(2022·山东临沂)计算()1a a a +-的结果是( )A .1B .2aC .22a a +D .21a a -+【答案】B【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()1a a a +- 22a a a a .故选B【点睛】本题考查的是整式的混合运算,单项式乘以多项式,掌握“单项式乘以多项式的运算”是解本题的关键.5.(2022·内蒙古赤峰)已知()()2221x x x +--=,则2243x x -+的值为( )A .13B .8C .-3D .5【答案】A【分析】先化简已知的式子,再整体代入求值即可.【详解】∵()()2221x x x +--=∴225x x -=∴222432(2)313x x x x -+=-+=故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键.6.(2022·江苏泰州)下列计算正确的是( )A .325ab ab ab +=B .22523y y -=C .277a a a +=D .2222m n mn mn -=-【答案】A【分析】运用合并同类项的法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.【详解】解:A 、325ab ab ab +=,故选项正确,符合题意;B 、222523y y y -=,故选项错误,不符合题意;C 、78a a a +=,故选项错误,不符合题意;D 、222m n mn 和不是同类项,不能合并,故选项错误,不符合题意;故选:A .【点睛】本题考查合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则.7.(2022·湖北鄂州)下列计算正确的是( )A .b +b 2=b 3B .b 6÷b 3=b 2C .(2b )3=6b 3D .3b ﹣2b =b 【答案】D【分析】根据积的乘方“把积的每一个因式分别乘方,再把所得的幂相乘”,合并同类项“把同类项的系数相减,所得的结果作为系数,字母和字母的指数不变”,同底数幂的除法“底数不变,指数相减”进行计算即可得.【详解】解:A 、22b b b b +=+,选项说法错误,不符合题意;B 、63633b b b b -÷==,选项说法错误,不符合题意;C 、33(2)8b b =,选项说法错误,不符合题意;D 、32b b b -=,选项说法正确,符合题意;故选D .【点睛】本题考查了积的乘方,合并同类项,同底数幂的除法,解题的关键是掌握这些知识点. 8.(2022·辽宁锦州)下列运算正确的是( )A .236a a a ⋅=B .22(2)4x x -=C .22m mn n -= D .2ab ab b -=【答案】B【分析】由同底数幂乘法、积的乘方、负整数指数幂的乘法、合并同类项,分别进行判断,即可得到答案.【详解】解:235a a a ⋅=,故A 错误;22(2)4x x -=,故B 正确;22m mn n -=,故C 错误; 2ab ab -不能合并,不D 错误;故选:B .【点睛】本题考查了同底数幂乘法、积的乘方、负整数指数幂的乘法、合并同类项,解题的关键是掌握运算法则,正确的进行判断.9.(2022·广西贵港)下例计算正确的是( )A .22a a -=B .2222a b a b +=C .33(2)8a a -=D .()236a a -= 【答案】D【分析】分别根据合并同类项、单项式除以单项式、同底数幂的乘法、幂的乘方法则进行计算即可求解.【详解】解:A. 2a −a =a ,故原选项计算错误,不符合题意;B. 2222a b a b +≠,不是同类项不能合并,故原选项计算错误,不符合题意;C. 33(2)-8a a -=,故原选项计算错误,不符合题意;D. (-a 3)2=a 6,故原选项计算正确,符合题意.故选:D .【点睛】本题考查了合并同类项、单项式除以单项式、同底数幂的乘法、幂的乘方等运算,熟知运算法则是解题关键.10.(2022·湖北恩施)下列运算正确的是( )A .236a a a ⋅=B .321a a ÷=C .32a a a -=D .()236a a = 【答案】D【分析】根据同底数幂的乘除法、合并同类项法则、幂的乘方法则逐项判断即可得.【详解】解:A 、235a a a ⋅=,则此项错误,不符题意;B 、32a a a ÷=,则此项错误,不符题意;C 、3a 与2a 不是同类项,不可合并,则此项错误,不符题意;D 、()236a a =,则此项正确,符合题意;故选:D . 【点睛】本题考查了同底数幂的乘除法、合并同类项、幂的乘方,熟练掌握各运算法则是解题关键. 11.(2022·黑龙江哈尔滨)下列运算一定正确的是( )A .()22346a b a b =B .22434b b b +=C .()246a a =D .339a a a ⋅=【答案】A【分析】根据积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算逐项验证即可得到结论.【详解】解:A 、根据积的乘方运算、幂的乘方运算法则可知()22346a b a b =,该选项符合题意; B 、根据合并同类项运算可知2224344b b b b +=≠,该选项不符合题意;C 、根据幂的乘方运算可知()244286⨯==≠a a a a ,该选项不符合题意; D 、根据同底数幂的乘法运算可知333369a a a a a +⋅==≠,该选项不符合题意;故选:A .【点睛】本题考查整式的运算,涉及到积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算等知识点,熟练掌握相关运算法则是解决问题的关键.12.(2022·内蒙古包头)若42222m ⨯=,则m 的值为( )A .8B .6C .5D .2【答案】B【分析】根据同底数幂的乘法运算计算4242622222m +⨯===,即可求解.【详解】4242622222m +⨯===,6m ∴=,故选:B .【点睛】本题考查了同底数幂的乘法运算,即m n m n a a a +⋅=(m 、n 为正整数),熟练掌握运算法则是解题的关键.13.(2022·湖南长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100)x -元C .8(100)x -元D .(1008)x -元 【答案】C【分析】根据题意列求得购买乙种读本()100x -本,根据单价乘以数量即可求解.【详解】解:设购买甲种读本x 本,则购买乙种读本()100x -本,乙种读本的单价为8元/本,则则购买乙种读本的费用为8(100)x -元故选C【点睛】本题考查了列代数式,理解题意是解题的关键.14.(2022·山东聊城)下列运算正确的是( )A .()22233xy x y -=B .2243474x x x +=+C .()2323131t t t t t -+=-+ D .()()43341a a -÷-=- 【答案】D【分析】A 选项根据积的乘方等于乘方的积即可判断;B 选项合并同类型:字母和字母的指数比不变,系数相加;C 选项利用乘方的分配律;D 选项先用幂的乘方化简,在运用整式的除法法则.【详解】解:A 、原式229x y =,不合题意;B 、原式27x =,不合题意;C 、原式323t t t =-+,不合题意;D 、原式=-1,符合题意;故选:D .【点睛】本题考查积的乘方、幂的乘方、合并同类型、乘法分配律、整式的除法,掌握相应的运算法则是解题的关键,其中每一项的符号是易错点.15.(2022·湖南岳阳)下列运算结果正确的是( )A .23a a a +=B .55a a a ÷=C .236a a a ⋅=D .437()a a =【答案】A【分析】根据合并同类项判断A 选项;根据同底数幂的除法判断B 选项;根据同底数幂的乘法判断C 选项;根据幂的乘方判断D 选项.【详解】解:A 选项,原式3=a ,故该选项符合题意;B 选项,原式4a =,故该选项不符合题意;C 选项,原式5a =,故该选项不符合题意;D 选项,原式12a =,故该选项不符合题意;故选A .【点睛】本题考查了合并同类项,同底数幂的乘除法,幂的乘方与积的乘方,掌握()m n mn a a =是解题的关键. 16.(2022·内蒙古包头)若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A .8-B .5-C .1-D .16 【答案】C【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c =,代入即可求解. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c 的倒数是4,∴14c =, ∴334a b c +-()34a b c =+-130414=⨯-⨯=-,故选:C 【点睛】本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 17.(2022·贵州遵义)下列运算结果正确的是( )A .3412a a a ⋅=B .321ab ab -=C .()232624ab a b -=D .()222a b a b -=- 【答案】C 【分析】分别利用同底数幂的乘法法则,合并同类项的法则,积的乘方法则及完全平方公式分别判断即可.【详解】A .347a a a ⋅=,故此选项计算错误,不符合题意;B .32ab ab ab -=,故此选项计算错误,不符合题意;C .()232624ab a b -=,此选项计算正确,符合题意;D .()2222a b a ab b -=-+,故此选项计算错误,不符合题意;故选:C .【点睛】本题考查同底数幂的乘法法则,合并同类项的法则,积的乘方法则及完全平方公式,熟练掌握相关计算法则是解答本题的关键.同底数幂相乘,底数不变,指数相加;合并同类项时,只把系数相加,所得结果作为合并后的系数,字母和字母的指数不变;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.18.(2022·广西)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是( )A .222()2a b a ab b +=++B .222()2a b a ab b -=-+C .22()()a b a b a b +-=-D .222()ab a b = 【答案】A【分析】根据大正方形的面积=边长为a 的正方形的面积+两个长为a ,宽为b 的长方形的面积+边长为b 的正方形的面积,即可解答.【详解】根据题意得:(a +b )2=a 2+2ab +b 2,故选:A .【点睛】本题考查了完全平方公式的几何背景,用整体和部分两种方法表示面积是解题的关键. 19.(2022·广东深圳)下列运算正确的是( )A .268a a a ⋅=B .()3326a a -=C .()22a b a b +=+D .235a b ab +=【答案】A【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,单项式乘多项式及合并同类项的法则逐一判断即可.【详解】解:268a a a ⋅=,计算正确,故此选项符合题意;B 、33(2)8a a -=-,原计算错误,故此选项不符合题意;C 、2()22a b a b +=+,原计算错误,故此选项不符合题意;D 、23a b +,不是同类项不能合并,原计算错误,故此选项不符合题意.故选:A .【点睛】本题考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.20.(2022·上海)下列运算正确的是……( )A .a ²+a ³=a 6B .(ab )2 =ab 2C .(a +b )²=a ²+b ²D .(a +b )(a -b )=a ² -b 2 【答案】D【分析】根据整式加法判定A ;运用积的乘方计算关判定B ;运用完全平方公式计算并判定C ;运用平方差公式计算并判定D .【详解】解:A.a ²+a ³没有同类项不能合并,故此选项不符合题意;B.(ab )2 =a2b 2,故此选项不符合题意;C.(a +b )²=a ²+2ab +b ²,故此选项不符合题意D.(a +b )(a -b )=a ² -b 2,故此选项符合题意故选:D .【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键.二.填空题21.(2022·湖南长沙)当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它己被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”己经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2002个不同的数据二维码,现有四名网友对2002的理解如下:YYDS (永远的神):2002就是200个2相乘,它是一个非常非常大的数;DDDD (懂的都懂):2002等于2200;JXND (觉醒年代):2002的个位数字是6;QGYW (强国有我):我知道10321024,101000==,所以我估计2002比6010大.其中对2002的理解错误的网友是___________(填写网名字母代号).【答案】DDDD【分析】根据乘方的含义即可判断YYDS (永远的神)的理解是正确的;根据积的乘方的逆用,将2002化为1002(2),再与2200比较,即可判断DDDD (懂的都懂)的理解是错误的;根据2的乘方的个位数字的规律即可判断JXND (觉醒年代)的理解是正确的;根据积的乘方的逆用可得2001020603202(2),10(10)==,即可判断QGYW (强国有我)的理解是正确的.【详解】2002是200个2相乘,YYDS (永远的神)的理解是正确的;200100222(2)200=≠,DDDD (懂的都懂)的理解是错误的;1234522,24,28,216,232=====,∴2的乘方的个位数字4个一循环,200450÷=,∴2002的个位数字是6,JXND (觉醒年代)的理解是正确的;2001020603202(2),10(10)==,10321024,101000==,且103210>20060210∴>,故QGYW (强国有我)的理解是正确的;故答案为:DDDD .【点睛】本题考查了乘方的含义,幂的乘方的逆用等,熟练掌握乘方的含义以及乘方的运算法则是解题的关键.22.(2022·内蒙古包头)若一个多项式加上2328xy y +-,结果得2235xy y +-,则这个多项式为___________.【答案】23y xy -+【分析】设这个多项式为A ,由题意得:22(328)235A xy y xy y ++-=+-,求解即可.【详解】设这个多项式为A ,由题意得:22(328)235A xy y xy y ++-=+-,22222(235)(328)2353283A xy y xy y xy y xy y y xy ∴=+--+-=+---+=-+,故答案为:23y xy -+.【点睛】本题考查了整式的加减,准确理解题意,列出方程是解题的关键.23.(2022·黑龙江大庆)已知代数式22(21)4a t ab b +-+是一个完全平方式,则实数t 的值为____________.【答案】52或32- 【分析】直接利用完全平方公式求解.【详解】解:∵代数式22(21)4a t ab b +-+是一个完全平方式,∴()()()222222(21)4222a t ab b a b a b a b +-+++±=±±⋅⋅=,∴214t -=±, 解得52t =或32t =-, 故答案为:52或32- 【点睛】本题考查了完全平方公式的运用,熟记完全平方公式的特点是解题的关键.24.(2022·四川广安)已知a +b =1,则代数式a 2﹣b 2 +2b +9的值为________.【答案】10【分析】根据平方差公式,把原式化为()()29a b a b b +-++,可得9a b ++,即可求解.【详解】解:a 2﹣b 2 +2b +9()()29a b a b b =+-++29a b b =-++9a b =++19=+10=故答案为:10【点睛】本题主要考查了平方差公式的应用,利用整体代入思想解答是解题的关键. 25.(2022·吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要__________元.(用含m 的代数式表示)【答案】10m【分析】根据“总费用=购买篮球的数量⨯每个篮球的价格”即可得.【详解】解:由题意得:一共需要的费用为10m 元,故答案为:10m .【点睛】本题考查了列代数式,正确找出等量关系是解题关键.26.(2022·湖北恩施)观察下列一组数:2,12,27,…,它们按一定规律排列,第n 个数记为n a ,且满足21112n n n a a a +++=.则4a =________,2022a =________. 【答案】15 13032【分析】由已知推出1211111n n n n a a a a +++-=-,得到202220211132a a -=,202120201132a a -=,431132a a -=,211132a a -=,上述式子相加求解即可. 【详解】解:∵21112n n n a a a +++=;∴1211111n n n n a a a a +++-=-, ∵21111113212222a a -=-=-=, ∵43411113227a a a -=-=, ∴a 4=15, ∴202220211132a a -=,202120201132a a -=,211132a a -=,把上述2022-1个式子相加得2022111320212a a ⨯-=, ∴a 2022=13032, 故答案为:15,13032.【点睛】此题主要考查数字的变化规律,关键是得出1211111n n n n a a a a +++-=-,利用裂项相加法求解. 27.(2022·江苏常州)计算:42÷=m m _______. 【答案】2m【分析】根据同底数幂的除法运算法则即可求出. 【详解】解:422m m m ÷=.故答案为:2m .【点睛】本题主要考查同底数幂的除法,掌握同底数幂的除法法则是解题的关键. 28.(2022·辽宁锦州)分解因式:2232x y xy y -+=____________. 【答案】2()y x y -【分析】先提取公因数y ,再利用完全平方公式进行二次分解.完全平方公式:(a ±b )2=a 2±2ab +b 2. 【详解】解:222223(2)(2)=-++=--x y xy y x xy y y x y y ;故答案为:2()y x y -【点睛】本题考查了提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式. 29.(2022·江苏常州)分解因式:22x y xy +=______. 【答案】xy (x +y )【分析】利用提公因式法即可求解.【详解】22()x y y y xy x x =++,故答案为:()xy x y +.【点睛】本题考查了用提公因式法分解因式的知识,掌握提公因式法是解答本题的关键. 30.(2022·四川内江)分解因式:a 4﹣3a 2﹣4=_____. 【答案】(a 2+1)(a +2)(a ﹣2)【分析】首先利用十字相乘法分解为()()2214a a +- ,然后利用平方差公式进一步因式分解即可.【详解】解:a 4﹣3a 2﹣4=(a 2+1)(a 2﹣4)=(a 2+1)(a +2)(a ﹣2), 故答案为:(a 2+1)(a +2)(a ﹣2).【点睛】本题考查利用因式分解,解决问题的关键是掌握解题步骤:一提二套三检查. 31.(2022·贵州遵义)已知4a b +=,2a b -=,则22a b -的值为__________.【答案】8【分析】根据平方差公式直接计算即可求解.【详解】解:∵4a b +=,2a b -=,∴22a b -()()428a b a b =+-=⨯= 故答案为:8 【点睛】本题考查了因式分解的应用,掌握平方差公式是解题的关键. 32.(2022·北京)分解因式:2xy x -=______. 【答案】()()11x y y +-【分析】首先提取公因式,再根据平方差公式计算,即可得到答案.【详解】2xy x -()21x y =-()()11x y y =+-故答案为:()()11x y y +-.【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解. 33.(2022·湖北恩施)因式分解:3269x x x -+=_______. 【答案】2(3)x x -【分析】先提公因式,再利用完全平方公式解题. 【详解】解:322269(69)(3)x x x x x x x x -+=-+=- 故答案为:2(3)x x -.【点睛】本题考查因式分解,涉及提公因式、完全平方公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.34.(2022·山东临沂)因式分解2242x x -+=______. 【答案】22(1)x -. 【详解】解:2242x x -+ =22(21)x x -+ =22(1)x -, 故答案为22(1)x -.35.(2022·浙江台州)分解因式:21a -=____. 【答案】()()11a a +-.【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a -=+-.故答案为:()()11a a +-【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键. 36.(2022·江苏苏州)计算:3a a ⋅= _______. 【答案】a 4【分析】本题须根据同底数幂乘法,底数不变指数相加,即可求出答案. 【详解】解:a 3•a , =a 3+1, =a 4.故答案为:a 4.【点睛】本题主要考查了同底数幂的乘法,在解题时要能灵活应用同底数幂的乘法法则,熟练掌握运算性质是解题的关键.37.(2022·黑龙江牡丹江)如图所示,以O 为端点画六条射线后OA ,OB ,OC ,OD ,OE ,O 后F ,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线___上.【答案】OC【详解】解∶∵1在射线OA 上,2在射线OB 上,3在射线OC 上,4在射线OD 上,5在射线OE 上,6在射线OF 上,7在射线OA 上,… ∴每六个一循环. ∵2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样. ∴所描的第2013个点在射线OC 上. 故答案为:OC38.(2022·吉林)计算:2a a ⋅=____.【答案】3a【详解】试题分析:根据同底数幂的乘法性质,底数不变,指数相加,可直接结算,2123a a a a +⋅==. 考点:同底数幂的乘法39.(2022·黑龙江牡丹江)下列图形是将等边三角形按一定规律排列,则第5个图形中所以等边三角形的个数是__________.【答案】485【详解】解: 由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形, 第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形, 第五个图形中161×3+2=485个正三角形. 故答案为:48540.(2022·湖北十堰)如图,某链条每节长为2.8cm ,每两节链条相连接部分重叠的圆的直径为1cm ,按这种连接方式,50节链条总长度为_________cm .【答案】91【分析】通过观察图形可知,1节链条的长度是2.8cm ,2节链条的长度是(2.8×2-1)cm ,3节链条的长度是(2.8×3-1×2)cm ,n 节链条的长度是2.8n -1×(n -1)cm ,据此解答即可求解. 【详解】解:2节链条的长度是(2.8×2-1)cm , 3节链条的长度是(2.8×3-1×2)cm , n 节链条的长度是2.8n -1×(n -1)cm , 所以50节链条的长度是:2.8×50-1×(50-1) =140-1×49=91(cm) 故答案为:91【点睛】此题考查的图形类规律,关键是找出规律,得出n 节链条长度为2.5×n -0.8×(n -1). 41.(2022·广西贺州)因式分解:2312m -=__________. 【答案】3(2)(2)m m +-【分析】首先提取公因数3,进而利用平方差公式进行分解即可. 【详解】解:原式=3(x 2−4)=3(x +2)(x −2); 故答案为:3(x +2)(x −2).【点睛】此题主要考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题关键. 42.(2022·广西玉林)计算:3a a -=_____________. 【答案】2a【分析】按照合并同类项法则合并即可. 【详解】3a -a =2a , 故答案为:2a .【点睛】本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算. 43.(2022·广东)单项式3xy 的系数为___________. 【答案】3【分析】单项式中数字因数叫做单项式的系数,从而可得出答案. 【详解】3xy 的系数是3, 故答案为:3.【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义. 44.(2022·黑龙江大庆)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是____________.【答案】49【分析】根据题意可知:第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个,……由规侓即可得答案.【详解】解:∵第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个, 第3个图案中有六边形图形:3+4+3=10个, 第4个图案中有六边形图形:4+5+4=13个, ……∴第16个图案中有六边形图形:16+17+16=49个, 故答案为:49.【点睛】此题考查图形的变化规律,解题的关键是找出图形之间的运算规律,利用规律解决问题. 45.(2022·江苏泰州)已知22222,2,()a m mn b mn n c m n m n =-=-=-≠ 用“<”表示a b c 、、的大小关系为________. 【答案】b c a <<【分析】利用作差法及配方法配成完全平方式再与0比较大小即可求解. 【详解】解:由题意可知:222222222)(2))(()(22m n mn m n a b m mn mn n m n m n ,∵m n ≠, ∴222()0m n m n ,∴b a <;22222223)()2)(4(2n m mn a c m mn n mm n n ,当且仅当002nm n 且时取等号,此时0m n ==与题意m n ≠矛盾,∴223()024n mn ∴c a <;22222223)()()24(2n m c b m n m n n mn n m n ,同理b c <, 故答案为:b c a <<.【点睛】本题考查了两代数式通过作差比较大小,将作差后的结果配成完全平方式,利用完全平方式总是大于等于0的即可与0比较大小.46.(2022·黑龙江绥化)因式分解:()()269m n m n +-++=________. 【答案】()23m n +-【分析】将m n 看做一个整体,则9等于3得的平方,逆用完全平方公式因式分解即可. 【详解】解:()()269m n m n +-++()()22233m n m n =+-⨯⨯++()23m n =+-.【点睛】本题考查应用完全平方公式进行因式分解,整体思想,能够熟练逆用完全平方公式是解决本题的关键.47.(2022·广西梧州)若1x =,则32x -=________. 【答案】1【分析】将1x =代入代数式求解即可.【详解】解:∵1x =, ∴323121x -=⨯-=, 故答案为:1.【点睛】本题考查了代数式求值.解题的关键在于正确的计算. 48.(2022·贵州黔东南)分解因式:2202240442022x x -+=_______. 【答案】()220221x -【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式=()()2220222120221x x x -+=-;故答案为()220221x -.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.49.(2022·黑龙江绥化)某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案. 【答案】3##三【分析】设购买甲种奖品x 件,乙种奖品y 件,列出关系式,并求出3124yx =-,由于1≥x ,1y ≥且x ,y 都是正整数,所以y 是4的整数倍,由此计算即可. 【详解】解:设:购买甲种奖品x 件,乙种奖品y 件, 4348x y +=,解得3124y x =-, ∵1≥x ,1y ≥且x ,y 都是正整数, ∴y 是4的整数倍, ∴4y =时,341294x ⨯=-=,8y =时,381264x ⨯=-=, 12y =时,3121234x ⨯=-=, 16y =时,3161204x ⨯=-=,不符合题意, 故有3种购买方案, 故答案为:3.【点睛】本题考查列关系式,根据题意判断出y 是4的整数倍是解答本题的关键. 50.(2022·海南)因式分解:ax ay +=___________. 【答案】()a x y +【分析】原式直接提取a 即可.【详解】解:ax ay +=()a x y +. 故答案为:()a x y +.【点睛】本题主要考查了分解因式,正确确定公因式是解答本题的关键. 三.解答题51.(2022·广西)先化简,再求值2()()(2)x x y x y xy xy x +-+-+,其中11,2x y ==. 【答案】x 3-2xy +x ,1【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:2()()(2)x x y x y xy xy x +-+-+ =x (x 2-y 2)+xy 2-2xy +x =x 3-xy 2+xy 2-2xy +x =x 3-2xy +x ,当x =1,y =12时,原式=13-2×1×12+1=1.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键. 52.(2022·湖南岳阳)已知2210a a -+=,求代数式()()()4111a a a a -++-+的值. 【答案】-2【分析】先化简所求的式子,再结合已知求解即可.【详解】解:()()()4111a a a a -++-+ 22411a a a =-+-+224a a =-()222a a =-,∵2210a a -+=, ∴221a a -=-, ∴原式()212=⨯-=-.【点睛】本题考查代数式的运算,熟练掌握单项式乘多项式,平方差公式是解题的关键. 53.(2022·江苏无锡)计算:(1)(21cos 602-⨯-;(2)()()()()23a a a b a b b b +-+---.【答案】(1)1 (2)2a +3b【分析】(1)先化简绝对值和计算乘方,并把特殊角的三角函数值代入,再计算乘法,最后算加减即可求解;(2)先运用单项式乘以多项式法则和平方差公式计算,再合并同类项即可. (1) 解:原式=11322⨯- =3122- =1; (2)解:原式=a 2+2a -a 2+b 2-b 2+3b =2a +3b .【点睛】本题考查实数混合运算,整式混合运算,熟练掌握实数运算法则和单项式乘以多项式法则,熟记特殊角的三角函数值、平方差公式是解题的关键.54.(2022·广西梧州)(125(3)(2)+-⨯- (2)化简:232()23a a a a a +--⋅. 【答案】(1)14-;(2)24a a -【分析】(1 (2)先去括号和计算乘法运算,然后合并同类项即可. 【详解】解:(1)解:原式=235(3)(2)-+-⨯- =35(3)4-+-⨯ =3512-- =14-;(2)原式=223226a a a a +-- =24a a -.【点睛】本题考查了实数的运算以及整式的混合运算,正确掌握相关运算法则是解题的关键. 55.(2022·北京)已知2220x x +-=,求代数式2(2)(1)x x x +++的值. 【答案】5【分析】先根据2220x x +-=,得出222x x +=,将2(2)(1)x x x +++变形为()2221x x ++,最后代入求值即可.【详解】解:∵2220x x +-=, ∴222x x +=, ∴2(2)(1)x x x +++22221x x x x =++++ 2241x x =++()2221x x =++221=⨯+5=【点睛】本题主要考查了代数式求值,完全平方公式,单项式乘多项式,将2(2)(1)x x x +++变形为()2221x x ++,是解题的关键.56.(2022·江苏常州)计算:(1)201(3)3---+π;(2)2(1)(1)(1)+--+x x x .【答案】(1)43(2)2x +2【分析】(1)利用负指数公式化简,零指数公式化简,平方根定义化简,合并后即可求出值;(2)利用完全平方,以及平方差计算,再合并即可求出值.(1)201(3)3---+π=2﹣1+13=43; (2)2(1)(1)(1)+--+x x x=22211x x x ++-+=2x +2.【点睛】此题考查了乘法公式,以及实数的运算,实数的运算涉及的知识有:零指数公式,负指数公式,绝对值的代数意义,以及平方根的定义.57.(2022·吉林)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.【答案】6A m =+,解答过程补充完整为26m -【分析】利用26m m +除以m 可得A ,再根据合并同类项法则补充解答过程即可.【详解】解:观察第一步可知,()26A m m m =+÷, 解得6A m =+,将该例题的解答过程补充完整如下:(6)6(1)m m m +-+2666m m m =+--26m =-,故答案为:26m -.【点睛】本题考查了多项式的乘除法、合并同类项,熟练掌握整式的运算法则是解题关键.58.(2022·吉林长春)先化简,再求值:()()()221a a a a +-++,其中4a =.【答案】4a +【分析】根据平方差公式与单项式乘以单项式进行计算,然后将4a 代入求值即可求解.【详解】解:原式=224a a a -++4a =+当4a =时,原式44=【点睛】本题考查了整式的混合运算,实数的运算,代数式求值,正确的计算是解题的关键.。
中考一轮复习 数学专题02 整式与因式分解(老师版)
专题02 整式与因式分解一、单选题1.(2022·湖南郴州)下列运算正确的是( )A .325a a a +=B .632a a a ÷=C .()222a b a b +=+D 5=【答案】D【解析】【分析】根据合并同类项、同底数幂的除法法则,完全平方公式以及二次根式的计算法则进行计算即可.【详解】A.32a a +不能合并,故A 错误;B.633a a a ÷=,故B 错误;C.()2222a b a ab b +=++,故C 错误;5,故D 正确;故答案为:D .【点睛】本题考查了合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则等知识.掌握合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则是解答本题的关键. 2.(2022·山东临沂)计算()1a a a +-的结果是( )A .1B .2aC .22a a +D .21a a -+ 【答案】B【解析】【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()1a a a +- 22a a a a .故选B【点睛】本题考查的是整式的混合运算,单项式乘以多项式,掌握“单项式乘以多项式的运算”是解本题的关键. 3.(2022·内蒙古包头)若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A .8-B .5-C .1-D .16【答案】C【解析】【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c =,代入即可求解. 【详解】∵a ,b 互为相反数,∵0a b +=,∵c 的倒数是4, ∵14c =, ∵334a b c +-()34a b c =+-130414=⨯-⨯=-, 故选:C【点睛】 本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 4.(2022·广西河池)多项式244x x +﹣因式分解的结果是( )A .x (x ﹣4)+4B .(x +2)(x ﹣2)C .(x +2)2D .(x ﹣2)2【答案】D【解析】【分析】根据完全平方公式进行因式分解即可.【详解】解:()22442x x x +=-﹣. 故选:D .【点睛】本题主要考查了公式法分解因式,理解完全平方公式是解答关键.5.(2022·广西柳州)把多项式a 2+2a 分解因式得( )A .a (a +2)B .a (a ﹣2)C .(a +2)2D .(a +2)(a ﹣2)【答案】A【解析】【分析】运用提公因式法进行因式分解即可.【详解】22(2)a a a a +=+ 故选A【点睛】本题主要考查了因式分解知识点,掌握提公因式法是解题的关键.6.(2021·广西百色)下列各式计算正确的是( )A .33=9B .(a ﹣b )2=a 2﹣b 2C .+D .(2a 2b )3=8a 8b 3【答案】C【解析】【分析】分别根据有理数的乘方、二次根式的计算法则和整式的乘法计算法则进行计算判断即可得到答案.【详解】解:A 、33=27,此选项错误;B 、()2222a b a ab b -=-+,此选项错误;C 、D 、()362328a b a b =,此选项错误. 故选C.【点睛】本题主要考查了二次根式的加法运算和整式的乘法运算,解题的关键在于熟练的掌握相关知识进行求解. 7.(2021·甘肃兰州)如图,将图1中的菱形纸片沿对角线剪成4个直角三角形,拼成如图2的四边形ABCD(相邻纸片之间不重叠,无缝隙).若四边形ABCD 的面积为13,中间空白处的四边形EFGH 的面积为1,直角三角形的两条直角边分别为a 和b ,则()2a b +=( )A .12B .13C .24D .25【答案】D【解析】【分析】 根据菱形的性质可得对角线互相垂直平分,进而可得4个直角三角形全等,结合已知条件和勾股定理求得22a b +,进而根据面积差以及三角形面积公式求得12ab ,最后根据完全平方公式即可求得2()a b +. 【详解】菱形的对角线互相垂直平分,∴4个直角三角形全等;,90ADH BAE DAH HAD ∴∠=∠∠+∠=︒,AD AB BC CD ===,90DAB ∴∠=︒,∴四边形ABCD 是正方形,又正方形ABCD 的面积为13,∴根据勾股定理,则22213a b AB +==,中间空白处的四边形EFGH 的面积为1,∴4个直角三角形的面积为13112-=,112432ab ∴=÷=, 212ab ∴=,222()2a b a b ab +=++,∴()2a b +=121325+=.故选D .【点睛】 本题考查了正方形的性质与判定,菱形的性质,勾股定理,完全平方公式,求得12ab 是解题的关键. 8.(2022·青海)下列运算正确的是( )A .235347x x x +=B .()222x y x y +=+ C .()()2232394x x x +-=- D .()224212xy xy xy y +=+ 【答案】D【解析】【分析】根据合并同类项,完全平方公式,平方差公式,因式分解计算即可.【详解】A.选项,3x 2与4x 3不是同类项,不能合并,故该选项计算错误,不符合题意;B.选项,原式= ()2222x y x xy y +=++,故该选项计算错误,不符合题意;C.选项,原式= 249x -,故该选项计算错误,不符合题意;D.选项,原式=()212xy y +,故该选项计算正确,符合题意;故选:D .【点睛】本题考查了合并同类项,完全平方公式,平方差公式,因式分解,注意完全平方公式展开有三项是解题的易错点.9.(2020·四川广安)下列运算中,正确的是( )A .347x x x +=B .248236x x x ⋅=C .2242(3)9x y x y -=-D 【答案】D【解析】【分析】根据同类项的定义、单项式乘单项式法则和二次根式的乘法公式逐一判断即可.【详解】解:A .3x 和4x 不是同类项,不能合并,故错误;B .246236x x x ⋅= ,故错误;C .2242(3)9x y x y -=,故错误;D ==故选D .【点睛】此题考查的是整式的运算和二次根式的运算,掌握同类项的定义、单项式乘单项式法则和二次根式的乘法公式是解题关键.10.(2020·黑龙江大庆)若2|2|(3)0x y ++-=,则x y -的值为( )A .-5B .5C .1D .-1【答案】A【解析】【分析】根据绝对值和平方的非负性可求出x ,y 的值,代入计算即可;【详解】∵2|2|(3)0x y ++-=,∵20x +=,30y -=,∵2x =-,3y =,∵235-=--=-x y .故答案选A .【点睛】本题主要考查了绝对值和平方的非负性,准确计算是解题的关键.11.(2022·广东广州)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n 个图形需要2022根小木棒,则n 的值为( )A .252B .253C .336D .337【答案】B【解析】【分析】 根据图形的变化及数值的变化找出变化规律,即可得出结论.【详解】解:设第n 个图形需要an (n 为正整数)根小木棒,观察发现规律:第一个图形需要小木棒:6=6×1+0,第二个图形需要小木棒:14=6×2+2;第三个图形需要小木棒:22=6×3+4,…,∵第n 个图形需要小木棒:6n +2(n -1)=8n -2.∵8n -2=2022,得:n =253,故选:B .【点睛】本题考查了规律型中图形的变化类,解决该题型题目时,根据给定图形中的数据找出变化规律是关键. 12.(2022·内蒙古呼和浩特)以下命题:∵面包店某种面包售价a 元/个,因原材料涨价,面包价格上涨10%,会员优惠从打八五折调整为打九折,则会员购买一个面包比涨价前多花了0.14a 元;∵等边三角形ABC 中,D 是BC 边上一点,E 是AC 边上一点,若AD AE =,则3∠=∠BAD EDC ;∵两边及第三边上的中线对应相等的两个三角形全等;∵一列自然数0,1,2,3,55,依次将该列数中的每一个数平方后除以100,得到一列新数,则原数与对应新数的差,随着原数的增大而增大.其中真命题的个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据全等三角形的判定与性质、二次函数的性质等知识逐项判断即可, 本号资料皆来源于微信公众*号:#数学 【详解】解:∵项,会员原来购买一个面包需要0.85a 元,现在需要a ×(1+10%)×0.9=0.99a ,则会员购买一个面包比涨价前多花了0.99a -0.85a =0.14a 元,故∵项正确;∵项,如图,∵∵ABC是等边三角形,∵∵B=∵C=60°,∵∵B+∵BAD=∵ADE+∵EDC,∵C+∵EDC=∵AED,又∵AD=AE,∵∵ADE=∵AED,∵∵B+∵BAD=∵ADE+∵EDC=∵C+∵EDC+∵EDC,本号资料皆来源于微#信:数学∵∵BAD=∵EDC+∵EDC=2∵EDC,故∵项错误;∵项,如图,∵ABC和∵DEF,AB=DE,AC=DF,AM是∵ABC的BC边上的中线,DN是∵DEF的边EF上的中线,AM=DN,即有∵ABC∵∵DEF,理由如下:延长AM至G点,使得AM=GM,连接GC,延长DN至H点,使得DN=NH,连接HF,∵AM是中线,∵BM=MC,∵AM=MG,∵AMB=∵GMC,∵∵AMB∵∵GMC,∵AB=GC,同理可证DE=HF,∵AM=DN,∵AG =2AM =2DN =DH ,∵AB =DE ,∵GC =HF ,∵结合AC =DF 可得∵ACG ∵∵DFH ,∵∵GAC =∵HDF ,同理可证∵GAB =∵HDE ,∵∵BAC =∵GAB +∵GAC =∵HDF +∵HDE =∵EDF ,∵AB =DE ,AC =DF ,∵∵ABC ∵∵DEF ,故∵正确;∵设原数为x ,则新数为21100x ,设原数与新数之差为y , 即21100y x x =-,变形为:21(50)25100y x =--+, 将x 等于0、1、2、3、55分别代入可知,y 随着x 的增大而增大,故∵正确;即正确的有三个,故选:C ,【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、二次函数的应用等知识,掌握全等三角形的判定与性质是解答本题的关键.13.(2022·广西玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A 处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A .4B .C .2D .0【答案】B【解析】【分析】由题意可分别求出经过2022秒后,红黑两枚跳棋的位置,然后根据正多边形的性质及含30度直角三角形的性质可进行求解.【详解】解:∵2022÷3=674,2022÷1=2022, 本号资料#皆来*源于微信公*众号:数学∵67461122,20226337÷=⋅⋅⋅⋅⋅÷=,∵经过2022秒后,红跳棋落在点A 处,黑跳棋落在点E 处,连接AE ,过点F 作FG ∵AE 于点G ,如图所示:在正六边形ABCDEF 中,2,120AF EF AFE ==∠=︒, ∵1,302AG AE FAE FEA =∠=∠=︒, ∵112FG AF ==,∵AG∵AE =故选B .【点睛】本题主要考查图形规律问题、勾股定理、含30度直角三角形的性质及正多边形的性质,熟练掌握图形规律问题、勾股定理、含30度直角三角形的性质及正多边形的性质是解题的关键.14.(2021·内蒙古)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3- 【答案】C【解析】【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.15.(2021·江苏苏州)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b +等于( ) A .2-B .1-C .1D .2【答案】A【解析】【分析】 先化简式子,再利用配方法变形即可得出结果.【详解】解:∵22=b a b a a b ab++, ∵()2222==a b ab b a b a a b ab ab +-++, ∵两个不等于0的实数a 、b 满足0a b +=, ∵()22-2===-2a b ab b a ab a b ab ab+-+, 故选:A .【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.16.(2021·山东临沂)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C【解析】【分析】 根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=, 再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=, ...,∵再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=, 此时132132⨯=mg , 故选C .【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.17.(2020·四川眉山)已知221224a b a b +=--,则132a b -的值为( ) A .4B .2C .2-D .4-【答案】A【解析】【分析】根据221224a b a b +=--,变形可得:()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭,因此可求出1a =,2b =-,把a 和b 代入132a b -即可求解. 【详解】 ∵221224a b a b +=-- ∵()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭ 即2(1)0a -=,21(1)02b += ∵求得:1a =,2b =-∵把a 和b 代入132a b -得:131(2)42⨯-⨯-= 故选:A【点睛】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键. 18.(2020·内蒙古呼和浩特)下列运算正确的是( )A 12±B .()325ab ab =C .22422()xy xy y x y x y x y x y y x ⎛⎫⎛⎫--+++=+ ⎪ ⎪--⎝⎭⎝⎭ D .223152845c a c c ab ab a-÷=- 【答案】C【解析】【分析】分别根据二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则判断即可.【详解】解:A 12===,故选项错误; B 、()3236ab a b =,故选项错误;C 、2422xy xy y x y x y x y y x ⎛⎫⎛⎫--+++ ⎪ ⎪--⎝⎭⎝⎭=()()()22422x y x y y x xy xy y x y x y y x y x ⎛⎫-+-⎛⎫-++ ⎪ ⎪ ⎪----⎝⎭⎝⎭=()()22x y x y x y y x+-⋅--- =()2x y +,故选项正确;D 、22222315348481510c a c c ab c ab ab ab a c a -÷=⨯=--,故选项错误; 故选C.【点睛】本题考查了二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则,解题的关键是学会计算,掌握运算法则.19.(2020·青海)下面是某同学在一次测试中的计算:∵22352m n mn mn -=-;∵()326224a b a b a b ⋅-=-;∵()235a a =;∵()32()a a a -÷-=,其中运算正确的个数为( ) A .4个B .3个C .2个D .1个【答案】D【解析】【分析】 根据整式的减法、整式的乘除法、幂的乘方逐个判断即可.【详解】23m n 与25mn 不是同类项,不可合并,则∵错误 本号资料*皆来源于微信:数学()332251122244a b a b a b a b ++⋅-=-=-,则∵错误 ()23326a a a ⨯==,则∵错误 ()33312()a a aa a a -÷=-÷-==,则∵正确 综上,运算正确的个数为1个故选:D .【点睛】 本题考查了整式的减法、整式的乘除法、幂的乘方,熟记整式的运算法则是解题关键.20.(2020·广西柳州)下列多项式中,能用平方差公式进行因式分解的是( )A .a 2﹣b 2B .﹣a 2﹣b 2C .a 2+b 2D .a 2+2ab +b 2 【答案】A【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、a 2﹣b 2符合平方差公式的特点,能用平方差公式进行因式分解;B 、﹣a 2﹣b 2两平方项符号相同,不能用平方差公式进行因式分解;C 、a 2+b 2两平方项符号相同,不能用平方差公式进行因式分解;D 、a 2+2ab +b 2是三项,不能用平方差公式进行因式分解.故选:A .【点睛】本题考查了用平方差公式进行因式分解.熟记平方差公式的结构特点是解题的关键.平方差公式:()()22a b a b a b -=+-. 本号资料皆来源于微信@公*众号:数#学21.(2022·内蒙古通辽)下列命题:∵()3235m n m n ⋅=;∵数据1,3,3,5的方差为2;∵因式分解()()3422x x x x x -=+-;∵平分弦的直径垂直于弦;∵1≥x .其中假命题的个数是( )A .1B .3C .2D .4【答案】C【解析】【分析】根据积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,逐项判断即可求解.【详解】解:∵()3362m n m n ⋅=,故原命题是假命题; ∵数据1,3,3,5的平均数为()1133534+++= ,所以方差为()()()()222211333335324⎡⎤-+-+-+-=⎣⎦,是真命题;∵()()()324422x x x x x x x -=-=+-,是真命题;∵平分弦(不是直径)的直径垂直于弦,故原命题是假命题;∵10x -≥,即1≥x ,是真命题;∵假命题的个数是2.故选:C【点睛】本题主要考查了积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,熟练掌握相关知识点是解题的关键.22.(2021·广西贺州)多项式32242x x x -+因式分解为( )A .()221x x -B .()221x x +C .()221x x -D .()221x x + 【答案】A【解析】【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:32242x x x -+()()2222121x x x x x =-+=- 故答案选:A .【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.23.(2021·四川眉山)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a +B .1a a +C .1a a -D .21a a + 【答案】B【解析】【分析】 小括号先通分合并,再将除法变乘法并因式分解即可约分化简.【详解】 解:原式()()()()221111111=11a a a a a a a a a a a a+-+--++⨯=⨯=--故答案是:B .【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则. 24.(2020·浙江金华)下列多项式中,能运用平方差公式分解因式的是( )A .22a b +B .22a b -C .22a b -+D .22a b --【答案】C【解析】【分析】根据平方差公式的定义判断即可;【详解】A 、原式不能利用平方差公式进行因式分解,不符合题意;B 、原式不能利用平方差公式进行因式分解,不符合题意;C 、原式()()b a b a =-+,能利用平方差公式进行因式分解,符合题意;D 、原式不能利用平方差公式进行因式分解,不符合题意,故选:C .【点睛】本题主要考查了平方差公式的应用,准确判断是解题的关键.25.(2020·湖南益阳)下列因式分解正确的是( ) 本号资料皆来源于微信:数学第六*感A .()()()()a a b b a b a b a b ---=-+B .2229(3)a b a b -=-C .22244(2)a ab b a b ++=+D .2()a ab a a a b -+=-【答案】C【解析】【分析】利用提公因式法分解因式和平方差公式以及完全平方公式进行分解即可得到答案.【详解】A 、2()()()()()a a b b a b a b a b a b ---=--=-,故此选项错误;B 、229(3)(3)a b a b a b -=+-,故此选项错误;C 、22244(2)a ab b a b ++=+,故此选项正确;D 、2(+1)a ab a a a b -+=-,故此选项错误.故选:C .【点睛】此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.26.(2020·内蒙古通辽)从下列命题中,随机抽取一个是真命题的概率是( )(1)无理数都是无限小数;(2)因式分解()()211ax a a x x -=+-;(3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ;(4)弧长是20cm π,面积是2240cm π的扇形的圆心角是120︒.A .14B .12C .34D .1【答案】C【解析】【分析】 分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解()()211ax a a x x -=+-,是真命题,(3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ,是真命题,(4)设扇形半径为r ,圆心角为n ,∵弧长是20cm π,则180n r π=20π,则3600nr =, ∵面积是2240cm π,则2360n r π=240π,则2nr =360×240, 则2360240243600nr r nr ⨯===,则n=3600÷24=150°, 故扇形的圆心角是150︒,是假命题,则随机抽取一个是真命题的概率是34,故选C.【点睛】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.二、填空题27.(2022·江苏常州)计算:42÷=m m_______.【答案】2m【解析】【分析】根据同底数幂的除法运算法则即可求出.【详解】解:422m m m÷=.故答案为:2m.【点睛】本题主要考查同底数幂的除法,掌握同底数幂的除法法则是解题的关键.28.(2022·吉林)篮球队要购买10个篮球,每个篮球m元,一共需要__________元.(用含m的代数式表示)【答案】10m【解析】【分析】根据“总费用=购买篮球的数量⨯每个篮球的价格”即可得.【详解】解:由题意得:一共需要的费用为10m元,故答案为:10m.【点睛】本题考查了列代数式,正确找出等量关系是解题关键.29.(2022·天津)计算1)的结果等于___________.【答案】18【解析】【分析】根据平方差公式即可求解.【详解】解:221)119118=-=-=,故答案为:18.【点睛】本题考查了平方差公式的应用,熟练掌握平方差公式的展开式是解题的关键.30.(2022·四川广安)已知a +b =1,则代数式a 2﹣b 2 +2b +9的值为________.【答案】10【解析】【分析】根据平方差公式,把原式化为()()29a b a b b +-++,可得9a b ++,即可求解.【详解】解:a 2﹣b 2 +2b +9()()29a b a b b =+-++29a b b =-++9a b =++19=+10=故答案为:10【点睛】本题主要考查了平方差公式的应用,利用整体代入思想解答是解题的关键.31.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD 的周长为26,则正方形d 的边长为______. 本号*资料皆来源于@微信:数学第*六感【答案】5【解析】【分析】设正方形a、b、c、d的边长分别为a、b、c、d,分别求得b=13c,c=35d,由“优美矩形”ABCD的周长得4d+2c=26,列式计算即可求解.【详解】解:设正方形a、b、c、d的边长分别为a、b、c、d,∵“优美矩形”ABCD的周长为26,∵4d+2c=26,∵a=2b,c=a+b,d=a+c,∵c=3b,则b=13 c,∵d=2b+c=53c,则c=35d,∵4d+65d =26,∵d=5,∵正方形d的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.32.(2022·黑龙江大庆)已知代数式22(21)4a t ab b+-+是一个完全平方式,则实数t的值为____________.【答案】52或32-【解析】【分析】直接利用完全平方公式求解.【详解】解:∵代数式22(21)4a t ab b +-+是一个完全平方式,∵()()()222222(21)4222a t ab b a b a b a b +-+++±=±±⋅⋅=,∵214t -=±, 解得52t =或32t =-, 故答案为:52或32- 【点睛】本题考查了完全平方公式的运用,熟记完全平方公式的特点是解题的关键.33.(2022·广西)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.【答案】14【解析】【分析】先根据2x =是关于x 的一元一次方程3ax b +=的解,得到23a b +=,再把所求的代数式变形为()()22221a b a b +++-,把23a b +=整体代入即可求值.【详解】解:∵2x =是关于x 的一元一次方程3ax b +=的解,∵23a b +=,∵2244421a ab b a b ++++-()()22221a b a b =+++-23231=+⨯- 14=.故答案为:14.【点睛】本题考查了代数式的整体代入求值及一元一次方程解的定义,把所求的代数式利用完全平方公式变形是解34.(2021·贵州黔西)已知2a ﹣5b =3,则2+4a ﹣10b =________.【答案】8【解析】【分析】先变形得出2+4a ﹣10b =2+2(2a ﹣5b ),再代入求出答案即可.【详解】解:∵2a ﹣5b =3,∵2+4a ﹣10b=2+2(2a ﹣5b )=2+2×3=8,故答案为:8.【点睛】本题考查了求代数式的值,掌握整体代入法是解此题的关键.35.(2021·贵州铜仁)如图所示:是一个运算程序示意图,若第一次输入1,则输出的结果是______________;【答案】11【解析】【分析】把x =1代入运算程序的y =6<9,无法输出,再把x =2代入运算程序得y =11>9,输出答案,问题得解.【详解】解:把x =1代入223y x x =++得y =1+2+3=6<9,无法输出,∵把x =1+1=2代入223y x x =++得y =4+4+3=11>9,输出答案.【点睛】本题考查了根据运算程序进行计算,理解运算程序是解题关键.36.(2021·河北)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为___________;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片___________块.【答案】 22a b + 4【解析】【分析】(1)直接利用正方形面积公式进行计算即可;(2)根据已知图形的面积公式的特征,利用完全平方公式即可判定应增加的项,再对应到图形上即可.【详解】解:(1)∵甲、乙都是正方形纸片,其边长分别为,a b∵取甲、乙纸片各1块,其面积和为22a b +;故答案为:22a b +.(2)要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,则它们的面积和为224a b +,若再加上4ab (刚好是4个丙),则()222442a b ab a b ++=+,则刚好能组成边长为2+a b 的正方形,图形如下所示,所以应取丙纸片4块.故答案为:4.【点睛】本题考查了正方形的面积公式以及完全平方公式的几何意义,解决本题的关键是牢记公式特点,灵活运用公式等,本题涉及到的方法为观察、假设与实践,涉及到的思想为数形结合的思想.37.(2020·宁夏)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.【答案】27【解析】【分析】根据题意得出a2+b2=15,(b-a)2=3,图2中大正方形的面积为:(a+b)2,然后利用完全平方公式的变形求出(a+b)2即可.【详解】解:由题意可得在图1中:a2+b2=15,(b-a)2=3,图2中大正方形的面积为:(a+b)2,∵(b-a)2=3a2-2ab+b2=3,∵15-2ab=3∵(a+b )2=a 2+2ab+b 2=15+12=27,故答案为:27.【点睛】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.38.(2022·辽宁锦州)分解因式:2232x y xy y -+=____________.【答案】2()y x y -【解析】【分析】先提取公因数y ,再利用完全平方公式进行二次分解.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:222223(2)(2)=-++=--x y xy y x xy y y x y y ;故答案为:2()y x y -【点睛】本题考查了提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式. 39.(2022·贵州黔东南)分解因式:2202240442022x x -+=_______.【答案】()220221x -【解析】【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式=()()2220222120221x x x -+=-; 故答案为()220221x -.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.40.(2020·浙江)化简:2121x x x +++=_____. 【答案】11x +【分析】先将分母因式分解,再根据分式的基本性质约分即可.【详解】2121x x x +++ =21(1)x x ++ =11x +. 故答案为:11x +. 【点睛】本题考查了分式的除法以及利用完全平方公式因式分解,解答本题的关键是掌握分式的基本性质以及因式分解的方法.41.(2022·浙江丽水)如图,标号为∵,∵,∵,∵的矩形不重叠地围成矩形PQMN ,已知∵和∵能够重合,∵和∵能够重合,这四个矩形的面积都是5.,AE a DE b ==,且a b >.(1)若a ,b 是整数,则PQ 的长是___________;(2)若代数式222a ab b --的值为零,则ABCD PQMNS S 四边形矩形的值是___________. 【答案】 -a b3+【解析】【分析】(1)根据图象表示出PQ 即可;(2)根据2220a ab b --=分解因式可得()()0a b a b -+-=,继而求得a b =+,根据这四个矩形的面积都是5,可得55,EP EN a b ==,再进行变形化简即可求解.(1)∵和∵能够重合,∵和∵能够重合,,AE a DE b ==,PQ a b ∴=-,故答案为:-a b ;(2)2220a ab b --=,2222222()2()()0a ab b b a b b a b a b ∴-+-=--=---=,0a b ∴-=或0a b -=,即a b =(负舍)或a b =+这四个矩形的面积都是5,55,EP EN a b ∴==,()()()()()()()()22555555ABCDPQMN a b a b a b a b S b a ab a b S a b a b a b b a ab⎛⎫++⋅++⋅ ⎪+⎝⎭∴===-⎛⎫----⋅ ⎪⎝⎭四边形矩形,2222222222222222a b ab a b a b a a b ab a b a b b ++++-===+-+-+,3=+【点睛】本题考查了代数式及其分式的化简求值,准确理解题意,熟练掌握知识点是解题的根据.本号资料皆来*源于微信公*众号:#数学42.(2022·四川自贡)化简:22a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________. 【答案】2aa +【解析】【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4--⋅+-+++ =2a 3(a 2)(a 2)2a 3a 2(a 2)-+-⋅+-++22222a aa a a -=+=+++ 故答案为2aa +本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键.43.(2021·四川内江)若实数x 满足210x x --=,则3222021x x -+=__.【答案】2020【解析】【分析】由等式性质可得21x x =+,21x x -=,再整体代入计算可求解.【详解】解:210--=x x ,21x x ∴=+,21x x -=,3222021x x -+2(1)22021x x x =+-+2222021x x x =+-+22021x x =-+12021=-+2020=.故答案为:2020.【点睛】本题主要考查因式分解的应用,将等式转化为21x x =+,21x x -=是解题的关键.44.(2021·广东)若1136x x +=且01x <<,则221x x -=_____. 【答案】6536-【解析】【分析】 根据1136x x +=,利用完全平方公式可得2125()36x x -=,根据x 的取值范围可得1x x -的值,利用平方差公式即可得答案.【详解】 ∵1136x x +=, ∵2211125()()436x x x x x x -=+-⋅=,∵1x x<, ∵1x x-=56-, ∵221x x -=11()()x x x x +-=135()66⨯-=6536-, 故答案为:6536-【点睛】本题考查了完全平方公式及平方差公式,准确运用公式是解题的关键.45.(2021·湖北十堰)已知2,33xy x y =-=,则322321218x y x y xy -+=_________.本号资料皆来源于微信:数学第*六感【答案】36【解析】【分析】先把多项式因式分解,再代入求值,即可.【详解】∵2,33xy x y =-=,∵原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键.46.(2020·湖南)阅读理解:对于x 3﹣(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式:@ 本@号资料皆来源于微信:数学 x 3﹣(n 2+1)x +n =x 3﹣n 2x ﹣x +n =x (x 2﹣n 2)﹣(x ﹣n )=x (x ﹣n )(x +n )﹣(x ﹣n )=(x ﹣n )(x 2+nx ﹣1).理解运用:如果x 3﹣(n 2+1)x +n =0,那么(x ﹣n )(x 2+nx ﹣1)=0,即有x ﹣n =0或x 2+nx ﹣1=0, 因此,方程x ﹣n =0和x 2+nx ﹣1=0的所有解就是方程x 3﹣(n 2+1)x +n =0的解.解决问题:求方程x 3﹣5x +2=0的解为_____.【答案】x =2或x =﹣或x =﹣1.【解析】【分析】将原方程左边变形为x 3﹣4x ﹣x +2=0,再进一步因式分解得(x ﹣2)[x (x +2)﹣1]=0,据此得到两个关于x 的方程求解可得.【详解】解:∵x 3﹣5x +2=0,∵x 3﹣4x ﹣x +2=0,∵x (x 2﹣4)﹣(x ﹣2)=0,∵x (x +2)(x ﹣2)﹣(x ﹣2)=0,则(x ﹣2)[x (x +2)﹣1]=0,即(x ﹣2)(x 2+2x ﹣1)=0,∵x ﹣2=0或x 2+2x ﹣1=0,解得x =2或x =﹣1故答案为:x =2或x =﹣或x =﹣1.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到解方程的方法.三、解答题47.(2021·吉林长春)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =. 【答案】4,5a【解析】【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题.【详解】 221a a a a224a a a =-+-4a =-当4a =时,原式44-=【点睛】本题考查了整式的混合运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.48.(2021·湖南永州)先化简,再求值:()()212(2)x x x +++-,其中1x =.【答案】25x +,7.【解析】【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将1x =代入求值即可得.【详解】解:原式22214x x x =+++-, 25x =+,将1x =代入得:原式2157=⨯+=.【点睛】本题考查了整式的化简求值,熟记完全平方公式和平方差公式是解题关键.49.(2021·河北)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.【答案】(1)410Q m n =+(2)52.310Q =⨯【解析】【分析】(1)进m 本甲种书和n 本乙种书共付款为2种书的总价,用单价乘以数量即可;(2)将书的数量代入(1)中结论,求解,最后用科学记数法表示.【详解】(1)410Q m n =+(2)43,351010m n =⨯⨯=43510410310Q ∴=⨯+⨯⨯⨯44453102310201 2.3100=+⨯=⨯=⨯⨯所以52.310Q =⨯.。
第2讲 整式和因式分解 九年级中考数学一轮复习课件(共24张PPT)
三、整式的运算(考点1,命题点1)
运算
符号语言
合并同类项 如a+4a=(1+4)a=5a
加
a+(b+c)=②__a_+_b_+__c___;a
减 去括号法则 -(b+c)=③__a_-__b_-__c__(“+
运
”不变,“-”要变)
算 加减运算法 一般地,几个整式相加减,如果
1. 方法:(1)提公因式法:(2)运用公式法:
2.步骤是“一提二套三查”; 考点四 数字的规律
当堂训练:( 12分钟)
命题点1 整式的运算
1.(-4x)2=( ) D
A.-8x2 B.8x2 C.-16x2
D.16x2
2.计算3a-2a的结果正确的是( ) B
A.1 B.a
C.-a
D.-5a
3.下列等式正确的是( ) B
来的式子叫代数式,代数式不含等号. 注意:单独的一个数或一个字母___是____(填“是”或 “不是”)代数式. 2.代数式求值:用数值代替代数式里的未知数,按照代 数式中的运算关系计算得出结果.
学生自学,老师巡视(5分钟)
二、整式的有关概念 1.单项式:由数或字母的积组成的式子叫做单项式.(其 中数字因数叫做这个单项式的_系__数___;一个单项式中,所 有字母的指数的和叫做这个单项式的次数.单独一个非零 的数的次数是0;单独一个字母,它的次数是1.)
A.x(x2-9) B.x(x-3)2
C.x(x+3)2 D.x(x+3)(x-3) 7.分解因式:a2+a=________a_(_a.+1) 8.分解因式:m2-4=________(_m_+__2_)_(_m_-.2)
命题点3 代数式及其求值
中考数学第一轮复习资料(超全)
中考一轮复习第一部分数与代数第一章数与式第1讲实数第2讲代数式第3讲整式与分式第1课时整式第2课时因式分解第3课时分式第4讲二次根式第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组第2课时分式方程第3课时一元二次方程第2讲不等式与不等式组第三章函数第1讲函数与平面直角坐标系第2讲一次函数第3讲反比例函数第4讲二次函数第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线第2讲三角形第1课时三角形第2课时等腰三角形与直角三角形第3讲四边形与多边形第1课时多边形与平行四边形第2课时特殊的平行四边形第3课时梯形第五章圆第1讲圆的基本性质第2讲与圆有关的位置关系第3讲与圆有关的计算第六章图形与变换第1讲图形的轴对称、平移与旋转第2讲视图与投影第3讲 尺规作图 第4讲 图形的相似 第5讲 解直角三角形第三部分 统计与概率第七章 统计与概率 第1讲 统计 第2讲 概率第一部分 数与代数第一章 数与式 第1讲 实数考点一、实数的概念及分类 (3分) 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分) 1、相反数实数与它的相反数时一对数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= -b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
第一轮 第一单元 第一章 第2讲 整式
知识梳理
1.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或字 母连接而成的式子叫做代数式.
2.单项式:由数或字母的________组成的代数式叫做单项式,单 项式中的________叫做这个单项式的系数;单项式中的所有字 母的________,叫做这个单项式的次数,如:-9x2y3 的系数 是-9,次数是 5.
3.多项式:几个单项式的________叫做多项式,在多项式中,每 个 单 项 式 叫 做 多 项 式 的 ________ , 其 中 次 数 最 高 的 项 的 ________ 叫 做 这 个 多 项 式 的 次 数 , 不 含 字 母 的 项 叫 做 ________,如:多项式-2x2+4x-1 有________项,它们分别 是________,其中-1 是常数项,这个多项式是二次三项式.
A.-8x2 B.8x2 C.-16x2 D.16x2
3.(2017 广东)下列运算正确的是( )
A.a+2a=3a2
B.a3·a2=a5
C.(a4)2=a6
D.a4+a2=a4
4.(2016 广东)已知方程 x-2y+3=8,则整式 x-2y 的值为( ) A.5 B.10 C.12 D.15
5.(2016 广东)先化简,再求值:a+a 3·a2+66a+9+2aa2--96,其中 a = 3-1.
典型错题及分析
例 1 (2017 北京)如果 a2+2a-1=0,那么代数式a-a4·a-a22的 值是( )
A.-3 B.-1 C.1 D.3
【易错点分析】本题考察整体代入法,由题目条件 a2+2a-1 =0,可能会有部分同学通过解方程去计算 a 值,再代入求值, 导致计算量较大,出现错误.本题代数式括号内通分后分子为 a2-4,可根据平方差公式因式分解为a+2a-2,最后化简的 结果为 a2+2a,用整体代入法更快解决,因此本题正确答案选 C.
一轮复习 数第1章数与式 第2节整式
A.a6
B.-a6
C.-a5
D.a5
A.-6
B.6
C.-2或6
D.-2或30
3.多项式2ab-ab3的次数及最高次项的系数分别是
A.3,-1
B.4,-1
C.6,-1
D.4, 1
(B ) (B )
4.下列各组中,不是同类项的是
A.52与25
B.-ab与ba
C.0.2a2b与-15a2b
D.a2b3与-a3b2
5.下列运算正确的是
A.3a×2a=6a
C.(2a2)3=6a6
D.a2+a2=a4
【解析】 根据“同底数相除,底数不变,指数相减”知a6÷a3= a6-3=a3,选项A正确;根据“同底数相乘,底数不变,指数相加”知 a4·a2=a4+2=a6,选项B错误;根据“积的乘方,等于积中各因式乘方 的积”知(2a2)3=23×(a2)3=8a6,选项C错误;根据“合并同类项法则” 知a2+a2=(1+1)a2=2a2,选项D错误.
●考点三 整式的运算 1.同类项、合并同类项 (1)同类项:所含字母相同,并且__相__同__字__母__的指数也分别相同的项 叫做同类项. (2)合并同类项:把多项式中的同类项合并成一项,叫做合并同类 项.其法则是:同类项的系数相加,所得的结果作为系数,字母和字母 的__指__数__不变.
2.幂的运算性质 当a≠0,m,n为整数时,am·an=am+n,am÷an=_a_m_-__n_,(am)n= __a_m_n__,(ab)n=__a_nb_n__. 3.整式的运算 (1)整式的加减运算的实质是:去括号、__合__并__同__类__项___. (2)整式乘除运算
项式的系数是指单项式中的数字因数,包括前面的符号.如本题
中考数学复习-第二课 整式含因式分解课件人教版
[例1] 求减去-x3+2x2-3x-1的差为-2x2+3x-2的多项式
解:(-x3+2x2-3x-1)+(-2x2+3x-2) =-x3+2x2-3x-1-2x2+3x-2=-x3-3 答:所求多项式为:-x3-3。 评析:把一个代数式看成整体,添上括号。利用已 知减数和差,求被减数应该用加法运算。
1、整式加减的一般步骤是: (1)如果有括号,那么要先去括号; (2)如果有同类项,再合并同类项; 2、 去(添)括号都是多项式的恒等变形; 去(添)括号时一定对照法则把去掉(添上)括号与括号 的符号看成统一体,不能拆开。 遇到括号前面是“-”时,容易发生漏掉括号内一部分 项的变号,所以,要注意“各项”都要变号。不是只变 第一项的符号。
提示:先设被减数为A,可由已知求出多项式A, 再计算A-(3x2-5x+1)
1.整数指数幂的运算法则: am· an=am+n(m,n都是正整数) 即同底数幂相乘,底数不变,指数相加.
(am)n=amn(m,n都是正整数)
即幂的乘方,底数不变,指数相乘. (ab)n=anbn(n为正整数) 即积的乘方,等于把积的每一个因式分别乘方, 再把所得的幂相乘.
4
评析:对含有两个或两个以上字母的多项式重新排列,先要 确定是按哪个字母升(降)幂排列,再将常数项或不含这个 字母的项按照升幂排在第一项,降幂排在最后一项。
1、对于同类项应从概念出发,掌握判断标准: (1)字母相同; (2)相同字母的指数相同; (3)与系数无关; (4)与字母的顺序无关。 2、合并同类项是整式加减的基础。法则:合并同类项, 只把系数相加减,字母及字母的指数不变。 注意以下几点:(前提:正确判断同类项) (1)常数项是同类项,所以几个常数项可以合并; (2)两个同类项系数互为相反数,则这两项的和等于0; (3)同类项中的“合并”是指同类项系数求和,把所得到 结果作为新的项的系数,字母与字母的指数不变。 (4)只有同类项才能合并,不是同类项就不能合并。
中考数学一轮教材梳理复习课件:第2课整式(含因式分解)
首页
下一页
11.(2019·广东)如图 1 所示的图形是一个轴对称 图形,且每个角都是直角,长度如图所示,小 明按图 2 所示方法玩拼图游戏,两两相扣,相 互间不留空隙,那么小明用 9 个这样的图形(图 1)拼出来的图形的总长度是__a_+__8_b__(结果用含 a,b 代数式表示).
首页
下一页
9.(1)(2020·金华)下列多项式中,能运用平方差公式分解因
式的是( C )
A.a2+b2
B.2a-b2
C.a2-b2
D.-a2-b2
(2)(2020·自贡)分解因式:3a2-6ab+3b2=__3_(_a_-__b_)_2_;
(3)(2020·贵州)把多项式 xy2-4x 分解因式,结果是
首页
下一页
三、解答题
14.(2020·随州)先化简,再求值:a(a+2b)- 2b(a+b),其中 a= 5 ,b= 3 .
解:原式=a2+2ab-2ab-2b2=a2-2b2. 当 a= 5 ,b= 3 时, 原式=( 5 )2-2×( 3 )2=5-6=-1.
首页
下一页
15.(2020·深圳)先化简,再求值:a2-a+2a1+1
首页
下一页
12.(2020·海口)已知 x-2y=-1,则代数式 1-2x +4y 的值为__3__.
首页
下一页
13.(2019·甘肃)如图,每一幅图中有若干个大小不 同的菱形,第 1 幅图中有 1 个菱形,第 2 幅图中 有 3 个菱形,第 3 幅图中有 5 个菱形,如果第 n 幅图中有 2 019 个菱形,则 n=___1_0_1_0___.
中考数学总复习 第2讲 整式及因式分解二次函数(基础讲
第2讲整式及因式分解考标要求考查角度1.明确字母表示数的真实内涵及其规范的书写格式,能用代数式探索有关的规律.2.会用语言文字叙述代数式的意义,同时掌握求代数式的值的方法.3.理解同类项的概念,掌握合并同类项的法则和去括号的法则以及乘法公式,能准确地进行整式的加、减、乘、除、乘方等混合运算.4.能对多项式进行因式分解.整式作为初中数学的基础内容之一,在中考试题中多以填空题和选择题的形式命题,重点考查其基本概念及运算法则,同时也会设计一些新颖的探索与数、式有关的规律性问题.知识梳理一、整式的有关概念1.整式整式是单项式与__________的统称.2.单项式单项式是指由数字或字母的乘积组成的式子;单项式中的________因数叫做单项式的系数;单项式中所有字母指数的____叫做单项式的次数.3.多项式几个单项式的______叫做多项式;多项式中,每一个________叫做多项式的项,其中不含字母的项叫做常数项;多项式中__________项的次数就是这个多项式的次数.二、整数指数幂的运算正整数指数幂的运算法则:a m·a n=______,(a m)n=______,(ab)n=a n b n,a ma n=a m-n(m,n是正整数).三、同类项与合并同类项1.同类项所含字母相同,并且相同字母的______也分别相同的项叫做同类项.2.合并同类项把多项式中的同类项合并成一项叫做____________,合并的法则是系数相加,所得的结果作为合并后的______,字母和字母的指数不变.四、求代数式的值1.代数式的值一般地,用数值代替代数式里的字母,按照代数式指明的运算关系计算出的结果就叫做代数式的值.2.求代数式的值的基本步骤(1)代入:一般情况下,先对代数式进行化简,再将数值代入;(2)计算:按代数式指明的运算关系计算出结果.五、整式的运算1.整式的加减(1)整式的加减实质就是合并同类项;(2)整式加减的步骤:有括号,先去括号;有同类项,再合并同类项.注意去括号时,如果括号前面是负号,括号里各项的符号要______.2.整式的乘除(1)整式的乘法.①单项式与单项式相乘:把______、__________分别相乘,作为积的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:m (a +b +c )=ma +mb +mc .③多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nB . (2)整式的除法.①单项式除以单项式:把系数、同底数幂相除,作为商的因式,对于只在被除式里含有的字母,则连同它的______作为商的一个因式.②多项式除以单项式:(a +b )÷m =a ÷m +b ÷m . 3.乘法公式(1)平方差公式:(a +b )(a -b )=a 2-b 2;(2)完全平方公式:(a ±b )2=a 2±2ab +b 2. 六、因式分解1.因式分解的概念把一个多项式化成几个整式的____的形式,叫做多项式的因式分解. 2.因式分解的方法 (1)提公因式法.公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法.①运用平方差公式:a 2-b 2=__________.②运用完全平方公式:a 2±2ab +b 2=________. 3.因式分解的一般步骤一提(提取公因式法);二套(套公式法).一直分解到不能分解为止. 自主测试1.(2012福建福州)下列计算正确的是( )A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 72.下列各式中,与x 2y 是同类项的是( )A .xy 2B .2xyC .-x 2yD .3x 2y 23.(2012四川绵阳)图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空白部分的面积是( )A .2mnB .(m +n )2C .(m -n )2D .m 2-n 24.(2012四川宜宾)分解因式:3m 2-6mn +3n 2=__________.5.单项式-3π5m 2n 的系数是______,次数是______.考点一、整数指数幂的运算【例1】 (2012湖南郴州)下列计算正确的是( )A .a 2·a 3=a 6B .a +a =a 2C .(a 2)3=a 6D .a 8÷a 2=a 4解析:A 项是同底数幂的乘法,a 2·a 3=a 2+3=a 5,故A 项错误;B 项是整式的加减运算,a +a =2a ,故B 项错误;C 项是幂的乘方,(a 2)3=a 2×3=a 6,故C 项正确;D 项是同底数幂的除法,a 8÷a 2=a 8-2=a 6,故D 项错误.答案:C方法总结 幂的运算问题除了注意底数不变外,还要弄清幂与幂之间的运算是乘、除还是乘方,以便确定结果的指数是相加、相减还是相乘.触类旁通1下列运算中,正确的是( )A .x 3·x 2=x 5B .x +x 2=x3C .2x 3÷x 2=xD .⎝ ⎛⎭⎪⎫x 23=x 32考点二、同类项与合并同类项【例2】 单项式-13x a +b y a -1与3x 2y 是同类项,则a -b 的值为( )A .2B .0C .-2D .1解析:本题主要考查了同类项的概念及方程组的解法,由-13x a +b y a -1与3x 2y 是同类项,得⎩⎪⎨⎪⎧a +b =2,a -1=1,解得⎩⎪⎨⎪⎧a =2,b =0.所以a -b =2-0=2. 答案:A方法总结 1.同类项必须具备以下两个条件:(1)所含字母相同;(2)相同字母的指数分别相同.二者必须同时具备,缺一不可;2.同类项与项的系数无关,与项中字母的排列顺序无关,如xy 2与-y 2x 也是同类项. 3.根据同类项概念,相同字母的指数相同,列方程(组)是解此类题的一般方法.触类旁通2如果3x 2n -1y m 与-5x m y 3是同类项,则m 和n 的取值是( ) A .3和-2 B .-3和2 C .3和2 D .-3和-2 考点三、整式的运算【例3】 先化简,再求值:(a +b )(a -b )+(a +b )2-2a 2,其中a =3,b =-13.解:(a +b )(a -b )+(a +b )2-2a 2=a 2-b 2+a 2+2ab +b 2-2a 2=2ab ,当a =3,b =-13时,2ab =2×3×⎝ ⎛⎭⎪⎫-13=-2. 方法总结 整式的乘法法则和除法法则是整式运算的依据,必须在理解的基础上加强记忆,并在运算时灵活运用法则进行计算.使用乘法公式时,要认清公式中a ,b 所表示的两个数及公式的结构特征,注意套用公式.触类旁通3 已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值. 考点四、因式分解【例4】 (2012湖南常德)分解因式:m 2-n 2=__________. 答案:(m +n )(m -n )方法总结 (1)因式分解时有公因式的要先提取公因式,再考虑是否应用公式法或其他方法继续分解.(2)提取公因式时,若括号内合并的项有公因式,应再次提取;注意符号的变换y -x =-(x -y ),(y -x )2=(x -y )2.(3)应用公式法因式分解时,要牢记平方差公式和完全平方公式及其特点. (4)因式分解要分解到每一个多项式不能分解为止.1.(2012湖南常德)下列运算中,结果正确的是( )A .a 3·a 4=a 12B .a 10÷a 2=a 5C .a 2+a 3=a 5D .4a -a =3a 2.(2012湖南益阳)下列计算正确的是( )A .2a +3b =5abB .(x +2)2=x 2+4C .(ab 3)2=ab 6D .(-1)0=13.(2012湖南湘潭)因式分解:m 2-mn =__________.4.(2012湖南益阳)写出一个在实数范围内能用平方差公式分解因式的多项式:__________.5.(2012湖南怀化)当x =1,y =15时,3x (2x +y )-2x (x -y )=__________.6.(2012湖南株洲)一组数据为:x ,-2x 2,4x 3,-8x 4,…观察其规律,推断第n 个数据应为__________.1.将代数式x 2+4x -1化成(x +p )2+q 的形式为( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+42.如图所示,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a ±b )2=a 2±2ab +b 23.多项式__________与m 2+m -2的和是m 2-2m .4.若3x m +5y 2与x 3y n 的和是单项式,则n m=__________.5.若m -n =2,m +n =5,则m 2-n 2的值为__________.6.若2x =3,4y =5,则2x -2y的值为__________.7.给出3个整式:x 2,2x +1,x 2-2x .(1)从上面3个整式中,选择你喜欢的两个整式进行加法运算,若结果能因式分解,请将其因式分解;(2)从上面3个整式中,任意选择两个整式进行加法运算,其结果能因式分解的概率是多少?参考答案 【知识梳理】一、1.多项式 2.数字 和 3.和 单项式 次数最高二、a m +n a mn三、1.指数 2.合并同类项 系数 五、1.(2)变号2.(1)①系数 同底数幂 (2)①指数 六、1.积2.(2)①(a +b )(a -b ) ②(a ±b )2导学必备知识 自主测试1.A a +a =2a ,A 项正确;b 3·b 3=b 6,B 项错误;a 3÷a =a 2,C 项错误;(a 5)2=a 10,D 项错误.2.C 只有C 选项中相同字母的指数与x 2y 分别相同.3.C 因为长方形的长为2m ,宽为2n (m >n ),则小长方形的长为m ,宽为n ,小正方形的边长为(m -n ),所以面积是(m -n )2.4.3(m -n )2 原式=3(m 2-2mn +n 2)=3(m -n )2.5.-3π53探究考点方法触类旁通1.A A 项是同底数幂相乘,x 3·x 2=x3+2=x 5,B 项中的两项不是同类项,不能合并,C 项是单项式相除,2x 3÷x 2=(2÷1)x 3-2=2x ,D 项⎝ ⎛⎭⎪⎫x 23=x 323=x38.触类旁通 2.C 此题考查同类项概念和二元一次方程组的解法,由题意得⎩⎪⎨⎪⎧ 2n -1=m ,m =3,解得⎩⎪⎨⎪⎧m =3,n =2. 触类旁通3.分析:本题需先把2x -1=3进行整理,得出x 的值,把代数式进行化简,再把x 的值代入即可求出结果.解:由2x -1=3得x =2,又(x -3)2+2x (3+x )-7=x 2-6x +9+6x +2x 2-7=3x 2+2,∴当x =2时,原式=14.品鉴经典考题1.D a 3·a 4=a 7,所以A 项不正确;a 10÷a 2=a 8,所以B 项不正确;a 2与a 3不是同类项,不能合并,所以C 项不正确;4a -a =3a ,D 项正确.2.D 2a 与3b 不能合并,A 项不正确;(x +2)2=x 2+4x +4,B 项不正确;(ab 3)2=a 2b 6,C 项不正确;由任何一个不等于零的数的零次幂等于1,知D 项正确.3.m (m -n ) m 2-mn =m (m -n ).4.答案不唯一,如x 2-1.5.5 3x (2x +y )-2x (x -y )=6x 2+3xy -2x 2+2xy =4x 2+5xy .当x =1,y =15时,原式=4×12+5×1×15=4+1=5.6.(-2)n -1x n x 的系数为1=(-2)1-1,次数为1;-2x 2的系数为-2=(-2)2-1,次数为2;4x 3的系数为4=(-2)3-1,次数为3;-8x 4的系数为-8=(-2)4-1,次数为4;….所以第n 个数据的系数为(-2)n -1,次数为n ,即(-2)n -1x n.研习预测试题1.C x 2+4x -1=(x 2+4x +4)-4-1=(x +2)2-5.2.C 因为第一个图是一个大的正方形挖去了一个小的正方形,其面积表达式为a 2-b 2.第二个图是一个梯形,下底为2a ,上底为2b ,高为(a -b ),其面积为12(2a +2b )(a -b )=(a+b )(a -b ),所以两个图验证了公式:a 2-b 2=(a +b )(a -b ).3.2-3m 由题意得此多项式为(m 2-2m )-(m 2+m -2)=m 2-2m -m 2-m +2=2-3m . 4.14 由题意得m +5=3,n =2,所以m =-2,所以n m =2-2=122=14. 5.10 m 2-n 2=(m +n )(m -n )=5×2=10. 6.35 2x -2y =2x ÷22y =2x ÷4y =3÷5=35. 7.解:(1)x 2+(2x +1)=x 2+2x +1=(x +1)2或x 2+(x 2-2x )=2x 2-2x =2x (x -1)或(2x+1)+(x 2-2x )=2x +1+x 2-2x =x 2+1.(2)由(1)可知,概率为23.。
2016数学一轮复习1.2整式与因式分解
重庆中考真题
命题点1 整式的运算(必考)
1、(2015A)计算 a2b 3 的结果是( )
A. a6b3 B.a2b3 C. a5b3 D. a6b
2、(2014B)计算 5x2 2x2 的结果是( )
A. 3 B. 3x C. 3x2 D. 3x4
3、(2014A)计算
的结果是( )
A. x2 B.2x2 C. 2x4 D.2x10
命题点3 因式分解 (2008年12题)分解因式:ax ay
4、(2010)计算
的结果是( )
A. 2x B. 2x5 C. 2x6 D. x5
温馨提示:为更好地满足您的学习和使用需求,课件在下载后可以自由编辑,请您根据实际情况进行调整!Thank you for
命题点2 整式的化简
1、(2015A卷21题)计算:y2x y x y2
2、(2015B卷21题)计算:2a 12 a 11 2a
中考数学第一轮总复习
第一章 数与式
第二节 整式与因式分解
考情概览
• 整式在近8年重庆中考中每年每套试卷均考查1 道,分值为4-5分,其中选择题考查8次,解 答题考查2次,属于容易题。
• 本节常考知识点有: 1、整式的运算; 2、整式的化简; 3、因式分解。
知识点梳理
知识点1:整式的相关概念 1、单项式
单乘多:用单项式去乘多项式的每一项,再把所得的积相加。 多乘多:先用一个多项式的每一项乘另一个多项的每项,再 把所得的积相加。
4、整式的除法
单除单:把系与同底幂分别相除,作为商的因式,对于只在 被除式里含有的字母,则连同它的指数作为商一个因式。
多除单:先把这个多项式的每一项分别除以这个单项式,然 后把所得的商相加。
中考数学第2讲整式与因式分解复习教案2北师大版
课题:第二讲整式与因式分解学习目标:1. 了解单项式、多项式、整式的概念,弄清它们与代数式之间的联系和区别。
2. 理解同类项的概念,掌握合并同类项的法则和去、添括号的法则。
3. 掌握幂的运算、整式的乘除、平方差公式和完全平方公式.4。
能准确地进行整式的加、减、乘、除、乘方混合运算。
5.会根据多项式的结构特征,灵活选择合适的方法进行因式分解.6. 能利用因式分解的方法进行整式的化简和求值。
教学重点与难点:重点:能够掌握整式的运算法则和因式分解.难点:概念的理解及其运用乘法公式与因式分解知识解决实际问题.教法与学法指导:本节课主要采用“知识回顾-—题组练习——例题讲解-—归纳总结——升华应用”的教学模式,层层推进,来巩固本章的主要内容,达到巩固基础、提升能力的目的. 学生通过自主学习、小组合作,展开互动性学习,让学生体会到学习数学的成就感.课前准备:教师准备:多媒体课件、导学稿。
学生准备:提前完成导学案的“基础知识梳理”.教学过程:一、基础知识之自我回顾课前请同学们翻阅课本浏览了七年级下册课本第2—49页及八年级下册课本第43—58页的内容,让大家熟记了概念、运算性质法则及公式等知识点,完成了知识梳理。
下面我们比一比,看谁做得最好。
(导学稿提前下发,学生在导学稿中填空。
)设计意图:提前告知学生本节课要求,让学生早作准备。
让学生“有备而来”,有利于提高学生的复习效果。
让学生以比赛选手身份展示自己复习成果,利于提高本节课的复效果。
有效地表明其身份— —你是本课的主人,一定要参与其中,为提高课堂效率打下基础。
【知识梳理】考点一 代数式1.2.代数式的值一般地,用 代替代数式里的 ,按照代数式指明的运算计算出的结果,叫做代数式的值.考点二 整式的有关概念1。
单项式:由数和字母的 组成的代数式叫做单项式。
单独一个数或 也是单项式.单项式中的 叫做这个单项式的系数;单项式中所有字母的 叫做这个单项式的次数.2。
初高中衔接-第2讲、因式分解
第2讲、因式分解知识点1、因式分解基本概念1、定义把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
例如:注:分解因式是多项式的恒等变形,要求等式左边必须是多项式。
实质上是多项式运算的逆运算。
2、作用因式分解是中学数学中最重要的恒等变形之一,广泛地应用于高中数学之中。
①解二次方程、一元二次不等式等需要因式分解转化乘积形式;②定义法、导数法证明函数单调性中变形、符号判定等;③三角形恒等变换对三角式子分解;④比较大小或者不等式证明,做差法因式分解判断符号。
3、分解步骤:(1)提:提负号,提公因数(公因式)①多项式的首项为负,应先提取负号,使括号内第一项系数是正的;②提取公因式,括号内切勿漏掉1;③要一次性提干净,并使每一个括号内的多项式都不能再分解。
(2)套:套公式平方差、立方差、完全平方式等;(3)分解:如果用上述方法不能分解,再尝试用十字相乘法、分组、拆项、补项法来分解。
注意:首项有负常提负,各项有“公”先提“公”;某项提出莫漏1;括号里面分到“底”再看能否套公式,后用十字相乘试一试,分组分解要合适。
4、分解原则:①分解因式的结果必须是以乘积的形式表示;②每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;③结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;④结果的多项式首项一般为正。
在一个公式内把其公因子抽出,即通过公式重组,然后再抽出公因子;⑤括号内的首项系数一般为正;⑥如有单项式和多项式相乘,应把单项式提到多项式前。
如a c b )(+要写成)(c b a +;⑦注意因式分解的范围,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。
知识点2、因式分解常用方法:公式法1、平方差公式:22()()a b a b a b -=+-两个数的平方差,等于这两个数的和与这两个数的差的积。
2、完全平方式:2222()a ab b a b ++=+2222()a ab b a b -+=-两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。
中考数学一轮复习第2讲整式与因式分解教案
第2讲:整式与因式分解一、复习目标1、在识记整式和因式分解知识点的基础上理解并能熟练的应用整式和因式分解知识点。
2、能结合具体情境创造性的综合应用因式分解解决问题。
二、课时安排1课时三、复习重难点1、分解因式及利用因式分解法解决问题。
2、整式的合并及变形计算。
四、教学过程(一)知识梳理整式的有关概念单项式定义:数与字母的________的代数式叫做单项式,单独的一个________或一个________也是单项式单项式次数:一个单项式中,所有字母的________ 叫做这个单项式的次数单项式系数:单项式中的叫做单项式的系数多项式定义:几个单项式的________叫做多项式多项式次数:一个多项式中,_____________ _的次数,叫做这个多项式的次数多项式系数:多项式中的每个________叫做多项式的项整式:________________统称整式同类项、合并同类项同类项概念:所含字母________,并且相同字母的指数也分别________的项叫做同类项,几个常数项也是同类项合并同类项概念:把中的同类项合并成一项叫做合并同类项,合并同类项后,所得项的系数是合并前各同类项的系数的,且字母部分不变整式的运算整式的加减实质就是____________.一般地,几个整式相加减,如果有括号就先去括号,再合并同类项幂的运算:同底数幂相乘,底数不变,指数相加. 即:a m·a n=________(m,n都是整数)幂的乘方,底数不变,指数相乘. 即:(a m)n=________(m,n都是整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即:(ab)n=________(n为整数)同底数幂相除,底数不变,指数相减. 即:a m÷a n=________(a≠0,m、n都为整数)整式的乘法:单项式与单项式相乘,把它们的分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即m(a+b+c)=多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即(m+n)(a+b)=整式的除法:单项式除以单项式,与分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式多项式除以单项式,先把这个多项式的每一项分别这个单项式,然后把所得的商相加乘法公式:平方差公式:(a+b)(a-b)=________完全平方公式:(a±b)2=________常用恒等变换:(1)a2+b2=____________=____________(2)(a-b)2=(a+b)2-因式分解的相关概念及分解基本方法公因式定义:一个多项式各项都含有的的因式,叫做这个多项式各项的公因式提取公因式法定义:一般地,如果多项式的各项都有公因式,可以把这个公因式提到括号外面,将多项式写成因式的乘积形式,即ma+mb+mc=________运用公式法:平方差公式a2-b2=___________完全平方公式a2+2ab+b2=________ ,a2-2ab+b2=________二次三项式x2+(p+q)x+pq=________(二)题型、方法归纳考点一 整式的有关概念技巧归纳:注意单项式次数、单项式系数的概念考点二 同类项、合并同类项技巧归纳:(1)同类项必须符合两个条件:第一所含字母相同,第二相同字母的指数相同,两者缺一不可.(2)根据同类项概念——相同字母的指数相同列方程(组)是解此类题的一般方法.考点三 整式的运算技巧归纳:(1)进行整式的运算时,一要注意合理选择幂的运算法则,二要注意结果的符号. (2)不要把同底数幂的乘法和整式的加减法混淆 (3)单项式的除法关键:注意区别“系数相除”与“同底数幂相除”的含义,一定不能把同底数幂的指数相除.(4)整式的运算顺序是:先计算乘除,再做整式的加减,整式加减的实质就是合并同类项,其中能运用乘法公式计算的应采用乘法公式进行计算.考点四 因式分解的相关概念及分解基本方法技巧归纳:(1)因式分解时有公因式的要先提取公因式,再考虑是否应用公式法或其他方法继续分解.(2)提公因式时,若括号内合并的项有公因式应再次提取;注意符号的变换(3)应用公式法因式分解时,要牢记平方差公式和完全平方式及其特点.(4)因式分解要分解到每一个多项式不能再分解为止.(三)典例精讲1、如果□×3ab=3a 2b ,则□内应填的代数式是( )A.abB.3abC.aD.3a答案:C2、在下列代数式中,次数为3的单项式是( )A .xy 2B .x 3-y 3C .x 3yD .3xy[解析]由单项式次数的概念可知次数为3的单项式是xy 2. 所以本题选项为A.3、如果单项式231123b a y y x x 与是同类项,那么a ,b 的值分别为( ) A .2,2 B .-3,2 C .2,3 D .3,2[解析] 依题意知两个单项式是同类项,根据相同字母的指数相同列方程,得 D点析:(1)同类项必须符合两个条件:第一所含字母相同,第二相同字母的指数相同,两者缺一不可.(2)根据同类项概念——相同字母的指数相同列方程(组)是解此类题的一般方法.4、下列运算中,正确的是( )A.a2·a3=a6 B.a3÷a2=aC.(a3)2=a9 D.a2+a2= a5[解析]因为a2·a3=a2+3=a5,a3÷a2=a3-2=a,(a3)2=a3×2=a6,a2+a2= 2a2.故选B.点析:(1)进行整式的运算时,一要注意合理选择幂的运算法则,二要注意结果的符号.(2)不要把同底数幂的乘法和整式的加减法混淆,如a3·a5 =a8和a3+a3=2a3. (a m)n和a n·a m也容易混淆.(3)单项式的除法关键:注意区别“系数相除”与“同底数幂相除”的含义,如6a5÷3a2=(6÷3)a5-2=2a3, 一定不能把同底数幂的指数相除.5、先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x[解析] 按运算法则化简代数式,再代入求值.解:原式=4x2-9-4x2+4x+x2-4x+4=x2-5,当x(-)2-5=3-5=-2.点析:整式的运算顺序是:先计算乘除,再做整式的加减,整式加减的实质就是合并同类项,其中能运用乘法公式计算的应采用乘法公式进行计算.6、分解因式(x-1)2-2(x-1)+1的结果是( )A.(x-1)(x-2) B. x2 C.(x+1)2 D. (x-2)2[解析] 首先把x-1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解.(x-1)2-2(x-1)+1=(x-1-1)2=(x-2)2.点析: (1)因式分解时有公因式的要先提取公因式,再考虑是否应用公式法或其他方法继续分解.(2)提公因式时,若括号内合并的项有公因式应再次提取;注意符号的变换y-x=-(x-y),(y-x)2=(x-y)2.(3)应用公式法因式分解时,要牢记平方差公式和完全平方式及其特点.(4)因式分解要分解到每一个多项式不能再分解为止.7、①是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图3-1②那样拼成一个正方形,则中间空的部分的面积是( )A.2mn B.(m+n)2 C.(m-n)2 D.m2-n2[解析] 中间空的部分的面积是(m+n)2-2m·2n=(m+n)2-4mn=(m-n)2.点析:(1)通过拼图的方法可验证平方差公式和完全平方公式,关键要能准确计算阴影部分的面积.(2)利用因式分解进行计算与化简,先把要求的代数式进行因式分解,再代入已知条件计算.(四)归纳小结本部分内容要求熟练掌握整式、同类项、合并同类项的有关概念及整式的运算、因式分解的相关概念及分解基本方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 整式及因式分解数式的值;能根据特定问题找到所需要的公式,并会代整式及因式分解主要考查式的运算,多项式的因式分解等考点一 整式的有关概念 1.整式整式是单项式与多项式的统称. 2.单项式单项式是指由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数.3.多项式几个单项式的和叫做多项式;多项式中,每一个单项式叫做多项式的项,其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数.考点二 整数指数幂的运算正整数指数幂的运算法则:a m ·a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n,a m an =a m -n (m ,n 是正整数).考点三 同类项与合并同类项1.所含字母相同,并且相同字母的指数也分别相同的单项式叫做同类项.2.把多项式中的同类项合并成一项叫做合并同类项,合并的法则是系数相加,所得的结果作为合并后的系数,字母和字母的指数不变.考点四 求代数式的值1.一般地,用数值代替代数式里的字母,按照代数式指明的运算关系计算出的结果就叫做代数式的值.2.求代数式的值的基本步骤:(1)代入:一般情况下,先对代数式进行化简,再将数值代入;(2)计算:按代数式指明的运算关系计算出结果.考点五 整式的运算 1.整式的加减(1)整式的加减实质就是合并同类项;(2)整式加减的步骤:有括号,先去括号;有同类项,再合并同类项.注意去括号时,如果括号前面是负号,括号里各项的符号要变号.2.整式的乘除 (1)整式的乘法①单项式与单项式相乘:把系数、同底数幂分别相乘,作为积的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:m (a +b +c )=ma +mb +mC .③多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nB . (2)整式的除法①单项式除以单项式:把系数、同底数幂相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:(a +b )÷m =a ÷m +b ÷m . 3.乘法公式(1)平方差公式:(a +b )(a -b )=a 2-b 2; (2)完全平方公式:(a ±b )2=a 2±2ab +b 2. 考点六 因式分解 1.因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 2.因式分解的方法 (1)提公因式法公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法①运用平方差公式:a 2-b 2=(a +b )(a -b ). ②运用完全平方公式:a 2±2ab +b 2=(a ±b )2.1.单项式-3π5m 2n 的系数是__________,次数是__________. 2.下列运算中,结果正确的是( ).A .a ·a =a 2B .a 2+a 2=a 4C .(a 3)2=a 5D .a 3÷a 3=a 3.下列各式中,与x 2y 是同类项的是( ). A .xy 2 B .2xy C .-x 2y D .3x 2y 2 4.如果a -3b =-3,那么代数式5-a +3b 的值是( ). A .0 B .2 C .5 D .8 5.把代数式mx 2-6mx +9m 分解因式,下列结果中正确的是().A .m (x +3)2B .m (x +3)(x -3)C .m (x -4)2D .m (x -3)26.下列运算正确的是( ).A .x 3·x 4=x 12B .(-6x 6)÷(-2x 2)=3x 3C .2a -3a =-aD .(x -2)2=x 2-47.(1)化简:(a +2b )(a -2b )-12b (a -8b );(2)先化简,再求值:(a +b )2+(a -b )(2a +b )-3a 2,其中a =-2-3,b =3-2;(3)在实数范围内分解因式:x 2-2x -4.一、整数指数幂的运算【例1】 下列运算正确的是( ). A .3ab -2ab =1 B .x 4·x 2=x 6 C .(x 2)3=x 5 D .3x 2÷x =2x解析:A 项是整式的加减运算,3ab -2ab =ab ,A 项错;B 项是同底数幂相乘,x 4·x 2=x 4+2=x 6,B 项正确;C 项是幂的乘方,(x 2)3=x 2×3=x 6,C 项错;D 项是单项式相除,3x 2÷x =(3÷1)x 2-1=3x ,D 项错.答案:B幂的运算问题除了注意底数不变外,还要弄清幂与幂之间的运算是乘、除还是乘方,以便确定结果的指数是相加、相减还是相乘.二、同类项与合并同类项【例2】 单项式-13x a +b ·y a -1与3x 2y 是同类项,则a -b 的值为( ).A .2B .0C .-2D .1解析:本题主要考查了同类项的概念及方程组的解法,由-13x a +b ·y a -1与3x 2y 是同类项,得⎩⎪⎨⎪⎧ a +b =2,a -1=1,得⎩⎪⎨⎪⎧a =2,b =0.∴a -b =2-0=2. 答案:A1.同类项必须具备以下两个条件:(1)所含字母相同;(2)相同字母的指数分别相同.二者必须同时具备,缺一不可; 2.同类项与项的系数无关,与项中字母的排列顺序无关,如xy 2与-y 2x 也是同类项;3.几个常数项都是同类项,如-1,5,12等都是同类项.三、整式的运算【例3】 先化简,再求值:(a +b )(a -b )+(a +b )2-2a 2,其中a =3,b =-13.解:(a +b )(a -b )+(a +b )2-2a 2=a 2-b 2+a 2+2ab +b 2-2a 2=2ab ,当a =3,b =-13时,2ab =2×3×⎝⎛⎭⎫-13=-2.整式的乘法法则和除法法则是整式运算的依据,必须在理解的基础上加强记忆,并在运算时灵活运用法则进行计算.使用乘法公式时,要认清公式中a ,b 所表示的两个数及公式的结构特征,不要犯类似下面的错误:(a+b)2=a2+b2,(a-b)2=a2-b2.四、因式分解【例4】 分解因式:-x 3-2x 2-x =__________.解析:由于多项式中有公因式-x ,先提公因式再用公式法.-x 3-2x 2-x =-x (x 2+2x +1)=-x (x +1)2. 答案:-x (x +1)2因式分解的一般步骤:(1)“一提”:先考虑是否有公因式,如果有公因式,应先提公因式;(2)“二套”:再考虑能否运用公式法分解因式.一般根据多项式的项数选择公式,二项式考虑用平方差公式,三项式考虑用完全平方公式;(3)分解因式,必须进行到每一个多项式因式都不能再分解为止.分解因式:4-a2+2ab-b2=__________.1.(2012江苏南京)计算(a2)3÷(a2)2的结果是().A.a B.a2C.a3D.a42.(2012福建福州)下列计算正确的是().A.a+a=2a B.b3·b3=2b3 C.a3÷a=a3D.(a5)2=a73.(2011山东枣庄)如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠,无缝隙),若拼成的矩形一边长为3,则另一边长是().A.m+3 B.m+6 C.2m+3 D.2m+64.(2012四川宜宾)分解因式:3m2-6mn+3n2=________.1.下列运算中,正确的是().A.4m+n=5mn B.-(m-n)=m+n C.(m2)3=m6D.m2÷m2=m2.把代数式mx2-my2分解因式,下列结果正确的是().A.m(x+y)2B.m(x-y)2 C.m(x+2y)2D.m(x+y)(x-y)3.已知代数式3x2-4x+6的值为9,则x2-43x+6的值为().A.7 B.18 C.12 D.94.如图所示,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式().A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b) D.(a±b)2=a2±2ab+b25.若3x m+5y2与x3y n的和是单项式,则n m=__________.6.若m2-n2=6,且m-n=3,则m+n=__________.7.若2x=3,4y=5,则2x-2y的值为__________.8.给出3个整式:x2,2x+1,x2-2x.(1)从上面3个整式中,选择你喜欢的两个整式进行加法运算,若结果能因式分解,请将其因式分解;(2)从上面3个整式中,任意选择两个整式进行加法运算,其结果能因式分解的概率是多少?9.观察下列各式(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;(x-1)(x4+x3+x2+x+1)=x5-1;……(1)试求26+25+24+23+22+2+1的值;(2)判断22 009+22 008+22 007+22 006+…+2+1的值的末位数.参考答案基础自主导学自主测试1.-3π53 2.A 3.C 4.D 5.D6.C7.解:(1)原式=a2-4b2-12ab+4b2=a2-12ab.(2)原式=a2+2ab+b2+2a2-ab-b2-3a2=ab.当a=-2-3,b=3-2时,原式=(-2-3)(3-2)=(-2)2-(3)2=1.(3)x2-2x-4=x2-2x+1-5=(x-1)2-5=(x-1+5)(x-1-5).规律方法探究变式训练(2+a-b)(2-a+b)知能优化训练中考回顾1.B 2.A 3.C 4.3(m-n)2模拟预测1.C 2.D 3.A 4.C 5.14 6.27.358.解:(1)x2+(2x+1)=x2+2x+1=(x+1)2或x2+(x2-2x)=2x2-2x=2x(x-1)或(2x+1)+(x2-2x)=2x+1+x2-2x=x2+1.(2)由(1)可知,概率为2 3.9.解:由给出的式子不难看出:(x-1)(x n+x n-1+…+x+1)=x n+1-1.(1)26+25+24+23+22+2+1=(2-1)(26+25+24+23+22+2+1)=27-1=127.(2)22 009+22 008+22 007+22 006+…+2+1=(2-1)(22 009+22 008+22 007+…+2+1)=22 010-1,∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,∴2n的个位数字按2,4,8,6循环出现,2 010=4×502+2.∴22 010的末位数是4.∴22 010-1的末位数是3.。