15.1 轴对称及其性质

合集下载

数学知识点:轴对称与轴对称图形的性质

数学知识点:轴对称与轴对称图形的性质

学习可以这样来看,它是一个潜移默化、厚积薄发的过程。

查字典数学网编辑了数学知识点:轴对称与轴对称图形的性质,希望对您有所帮助!①任何一对对应点所边线段被对称轴垂直平分②两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上③对应线段相等,对应线段所在的直线如果相交,交点在对称轴上④对应角相等希望同学们能够认真阅读数学知识点:轴对称与轴对称图形的性质,努力提高自己的学习成绩。

关于轴对称的知识点

关于轴对称的知识点

关于轴对称的知识点1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。

折叠后重合的点是对应点,也叫做对称点。

【轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合。

成轴对称的两个图形一定全等。

】2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴。

【轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定。

】3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的主要区别:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.。

4.轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等。

5.线段的轴对称性①线段是轴对称图形,线段的垂直平分线是它的对称轴。

②线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等。

③线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线上。

【①线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。

②三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。

】6.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线。

7.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴。

(2)角平分线上的点到角两边的距离相等。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结轴对称是指物体具有在某一平面上的镜像对称性质。

在数学和几何学中,轴对称是一种特殊的对称形式,是对称性的重要表现形式之一。

下面将对轴对称的知识点进行总结。

一、轴对称的概念轴对称是指物体或图形在某一平面上的镜像对称性质。

这个平面被称为轴线或对称轴。

沿着轴线对物体进行镜像变换,使得物体的每一个点与镜像点相关联,二者之间的距离保持不变。

轴对称可以存在于二维图形、立体物体以及其他几何结构中。

二、轴对称的特点1. 图形的每一点都关于轴线对称,对称点在轴线上。

2. 对称图形的延长线与轴线重合,对称图形的每一条直线都是轴线上两个对称点的中垂线或垂直平分线。

3. 对称图形的面积、周长和内角和与其镜像图形相等。

4. 对称图形的对称中心与图形的每一个点距离的平方和最小。

三、轴对称的判定方法1. 观察图形是否有明显的对称形状,例如正方形、圆等。

2. 通过自身对折或平移观察是否可以重合。

3. 镜像变换:通过将图形投影到一个平面上,并观察是否与投影前的图形重合完成。

四、轴对称的应用1. 图案设计:轴对称的图案可以给人以和谐、美感的感受,常用于服装、陶瓷、织物等设计中。

2. 建筑设计:许多建筑物在设计中运用了轴对称的原则,例如古代的宫殿、寺庙等,可以使建筑更加庄重、稳定。

3. 生物学:许多生物体的结构具有轴对称性,例如动物的身体结构,植物的花朵等都存在轴对称现象,这也是生命体的一种基本特征。

4. 数学研究:轴对称是数学中的一个重要概念,广泛应用于几何、代数和图论等领域的研究中。

特别是在图论中,轴对称是许多图形算法的基础。

五、轴对称的相关定理1. 轴对称的性质可以应用于线段、角、多边形、三角形等几何概念的研究中,例如轴对称定理、轴对称三角形定理等。

2. 轴对称可以通过镜像变换来实现,这也与线性变换和矩阵运算有关。

研究轴对称问题可以进一步理解和应用线性代数等数学知识。

六、轴对称与其他对称性质的关系1. 轴对称是平移对称的一种特殊形式。

轴对称图形中心对称图形的定义及性质

轴对称图形中心对称图形的定义及性质

轴对称图形、中心对称图形的基本概念轴对称图形的定义如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。

轴对称图形的性质1)如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。

(对于一个图形来说)(2)把一格图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。

这条直线就是对称轴。

两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。

(对于两个图形来说)(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。

中心对称的定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

中心对称的性质:①于中心对称的两个图形是全等形。

②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。

中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。

既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等.只是轴对称图形的有:射线,角等腰三角形,等边三角形,等腰梯形等.只是中心对称图形的有:平行四边形等.既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等.。

轴对称知识点

轴对称知识点

轴对称知识点轴对称知识点汇总在平平淡淡的学习中,大家最熟悉的就是知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。

掌握知识点是我们提高成绩的关键!下面是本店铺为大家整理的轴对称知识点汇总,供大家参考借鉴,希望可以帮助到有需要的朋友。

轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一、等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

图形的轴对称轴对称的基本性质

图形的轴对称轴对称的基本性质

性质2023-10-30CATALOGUE 目录•轴对称图形概述•轴对称图形的性质•常见轴对称图形举例•非轴对称图形举例及特性•轴对称图形的应用01轴对称图形概述定义如果一个图形关于某条直线(称轴)对称,那么这个图形叫做轴对称图形。

性质轴对称图形的对称轴也是图形的中垂线,即线段的中点与轴对称图形上相对应点的连线被对称轴垂直平分。

轴对称图形的定义轴对称图形具有对称性,即图形的左右两侧或上下两侧关于某条直线对称。

对称性唯一性美观性每一个轴对称图形都只有一个对称轴,对称轴将图形分成两个完全相同的部分。

轴对称图形具有美观性,常被应用于建筑设计、艺术和日常生活中。

03轴对称图形的特点0201轴对称图形在数学、艺术、建筑等领域有着悠久的历史。

早在古希腊和罗马时期,人们就利用轴对称来设计建筑、雕塑和图案。

历史随着数学、计算机科学和工程技术的进步,轴对称图形在各个领域的应用越来越广泛,如建筑设计、工业设计、计算机图形学等。

同时,对于轴对称图形的理论研究也在不断发展与完善。

发展轴对称图形的历史与发展02轴对称图形的性质总结词轴对称图形在空间或平面上关于某条直线(称为对称轴)具有对称性。

详细描述这意味着图形的一部分相对于对称轴的镜像翻转后,与另一部分完全重合。

例如,一个圆相对于其直径是对称的,一个正方形相对于其对角线是对称的。

这种对称性在自然界中也很常见,如人的身体、树叶等。

总结词轴对称图形的对称轴总是一条直线,且具有平行性。

详细描述这意味着如果一个图形的一部分相对于对称轴进行镜像翻转后,与另一部分完全重合,那么这两部分必然是平行的。

例如,一个矩形相对于其对边中点的连线是对称的,这个连线就是其对称轴。

轴对称图形的性质三总结词轴对称图形的对称轴具有镜像反射性。

详细描述这意味着图形的一部分相对于对称轴的镜像反射后,与另一部分完全重合。

这种性质可以用来解释许多自然现象和社会现象,如物体在水中的倒影、物体在镜子中的影像等。

初中数学 轴对称图形的性质有哪些

初中数学 轴对称图形的性质有哪些

初中数学轴对称图形的性质有哪些轴对称图形是指一个图形中存在一条直线,将图形分成两个完全对称的部分。

这条直线被称为轴对称线,也被称为对称轴。

下面是轴对称图形的一些性质:1. 对称性质:轴对称图形的两个部分是完全对称的,即它们在形状、大小和位置上完全一致,只是相对于轴对称线的位置互换。

这种对称性使得我们能够在一个部分中观察到一些性质,并将其应用到另一个对称部分中。

2. 轴对称线性质:轴对称图形的轴对称线上的任意一点与它的对称点距离相等。

也就是说,如果一个点在轴对称线上,那么它的对称点也在轴对称线上。

这个性质对于计算轴对称图形中各个点的坐标非常有用。

3. 对称中心性质:轴对称图形的对称中心即为轴对称线上的任意一点。

对称中心具有以下性质:a. 对称中心是轴对称图形的一个重要特征,它可以帮助我们确定图形的对称关系。

b. 对称中心到轴对称图形上任意一点的距离等于该点到轴对称线所在直线的距离。

c. 对称中心到轴对称线的距离等于轴对称图形中所有点到轴对称线的距离的平均值。

4. 对称点性质:轴对称图形中每个点都有一个对称点,它们在轴对称线上对称。

对称点的坐标可以通过对称轴上的点的坐标进行计算。

例如,在一个矩形中,矩形的左上角和右下角是对称的,它们在垂直轴对称线上对称。

5. 线段对称性质:轴对称图形中的任意一条线段,它的两个端点关于轴对称线对称。

这个性质对于计算轴对称图形中线段的长度非常有用。

6. 角度对称性质:轴对称图形中的任意一个角度,它的两个角度顶点关于轴对称线对称。

这个性质对于计算轴对称图形中角度的大小非常有用。

7. 区域对称性质:轴对称图形中的任意一个区域,它关于轴对称线对称。

这个性质对于计算轴对称图形中区域的面积非常有用。

通过了解轴对称图形的性质,我们可以更好地理解几何学中的对称性和图形变换。

轴对称图形的性质在解决与对称性和图形变换相关的问题时非常重要。

希望以上内容能够帮助你了解轴对称图形的性质。

如果你还有其他问题,请随时提问。

八年级下册数学轴对称讲解知识点

八年级下册数学轴对称讲解知识点

八年级下册数学轴对称讲解知识点在数学学习中,轴对称是一个非常重要的概念。

相信在初中数学课堂上,同学们已经学习了关于点、图形的轴对称知识,但是在这里我们将更加深入地了解轴对称的概念,以及相关的知识点。

本文将针对八年级下册数学轴对称进行讲解,帮助同学们更好地掌握轴对称的相关知识。

一、轴对称的定义轴对称是指:存在一条直线称为轴,通过这条轴将一个图形分成两个部分,两个部分是对称的。

在轴对称中,图形称为轴对称图形,轴称为轴对称轴。

二、轴对称图形的特征1.轴对称图形关于对称轴对称,即一侧与另一侧完全相同。

2.轴对称图形的对称轴上的任意点到图形上某一点的距离等于对称轴上同侧的对应点到该点的距离。

3.轴对称图形中,对称轴上的点分为对称点,它们所在的位置关系是:对称轴上两点的距离相等,且在对称轴的同侧。

三、轴对称图形的构造方法构造轴对称图形的方法有两种。

1.作对称轴,再作图形,根据对称轴的位置和方向,构造轴对称图形。

2.对已知的轴对称图形,根据它的特征建立对称轴。

四、轴对称变换轴对称变换是指将一个图形沿着一条直线进行翻转,使其变成与原图对称的另一个新图形,这个过程叫做轴对称变换。

轴对称变换包括两个部分:1.将图形移动到对称轴的一侧。

2.将这个图形做一个翻转,即将每个点沿对称轴翻转到它在对称轴的反侧。

五、轴对称的应用1.轴对称可以用来证明两个图形的面积相等。

2.轴对称可以用来构造一些图形,如五角星、六角星等。

3.轴对称可以用来证明某些性质,如证明几何图形的对称性等。

六、轴对称容易混淆的概念在学习轴对称时,有一些概念容易混淆。

下面是一些常见的例子:1.轴对称和中心对称中心对称是指:对于一个图形,在一个点上能将这个图形翻转180度,使得图形上每个点在翻转后都能重合。

轴对称是指:对于一个图形,在一条直线上,能将这个图形翻转成关于这条直线对称的一个新图形。

可以看出,轴对称与中心对称有共同点(都涉及到了图形的翻转),也有区别。

轴对称及其性质

轴对称及其性质

轴对称及其性质轴对称是一种几何特征,指的是图形经过某条线对称后,两侧完全重合。

在数学和几何学中,轴对称性质被广泛应用于解决问题和分析形状的对称性。

本文将介绍轴对称的定义、性质以及它在现实生活和数学领域的应用。

一、定义及例子轴对称是指一个形状可以通过某条直线旋转180度并完全重合。

这条直线被称为轴线,轴线两侧的图形是镜像关系。

例如,一个正方形具有4条轴对称线,分别是水平线、垂直线和两条对角线。

而心形、圆形、椭圆形等也都具有轴对称。

二、轴对称的性质1. 自反性:轴对称图形中的每个点都和关于轴线对称的另一个点相关联。

反过来,如果一个点和另一个点关于轴对称线对称,那么这个图形就是轴对称的。

2. 保角性:轴对称不改变图形的角度。

如果一个图形是轴对称的,那么对于轴上的任意一对相应点,它们构成的角度相等。

3. 保长度性:轴对称不改变图形的边长。

如果一个图形是轴对称的,那么轴上的每对相应点之间的距离相等。

4. 结构性:轴对称图形的结构和形状在镜像轴两侧是完全对称的。

这意味着一个轴对称图形的一半可以通过镜像来获得另一半。

三、轴对称的应用1. 图案设计:轴对称被广泛应用于图案设计中。

通过利用轴对称性质,设计师可以创造出美观、对称的图案来增强视觉效果。

2. 建筑设计:轴对称的概念在建筑设计中起着重要的作用。

许多建筑物的设计中都使用了轴对称性,使得建筑物的外观显得平衡和谐。

3. 数学推理:轴对称性质被广泛应用于数学推理和证明中。

通过分析轴对称,我们可以推导出关于图形的特定性质和关系,从而解决各种数学问题。

4. 自然界:自然界中很多物体都具有轴对称性,如植物、昆虫身体结构等。

通过研究这些轴对称物体,我们可以更好地理解自然界的形态和结构。

总结:轴对称是一种形状经过某条轴线旋转180度并完全重合的几何特征。

它具有自反性、保角性、保长度性和结构性等性质。

轴对称不仅在图案设计和建筑设计中起着重要作用,也在数学推理和自然界中具有广泛的应用。

轴对称总结

轴对称总结

轴对称总结轴对称是一种几何性质,它在我们的生活中随处可见。

从自然界的形态到建筑学的设计,轴对称都扮演着重要的角色。

在本文中,我们将探讨轴对称的定义、特点以及应用,以及我们可以如何利用轴对称来提高实际问题的解决能力。

定义和特点轴对称是指物体或形状在一个轴线上左右对称。

这个轴线可以是任意的,但通常是通过物体的中心。

当物体的左右两侧对称地呈现相同的形态时,我们称该物体为轴对称。

根据定义,轴对称可以是平面的,也可以是立体的。

轴对称的特点是,对称物体的两侧是镜像对称的,即它们在轴线上的每个点都有一个相对的点,使得两侧的形态相同。

这种对称性质使得轴对称物体具有一种美感和平衡感。

许多人认为轴对称是一种美的表达方式,常常被应用于艺术和设计中。

应用领域1.自然界中的轴对称轴对称在自然界中是普遍存在的。

例如,许多花朵和植物都具有轴对称的特征。

它们的花瓣或叶子通常会在轴线两侧对称地排列,给人们一种和谐和美的感觉。

此外,某些动物的身体结构也是轴对称的,例如蝴蝶的翅膀和鸟类的翅膀。

2.建筑设计中的轴对称轴对称在建筑设计中经常被运用。

许多古代建筑以及现代建筑都采用了轴对称的布局和设计原则。

例如,希腊的巴比伦神庙和罗马的圆形竞技场都具有明显的轴对称特点。

这种布局不仅使建筑物具有美观的外观,而且增强了人们的视觉体验和感受。

3.数学和几何学中的轴对称轴对称是几何学研究的一个重要主题。

在数学中,轴对称被广泛应用于各种问题的解决和证明。

例如,在平面几何中,通过寻找轴对称的性质,可以确定一个图形是否是轴对称的。

通过应用轴对称的原理,我们可以推导出许多关于图形性质的重要结论。

轴对称的实际应用除了在艺术、建筑和几何学领域的应用之外,轴对称还可以在实际的问题解决中发挥作用。

例如,轴对称可以帮助我们设计出更优雅和平衡的产品。

无论是家具、汽车还是服装,轴对称的设计都可以提高产品的美观和使用体验。

此外,轴对称还可以用于解决一些具体的问题,例如物体的平衡和对称度的评估。

轴对称的性质

轴对称的性质
工程和物理中的轴对称
在工程和物理学领域,轴对称被广泛应用于各种实际问题的研究中。例如,在机械工程中,轴对称被用于设计 各种机构和结构;在物理学中,轴对称被用于描述和分析各种自然现象,如晶体结构和量子力学中的对称性。
艺术和设计中的轴对称
在艺术和设计领域,轴对称被广泛应用于各种艺术设计品的构图中,以增强作品的美感和平衡感。例如,在建 筑、绘画、摄影和装潢设计中,轴对称的应用非常常见。
轴对称在现代数学中的发展
微分几何中的轴对称
在现代数学中,轴对称被广泛应用于微分 几何领域。例如,在研究曲线和曲面的几 何性质时,轴对称起着非常重要的作用。
VS
代数和拓扑中的轴对称
在代数和拓扑领域,轴对称也被深入研究 。例如,在研究群、环和模等代数结构时 ,轴对称的性质是一个重要的研究课题。
轴对称在其他领域的应用
轴对称的几何定义
点关于点对称
两个点关于原点对称,满足距 离和坐标的关系
线关于点对称
一条直线上的点关于原点对称后 ,满足直线的方程和坐标的关系
面关于点对称
一个平面上的点关于原点对称后, 满足平面的法向量和坐标的关系
轴对称的应用
物理学
物理现象中的平衡、稳定等现 象可以用轴对称来解释
生物学
人体的某些器官、肢体等结构 呈轴对称分布
在物理学中,轴对称性质可以应用于 描述对称性破缺等现象,对于理解和 研究复杂系统的性质具有重要意义。
在工程领域,轴对称性质可以应用于 机械零件的设计和制造等方面,提高 效率和精度。
对轴对称未来发展的思考
未来可以利用轴对称性质来探索和发 展新的数学理论和算法,为解决实际 问题提供更多有效的方法。
轴对称性质在未来也可以应用于更多 领域,如人工智能、数据科学、经济 学等,为解决复杂问题提供新的思路 和方法。

轴对称总结

轴对称总结

轴对称总结
一、什么是轴对称
轴对称,即指一个物体关于一条直线对称,这条直线被称为轴线。

在二维几何中,轴对称可以是垂直轴对称或是水平轴对称。

二、轴对称的特点
轴对称具有以下几个显著的特点:
1.对称性:轴对称体现了几何图形的对称性。

对于一个轴对称的图形,
可以通过沿着轴线将该图形切割成两个完全相同的部分。

例如,正方形、圆形和心形在水平或垂直轴上都具有轴对称。

2.美感:轴对称图形通常被认为是美观的,因为它们呈现出平衡和和谐
的感觉。

对称性给人一种稳定、整齐的视觉效果。

3.组成图形:轴对称可以通过简单的几何形状组成。

正方形、矩形和圆
形等都是基本的轴对称形状。

4.快速识别:轴对称的图案相对来说更容易被识别和记忆,因为它们具
有重复和对称的特征。

三、常见的轴对称图形
轴对称图形常见于日常生活和艺术设计中,以下是几个常见的轴对称图形:
1.对称字母:例如。

初中数学轴对称知识点的归纳总结

初中数学轴对称知识点的归纳总结

初中数学轴对称知识点的归纳总结
初中数学轴对称知识点的归纳总结
初中数学轴对称知识点归纳
轴对称章节要求正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

那么接下来的轴对称内容请同学们认真记忆了。

轴对称
1.知识概念
1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,
7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的`直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美。

接下来的初中数学知识更加
有吸引力,请大家继续关注哦。

沪科版八年级数学上册第15章教学课件:15.1 第1课时 轴对称图形与轴对称(共35张PPT)

沪科版八年级数学上册第15章教学课件:15.1 第1课时 轴对称图形与轴对称(共35张PPT)
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

它们有什么共同的特点?
讲授新课
一 轴对称和轴对称图形
轴对称 图形
a
m
对称轴
如果一个平面图形沿一条直线折叠,直线两旁的部分能够 互相重合,这个图形就叫做轴对称图形,这条直线就是它的对 称轴.
例4 在3×3的正方形格点图中,有格点△ABC和
△DEF,且△ABC和△DEF关于某直线成轴对称,请
在下面给出的图中画出4个这样的△DEF.
E
D
C(F)
CF
D C(F)
E
CF
A (D)
BA
B(E) A
B
A(D)
B(E)
方法归纳:作一个图形关于一条已知直线的对称图形,关键
是作出图形上一些点关于这条直线的对称点,然后再根据已
你能举出一些轴对称图形的例子吗?
全班总动员
ABCDEFGHIJKLM
N O P Q R S T U VW X Y Z 游戏规则: 每人轮流按顺序报一个字母.如果你认为 你所报的字母的形状是一个轴对称图形,你就迅速 站起来报出,并说出它有几条对称轴;如果你认为你 报的字母的形状不是轴对称图形,那么,你只需坐 在座位上报就可以了.其他同学认真听,如果报错了, 及时提醒.
ABCDE FG HI J KLMN OPQRST U VWXYZ
做一做:找出下列各图形中的对称轴,并说明哪一个 图形的对称轴最多.
想一想:
折叠后重合的点是对应点,叫做对称点.
下面的每对图形有什么共同特点如?图点A、A ′就是一对对称点.

轴对称知识点总结小学

轴对称知识点总结小学

轴对称知识点总结小学一、轴对称的概念轴对称是指一个平面图形相对于一条直线对称,即围绕这条直线旋转180°后,图形保持不变。

这条直线就称为图形的对称轴。

轴对称是几何中的重要概念,能够帮助我们理解和设计图形,同时也是理解对称性的基础知识。

二、轴对称的特点1. 对称轴是图形的一个特殊线段或线。

2. 对称轴将图形分成两个对称的部分,这两个部分关于对称轴是完全一样的。

3. 对称轴上的任意点和其对称点的连线垂直于对称轴。

4. 沿着对称轴旋转180°后,图形完全重合于原图形。

三、轴对称的判定方法1. 观察法:通过观察图形是否存在对称性来判断是否关于某条直线对称。

2. 折叠法:将图形沿着疑似对称轴折叠,看是否能够完全重合。

3. 对称性质法:根据对称性质,判断是否对称。

四、轴对称图形的引用1. 对称轴:直线对称或旋转对称,使图形与自身相等的直线或轴。

例如:矩形的对角线、圆的直径等。

2. 对称中心:旋转对称图形的中心,是图形相互对称的中心。

例如:正六边形的中心。

3. 对称点:图形上具有对称关系的点,关于对称中心对称。

例如:圆上的任意两点。

4. 对称问题:解决对称性质相关的数学问题,例如:通过对称性质求图形面积。

五、轴对称图形的种类1. 点对称:图形旋转180°后保持不变,具有旋转对称性。

例如:正方形。

2. 线对称:图形关于一条直线对称,具有镜像对称性。

例如:梯形。

3. 中心对称:图形有一个对称中心,图形上的点关于对称中心对称。

例如:正五边形。

六、轴对称与生活的应用1. 装饰设计:利用轴对称图形设计房间装饰,使整个空间更加和谐、美观。

2. 工艺制作:通过对称性设计工艺品或雕刻艺术品,使作品更有美感和观赏性。

3. 建筑设计:利用轴对称原理设计建筑外观或布局,使建筑更加稳固和美观。

4. 计算面积和周长:通过对称性质,计算复杂图形的面积和周长,简化计算过程。

七、轴对称与数学的联系1. 对称性质:轴对称是数学中的基本概念,是计算图形面积和周长的重要依据。

轴对称的基本性质

轴对称的基本性质

轴对称的基本性质【要点梳理】要点一、轴对称的基本性质★成轴对称的两个图形中,对应点的连线被对称轴垂直评分★轴对称及轴对称的判定(1)如果两个图形的对应点所连线段被同一条直线垂直平分,那么这两个图形关于这条直线成轴对称.(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等,并且这两个图形成轴对称.要点诠释:(1)对应点的连线是一条线段,而对称轴是一条直线.(2)两条成轴对称的线段要么平行,要么所在直线相交且交点一定在对称轴上.【例1】如图,△ABC和△A′B′C′关于直线l对称,若△A=50°,△C′=30°,则△B的度数为()A.30°B.50°C.90°D.100°【变式1.1】如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA 于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm【变式1.2】如图,△MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若△MON=35°,则△GOH=()A.60°B.70°C.80°D.90°【变式1.3】如图,在Rt△ABC中,△BAC=90°,△B=50°,AD△BC,垂足为D,△ADB 与△ADB'关于直线AD对称,点B的对称点是点B',则△CAB'的度数为()A.10°B.20°C.30°D.40°(1)若某点在对称轴上,则它的对称点也一定在对称轴上,并且和这个点重合.(2)如果一个点在对称轴的左侧,那么这个点的对称点一定在对称轴的右侧;反之,一个点在对称轴的右侧,则这个点的对称点一定在对称轴的左侧.要点三、平面直角坐标系中的轴对称★关于坐标轴对称的点的坐标的关系★在平面直角坐标系中作成轴对称的图形【例2】作一个图形关于x轴(或y轴)成轴对称的图形的步骤:(1)找:在原图形上找特殊点(如线段的端点);(2)作:作各个特殊点关于对称轴的对称点;(3)连:按原图的顺序连接所作的各对称点.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【变式2.1】在下图中,画出△ABC关于直线MN的对称图形.【变式2.1】若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称【变式2.2】已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,那么点A的对应点A′的坐标为()A.(﹣4,2)B.(﹣4,﹣2)C.(4,﹣2)D.(4,2)【变式2.3】小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)典型例题题型一:轴对称的性质【练习1.1】如图,△ABC与△A′B′C′关于直线l对称,且△A=105°,△C′=30°,则△B=()A.25°B.45°C.30°D.20°【练习1.2】如图,在△ABC中,AB=AC,△C=70°,△AB′C′与△ABC关于直线EF对称,△CAF=10°,连接BB′,则△ABB′的度数是()A.30°B.35°C.40°D.45°【练习1.3】如图,△ABC与△A′B′C′关于直线l对称,则△B的度数为()A.30°B.50°C.90°D.100°【练习1.4】如图,Rt△ABC中,△ACB=90°,△A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则△A′DB为.【练习1.5】如图,AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD =3,则图中阴影部分的面积是.【练习1.6】如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是.【练习1.7】如图,点P是△ACB外的一点,点D,E分别是△ACB两边上的点,点P关于CA的对称点P1恰好落在线段ED上,P点关于CB的对称点P2落在ED的延长线上,若PE=2.5,PD=3,ED=4,则线段P1P2的长为.【练习1.8】如图,△BAC=110°,若A,B关于直线MP对称,A,C关于直线NQ对称,则△P AQ的度数是.【练习1.9】如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是cm2.【练习1.10】如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点三角形共有()A.3个B.4个C.5个D.6个【练习1.11】如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个【练习1.12】如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个【练习1.13】如图,是由大小一样的小正方形组成的网格,△ABC的三个顶点均落在小正方形的顶点上.在网格上能画出的三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共有( )A .5个B .4个C .3个D .2个【练习1.14】如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对称点B '恰好落在CD 上,若∠BAD =α,则∠ACB 的度数为( )A .45°B .α﹣45°C .12αD .90°−12α 【练习1.15】如图,点P 关于OA 、OB 的对称点是H 、G ,直线HG 交OA 、OB 于点C 、D ,若∠HOG =80°,则∠CPD = °.【练习1.16】在等边△ABC 外作射线AD ,使得AD 和AC 在直线AB 的两侧,∠BAD =α(0°<α<180°),点B 关于直线AD 的对称点为P ,连接PB ,PC .(1)依题意补全图1;(2)在图1中,求∠BPC 的度数;(3)直接写出使得△PBC 是等腰三角形的α的值.【练习1.17】如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为14,求△P AB的周长.【练习1.18】如图,等边三角形ABC中,D为边BC上的一点,点D关于直线AB的对称点为点E,连接AD,DE,在AD上取点F,使得∠EFD=60°,射线EF与AC交于点G.(1)设∠BAD=α,求∠AGE的度数(用含α的代数式表示);(2)探究CG与DE之间的等量关系,并证明.【练习1.19】如图,△ABC的点C与C′关于AB对称,点B与B′关于AC对称,连结BB′、CC′,交于点O.(1)如图(1),若∠BAC=30°,①求∠B'AC'的度数;②观察并描述:△ABC'可以由△AB'C通过什么变换得来?求出∠BOC'的角度;(2)如图(2),若∠BAC=α,点D、E分别在AB、AC上,且C′D∥BC∥B′E,BE、CD交于点F,设∠BFD=β,试探索α与β之间的数量关系,并说明理由.【练习1.20】如图在△ABC中,∠ACB=90°,AC=BC,E为外角∠BCD平分线上一动点(不与点C重合),点E关于直线BC的对称点为F,连接BE,连接AF并延长交直线BE于点G.(1)求证:AF=BE;(2)用等式表示线段FG,EG与CE的数量关系,并证明.【练习1.21】国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是.(用含a,b的代数式表示)(2)若a=0.5米,b=2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).【练习1.22】如图所示,梯形ABCD关于y轴对称,点A的坐标为(﹣3,3),点B的坐标为(﹣2,0).(1)写出点C和点D的坐标;(2)求出梯形ABCD的面积.题型二:关于x、y轴对称的点的坐标【练习2.1】在平面直角坐标中,已知点P(a,5)在第二象限,则点P关于直线m(直线m上各点的横坐标都是2)对称的点的坐标是()A.(﹣a,5)B.(a,﹣5)C.(﹣a+2,5)D.(﹣a+4,5)【练习2.2】点M(1,4﹣m)关于直线y=﹣3对称的点的坐标为(1,7),则m=()A.16B.27C.17D.15【练习2.3】如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是()A.10B.8C.6D.4【练习2.4】如图,若△A′B′C′与△ABC关于直线AB对称,则点C的对称点C′的坐标是()A.(0,1)B.(0,﹣3)C.(3,0)D.(2,1)【练习2.5】在坐标平面上有一个轴对称图形,其中A(3,−52)和B(3,−112)是图形上的一对对称点,若此图形上另有一点C(﹣2,﹣9),则C点对称点的坐标是()A.(﹣2,1)B.(﹣2,−32)C.(−32,﹣9)D.(﹣2,﹣1)【练习2.6】甲、乙两名同学下棋,甲执圆子,乙执方子,如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示,甲将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,甲放的位置是()A.(﹣2,1)B.(﹣1,1)C.(﹣1,0)D.(﹣1,2)【练习2.7】点P(2,5)关于直线x=1的对称点的坐标是()A.(﹣2,5)B.(﹣3,5)C.(4,5)D.(0,5)【练习2.8】嘉嘉和淇淇下棋,嘉嘉执圆形棋子,淇淇执方形棋子,如图,棋盘中心的圆形棋子的位置用(﹣1,1)表示,右下角的圆形棋子用(0,0)表示,淇淇将第4枚方形棋子放入棋盘后,所有棋子构成的图形是轴对称图形.则淇淇放的方形棋子的位置可能是()A.(﹣1,2)B.(﹣1,﹣1)C.(0,2)D.(1,3)【练习2.9】在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A的坐标是(√3,√2),则经过第2019次变换后所得的点A的坐标是()A.(−√3,√2)B.(−√3,−√2)C.(√3,−√2)D.(√3,√2)【练习2.10】在平面直角坐标系中,已知点P(a2+2,5),则点P关于直线m(直线m上各点的横坐标都为﹣2)对称点的坐标是()A.(﹣a2+6,5)B.(﹣a2﹣6,5)C.(a2﹣6,5)D.(﹣a2+4,5)【练习2.11】点(6,3)关于直线x=2的对称点为()A.(﹣6,3)B.(6,﹣3)C.(﹣2,3)D.(﹣3,﹣3)【练习2.12】如图,等边△ABC的顶点A(1,1),B(3,1),规定把△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,等边△ABC的顶点C的坐标为()A.(−2016,√3+1)B.(−2016,√3−1)C.(−2017,√3+1)D.(−2017,−√3−1)【练习2.13】平面内点A(﹣1,2)和点B(﹣1,a)关于直线y=4对称,a=.【练习2.14】如图,在平面直角坐标系xOy中,△DEF可以看作是由△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程:.【练习2.15】已知△ABC关于直线y=1对称,C到AB的距离为2,AB长为6,则点A、点B的坐标分别为.【练习2.16】如图,在直角坐标平面内,已知点A(8,0),点B(3,0),点C是点A关于点B的对称点.(1)求点C的坐标;(2)如果点P在y轴上,过点P作直线l∥x轴,点A关于直线l的对称点是点D,那么当△BCD的面积等于10时,求点P的坐标.题型三:轴对称—最短路线问题【练习3.1】如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【练习3.2】如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC 上的点,当△AEF的周长最小时,∠EAF的度数为()A .50°B .60°C .70°D .80°【练习3.3】如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为( )A .6B .8C .10D .12【练习3.4】如图,在△ABC 中,AB =AC ,AD 、CE 是△ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP +EP 最小值的是( )A .BCB .CEC .AD D .AC【练习3.5】如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( )A .125B .4C .245D .5【练习3.6】如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为( )A.√29B.√34C.5√2D.√41【练习3.7】如图,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,点E,F分别是线段BC,DC上的动点.当△AEF的周长最小时,则∠EAF的度数为()A.90°B.80°C.70°D.60°【练习3.8】如图,在锐角三角形ABC中,AB=4,△ABC的面积为8,BD平分∠ABC.若M、N分别是BD、BC上的动点,则CM+MN的最小值是()A.2B.4C.6D.8【练习3.9】如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2√3B.2√6C.3D.√6【练习3.10】如图,在△ABC中,AB=AC,BC=4,△ABC的面积是16,AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A .6B .8C .10D .12【练习3.11】如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,√3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则P A +PC 的最小值为( )A .√132B .√312C .3+√192D .2√7【练习3.12】如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上一动点,则DN +MN 的最小值为( )A .6B .8C .12D .10【练习3.13】如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P 为对角线BD 上一点,则PM ﹣PN 的最大值为 .【练习3.14】如图,在锐角△ABC 中,AB =4√2,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .【练习3.15】如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【练习3.16】如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.【练习3.17】如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6√2,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.【练习3.18】如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.【练习3.19】如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是.【练习3.20】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为.【练习3.21】如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是.【练习3.22】如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是.【练习3.23】在锐角三角形ABC中,BC=4√2,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是.【练习3.24】已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=.【练习3.25】如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△P AB=1 3S矩形ABCD,则点P到A、B两点的距离之和P A+PB的最小值为.【练习3.26】如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是.【练习3.27】(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.【练习3.28】已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.【练习3.29】如图已知EF∥GH,AC⊥EF于点C,BD⊥EF于点D交HG于点K.AC=3,DK=2,BK=4.(1)若CD=6,点M是CD上一点,当点M到点A和点B的距离相等时,求CM的长;(2)若CD=132,点P是HG上一点,点Q是EF上一点,连接AP,PQ,QB,求AP+PQ+QB的最小值.【练习3.30】如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=2,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小;(3)根据(2)中的规律和结论,请构图求出代数式√x2+4+√(12−x)2+9的最小值.【练习3.31】如图,C为线段BD上的一个动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问:点C满足什么条件时,AC+CE的值最小?求出这个最小值.(3)根据(2)中的规律和结论,请构图求出代数式√x2+4+√(12−x)2+9的最小值.【练习3.32】如图,△ABC三个顶点的坐标分别为A(1,1)、B.(4,2)、C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为:A1,B1,C1;(2)若P为x轴上一点,则P A+PB的最小值为;(3)计算△ABC的面积.【练习3.33】如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD 上的动点,则|P A﹣PB|的最大值为.【练习3.34】如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)△ABC的面积为;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得PB+PC的距离最短.(保留痕迹)【练习3.35】请阅读下列材料:问题:如图1,点A,B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小.小明的思路是:如图2所示,先作点A关于直线l的对称点A′,使点A′,B分别位于直线l的两侧,再连接A′B,根据“两点之间线段最短”可知A′B与直线l的交点P 即为所求.请你参考小明同学的思路,探究并解决下列问题:(1)如图3,在图2的基础上,设AA'与直线l的交点为C,过点B作BD⊥l,垂足为D.若CP=1,AC=1,PD=2,直接写出AP+BP的值;(2)将(1)中的条件“AC=1”去掉,换成“BD=4﹣AC”,其它条件不变,直接写出此时AP+BP的值;(3)请结合图形,求√(m−3)2+1+√(9−m)2+4的最小值.【练习3.36】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若∠ADE=60°,AB=AC=2,点D在线段BC上,①∠BCE和∠BAC之间是有怎样的数量关系?不必说明理由;②当四边形ADCE的周长取最小值时,直接写出BD的长;(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.题型四:翻折变换(折叠问题)【练习4.1】如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F .若AB =6,BC =4√6,则FD 的长为( )A .2B .4C .√6D .2√3【练习4.2】如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC ',DC ′与AB 交于点E ,连结AC ',若AD =AC ′=2,BD =3,则点D 到BC ′的距离为( )A .3√32B .3√217C .√7D .√13【练习4.3】如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .75 【练习4.4】如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FM 的长为( )A.2B.√3C.√2D.1【练习4.5】如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=725.在以上4个结论中,正确的有()A.1B.2C.3D.4【练习4.6】如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°【练习4.7】如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A .①②B .②③C .①③D .①④【练习4.8】如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .53B .52C .4D .5【练习4.9】如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12【练习4.10】如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处.当△CEB ′为直角三角形时,BE 的长为 .【练习4.11】如图矩形ABCD 中,AD =5,AB =7,点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D ′落在∠ABC 的角平分线上时,DE 的长为 .【练习4.12】如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P到边AB距离的最小值是.【练习4.13】折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG 翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.【练习4.14】如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G 在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.【练习4.15】如图,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为.【练习4.16】如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于.【练习4.17】阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C 的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC 顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C 重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B >∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.【练习4.18】如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【练习4.19】如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM 的长.题型五:图形的剪拼【练习5.1】如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以【练习5.2】如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24B.25C.26D.27【练习5.3】如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A.5a B.4a C.3a D.2a【练习5.4】如图,在正方形ABCD纸片上有一点P,P A=1,PD=2,PC=3,现将△PCD 剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),则∠APD 的度数为()A.150°B.135°C.120°D.108°【练习5.5】如图,方格纸中每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是()A.√7B.2√2C.3D.√10【练习5.6】如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的相邻两边DC和DE的长分别是5,3.则EB的长是()A.0.5B.1C.1.5D.2【练习 5.7】用两个全等的直角三角形拼成下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形.则一定可以拼成的图形是()A.①④⑤B.②⑤⑥C.①②③D.①②⑤【练习5.8】用两个全等的直角三角形拼下面的图形:(1)平行四边形;(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形;(6)等边三角形.可以拼成的图形是()A.(1)(4)(5)B.(2)(5)(6)C.(1)(2)(3)D.(1)(2)(5)【练习5.9】如图1,将矩形ABCD和正方形EFGH的分别沿对角线AC和EG剪开,拼成图2所示的平行四边形PQMN,中间空白部分的四边形KRST是正方形.如果正方形EFGH 与正方形KRST的面积分别是16和1,则矩形ABCD的面积为()A.15B.16C.17D.25【练习5.10】如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的四边形ALMN,若中间空白部分四边形恰好是正方形OPQR,且四边形ALMN的面积为72,则正方形的面积是()A.34B.35C.36D.37【练习5.11】如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为.【练习5.12】如图1,分别沿矩形纸片ABCD和正方形EFGH纸片的对角线AC,EG剪开,拼成如图2所示的平行四边形KLMN,若中间空白部分恰好是正方形OPQR,且平行四边形KLMN的面积为50,则正方形EFGH的面积为.【练习5.13】有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是.【练习5.14】如图,五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,连接A.B 两个顶点,过顶点C作CD⊥AB,垂足为D.“十字”形被分割为了①、②、③三个部分,这三个部分恰好可以无缝隙、不重合地拼成一个矩形,这个矩形的长与宽的比为.【练习5.15】如图1,在大正方形中剪去一个小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个长方形的长为24,宽为16,则图2中S2部分的面积是.【练习5.16】如图,每个小正方形的边长为1,剪一剪,拼成一个正方形,那么这个正方形的边长是.【练习5.17】有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有六个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是.有n个长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为.【练习5.18】如图,把一个半径为r厘米的圆分成若干等份,然后把它剪开,照下图的样子拼起来,拼成新的图形的周长比原来圆的周长多10厘米,则该圆的半径为厘米.【练习5.19】列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.【练习5.20】在△ABC中,沿着中位线DE剪切后,用得到的△ADE和四边形DBCE可以拼成平行四边形DBCF,剪切线与拼图如图1所示.仿照上述的方法,按要求完成下列操作设计,并在规定位置画出图示.(画图工具不限,剪切线用实线表示,拼接线用虚线表示,要求写出简要的说明)(1)将平行四边形ABCD剪切成两个图形,再将它们拼成一个矩形,剪切线与拼图画在图2的位置;(2)将梯形ABCD剪切成两个图形,再将它们拼成一个平行四边形,剪切线与拼图画在图3的位置.【练习 5.21】著名台湾魔术师刘谦发明了一个道具,他把下图①中的正方形,分割成两个全等的直角三角形和直角梯形.然后拼成图②中的长方形.通过计算这两个图形的面积,证明了64=65.请你用学过的数学知识,找到刘谦的破绽.。

中考轴对称知识点总结

中考轴对称知识点总结

中考轴对称知识点总结一、轴对称的概念轴对称是指当平面图形的每一点关于一条直线对称时,这条直线叫做这个平面图形的轴对称轴。

在轴对称变换中,轴对称轴不动,图形上的每一个点关于这条直线对称后,它们的位置互换。

这种对称的变换叫做轴对称变换。

轴对称变换是平行移动和旋转变换的特殊情况。

二、轴对称的基本性质1. 任何点的轴对称图形也是原图形。

2. 轴对称图形和原图形相互关于轴对称。

3. 如果两个图形是轴对称的,那么,这两个图形一定在同一条轴对称轴两侧且关于这条轴对称轴对称。

三、轴对称的判断方法1. 如果一个图形的每一点关于一条直线对称,那么这个图形是关于这条直线轴对称的。

2. 通过图形的结构特点判断轴对称。

如正方形、矩形、正五边形、等腰三角形等图形均是轴对称的。

四、轴对称与轴对称图形的应用1. 轴对称常用来制作寓意深刻、图案美观的卡片、图片、图案等。

2. 在制作圆形物体或者对称形状的设计中,轴对称往往被广泛应用。

五、常见图形关于坐标轴的轴对称性质1. 镜景对称关于x轴、y轴、原点对称的图形。

2. 镜景对称关于直线y=x和y=-x的图形。

六、轴对称图形与轴对称图形的比较轴对称图形和轴对称图形都是对称图形,但两者在某些方面有一些不同。

1. 轴对称图形是相对于一个轴对称的直线对称的,而轴对称图形是相对于一个点对称的。

2. 轴对称图形是指形象把自己经过某一轴线翻折的图形,而轴对称图形是指形象把自己关于某一点翻折的图形。

七、轴对称的相关定理1. 定理1:如果一个图形是轴对称的,那么这个图形关于轴对称轴的任意两个对称点的中点是与直线相交的直线上的点。

2. 定理2:如果平行四边形的对角线互相垂直,那么这个平行四边形是轴对称的。

3. 定理3:如果多边形的每一条对角线相互垂直,那么这个多边形是轴对称的。

八、轴对称的相关定理证明1. 定理1的证明:以折叠模拟(将一张纸对折,使得一侧成为另一侧的镜像)可以证明。

将纸对折以后,对称图形的两个对称点的对称点是折痕上的对称点,而这两个对称点的中点就是这个折痕上的点。

轴对称与中心对称的性质及判定

轴对称与中心对称的性质及判定
1.中心对称图形是指一个特殊形状的图形
2.中心对称图形是对一个图形而言着这条直线折叠重合;
(2)如果把轴对称图形沿对称轴分成两部分(即看成两个图形),那么这两个图形就关于这条直线成轴对称;反过来,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.
(1)定义中都有一个点,都要沿着这个点旋转180度后重合;
3.两个图形关于某直线对称.如果它们的对应线段或延长线相交,那么交点在对称轴上.
1.关于某个点对称的两个图形是全等形.对应线段相等且平行,对应角相等
2.如果两个图形关于某点对称.那么对称点是对应点连线的中点.
3.两个图形关于某点对称.那么它们的对应线段互相平行.


1.如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.
轴对称与中心对称的性质及判定
轴对称
中心对称


把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫对称轴
1.轴对称是指两个图形间的位置关系
2.轴对称是指两个图形
如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,这个点叫对称中心
2.如果两个图形关于某条直线成轴对称,那么对称轴是(对称点的中点的连线,即垂直平分线)轴对称图形的对称轴是(对折重合的折痕线)
1.如果两个图形的对应点连线被一个点评分平分,那么这两个图形关于这个点对称.
2.如果两个图形关于某点旋转180度能够完全重合即为关于这点中心对称
1.中心对称是指两个图形间的位置关系
2.中心对称是指两个图形
对称图形
如果一个图形沿着一条直线折叠,直线两旁的,部分能够互相重合,这条直线叫对称轴那么这个图形叫做轴对称图形

小学数学教案:轴对称的特征和性质

小学数学教案:轴对称的特征和性质

小学数学教案:轴对称的特征和性质一、教学目标1、认识轴对称的概念,了解轴对称的特征和性质;2、学会判别图形是否具有轴对称性,并能找出图形的轴对称轴;3、通过学习轴对称的应用,培养学生审美、观察能力,为后续学习打下基础。

二、教学重点和难点重点:轴对称的概念和性质以及轴对称的应用;难点:轴对称性的判别和寻找轴对称轴的方法。

三、教学内容及方法1、课前预习:学生通过查阅相关资料,掌握轴对称的概念、特点以及轴对称性的判别方法;2、课堂讲解:教师通过实例,引导学生认识轴对称的基本概念和性质,并讲解轴对称性的判别和寻找轴对称轴的方法;3、课堂实践:分组进行练习,让学生体验轴对称的应用;4、课后习题:巩固学生对轴对称的认识和理解。

四、教学过程1、引入学生通过听老师读题目,找到两条轴对称轴,从而了解轴对称的基本概念。

2、概念讲解教师介绍轴对称的概念,以及轴对称的特征和性质,通过图示让学生理解轴对称的含义和判别方法。

3、学生练习给出一些图形让学生尝试判断是否具有轴对称性,并找出它的轴对称轴。

教师可以通过让学生在黑板上画出轴对称轴的方式,让学生更好地理解轴对称性的判别方法。

4、轴对称的应用教师通过一些有趣的实例,让学生感受轴对称在生活中的应用,如轴对称的纹样、轴对称的图案等。

通过这些实例的介绍,激发学生的观察能力和审美能力。

5、课后习题布置轴对称的练习题,巩固学生对轴对称概念和方法的掌握。

在学生熟练掌握轴对称的判别和寻找方法后,可以开展一些更加复杂的练习,让学生挑战自我,提高学生的学习兴趣和学习效果。

五、教学评价通过课后布置的练习题,对学生的学习效果进行评估,通过检查学生的答题情况,对学生的疑点进行解答,并及时纠正学生的错误,提高学生对轴对称的理解和掌握程度。

六、教学总结本次教学主要介绍了轴对称的基本概念和性质,以及轴对称性的判别和寻找方法。

通过实例的介绍,让学生了解了轴对称在生活中的应用。

通过教学实践,提高了学生的审美、观察能力,为学生后续的学习打下了基础。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

3、轴对称图形与轴对称的区别与联系:(1)区别。

轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。

把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

4、轴对称的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

5、线段的垂直平分线:(1)定义。

经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。

如图2,∵CA=CB,直线m⊥AB于C,∴直线m是线段AB的垂直平分线。

(2)性质。

线段垂直平分线上的点与线段两端点的距离相等。

如图3,∵CA=CB,直线m⊥AB于C,点P是直线m上的点。

∴PA=PB 。

(3)判定。

与线段两端点距离相等的点在线段的垂直平分线上。

如图3,∵PA=PB,直线m是线段AB的垂直平分线,mCA B图2mCA BP图3∴点P 在直线m 上 。

6、等腰三角形:(1)定义。

有两条边相等的三角形,叫做等腰三角形。

相等的两条边叫做腰。

第三条边叫做底。

两腰的夹角叫做顶角。

腰与底的夹角叫做底角。

说明:顶角=180°- 2底角 底角=顶角顶角21-902180︒=-︒ 可见,底角只能是锐角。

(2)性质。

等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线” ,只有一条。

等边对等角。

如图5,在△ABC 中∵AB=AC∴∠B=∠C 。

三线合一。

(3)判定。

有两条边相等的三角形是等腰三角形。

如图5,在△ABC 中, ∵AB=AC∴△ABC 是等腰三角形 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若∠A=95°, ∠B=145°, 则
95° (1)∠A1=____ , °; ∠B1= 145 ____
3 5 (2)若AB=3cm,BC=5cm,则A1B1=___cm,B 1C1=___cm; (3)若连结AA1、 BB1、 CC1、 DD1,则与AA1平行的线段 有 BB1、 CC1、 DD1 . A D C B A1 B1 D1
(C)一个图形在某直线两旁部分的形状大小都相同 (D)一个图形沿某直线翻折,直线两旁的部分能够 互相重合
以一条直线为对称轴的对称图形的性质 1)如果两个图形关于某一条 直线对称,那么连接对应点的 线段被对称轴垂直平分 (对称轴是对应点连 线的垂直平分线) C
M A A'
B
B' C' N
2)如果连接两个点的线段 被一条直线垂直平分,那么这 两个点关于这条直线对称
提示 1.小区的周边,哪 B 一条边的长度是固 l 定不变的? 2.要使小区周边最短,只需哪两边的和最短?
知识回顾: 1、轴对称图形和轴对称的区别与联系
轴对称图形
A
轴对称
A'
图形
B
A
区别
(1) 轴对称图形是指 (一个 ) (1)轴对称是指(两个)图形 具 有特殊形状的图形, 的位置关系,必须涉及 只对( 一个 ) 图形而言; ( 两个 )图形; 不一定 ) 只有一条 (2)对称轴( (2)只有( 一条)对称轴. 如果把轴对称图形沿对称轴 分成两部分,那么这两个图形 就关于这条直线成轴对称. 如果把两个成轴对称的图形 拼在一起看成一个整体,那 么它就是一个轴对称图形.
C1
3、下图是在方格纸上画出的一半,以树干 为对称轴画出树的另一半。
试一试
一次晚会上,主持人出了一道题目: “如何把 变成一个真正的等式", 很长时间没有人答出,小兰仅仅拿出了 一面镜子,就很快解决了这道题目,你 知道她是怎样做的吗?
如图,古罗马有一位将军,他每天都要从驻 地A 出发,到河边饮马,再到河岸同侧的军营 B 巡视。他经常想因该怎样走才能使路程最短, 但他百思不得其解。
A B
C
B′
L
小结:
1.轴对称是 两个 图形关于某条直线对 称。轴对称图形是 一个 图形关于某条直 线对称。 2.轴对称的性质: (1).对应点连线段被对称轴垂直平分
(2).对应线段相等,对应角相等。
3.如何把实际问题抽象或转化为几何模 型。
试一试:
如图,EFGH是矩形的台球桌面,有两球分别 位于A、B两点的位置,试问怎样撞击A球,才 能使A球先碰撞台边EF反弹后再击中B球?
垂直
M A
加倍
画点
M
连线
A
B
N
B N
∴线段AB’ B’
即为所求
实验: 在纸上再任画一点B,同样穿孔并展开,
连AB和A1B1.
A C B m A1 C1 B1
在纸上再任画一点C,仿照上面进行操作. △ABC和△A1B1C1有什么关系?
A
m
A1
C
B
C1
B1
轴对称的性质:
1. 成轴对称的两个图形全等(对应角相等,
已知:直线MN和点A 求作:点A’,使点A’和点A是以MN为对称轴的对称点
M M
A
A
Hale Waihona Puke A'BNN
作法:过点A做AB垂直于MN,垂足为B,延长AB至A’, 使BA’=AB ∴点A’是点A关于MN的对称点。
作对称图形时要抓住两点: 1)作垂线 2)截相等 3)若点A在对称轴上则点A关于MN的对应 点就是点A本身 作出线段AB关于MN的对称线段
解:1.作点A关于EF 的对称点A′
H
A B
G
2.连结A′B交EF于 点C则沿AC撞击黑球A ,必沿CB反弹击中白 E 球B。
C
A′
F
思考题
如图,在俯南河L边的空地上,房屋开发商准备建一个三 角形住宅小区,A、B两幢建筑物恰好建在三角形住宅小区 的两个顶点处,现要求小区大门C建在俯河边且小区周边 最短。如果你是这个项目的总设计师,请确定出小区大门 C的最佳位置。并在图中标出。 A
对应边相等).
A C
m
A1 C1
B
B1
线段AA1,BB1,CC1分别与对称轴m有什么关 系?
A
C B
m
A1
C1 B1
轴对称的性质2:
如果两个图形成轴对称,那么对称轴是 对称点连线段的垂直平分线.
轴对称的性质3
A
C B
m
A1
C1 B1
线段AA1,BB1,CC1有什么关系?
成轴对称的两个图形,对称点所连的线段平 行(或在同一条直线上).
小结:轴对称的性质:
1.成轴对称的两个图
A C B
m
A1 C1 B1
形全等(对应角相
等,对应边相等).
2.如果两个图形成轴对称,那么对称轴是 对称点所连的线段的垂直平分线.
检测与练习
1.△ABC与△DEF关于直线L成轴对称,
则∠C是多少度? L
A
40
D
65
B
C
F
E
2.如图,已知四边形ABCD与A1B1C1D1成轴对称,
古饶初中八年级数学备课组
1.什么叫做轴对称?什么叫对称轴?什么叫对 称点?
如果把一个图形沿着某一条直线折叠后,能够与另一 个图形重合,那么这两个图形关于这条直线成轴对称,
这条直线叫做对称轴。两个图形中的对应点叫对称点。
2.什么叫做轴对称图形?
如果一个图形沿一条直线折叠,直线两旁的部分能 够相互重合,这个图形叫做轴对称图形。这条直线就是 它的对称轴.
C
B
C
C'
B'
联系
一、判断 1. 轴对称图形必有对称轴
随堂练习
( ) ) )
2. 轴对称图形至少有一条对称轴 (
3. 关于某直线成轴对称的两个图形必能互相重合( 4. 两个完全互相重合的图形必是轴对称( )
二、选择 符合下列哪个条件的图形是轴对称图形? ( D ) (A)能够互相重合的两个图形
(B)一个图形在某直线翻折,能与另一个图形重合
相关文档
最新文档