轴对称图形的性质

合集下载

轴对称图形全章复习

轴对称图形全章复习

《轴对称图形》全章复习【知识网络】【要点梳理】要点一、轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.3.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.4.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).要点二、线段、角的轴对称性1.线段的轴对称性(1)线段是轴对称图形,线段的垂直平分线是它的对称轴.(2)线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;(3)线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线2.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴.(2)角平分线上的点到角两边的距离相等.(3)角的内部到角两边距离相等的点在角的平分线上.要点三、等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.。

轴对称

轴对称

轴对称1、轴对称图形:一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴。

2、成轴对称图形的前提是一个图形,且这个图形满足两个条件:①存在直线(对称轴)②沿着这条直线折叠,折痕两旁的部分能重合.3、一个轴对称图形的对称轴是直线且不一定只有一条,可能有两条或多条.如图所示:4、轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点。

5、成轴对称:①前提是两个图形②存在一条直线③两个图形沿着这条直线对折能够完全重合.6、轴对称:①成轴对称的两个图形一定全等②它与轴对称图形的区别主要是:它是指两个图形,而轴对称图形前提是一个图形③成轴对称的两个图形除了全等外还有特定的位置关系.如图所示:A BC D1、已知下面四个汽车标志图案,其中是轴对称图形的图案是______________。

2、如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为_____________cm 2.3、下列轴对称图形中,只有两条对称轴的图形是()A .B .C .D .4、仔细观察下列图案,并按规律在横线上画出合适的图形._________5、下列平面图形中,不是轴对称图形的是 ( )6、下列英文字母属于轴对称图形的是 ( ) A 、N B 、S C 、 H D 、 K7、下列图形中对称轴最多的是 ( ) A 、圆 B 、正方形 C 、等腰三角形 D 、线段8、下列图形: ①角 ②两相交直线 ③圆 ④正方形,其中轴对称图形有 ( ) A 、4个 B 、3个 C 、2个 D 、1个1、轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.2、若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称。

初中数学知识点轴对称与中心对称

初中数学知识点轴对称与中心对称

初中数学知识点——轴对称与中心对称一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

轴对称、中心对称图形的性质及应用

轴对称、中心对称图形的性质及应用

轴对称、中心对称图形的性质及应用一、轴对称图形如果把一个图形沿着某一条直线对折过来,在直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴,能够重合的点互为对称点.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连结两个对称点的线段的垂直平分线.在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质.譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等.另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中.例1 已知直线l外有一定点 P,试在l上求两点A、B,使AB=m(定长),且PA+PB最短.分析当把P点沿l方向平移至C(如图1),使PC=m,那么问题就转化为在l上求一点B,使CB+PB为最短.作法过P作PC∥l,使PC=m,作P关于l的对称点P',连结CP'交l于B.在l上作AB=m,点A、B为所求之两点.证在l上另任取A'B'=m,连PA、PA'、PB',CB',A'P',B'P',则PA'=P'A',PB'=P'B',又PA'B'C 为平行四边形,∴CB'=PA'.∵CB'+B'P'>CP',∴ PA'+PB'>PA+PB.例2 如图2,△ABC中,P为∠A外角平分线上一点,求证:PB+PC>AB+AC.分析由于角平分线是角的对称轴,作AC关于AP的轴对称图形AD,连结DP、CP,则DP=CP,BD=AB+AC.这样,把 AB+AC、AC、PB、PC集中到△BDP中,从而由PB+PD>BD,可得PB+PC>AB+AC.证 (略)说明通过变为轴对称图形后,起到相对集中条件的作用,又有将折线化直的作用(如AB+AC化直为BD).例3 等腰梯形的对角线互相垂直,且它的中位线等于m,求此梯形的高.解如图3.设等腰梯形AD∥BC,AB=DC,对角线AC与BD相交于O,且AC⊥BD,中位线EF=m.过AD、BC的中点M、N作直线,由等腰梯形ABCD关于直线MN成轴对称图形,∴O点在MN上,且OA=OD,OB=OC,AM=DM,BN=CN.又 AC⊥BD,故△AOD和△BOC均为等腰直角三角形.2OM=AD,2ON=BC.∵AD+BC=2EF=2m,∴2OM+2ON=2m.∴OM+ON=m,即梯形高MN=m.例4 凸四边形EFGH的四个顶点分别在边长为a的正方形ABCD的四条边上.证如图4,连结AA2,EE3.正方形ABCD和正方形A1BCD1关于BC对称;EFGH和E1FG1H1关于BC对称;A1BCD1和A2B1CD1关于 CD1对称;E1FG1H1和 E2F1G1H2关于CD1对称;A2B1CD1和A2B2C1D1关于A2D1对称,E2F1G1H2和E3F2G2H2关于A2D1对称.例5 如果一个四边形关于它的两组对边中点的两条连线成轴对称,则此四边形为矩形.已知如图22-5.四边形ABCD中,M、F、N、E分别为各边的中点,且MN、EF为它的对称轴.求证 ABCD是矩形.分析欲证ABCD是矩形,首先证明它是平行四边形,再证明它有一个直角即可.证∵四边形ABCD关于EF成轴对称,∴DC⊥EF,AB⊥EF,∴AB∥DC.同理AD∥BC.∴ABCD是平行四边形.∴DC=AB.又∵DE=DC/2,AF=AB/2.∴DE AF,∴ADEF为平行四边形.∴AD∥EF,而DE⊥EF,∴DE⊥AD,∠D=Rt∠.∴ABCD是矩形.二、中心对称图形如果把一个图形绕着某一点旋转180°后,能和原图形重合,那么这个图形叫做中心对称图形.这个点叫做对称中心,能重合的点互为对称点.中心对称图形具有以下性质:(1)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.(2)关于中心对称的两个图形,对应线段平行(或在同一条直线上)且相等.平行四边形是中心对称图形.矩形、菱形、正方形既是中心对称图形,也是轴对称图形.例6 如图6.已知ABCD,O是对角线 AC与BC的交点. EF过O点与AB交于E,与DC交于F.求证:OE=OF.证∵O点是ABCD的对称中心,EF过O点与AB相交于E,与DC相交于F.故E、F两点是以点O为对称中心的对称点.∴OE=OF.例7 △ABC中,底边BC上的两点M、N把BC三等分,BE是AC上的中线,AM、AN分BE 为a,b,c三部分,求:a∶b∶c.分析本题解法很多,我们利用中心对称图形求解.如图7,以E为中心,作已知图形的中心对称图形,则M'C∥AM,N'C ∥AN,于是可得a∶(2b+2c)=1/2,∴a=b+c,①(a+b)∶2c=DN'∶N'A=2∶1,∴a+b=4c,②由①得,a-b=c,③②+③, 2a=5c,∴a=5c/2.②-③,2b=3c,∴b=3c/2.∴ a∶b∶c=5c/2∶3c/2∶c=5∶3∶2.解 (略)例8 若四边形的一组对边相等,延长这一组对边,使各与另一组对边的中点连线的延长线相交,则这两个交角必相等.已知如图8.四边形ABCD中, AD=BC,E、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于G、H.求证∠AGE=∠BHE.分析为了使求证的两个角与已知条件发生联系,利用“旋转法”使角或线段搬家而沟通思路.证如图8,以E为对称中心,作△EBC的中心对称图形△EAM(即连结CE并延长CE到M 使EM=EC,连结AM).连结DM,AM=BC=AD,∴∠2=∠3.∵DF=FC,CE=EM,∴DM∥HE,∴∠1=∠2.∵AE=EB, EM=EC,∴AMBC是平行四边形.∴AM∥BH,而DA∥HE,∴∠3=∠BHE.∴∠1=∠BHE,即∠AGE=∠BHE.习题1.如图9 一牧童在A处牧马,牧童家在B处.A、B处距河岸分别为300m、500m,CD =600m,天黑前,牧童从A点将马牵到河边去饮水后再赶回家.那么牧童最少要走多少米?2.证明:任一点关于正方形各边中点的对称点是一个正方形的顶点.3.求证:在四边形ABCD中,如果AB=AD,CB=CD,那么它的面积等于AC·BD/2.4.在直线MN两侧有A,B两点,在MN上求一点P,使P到A、B两点之差最大.5.等腰梯形的周长为22cm,中位线长为 7cm,两条对角线中点连线为3cm,求各边长.。

轴对称的性质

轴对称的性质
(1)
(2)
喜喜
(3)
(4)
轴对称图形和轴对称的区别与联系 轴对称图形 图形 轴对称
区别
轴对称图形是一个具有 特殊形状的图形,只对 一个图形而言;对称轴 不一定只有一条
轴对称是指两个图形 的位置关系,必须涉 及两个图形;只有一 条对称轴.
联系
如果把轴对称图形沿对 称轴分成两部分,那么这 两个图形就关于这条直 线成轴对称.

则AED1 __________ __
轴对称的性质:
m
A
C B
A1
C1 B1
1.成轴对称的两个图
形全等(对应角相
等,对应边相等).
2.如果两个图形成轴对称,那么对称轴是 对称点所连的线段的垂直平分线. 3.成轴对称的两个图形,对称点所连的 线段平行(或在同一条直线上).
定义: 垂直并且平分一条线段的直线,

课堂精炼70页:
4.正方形ABCD的边长为4cm, 则图中阴影部分的面积 为 __________ cm2 ___
5.如果一个直角三角形是轴对称图形,那 么它的两个锐角的度数是_______, _________
6.如图所示, l是四边形ABCD的对称轴,AD∥BC,现给出下列结论: ①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC 其中正确的结论有____________________________
3、点 A’ 就是点A关于 l 的对称点.
基础训练
l
A’
如何画线段AB关于直线 l 的 A 对称线段A’B’?
找关键点作出其对称点! 然后连结线段.
B
B’
基础训练
l
如何画 ⊿ABC关于直线 l 的
A A’

轴对称图形

轴对称图形

轴对称图形轴对称图形是几何学中的一个重要概念,在许多领域中都有着广泛的应用。

轴对称图形是指可以通过某条虚拟线(称为轴)将图形分成两个对称的部分的图形。

接下来我们将深入探讨轴对称图形的性质、特点以及一些实际应用。

轴对称图形的性质轴对称图形具有以下几个显著的性质:1.对称轴:轴对称图形存在一个或多个对称轴,通过这些轴,可以将图形分成两个完全对称的部分。

对称轴可以是水平、垂直或斜线。

2.对应点:轴对称图形上的每个点都有一个对应的对称点,这个对称点关于对称轴相对位置相同,但是在轴对称图形中却是互为镜像的。

3.性质保持不变:轴对称变换不改变轴对称图形的性质,如面积、周长等,它只改变图形在空间中的位置和方向。

轴对称图形的分类根据轴对称的不同性质,轴对称图形可以分为以下几类:1.轴对称图形:最简单的轴对称图形是对称图形本身,例如正方形、正圆等。

2.轴对称字母:字母X在垂直中线上是轴对称。

3.轴对称数字:数字0、1、8在水平、垂直中线上是轴对称的。

4.轴对称图形的组合:多个轴对称图形可以组合在一起形成一个更大的轴对称图形。

轴对称图形的实际应用轴对称图形在日常生活中有着广泛的应用,下面列举几个实际应用:1.艺术创作:许多艺术作品中都运用了轴对称的原理,通过对称的布局或对称的图案来吸引观众的眼球。

2.建筑设计:建筑中的对称结构能够给人一种和谐、美感的感受。

许多古代建筑和现代建筑都运用了轴对称的设计。

3.产品设计:在产品设计中,轴对称设计能够提升产品的稳定性和美观性,例如汽车、手机等产品。

4.生物学:生物体中也存在轴对称结构,例如人体的左右对称、植物的对称花瓣等。

总结轴对称图形作为一种重要的几何概念,不仅在数学中有着丰富的性质和特点,而且在各个领域都有着重要的应用。

通过深入研究和理解轴对称图形,我们可以更好地利用这一概念在日常生活和工作中发挥作用,为人们创造更多美好的体验和设计。

希望本文对读者们有所启发,谢谢阅读!。

小学数学轴对称知识点总结

小学数学轴对称知识点总结

小学数学轴对称知识点总结(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。

5.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(-x,y);点(x,y)关于y轴对称的点的坐标为(x,-y);点(x,y)关于原点对称的点的坐标为(-x,-y)。

关于谁谁不变,关于原点都相反(五)等腰三角形等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

轴对称图形的性质及应用

轴对称图形的性质及应用

轴对称图形的性质及应用如果把一个图形沿着某一条直线对折过来,在直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴,能够重合的点互为对称点.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连结两个对称点的线段的垂直平分线.在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质.譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等.另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中.例1已知直线l 外有一定点 P ,试在l 上求两点A ,B ,使AB m =(定长),且PA PB +最短.分析:当把P 点沿l 方向平移至C (如图1),使PC m =,那么问题就转化为在l 上求一点B ,使CB PB +为最短.作法:过P 作//PC l ,使PC m =,作P 关于l 的对称点P ',连结CP '交l 于B .在l 上作AB m =,点A ,B 为所求之两点.证:在l 上另任取A B m ''=,连PA ,PA ',PB ',CB ',A P '',B P '',则P A PA'''=,PB P B '''=,又PA B C ''为平行四边形,∴CB PA ''=. ∵CB '+B P ''>CP ', ∴PA '+PB '>PA +PB .例2如图2,△ABC 中,P 为∠A 外角平分线上一点,求证:PB +PC >AB +AC .分析:由于角平分线是角的对称轴,作AC关于AP的轴对称图形AD,连结DP,CP,则DP=CP,BD=AB+AC.这样,把AB+AC,AC,PB,PC集中到△BDP中,从而由PB+PD>BD,可得PB+PC>AB+AC.证:(略).点评:通过变为轴对称图形后,起到相对集中条件的作用,又有将折线化直的作用(如AB+AC化直为BD).例3等腰梯形的对角线互相垂直,且它的中位线等于m,求此梯形的高.解:如图3.设等腰梯形AD∥BC,AB=DC,对角线AC与BD相交于O,且AC⊥BD,中位线EF=m.过AD,BC的中点M,N作直线,由等腰梯形ABCD关于直线MN成轴对称图形,∴O点在MN上,且OA=OD,OB=OC,AM=DM,BN=CN.又AC⊥BD,故△AOD和△BOC均为等腰直角三角形.2OM=AD,2ON=BC.∵AD+BC=2EF=2m,∴2OM+2ON=2m.∴OM+ON=m,即梯形高MN=m.例4凸四边形EFGH的四个顶点分别在边长为a的正方形ABCD的四条边上.求证:EFGH的周长不小于.证:如图4,连结AA 2,EE 3.正方形ABCD 和正方形A 1BCD 1关于BC 对称;EFGH和E 1FG 1H 1关于BC 对称;A 1BCD 1和A 2B 1CD 1关于 CD 1对称;E 1FG 1H 1和 E 2F 1G 1H 2关于CD 1对称;A 2B 1CD 1和A 2B 2C 1D 1关于A 2D 1对称,E 2F 1G 1H 2和E 3F 2G 2H 2关于A 2D 1对称.2AA =,又23AE A E =32EE AA ==1122332EF FG GH HE EF FG G H H E EE AA ∴+++=+++==≥例5 如果一个四边形关于它的两组对边中点的两条连线成轴对称,则此四边形为矩形.已知:如图5.四边形ABCD 中,M ,F ,N ,E 分别为各边的中点,且MN ,EF 为它的对称轴.求证:ABCD 是矩形.分析:欲证ABCD 是矩形,首先证明它是平行四边形,再证明它有一个直角即可.证:∵四边形ABCD 关于EF 成轴对称,∴DC ⊥EF ,AB ⊥EF , ∴AB ∥DC .同理AD ∥BC .∴ABCD 是平行四边形.∴DC =AB .又∵2DC DE =,2AB AF =.∴D E AF ,∴ADEF 为平行四边形.∴AD ∥EF ,而DE ⊥EF ,∴DE ⊥AD ,∠D =90 .∴ABCD 是矩形.轴对称应用举例山东 徐传军生活中很多图形的形状都有一个共同的特性———轴对称.在日常生活中利用轴对称的性质能解决很多问题,下面举例说明.一、确定方向例1 如图1,四边形ABCD 是长方形的弹子球台面,有黑白两球分别位于E 、F 两点的位置,试问,怎样撞击黑球E ,才能使黑球先碰撞台边DC ,反弹后再击中白球F ?解:作E 点关于直线CD 的对称点E ′,连接FE ′,与CD 的交点P 即为撞击点,点P即为所求.例2 如图2,甲车从A 处沿公路L 向右行驶,乙车从B 处出发,乙车行驶的速度与甲车行驶的速度相同,乙车要在最短的时间追上甲车,请问乙车行驶的方向?解:作AB 的垂直平分线EF ,交直线L 于点C ,乙车沿着BC 方向行驶即可.二、确定点的位置找最小值例3 如图3,AB ∥CD ,AC ⊥CD ,在AC 上找一点E,使得BE +DE 最小.解:作点B 关于AC 的对称点B ′,连接DB ′,交AC 于点E ,点E 就是要找的点.例4如图4,点A是总邮局,想在公路L1上建一分局D,在公路L2上建一分局E,使AD+DE+EA的和最小.解:作点A关于L1和L2的对称点B、C.连接BC,交L1于点D,交L2于点E.点D、E就是要找的点.三、与其他学科结合唐朝某地建造了一座十佛寺,竣工时,太守在庙门右边写了一副上联“万瓦千砖百匠造成十佛寺”,望有人对出下联,且表达恰如其分,你能对出下联来吗?对联中有数字万、千、百、十,几个月过去了,无人能对,有个文人李生路过,感觉庙前没有下联不像话,十分感慨.一连几天在庙前苦思冥想,未能对出下联,有次在庙前散步,望见一条大船由远而来,船夫正使劲的摇橹,这时李生突发灵感,对出了下联———“一舟二橹四人摇过八仙桥”.太守再次路过此庙时,看到下联,连连称赞“妙妙妙”.这副对联数字对数字,事物对事物,对称美如此的和谐.可见,对称美在文学方面也有生动深刻的体现.生活中的轴对称无处不在,只要你善于观察,将会发现其间所蕴涵的丰富的文化价值和对称美给人带来的回味无穷的享受.用轴对称解实际问题山东于秀坤在我们实际生活中,许多问题设计到轴对称的应用,下面介绍几例.例1要在河岸所在直线l上修一水泵站,分别向河岸同侧的A、B两村送水,请你设计水泵站应修在何处,所用管道最短?分析:设水泵站修在C点,此题的实质是求折线AC+BC的最短长度,可作出A点关于直线l的对称点A′,如图1,根据对称性,AC+BC=A′C+BC,所以连结BA′交直线l于点C,点C便是水泵站的位置,因为此时折线长AC+CB化成线段A′B的长,根据两点之间线段最短的道理便可确定点C是水泵的位置.图1 图2例2如图2,角形铁架∠MON小于60°,A、D是OM、ON上的点,为实际应用的需要,须在OM和ON上各找点B、C,使AB+BC+CD最小,问应如何找?分析:学习了轴对称,可以利用对称性化折为直的道理,分别作出点A、点D关于ON、OM的对称点A′、D′,连结A′D′与ON、OM交于B、C,则点B、C便是所求的点.例3如图3,EFGH是一个长方形的弹子球台面,有黑白两球分别位于A、B两点的位置.(1)试问:怎样撞击黑球A,使黑球A先碰撞台边EF反弹后再撞击白球B?(2)怎样撞击黑球A,使黑球先碰撞台边GH反弹后再击台边EF,最后击白球B?图3分析:利用轴对称的性质,分别作出B点关于EF的对称点,A点关于HG的对称点,问题得解.解:(1)①作点B关于EF的对称点B′,②连结AB′交EF于C点,则沿AC撞击A,球A必沿BC反弹击中白球B(如图4).图4 图5(2)如图5,作法类似(1).例4如图5,小河边有两个村庄,要在河对岸建一自来水厂向A村与B村供水,要符合条件:(1)若要使厂部到A、B的距离相等,则应选在哪儿?(2)若要使厂部到A村、B村的水管最省料,应建在什么地方?图5 图6 图7解:(1)如图6,取线段AB的中点G,过中点G作AB的垂线,交EF于P,则P到A、B的距离相等.(2)如图7,作点A关于河岸EF的对称点A′,连结A′B交EF于P,则P到A、B 的距离和最短.用轴对称知识解决打台球一题山东于秀坤题目:小强和小勇利用课本上学过的知识来进行台球比赛.(1)小强把白球放在如图1所示的位置,想通过击打白球撞击黑球,使黑球撞AC边后反弹进F洞;想想看小强这样击打,黑球能进F洞吗?请画图的方法验证你的判断,并说明理由.图1 (2)小勇想通过击打白球撞击黑球,使黑球至多撞台球桌边一次后进A洞,请你猜想小勇有几种方案?并分别在下面的台球桌上画出示意图,解释你的理由.分析:本题是一道操作型探究题,主要根据轴对称的知识的有关进行探究.第(1)题可以通过击打AC边使球反弹进F洞.第(2)题有多种方法.击球入洞需要对每一杆的角度进行适当的估算,实质上等同于几何角度的计算,二者有着密切的关系.要想至多撞台球桌边一次击黑球于F洞.方案可以有以下情况:(1)不击台球桌边,直接用白球撞击黑球;(2)通过白球击CF边反弹再撞击黑球进A洞;(3)用白球撞击DF边反弹撞击黑球进F洞.要想准确撞击黑球,必须找准击球的方向角度,准确估算击球的方向.在数学上,可以借助轴对称的知识来解决问题.解: (1)如图2,将白球与黑球视为两点,过这两点画直线交台球桌边AC于M,过点M 作法线MN⊥AC,在MN右侧∠F′MN=∠PMN,由于射线MF′过F洞,知黑球经过一次反弹后必进入F洞.图2(2)方案1:如图3,视白球、黑球为两点P,G,使A、G、P在同一直线上.方案2:如图4,延长AC到H点,使AC=CH,连接GH交FC于点K,根据轴对称的知识可知,用白球沿GK方向撞击边CF反弹后可进行A洞.方案3:如图5,延长AD到M点,使MD=AD,连结GM交DF于N,根据轴对称知识可知,沿GN方向用白球撞击黑球经反弹后可进入A洞.图3 图4 图5最短线路问题河北欧阳庆红吴立稳同学们,对于最短线路问题你一定很陌生吧?运动着的车、船、飞机,包括人们每天走路都要遇到这样的问题.古今中外的任何旅行者总希望寻求最佳的旅行路线,尽量走近道,少走冤枉路.我们把这类求近道的问题统称最短线路问题.另外,从某种意义上说,一笔画问题也属于这类问题,这类问题在生产、科研、生活中应用广泛.请同学们看下面几个生活中的最短线路问题.一、两点一线问题例1 如图1,某同学打台球时想绕过黑球,通过击黑球A,使主球A撞击桌边MN后反弹,来击中白球B.请在图中标明,黑球撞在MN上哪一点才能达到目的?(以球心A、B来代表两球)?分析:要撞击黑球A,使黑球A先撞击台边MN上的P点后反弹击中白球B,需∠APN=∠BPM,如图2,可作点A关于MN的对称点A’,连结A’B交MN于点P,则P点即为所求作的点.作法:(图2):⑴作点A关于MN的对称点A’;⑵连结A’B,交MN于P.则经AP撞击台边MN,必沿P B反弹击中白球B.∴点P就是所要求的点.N图1说明:本题黑球A ,白球B 在MN 的同侧,直接确定撞击点的位置不容易,但若A 、B 在MN 的异侧,击球路线就容易确定了.本题可利用轴对称的特征将A 点转化到MN 的另一侧,设为A ’,连接A ’B 即可确定撞击点.二、一点两线问题例2 在一条大的河流中有一形如三角形的小岛(如图3),岸与小岛有一桥相连.现准备在小岛的三边上各设立一个水质取样点.水利部门在岸边设立了一个观测站,每天有专人从观测站步行去三个取样点取样,然后带回去化验.请问,三个取样点应分别设在什么位置,才能使得每天取样所用时间最短(假设速度一定)? 分析:此题要求时间最短,而速度一定,所以可转化为求最短路程.如图4,小桥DE为必走之路,所以容易得到D 为BC 边上的取样点.关键是确定另外两边上的取样点,这是线段之和最小的问题,我们的想法是将三条线段拼起来,关于线段最短,我们有“两点之间,线段最短”,利用对称便可使问题得到解决.解析:如图4,作点D 关于AB 的对称点F ;点D 关于AC 的对称点G , 连接FG ,交AB 于M ,交AC 于N .∴D 、M 、N 即所求三个取样点.(请同学们试着证一证).三、同类变式 例3 某班举行文艺晚会,桌子摆成两直条(如图5中的AO ,BO ),AO 桌面上摆满了糖果,BO 桌面上摆满了桔子,坐在C 处的学生小亮先拿糖果再拿桔子,然后回到座位,请你帮他设一条行走路线,使其所走的总路程最短?分析:此题是轴对称的特殊应用,需分两种情况讨论:①∠AOB 小于90°;②∠AOB 等于90°。

轴对称图形知识点归纳

轴对称图形知识点归纳

轴对称知识梳理一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.2.线段的垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线3.轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.4.等腰三角形有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.5.等边三角形三条边都相等的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离相等.3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).4.等腰三角形的性质(1)等腰三角形的两个底角相等(简称“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。

(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.5.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.三、有关判定1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.三个角都相等的三角形是等边三角形.4.有一个角是60°的等腰三角形是等边三角形.。

初中数学轴对称知识点总结归纳

初中数学轴对称知识点总结归纳

初中数学轴对称知识点总结归纳轴对称是几何学中的一个重要概念,关于轴对称的知识在初中数学中有着广泛的应用。

下面是初中数学轴对称的知识点总结归纳。

一、轴对称的定义及性质轴对称即物体围绕条线旋转180度后仍然与原来位置重合。

1.定义:轴对称是指平面内的点、线、图形等围绕条线旋转180度后仍然与原来位置重合。

2.性质:a.旋转中心即轴对称的轴上的任意点保持不动。

b.旋转中心与轴对称的物体上的任意点之间的距离保持不变。

二、轴对称的判断判断一个图形是否轴对称的方法有以下几种:1.观察法:观察图形是否看起来关于条线对称。

2.折叠法:将图形沿着条疑似对称轴对折,观察是否能够将两部分完全重合。

3.旋转法:将图形围绕一个疑似对称轴旋转180度,观察是否与原来位置完全重合。

4.对称性质法:观察图形是否具有对称性质,例如左右对称、上下对称等。

三、轴对称的应用1.确定轴对称图形:a.线段的中点是线段轴对称的轴。

b.两个且只有两个端点在同一直线上的线段是轴对称的轴。

c.两条平行线是轴对称的轴。

d.三个且只有三个顶点都在同一直线上的三角形是轴对称的轴。

e.按顺时针方向给出的相邻边相等的凸多边形是轴对称的轴。

f.所有与自己相似的图形都是轴对称的轴。

2.轴对称图形的性质:a.轴对称图形是左右对称的,即图形的左半部分和右半部分完全一样。

b.轴对称图形的最小单位即轴上的点称为轴对称图形的旋转中心。

c.轴对称图形的每个点的两边都有另一个对称点。

d.轴对称图形上的点与旋转中心距离相等的点是该图形上的点与旋转中心的对称点。

3.构造轴对称图形:a.已知轴对称图形的一部分,可以使用对称性质构造其他部分。

b.可以将点在轴上折叠,或者将线段、角度在轴上旋转,得到图形的对称部分。

四、轴对称图形的操作1.旋转:将轴对称的物体沿着轴旋转180度,使得物体的每个点都与轴上的对称点相重合。

2.平移:将轴对称的物体沿着与轴垂直的平行线平移,使得物体与原来位置的对称关系保持不变。

图形的平移与轴对称

图形的平移与轴对称

图形的平移与轴对称一、平移把一个图形整体沿着某一条直线方向上移动,会得到一个新的图形,图形的这种变化叫做平移。

特征:图形平移后,对应线段相等且平行,对应点所连的线段平行且相等。

平移后,对应角相等,且对应角的两边分别平行,方向相同,平移前后的图形全等。

二、轴对称1. 轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够完全重合,这个图形就叫轴对称图形,把这条直线叫做对称轴,这个时候,我们说这个图形关于这条直线成轴对称。

2. 轴对称图形的性质(1)轴对称图形的对应线段相等,对应角相等,对称点所连线段被对称轴垂直平分。

(2)轴对称变换的特征是不改变图形的形状和大小,只改变图形的位置。

(3)成轴对称的两个图形,如果它们的对应线段或者延长线相交,则交点一定在对称轴上。

三、线段垂直平分线性质:线段垂直平分线上的点与这条线段的两端点的距离相等判定:与一条线段两端点距离相等的点,在这条直线的垂直平分线上。

四、经典练习题A.坐标的平移如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()B、轴对称C.轴对称图形D、线段垂直平分线的应用E、利用平移求图形的面积五、总结1.在解答图形平移的问题中,找准平移的方向和平移的距离是最重要的,在平面直角坐标系中求图形平移后的点的坐标,一般遵循“上加下减、左减右加”的原则,这个千万不要跟二次函数的图像平移相混淆,二次函数图象平移的原则是“上加下减,左加右减”。

2.在解答轴对称类的问题时,一般要运用轴对称图形的对应线段相等,对应角相等,对应点所连线段被对称轴垂直平分等性质,尤其要特别注意,折叠是一种轴对称,折叠前后图形全等。

3.图形成轴对称和轴对称图形是两个不同的概念,链各个概念之间也有很密切的关系,图形成轴对称是一种关系,轴对称图形是“图形”。

我们通常会说某两个图形关于某直线对称,或某两个图形成对称轴,又会说某一个图形是轴对称图形。

轴对称知识点总结

轴对称知识点总结

轴对称知识点(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。

5.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

关于谁谁不变,关于原点都相反(五)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称(七)点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

5.2-探索轴对称的性质

5.2-探索轴对称的性质
点,则PB=PD 。其中正确的结论有( D)
A. 1个 C. 3个
B. 2个 D. 4个
能力拓展
1. 如图,已知点A、B直线MN同侧两点,
点A1、A关于直线MN对称。连接A1B交直线
MANP于+B点P的P,长连为接AP5。cm(1)若A。1B=5cm,则
A
B
M
PN
A1
(2)若P1为直线MN上任意一点(不与P重 合),连结AP1、BP1,试说明 AP1+BP1›AP+BP。
这条直线就是对称轴
说明:(1)“轴对称”是两个图形。 (2)对折 (3)重合
L
A
40
C
B
D
65
F E
1、如图:△ABC
与△DEF关于直线L
成轴对称,则 △ABC与△DEF具 有怎样的关系?
2、若两三角形全 等,则是否一定关 于某条直线对称?
全等与轴对称的关系: 轴对称的两个图形一定全等,但全等
打开
A
C m C'
1
2
A'
3
4
D
F F'
D'
B
E
E'
B'
1、上图中,两个“14”有什么关系?
关于直线m成轴对称
打开
A
Cm
C'
1
2
A'
3
4
D
F F'
D'
B
E
E'
B'
2、线段 AB与A′B′,CD与C′D′ 有什么关系?
对应线段:相等
A
C m C'
A'

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结一、轴对称1.轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2.判断一个图形是不是轴对称图形,可利用轴对称图形的定义,将图形对折,看是否能够完全重合,若能够完全重合,则这个图形是轴对称图形,否则这个图形不是轴对称图形.注意:(1)对称轴是一条直线,而不是射线或线段.(2)一个轴对称图形的对称轴可以有1条,也可以有多条,还可以有无数条.(3)轴对称图形是对于一个图形而言的,它表示具有一定特性(轴对称性)的某一类图形.3.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.4.轴对称和轴对称图形的区别与联系5.轴对称的性质:(1)两个图形成轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.(2)轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等.(4)成轴对称的两个图形全等;轴对称图形被对称轴分成的两部分也全等,但全等的两个图形不一定是轴对称图形.二、线段垂直平分线的性质和判定1.线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.如下图所示,点P在线段AB 的垂直平分线上,则P A=PB.3.线段垂直平分线的判定:与线段两个端点距离相等的点在这条线段的垂直平分线上.如上图所示,若P A=PB,则点P在线段AB的垂直平分线上三、尺规作图(线段的垂直平分线)1.作图步骤:(1)以A为圆心,以大于线段AB一半的长度画弧(2)再以B为圆心,以相同长度为半径画弧,交前弧于C、D两点(3)连接CD,直线CD即为线段AB的垂直平分线四、尺规作图(轴对称)1.轴对称图形或成轴对称的两个图形的对称轴的画法,步骤如下:(1)找出轴对称图形或成轴对称的两个图形的任意一对对应点;(2)连接这对对应点;(3)画出对应点所连线段的垂直平分线.这条垂直平分线就是该轴对称图形或成轴对称的两个图形的对称轴.注意:对于轴对称图形或两个图形成轴对称,它们的对应点有一个共同的特征——对应点所连的线段被对称轴垂直平分,这是我们画图形的对称轴的依据.2.在坐标系中画轴对称图形的方法:(1)计算——计算对称点的坐标;(2)描点——根据对称点的坐标描点;(3)连接——依次连接所描各点得到成轴对称的图形五、关于坐标轴对称的点的坐标1.关于坐标轴对称的点的坐标特点:(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).2.已知两个点的坐标分别为P1(x1,y1),P2(x2,y2),若x1=x2,y1+y2=0,则点P1,P2关于x轴对称;若x1+x2=0,y1=y2,则点P1,P2关于y轴对称.反之也成立。

轴对称图形ppt课件

轴对称图形ppt课件

05

教学方法:讲解、示范、实践
讲解
通过语言描述,向学生解释轴对称图形的定义、性质和特点,使学 生对轴对称图形有基本的认识。
示范
通过展示轴对称图形的制作过程或解题步骤,让学生直观地了解轴 对称图形的应用和操作方法。
实践
组织学生进行实践活动,如制作轴对称图形、解决与轴对称图形相关 的问题等,以提高学生的实际操作能力和问题解决能力。
几何学基础
轴对称图形是几何学中的基础概 念,对于理解几何学的基本原理
和性质至关重要。
对称性研究
在数学中,轴对称图形是研究对 称性的一个重要方面,对于理解 更复杂的对称概念有重要意义。
应用领域
轴对称图形在物理学、工程学、 计算机图形学等领域都有广泛的 应用,是解决实际问题的重要工
具。
04
轴对称图形的制作和创造
轴对称图形ppt课件
目录
• 轴对称图形的基本概念 • 轴对称图形的识别 • 轴对称图形的性质和特点 • 轴对称图形的制作和创造 • 轴对称图形的教学方法和技巧
01
轴对称图形的基本概念
轴对称图形的定义
01 轴对称图形
如果一个平面图形在某一条直线的两侧部分可以 完全重合,那么这个图形就被称为轴对称图形。
03 美学价值
轴对称图形在美学上具有很高的价值,被广泛应 用于建筑设计、图案设计等领域。
轴对称图形的分类
01
02
03
中心对称图形
如果一个图形关于某一点 旋转180度后与自身重合 ,则称为中心对称图形。
镜面对称图形
如果一个图形关于某一条 直线对称,则称为镜面对 称图形。
旋转对称图形
如果一个图形关于某一条 直线旋转一定角度后与自 身重合,则称为旋转对称 图形。

《轴对称》知识点总结

《轴对称》知识点总结

1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

3、轴对称图形与轴对称的区别与联系:(1)区别。

轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。

把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴 对称的“两个图形看作一个整体”便是轴对称图形。

4、轴对称的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

5、线段的垂直平分线:(1)定义。

经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。

如图2,∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。

(2)性质。

线段垂直平分线上的点与线段两端点的距离相等。

m C A B图1 图 2mC A B P D'D C'B'A'K J I H如图3,∵CA=CB ,直线m ⊥AB 于C ,点P 是直线m 上的点。

∴PA=PB 。

(3)判定:与线段两端点距离相等的点在线段的垂直平分线上。

如图3,∵PA=PB ,直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。

6、等腰三角形:(1)定义。

有两条边相等的三角形,叫做等腰三角形。

✍相等的两条边叫做腰。

第三条边叫做底。

✍两腰的夹角叫做顶角。

✍腰与底的夹角叫做底角。

说明:顶角=180°- 2底角;底角=顶角顶角21-902180︒=-︒可见,底角只能是锐角。

(2)性质。

✍等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条。

✍等边对等角。

如图5,在△ABC 中,∵AB=AC ∴∠B=∠C 。

图形对称知识点总结

图形对称知识点总结

图形对称知识点总结图形对称是数学中的一个重要概念,它在几何学和代数学中都有着重要的应用。

作为数学中的一个分支,图形对称的研究十分丰富,它包含了很多种不同类型的对称性质,如轴对称、中心对称等。

图形对称的研究不仅有助于我们更深入地理解几何图形的性质,还有助于我们解决一些实际的问题。

一、轴对称轴对称是指一个图形,经过某个轴旋转180度后,图形保持不变。

这个轴称为对称轴,图形称为轴对称图形。

轴对称的性质有很多,它不仅可以帮助我们判断图形的对称性,还有助于我们解决一些计算问题。

1.1 轴对称图形的特征轴对称图形具有以下特征:(1)对称轴上的任意一点都是图形的对称中心;(2)对称轴两侧的对应点的连接线垂直于对称轴;(3)对称轴两侧的对应点之间的距离相等。

1.2 轴对称的判定方法判断一个图形是否轴对称,可以根据以下几种方法:(1)观察图形的对称性质,看是否具有对称轴;(2)将图形沿着可能的对称轴作180度旋转,看是否与原图形一致;(3)连接图形上的一些对称点,看这些连接线是否垂直于对称轴。

1.3 轴对称图形的性质轴对称图形有很多性质,其中一些常见的性质包括:(1)轴对称图形的面积等于其镜像图形的面积;(2)轴对称图形的周长等于其镜像图形的周长;(3)轴对称图形的某些特征点(如重心、外心、内心等)与其镜像图形的对应点重合。

1.4 轴对称图形的应用轴对称图形在实际中有着很多应用,其中一些常见的应用包括:(1)在建筑设计中,利用轴对称的原理设计建筑立面,使建筑更加美观;(2)在数学问题中,利用轴对称的性质求解一些对称图形的面积、周长等问题。

二、中心对称中心对称是指一个图形,经过一个点旋转180度后,图形保持不变。

这个点称为对称中心,图形称为中心对称图形。

中心对称与轴对称不同,它的对称中心可以是图形内部的任意点。

2.1 中心对称图形的特征中心对称图形具有以下特征:(1)对称中心是图形的一个特殊点,经过它的任意两点对称成一个点;(2)对称中心到对称点的距离相等;(3)中心对称图形任意两个对称点的连线经过对称中心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章《轴对称图形》常考题集(07):1.2 轴对称的性

收藏试卷试卷分析布置作业在线训练显示答案下载试卷
一.填空题
91.如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF=
度.
92.如图,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠1+∠2=100°,则∠A的大小等于
度.
93.如图,△ABC沿DE折叠后,点A落在BC边上的A′处,若点D为AB边的中点,∠B=50°,则∠BDA′的度数为

94.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为
95.小宇同学在一次手工制作活动中,先把一张长方形纸片按左图方式进行折叠,使折痕的左侧部分比右侧部分短1cm;展开后按右图的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm,再展开后,在纸上形成的两条折痕之间的距离是
cm.
96.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为
97.如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=3 cm,AB=8 cm,则图中阴影部分面积为____________
98.如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=
度.
99.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为____________
100.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长为

101.已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,则△CDE的周长为

102.如图,折叠宽度相等的长方形纸条,若∠1=70°,则∠2=
度.
103.将一张长方形纸片按如图所示折叠,如果∠1=64°,那么∠2等于

104.如图,矩形ABCD中(AD>AB),M为CD上一点,若沿着AM折叠,点N恰落在BC上,则∠ANB+∠MNC=
度.
105.如图,AD是△ABC的中线,∠ADC=60°,把△ADC沿直线AD折过来,点C落到点C1的位置,如果BC=10,那么BC1=

106.如图,长方形纸片ABCD中,AB=3cm,BC=4cm,现将A、C重合,使纸片折叠压平,设折痕为EF,则S△AEF=
107.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B= 度.
108.如图一张长方形纸片ABCD,其长AD为a,宽AB为b(a>b),在BC边上选取一点M,将△ABM 沿AM翻折后B至B′的位置,若B′为长方形纸片ABCD的对称中心,则
a
b
的值为
3

二、解答题
109.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,
(1)写出图中一对全等的三角形,并写出它们的所有对应角;
(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)
(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.
110.如图,在方格纸上建立平面直角坐标系,线段AB的两个端点都在格点上,直线MN经过坐标原点,且点M的坐标是(1,2).
(1)写出点A、B的坐标;
(2)求直线MN所对应的函数关系式;
(3)利用尺规作出线段AB关于直线MN的对称图形.(保留作图痕迹,不写作法)
111.作图题:(不要求写作法)如图,在10×10的方格纸中,有一个格点四边形ABCD(即四边形的顶点都在格点上).
(1)在给出的方格纸中,画出四边形ABCD向下平移5格后的四边形A1B1C1D1;
(2)在给出的方格纸中,画出四边形ABCD关于直线l对称的四边形A2B2C2D2.
112.如图,在平面直角坐标系xoy中,A(-1,5),B(-1,0),C(-4,3).
(1)求出△ABC的面积.
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.
(3)写出点A1,B1,C1的坐标.
113.如图,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于C 的对称点处,…如此下去.
(1)在图中画出点M、N,并写出点M、N的坐标:

(2)求经过第2008次跳动之后,棋子落点与点P的距离.
114.如图所示,在直角坐标系xOy中,A(-1,5),B(-3,0),C(-4,3).(1)在图中作出△ABC关于y轴的轴对称图形△A′B′C′;
(2)写出点C关于y轴的对称点C′的坐标(

115.如图,已知网格上最小的正方形的边长为1.
(1)分别写出A、B、C三点的坐标;
(2)作△ABC关于y轴的对称图形△A′B′C′.(不写作法)
116.如图,在正方形网格上有一个△ABC.
(1)作△ABC关于直线MN的对称图形(不写作法);
(2)若网格上的最小正方形的边长为1,求△ABC的面积.
117.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”,如图1中四边形ABCD就是一个“格点四边形”.
(1)求图1中四边形ABCD的面积;
(2)在图2方格纸中画一个格点三角形EFG,使△EFG的面积等于四边形ABCD的面积且为轴对称图形.
118.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.
(1)“小猪”所占的面积为多少?
(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);
(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立直角坐标系,可得点A的坐标是(

).
119.认真画一画.如图,在正方形网格上有一个△DEF.
(1)作△DEF关于直线HG的轴对称图形△D′E′F′(不写作法);
(2)作EF边上的高(不写作法);
(3)若网格上的最小正方形边长为1,则△DEF的面积为

120.如图,写出△ABC的各顶点坐标,并画出△ABC关于Y轴的对称图形,并直接写出△ABC关于x 轴对称的三角形的各点坐标.。

相关文档
最新文档