【非常考案】高考数学(通用版)一轮复习阶段规范强化练1(含答案解析)
高考数学一轮复习排列与组合专题练习及答案
高考数学一轮复习排列与组合专题练习及答案高考数学一轮复习排列与组合专题练习及答案一、填空题1.市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是________.[解析] 由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共322=12种;如果是第二种偶奇奇的情况,个位(3种情况),十位(2种情况),百位(不能是0,1种情况),共321=6种,因此总共12+6=18种情况.[答案] 182.若从1,2,3,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.[解析] 满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有CC=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的`取法共有5+60+1=66(种).[答案] 663.(2014福州调研)若一个三位数的十位数字比个位数字和百位数字都大,称这个数为伞数.现从1,2,3,4,5,6这六个数字中取3个数,组成无重复数字的三位数,其中伞数有________个.[解析] 分类讨论:若十位数为6时,有A=20(个);若十位数为5时,有A=12(个);若十位数为4时,有A=6(个);若十位数为3时,有A=2(个).因此一共有40个.[答案] 404.一个平面内的8个点,若只有4个点共圆,其余任何4点不共圆,那么这8个点最多确定的圆的个数为________.[解析] 从8个点中任选3个点有选法C种,因为有4点共圆所以减去C种再加1种,共有圆C-C+1=53个.[答案] 535.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种.[解析] 分两种情况:选2本画册,2本集邮册送给4位朋友有C=6(种)方法;选1本画册,3本集邮册送给4位朋友有C=4(种)方法,不同的赠送方法共有6+4=10(种).[答案] 106.用数字1,2,3,4,5,6六个数字组成一个六位数,要求数字1,2都不与数字3相邻,且该数字能被5整除,则这样的五位数有________个.[解析] 由题可知,数字5一定在个位上,先排数字4和6,排法有2种,再往排好的数字4和6形成的3个空位中插入数字1和3,插法有6种,最后再插入数字2,插法有3种,根据分步乘法计数原理,可得这样的六位数有263=36个.[答案] 367.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法有________种.[解析] 第一类,含有1张红色卡片,共有不同的取法CC=264(种);第二类,不含有红色卡片,共有不同的取法C-3C=220-12=208(种).由分类计数原理知不同的取法有264+208=472(种).[答案] 4728.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的三位数共有________个.[解析] 在1,2,3,4,5这五个数字中有3个奇数,2个偶数,要求三位数各位数字之和为偶数,则两个奇数一个偶数,符合条件的三位数共有CCA=36(个).[答案] 36二、解答题9.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是多少?(用数字作答).[解] 分三类:选1名骨科医生,则有C(CC+CC+CC)=360(种);选2名骨科医生,则有C(CC+CC)=210(种);选3名骨科医生,则有CCC=20(种).骨科、脑外科和内科医生都至少有1人的选派方法种数是360+210+20=590种.10.四个不同的小球放入编号为1,2,3,4的四个盒子中.(1)若每个盒子放一球,则有多少种不同的放法?(2)恰有一个空盒的放法共有多少种?[解] (1)每个盒子放一球,共有A=24(种)不同的放法;(2)法一先选后排,分三步完成.第一步:四个盒子中选一只为空盒,有4种选法;第二步:选两球为一个元素,有C种选法;第三步:三个元素放入三个盒中,有A种放法.故共有4CA=144(种)放法.法二先分组后排列,看作分配问题.第一步:在四个盒子中选三个,有C种选法;第二步:将四个球分成2,1,1三组,有C种放法;第三步:将三组分到选定的三个盒子中,有A种放法.故共有CCA=144种放法.。
2020年高考数学一轮复习专题9.7空间向量在几何体中的运用(一)练习(含解析)
9.7 空间向量在空间几何体的运用(一)一.设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为1n ,2n ,则有如下结论:二.点面距已知AB 为平面α的一条斜线段(A 在平面α内),n 为平面α的法向量,则B 到平面α的距离为|||cos ,|||||||||AB d AB AB AB AB ⋅===<>n n n ||||AB ⋅n n .注:空间中其他距离问题一般都可以转化为点面距问题.考向一 利用空间向量证明平行【例1】在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD . 【答案】见解析【解析】法一 如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝ ⎛⎭⎪⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y =-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD .法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,∴MN ∥平面A 1BD .法三 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA →-12()A 1B →+BA →=12DB →-12A 1B →. 即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD . 【拓展】1.(变条件)本例中条件不变,试证明平面A 1BD ∥平面CB 1D 1.[证明] 由例题解析知,C (0,1,0),D 1(0,0,1),B 1(1,1,1), 则CD 1→=(0,-1,1),D 1B 1→=(1,1,0), 设平面CB 1D 1的法向量为m =(x 1,μ1,z 1),则⎩⎪⎨⎪⎧m ⊥CD 1→m ⊥D 1B 1→,即⎩⎪⎨⎪⎧m ·CD 1→=-y 1+z 1=0,m ·D 1B 1→=x 1+y 1=0,令y 1=1,可得平面CB 1D 1的一个法向量为m =(-1,1,1), 又平面A 1BD 的一个法向量为n =(1,-1,-1). 所以m =-n ,所以m ∥n ,故平面A 1BD ∥平面CB 1D 1. 2.(变条件)若本例换为:在如图324所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD ∥EF ,EF ∥BC ,BC =2AD =4,EF =3,AE =BE =2,G 是BC 的中点,求证:AB ∥平面DEG .图324[证明] ∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , ∴EF ⊥AE ,EF ⊥BE .又∵AE ⊥EB ,∴EB ,EF ,EA 两两垂直.以点E 为坐标原点,EB ,EF ,EA 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0),∴ED →=(0,2,2),EG →=(2,2,0),AB →=(2,0,-2).设平面DEG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ED →·n =0,EG →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,2x +2y =0,令y =1,得z =-1,x =-1,则n =(-1,1,-1), ∴AB →·n =-2+0+2=0,即AB →⊥n . ∵AB ⊄平面DEG , ∴AB ∥平面DEG .考向二 垂直、【例2】如图1,在四棱锥S ABCD -中,底面ABCD 是正方形,AS ⊥底面ABCD ,且A S A B =,E 是SC 的中点.求证:(1)直线AD ⊥平面SAB ; (2)平面BDE ⊥平面ABCD .图1 图2【答案】见解析【解析】如图2,以A 为原点, AB ,AD ,AS 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Axyz ,设2AS AB ==,则(0,0,0)A ,(0,2,0)D ,(2,2,0)C ,(2,0,0)B ,(0,0,2)S ,(1,1,1)E 易得(0,0,2)AS =,(2,0,0)AB =设平面SAB 的法向量为(,,)x y z =n ,则AS AB ⎧⎪⎨⎪⎩⊥⊥n n ,即2020AS z AB x ⎧⋅==⎪⎨⋅==⎪⎩n n取1y =,可得平面SAB 的一个法向量为(0,1,0)=n又(0,2,0)AD =,所以2AD =n ,所以AD ∥n ,所以直线AD ⊥平面SAB 方法1:如图2,连接AC 交BD 于点O ,连接OE ,则点O 的坐标为(1,1,0) 易得(0,0,1)OE =,(0,0,2)AS =,显然2AS OE =,故AS OE ∥,所以AS OE ∥ 又AS ⊥底面ABCD ,所以OE ⊥底面ABCD 又OE ⊂平面BDE ,所以平面BDE ⊥平面ABCD 方法2:易得(1,1,1)BE =-,(2,2,0)BD =-设平面BDE 的法向量为(,,)x y z =m ,则BE BD ⎧⎪⎨⎪⎩⊥⊥m m ,即0220BE x y z BD x y ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩m m取1x =,得1y =,0z =,所以平面1A BD 的一个法向量为(1,1,0)=mAS ⊥底面ABCD ,可得(0,0,2)AS =是平面ABCD 的一个法向量因为(0,0,2)(1,1,0)0AS ⋅=⋅=m ,所以AS ⊥m ,所以平面BDE ⊥平面ABCD【举一反三】1.如图所示,正三棱柱ABC A 1B 1C 1的所有棱长都为2,D 为CC 1的中点,求证:AB 1⊥平面A 1BD .【答案】见解析【解析】法一:如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系, 则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 所以AB 1→=(1,2,-3),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为AB 1→·BA 1→=1×(-1)+2×2+(-3)×3=0.AB 1→·BD →=1×(-2)+2×1+(-3)×0=0.所以AB 1→⊥BA 1→,AB 1→⊥BD →,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 法二:建系同方法一.设平面A 1BD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥BA 1→n ⊥BD→,即⎩⎪⎨⎪⎧n ·BA 1→=-x +2y +3z =0,n ·BD →=-2x +y =0,令x =1得平面A 1BD 的一个法向量为n =(1,2,-3), 又AB 1→=(1,2,-3),所以n =AB 1→,即AB 1→∥n . 所以AB 1⊥平面A 1BD .考向三 利用空间向量解决平行与垂直关系中的探索性问题【例3】如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,BC ⊥AC ,BC =AC =AA 1=2,D 为AC 的中点.(1)求证:AB 1∥平面BDC 1;(2)设AB 1的中点为G ,问:在矩形BCC 1B 1内是否存在点H ,使得GH ⊥平面BDC 1.若存在,求出点H 的位置,若不存在,说明理由. 【答案】见解析【解析】(1)证明:连接B 1C ,设B 1C ∩BC 1=M ,连接MD ,在△AB 1C 中,M 为B 1C 中点,D 为AC 中点, ∴DM ∥AB 1,又∵AB 1不在平面BDC 1内,DM 在平面BDC 1内, ∴AB 1∥平面BDC 1.(2)以C 1为坐标原点,C 1A 1→为x 轴,C 1C →为y 轴,C 1B 1→为z 轴建立空间直角坐标系. 依题意,得C 1(0,0,0),D (1,2,0),B (0,2,2),G (1,1,1),假设存在H (0,m ,n ), GH →=(-1,m -1,n -1),C 1D →=(1,2,0),DB →=(-1,0,2),由GH ⊥平面BC 1D ,得GH →⊥C 1D →⇒(-1,m -1,n -1)·(1,2,0)=0⇒m =32.同理,由GH →⊥DB →得n =12,即在矩形BCC 1B 1内存在点H ,使得GH ⊥平面BDC 1.此时点H 到B 1C 1的距离为32,到C 1C 的距离为12.【举一反三】1.如图所示,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E ,F 分别为PA ,BD 中点,PA =PD =AD =2.(1)求证:EF ∥平面PBC ;(2)在棱PC 上是否存在一点G ,使GF ⊥平面EDF ?若存在,指出点G 的位置;若不存在,说明理由.【答案】见解析【解析】(1)证明:如图所示,连接AC .因为底面ABCD 是正方形,AC 与BD 互相平分.F 是BD 中点,所以F 是AC 中点.在△PAC 中,E 是PA 中点,F 是AC 中点,所以EF ∥PC . 又因为EF ⊄平面PBC ,PC ⊂平面PBC ,所以EF ∥平面PBC . (2)取AD 中点O ,连接PO .在△PAD 中,PA =PD ,所以PO ⊥AD .因为平面PAD ⊥底面ABCD ,且平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD . 因为OF ⊂平面ABCD ,所以PO ⊥OF . 又因为F 是AC 中点,所以OF ⊥AD .以O 为原点,OA ,OF ,OP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.因为PA =PD =AD =2,所以OP =3,则C (-1,2,0),D (-1,0,0),P (0,0,3),E ⎝ ⎛⎭⎪⎫12,0,32,F (0,1,0).于是DE →=⎝ ⎛⎭⎪⎫32,0,32,DF →=(1,1,0).设平面EFD 的法向量n =(x 0,y 0,z 0).因为⎩⎪⎨⎪⎧n ·DF →=0,n ·DE →=0,所以⎩⎪⎨⎪⎧x 0+y 0=0,32x 0+32z 0=0,即⎩⎨⎧y 0=-x 0,z 0=-3x 0.令x 0=1,则n =(1,-1,-3).假设在棱PC 上存在一点G ,使GF ⊥平面EDF . 设G (x 1,y 1,z 1),则FG →=(x 1,y 1-1,z 1). 因为EDF 的一个法向量n =(1,-1,-3). 因为GF ⊥平面EDF ,所以FG →=λn .于是⎩⎨⎧x 1=λ,y 1-1=-λ,z 1=-3λ,即⎩⎨⎧x 1=λ,y 1=1-λ,z 1=-3λ.又因为点G 在棱PC 上,所以GC →与PC →共线.因为PC →=(-1,2,-3),CG →=(x 1+1,y 1-2,z 1), 所以x 1+1-1=y 1-22=z 1-3, 即1+λ-1=-λ-12=-3λ-3,无解.故在棱PC 上不存在一点G ,使GF ⊥平面EDF . 考向四 点面距【例4】如图,已知正方体1111ABCD A B C D -的棱长为3a ,求平面11AB D 与平面1BDC 之间的距离..【解析】由正方体的性质,易得平面11AB D ∥平面1BDC , 则两平面间的距离可转化为点B 到平面11AB D 的距离.如图,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,【举一反三】1.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao ).已知在鳖臑P ABC -中,PA ⊥平面ABC ,2PA AB BC ===,M 为PC 的中点,则点P 到平面MAB 的距离为_____.【解析】以B 为坐标原点,BA,BC 所在直线分别为x 轴,y 轴建立空间直角坐标系,如图,则()()()()0,0,0,2,0,0,2,0,2,0,2,0B A P C ,由M 为PC 的中点可得()1,1,1M ;()()1,1,1,2,0,0BM BA ==, ()2,0,2BP =.设(),,x y z =n 为平面ABM 的一个法向量,则00n BA n BM ⎧⋅=⎨⋅=⎩,即200x x y z =⎧⎨++=⎩,令1z =-,可得()0,1,1=-n ,点P 到平面MAB 的距离为BP d ⋅==n n.1.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点A 关于平面BDC 1对称点为M ,则M 到平面A 1B 1C 1D 1的距离为( )A .32B .54C .43D .53【答案】D【解析】以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,D (0,0,0),B (1,1,0),C 1(0,1,1),A (1,0,0),A 1(1,0,1),DB =(1,1,0),1DC =(0,1,1), 设平面BDC 1的法向量n =(x ,y ,z ),则100n DB x y n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x=1,得n =(1,-1,1),∴平面BDC 1的方程为x-y+z=0,过点A (1,0,0)且垂直于平面BDC 1的直线方程为: (x-1)=-y=z ,令(x-1)=-y=z=t ,得x=t+1,y=-t ,z=t ,代入平面方程x-y+z=0,得t+1+t+t=0,解得t=13- ,∴过点A (1,0,0)且垂直于平面BDC 1的直线方程与平面BDC 1的交点为211333⎛⎫ ⎪⎝⎭,,-∴点A 关于平面BDC 1对称点M 122333⎛⎫ ⎪⎝⎭,,-, 1225333A M ⎛⎫=- ⎪⎝⎭,,-,平面A 1B 1C 1D 1的法向量m =(0,0,1),∴M 到平面A 1B 1C 1D 1的距离为d=15=3m A M m⋅故选:D . 2.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )AB.2C.3λ D【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED =(﹣2,0,1),EF =(0,2,0)1sin()cos 22C C π+===(0,λ,1), 设平面D 1EF 的法向量n =(x ,y ,z ),则1·20·20n ED x z n EF y ⎧=-+=⎨==⎩,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d=5EM n n==N 为EM 中点,所以N ,选D .3.如图:正三棱柱111ABC A B C -的底面边长为3,D 是CB 延长线上一点,且BD BC =,二面角1B AD B --的大小为60︒;(1)求点1C 到平面1B AD 的距离;(2)若P 是线段AD 上的一点 ,且12DP A A =,在线段1DC 上是否存在一点Q ,使直线//PQ 平面1ABC ?若存在,请指出这一点的位置;若不存在,请说明理由.【答案】(1)4; (2)存在,当113C Q QD =时,1//PQ AC 知//PQ 平面1ABC . 【解析】(1)设E 为AD 的中点,则BE AD ⊥,在正三棱柱111ABC A B C -中,1BB ⊥平面ABC ,而AD ⊂平面ABC ,所以1BB AD ⊥,而1BB EB B =,因此AD ⊥平面1BB E ,而1B E ⊂平面1BB E ,所以有1B E AD ⊥1BEB ∴∠为二面角1B AD B --的平面角,如下图所示:160BEB ∴∠=︒120ABD ∠=︒,32BE =,11tan BB BEB BE ∴∠==侧棱11AA BB ==;111111C ADB A C DB A BB C V V V ---==11273328⎛=⨯= ⎝⎭又AD =11AB B D ==知1112ADB S AD B E ∆=⋅=∴点1C 到平面1ADB 的距离2738d =⨯=(2)由(1)可知AD =1AA =,12DP AA =,13AP PD ∴=,当113C Q QD =时,有1//PQ AC 成立,而 1AC ⊂平面1ABC ,所以 //PQ 平面1ABC ,故存在,当113C Q QD =时,符合题意。
【2020最新】人教版最新高考数学一轮复习-题组层级快练(含解析)(1)附参考答案
教学资料范本【2020最新】人教版最新高考数学一轮复习-题组层级快练(含解析)(1)附参考答案编辑:__________________时间:__________________(附参考答案)1.若椭圆+=1过点(-2,),则其焦距为( )A.2 B.2 3C.4 D.4 3答案D解析∵椭圆过(-2,),则有+=1,b2=4,c2=16-4=12,c=2,2c =4.故选D.2.已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆C:x2+y2-2x-15=0的半径,则椭圆的标准方程是( )A.+=1B.+=1C.+y2=1D.+=1答案A解析圆C的方程可化为(x-1)2+y2=16.知其半径r=4,∴长轴长2a=4,∴a=2.又e==,∴c=1,b2=a2-c2=4-1=3.∴椭圆的标准方程为+=1.3.已知曲线C上的动点M(x,y),向量a=(x+2,y)和b=(x-2,y)满足|a|+|b|=6,则曲线C的离心率是( )A. B. 3C. D.13答案A解析因为|a|+|b|=6表示动点M(x,y)到两点(-2,0)和(2,0)距离的和为6,所以曲线C是椭圆且长轴长2a=6,即a=3.又c=2,∴e=.4.已知椭圆+=1的离心率e=,则m的值为( )A.3 B.3或253C. D.或5153答案B解析若焦点在x轴上,则有∴m=3.若焦点在y轴上,则有∴m=.5.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是( )A.圆B.椭圆C.双曲线D.抛物线答案B解析点P在线段AN的垂直平分线上,故|PA|=|PN|.又AM是圆的半径,∴|PM|+|PN|=|PM|+|PA|=|AM|=6>|MN|.由椭圆的定义知,P的轨迹是椭圆.6.(20xx·广东韶关调研)已知椭圆与双曲线-=1的焦点相同,且椭圆上任意一点到两焦点的距离之和为10,那么椭圆的离心率等于( )A. B.45C. D.34答案B解析因为双曲线的焦点在x轴上,所以设椭圆的方程为+=1(a>b>0),因为椭圆上任意一点到两焦点的距离之和为10,所以根据椭圆的定义可得2a =10⇒a=5,则c==4,e==,故选B.7.(20xx·广东广州二模)设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,点P在椭圆C上,线段PF1的中点在y轴上,若∠PF1F2=30°,则椭圆的离心率为( )A. B.13C. D.33答案D解析设PF1的中点为M,连接PF2,由于O为F1F2的中点,则OM为△PF1F2的中位线,所以OM∥PF2.所以∠PF2F1=∠MOF1=90°.由于∠PF1F2=30°,所以|PF1|=2|PF2|.由勾股定理,得|F1F2|=|PF1|2-|PF2|2=|PF2|.由椭圆定义,得2a=|PF1|+|PF2|=3|PF2|⇒a=,2c=|F1F2|=|PF2|⇒c=.所以椭圆的离心率为e==·=.故选D.8.(20xx·河北邯郸一模)已知P是椭圆+=1(0<b<5)上除顶点外一点,F1是椭圆的左焦点,若|+|=8,则点P到该椭圆左焦点的距离为( ) A.6 B.4C.2 D.52答案C解析取PF1的中点M,连接OM,+=2,∴|OM|=4.在△F1PF2中,OM 是中位线,∴|PF2|=8.∴|PF1|+|PF2|=2a=10,解得|PF1|=2,故选C.9.(20xx·北京海淀期末练习)已知椭圆C:+=1的左、右焦点分别为F1,F2,椭圆C上的点A满足AF2⊥F1F2,若点P是椭圆C上的动点,则·的最大值为( )A. B.332C. D.154解析由椭圆方程知c==1,所以F1(-1,0),F2(1,0).因为椭圆C上点A满足AF2⊥F1F2,则可设A(1,y0),代入椭圆方程可得y=,所以y0=±.设P(x1,y1),则=(x1+1,y1),=(0,y0),所以·=y1y0.因为点P是椭圆C上的动点,所以-≤y1≤,·的最大值为.故B正确.10.(20xx·河北唐山二模)已知椭圆C1:+=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,使得由点P所作的圆C2的两条切线互相垂直,则椭圆C1的离心率的取值范围是( )A.[,1) B.[,]C.[,1) D.[,1)答案C解析在椭圆长轴端点向圆引两条切线P′A,P′B,则两切线形成的角∠AP′B最小,若椭圆C1上存在点P令切线互相垂直,则只需∠AP′B≤90°,即α=∠AP′O≤45°.∴sinα=≤sin45°=,解得a2≤2c2,∴e2≥.即e≥.而0<e<1,∴≤e<1,即e∈[,1).11.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x 轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为________.答案+=1解析根据椭圆焦点在x轴上,可设椭圆方程为+=1(a>b>0).∵e=,∴=.根据△ABF2的周长为16得4a=16,因此a=4,b=2,所以椭圆方程为+=1.12.椭圆+=1上一点P到左焦点F的距离为6,若点M满足=(+),则||=________.解析设右焦点为F′,由=(+)知M为线段PF中点,∴||=||=(10-6)=2.13.已知动点P(x,y)在椭圆+=1上,若点A坐标为(3,0),||=1,且·=0,则||的最小值是________.答案 3解析∵·=0,∴⊥.∴||2=||2-||2=||2-1.∵椭圆右顶点到右焦点A的距离最小,故||min=2,∴||min=.14.已知点A(4,0)和B(2,2),M是椭圆+=1上一动点,则|MA|+|MB|的最大值为________.答案10+210解析显然A是椭圆的右焦点,如图所示,设椭圆的左焦点为A1(-4,0),连接BA1并延长交椭圆于M1,则M1是使|MA|+|MB|取得最大值的点.事实上,对于椭圆上的任意点M有:|MA|+|MB|=2a-|MA1|+|MB|≤2a+|A1B|(当M1与M重合时取等号),∴|MA|+|MB|的最大值为2a+|A1B|=2×5+=10+2.15.如右图,已知椭圆+=1(a>b>0),F1,F2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF2交椭圆于另一点B.(1)若∠F1AB=90°,求椭圆的离心率;(2)若椭圆的焦距为2,且=2,求椭圆的方程.答案(1) (2)+=1解析(1)若∠F1AB=90°,则△AOF2为等腰直角三角形.所以有|OA|=|OF2|,即b=c.所以a=c,e==.(2)由题知A(0,b),F2(1,0),设B(x,y),由=2,解得x=,y=-.代入+=1,得+=1.即+=1,解得a2=3.所以椭圆方程为+=1.16.(20xx·新课标全国Ⅱ)设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.答案(1) (2)a=7,b=27思路本题主要考查椭圆的方程与基本量,考查椭圆的几何性质与离心率的计算,考查直线与椭圆的位置关系,意在考查考生的分析转化能力与运算求解能力.(1)将M,F1的坐标都用椭圆的基本量a,b,c表示,由斜率条件可得到a,b,c的关系式,然后由b2=a2-c2消去b2,再“两边同除以a2”,即得到离心率e的二次方程,由此解出离心率.若能抓住△MF1F2是“焦点三角形”,则可利用△MF1F2的三边比值快速求解,有:|F1F2|=2c,|MF2|=2c×=c,则|MF1|=c,由此可得离心率e==.(2)利用“MF2∥y轴”及“截距为2”,可得yM==4,此为一个方程;再转化条件“|MN|=5|F1N|”为向量形式,可得到N的坐标,代入椭圆得到第二个方程.两方程联立可解得a,b的值.解析(1)根据c=及题设知M,=,2b2=3ac.将b2=a2-c2代入2b2=3ac,解得=,=-2(舍去).故C的离心率为.(2)由题意,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点.故=4,即b2=4a.①由|MN|=5|F1N|,得|DF1|=2|F1N|. 设N(x1,y1),由题意知y1<0,则⎩⎨⎧-c -=c ,-2y1=2,即⎩⎨⎧x1=-32c ,y1=-1.代入C 的方程,得+=1.② 将①及c =代入②得+=1. 解得a =7,b2=4a =28. 故a =7,b =2.1.已知椭圆+=1(a>b>0)的焦点分别为F1,F2,b =4,离心率为.过F1的直线交椭圆于A ,B 两点,则△ABF2的周长为( )A .10B .12C .16D .20答案 D解析 如图,由椭圆的定义知△ABF2的周长为4a ,又e ==,即c =a ,∴a2-c2=a2=b2=16. ∴a =5,△ABF2的周长为20.2.椭圆+=1(a>b>0)上任一点到两焦点的距离分别为d1,d2,焦距为2c.若d1,2c ,d2成等差数列,则椭圆的离心率为( )A. B.22C. D.34答案 A解析 由d1+d2=2a =4c ,∴e==.3.设e 是椭圆+=1的离心率,且e∈(,1),则实数k 的取值范围是( )A .(0,3)B .(3,)C .(0,3)∪(,+∞)D .(0,2)答案 C解析 当k>4时,c =,由条件知<<1,解得k>;当0<k<4时,c =, 由条件知<<1,解得0<k<3,综上知选C.4.已知点M(,0),椭圆+y2=1与直线y =k(x +)交于点A ,B ,则△ABM 的周长为______________.答案 8解析 直线y =k(x +)过定点N(-,0),而M ,N 恰为椭圆+y2=1的两个焦点,由椭圆定义知△ABM 的周长为4a =4×2=8.5.已知椭圆C 的中心在原点,一个焦点为F(-2,0),且长轴长与短轴长的比是2∶.(1)求椭圆C 的方程;(2)设点M(m,0)在椭圆C 的长轴上,点P 是椭圆上任意一点.当||最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围.答案 (1)+=1 (2)1≤m≤4解析 (1)由题意知 解之得⎩⎨⎧a2=16,b2=12.∴椭圆方程为+=1.(2)设P(x0,y0),且+=1, ∴||2=(x0-m)2+y 20 =x -2mx0+m2+12(1-) =x -2mx0+m2+12=(x0-4m)2-3m2+12(-4≤x0≤4).∴||2为关于x0的二次函数,开口向上,对称轴为4m.由题意知,当x0=4时,||2最小,∴4m≥4,∴m≥1.又点M(m,0)在椭圆长轴上,∴1≤m≤4.。
基本不等式及其应用-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版
2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第04练基本不等式及其应用(精练)1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最值问题.3.理解基本不等式在生活实际问题中的应用.一、单选题1.(2022·全国·高考真题)已知910,1011,89m m m a b ==-=-,则()A .0a b >>B .0a b >>C .0b a >>D .0b a>>二、多选题2.(2022·全国·高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥三、填空题3.(2023·天津·高考真题)在ABC 中,160BC A =∠= ,,11,22AD AB CE CD == ,记,AB a AC b ==,用,a b表示AE =;若13BF BC = ,则AE AF ⋅ 的最大值为.四、解答题4.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.【A 级基础巩固练】一、单选题1.(23-24高二下·福建三明·阶段练习)若0x >,则22y x x=+的最小值是()A .B C .4D .22.(2024高二下·湖南株洲·学业考试)已知04x <<)A .12B .1C D .33.(23-24高一下·贵州贵阳·阶段练习)已知02x <<,则()32x x -的最大值是()A .3-B .3C .1D .6【答案】B【分析】利用基本不等式,直接计算即可.取得等号,满足题意4.(23-24高一下·河南周口·阶段练习)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为()A .4B .6C .8D .165.(2023·湖南岳阳·模拟预测)若0,0a b >>且1a mb +=,若ab 的最大值为8,则正常数m =()A .1B .2C .3D .46.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为()A .1B .2C .4D .87.(23-24高一下·福建南平·期中)已知0a >,0b >,230a b +-=,则21a b++的最小值为()A .2B .1C .32D .348.(23-24高一下·湖南衡阳·阶段练习)已知向量()2,1a m m =+,(),12b n =,若向量a ,b 共线且0m >,则n 的最大值为()A .6B .4C .8D .39.(23-24高一下·浙江·期中)已知实数a ,b ,满足310ab +=(1b >),则31b a ++的取值范围是()A .()(),04,-∞⋃+∞B .()4,+∞C .(][),04,-∞+∞U D .[)4,+∞10.(2024·辽宁葫芦岛·一模)已知0a >,0b >,2a b +=,则()A .01a <≤B .01ab <≤C .222a b +>D .12b <<11.(2024·山东枣庄·一模)已知0,0a b >>,则“2a b +>”是“222a b +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.(23-24高一下·辽宁抚顺·阶段练习)已知,a b 均为正实数,240a b -+≤,则23a ba b++的最小值为()A .135B .145C .3D .513二、多选题13.(2024高三·全国·专题练习)已知x ≥1,则下列函数的最小值为2的有()A .22xy x =+B .2y =C .13y xx=-D .411y x x =-+14.(23-24高三上·云南楚雄·期末)已知正数a ,b 满足5a b ab +=,则()A .151a b+=B .a 与b 可能相等C 6≥D .a b +的最小值为6+【答案】BD15.(23-24高二下·浙江·期中)已知正数,a b 满足()()111a b --=,则下列选项正确的是()A .111a b+=B .25ab b+³C .4a b +≥D .228a b +≤三、填空题16.(23-24高一上·北京·期中)已知()8233y x x x =+>,则当x =时,y 取最小值为.17.(2024·上海徐汇·二模)若正数a b 、满足1a b+=,则2a b +的最小值为.18.(2024·河南商丘·模拟预测)若正数,a b 满足232a b a b =+,则a 的最小值是.19.(23-24高二下·云南·阶段练习)设0,0m n >>,若直线:22l mx y +=过曲线11x y a -=+(0a >,且1a ≠)的定点,则11m n+的最小值为.20.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.21.(2023·湖南岳阳·模拟预测)如图,某人沿围墙CD 修建一个直角梯形花坛ABCD ,设直角边AD x =米,2BC x =米,若12AD AB BC ++=米,问当x =米时,直角梯形花坛ABCD 的面积最大.22.(23-24高二下·湖南长沙·阶段练习)已知02a <<,则2a a+-的最小值为.四、解答题23.(23-24高二下·全国·期中)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用32年的隔热层,每厘米厚的隔热层建造成本为8万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位;cm )满足关系:()()161102C x x x =≤≤+,设()f x 为隔热层建造费用与32年的能源消耗费用之和.(1)求()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小,并求最小值.24.(23-24高一上·陕西渭南·阶段练习)已知0a >,0b >,0c >,求证:(1)6b c a c a ba b c+++++≥;(2)()()()2222226a b c b a c c a b abc +++++≥.25.(23-24高一上·浙江·期末)为了进一步增强市场竞争力,某公司计划在2024年利用新技术生产某款运动手表,经过市场调研,生产此款运动手表全年需投入固定成本100万,每生产x (单位:千只)手表,需另投入可变成本()R x 万元,且()228020,05064002015200,50x x x R x x x x ⎧++<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.2万元,且全年生产的手机当年能全部销售完.(利润=销售额-固定成本-可变成本)(1)求2024年的利润()W x (单位:万元)关于年产量x (单位:千只)的函数关系式.(2)2024年的年产量为多少(单位:千只)时,企业所获利润最大?最大利润是多少?26.(23-24高一上·黑龙江哈尔滨·阶段练习)完成下列不等式的证明:(1)对任意的正实数a ,b ,c,证明:a b c ++(2)设a ,b ,c 为正实数,且1a b c ++=,证明:13ab ac bc ++≤.【B 级能力提升练】一、单选题1.(23-24高一下·辽宁葫芦岛·开学考试)已知0,0x y >>,且41x y +=,则2y xxy+的最小值为()A .5B .C .4D .2.(2023·河南信阳·模拟预测)若51x -<<-,则函数()22f x x ++=+有()A .最小值1B .最大值1C .最小值1-D .最大值1-所以函数()f x 有最大值1-.故选:D.3.(23-24高三下·浙江·阶段练习)已知实数x ,y 满足3x >,且2312xy x y +-=,则x y +的最小值为()A .1+B .8C .D .1+4.(2024·辽宁·一模)已知20m n >>,则2m mm n n+-的最小值为()A .3+B .3-C .2+D .25.(2024·全国·模拟预测)已知,则下列不等式中不成立...的是()A .01ab <<B .122a b ->C >D .114a b+>【答案】C【分析】对于AB ,利用对数函数的性质即可判断;对于CD ,利用对数的运算得到1a b +=,结合基本不等式即可判断.【详解】因为lg 2,lg5a b ==,所以lg 2lg 5lg101a b +=+==,6.(2024·辽宁大连·一模)若()()ln 0,01f x m n n x+=>>--奇函数,则41m n ++的最小值为().A .65B .95C .4D .57.(23-24高一下·贵州贵阳·阶段练习)故宫博物院收藏着一幅《梧桐双兔图》.该绢本设色画纵约176cm ,横约95cm ,挂在墙上最低点B 离地面194cm ,小兰身高160cm (头顶距眼睛的距离为10cm).为使观测视角θ最大,小兰离墙距离S 应为()A.B .94cm C.D .76cm8.(2024·全国·模拟预测)已知0x >,0y >且1x y +=,则222211x y x y +++的最小值为()A .15B .25C .35D .459.(23-24高二下·江苏苏州·阶段练习)为提高市民的健康水平,拟在半径为200米的半圆形区域内修建一个健身广场,该健身广场(如图所示的阴影部分)分休闲健身和儿童活动两个功能区,图中ABCD 区域是休闲健身区,以CD 为底边的等腰三角形区域PCD 是儿童活动区,P ,C ,D 三点在圆弧上,AB 中点恰好在圆心O ,则当健身广场的面积最大时,OB 的长度为()A .100米B .150米C.米D.由于2AD BC OC ==-都是上底为21R t -,下底为所以,健身广场的面积S 从而,健身广场的面积最大的时候,恰好就是()22111tt t t t -+=-+=()223323223t t t +-+-≤=二、多选题10.(2023·浙江绍兴·二模)已知0a >,0b >,a b ab +=,则()A .1a >且1b >B .4ab ≥C .49a b +≤D .11b ab+>11.(2024·全国·模拟预测)已知0a >,0b >且2a b+=,则下列说法正确的是()A .ab 有最小值4B .a b +有最小值92C .2ab a +有最小值D的最小值为12.(23-24高二下·江西宜春·期中)已知0,1a b a b >>+=.则下列结论正确的有()A .a 32B .22122a b ++的最小值为C .1422a b a b+的最小值为3D .sin 1a b +<三、填空题13.(23-24高一下·河北保定·开学考试)若正数,m n 满足2212516m n +=,则mn 的最大值为.14.(23-24高一上·江苏扬州·期末)若1x >,1y >,10xy =,则lg lg x y 的最大值为.15.(2024·全国·模拟预测)已知1x >,0y >,且2x y +=,则11y x +-的最小值是.17.(2024·上海普陀·二模)若实数a ,b 满足20a b -≥,则24ab+的最小值为.18.(23-24高一上·浙江·期末)已知22321(,R)x xy y x y -+=∈,则222x y +的最小值为.四、解答题19.(2024·全国·二模)已知实数0,0a b >>,满足a b +=(1)求证:2224a b +≥;(2)求()()2211ab ab++的最小值.【答案】(1)证明见解析(2)1220.(23-24高一上·湖北武汉·阶段练习)已知0a >,0b >,且2a b +=.(1)求证:11413a b +≥+;(2)求证:42aab b+≥.21.(23-24高一下·甘肃白银·期中)养鱼是现在非常热门的养殖项目,为了提高养殖效益,养鱼户们会在市场上购买优质的鱼苗,分种类、分区域进行集中养殖.如图,某养鱼户承包了一个边长为100米的菱形鱼塘(记为菱形ABCD )进行鱼类养殖,为了方便计算,将该鱼塘的所有区域的深度统一视为2米.某养鱼户计划购买草鱼苗、鲤鱼苗和鲫鱼苗这三种鱼苗进行分区域养殖,用不锈钢网将该鱼塘隔离成ABD ,DEFB ,CEF 三块区域,图中,BD EF 是不锈钢网露出水面的分界网边,E 在鱼塘岸边DC 上(点E 与D ,C 均不重合),F 在鱼塘岸边BC .上(点F 与B ,C 均不重合).其中△ECF 的面积与四边形DEFB 的面积相等,△DAB 为等边三角形.(1)若测得EC 的长为80米,求CF 的长.(2)已知不锈钢网每平方米的价格是20元,为了节约成本,试问点E ,F 应如何设置,才能使得购买不锈钢1.414=)22.(2023·贵州黔西·一模)设a,b,c均为正数,且1a b c++=,证明:(1)2221 3a b c++≥;(2)333a cb ac b abc++≥.23.(23-24高一上·山东·阶段练习)已知0a >,0b >.(1)若4a b -=,证明:471a b +≥+.(2)若8a b ab ++=,求a b +的最小值.(3)若229327a b ab ++=,求3a b +的最大值.【C 级拓广探索练】一、单选题1.(22-23高一上·江苏徐州·阶段练习)设正实数,,x y z 满足22-3+4-=0x xy y z ,则当xyz取得最大值时,212+-x y z 的最大值为()A .9B .1C .94D .32.(23-24高三上·浙江绍兴·期末)已知x 为正实数,y 为非负实数,且22x y +=,则1x y +++的最小值为()A .34B .94C .32D .923.(2024·全国·模拟预测)设{}max ,,x y z 为,,x y z 中最大的数.已知正实数,a b ,记max 8,2M a b⎧=⎨⎩,则M 的最小值为()A .1B C .2D .44.(22-23高一上·河南·阶段练习)已知22321x xy y -+=(),R x y ∈,则22x y +的最小值为()A 6B 6C .6D .6二、多选题5.(23-24高一上·福建泉州·期末)已知0,0,21x y x y >>+=,则()A .42x y +的最小值为B .22log log x y +的最大值为3-C .y x xy --的最小值为1-D .22221x y x y +++的最小值为16正确;三、填空题6.(2023·山西·模拟预测)已知0,0a b >>,且122a b +=,则161211a b +--的最小值是.7.(23-24高三上·湖北荆州·阶段练习)已知实数,x y 满足22221x xy y -+=,则22x y -的最大值为.四、解答题8.(2023·全国·模拟预测)已知(),,0,x y z ∈+∞,且1x y z ++=.(1)1z>-;(2)求222544x y z xy yz xz +++++的最大值.,三式相加,可得:9.(23-24高一上·山东青岛·期末)某药品可用于治疗某种疾病,经检测知每注射t ml药品,从注射时间起血药浓度y(单位:ug/ml)与药品在体内时间x(单位:小时)的关系如下:162,06,89,618.2t xxyx t x⎧⎛⎫-≤≤⎪⎪-⎪⎝⎭=⎨⎛⎫⎪-<≤⎪⎪⎝⎭⎩当血药浓度不低于2ug/ml时才能起到有效治疗的作用,每次注射药品不超过2ml.(1)若注射1ml药品,求药品的有效治疗时间;(2)若多次注射,则某一时刻体内血药浓度为每次注射后相应时刻血药浓度之和.已知病人第一次注射1ml 药品,12小时之后又注射a ml药品,要使随后的6小时内药品能够持续有效消疗,求a的最小值.。
非常考案通用版高考数学一轮复习第一章集合与常用逻辑用语分层限时跟踪练_2
分层限时跟踪练(三)(限时40分钟) [基 础 练]扣教材 练双基一、选择题1.(2015·湖北高考)命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是( ) A .∀x ∈(0,+∞),ln x ≠x -1 B .∀x ∉(0,+∞),ln x =x -1 C .∃x 0∈(0,+∞),ln x 0≠x 0-1 D .∃x 0∉(0,+∞),ln x 0=x 0-1【解析】 改变原命题中的三个地方即可得其否定,∃改为∀,x 0改为x ,否定结论,即ln x ≠x -1,故选A.【答案】 A2.下列命题中的假命题是( ) A .∃x ∈R ,sin x =52B .∃x ∈R ,log 2x =1C .∀x ∈R ,⎝ ⎛⎭⎪⎫12x>0D .∀x ∈R ,x 2≥0【解析】 因为∀x ∈R ,sin x ≤1<52,所以A 是假命题;对于B ,∃x =2,log 2x =1;对于C ,根据指数函数图象可知,∀x ∈R ,⎝ ⎛⎭⎪⎫12x>0;对于D ,根据二次函数图象可知,∀x ∈R ,x 2≥0.【答案】 A3. (2015·郴州模拟)已知命题p :∃x 0∈(-∞,0),3x 0<4x 0;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >x ,则下列命题中真命题是( )A .p ∧qB .p ∨(﹁q )C .p ∧(﹁q )D .(﹁p )∧q【解析】 由指数函数的图象可知,当x ∈(-∞,0)时,3x>4x恒成立,则命题p 是假命题,﹁p 是真命题;当x ∈⎝⎛⎭⎪⎫0,π2时,tan x >x 恒成立,命题q 是真命题,﹁q 是假命题,故选D.【答案】 D4.( 2015·东北三省四市模拟)下列四个命题中真命题的个数是( )①“x =1”是“x 2-3x +2=0”的充分不必要条件;②命题“∀x ∈R ,sin x ≤1”的否定是“∃x ∈R ,sin x >1”; ③“若am 2<bm 2,则a <b ”的逆命题为真命题;④命题p :∀x ∈[1,+∞),lg x ≥0,命题q :∃x ∈R ,x 2+x +1<0,则p ∨q 为真命题.A .0B .1C .2D .3【解析】 当x =1时,得到x 2-3x +2=0,当x 2-3x +2=0,得x =1或x =2,“x =1”是“x 2-3x +2=0”的充分不必要条件,故①正确;命题“∀x ∈R ,sin x ≤1”的否定是“∃x ∈R ,sin x >1”,故②正确;“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,当m =0时,不成立,故③错误;当x ≥1时,lg x ≥0,命题p 是真命题,又命题q 为假命题,故p ∨q 是真命题,故④正确,所以真命题的个数是3个,故选D.【答案】 D5.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(﹁p )∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤2或1≤a ≤2C .a >1D .-2≤a ≤1【解析】 命题p 为真时a ≤1;“∃x 0∈R ,x 20+2ax 0+2-a =0”为真,即方程x 2+2ax +2-a =0有实根,故Δ=4a 2-4(2-a )≥0,解得a ≥1或a ≤-2.(﹁p )∧q 为真命题,即﹁p 真且q 真,即a >1.【答案】 C 二、填空题6.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 是______________________. 【解析】 因为p 是﹁p 的否定,所以只需将全称命题变为特称命题,再对结论否定即可.【答案】 ∃x 0∈(0,+∞),x 0≤x 0+17.命题“∃x 0∈R,2x 20-3ax 0+9<0”为假命题,则实数a 的取值范围为______________. 【解析】 由题意可知,“∀x ∈R,2x 2-3ax +9≥0”是真命题,即Δ=9a 2-72≤0,解得-22≤a ≤2 2.【答案】 [-22,22] 8.下列结论:①若命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0.则命题“p ∧(﹁q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题:“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________.【解析】 ①中命题p 为真命题,命题q 为真命题, 所以p ∧(﹁q )为假命题,故①正确; ②当b =a =0时,有l 1⊥l 2,故②不正确; ③正确.所以正确结论的序号为①③. 【答案】 ①③ 三、解答题9.已知m ∈R ,命题p :对任意x ∈[0,1],不等式2x -2≥m 2-3m 恒成立;命题q :存在x ∈[-1,1],使得m ≤ax 成立.(1)若p 为真命题,求m 的取值范围;(2)当a =1时,若p 且q 为假,p 或q 为真,求m 的取值范围.【解】 (1)∵对任意x ∈[0,1],不等式2x -2≥m 2-3m 恒成立,∴(2x -2)min ≥m 2-3m ,即m 2-3m ≤-2,解得1≤m ≤2.因此,若p 为真命题时,m 的取值范围是[1,2]. (2)∵a =1,且存在x ∈[-1,1],使得m ≤ax 成立, ∴m ≤1.因此,命题q 为真时,m ≤1. ∵p 且q 为假,p 或q 为真,∴p ,q 中一个是真命题,一个是假命题.当p 真q 假时,由⎩⎪⎨⎪⎧1≤m ≤2,m >1, 得1<m ≤2;当p 假q 真时,由⎩⎪⎨⎪⎧m <1或m >2,m ≤1, 得m <1.综上所述,m 的取值范围为(-∞,1)∪(1,2].10.(2015·天津南开中学模拟)已知p :方程x 2+mx +1=0有两个不等的负实根,q :方程4x 2+4(m -2)x +1=0无实根,若p 或q 为真,p 且q 为假,求实数m 的取值范围.【解】 由“p 或q 为真,p 且q 为假”可知p ,q 中有且仅有一个为真命题,又p 真⇔⎩⎪⎨⎪⎧Δ>0,x 1+x 2=-m <0,x 1·x 2=1>0 ⇔m >2,q 真⇔Δ<0⇒1<m <3,(1)若p 假q 真,则⎩⎪⎨⎪⎧m ≤2,1<m <3 ⇒1<m ≤2;(2)若p 真q 假,则⎩⎪⎨⎪⎧m >2,m ≤1 或⎩⎪⎨⎪⎧m >2,m ≥3 ⇒m ≥3.综上所述:m ∈(]1,2∪[3,+∞).[能 力 练]扫盲区 提素能1.(2015·临沂二模)已知f (x )=e x-x ,命题p :∀x ∈R ,f (x )>0,则( ) A .p 是真命题,﹁p :∃x 0∈R ,f (x 0)<0 B .p 是真命题,﹁p :∃x 0∈R ,f (x 0)≤0 C .p 是假命题,﹁p :∃x 0∈R ,f (x 0)<0 D .p 是假命题,﹁p :∃x 0∈R ,f (x 0)≤0【解析】 f ′(x )=e x-1,x <0时,f ′(x )<0,f (x )递减;x >0时,f ′(x )>0,f (x )递增;f (x )在x =0处取得唯一极小值,亦为最小值,∴∀x ∈R ,f (x )≥f (0)=1,故选B.【答案】 B2.( 2015·吉林模拟)已知下列命题:①若命题p ,﹁q 都是真命题,则命题“p ∧q ”为真命题;②命题“若xy =0,则x =0或y =0”的否命题为“若xy ≠0,则x ≠0或y ≠0”; ③命题“∀x ∈R,2x>0”的否定是“∃x 0∈R,2x 0≤0”; ④“x =-1”是“x 2-5x -6=0”的必要不充分条件. 其中正确命题的个数是( )A .0B .1 C. 2 D .3【解析】 ①命题p ,﹁q 都是真命题,则命题q 为假命题,因此“p ∧q ”为假命题,不正确;②“若xy =0,则x =0或y =0”的否命题为“若xy ≠0,则x ≠0 且y ≠0 ”,因此不正确;③“∀x ∈R,2x >0 ”的否定是“∃x 0∈R,2x 0≤0 ”,正确; ④“x =-1”是“x 2-5x -6=0 ”的充分不必要条件,因此不正确,故选B.【答案】 B3.给定两个命题,命题p :对任意实数x ,都有ax 2>-ax -1恒成立,命题q :关于x 的方程x 2-x +a =0有实数根.若“p ∨q ”为真命题,“p ∧q ”为假命题,则实数a 的取值范围是________________.【解析】 若p 为真命题,则a =0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,即0≤a <4;若q 为真命题,则(-1)2-4a ≥0,即a ≤14.因为“p ∨q ”为真命题,“p ∧q ”为假命题, 所以p ,q 中有且仅有一个为真命题.若p 真q 假,则14<a <4;若p 假q 真,则a <0.综上,实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4. 【答案】 (-∞,0)∪⎝ ⎛⎭⎪⎫14,4 4.(2015·日照高三校际联合5月检测) ①若“p 且q ”为假,则p ,q 至少有一个是假命题;②命题“∃x ∈R ,x 2-x -1<0”的否定是“∀x ∈R ,x 2-x -1≥0”; ③ “φ=π2”是“y =sin ()2x +φ为偶函数”的充要条件;④当α<0时,幂函数y =x α在()0,+∞上单调递减.以上说法不正确的是________(写出所有符合要求的序号).【解析】 ①若“p 且q ”为假,则p ,q 至少有一个是假命题,正确; ②命题“∃x ∈R ,x 2-x -1<0”的否定是“∀x ∈R ,x 2-x -1≥0”,正确; ③“φ=π2”是“y =sin(2x +φ)为偶函数”的充分不必要条件,故C 错误;④α<0时,幂函数y =x α在(0,+∞)上单调递减,正确. 【答案】 ③5.设p :实数x 满足x 2-4ax +3a 2<0,其中a >0.q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)﹁p 是﹁q 的充分不必要条件,求实数a 的取值范围. 【解】 由x 2-4ax +3a 2<0,a >0得a <x <3a , 即p 为真命题时,a <x <3a ,由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,得⎩⎪⎨⎪⎧-2≤x ≤3,x >2或x <-4.即2<x ≤3,即q 为真命题时2<x ≤3. (1)a =1时,p :1<x <3.由p ∧q 为真知p ,q 均为真命题,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3,得2<x <3,所以实数x 的取值范围为(2,3).(2)设A ={x |a <x <3a },B ={x |2<x ≤3},由题意知p 是q 的必要不充分条件, 所以B A ,由⎩⎪⎨⎪⎧0<a ≤2,3a >3,得1<a ≤2,所以实数a 的取值范围为(1,2].6.(2015·山西四模)已知命题p :方程x 22m -y 2m -1=1表示焦点在y 轴上的椭圆;命题q :双曲线y 25-x 2m=1的离心率e ∈()1,2,若p ,q 有且只有一个为真命题,求实数m 的取值范围.【解】 将方程x 22m -y 2m -1=1改写为x 22m +y 21-m=1,只有当1-m >2m >0,即0<m <13时,方程表示的曲线是焦点在y 轴上的椭圆,所以命题p 等价于0<m <13;因为双曲线y 25-x 2m=1的离心率e ∈(1,2),所以m >0,且1<5+m5<4,解得0<m <15.所以命题q 等价于0<m <15, 若p 真q 假,则m ∈∅; 若p 假q 真,则13≤m <15,综上可知,m 的取值范围为⎣⎢⎡⎭⎪⎫13,15.。
非常考案通用版高考数学一轮复习第一章集合与常用逻辑用语分层限时跟踪练
分层限时跟踪练(一)(限时40分钟) [基 础 练]扣教材 练双基一、选择题1.(2015·全国卷Ⅱ)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B =( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3)【解析】 将集合A 与B 在数轴上画出(如图). 由图可知A ∪B =(-1,3),故选A. 【答案】 A2.(2015·天津高考)已知全集U ={1,2,3,4,5,6},集合A ={2,3,5},集合B ={1,3,4,6},则集合A ∩∁U B =( )A .{3}B .{2,5}C .{1,4,6}D .{2,3,5}【解析】 ∁U B ={2,5},A ∩∁U B ={2,3,5}∩{2,5}={2,5}. 【答案】 B3.已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|x 2+y 2=1,x ,y ∈R },则集合A ∩B 的元素个数是( )A .0B .1C .2D .3【解析】 集合A ∩B 的元素个数即为方程组⎩⎪⎨⎪⎧x +y -1=0,x 2+y 2=1解的组数,解方程组得⎩⎪⎨⎪⎧x =0,y =1或⎩⎪⎨⎪⎧x =1,y =0,有两组解,故选C. 【答案】 C4.已知集合A ={x |y =1-x 2},B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B ⊆A【解析】 由题意知A ={x |y =1-x 2},∴A ={x |-1≤x ≤1},∴B ={x |x =m 2,m ∈A}={x|0≤x≤1},∴B A,故选B.【答案】 B5.(2015·宝鸡九校联考)已知集合A={0,1,2},B={1,m}.若A∩B=B,则实数m 的值是( )A.0 B.0或2C.2 D.0或1或2【解析】由A∩B=B可得B⊆A,所以m可取0或2.【答案】 B二、填空题6.设集合U={-1,1,2,3},M={x|x2-5x+p=0},若∁U M={-1,1},则实数p的值为________.【解析】由∁U M={-1,1}知M={2,3},则方程x2-5x+p=0的两根为x=2和x=3,从而p=2×3=6.【答案】 67.已知A={0,m,2},B={x|x3-4x=0},若A=B,则m=________.【解析】由题意知B={0,-2,2},A={0,m,2},若A=B,则m=-2.【答案】-28.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B =________________.【解析】A,B都表示点集,A∩B是由A中在直线x+y-1=0上的所有点组成的集合,代入验证即可.【答案】{(0,1),(-1,2)}三、解答题9.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.【解】(1)∵9∈(A∩B),∴2a-1=9或a2=9,∴a=5或a=3或a=-3.当a=5时,A={-4,9,25},B={0,-4,9};当a=3时,a-5=1-a=-2,不满足集合元素的互异性;当a=-3时,A={-4,-7,9},B={-8,4,9},所以a=5或a=-3.(2)由(1)可知,当a=5时,A∩B={-4,9},不合题意,当a=-3时,A∩B={9}.所以a =-3.10.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围. 【解】 (1)当m =-1时,B ={x |-2<x <2}, 则A ∪B ={x |-2<x <3}. (2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,解得m ≤-2,即实数m 的取值范围为(-∞,-2]. (3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).[能 力 练]扫盲区 提素能1.设集合A ={-1,0,2},集合B ={-x |x ∈A 且2-x ∉A },则B =( ) A .{1} B .{-2} C .{-1,-2}D .{-1,0}【解析】 若x =-1,则2-x =3∉A ,此时-x =1;若x =0,则2-x =2∈A ,此时不符合要求;若x =2,则2-x =0∈A ,此时不符合要求.所以B ={1}.【答案】 A2.(2016·大连模拟)已知集合A ={x |x 2-2x <0},B ={1,a },且A ∩B 有4个子集,则a 的取值范围是( )A .(0,1)B .(0,2)C .(0,1)∪(1,2)D .(-∞,1)∪(2,+∞)【解析】 易知A ∩B 中含有2个元素,即a ∈A .又A =(0,2),所以0<a <1或1<a <2. 【答案】 C3.设全集U ={1,2,3,4,5,6,7,8},集合A ={1,2,3,5},B ={2,4,6},则图112中的阴影部分表示的集合为________.图112【解析】 由题意可知阴影部分表示的集合为B ∩(∁U A ),已知A ={1,2,3,5},U ={1,2,3,4,5,6,7,8},所以∁U A ={4,6,7,8},又因为B ={2,4,6},所以B ∩(∁U A )={4,6}.【答案】 {4,6}4.(2016·吉林模拟)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________.【解析】 根据并集的概念,可知{a ,a 2}={4,16},故只能是a =4. 【答案】 45.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }. (1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆(∁R B ),求实数m 的取值范围. 【解】 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)因为A ∩B =[0,3],所以⎩⎪⎨⎪⎧m -2=0,m +2≥3,所以m =2.(2)∁R B ={x |x <m -2或x >m +2},因为A ⊆(∁R B ), 所以m -2>3或m +2<-1,即m >5或m <-3. 因此实数m 的取值范围是{m |m >5或m <-3}.6.已知集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R ,x ∈R }.若A ∪B =A ,试求实数a 的取值范围.【解】 ∵A ∪B =A ,∴B ⊆A ,易知A ={0,-4}.(1)当A =B ={0,-4}时,0,-4是方程x 2+2(a +1)x +a 2-1=0的两根,∴⎩⎪⎨⎪⎧16-8a +1+a 2-1=0,a 2-1=0,∴a =1. (2)当BA 时,有B ≠∅和B =∅两种情况.①当B ≠∅时,B ={0}或B ={-4},∴方程x 2+2(a +1)x +a 2-1=0有相等的实数根0或-4, ∴Δ=4(a +1)2-4(a 2-1)=0,∴a=-1,∴B={0}满足条件.②当B=∅时,Δ<0,∴a<-1.综上知所求实数a的取值范围为{a|a≤-1或a=1}.。
高考理科数学一轮复习专题训练:数列(含详细答案解析)
B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。
2021届高考数学(文科全国通用)一轮总复习阶段滚动月考卷(一)集合与常用逻辑用语、函数与导数
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
阶段滚动月考卷(一)集合与常用规律用语、函数与导数(时间:120分钟分值:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合P={x|x2-x-2≥0},Q={y|y=12x2−1,x∈P},则P∩Q= ( )A.{m|-1≤m<2}B.{m|-1<m<2}C.{m|m≥2}D.{-1}2.(2022·德州模拟)已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是( )A.(-∞,-2]B.[-2,+∞)C.(-∞,2]D.[2,+∞)3.(2022·潍坊模拟)已知幂函数f(x)的图象过点(4,12),则f(8)的值为( )A.√24B.64 C.2√2 D.1644.“a≤-2”是“函数f(x)=|x-a|在[-1,+∞)上单调递增”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(2022·烟台模拟)已知函数f(x)=lnx,则函数g(x)=f(x)-f ′(x)的零点所在的区间是( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4)6.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的微小值点,以下结论肯定正确的是( )A.∀x∈R,f(x)≥f(x0)B.-x0是f(-x)的极大值点C.-x0是-f(x)的微小值点D.-x0是-f(-x)的极大值点7.(2022·青岛模拟)设a=20.3,b=0.32,c=log x(x2+0.3)(x>1),则a,b,c的大小关系是( )A.a<b<cB.b<a<cC.c<b<aD.b<c<a8.过函数f(x)=3x-x3图象上一点A(2,-2)的切线方程为( )A.y=-2B.y=2C.9x+y-16=0D.9x+y-16=0或y=-29.(2021·北京高考)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率状况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油10.(2022·大连模拟)已知f(x)是定义域为R的偶函数,当x≤0时,f(x)=(x+1)3e x+1,那么函数f(x)的极值点的个数是( )A.5B.4C.3D.2二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.(2022·北京模拟)曲线y=x3+mx+c在点P(1,n)处的切线方程为y=2x+1,其中m,n,c∈R,则m+n+c= .12.(2022·烟台模拟)已知f(x)是定义在R上的函数,且满足f(x+2)=-1f(x),当2≤x≤3时,f(x)=x,则f(−112)= .13.f(x)=log2a[(a2-3a)x]在(-∞,0)上是减函数,则实数a的取值范围是.14.(2022·绍兴模拟)已知函数f(x)满足f(x+1)=-1f(x),且f(x)是偶函数,当x∈[-1,0]时,f(x)=x2,若在区间[-1,3]内,函数g(x)=f(x)-log a(x+2)有4个零点,则实数a的取值范围是.15.(2022·莱芜模拟)已知定义域为R的函数f(x),对于x∈R,满足f(f(x)-x2+x)=f(x)-x2+x,设有且仅有一个实数x0,使得f(x0)=x0,则实数x0的值为.三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤) 16.(12分)(2022·泰安模拟)已知集合A={x|x2-2x-3≤0,x∈R}, B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值.(2)若ARB,求实数m的取值范围.17.(12分)设a>0,且a≠1,已知函数f(x)=log a1−bxx−1是奇函数.(1)求实数b的值.(2)求函数f(x)的单调区间.(3)当x∈(1,a-2)时,函数f(x)的值域为(1,+∞),求实数a的值.18.(12分)某地拟建一座长为640米的大桥AB,假设桥墩等距离分布,经设计部门测算,两端桥墩A,B造价总共为100万元,当相邻两个桥墩的距离为x米时(其中64<x<100),中间每个桥墩的平均造价为803√x万元,桥面每1米长的平均造价为(2+x√x640)万元.(1)试将桥的总造价表示为x的函数f(x).(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩A,B除外)应建多少个桥墩?19.(12分)(2022·济宁模拟)已知函数f(x)=ex2-1e x-ax(a∈R).(1)当a=32时,求函数f(x)的单调区间.(2)若函数f(x)在[-1,1]上为单调函数,求实数a的取值范围.20.(13分)已知函数f(x)=(a+1a)lnx+1x-x(a>0).(1)求f(x)的极值.(2)若曲线y=f(x)上总存在不同两点P(x1,f(x1)),Q(x2,f(x2)),使得曲线y=f(x)在P,Q两点处的切线相互平行,证明x1+x2>2.ax2+x,a∈R.21.(14分)(2022·威海模拟)已知函数f(x)=lnx-12(1)若关于x的不等式f(x)≤ax-1恒成立,求整数a的最小值.(2)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:x1+x2≥√5−1.2答案解析1.C P={x|x≥2或x≤-1},又x∈P时,y=12x2-1∈[−12,+∞),故Q={y|y≥−12},故P∩Q={m|m≥2}.2.【解题提示】先化简A,留意运用指数函数的单调性解不等式,再依据集合的包含关系,求出a,b的范围,运用不等式的性质,求出a-b的取值范围.A 集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4],由于A B,B=[a,b],所以a≤2,b≥4,所以a-b≤2-4=-2,即a-b的取值范围是(-∞,-2].3.A 由于函数f(x)为幂函数,所以设f(x)=xα,由于其图象过点(4,12),所以12=4α,解得α=-12,所以f(x)=x−12,所以f(8)=8−12−12=√24.4.A 函数f(x)=|x-a|={x−a,x≥a,a−x,x<a,则f(x)的单调增区间是[a,+∞).而函数f(x)=|x-a|在[-1,+∞)上单调递增⇔a≤-1,所以“a≤-2”是“函数f(x)=|x-a|在[-1,+∞)上单调递增”的充分不必要条件.5.B 由题意可知g(x)=lnx-1x,由于g(1)=-1<0,g(2)=ln2-12=ln2-ln√e>0.所以函数g(x)的零点所在区间是(1,2).6.D 由于x0是f(x)的微小值点,y=-f(-x)与y=f(x)的图象关于原点对称,所以-x0是y=-f(-x)的极大值点.7.B 由于x>1,所以c=log x(x2+0.3)>log x x2=2,又由于1<a<2,0<b<1,所以b<a<c.8.D 设切点为P(x0,y0),f′(x)=3-3x2,所以切线斜率k=3-3x02,切线方程为y-(3x0-x03)=(3-3x02)(x-x0),又由于点A(2,-2)在切线上,所以-2-(3x0-x03)=(3-3x02)(2-x0),解之得x0=2或x0=-1,所以k=-9或k=0,所以切线方程为9x+y-16=0或y=-2.【加固训练】若曲线y=e-ax+1在点(0,2)处的切线与直线x+2y-1=0垂直,则a= ( )A.-2B.2C.-23D.23A 依题意知y′=-ae-ax,所以曲线在点(0,2)处的切线斜率k=-a,又其切线与直线x+2y-1=0垂直,所以(-a)×(−12)=-1,即a=-2.9.D 选项A,问的是纵坐标最大值.选项B,消耗1升油甲走最远,则反过来路程相同甲最省油.选项C,此时甲走过了80千米,消耗8升汽油.选项D,80千米/小时以下丙“燃油效率”更高,更省油.10.C 当x ≤0时,f ′(x)=3(x+1)2e x+1+(x+1)3e x+1=(x+1)2e x+1(x+4),解f ′(x)=0,得x=-4或x=-1.由于x ∈(-∞,-4)时,f ′(x)<0;x ∈(-4,-1)时,f ′(x)>0;x ∈(-1,0)时,f ′(x)>0,则f(x)在区间x ∈(-∞,-4)上单调递减,在区间x ∈(-4,0)上单调递增.又由于f(x)是定义域为R 的偶函数,由其对称性可得,f(x)在区间x ∈(0,4)上单调递减,在区间x ∈(4,+∞)上单调递增,所以函数f(x)在x=±4或x=0处取得极值. 11.【解析】y ′=3x 2+m,由题意知{1+m +c =n,3+m =2,n =2×1+1.所以{m =−1,n =3,c =3.所以m+n+c=5. 答案:512.【解析】由f(x+2)=-1f(x)可得,f(x+4)=-1f(x+2)=f(x),所以函数f(x)是以4为周期的周期函数, f (−112)=f (−112+8)=f (52)=52.答案:5213.【解析】由x ∈(-∞,0)可得a 2-3a<0,得0<a<3, 所以y=(a 2-3a)x 在(-∞,0)上是减函数, 又f(x)=log 2a [(a 2-3a)x]在(-∞,0)上是减函数, 所以2a>1,故12<a<3.答案:(12,3)14.【解析】由于f(x+1)=-1f(x),则有f(x+2)=f(x),即f(x)是周期为2的周期函数,又f(x)是偶函数,当x ∈[-1,0]时,f(x)=x 2,则有当x ∈[0,1]时,f(x)=x 2,故当x ∈[-1,1]时,f(x)=x 2,那么当x ∈[1,3]时,f(x)=(x-2)2,而函数g(x)=f(x)-log a (x+2)有4个零点,故函数y=f(x)的图象与y=log a (x+2)有4个交点,数形结合可得1≥log a (3+2), 解得a ≥5. 答案:[5,+∞)15.【解析】由于对任意x ∈R,有f(f(x)-x 2+x)=f(x)-x 2+x. 又由于有且只有一个实数x 0,使得f(x 0)=x 0 所以对任意x ∈R,有f(x)-x 2+x=x 0, 在上式中令x=x 0,有f(x 0)-x 20+x 0=x 0,又由于f(x 0)=x 0,所以x 0-x 20=0,故x 0=0或x 0=1,若x 0=0,则f(x)-x 2+x=0,即f(x)=x 2-x,但方程x 2-x=x 有两个不相同实根,与题设条件冲突.故x 0≠0,若x 0=1,则有f(x)-x 2+x=1,即f(x)=x 2-x+1,此时f(x)=x 有且仅有一个实数1, 综上,x 0=1. 答案:116.【解析】由已知得:A={x|-1≤x ≤3}, B={x|m-2≤x ≤m+2}.(1)由于A ∩B=[0,3],所以{m −2=0,m +2≥3,所以{m =2,m ≥1,所以m=2.(2)R B={x|x<m-2或x>m+2}. 由于AR B,所以m-2>3或m+2<-1,所以m>5或m<-3,所以m 的取值范围为(-∞,-3)∪(5,+∞).17.【解题提示】(1)由函数f(x)是奇函数可得f(-x)=-f(x),代入函数f(x)的解析式可解得实数b 的值.(2)首先求出函数f(x)的定义域,再求出其导函数f ′(x),最终分别令f ′(x)>0和f ′(x)<0即可求出函数f(x)的单调增区间和单调减区间.(3)由a-2>1得a>3,结合(2)可得,f(x)在(1,a-2)上单调递减,于是可得f(a-2)=1,解之即可得到实数a 的值.【解析】(1)由于f(x)是奇函数,所以f(-x)=-f(x). 从而f(-x)+f(x)=0, 即log a1+bx −x−1+log a1−bx x−1=0,于是,(b 2-1)x 2=0,由x 的任意性知b 2-1=0, 解得b=-1或b=1(舍),所以b=-1. (2)由(1)得f(x)=log a x +1x−1,(x<-1或x>1),f ′(x)=−2(x 2−1)lna.当0<a<1时,f ′(x)>0,即f(x)的增区间为(-∞,-1),(1,+∞); 当a>1时,f ′(x)<0,即f(x)的减区间为(-∞,-1),(1,+∞).(3)由a-2>1得a>3,所以f(x)在(1,a-2)上单调递减,从而f(a-2)=1,即log a a −1a−3=1,又a>3,得a=2+√3.18.【解析】(1)由桥的总长为640米,相邻两个桥墩的距离为x 米,知中间共有(640x−1)个桥墩,于是桥的总造价f(x)=640(2+x √x 640)+803√x (640x−1)+100,即f(x)=x 32+640×803x −12-803x 12+1380=x32+51 2003x−12-803x12+1380(64<x<100).(表达式写成f(x)=x √x +51 2003√x−803√x +1 380同样给分)(2)由(1)可求f ′(x)=32x 12-640×403x −32-403x −12,整理得f ′(x)=16x −32(9x2-80x-640×80),由f ′(x)=0,解得x 1=80,x 2=-6409(舍去),又当x ∈(64,80)时,f ′(x)<0;当x ∈(80,100)时,f ′(x)>0,所以当x=80时桥的总造价最低,此时桥墩数为64080-1=7.19.【解析】(1)当a=32时,f(x)=e x 2-1e x -32x, f ′(x)=12ex [(e x )2-3e x +2] =12ex (e x -1)(e x -2), 令f ′(x)=0,得e x =1或e x =2, 即x=0或x=ln2,令f ′(x)>0,则x<0或x>ln2, 令f ′(x)<0,则0<x<ln2,所以f(x)在(-∞,0],[ln2,+∞)上单调递增,在(0,ln2)上单调递减. (2)f ′(x)=e x2+1e x -a,令e x =t,由于x ∈[-1,1], 所以t ∈[1e ,e].令h(t)=t 2+1t (t ∈[1e,e]), h ′(t)=12-1t 2=t 2−22t 2, 所以当t ∈[1e,√2)时h ′(t)<0,函数h(t)为单调减函数; 当t ∈(√2,e]时h ′(t)>0,函数h(t)为单调增函数, 所以√2≤h(t)≤e+12e .由于函数f(x)在[-1,1]上为单调函数, 所以若函数f(x)在[-1,1]上单调递增, 则a ≤t 2+1t对t ∈[1e,e]恒成立,所以a ≤√2;若函数f(x)在[-1,1]上单调递减,则a ≥t 2+1t对t ∈[1e,e]恒成立,所以a ≥e+12e,综上可得a ≤√2或a ≥e+12e.20.【解析】(1)f ′(x)=(a +1a )1x -1x2-1=-x 2−(a+1a)x+1x 2=-(x−a)(x−1a)x 2(x>0).当a>1时,0<1a<a,f(x)的单调递减区间是(0,1a),(a,+∞),单调递增区间是(1a,a). f(x)微小值=f (1a ) =(a +1a)ln 1a+a-1a=-(a +1a)lna+a-1a,f(x)极大值=f(a)=(a +1a)lna-a+1a. 当a=1时,f ′(x)=-(x−1)2x 2≤0,f(x)无极值. 当0<a<1时,0<a<1a,f(x)的单调递减区间是(0,a),(1a,+∞),单调递增区间是(a ,1a).f(x)极大值=f (1a)=-(a +1a)lna+a-1a,f(x)微小值=f(a)=(a +1a)lna-a+1a.(2)依题意知,f ′(x 1)=(a +1a )1x 1-1x 12-1=f ′(x 2) =(a +1a )1x 2-1x 22-1, 故a+1a =1x 1+1x 2=x 1+x 2x 1x 2. 由x 1+x 2>2√x 1x 2得x 1x 2<(x 1+x 2)24,故x 1+x 2x 1x 2>4x 1+x 2,故存在x 1,x 2使a+1a =x 1+x 2x 1x 2>4x 1+x 2,即x 1+x 2>4a+1a. 当a>0时,a+1a≥2,当且仅当a=1时取等号.所以x 1+x 2>4(a+1a )min=2.即x 1+x 2>2.21.【解析】(1)令g(x)=f(x)-(ax-1)=lnx-12ax 2+(1-a)x+1,所以g ′(x)=1x-ax+(1-a)=−ax 2+(1−a)x+1x,当a ≤0时,由于x>0,所以g ′(x)>0,所以g(x)在(0,+∞)上是递增函数,又由于g(1)=ln1-12a ×12+(1-a)+1=-32a+2>0,所以关于x 的不等式f(x)≤ax-1不能恒成立.当a>0时, g ′(x)=−ax 2+(1−a)x+1x=-a (x−1a)(x+1)x,令g ′(x)=0,得x=1a.所以当x ∈(0,1a )时,g ′(x)>0;当x ∈(1a,+∞)时,g ′(x)<0,因此函数g(x)在x ∈(0,1a)是增函数,在x ∈(1a,+∞)是减函数.故函数g(x)的最大值为g (1a)=ln 1a -12a ×(1a)2+(1-a)×1a+1=12a-lna.令h(a)=12a-lna,由于h(1)=12>0,h(2)=14-ln2<0,又由于h(a)在a ∈(0,+∞)是减函数,所以当a ≥2时,h(a)<0,所以整数a 的最小值为2.【一题多解】本题还可以接受以下方法 由f(x)≤ax-1恒成立,得lnx-12ax 2+x ≤ax-1在(0,+∞)上恒成立,问题等价于a ≥ln x+x+112x 2+x 在(0,+∞)上恒成立.令g(x)=ln x+x+112x 2+x ,只要a ≥g(x)max , 由于g ′(x)=(x+1)(−12x−lnx)(12x 2+x)2. 令g ′(x)=0, 得-12x-lnx=0.设h(x)=-12x-lnx,由于h ′(x)=-12-1x<0,所以h(x)在(0,+∞)上单调递减, 不妨设-12x-lnx=0的根为x 0.当x ∈(0,x 0)时,g ′(x)>0; 当x ∈(x 0,+∞)时,g ′(x)<0,所以g(x)在x ∈(0,x 0)上是增函数;在x ∈(x 0,+∞)上是减函数.所以g(x)max =g(x 0)=ln x 0+x 0+112x 02+x 0=1+12x 0x 0(1+12x 0)=1x 0,由于h (12)=ln2-14>0,h(1)=-12<0,所以12<x 0<1,此时1<1x 0<2,即g(x)max ∈(1,2).所以a ≥2,即整数a 的最小值为2. (2)当a=-2时,f(x)=lnx+x 2+x,x>0, 由f(x 1)+f(x 2)+x 1x 2=0,即lnx 1+x 12+x 1+lnx 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2) =x 1·x 2-ln(x 1·x 2)令t=x 1·x 2,则由φ(t)=t-lnt 得,φ′(t)=t −1t,可知,φ(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增. 所以φ(t)≥φ(1)=1, 所以(x 1+x 2)2+(x 1+x 2)≥1,因此x1+x2≥√5−1成立.2关闭Word文档返回原板块。
非常考案通用版2017版高考数学一轮复习阶段规范强化练3导数及其应用
阶段规范强化练(三) 导数及其应用一、选择题1.(2015·大庆市高三质检)已知函数f (x )=13x 3-2x 2+3x +13,则与f (x )图象相切的斜率最小的切线方程为( )A .2x -y -3=0B .x +y -3=0C .x -y -3=0D .2x +y -3=0【解析】 f ′(x )=x 2-4x +3,f ′(x )min =f ′(2)=-1,f (2)=1,故与f (x )图象相切斜率最小的切线方程为y -1=-1(x -2),即x +y -3=0.【答案】 B2.(2016·银川模拟)下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (-1)=( )图1A.13 B .-13 C.73 D .-13或53 【解析】 f ′(x )=x 2+2ax +a 2-1,因为a ≠0,故其图象为第三个,且-a >0⇒a <0.f ′(0)=0⇒a =-1,当a =-1时, f (-1)=-13-1+1=-13.【答案】 B3.已知f (x )=ax 3-3x 2+1, 若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)【解析】 f ′()x =3ax 2-6x =3x ()ax -2,a >0时, 由f ′()x >0,得x <0或x >2a;由f ′()x <0,得0<x <2a,所以f ()x 在()-∞,0和⎝ ⎛⎭⎪⎫2a,+∞上单调递增;在⎝⎛⎭⎪⎫0,2a 上单调递减. 由题意可知f ()0<0,这与f ()0=1>0矛盾,故舍.当a <0时, 由f ′()x >0,得⎝ ⎛⎭⎪⎫2a,0,由f ′()x <0,得x <2a或x >0,所以f ()x 在⎝ ⎛⎭⎪⎫2a ,0上单调递增;在⎝ ⎛⎭⎪⎫-∞,2a 和()0,+∞上单调递减.依题意可得f ⎝ ⎛⎭⎪⎫2a =-4a2+1>0⇒a 2>4,∵a <0,∴解得a <-2. 综上可得a <-2.故C 正确. 【答案】 C4.(2015·烟台模拟)已知定义在R 上的函数y =f (x )满足f (-x )+f (x )=0,当x ∈(-∞,0)时不等式f (x )+xf ′(x )<0总成立,若记a =20.2f (20.2),b =(log π3)·f (log π3),c =(-3)·f ⎝⎛⎭⎪⎫log 3127,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b【解析】 构造函数F (x )=xf (x ),F ′(x )=f (x )+xf ′(x ),当x ∈(-∞,0)时,F ′(x )<0,故F (x )在(-∞,0)上单调递减,∴F (-x )=-xf (-x )=xf (x )=F (x ),∴F (x )为R 上的偶函数,故F (x )在(0,+∞)上单调递增,a =20.2f (20.2)=F (20.2),b =(log π3)f (log π3)=F (log π3),∴c =(-3)·f ⎝ ⎛⎭⎪⎫log 3127=F (-3)=F (3),∵3>20.2>1>log π3,∴F (3)>F (20.2)>F (log π3),即c >a >b . 【答案】 D5.(2016·潍坊模拟)设函数y =f (x )在区间(a ,b )上的导函数为f ′(x ),f ′(x )在区间(a ,b )上的导函数为f ″(x ),若在区间(a ,b )上f ″(x )<0恒成立,则称函数f (x )在区间(a ,b )上为“凸函数”.已知f (x )=112x 4-m 6x 3-32x 2在(1,3)上为“凸函数”,则实数m 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,319B.⎣⎢⎡⎦⎥⎤319,5C .(-∞,-2)D .[2,+∞)【解析】 因为f ′(x )=13x 3-m 2x 2-3x ,所以f ″(x )=x 2-mx -3,由题意可知在区间(1,3)上f ″(x )<0,则⎩⎪⎨⎪⎧f ″ 1 =1-m -3≤0,f ″ 3 =32-3m -3≤0,解得m ≥2,故选D.【答案】 D6.(2016·孝感模拟)已知函数f (x )=⎩⎨⎧1-e -x,x ≤0,2x ,x >0.若|f (x )|≥ax ,则实数a 的取值范围为( ) A .(-∞,0] B .(-∞,-1] C .[-2,0]D .[-1,0]【解析】 由题意,当x ≤0时,e -x-1≥ax ,即e -x≥ax +1,令y =e -x-1,∴y ′=-e -x,其在(0,0)处的切线的斜率为k =y ′|x =0=-e -x|x =0=-1,再由数形结合得-1≤a ≤0.当x >0时,2x ≥ax ,∴a ≤2x,当a ≤0时恒成立,所以实数a 的取值范围为-1≤a ≤0,故选D.【答案】 D 二、填空题7.(2016·云南师大附中模拟)若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.【解析】 f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=2a +29,令2a +29>0,解得a >-19,所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.【答案】 ⎝ ⎛⎭⎪⎫-19,+∞ 8.下列说法,其中正确命题的序号为________.①若函数f (x )=x (x -c )2在x =2处有极大值,则实数c =2或6;②对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有f (0)+f (2)>2f (1); ③若函数f (x )=x 3-3x 在(a 2-17,a )上有最大值,则实数a 的取值范围为(-1,4); ④已知函数f (x )是定义在R 上的奇函数,f (1)=0,xf ′(x )-f (x )>0(x >0),则不等式f (x )>0的解集是(-1,0)∪(1,+∞).【解析】 对于①,展开可得f (x )=x 3-2cx 2+c 2x , 求导数可得f ′(x )=3x 2-4cx +c 2=(x -c )(3x -c ), 令f ′(x )=0,可得x =c ,或x =c3,当c =0时,函数无极值,不合题意,当c >0时,函数在⎝ ⎛⎭⎪⎫-∞,c 3,(c ,+∞)上单调递增,在⎝ ⎛⎭⎪⎫c3,c 上单调递减,故函数在x =c3处取到极大值,故c =6;当c <0时,函数在(-∞,c ),⎝ ⎛⎭⎪⎫c 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫c ,c3上单调递减,故函数在x =c 处取到极大值,故c =2,矛盾,命题①错误;对于②,(x -1)f ′(x )≥0,则函数f (x )在(-∞,1)上递减,在(1,+∞)上递增,∴f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1).命题②正确;对于③,∵f (x )=x 3-3x 在(a 2-17,a )上有最大值,∴此最大值必是极大值, 令f ′(x )=3x 2-3=0,求得极值点为x =1或x =-1, 当x >1或x <-1时,f ′(x )>0,f (x )单调递增; 当-1<x <1时,f ′(x )<0,f (x )单调递减, ∴x =-1为极大值点,包含在(a 2-17,a )之内, ∴a 2-17<-1<a ,解得-1<a <4.∴实数a 的取值范围为(-1,4),命题③正确; 对于④,xf ′(x )-f (x )>0(x >0),即xf ′ x -f x x 2>0,则⎣⎢⎡⎦⎥⎤f x x ′>0,所以函数f x x 在(0,+∞)上是增函数,且当x =1时,f 11=f (1)=0,故函数f x x 在(0,1)上有f xx<0,则f (x )<0,在(1,+∞)上有f xx>0,则f (x )>0. 又由函数f (x )是定义在R 上的奇函数,∴当x ∈(-∞,-1)时,f (x )<0,当x ∈(1,0)时,f (x )>0.故不等式f (x )>0的解集为 (-1,0)∪(1,+∞),命题④正确.故答案为②③④.【答案】 ②③④ 三、解答题9.(2015·济南模拟)已知函数f (x )=2ln x -x 2+ax (a ∈R ). (1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围. 【解】 (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x-2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x-2x =-2 x +1 x -1x.因为x ∈⎣⎢⎡⎦⎥⎤1e ,e ,所以当g ′(x )=0时,x =1. 当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0. 故g (x )在x =1处取得极大值g (1)=m -1. 又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e,所以g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e). g (x )在⎣⎢⎡⎦⎥⎤1e,e 上有两个零点的条件是⎩⎪⎨⎪⎧g 1 =m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e2,所以实数m 的取值范围是⎝ ⎛⎦⎥⎤1,2+1e 2. 10.已知函数f (x )=ax -1-ln x ,a ∈R . (1)讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处取得极值,对∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围.【解】 (1)在区间(0,+∞)上,f ′(x )=a -1x =ax -1x,当a ≤0时,f ′(x )<0恒成立,f (x )在区间(0,+∞)上单调递减; 当a >0时,令f ′(x )=0得x =1a,在区间⎝ ⎛⎭⎪⎫0,1a 上,f ′(x )<0,函数f (x )单调递减,在区间⎝ ⎛⎭⎪⎫1a ,+∞上,f ′(x )>0,函数f (x )单调递增.综上所述:当a ≤0时,f (x )的单调递减区间是(0,+∞),无单调递增区间;当a >0时,f (x )的单调递减区间是⎝⎛⎭⎪⎫0,1a ,单调递增区间是⎝ ⎛⎭⎪⎫1a ,+∞.(2)因为函数f (x )在x =1处取得极值,所以f ′(1)=0,解得a =1,经检验可知满足题意. 由已知f (x )≥bx -2,即x -1-ln x ≥bx -2, 即1+1x -ln xx≥b 对∀x ∈(0,+∞)恒成立,令g (x )=1+1x -ln xx,则g ′(x )=-1x 2-1-ln x x 2=ln x -2x2, 易得g (x )在(0,e 2]上单调递减,在[e 2,+∞)上单调递增, 所以g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2.。
第01讲 集合(原卷版)备战2023年高考数学一轮复习精讲精练(全国通用版)
第01讲集合(精讲+精练)目录第一部分:思维导图(总览全局)第二部分:知识点精准记忆第三部分:课前自我评估测试第四部分:典型例题剖析高频考点一:集合的基本概念高频考点二:集合的基本关系高频考点三:集合的运算高频考点四:venn图的应用高频考点五:集合新定义问题第五部分:高考真题感悟第六部分:集合(精练)1、元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系:属于 或 不属于,数学符号分别记为:∈和∉.(3)集合的表示方法:列举法、描述法、韦恩图(venn 图).(4)常见数集和数学符号①确定性:给定的集合,它的元素必须是确定的;也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.给定集合{1,2,3,4,5}A =,可知1A ∈,在该集合中,6A ∉,不在该集合中;②互异性:一个给定集合中的元素是互不相同的;也就是说,集合中的元素是不重复出现的.集合{,,}A a b c =应满足a b c ≠≠.③无序性:组成集合的元素间没有顺序之分。
集合{1,2,3,4,5}A =和{1,3,5,2,4}B =是同一个集合. ④列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.⑤描述法用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.2、集合间的基本关系(1)子集(subset ):一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集(proper subset ):如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A 是集合B 的真子集,记作A B (或B A ⊃≠).读作“A 真包含于B ”或“B 真包含A ”.(3)相等:如果集合A 是集合B 的子集(A B ⊆,且集合B 是集合A 的子集(B A ⊆),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A B =.(4)空集的性质: 我们把不含任何元素的集合叫做空集,记作∅;∅是任何集合的子集,是任何非空集合的真子集.3、集合的基本运算(1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A B ,即{|,}A B x x A x B =∈∈且.(2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A B ,即{|,}A B x x A x B =∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.4、集合的运算性质(1)AA A =,A ∅=∅,AB B A =. (2)AA A =,A A ∅=,AB B A =. (3)()U AC A =∅,()U A C A U =,()U U C C A A =.5、高频考点结论(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有21n -个,非空子集有21n -个,非空真子集有22n -个.(2)空集是任何集合A 的子集,是任何非空集合B 的真子集.(3)U U A B AB A A B BC B C A ⊆⇔=⇔=⇔⊆. (4)()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.一、判断题1.(2022·江西·贵溪市实验中学高二期末)集合{},,,A a b c d =的子集共有8个 ( )2.(2021·江西·贵溪市实验中学高二阶段练习)集合{}1,2,3,4,5和{}5,4,3,2,1表示同一个集合( ) 3.(2021·江西·贵溪市实验中学高三阶段练习)满足条件{}{}11,2,3M ⋃=的集合M 的个数是2个.( )4.(2021·江西·贵溪市实验中学高三阶段练习)已知集合{}20M x x x =+=∣,则1M -∈.( ) 5.(2021·江西·贵溪市实验中学高二阶段练习)满足条件{}{}11,2,3M ⋃=的集合M 的个数是3 ( )二、单选题1.(2022·广东茂名·高一期末)已知集合{}21A x y x ==+,集合{}21B y y x ==+,则A B =( )A .0B .{}|1x x ≥C .{}|1x x ≤D .R2.(2021·广东·佛山一中高一阶段练习)已知集合{}22,531,=-+A a a ,,{}5,9,1,4=+-B a a ,若{}4A B ⋂=,则实数a 的取值的集合为( )A .{}1,2,2-B .{}1,2C .{}1,2-D .{}13.(2022·河南平顶山·高三阶段练习(文))已知集合{}1A x x =>,{}260B x x x =--<,则()R A B ⋂=( ) A .{}13x x << B .{}12x x << C .{}3x x ≥ D .{}2x x ≥4.(2022·湖南·沅陵县第一中学高二开学考试)如图所示,阴影部分表示的集合是( )A .(UB ⋂)A B .(U A ⋂)BC .() U A B ⋂D .(U A B )高频考点一:集合的基本概念1.(2020·重庆·一模(理))已知集合{}2|280,A x Z x x =∈+-<{}2|B x x A =∈,则B 中元素个数为 A .4 B .5 C .6 D .72.(2021·上海黄浦·一模)已知集合{}2,(R)A x x x =∈,若1A ∈,则x =___________.3.(2012·全国·一模(理))集合中含有的元素个数为 A .4 B .6 C .8 D .124.(2017·河北·武邑宏达学校模拟预测(理))集合{}2*|70,A x x x x N =-<∈,则*6|,B y N y A y ⎧⎫=∈∈⎨⎬⎩⎭中元素的个数为A .1个B .2个C .3个D .4个5.(2020·湖南·邵东市第十中学模拟预测(理))已知集合{}1,0,1A =-,(),|,,x B x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为( )A .3B .4C .6D .96.(2021·全国·二模(理))定义集合运算:{},,A B z z xy x A y B *==∈∈,设{1,2}A =,{1,2,3}B =,则集合A B *的所有元素之和为( )A .16B .18C .14D .8高频考点二:集合的基本关系1.(2021·广东肇庆·模拟预测)已知集合{}3P x x =<,{}2Q x Z x =∈<,则( )A .P Q ⊆B .Q P ⊆C .P Q P =D .P Q Q ⋃= 2.(2020·山东·模拟预测)已知集合==2{1,},{}M x N x ,若N M ⊆,则x =__.3.(2020·江苏省如皋中学二模)设{,2}M m =,{2,2}N m m =+,且M N ,则实数m 的值是________. 4.(2021·辽宁·东北育才学校一模)所有满足{}{},,,a M a b c d ⊆的集合M 的个数为________;5.(2022·全国·模拟预测)已知集合{}213M x x =+<,{}N x x a =<,若N M ⊆,则实数a 的取值范围为( )A .[)1,+∞B .[)2,+∞C .(],1-∞D .(),1-∞6.(2020·广西·模拟预测)已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-. (1)求A B ,()R A B ⋂:(2)若B C C =,求实数m 的取值范围.7.(2020·广西·模拟预测)已知集合{|121}A x a x a =+≤≤-,{|3B x x =≤或5}x >.(1)若4a =,求A B ; (2)若A B ⊆,求a 的取值范围.高频考点三:集合的运算1.(2022·甘肃陇南·模拟预测(理))已知集合{}|321A x x =->,{}260B x x x =--<,则A B =( ) A .{}13x x <<B .{}12x x <<C .{}21x x -<<D .{}31x x -<<2.(2022·北京丰台·一模)已知集合{|12}A x x =-<≤,{|21}B x x =-<≤,则A B ⋃=( )A .{|11}x x -<<B .{|11}x x -<≤C .{|22}x x -<<D .{|22}x x -<≤3.(2022·河南·模拟预测(理))已知集合{}14A x x =≤≤,(){}214B x x =-≥,则()A B =R ( ) A .[]3,4 B .[]1,4 C .[)1,3 D .[)3,+∞4.(2022·全国·模拟预测(理))设全集U =R ,集合102x A x x ⎧⎫+=≤⎨⎬-⎩⎭,集合{}ln 1B x x =≤,则A B 是( )A .(]0,2B .()2,eC .()0,2D .[)1,e -5.(2022·江西赣州·一模(理))设集合{}1,0,A n =-,{},,B x x a b a A b A ==⋅∈∈.若A B A =,则实数n 的值为( )A .1-B .0C .1D .26.(2021·江西·模拟预测)2021年是中国共产党成立100周年,电影频道推出“经典频传:看电影,学党史”系列短视频,传扬中国共产党的伟大精神,为广大青年群体带来精神感召.现有《青春之歌》《建党伟业》《开国大典》三支短视频,某大学社团有50人,观看了《青春之歌》的有21人,观看了《建党伟业》的有23人,观看了《开国大典》的有26人.其中,只观看了《青春之歌》和《建党伟业》的有4人,只观看了《建党伟业》和《开国大典》的有7人,只观看了《青春之歌》和《开国大典》的有6人,三支短视频全观看了的有3人,则没有观看任何一支短视频的人数为________.7.(2021·上海·模拟预测)已知集合{}2890,U x x x x Z =--≤∈,{}A y y y Z ==∈,则U A__________.高频考点四:venn 图的应用1.(2022·贵州贵阳·一模(理))若全集U 和集合A ,B 的关系如图所示,则图中阴影部分表示的集合为( )A .()U AB ⋂B .()U B AC .()U A BD .()U A B2.(2021·广东·模拟预测)已知全集U =R ,集合{}2,20A x yB x x x ⎧==--<⎨⎩∣∣,它们的关系如图(Venn 图)所示,则阴影部分表示的集合为( )A .{12}x x -≤<∣B .{12}xx -<<∣ C .{12}xx ≤<∣ D .{12}x x <<∣ 3.(2021·黑龙江·哈九中三模(理))如图,U 是全集,,,M P S 是U 的子集,则阴影部分表示的集合是( )A .()M P SB .()M P SC .()U M P S ⋂⋂D .()U M P S ⋂⋃4.(2021·江苏徐州·二模)某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:若在两个项目中都“合格”的学生最多有10人,则在两个项目中都“优秀”的人数最多为( )A .5B .10C .15D .205.(2020·北京市第五中学模拟预测)高二一班共有学生50人,每名学生要从物理、化学、生物、历史、地理、政治这六门课程中选择三门课程进行学习.已知选择物理、化学、生物的学生各有至少20人,这三门课程都不选的有10人,这三门课程都选的有10人,在这三门课程中选择任意两门课程的都至少有13人,物理、化学只选一科的学生都至少6人,那么选择物理和化学这两门课程的学生人数至多( ) A .16 B .17 C .18 D .19高频考点五:集合新定义问题1.定义集合{|A B x x A -=∈ 且}x B ∉.己知集合{}Z 26U x x =∈-<<,{}0,2,4,5A =,{}1,0,3B =-,则()U A B -中元素的个数为( )A .3B .4C .5D .6 2.设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈且}x A B ∉.已知{|A x y =,{|1}B x x =>,则A B ⨯等于( )A .[0,1](2,)+∞B .[0,1)(2,)⋃+∞C .[0,1]D .[0,2]3.已知集合{}1,2,3M =,(){},,,N x y x M y M x y M =∈∈+∈,则集合N 中的元素个数为( ) A .2 B .3 C .8 D .94.已知非空集合A 、B 满足以下两个条件:(1){}1,2,3,4,5A B =,A B =∅;(2)A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素.则有序集合对(),A B 的个数为( )A .4B .6C .8D .165.(多选)在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即{}[]5k n k n Z =+∈,0,1,2,3,4k =.则下列结论正确的是( )A .2011[1]∈;B .[0][1][2][3][4]Z =⋃⋃⋃⋃;C .3[3]-∈;D .整数a ,b 属于同一“类”的充要条件是“[0]a b -∈”.1.(2021·山东·高考真题)假设集合{}1,2,3A =,{}1,3B =,那么A B 等于( )A .{}1,2,3B .{}1,3C .{}1,2D .{}22.(2021·湖南·高考真题)已知集合{}13,5A =,,{}1,2,3,4B =,且A B =( ) A .{}1,3B .{}1,3,5C .{}1,2,3,4D .{}1,2,3,4,53.(2021·江苏·高考真题)已知集合{}1,3M =,{}1,3N a =-,若{}1,2,3MN =,则a 的值是( ) A .-2 B .-1 C .0 D .14.(2021·天津·高考真题)设集合{}{}{}1,0,11,3,5,0,2,4A B C =-==,,则()A B C ⋂⋃=( ) A .{}0 B .{0,1,3,5} C .{0,1,2,4} D .{0,2,3,4} 5.(2021·全国·高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B =( ) A .{3} B .{1,6} C .{5,6} D .{1,3} 6.(2021·浙江·高考真题)设集合{}1A x x =≥,{}12B x x =-<<,则A B =( ) A .{}1x x >- B .{}1x x ≥ C .{}11x x -<< D .{}12x x ≤<7.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z一、单选题1.(2021·北大附中云南实验学校高一阶段练习)下列各对象可以组成集合的是( )A .与1非常接近的全体实数B .北大附中云南实验学校20202021-学年度第二学期全体高一学生C .高一年级视力比较好的同学D .高一年级很有才华的老师2.(2022··模拟预测(理))已知集合A ={}250x x x -≤,B ={}21,x x k k Z =-∈,则A B 中元素的个数为( )A .2B .3C .4D .53.(2022·贵州毕节·模拟预测(理))已知集合(){}10A x x x =-=,{}20,,B m m =,若A B B ⋃=,则m =( )A .1-B .0C .1D .±14.(2022·全国·模拟预测)已知集合{}1,2,3,4,5,6A =,6,1B x x A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是( )A .3B .4C .8D .165.(2022·湖南·长沙一中高三阶段练习)集合1,36n M x x n Z ⎧⎫==+∈⎨⎬⎩⎭,1,63n N x x n Z ⎧⎫==+∈⎨⎬⎩⎭,则M N =( )A .MB .NC .∅D .,6n x x n Z ⎧⎫=∈⎨⎬⎩⎭6.(2022·广东·高二期末)集合{}2230A x x x =--=,{}10B x mx =+=,A B A ⋃=,则m 的取值范围是( )A .11,3⎧⎫-⎨⎬⎩⎭B .{}1,3-C .10,3⎧⎫-⎨⎬⎩⎭D .10,1,3⎧⎫-⎨⎬⎩⎭7.(2022·湖南·长郡中学高二阶段练习)已知集合(){}2ln 4A x y x ==-,{B y x =,则A B =( ) A .()2,3B .()(],22,3-∞-C .()0,3D .(]2,3 8.(2022·河南·温县第一高级中学高三阶段练习(理))已知集合102x A x x ⎧⎫-=≤⎨⎬+⎩⎭,B ={-2,-1,0,1},则A ∩B =( )A .{-2,-1,0,1}B .{-1,0,1}C .{-1,0}D .{-2,-1,0}二、填空题9.(2022·四川·雅安中学高一阶段练习)集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________.10.(2022·上海金山·高一期末)满足条件:{}a {},,,M a b c d ⊆的集合M 的个数为______.11.(2022·全国·高三专题练习)已知集合{}2{123},280A x a x a B x x x =-<<+=--≤,若()R A B A ⋂=,求实数a 的取值范围是___________.12.(2022·全国·高三专题练习)设集合{}2280A x x x =-->,{B x x a =≤或}5x a ≥+,若()R A B ⋂=∅,则a 的取值范围是___________.三、解答题13.(2022·山西·榆次一中高一开学考试)已知集合{}22150M x x x =--≤,{}N x m x m =-≤≤.(1)当1m =时,求M N ⋂以及()()R R M N ⋃;(2)若M N ,求实数m 的取值范围.14.(2022·江苏省天一中学高一期末)集合1121x A x x +⎧⎫=>⎨⎬-⎩⎭,{}22240B x x ax a =-+-<. (1)若{}23,4,23C a a =+-,()0B C ∈,求实数a 的值;(2)从条件①②③这三个条件中选择一个作为已知条件,求实数a 的取值范围.条件:①A B A =;②()R A B ⋂=∅;③()R B A R ⋃=.(注:答题前先说明选择哪个条件,如果选择多于一条件分别解答,按第一个解答计分).15.(2022·江西·赣州市赣县第三中学高一开学考试)已知集合{}2430A x x x =++=,{}22230B x x ax a a =-+--=. (1)若1a =,求A B ;(2)若A B A ⋃=,求a 的取值集合.16.(2022·江苏·高一)已知集合A 为非空数集,定义:{},,S x x a b a b A ==+∈,{},,T x x a b a b A ==-∈.(1)若集合{}1,3A =,直接写出集合S 、T ;(2)若集合{}1234,,,A x x x x =,且T A =,写出一个满足条件的集合A ,并说明理由;(3)若集合{}02020,A x x x N ⊆≤≤∈,S T ⋂=∅,记A 为集合A 中元素的个数,求A 的最大值.。
集合-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版
2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第01练集合(精练)1.了解集合的含义,体会元素与集合的属于关系,能用自然语言、图形语言、集合语言列举法或描述法描述不同的具体问题.2.理解集合间包含与相等的含义,能识别给定集合的子集.在具体情境中,了解全集与空集的含义.3.理解两个集合的并集、交集与补集的含义,会求两个简单集合的并集、交集与补集.能使用Venn 图表示集合间的基本关系及集合的基本运算.一、单选题1.(2023·全国·高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð()A .{}0,2,4,6,8B .{}0,1,4,6,8C .{}1,2,4,6,8D .U2.(2023·全国·高考真题)已知集合{}2,1,0,1,2M =--,260N x x x =--≥,则M N ⋂=()A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出.-3.(2023·全国·高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A .2B .1C .23D .1-4.(2023·全国·高考真题)设全集Z U =,集合{31,},{32,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,()U M N ⋃=ð()A .{|3,}x x k k =∈Z B .{31,}xx k k Z =-∈∣C .{32,}xx k k Z =-∈∣D .∅【答案】A【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z ,U Z =,所以,(){}|3,U M N x x k k ==∈Z ð.故选:A .5.(2023·全国·高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .126.(2022·全国·高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M ∈C .4M ∉D .5M∉【答案】A【分析】先写出集合M ,然后逐项验证即可【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A7.(2022·全国·高考真题)若集合{4},{31}M x N x x ==≥∣,则M N ⋂=()8.(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【A 级基础巩固练】一、单选题1.(2024·北京丰台·一模)已知集合{}220A x x x =-≤,{}10B x x =->,则A B ⋃=()A .{}0x x ≥B .{}01x x ≤<C .{}1x x >D .{}12x x <≤2.(2024·北京顺义·二模)设集合24U x x =∈≤Z ,{}1,2A =,则U A =ð()A .[]2,0-B .{}0C .{}2,1--D .{}2,1,0--【答案】DA .(]0,2B .31,2⎛⎤ ⎥C .()0,2D .30,2⎛⎤4.(23-24高三下·四川成都·阶段练习)已知集合{}{}1,2,2,3A B ==,则集合{},,C z z x y x A y B ==+∈∈的子集个数为()A .5B .6C .7D .85.(2024·陕西安康·模拟预测)已知集合{}{}3N 0log 2,21,Z A x x B x x k k =∈<<==+∈∣∣,则A B = ()A .{}1,3,5,7B .{}5,6,7C .{}3,5D .{}3,5,7【答案】D【分析】先求出集合A ,再根据交集的定义即可得解.【详解】{}{}{}3N0log 2N192,3,4,5,6,7,8A x x x x =∈<<=∈<<=∣∣,所以{}3,5,7A B = .故选:D.6.(23-24高三下·四川雅安·阶段练习)若集合{}2,1,4,8A =-,{}2,B x y x A y A =-∈∈∣,则B 中元素的最大值为()A .4B .5C .7D .10【答案】C【分析】根据B 中元素的特征,只需满足()2max minx y-即可得解.【详解】由题意,()()222max maxmin817x y x y -=-=-=.故选:C7.(2024·四川成都·三模)设全集{}1,2,3,4,5U =,若集合M 满足{}1,4U M ⊆ð,则()A .4M ÎB .1M ∉C .2M ∈D .3M∉8.(2024·河北沧州·模拟预测)已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B =⋂,则集合P 的子集共有()A .2个B .3个C .4个D .8个9.(2024·全国·模拟预测)若集合{}()(){}28,158A x x B x x x =∈<=+->-Z ,则()A B ⋂=R ð()A .{}0,1,2B .{0x x ≤<C .{1x x ≤≤D .{}1,210.(2024·四川泸州·三模)已知集合2230A x x x =--<,{}0,B a =,若A B ⋂中有且仅有一个元素,则实数a 的取值范围为()A .()1,3-B .(][),13,-∞-+∞C .()3,1-D .(][),31,-∞-⋃+∞11.(2024·北京东城·一模)如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是()A .AB ⋂B .A B⋃C .()U A B ⋂ðD .()U A B ⋃ð【答案】D【分析】由给定的韦恩图分析出阴影部分所表示的集合中元素满足的条件,再根据集合运算的定义即可得解.【详解】由韦恩图可知阴影部分所表示的集合是()U A B ð.二、多选题12.(2024·甘肃定西·一模)设集合{}{}26,,A x x x B xy x A y A =-≤=∈∈∣∣,则()A .AB B= B .Z B ⋂的元素个数为16C .A B B⋃=D .A Z I 的子集个数为64取值可能是()A .3-B .1C .1-D .014.(2024·广西·二模)若集合M 和N 关系的Venn 图如图所示,则,M N 可能是()A .{}{}0,2,4,6,4M N ==B .{}21,{1}M xx N x x =<=>-∣∣C .{}{}lg ,e 5x M xy x N y y ====+∣∣D .(){}(){}22,,,M x y x y N x y y x ====∣∣三、填空题15.(2024高一上·全国·专题练习)已知集合{}22,4,10A a a a =-+,且3A -∈,则=a .【答案】3-【分析】根据题意,列出方程,求得a 的值,结合集合元素的互异性,即可求解.【详解】因为3A -∈,所以23a -=-或243a a +=-,解得1a =-或3a =-,当1a =-时,23a -=,243a a +=-,集合A 不满足元素的互异性,所以1a =-舍去;当3a =-时,经检验,符合题意,所以3a =-.故答案为:3-.16.(2024高三下·全国·专题练习)集合(){}22,2,,x y x y x y +<∈∈Z Z 的真子集的个数是.17.(23-24高一上·辽宁大连·期中)设{}50A x x =-=,{}10B x ax =-=,若A B B = ,则实数a 的值为.18.(2024·安徽合肥·一模)已知集合{}{}24,11A x x B x a x a =≤=-≤≤+∣∣,若A B ⋂=∅,则a 的取值范围是.【答案】()(),33,-∞-+∞ 【分析】利用一元二次不等式的解法及交集的定义即可求解.【详解】由24x ≤,得()()220x x -+≤,解得22x -≤≤,所以{}22A xx =-≤≤∣.因为A B ⋂=∅,所以12a +<-或12a ->,解得3a <-或3a >,所以a 的取值范围是()(),33,-∞-+∞ .故答案为:()(),33,-∞-+∞ .19.(2024高三·全国·专题练习)设集合(){}2|1A x x a =-<,且2A ∈,3A ∉,则实数a 的取值范围为.【答案】(]1,2【分析】首先解一元二次不等式求出集合A ,再根据2A ∈且3A ∉得到不等式组,解得即可.【详解】由()21x a -<,即11x a -<-<,解得11a x a -<<+,即(){}{}2|11|1A x x a x a x a =-<=-<<+,因为2A ∈且3A ∉,所以121213a a a -<⎧⎪+>⎨⎪+≤⎩,解得12a <≤,即实数a 的取值范围为(]1,2.故答案为:(]1,2四、解答题20.(23-24高一上·广东湛江·期末)已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.21.(2024高三·全国·专题练习)设M 是由直线0Ax By C ++=上所有点构成的集合,即{}(,)0M x y Ax By C =++=,在点集M 上定义运算“⊗”:对任意()11,,x y M ∈()22,,x y M ∈则()()11221212,,x y x y x x y y ⊗=+.(1)若M 是直线230x y -+=上所有点的集合,计算()()1,52,1⊗--的值.(2)对(1)中的点集M ,能否确定(3,)(,5)a b ⊗(其中,a b ∈R )的值?(3)对(1)中的点集M ,若(3,)(,)0a b c ⊗<,请你写出实数a ,b ,c 可能的值.【B 级能力提升练】一、单选题1.(2024·全国·模拟预测)已知集合{}{}2210,2log 10M x x P x x =->=-<,则M P ⋂=()A .12x x ⎧<<⎨⎩B .142x x ⎧⎫<<⎨⎬⎩⎭C .{}4x <<D .{}24x x <<2.(2024·宁夏银川·一模)设全集{0,1,2,3,4,5,6},{1,2,3,4,5},{Z 2}U A B x ===∈<,则集合{4,5}=()A .()U AB ⋂ðB .()U A B ⋂ðC .()U A B ∩ðD .()()U U A B ⋂痧所以{}{}Z |041,2,3B x x =∈<<=,所以{}0,4,5,6U B =ð,所以(){}4,5U A B Ç=ð,故ABD 错误,故C 正确;故选:C3.(23-24高三上·内蒙古赤峰·阶段练习)已知集合{}24xA x =>,集合{}B x x a =<∣,若A B ⋃=R ,则实数a 的取值范围为()A .(],2-∞B .[)2,+∞C .(),2-∞D .()2,+∞【答案】D【分析】先求出集合A ,然后根据A B ⋃=R ,即可求解.【详解】由24x >,得2x >,所以()2,A =+∞,因为(),B a =-∞,A B ⋃=R ,所以2a >,故D 正确.故选:D.4.(23-24高一上·全国·期末)已知m ∈R ,n ∈R ,若集合{}2,,1,,0n m m m n m ⎧⎫=+⎨⎬⎩⎭,则20232023m n +的值为()A .2-B .1-C .1D .25.(23-24高三下·湖南长沙·阶段练习)已知全集{}N |010U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B ⋂=ð,则集合B 的元素个数为()A .6B .7C .8D .不确定【答案】B【分析】由已知求出全集,再由(){}U 1,3,5,7A B ⋂=ð可知A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,从而可求出B 中的元素.【详解】因为全集{}{}N |0100,1,2,3,4,5,6,7,8,9,10U A B x x =⋃=∈≤≤=,(){}1,3,5,7U A B ⋂=ð,所以A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,A 和B 中都有可能有0,2,4,6,8,9,10,且除了1,3,5,7,A 中有的其他数字,B 中也一定会有,A 中没有的数字,B 中也一定会有,所以{}0,2,4,6,8,9,10B =,故选:B6.(23-24高三下·甘肃·阶段练习)如果集合U 存在一组两两不交(两个集合交集为空集时,称为不交)的非空子集()*122,,,,k A A A k k ≥∈N ,且满足12k A A A U =U U L U ,那么称子集组12,,,k A A A 构成集合U 的一个k 划分.若集合I 中含有4个元素,则集合I 的所有划分的个数为()A .7个B .9个C .10个D .14个二、多选题7.(2024·江苏泰州·模拟预测)对任意,A B ⊆R ,记{},A B x x A B x A B ⊕=∈⋃∉⋂,并称A B ⊕为集合,A B的对称差.例如:若{}{}1,2,3,2,3,4A B ==,则{}1,4A B ⊕=.下列命题中,为真命题的是()A .若,AB ⊆R 且A B B ⊕=,则A =∅B .若,A B ⊆R 且A B ⊕=∅,则A B =C .若,A B ⊆R 且A B A ⊕⊆,则A B ⊆D .存在,A B ⊆R ,使得A B A B⊕≠⊕R R痧三、填空题8.(2024·浙江绍兴·二模)已知集合{}20A x x mx =+≤,1,13B m ⎧⎫=--⎨⎬⎩⎭,且A B ⋂有4个子集,则实数m 的最小值是.9.(2024·湖南·二模)对于非空集合P ,定义函数()1,,P f x x P ⎧=⎨∈⎩已知集合{01},{2}A x x B x t x t=<<=<<∣∣,若存在x ∈R ,使得()()0A B f x f x +>,则实数t 的取值范围为.【C 级拓广探索练】一、单选题1.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .8【答案】A【分析】设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,分析可知4n ≥,然后对n 的取值由小到大进行分析,验证题中的条件是否满足,即可得解.【详解】解:设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,若3n =,则12A A ⋂≠∅,不合乎题意.①假设集合B 中含有4个元素,可设{}112,A x x =,则{}24634,A A A x x ===,{}35712,A A A x x ===,这与17A A ⋂=∅矛盾;②假设集合B 中含有5个元素,可设{}1612,A A x x ==,{}2734,A A x x ==,{}351,A x x =,{}423,A x x =,{}545,A x x =,满足题意.综上所述,集合B 中元素个数最少为5.故选:A.【点睛】关键点点睛:本题考查集合元素个数的最值的求解,解题的关键在于对集合元素的个数由小到大进行分类,对集合中的元素进行分析,验证题中条件是否成立即可.二、多选题2.(2024·浙江宁波·二模)指示函数是一个重要的数学函数,通常用来表示某个条件的成立情况.已知U 为全集且元素个数有限,对于U 的任意一个子集S ,定义集合S 的指示函数()()U 1,1,10,S S x Sx x x S∈⎧=⎨∈⎩ð若,,A B C U ⊆,则()注:()x Mf x ∈∑表示M 中所有元素x 所对应的函数值()f x 之和(其中M 是()f x 定义域的子集).A .1()1()A A x Ax Ux x ∈∈<∑∑B .1()1()1()A B A A B x x x ⋂⋃≤≤C .()1()1()1()1()1()A B A B A B x Ux Ux x x x x ⋃∈∈=+-∑∑D .()()()11()11()11()1()1()A B C U A B C x Ux Ux Ux x x x x ⋃⋃∈∈∈---=-∑∑∑【答案】BCD【分析】根据()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð,即可结合选项逐一求解.【详解】对于A ,由于A U ⊆,所以1()1()1()1(),uA A A A x U x A x A x Ax x x x ∈∈∈∈=+=∑∑∑∑ð故1()1()A A x Ax Ux x ∈∈=∑∑,故A 错误,对于B ,若x A B ∈ ,则1()1,1()1,1()1A B A A B x x x ⋂⋃===,此时满足1()1()1()A B A A B x x x ⋂⋃≤≤,若x A ∈且x B ∉时,1()0,1()1,1()1A B A A B x x x ⋂⋃===,若x B ∈且x A ∉时,1()0,1()0,1()1A B A A B x x x ⋂⋃===,若x A ∉且x B ∉时,1()0,1()0,1()0A B A A B x x x ⋂⋃===,综上可得1()1()1()A B A A B x x x ⋂⋃≤≤,故B 正确,对于C ,()()()()()1()1()1()1()1()1()1()1()1()1()1()1()U UAB A B AB A B AB A B x Ux A B x B A x x x x x x x x x x x x ∈∈⋂∈⋂+-=+-++-∑∑∑痧()()()()1()1()1()1()1()1()1()1()U ABABABABx A B x A Bx x x x x x x x ∈⋂∈⋃++-++-∑∑ð()()()()()()()1()1()1()1()1()1()1()1()1()1()1()1()0U U U ABABABABABABx A B x A B x A B x B A x x x x x x x x x x x x ∈⋂∈⋃∈⋂∈⋂=+-++-++-+∑∑∑∑ð痧()()1()1()1()1()ABABx A B x x x x ∈⋃=+-∑而()1()1()1()1()U A B A BA B A Bx Ux A Bx A Bx A Bx x x x ⋃⋃⋃⋃∈∈⋃∈⋃∈⋃=+=∑∑∑∑ð,由于()()()U 1,10,A B x A Bx x A B ⋃∈⋃⎧=⎨∈⋃⎩ð,所以1()1()1()1()1()A B A B A B x x x x x ⋃+-=故()1()1()1()1()1()A B AB A B x U x Ux x x x x ⋃∈∈=+-∑∑,C 正确,()1()1()1()U UA B C U x Ux Ux A B C x x x ⋃⋃∈∈∈⋃⋃-=∑∑∑ð,当x A B C ∈⋃⋃时,此时()()()1,1,1A B C x x x 中至少一个为1,所以()()()11()11()11()0A B C x x x ---=,当()x A B C ∉⋃⋃时,此时()()()1,1,1A B C x x x 均为0,所以()()()11()11()11()1A B C x x x ---=,故()()()()()()()()11()11()11()11()11()11()1()UU A B C A B C A B C U x U x x A B C x x x x x x x ⋃⋃∈∈∈⋃⋃---=---=∑∑∑痧,故D 正确,故选:BCD【点睛】关键点点睛:充分利用()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð以及()x M f x ∈∑的定义,由此可得()x A B C ∉⋃⋃时,此时1(),1(),I ()A B C x x x 均为0,x A B C ∈⋃⋃时,此时1(),1(),I ()A B C x x x 中至少一个为1,结合()1S x 的定义化简求解.三、填空题3.(23-24高三上·江西·期末)定义:有限集合{}++,,N ,N i A x x a i n i n ==≤∈∈,12n S a a a =+++ 则称S 为集合A 的“元素和”,记为A .若集合(){}+12,,N ,N i P x x i i n i n +==+≤∈∈,集合P 的所有非空子集分别为1P ,2P ,…,k P ,则12k P P P +++=.四、解答题4.(2024·浙江台州·二模)设A ,B 是两个非空集合,如果对于集合A 中的任意一个元素x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的元素y 和它对应,并且不同的x 对应不同的y ;同时B 中的每一个元素y ,都有一个A 中的元素x 与它对应,则称f :A B →为从集合A 到集合B 的一一对应,并称集合A 与B 等势,记作A B =.若集合A 与B 之间不存在一一对应关系,则称A 与B 不等势,记作A B ≠.例如:对于集合*N A =,{}*2N B n n =∈,存在一一对应关系()2,y x x A y B =∈∈,因此A B =.(1)已知集合(){}22,1C x y x y =+=,()22,|143x y D x y ⎧⎫=+=⎨⎬⎩⎭,试判断C D =是否成立?请说明理由;(2)证明:①()()0,1,=-∞+∞;②{}**N N x x ≠⊆.【答案】(1)成立,理由见解析(2)①证明见解析;②证明见解析5.(2024·北京延庆·一模)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.若正整数()221t h k =+,其中*N,N t k ∈∈,则当1221t k +>+时,由等差数列的性质可得:()()()()()()()22122...2221...21221...212t t t t t t t t t t t h k k k k k =+=+++=-+-+++-++++++-++,此时结论成立,当1221t k +<+时,由等差数列的性质可得:()()()()()()()()2121...2121...112...2t t h k k k k k k k k k =++++++=-+++-++++++++,此时结论成立,对于数列n a n =,此问题等价于数列1,2,3,...n 其相应集合T 中满足2024m b ≤有多少项,由前面证明可知正整数1,2,4,8,16,32,64,128,256,512,1024不是T 中的项,所以m 的最大值为2013.。
通用版2019版高考数学一轮复习第一章集合与常用逻辑用语第二节命题及其关系充分条件与必要条件实用课件
2. [考点二]已知“x>k”是“x+3 1<1”的充分不必要条件,则k的
取值范围是
()
A.[2,+∞)
B.[1,+∞)
C.(2,+∞)
D.(-∞,-1]
解析:由
3 x+1
<1,得
3 x+1
-1=
-x+2 x+1
<0,解得x<-1或
x>2.因为“x>k”是“
3 x+1
<1”的充分不必要条件,所以
k≥2. 答案:A
②命题α是命题β的逆命题,且命题γ是命题β的否命题;
③命题β是命题α的否命题,且命题γ是命题α的逆否命题.
A.①③
B.②
C.②③ D.①②③
解析:命题的四种形式,逆命题是把原命题中的条件和结论
互换,否命题是把原命题的条件和结论都加以否定,逆否命
题是把原命题中的条件与结论先都否定,然后交换条件与结
论所得,因此①正确,②错误,③正确,故选A. 答案:A
题三个命题中,真命题只有一个.
答案:C
4.[考点一、二]有下列四个命题: ①“若xy=1,则x,y互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题; ③“若m≤1,则x2-2x+m=0有实数解”的逆否命题; ④“若A∩B=B,则A⊆B”的逆否命题. 其中为真命题的是________(填写所有真命题的序号).
[全析考法]
充分条件与必要条件的判断
[例1] (1)(2017·浙江高考)已知等差数列{an}的公差为d,前
n项和为Sn,则“d>0”是“S4+S6>2S5”的
()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
2025年上海市数学高考一轮复习重难点 专题1集合与逻辑(考点练+模拟练)含详解
专题01集合与逻辑(考点练+模拟练)一、填空题1.(23-24高三上·上海·期中)已如全集U =R ,集合10,x A x x x ⎧⎫-=≥∈⎨⎬⎩⎭R ,则A =.2.(23-24高三上·上海黄浦·开学考试)“0x ≠或0y ≠”是“220x y +≠”的条件.3.(2023·上海普陀·模拟预测)已知命题p :任意正数x ,恒有()1e 1xx +>,则命题p 的否定为.4.(23-24高三上·上海·期中)已知集合()2,1A =-,()()4,11,2B =-- ,则A B =.5.(22-23高一上·上海复旦附中分校·阶段练习)已知全集U =R ,集合{|1},{|2}A x x B x x =≤=≥,则A B =.6.(23-24高三上·上海奉贤·阶段练习)已知集合{}ln M x y x ==,集合11N y y x ⎧⎫==⎨⎬-⎩⎭,则M N ⋂=.7.(23-24高三上·上海松江·期中)已知2:280,:123p x x q a x a --<-<<-,且p 是q 的充分不必要条件,则实数a 的取值范围是.8.(23-24高三上·上海静安·开学考试)集合{}1,2,A a =,{}21,2B a =-,若集合A B ⋃中有三个元素,则实数=a .9.(23-24高一上·河北邯郸·阶段练习)若集合{}N |12A x x =∈-<≤,{},,B x x ab a b A ==∈,则集合B 的非空真子集的个数为.10.(20-21高三上·上海崇明·阶段练习)已知:31x m α<-或x m >-,:2x β<或4x ≥,若α是β的必要条件,则实数m 的取值范围是.11.(20-21高一上·上海闵行·期中)已知集合M =25|0ax x x a -⎧⎫<⎨⎬-⎩⎭,若3,5M M ∈∉,则实数a 的取值范围是.12.(23-24高三上·上海浦东新·期中)M 是正整数集的子集,满足:1,2022,2023M M M ∈∈∉,并有如下性质:若a 、b M ∈,则222a b M ⎤+∈⎥⎥⎦,其中[]x 表示不超过实数x 的最大整数,则M 的非空子集个数为.二、单选题13.(23-24高三上·上海浦东新·阶段练习)已知集合π,2m A x x m ⎧⎫==∈⎨⎬⎩⎭Z ,集合π,4n B x x n ⎧⎫==∈⎨⎬⎩⎭Z ,则A B = ()A .∅B .AC .BD .{}π,x x k k =∈Z 14.(16-17高一上·上海浦东新·期中)已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是()A .对任意的a A ∈,都有aB ∉B .对任意的a B ∈,都有a A ∈C .存在0a ,满足0a A ∈,且0a B∉D .存在0a ,满足0a A ∈,且0a B∈15.(21-22高三上·上海浦东新·阶段练习)集合,A B 各有8个元素,A B ⋂有6个元素,若集合C 满足:()()A B C A B ⊆⊆ ,则满足条件的集合C 共有()A .32个B .16个C .8个D .4个16.(20-21高三上·浙江·开学考试)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是()A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素三、解答题17.(23-24高三上·上海静安·阶段练习)设全集()(){}4230,0A x ax x a a =+-+>>,B x y ⎧⎪==⎨⎪⎩.(1)若2a =,求A B ⋂,A B ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数a 的取值范围.18.(22-23高三上·上海青浦·期中)已知集合{}(2)(3)0A x x x =--≤,{}3B x a x a =<<,且0a >.(1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围;(2)若命题“A B ⋂=∅”为假命题,求实数a 的取值范围.19.(22-23高三上·上海崇明·阶段练习)已知R 为全集,集合R 21|1,1x A x x x -⎧⎫=≤∈⎨⎬+⎩⎭,集合{}1,R B x x a x =-≤∈.(1)求集合A ;(2)若B A B ⋂=,求实数a 的取值范围.20.(22-23高三上·上海浦东新·阶段练习)设全集U 为R ,集合{}11A x x =-<,{}2320B x x x =--≥.(1)求A B ;(2)若{}22430C x x ax a A B =-+≥⊇⋃,求a 的取值范围.21.(23-24高一上·上海·期中)集合{}12,,,n A a a a =⋅⋅⋅是由()3n n >个正整数组成的集合,如果任意去掉其中一个元素()1,2,,i a i n =⋅⋅⋅之后,剩余的所有元素组成的集合都能分为两个交集为空的集合,且这两个集合的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4、{}1,3,5,7,9,11,13是否为“可分集合”(不用说明理由);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}12,,,n A a a a = 是“可分集合”,证明n 是奇数.一、填空题1.(2022·上海·模拟预测)已知集合{}2=|40,A x x x x N *-<∈,则用列举法表示集合A =2.(2022·上海浦东新·模拟预测)已知集合()0,2A =,()1,3B =,则A B ⋃=.3.(2024·上海·三模)已知集合{}0,1,2A =,{}331B x x x =-≤,则A B =4.(2024·上海·三模)已知集合{}1,3,4A =,{},1B a a =+,若A B B = ,则=a .5.(2024·上海·三模)已知集合{}11A x x =-<,11B x x ⎧⎫=<⎨⎬⎩⎭,则A B =.6.(2023·上海静安·二模)若集合{}22,log A a =,{},B a b =,且{}0A B ⋂=,则A B ⋃=.7.(2023·上海青浦·二模)已知集合(){}{}|ln 3,|A x y x B x x a ==-=>,若A B ⋂=∅,则实数a 的取值范围为.8.(2024·上海宝山·二模)已知集合{}2,1,3A a a =++,且1A ∈,则实数a 的值为.9.(2017·上海奉贤·一模)已知互异实数0mn ≠,集合{}{}22,,m n m n =,则m n +=.10.(2023·上海金山·一模)若集合()(){}2,20A x y x y x y =+++-≤,()()(){}222,211B x y x a y a a =-+--≤-,且A B ⋂≠∅,则实数a 的取值范围是.11.(2022·上海青浦·二模)已知集合1,[,1]6A s s t t ⎡⎤=++⎢⎥⎣⎦,其中1A ∉且16s t +<,函数()1xf x x =-,且对任意a A ∈,都有()f a A ∈,则t 的值是.12.(2022·上海普陀·一模)设非空集合Q M ⊆,当Q 中所有元素和为偶数时(集合为单元素时和为元素本身),称Q 是M 的偶子集,若集合{}1,2,3,4,5,6,7=M ,则其偶子集Q 的个数为.二、单选题13.(2022·上海·模拟预测)已知集合(){},2A x y x y =+=,(){},24B x y x y =-=-,则A B = ()A .{}0,2B .()0,2C .∅D .(){}0,214.(2023·上海普陀·二模)设,a b 为实数,则“0a b >>”的一个充分非必要条件是()A>B .22a b >C .11b a>D .a b b a->-15.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .816.(2021·上海青浦·一模)设函数,()1,x x P f x x Mx-∈⎧⎪=⎨∈⎪⎩,其中,P M 是实数集R 的两个非空子集,又规定()(){},A P y y f x x P ==∈,()(){},A M y y f x x M ==∈,则下列说法:(1)一定有()()A P A M ⋂=∅;(2)若P M R ⋃≠,则()()A P A M R ⋃≠;(3)一定有P M ⋂=∅;(4)若P M R ⋃=,则()()A P A M R ⋃=.其中正确的个数是()A .1B .2C .3D .4三、解答题17.(2017·上海浦东新·三模)数列{}n a 的前n 项12,,,n a a a ⋅⋅⋅()*N n ∈组成集合{}12,,,n n A a a a =⋅⋅⋅,从集合n A 中任取(1,2,3,,)k k n =⋅⋅⋅个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),例如:对于数列{21}n -,当1n =时,1{1},A =11;T =2n =时,2{1,3},A =113,T =+213T =⋅;(1)若集合{1,3,5,,21}n A n =⋅⋅⋅-,求当3n =时,1,T 2,T 3T 的值;(2)若集合{}1,3,7,,21nn A =⋅⋅⋅-,证明:n k =时集合k A 的m T 与1n k =+时集合1k A +的m T (为了以示区别,用m T '表示)有关系式()1121k m m m T T T +-'=-+,其中*,N ,m k ∈2m k ≤≤;(3)对于(2)中集合n A .定义12=+++…n n S T T T ,求n S (用n 表示).专题01集合与逻辑(考点练+模拟练)一、填空题1.(23-24高三上·上海·期中)已如全集U =R ,集合10,x A x x x ⎧⎫-=≥∈⎨⎬⎩⎭R ,则A =.【答案】{}01x x ≤<【分析】解出集合A ,利用补集的定义可求得集合A .【解析】由10x x -≥可得()100x x x ⎧-≥⎨≠⎩,解得0x <或1x ≥,则{0A x x =<或}1x ≥,又因为全集U =R ,则{}01A x x =≤<.故答案为:{}01x x ≤<.2.(23-24高三上·上海黄浦·开学考试)“0x ≠或0y ≠”是“220x y +≠”的条件.【答案】充要【分析】利用充分条件、必要条件的定义判断作答.【解析】命题“若0x ≠或0y ≠,则220x y +≠”是真命题,命题“若220x y +≠,则0x ≠或0y ≠”是真命题,所以“0x ≠或0y ≠”是“220x y +≠”的充要条件.故答案为:充要3.(2023·上海普陀·模拟预测)已知命题p :任意正数x ,恒有()1e 1xx +>,则命题p 的否定为.【答案】存在正数0x ,使()001e 1xx +≤【分析】含有全称量词的否定,改成特称量词即可.【解析】由全称命题的否定为特称命题知:存在正数0x ,使()001e 1xx +≤.故答案为:存在正数0x ,使()001e 1xx +≤4.(23-24高三上·上海·期中)已知集合()2,1A =-,()()4,11,2B =-- ,则A B = .【答案】()2,1--【分析】直接由交集的概念、区间的表示即可得解.【解析】因为()2,1A =-,()()4,11,2B =-- ,所以()2,1A B ⋂=--.故答案为:()2,1--.5.(22-23高一上·上海复旦附中分校·阶段练习)已知全集U =R ,集合{|1},{|2}A x x B x x =≤=≥,则A B =.6.(23-24高三上·上海奉贤·阶段练习)已知集合{}ln M x y x ==,集合11N y y x ⎧⎫==⎨⎬-⎩⎭,则M N ⋂=.【答案】()0,∞+【分析】根据函数的定义域及值域结合交集的运算求值即可.【解析】由题意可知()()()0,,,00,M N ∞∞∞=+=-⋃+,所以()0,M N ∞⋂=+.故答案为:()0,∞+7.(23-24高三上·上海松江·期中)已知2:280,:123p x x q a x a --<-<<-,且p 是q 的充分不必要条件,则实数a 的取值范围是.8.(23-24高三上·上海静安·开学考试)集合{}1,2,A a =,{}21,2B a =-,若集合A B ⋃中有三个元素,则实数=a .【答案】2-或1-【分析】集合A B ⋃中有三个元素,则222a -=或22a a -=,解方程并检验即可.【解析】集合{}1,2,A a =,{}21,2B a =-,若集合A B ⋃中有三个元素,则222a -=或22a a -=,若222a -=,解得2a =±,其中2a =与元素互异性矛盾舍去,2a =-满足题意;若22a a -=,解得2a =或1a =-,2a =舍去,1a =-满足题意,所以2a =-或1a =-.故答案为:2-或1-9.(23-24高一上·河北邯郸·阶段练习)若集合{}N |12A x x =∈-<≤,{},,B x x ab a b A ==∈,则集合B 的非空真子集的个数为.10.(20-21高三上·上海崇明·阶段练习)已知:31x m α<-或x m >-,:2x β<或4x ≥,若α是β的必要条件,则实数m 的取值范围是.11.(20-21高一上·上海闵行·期中)已知集合M =2|0x x a -⎧⎫<⎨⎬-⎩⎭,若3,5M M ∈∉,则实数a 的取值范围是.12.(23-24高三上·上海浦东新·期中)M 是正整数集的子集,满足:1,2022,2023M M M ∈∈∉,并有如下性质:若a 、b M ∈,则M ∈,其中[]x 表示不超过实数x 的最大整数,则M 的非空子集个数为.二、单选题13.(23-24高三上·上海浦东新·阶段练习)已知集合π,2m A x x m ⎧⎫==∈⎨⎬⎩⎭Z ,集合π,4n B x x n ⎧⎫==∈⎨⎬⎩⎭Z ,则A B = ()A .∅B .AC .BD .{}π,x x k k =∈Z14.(16-17高一上·上海浦东新·期中)已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是()A .对任意的a A ∈,都有aB ∉B .对任意的a B ∈,都有a A ∈C .存在0a ,满足0a A ∈,且0a B∉D .存在0a ,满足0a A ∈,且0a B∈【答案】C【分析】根据子集关系结合元素与集合的关系逐项分析判断.【解析】对于选项A 、B :例如{}{}1,2,2,3A B ==,满足A 不是B 的子集,但2,2A B ∈∈,故A 错误;3,3A B ∉∈,故B 错误;对于选项C :对任意的a A ∈,都有a B ∈,则A B ⊆,若A 不是B 的子集,则存在0a ,满足0a A ∈,且0a B ∉,故C 正确;对于选项D :例如{}{}1,2A B ==,满足A 不是B 的子集,但不存在0a ,满足0a A ∈,且0a B ∈,故D 错误;故选:C.15.(21-22高三上·上海浦东新·阶段练习)集合,A B 各有8个元素,A B ⋂有6个元素,若集合C 满足:()()A B C A B ⊆⊆ ,则满足条件的集合C 共有()A .32个B .16个C .8个D .4个【答案】B【分析】根据题意设出集合,A B ,根据()()A B C A B ⊆⊆ 判断集合C 中元素的构成情况,根据子集和集合中元素的个数关系即可得出结果.【解析】解:由题知,A B 各有8个元素,且A B ⋂有6个元素,设{}123456,,,,,c c c c A c c B = ,且{}12123456,,,,,,,,a a c c c c c c A ={}12123456,,,,,,,b bc c c c c B c =,则画Venn 图如下:因为()()A B C A B ⊆⊆ ,所以{}{}1234561212123456,,,,,,,,,,,,,,,c c c c c c C a a b b c c c c c c ⊆⊆所以集合C 中至少有123456,,,,,c c c c c c ,6个元素,最多有1212123456,,,,,,,,,a a b b c c c c c c ,10个元素,只需求出{}1212,,,a a b b 的子集,在每个子集中加入123456,,,,,c c c c c c 6个元素,即可得集合C ,所以集合C 的个数,即是{}1212,,,a a b b 的子集的个数4216=个.故选:B16.(20-21高三上·浙江·开学考试)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是()A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素【答案】A【解析】不妨设{,}S a b =,由②知集合S 中的两个元素必为相反数,设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,得到至少还有另外一个元素m T ∈,分集合T 有2个元素和多于2个元素分类讨论,即可求解.【解析】若S 有2个元素,不妨设{,}S a b =,以为T 中至少有两个元素,不妨设{},x y T ⊆,由②知,x y S y x S -∈-∈,因此集合S 中的两个元素必为相反数,故可设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,故至少还有另外一个元素m T ∈,当集合T 有2个元素时,由②得:m S -∈,则,{0,}m a T a =±=-或{0,}T a =.当集合T 有多于2个元素时,不妨设{0,,}T m n =,其中,,,,,m n m n m n n m S ----∈,由于,0,0m n m n ≠≠≠,所以,m m n n ≠-≠-,若m n =-,则n m =-,但此时2,2m n m m m n n n -=≠-=-≠,即集合S 中至少有,,m n m n -这三个元素,若m n ≠-,则集合S 中至少有,,m n m n -这三个元素,这都与集合S 中只有2个运算矛盾,综上,{0,,}S T a a =- ,故A 正确;当集合S 有3个元素,不妨设{,,}S a b c =,其中a b c <<,则{,,}a b b c c a T +++⊆,所以,,,,,c a c b b a a c b c a b S ------∈,集合S 中至少两个不同正数,两个不同负数,即集合S 中至少4个元素,与{,,}S a b c =矛盾,排除C ,D.故选:A.【点睛】解题技巧:解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试卷中发现可以使用的集合的性质的一些因素.三、解答题17.(23-24高三上·上海静安·阶段练习)设全集()(){}4230,0A x ax x a a =+-+>>,B x y ⎧⎪==⎨⎪⎩.(1)若2a =,求A B ⋂,A B ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数a 的取值范围.18.(22-23高三上·上海青浦·期中)已知集合{}(2)(3)0A x x x =--≤,{}3B x a x a =<<,且0a >.(1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围;(2)若命题“A B ⋂=∅”为假命题,求实数a 的取值范围.19.(22-23高三上·上海崇明·阶段练习)已知R 为全集,集合R |1,1A x x x -⎧⎫=≤∈⎨⎬+⎩⎭,集合{}1,R B x x a x =-≤∈.(1)求集合A ;(2)若B A B ⋂=,求实数a 的取值范围.20.(22-23高三上·上海浦东新·阶段练习)设全集U 为R ,集合11A x x =-<,{}2320B x x x =--≥.(1)求A B ;(2)若{}22430C x x ax a A B =-+≥⊇⋃,求a 的取值范围.21.(23-24高一上·上海·期中)集合{}12,,,n A a a a =⋅⋅⋅是由()3n n >个正整数组成的集合,如果任意去掉其中一个元素()1,2,,i a i n =⋅⋅⋅之后,剩余的所有元素组成的集合都能分为两个交集为空的集合,且这两个集合的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4、{}1,3,5,7,9,11,13是否为“可分集合”(不用说明理由);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}12,,,n A a a a = 是“可分集合”,证明n 是奇数.【答案】(1){}1,2,3,4不是“可分集合”,{}1,3,5,7,9,11,13为“可分集合”(2)证明见解析(3)证明见解析【分析】(1)由“可分集合”的定义判断;(2)不妨设12345a a a a a <<<<,讨论当在集合{}12345,,,,a a a a a 中去掉元素1a 、2a 后,将剩余元素构成的集合,结合“可分集合”的定义进行分拆,得出等式,推出矛盾,即可证得结论成立;(3)根据集合中元素总和与单个元素的奇偶性讨论后证明.【解析】(1)解:对于{}1,2,3,4,去掉3后,{}1,2,4不满足题中条件,故{}1,2,3,4不是“可分集合”,对于{}1,3,5,7,9,11,13,集合{}1,3,5,7,9,11,13所有元素之和为49.当去掉元素1时,剩下的元素之和为48,剩下元素可以组合{}3,5,7,9、{}11,13这两个集合,显然符合题意;当去掉元素3时,剩下的元素之和为46,剩下元素可以组合{}1,9,13、{}5,7,11这两个集合,显然符合题意;当去掉元素5时,剩下的元素之和为44,剩下元素可以组合{}1,3,7,11、{}9,13这两个集合,显然符合题意;当去掉元素7时,剩下的元素之和为42,剩下元素可以组合{}1,9,11、{}3,5,13这两个集合,显然符合题意;当去掉元素9时,剩下的元素之和为40,剩下元素可以组合{}1,3,5,11、{}7,13这两个集合,显然符合题意;当去掉元素11时,剩下的元素之和为38,剩下元素可以组合{}3,7,9、{}1,5,13这两个集合,显然符合题意;当去掉元素13时,剩下的元素之和为36,剩下元素可以组合{}1,3,5,9、{}7,11这两个集合,显然符合题意.综上所述,集合{}1,3,5,7,9,11,13是“可分集合”.(2)证明:不妨设123450a a a a a <<<<<,一、填空题1.(2022·上海·模拟预测)已知集合{}2=|40,A x x x x N *-<∈,则用列举法表示集合A =【答案】{}1,2,3【分析】根据不等式的解法,求得04x <<,进而利用列举法,即可求解.【解析】由不等式240x x -<,可得()40x x -<,解得04x <<,即集合{|04A x x =<<且}{1,2,3}x N *∈=.故答案为:{}1,2,3.2.(2022·上海浦东新·模拟预测)已知集合()0,2A =,()1,3B =,则A B ⋃=.【答案】()0,3【分析】直接根据并集定义求解即可.【解析】因为()0,2A =,()1,3B =,所以()0,3A B ⋃=,故答案为:()0,33.(2024·上海·三模)已知集合{}0,1,2A =,{}331B x x x =-≤,则A B =【答案】{}0,1【分析】把集合中的元素代入不等式331x x -≤检验可求得{0,1}A B = .【解析】当0x =时,303001-⨯=≤,所以0B ∈,当1x =时,313121-⨯=-≤,所以1B ∈,当2x =时,323221-⨯=>,所以2∉B ,所以{0,1}A B = .故答案为:{0,1}.4.(2024·上海·三模)已知集合{}1,3,4A =,{},1B a a =+,若A B B = ,则=a .【答案】3【分析】根据给定条件,利用交集的结果直接列式计算即得.【解析】集合{}1,3,4A =,{},1B a a =+,由A B B = ,得B A ⊆,又11a a +-=,因此143a a +=⎧⎨=⎩,所以3a =.故答案为:35.(2024·上海·三模)已知集合{}11A x x =-<,11B x x ⎧⎫=<⎨⎬⎩⎭,则A B =.6.(2023·上海静安·二模)若集合{}22,log A a =,{},B a b =,且{}0A B ⋂=,则A B ⋃=.【答案】{}0,1,2【分析】依题意可得0A ∈且0B ∈,即可求出a 、b 的值,从而求出集合A 、B ,再根据并集的定义计算可得.【解析】因为{}22,log A a =,{},B a b =,且{}0A B ⋂=,所以0A ∈且0B ∈,显然0a >,所以2log 0a =且0b =,所以1a =,所以{}2,0A =,{}1,0B =,所以{}0,1,2A B = .故答案为:{}0,1,27.(2023·上海青浦·二模)已知集合(){}{}|ln 3,|A x y x B x x a ==-=>,若A B ⋂=∅,则实数a 的取值范围为.【答案】[)3,+∞【分析】求函数的定义域求得集合A ,根据A B ⋂=∅求得a 的取值范围.【解析】由30x ->解得3x <,所以(),3A =-∞,由于A B ⋂=∅,所以3a ≥,所以a 的取值范围是[)3,+∞.故答案为:[)3,+∞8.(2024·上海宝山·二模)已知集合{}2,1,3A a a =++,且1A ∈,则实数a 的值为.9.(2017·上海奉贤·一模)已知互异实数0mn ≠,集合{}{}22,,m n m n =,则m n +=.【答案】-1【分析】分情况讨论2m m =,2n n =,或2n m =,2m n =再计算即可.【解析】互异实数m n ≠,集合{}{}22,,m n m n =,∴2m m =,2n n =,或2n m =,2m n =,0mn ≠,m n ≠.由2m m =,2n n =,0mn ≠,m n ≠,无解.由2n m =,2m n =,0mn ≠,m n ≠.可得22n m m n -=-,解得1m n +=-.故答案为:1-.【点睛】本题主要考查了根据集合的互异性与集合相等求参数的问题,属于基础题型.10.(2023·上海金山·一模)若集合()(){}2,20A x y x y x y =+++-≤,()()(){}222,211B x y x a y a a =-+--≤-,且A B ⋂≠∅,则实数a 的取值范围是.B 其中()()2221x a y a -+--当1a =±时,B 表示点(1,3)当1a ≠±时,B 表示以(M 其圆心在直线21y x =+上,依题意A B ⋂≠∅,即表示圆当1a =-时,显然满足题意,当当1a <-时,因为A B ⋂≠所以d r ≤,即222a a +++所以()()17110a a ++≤,所以1117a -≤<-;当1a >时,因为A B ⋂≠∅11.(2022·上海青浦·二模)已知集合,[,1]6A s s t t ⎡⎤=++⎢⎥⎣⎦ ,其中1A ∉且6s t +<,函数()1xf x x =-,且对任意a A ∈,都有()f a A ∈,则t 的值是.12.(2022·上海普陀·一模)设非空集合Q M ⊆,当Q 中所有元素和为偶数时(集合为单元素时和为元素本身),称Q 是M 的偶子集,若集合{}1,2,3,4,5,6,7=M ,则其偶子集Q 的个数为.【答案】63【分析】对集合Q 中奇数和偶数的个数进行分类讨论,确定每种情况下集合Q 的个数,综合可得结果.【解析】集合Q 中只有2个奇数时,则集合Q 的可能情况为:{}1,3、{}1,5、{}1,7、{}3,5、{}3,7、{}5,7,共6种,若集合Q 中只有4个奇数时,则集合{}1,3,5,7Q =,只有一种情况,若集合Q 中只含1个偶数,共3种情况;若集合Q 中只含2个偶数,则集合Q 可能的情况为{}2,4、{}2,6、{}4,6,共3种情况;若集合Q 中只含3个偶数,则集合{}2,4,6Q =,只有1种情况.因为Q 是M 的偶子集,分以下几种情况讨论:若集合Q 中的元素全为偶数,则满足条件的集合Q 的个数为7;若集合Q 中的元素全为奇数,则奇数的个数为偶数,共7种;若集合Q 中的元素是2个奇数1个偶数,共6318⨯=种;若集合Q 中的元素为2个奇数2个偶数,共6318⨯=种;若集合Q 中的元素为2个奇数3个偶数,共616⨯=种;若集合Q 中的元素为4个奇数1个偶数,共133⨯=种;若集合Q 中的元素为4个奇数2个偶数,共133⨯=种;若集合Q 中的元素为4个奇数3个偶数,共1种.综上所述,满足条件的集合Q 的个数为771818633163+++++++=.故答案为:63.二、单选题13.(2022·上海·模拟预测)已知集合(){},2A x y x y =+=,(){},24B x y x y =-=-,则A B = ()A .{}0,2B .()0,2C .∅D .(){}0,214.(2023·上海普陀·二模)设,a b 为实数,则“0a b >>”的一个充分非必要条件是()A >B .22a b >C .11b a >D .a b b a->-15.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .8【答案】A 【分析】设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,分析可知4n ≥,然后对n 的取值由小到大进行分析,验证题中的条件是否满足,即可得解.【解析】解:设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,若3n =,则12A A ⋂≠∅,不合乎题意.①假设集合B 中含有4个元素,可设{}112,A x x =,则{}24634,A A A x x ===,{}35712,A A A x x ===,这与17A A ⋂=∅矛盾;②假设集合B 中含有5个元素,可设{}1612,A A x x ==,{}2734,A A x x ==,{}351,A x x =,{}423,A x x =,{}545,A x x =,满足题意.综上所述,集合B 中元素个数最少为5.故选:A.【点睛】关键点点睛:本题考查集合元素个数的最值的求解,解题的关键在于对集合元素的个数由小到大进行分类,对集合中的元素进行分析,验证题中条件是否成立即可.16.(2021·上海青浦·一模)设函数,()1,x x P f x x M x -∈⎧⎪=⎨∈⎪⎩,其中,P M 是实数集R 的两个非空子集,又规定()(){},A P y y f x x P ==∈,()(){},A M y y f x x M ==∈,则下列说法:(1)一定有()()A P A M ⋂=∅;(2)若P M R ⋃≠,则()()A P A M R ⋃≠;(3)一定有P M ⋂=∅;(4)若P M R ⋃=,则()()A P A M R ⋃=.其中正确的个数是()A .1B .2C .3D .4【答案】B【解析】根据分段函数的定义、一次函数和反比例函数的性质,结合集合交集、并集的运算定义进行判断即可.【解析】函数()f x 是分段函数,故P M ⋂=∅一定成立,因此说法(3)正确;对于(1):当{}{}1,1P M =-=时,根据已知的规定,有{}{}()1,()1A P A M ==,显然()(){}1A P A M ⋂=≠∅,因此说法(1)不正确;对于(4):当(,1),[1,)P M =-∞=+∞时,显然满足P M R ⋃=成立,根据已知的规定,有()(1,),()(0,1]A P A M =-+∞=,显然()()(1,)(0,1]A P A M R ⋃=-+∞⋃≠,因此说法(4)不正确;对于(2)来说,当P M R ⋃=时,()()A P A M R ⋃=不一定成立,故当P M R ⋃≠时,显然()()A P A M R ⋃≠一定成立,因此说法(2)正确,所以只有(2)(3)说法正确.故选:B三、解答题17.(2017·上海浦东新·三模)数列{}n a 的前n 项12,,,n a a a ⋅⋅⋅()*N n ∈组成集合{}12,,,n n A a a a =⋅⋅⋅,从集合n A 中任取(1,2,3,,)k k n =⋅⋅⋅个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),例如:对于数列{21}n -,当1n =时,1{1},A =11;T =2n =时,2{1,3},A =113,T =+213T =⋅;(1)若集合{1,3,5,,21}n A n =⋅⋅⋅-,求当3n =时,1,T 2,T 3T 的值;(2)若集合{}1,3,7,,21n n A =⋅⋅⋅-,证明:n k =时集合k A 的m T 与1n k =+时集合1k A +的m T (为了以示区别,用m T '表示)有关系式()1121k m m m T T T +-'=-+,其中*,N ,m k ∈2m k ≤≤;(3)对于(2)中集合n A .定义12=+++…n n S T T T ,求n S (用n 表示).。
导数综合强化训练(45题)(解析版)—2025年新高考数学一轮复习
导数综合强化训练一、单选题1.已知函数()e 2(0)1'x f x f x =++,则'(2)f 的值为( )A .1-B .2-C .2e 1-D .2e 2-【答案】D【详解】根据题意,()()()()()()0e 201e 200e 20x xf x f x f x f f f ¢¢¢¢=++Û=+Û=+¢Û()()()201e 22e 2x f f x f ¢¢¢=-Û=-Û=-.故选:D.2.已知12023ln 20242024a =+,12024ln 20252025b =+,12025ln 20262026c =+,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .c b a >>D .c a b>>【答案】A【详解】构造函数()ln 1f x x x =+-,11()1x f x x x-=¢-=,当01x <<时,()0f x ¢>,()f x 单调递增,所以111202420252026f f f æöæöæö>>ç÷ç÷ç÷èøèøèø,a b c >>.故选:A.3.设曲线e ax y =在点(0,1)处的切线与直线230x y -+=平行,则a =( ).A .1B .2C .12D .12-【答案】B【详解】由函数e ax y =,可得e ax y a ¢=,则0|x y a =¢=,因为直线210x y -+=的斜率为2,可得2a =.故选:B.4.若对任意的1x ,(]21,3x Î,当12x x <时,1212ln ln 22a ax x x x ->-恒成立,则实数a 的取值范围是( )A .[)3,+¥B .()3,+¥C .[)6,+¥D .()6,+¥【答案】C【详解】当12x x <时,1212ln ln 22a a x x x x ->-恒成立,即当12x x <时,1122ln ln 22a ax x x x ->-恒成立,设()(]ln ,1,32af x x x x =-Î,则()f x 单调递减,而()102af x x¢=-£在(]1,3上恒成立,即2a x ³在(]1,3上恒成立,所以6a ³.故选:C.5.已知函数()()e xf x x a =+,a ÎR 有大于1-的极值点,则a 的取值范围为( )A .21,e æö-+¥ç÷èøB .21,e æö-¥-ç÷èøC .()0,¥+D .(),0-¥【答案】D【详解】因为()f x 的定义域为R ,且()()e e 1e x x xf x a x x a ¢=++=++,令()0f x ¢=,可得()1e xx a +=-,构建()()1e xg x x =+,由题意可知:()y g x =与y a =-在()1,-+¥有交点,则()()2e 0xg x x =+>¢对任意()1,x Î-+¥内恒成立,可知()y g x =在()1,-+¥内单调递增,则()()10g x g >-=,可得0a ->,即0a <,所以a 的取值范围为(),0-¥.故选:D.6.已知函数()2xf x ax x =-+,[1,)x Î+¥,()f x ¢是()f x 的导函数,且()0f x ¢£,则a 的最小值为( )A .23B .29C .13D .19【答案】B【详解】由题意得220(2())a x f x =-£+¢,则22max22(2)(2)a a x x éù³Û³êú++ëû.注意到()22y x =+在[1,)+¥上单调递增,()212y x =+在[1,)+¥上单调递减.则()()22max 2229212x éù==êú++êúëû,所以29a ³,即a 的最小值为29.故选:B7.如果()e xf x ax =-在区间()1,0-上是单调函数,那么实数a 的取值范围为( )A .1(,][1,)e -¥+¥U B .1[,1]eC .1(,e-¥D .[1,)+¥【答案】A【详解】由已知()()e ,e x xf x ax f x a ¢=-=-,因为()()e ,1,0xf x ax x =-Î-是单调函数,所以()()1,0,e 0x x f x a =-¢Î-³恒成立或()()1,0,e 0xx f x a =-¢Î-£恒成立,所以e x a ³恒成立或e x a £恒成立,所以0e =1a ³或11e =ea -£,所以1a ³或1ea £.故选:A.8.已知直线2y x a =-+与函数()24ln f x x x =-的图象有两个不同的交点,则实数a 的取值范围为( )A .()3,+¥B .[)3,+¥C .1,32æöç÷èøD .()2,3【答案】A【详解】因为()()22242x f x x x x=¢-=-,所以()f x在(上单调递减,在)¥+上单调递增.令()2f x ¢=-,得1x =,所以直线2y x a =-+与()f x 的图象相切时的切点为()1,1,此时3a =,所以当3a >时,直线2y x a =-+与()f x 的图象有两个不同的交点.故选:A.9.已知函数32()3f x x ax ax b =+++的图象在点(1,(1))f 处的切线方程为12y x m =-+.若函数()f x 至少有两个不同的零点,则实数b 的取值范围是( )A .(5,27)-B .[5,27]-C .(1,3]-D .[1,3]-【答案】B【详解】由题意,得2()323f x x ax a ¢=++,(1)3512f a ¢\=+=-,3a \=-,32()39f x x x x b \=--+.令2()3690f x x x ¢=--=,得11x =-,23x =.当1x <-或3x >时,()0f x ¢>,()f x \在(,1)¥--,(3,)+¥上单调递增;当13x -<<时,()0f x ¢<,()f x \在(1,3)-上单调递减\当1x =-时,()f x 有极大值(1)5f b -=+;当3x =时,()f x 有极小值(3)27f b =-.若要使()f x 至少有两个不同的零点,只需50270b b +³ìí-£î(等号不同时成立),解得527b -££.故选:B10.已知函数()f x 的导函数是()f x ¢,且311(),ln 3,log 3f x x p q ¢===,则下列命题正确的是( )A .()()f p f q -<B .()(2)f p f q >C .11()()f f p q >D .11(1)(f f p q+>【答案】B【详解】依题意,41()4f x x c =+(c 为常数),()f x 是偶函数,且在(0,)+¥上单调递增,又ln 31p =>,110log 31q <=<,则01q p <<<,对于A ,()()()f p f p f q -=>,A 错误;对于B ,1111112ln 32log 3ln 3log 9ln e log 110p q -=-=>-=,20p q >>,()(2)f p f q >,B 正确;对于C ,110q p >>,11()()f f q p>,C 错误;对于D ,3333113e1log e 1log 11log log 1011p q +-=+-=<=,111p q +<,11(1)()f f p q +<,D 错误.故选:B11.已知函数()2e x bf x x =×-有三个零点,则b 的取值范围是( )A .220,e æöç÷èøB .240,e æöç÷èøC .24,e æö-¥ç÷èøD .220,e éùêúëû【答案】B【详解】因为()2e xf x x b =×-有三个零点,所以20e x b x ×-=有三个根,所以y b =和()2e x g x x =×有三个交点,而()(2)e xg x x x +¢=,令()0g x ¢<,(2,0)x Î-,令()0g x ¢>,(,2)(0,)x Î-¥-È+¥,所以()g x 在(,2),(0,)-¥-+¥上分别单调递增,在(2,0)-上单调递减,所以()g x 极小值为()00g =,()g x 极大值为()242e g -=,当x ®+¥时,()g x ¥®+,x ®-¥时,()0g x ®,所以240,e b æöÎç÷èø,故B 正确.故选:B12.设函数()()sin f x x a ax =-,若存在0x 使得0x 既是()f x 的零点,也是()f x 的极值点,则a 的可能取值为( )A .0BC .πD .2π【答案】B【详解】由()()sin f x x a ax =-,得2()sin ()cos f x ax ax a ax ¢=+-,令000()()sin 0f x x a ax =-=,则0x a =或0sin 0ax =,当0x a =时,由20000()sin ()cos 0f x ax ax a ax ¢=+-=,得2sin 0a =,所以2π(N)a k k =Î,则N)a k =Î当0sin 0ax =时,由20000()sin ()cos 0f x ax ax a ax ¢=+-=,得200()cos 0ax a ax -=,由0cos 0ax ¹,得0a =或0x a =,当0a =时,()0f x =不存在极值点,当0x a =时,得N)a k =Î,综上,N)a k =Î,所以当1k =时,a =.故选:B13.设0.02e 1a =-,0.012(e 1)b =-,sin 0.01tan 0.01c =+,则( )A .c a b >>B .a b c >>C .c b a>>D .b a c>>【答案】B【详解】依题意,0.020.010.012e 2e 1(e 1)0a b -=-+=->,则a b >,0.012(e 1)sin 0.01tan 0.01b c -=---,令π()2e sin tan 2,(0,6x f x x x x =---Î,求导得21()2e cos cos xf x x x=--¢,令21π()2e cos ,(0,)cos 6xh x x x x =--Î,求导得32sin ()2e sin cos xx h x x x =+-¢,而2e sin 2xx +>,02sin 1x <<,311cos x <<于是32sin 2cos x x <<,即()0h x ¢>,函数()f x ¢在(0,)6π上单调递增,则()(0)0f x f ¢¢>=,因此函数()f x 在(0,)6π上单调递增,有(0.01)(0)0f f >=,即b c >,所以a b c >>.故选:B14.已知()f x 是定义在()0,¥+上的非负可导函数,且满足()()0xf x f x +£¢,对任意的正数a ,b ,若a b <,则必有( )A .()()bf b af a £B .()()bf a af b £C .()()af a bf b £D .()()af b bf a £【答案】A【详解】令()()g x xf x =,x ∈(0,+∞),则()g x ¢=()()0xf x f x +£¢,所以()g x 在x ∈(0,+∞)上单调递减,若0a b <<,则()()()()g b bf b g a af a =£=,故A 正确,C 错误;因为()()0xf x f x +£¢,且()f x 是定义在(0,+∞)上的非负可导函数,所以()()0xf x f x £-£¢,令()()f x h x x=,x ∈(0,+∞),则()h x ¢=()()20xf x f x x-£¢,所以ℎ(x )在x ∈(0,+∞)上单调递减,若0a b <<,则()()()()f a f b h a h b ab=>=,即()()bf a af b >,故BD 错误.故选:A.15.若正实数a ,b ,c 满足b a bc =,ln b a a c =,则( )A .a b ³B .a c ³C .b c ³D .c b³【答案】B【详解】b a bc =,ln b a a c =,则ln bc a c =,则ln 1b a =,则1e b a =.则1(e )e b b b a ==,则1(e )e=b b b a bc ==,则ec b=先比较a ,b :作差1e ba b b -=-,设1()e (0)xf x x x =->,求导121()e 10,(0)xf x x x¢=--<>,则1()e (0)x f x x x =->在(0,)+¥单调递减.(1)e 10f =->,(2)20f =-=<,故1()e (0)x f x x x =->有正负还有零.即a b -,a b 大小.故A 错误.再比较a ,c :作差1e e ba cb -=-,设1e ()e (0)x f x x x =->,求导112221e 1()e (e e )0xx f x x x x¢=-+=-=,则1x =由于11011e e 0()0x x f x x ¢<<Þ>Þ-<Þ<,则()f x 在(0,1)单调递减.1111e e 0()0x x f x x¢>Þ<Þ->Þ>,则()f x 在(1,)+¥单调递增.且(1)0f =,则()0f x ³,即1ee 0ba cb -=-³,即ac ³.故B 正确.最后比较b ,c ,由于ec b=,假设b c ==满足题意,假设b c >,即eb b>,即2e b >,即b >假设b c <,即eb b<,即2e b <,即0b <<也满足题意.则,b c 无法比较大小,故CD 错误.故选:B.16.已知不恒为0的函数()f x 的定义域为R,()e ()e ()y x f x y f x f y +=+,则不正确的( )A .(0)0f =B .()e xf x 是奇函数C .0x =是()f x 的极值点D .4(3)3e (1)f f =--【答案】C【详解】函数()f x 的定义域为()()(),e e y xf x y f x f y +=+R ,对于A ,令0x y ==,则(0)2(0)f f =,解得(0)0f =,A 正确;对于B ,x ∈R ,取y x =-,则(0)e ()e ()x x f f x f x -=+-,因此()()e e x x f x f x --=-,令()()e xf xg x =,即有()()g x g x -=-,因此函数()g x 是奇函数,即()e xf x 是奇函数,B 正确;对于C ,选项B 中,令()g x x =,则()e x f x x =,求导得()(1)e x f x x ¢=+,因为(0)10f ¢=¹,因此0x =不是()f x 的极值点,C 错误;对于D ,222e (1)e (2)e (1)e[e (1)e (1)]3e (1)(3)f f f f f f f +==++=,由()()e e x x f x f x --=-,得1(1)(1)e ef f --=-,即2(1)e (1)f f =--,因此4(3)3e (1)f f =--,D 正确.故选:C【点睛】关键点点睛:对于选项C :直接判断不容易说明时,可以通过举反例的方式说明,简化分析推理过程.二、多选题17.已知函数3211()2132f x x x x =+-+,若函数()f x 在(2,23)a a +上存在最小值,则a 的可能取值为( )A .12-B .12C .1-D .0【答案】AD 【详解】3211()2132f x x x x =+-+Q ,2()2(2)(1)f x x x x x ¢\=+-=+-,当2<<1x -时,()0f x ¢<,故()f x 在()2,1-上单调递减;当2x <-或1x >时,()0f x ¢>,故()f x 在()(),2,1,¥¥-+上单调递增,\函数()f x 在1x =处取得极小值,在2x =-处取得极大值.令)(()1f x f =,解得1x =或72x =-,Q 函数()f x 在(2,23)a a +上存在最小值,且(2,23)a a +为开区间,721232a a \-<<<+,解得112a -<<.故选:AD.18.已知函数()()()2ln f x x x a a =--ÎR 在区间[)1,+¥上单调递减,则实数a 可以是( )A .0B 1C .1D .12【答案】ABD 【详解】()()120f x x a x ¢=--£在区间[)1,+¥上恒成立,即12a x x£-在区间[)1,+¥上恒成立,令()1,12g x x x x=-³,则()21102g x x ¢=+>,所以()g x 在区间[)1,+¥上单调递增,所以()g x 的最小值为()112g =,所以a 的取值范围是12a £,对比选项可知,只有ABD 符合题意.故选:ABD.19.设函数32()1f x x x ax =-+-,则( )A .当1a =-时,()f x 有三个零点B .当13a ³时,()f x 无极值点C .a $ÎR ,使()f x 在R 上是减函数D .,()a f x "ÎR 图象对称中心的横坐标不变【答案】BD【详解】对于A ,当1a =-时,32()1f x x x x =---,求导得2()321f x x x ¢=--,令()0f x ¢=得13x =-或1x =,由()0f x ¢>,得13x <-或1x >,由()0f x ¢<,得113-<<x ,于是()f x 在1(,)3-¥-,(1,)+¥上单调递增,在1(,1)3-上单调递减,()f x 在13x =-处取得极大值1111(1032793f -=--+-<,因此()f x 最多有一个零点,A 错误;对于B ,2()32f x x x a ¢=-+,当13a ³时,4120a D =-£,即()0f x ¢³恒成立,函数()f x 在R 上单调递增,()f x 无极值点,B 正确;对于C ,要使()f x 在R 上是减函数,则2()320f x x x a ¢=-+£恒成立,而不等式2320x x a -+£的解集不可能为R ,C 错误;对于D ,由32322222258()()()()()113333327f x f x x x a x x x ax a -+=---+--+-+-=-,得()f x 图象对称中心坐标为129(,3327a -,D 正确.故选:BD20.已知,,,a b c d ÎR ,满足0a b c d >>>>,则( )A .a c b d ->-B .sin sin a a b b ->-C .a b d c>D .ad bc ab cd+>+【答案】BC【详解】对于A ,若65,4,1,====a b c d ,则24-=<-=a c b d ,故A 错误;对于B ,令()()sin 0f x x x x =->,则()1cos 0f x x ¢=-³,所以()f x 在()0,x Î+¥上单调递增,因为0a b >>,所以()()f a f b >,即sin sin a a b b ->-,故B 正确;对于C ,因为0a b c d >>>>,所以110d c >>,所以a bd c>,故C 正确; 对于D ,因为0a b c d >>>>,所以()()0+--=--<ad bc ab cd a c d b ,可得+<+ad bc ab cd ,故D 错误.故选:BC.21.已知定义在R 上的函数()y f x =满足132f x æö-ç÷èø为偶函数,()21f x +为奇函数,当10,2x éùÎêúëû时,()0f x ¢>,则下列说法正确的是( )A .()00f =B .函数()y f x =为周期函数C .函数()y f x =为R 上的偶函数D .4133f f æöæö>ç÷ç÷èøèø【答案】AB【详解】因为132f x æö-ç÷èø为偶函数,1111332222f x f x f x f x æöæöæöæö-=+Û-=+ç÷ç÷ç÷ç÷èøèøèøèø()()1f x f x Û=-,故函数图象关于直线12x =对称,f (2x +1)为奇函数,()()()21211(f x f x f x f x -+=-+Û-+=-+1),函数图象关于(1,0)对称,对于B ,()()()()()()11,21f x f x f x f x f x f x =-=-++=-+=,故2是函数的周期,函数为周期函数,故B 正确;对于A ,()()2121f x f x -+=-+,令()()0,11x f f ==-,故f (1)=0,又()()()01110f f f =-==,故A 正确;对于C ,131222f f f æöæöæö-==-ç÷ç÷ç÷èøèøèø,当10,2x æöÎç÷èø时,f ′(x )>0,即函数在10,2æöç÷èø上递增,函数图象关于(1,0)对称,故函数在13,22æöç÷èø上递减,故函数在11,22éù-êúëû上递增,所以1122f f æöæö-¹ç÷ç÷èøèø,故函数不是偶函数,故C 错误;对于D ,124333f f f æöæöæö=>ç÷ç÷ç÷èøèøèø,故D 错误,故选:AB.【点睛】抽象函数的判断一般会从函数奇偶性、周期性和对称性的定义推得相关的函数性质;22.已知函数()()2e xf x x =-,()lng x x x k =+,(R)k Î,则下列说法中正确的是( )A .函数()f x 只有1个零点,当1ek >时,函数()g x 只有1个零点.B .若关于x 的方程()f x a =有两个不相等的实数根,则实数()e,0a Î-.C .121,0,e x x æö"Îç÷èø,且12x x ¹,都有1212()()0g x g x x x ->-.D .1x "ÎR ,2(0,)x $Î+¥,使得()()12f x g x >成立,则实数)1,e e(k Î-¥-.【答案】BD【详解】由题意()()()e 2e 1e x x xf x x x ¢=+-=-,故当1x >时,()0f x ¢>,当1x <时,()0f x ¢<,所以()f x 在(),1-¥上单调递减,在()1,+¥上单调递增;()ln g x x x k =+定义域为()0,¥+,()ln 1g x x ¢=+,故当1ex >时,()0g x ¢>,当10e x <<时,()0g x ¢<,所以()g x 在10,e æöç÷èø上单调递减,在1,e æö+¥ç÷èø上单调递增.对于A ,令()02f x x =Þ=,故函数()f x 只有1个零点;当1e k >时,()110e e g x g k æö³=-+>ç÷èø,故()g x 没有零点,故A 错误;对于B ,()()1e f x f ³=-,1x <时,()0f x <,2x >时,()0f x >,故()f x a =有两个不相等的实数根,则实数()e,0a Î-,故B 正确;对于C ,()g x 在10,e æöç÷èø上单调递减,故C 错误;对于D ,1x "ÎR ,2(0,)x $Î+¥,()()12f x g x >成立,则()()min min f x g x >,所以()11e f g æö>ç÷èø,即11e e e e k k ->-+Þ<-,故D 正确.故选:BD.【点睛】思路点睛:恒成立和有解问题通常转化成最值问题来求解,解决本题可先利用导数求出函数的单调性,从而可求出函数值正负分布情况和最值,进而可依次求解各选项.三、填空题23.若曲线ln y x x =+在点()1,1处的切线与曲线2(2)1(0)y ax a x a =+++¹相切,则a = .【答案】8【详解】由ln y x x =+,所以1y x x¢=+,则1|2x y =¢=,所以曲线ln y x x =+在点()1,1处的切线为()121y x -=-,即21y x =-;又21y x =-与曲线2(2)1(0)y ax a x a =+++¹相切,由2(2)121y ax a x y x ì=+++í=-î,可得()2200ax ax a ++=¹,则280a a D =-=,解得8a =或0a =(舍去),故答案为:824.设函数3()31(1)f x ax x a =-+>,若对于任意的[1,1]x Î-,都有()0f x ³成立,则实数a 的值为 .【答案】4【详解】由题意得,()233(1)f x ax a =->¢,令()2330f x ax -¢==,解得x =[1,1]-.①当1x -£<()0f x ¢>,()f x 单调递增;②当x <<时,()0f x ¢<,()f x 单调递减;1x <£时,()0f x ¢>,()f x 单调递增.所以只需0f ³,且(1)0f -³即可,由10f =-³,可得4a ³,由(1)40f a -=-+³,可得4a £,综上可得,4a =.故答案为:4.25.函数()()2f x x x a =-的极小值点为2,则实数a 的值为 .【答案】2【详解】因为()()2f x x x a =-,得到()()()22343f x x ax a x a x a =-+=--¢,由题知()2(6)(2)0f a a =--=¢,解得6a =或2a =,当6a =时,()(36)(6)3(2)(6)f x x x x x =-=--¢-,由()0f x ¢>,得到2x <或6a >,由()0f x ¢<,得到26x <<,则()f x 在()(),2,6,-¥+¥上单调递增,在()2,6上单调递减,此时2x =当2a =时,()(32)(2)f x x x =--¢,由()0f x ¢>,得到23x <或2a >,由()0f x ¢<,223x <<,则f(x)在()2,,2,3æö-¥+¥ç÷èø上单调递增,在2,23æöç÷èø上单调递减,此时2x =是极小值点,符合题意,故答案为:2.26.已知函数()(e 1)x f x a =-,对任意(0,)x Î+¥,总有()2f x x ³成立,则实数a 的取值范围为 .【答案】[)2,+¥【详解】依题意,(0,)x "ÎÎ+¥,()2(e 1)2(e 1)20x x f x x a x a x ³Û-³Û--³,显然e 10x ->,则有0a >,于是2(e 1)20e 10x xa x x a--³Û--³,令2e 1,0()xg x x a x -->=,求导得2()e x g x a¢-=,当2a ³,即21a£时,()0g x ¢>,函数()g x 在(0,)+¥上单调递增,()(0)0g x g >=,即()2f x x ³;当02a <<,即21>a 时,当20ln x a<<时,()0g x ¢<,函数()g x 在2(0,ln )a上单调递减,2(0,ln )x aÎ,()(0)0g x g <=,此时()2f x x <,不符合题意,所以实数a 的取值范围为[)2,+¥.故答案为:[)2,+¥27.设函数()()e ln 0ax f x a a æö=>ç÷èø的零点为0x ,则当a 的取值为 时,0x 的最大值为 .【答案】 e1e【详解】由题意()00e ln 0ax f x a æö==ç÷èø,所以0e 1ax a =,即0e ax a =,所以0ln ax a =,即()0ln ,0ax a a=>,令()()ln ,0a g a a a=>,则()21ln ag a a -¢=,因为当0e a <<时,()0g a ¢>,当e a >时,()0g a ¢<,所以当0e a <<时,()g a 单调递增,当e a >时,()g a 单调递减,所以当e a =时,0x 有最大值()1e eg =.故答案为:e ,1e.【点睛】关键点点睛:关键在于得出()0ln ,0ax a a=>,从而构造函数即可顺利得解.28.定义在(0,)+¥上的函数()f x 满足2()10x f x ¢+<,5(2)2f =,则关于x 的不等式1(ln )2ln f x x>+的解集为.【答案】2(1,e )【详解】因(0,)x Î+¥时,2()10x f x ¢+<,即21()0f x x ¢+<,也即1(())0f x x¢-<,取1()()g x f x x =-,则()0g x ¢<,即()g x 在(0,)+¥上单调递减,又5(2)2f =,则151(2)(2)2222g f =-=-=,由1(ln )2ln f x x>+可得(ln )(2)g x g >,故得,0ln 2x <<,解得,2(1,e )x Î.故答案为:2(1,e ).29.已知函数()f x 的定义域为R ,且()()1f x f x ¢>+,(0)3f =,则不等式()2e 1x f x >+的解集为 .【答案】(,0)-¥【详解】设()1()e x f x g x -=,则()()()1e xf x f xg x -¢-¢=-,()()1f x f x ¢>+Q ,()()10f x f x ¢\-->,()0g x ¢\<,()g x \在R 上单调递减,()2e 1x f x >+Q ,()1()2e xf xg x -\=>,又0(0)1(0)2ef g -==,()(0)g x g \>,0x \<,()2e 1x f x \>+的解集为(,0)-¥.故答案为:(,0)-¥.30.已知函数()()24222x x f x a x ax =+-×-有4个不同的零点,则a 的取值范围为.【答案】()(),22,eln2¥--È--【详解】解:由题意可得方程()()2220x xax x +-=有4个不同的根,方程220x x -=的2个根为121,2x x ==,则方程20x ax +=有2个不同的根,且2a ¹-,即函数2x y =与函数y ax =-的图象有两个交点.当直线y ax =-与函数2x y =的图象相切时,设切点为()00,2x x ,因为2ln2xy ¢=,所以0002ln2,2,x x a ax ì-=ïí-=ïî解得021log e,eln2ln2x a ===-.要使函数2x y =与函数y ax =-的图象有两个交点,只需直线y ax =-的斜率大于eln2,故a 的取值范围为()(),22,eln2¥--È--.故答案为:()(),22,eln2¥--È--四、解答题31.已知函数()32691f x x x x =-++.(1)求函数()f x 在0x =处的切线方程;(2)当[]0,5x Î时,求函数()f x 的最大值.【答案】(1)91y x =+(2)21【详解】(1)因为()32691f x x x x =-++,所以()23129f x x x ¢=-+.()()09,01f f ==¢所以切线方程为()190y x -=-,即91y x =+.(2)令()21231290,1,3f x x x x x =-+¢===,因为[]0,5x Î,所以()f x 在][0,1,3,5éùëû单调递增,()1,3单调递减,所以()()(){}{}max max 1,5max 5,2121f x f f ===.32.已知函数()212ln 32f x x x x =-+.(1)求函数()f x 的极值;(2)解不等式:()6ln 28f x >+.【答案】(1)极大值为52-,极小值为2ln 24-(2)()8,+¥【详解】(1)函数()f x 的定义域为全体正实数,由()()()()212122ln 332x x f x x x x f x x x x--¢=-+Þ=-+=,令()1201,2f x x x ¢=Þ==,于是有x()0,11()1,22()2,+¥()f x ¢+-+()f x 单调递增52-单调递减2ln 24-单调递增因此,当1x =时,()f x 有极大值,并且极大值为()512f =-,2x =时,()f x 有极小值,并且极小值为()22ln 24f =-;(2)由(1)可知:函数()f x 在()0,1x Î时单调递增,而()5102f =-<,所以此时有()0f x <,在()1,2x Î时单调递减,所以有()0f x <,因此要想()6ln 28f x >+,有()0f x >,则必有2x >,当()2,x Î+¥时,函数单调递增,而()2182ln 83886ln 282f =-´+´=+,所以由()()()6ln 2888f x f x f x >+Þ>Þ>,因此不等式()6ln 28f x >+的解集为()8,+¥.33.已知函数()()e 211x xf x x -=-.(1)求()f x 的单调递增区间;(2)求出方程()()f x a a =ÎR 的解的个数.【答案】(1)(),0-¥,3,2æö+¥ç÷èø(2)答案见解析【详解】(1)函数()f x 的定义域为()(),11,¥¥-È+.()()22e 23(1)x x xf x x --¢=.令()0f x ¢=解得0x =或32x =.则x 、f ′(x )、()f x 的关系列表如下:x(),0¥-0(0,1)31,2æöç÷èø323,2¥æö+ç÷èøf ′(x )+--0+()f x 单调递增极大值单调递减单调递减极小值单调递增∴f (x )的单调递增区间为()3,0,,2¥¥æö-+ç÷èø.(2)方程()()f x a a =ÎR 的解的个数为函数y =f (x )的图象与直线y a =的交点个数.在(1)中可知:()f x 在区间()3,0,,2¥¥æö-+ç÷èø上单调递增,在()30,1,1,2æöç÷èø上单调递减,在0x =处取得极大值()01f =,在32x =处取得极小值3234e 2f æö=ç÷èø,令0y =,得12x =.当0x <时,0,y y >的图像过点()10,1,,02æöç÷èø.当x ®-¥时,0y ®,但始终在x 轴上方;当x 从1的左侧无限近于1时,y ®-¥;当x 从1的右侧无限近于1时,y ®+¥;当32x =时,324e y =;当x ®+¥时,y ®+¥.根据以上性质,作出函数的大致图象如图所示,\当3214e a <<时,y =f (x )与y a =没有交点,则方程()f x a =的解为0个;当0a <或1a =或324e a =时,y =f (x )与y a =有1个交点,则方程()f x a =的解为1个;当01a <<或324e a >时,y =f (x )与y a =有2个交点,则方程()f x a =的解为2个.34.设函数()y f x =,其中()()0ln f x a x =->,(1)求()f x ¢;(2)若()y f x =在[1,)+¥是严格增函数,求实数a 的取值范围;(3)若()y f x =在[2,4]上存在单调递减区间,求实数a 的取值范围.【答案】(1)()f x ¢=(2)[2,)+¥;(3)(.【详解】(1)由()()12ln ln 0f x x ax x a ==->,得()12112f x a x x -=×-¢,所以()f x =¢(2)由题意得,()0f x ¢³在[1,)+¥上恒成立,即a ³在[1,)+¥恒成立,因为y 在[1,)+¥上递减,所以y =2=,所以2a ³,即实数a 的取值范围为[2,)+¥;(3)由题意得,()0f x ¢<在[2,4]上有解,即a <[2,4]上有解,因为y 在[2,4]上递减,所以1££,所以0a <<,即实数a 的取值范围为(.35.已知函数()y f x =,其中()()()326,R f x x ax a x b a b =++++Î.(1)若函数()y f x =的图象过原点,且在原点处的切线斜率是3,求a 、b 的值;(2)若()y f x =在R 上是严格增函数,求实数a 的取值范围.【答案】(1)3a =-,0b =;(2)[]3,6a Î-.【详解】(1)由()()()326,R f x x ax a x b a b =++++Î,得()2326f x x ax a ¢=+++,由题意得,(0)0(0)3f f =ìí=¢î,即063b a =ìí+=î,解得3a =-,0b =;(2)()2326f x x ax a ¢=+++,由题意得,()0f x ¢³在R 上恒成立,则()2Δ41260a a =-+£,化简得23180a a --£,解得[]3,6a Î-.36.已知()()21ln 12f x ax x x =-+-+,其中0a >.(1)若函数()f x 在3x =处的切线与x 轴平行,求a 的值;(2)求()f x 的极值点;(3)若()f x 在[)0,+¥上的最大值是0,求a 的取值范围.【答案】(1)14a =;(2)答案见解析;(3)[)1,+¥.【详解】(1)函数()f x 的定义域为()1,-+¥,()111f x ax x¢=-+-+,因为函数()f x 在3x =处的切线与x 轴平行,所以()1331013f a ¢=-+-=+,解得14a =.(2)函数()f x 的定义域为()1,-+¥,()()()111111111ax x x x a ax f x ax x x x-+++---¢=-+-==+++.令()0f x ¢=得10x =或2111a x a a-==-,所以当110a-<,即1a >时,()0f x ¢>的解集为11,0a æö-ç÷èø,()0f x ¢<的解集为()11,10,a æö--+¥ç÷èøU ,所以函数()f x 在区间11,1a æö--ç÷èø和()0,¥+上严格减,在区间11,0a æö-ç÷èø上严格增,0x =是函数()f x 的极大值点,11=-x a 是函数()f x 的极小值点;当110a-=,即1a =时,()0f x ¢£在区间()1,-+¥上恒成立,此时函数()f x 在区间()1,-+¥上严格减,无极值点;当110a->,即01a <<时,()0f x ¢>的解集为10,1a æö-ç÷èø,()0f x ¢<的解集为()11,01,a æö--+¥ç÷èøU ,所以函数()f x 在区间()1,0-和11,a æö-+¥ç÷èø上严格减,在区间10,1a æö-ç÷èø上严格增,0x =是函数()f x 的极小值点,11=-x a是函数()f x 的极大值点;综上,当1a >时,0x =是函数()f x 的极大值点,11=-x a 是函数()f x 的极小值点;当1a =时,函数()f x 在区间()1,-+¥上严格减,无极值点;当01a <<时,0x =是函数()f x 的极小值点,11=-x a是函数()f x 的极大值点.(3)由(2)知,当01a <<时,函数()f x 在区间11,a æö-+¥ç÷èø上严格减,在区间10,1a æö-ç÷èø上严格增,故函数()f x 在[)0,+¥上的最大值是()1100f f a æö->=ç÷èø,与已知矛盾;当1a =时,函数()f x 在区间[)0,+¥上严格减,最大值()()max 00f x f ==,满足条件;当1a >时,函数()f x 在区间[)0,+¥上严格减,最大值是()()max 00f x f ==,满足条件;综上,a 的取值范围是[)1,+¥.37.曲线()3f x x =在点A 处的切线的斜率为3,求该曲线在点A 处的切线方程.【答案】320x y --=或320x y -+=【详解】求导得()23f x x ¢=.令233x =,则1x =±.当1x =时,切点A 为()1,1,所以该曲线在()1,1处的切线方程为()131,y x -=-即320x y --=;当=1x -时,切点A 为()1,1,--所以该曲线在()1,1--处的切线方程为()131,y x +=+即320.x y -+=综上知,曲线()3f x x =在点A 处的切线方程为320x y --=或320x y -+=.38.已知函数1()e ax f x x=+(0a ³).(1)当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)设2()()g x f x x ¢=×,求函数()g x 的极大值.【答案】(1)3y x =-+(2)答案见解析【详解】(1)当0a =时,1()1f x x =+,()21f x x ¢=-,则()()11,12f f ¢=-=,所以曲线()y f x =在点(1,(1))f 处的切线方程为()21y x -=--,即3y x =-+;(2)函数()g x 的定义域为()(),00,-¥+¥U ,21()e ax f x a x ¢=-,则()22e 10()()ax ax g x x x f x ¢-=×=¹,则()()()222e e 2e 0ax ax ax g x ax a x ax ax x ¢=+=+¹,当0a =时,()1g x =-,此时函数()g x 无极值;当0a >时,令'()0g x >,则2x a<-或0x >;令()0g x ¢<,则20x a-<<,所以函数()g x 在()2,,0,a æö-¥-+¥ç÷èø上单调递增,在2,0a æö-ç÷èø上单调递减,所以()g x 的极大值为2241eg a a æö-=-ç÷èø;综上所述,当0a =时,函数()g x 无极大值;当0a >时,()g x 的极大值为241e a -.39.设函数()e x f x x a =-.(1)若直线2y x =--是曲线()y f x =的切线,求实数a 的值;(2)讨论()f x 的单调性;(3)当1a =时,记函数()()x g x e f x =,若0m n +>,证明:()()2g m g n +<-.【答案】(1)2a =(2)答案见解析(3)证明见解析【详解】(1)设切点为00(())x f x ,,()1e x f x a ¢=-,所以切线方程为()0000e 1e x x y x a a x x -+=--(),因为直线2y x =--是曲线()y f x =的切线,所以01e 1x a -=-,即0e 2x a =,化简切线方程得022y x x =-+-,所以0222x -=-,解得00x =,所以2a =.(2)()1e x f x a =¢-,当0a £时,()0f x ¢>,所以()f x 在(,)-¥+¥上单调递增,当0a >时,令()0f x ¢>,解得ln x a <-,所以()f x 在(,ln )a -¥-上单调递增,令()0f x ¢<,解得ln x a >-,所以()f x 在(ln ,)a -+¥上单调递减,综上可知,当0a £时,()f x 在(,)-¥+¥上单调递增,当0a >时,()f x 在(,ln )a -¥-上单调递增,在(ln ,)a -+¥上单调递减.(3)由题意知,()()e2e 1x x g x x -¢=+,令()2e 1x h x x =-+,由(1)知,()h x 在(,ln 2)-¥-上单调递增,在(ln 2,)-+¥上单调递减,所以()(ln 2)ln 20h x h -=-<≤,可得()0g x ¢<,所以()g x 在(,)-¥+¥上单调递减,因为0m n +>,所以m ,n 中至少有一个大于0(否则若0,0m n ££,有00m n n +£+£,这与0m n +>矛盾),不妨设0m >,n m >-,所以()()g n g m <-,所以()()()()g m g n g m g m +<+-,令()()()2212e e 2e e m m m mm m g m g m m j =+-+=---+()()2222e e 1e 1e m m m mm ---=()()()()()22222e 1e e 1e 11e e m m m m m m m g m --+-+==,因为0m >,所以()(0)1g m g <=-,即()10g m +<,又2e 10m ->,所以()0m j <,即()()20g m g m +-+<,可得()()2g m g m +-<-,所以()()2g m g n +<-.【点睛】关键点点睛:第三问的关键在于证明()()20g m g m +-+<即可,其中0m >,由此即可顺利得证.40.已知函数()()1ln R f x ax x a =--Î.(1)若2a =,求()f x 在1,e e éùêúëû上的最大值和最小值;(2)若1a =,当1x >时,证明:()ln x x f x >恒成立;(3)若函数()f x 在1x =处的切线与直线:1l x =垂直,且对()0,x ¥"Î+,()2f x bx ³-恒成立,求实数b 的取值范围.【答案】(1)最大值是2e 2-,最小值是ln 2(2)证明见解析(3)21,1e æù-¥-çúèû【详解】(1)当2a =时,()21ln f x x x =--,()21x f x x -¢=,令()0f x ¢=可得12x =,故当10,2x æöÎç÷èø时()0f x ¢<,()f x 在10,2æöç÷èø单调递减;当1,2x æöÎ+¥ç÷èø时()0f x ¢>,()f x 在1,2æö+¥ç÷èø单调递增;故()f x 递减区间为11,e 2éùêúëû,递增区间为1,e 2éùêúëû函数()f x 的极小值1ln 22f æö=ç÷èø是唯一的极小值,无极大值.又12e e f æö=ç÷èø,()1e 2e 2e f f æö=->ç÷èø()f x \在1,1e éùêúëû上的最大值是2e 2-,最小值是ln 2(2)因为1a =,所以令()()ln ln ln 1h x x x f x x x x x =-=-++,()1ln h x x x¢=+.当1x >时,()0f x ¢>,则()h x 在()1,¥+上单调递增,所以当1x >时,()()10h x h >=,所以()ln x x f x >恒成立.(3)因为函数()f x 的图象在1x =处的切线与直线:1l x =垂直,所以()10f ¢=,即10a -=,解得1a =所以()1ln f x x x =--.因为对()0,x "Î+¥,()2f x bx ³-恒成立,所以对()0,x "Î+¥,1ln 1x b x --£恒成立.令()1ln x g x x-=,则()2ln 2x g x x -¢=令()0g x ¢>,解得2e x >;令()0g x ¢<,解得20e x <<,所以函数()1ln x g x x-=在区间()20,e 上单调递减,在区间()2e ,+¥上单调递增,所以()()22min e e 1g x g ==-,则211e b -£-,解得:211e b £-.所以实数b 的取值范围为21,1e æù-¥-çúèû41.已知函数()e cos x f x a x =+在0x =处的切线方程为2y x =+.(1)求实数a 的值;(2)探究()f x 在区间3π,2öæ-+¥ç÷èø内的零点个数,并说明理由.。
两条直线的位置关系9题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测(解析版)
专题39两条直线的位置关系9题型分类1.两条直线的位置关系直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 3:A 1x +B 1y +C 1=0,l 4:A 2x +B 2y +C 2=0(其中l 1与l 3是同一条直线,l 2与l 4是同一条直线)的位置关系如下表:位置关系l 1,l 2满足的条件l 3,l 4满足的条件平行k 1=k 2且b 1≠b 2A 1B 2-A 2B 1=0且A 1C 2-A 2C 1≠0垂直k 1·k 2=-1A 1A 2+B 1B 2=0相交k 1≠k 2A 1B 2-A 2B 1≠02.三种距离公式(1)两点间的距离公式①条件:点P 1(x 1,y 1),P 2(x 2,y 2).②结论:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.③特例:点P (x ,y )到原点O (0,0)的距离|OP |=x 2+y 2.(2)点到直线的距离点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行直线间的距离两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0间的距离d=|C1-C2| A2+B2.常用结论1.直线系方程(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+n=0(n∈R).(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.2.五种常用对称关系(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).(2)点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).(4)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).(5)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).(一)判断两条直线位置关系的注意点(1)斜率不存在的特殊情况.(2)可直接利用直线方程系数间的关系得出结论.,根据两直线平行和垂直时,其斜率间的关系得出方程组,解之可求得点(二)利用距离公式应注意的点(1)点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|.(2)两条平行线间的距离公式要把两条直线方程中x,y的系数化为相等.∴PB l 的倾斜角为π6,PA l 的倾斜角为∴直线l 的倾斜角的取值范围是故选:D作B 关于直线:3l x y --则直线AB '和直线l 的交点即为设D 为l 上异于P 的一点,则故DA DB DA DB -=-故||||||PA PB -最大,即此时设(,)B a b ',则432b a a b -⎧=⎪⎪⎨⎪⨯-⎪⎩作C 关于直线:3l x y --则直线AC '和直线l 的交点即为设E 为l 上异于P 的一点,则故EC EA EC EC +=+故||||+PA PC 最小,即此时设(,)C m n ',则43332n m m -⎧=⎪⎪-⎨+⎪⨯⎪⎩故直线AC '方程为19x +即即1126(,)77P ;5-4.(2024高三下·江西2430x y -+=上一动点,则A .5B 【答案】B【分析】求点()0,2A -关于直线论两点之间线段最短可求5-5.(2024高二下·上海浦东新且1PQ l ⊥,点()3,3A --,【答案】310322+【分析】作出图象,易知l 然后在l 上,直线1l ,2l 之间找点由此求解.【详解】易知12l l //,作出图象如下,过直线:3l y x =-,过P 作直线//PC QB ,与直线l 交于点C ,易知四边形PCBQ 为平行四边形,故PC QB =,且B 到直线2l 的距离等于C 到1l 的距离,设(,3)C t t -,则3230122t t +-++-=,解得32t =或12t =-(舍),所以33,22C ⎛⎫- ⎪⎝⎭,而AP PQ QB AP PQ PC ++=++,且2(1)332222PQ --===(定值),故只需求出||||AP PC +的最小值即可,显然223331033222AP PC AC ⎛⎫⎛⎫+≥=--+-+= ⎪ ⎪⎝⎭⎝⎭,故AP PQ QB ++的最小值为310322+.故答案为:310322+.5-6.(2024高三下·河南·阶段练习)已知函数()()()ln 11f x a x a =++∈R 的图象恒过定点A ,圆22:4O x y +=上的两点()11,P x y ,()22,Q x y 满足()PA AQ λλ=∈R,则11222727x y x y +++++的最小值为()A .25B .75+C .155-D .3025-【答案】C 【分析】设直线l 为270x y ++=.取圆O 的弦PQ 的中点为E ,求出其轨迹方程,求出E 到直线l 距离的最小值.过P 、E 、Q 分别作直线l 的垂线,垂足分别为M 、R 、N ,将11222727x y x y +++++转化为25ER ,即可求其最小值.【详解】由题可知A 为(0,1),且P 、A 、Q 三点共线,设弦PQ 的中点为E (x ,y ),连接OE ,则OE ⊥PQ ,即OE ⊥AE ,∴0OE AE ⋅=,由此可得E 的轨迹方程为2+−122=14,【点睛】本题需充分利用数形结合思想进行简答,直线的距离公式联系在一起,数形结合求解最值5-7.(2024高三下·上海宝山·开学考试)如图,平面上两点2MN=,且使PM MN++【答案】99, 44骣÷ç÷ç÷ç桫【点睛】本小题主要考查两点间距离公式的应用,考查对称性,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题(三)对称问题的求解策略(1)解决对称问题的思路是利用待定系数法将几何关系转化为代数关系求解.(2)中心对称问题可以利用中点坐标公式解题,两点轴对称问题可以利用垂直和中点两个条件列方程组解题.求直线l关于直线0l对称的直线'lCA.35B.【答案】C【分析】求点A关于y轴的对称点6-3.(2024高二上·四川遂宁A .(1,4)-C .(3,4)--【答案】C 【分析】因点A 与点B 关于直线对称,则【详解】设(),A x y ,因点A 垂直,则212022112x y y x ++⎧++=⎪⎧⎪⇒⎨⎨-⎩⎪=⎪-⎩即点A 坐标为(3,4)--.则直线的对称点为(四)一、单选题1.(2024高二上·浙江·期中)已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a 等于()AB.2C1D1+【答案】C【分析】根据点到直线得距离公式即可得出答案.1=.解得1a =-1a =-0a >,1a ∴=-故选:C.2.(2024高二上·黑龙江哈尔滨·期末)已知两条直线1:3460l x y -+=,2:3440l x y --=,则这两条直线之间的距离为()A .2B .3C .5D .10【答案】A【分析】由两平行线距离公式求解即可.【详解】这两条直线之间的距离为2d ==.故选:A3.(2024高二·全国·课后作业)求直线x +2y -1=0关于直线x +2y +1=0对称的直线方程()A .x +2y -3=0B .x +2y +3=0C .x +2y -2=0D .x +2y +2=0【答案】B【分析】结合两平行线间的距离公式求得正确选项.【详解】设对称直线方程为20x yc ++=,=,解得3c =或1c =-(舍去).所以所求直线方程为230x y ++=.故选:B4.(2024高二·全国·课后作业)直线0ax by c ++=关于直线0x y -=对称的直线为()A .0ax by c -+=B .0bx ay c -+=C .0bx ay c ++=D .0bx ay c +-=【答案】C【分析】根据两直线关于对称直线对称的概念即可求解【详解】解:设所求直线上的任意一点为(,)M x y 则M 关于直线0x y -=对称点为(,)N y x 点N 在直线0ax by c ++=上∴(,)N y x 满足直线方程,即0ay bx c ++=∴直线0ax by c ++=关于直线0x y -=对称的直线为0bx ay c ++=故选:C5.(2024·浙江温州·三模)已知直线12:0,:10l x y l ax by +=++=,若12l l ⊥,则a b +=()A .1-B .0C .1D .2【答案】B【分析】根据给定的条件,利用两直线的垂直关系列式计算作答.【详解】因为直线12:0,:10l x y l ax by +=++=,且12l l ⊥,则110a b ⋅+⋅=,所以0a b +=.故选:B6.(2024·安徽蚌埠·三模)已知直线1l :210ax y ++=,2l :()30a x y a --+=,则条件“1a =”是“12l l ⊥”的()A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不必要也不充分条件【答案】B 【分析】根据两直线垂直的性质,可得()312a a ⎛⎫-⨯-=- ⎪⎝⎭,求出a 的值,即可判断.【详解】若12l l ⊥,则()312a a ⎛⎫-⨯-=- ⎪⎝⎭,解得1a =或2a =.故1a =是12l l ⊥的充分不必要条件.故选:B7.(2024高二上·全国·课后作业)直线220x y ++=与420ax y +-=互相垂直,则这两条直线的交点坐标为()A .()1,4-B .()0,2-C .()1,0-D .0,12⎛⎫ ⎪⎝⎭【答案】C【分析】由两直线垂直可得2a =-,联立解方程组可得交点坐标.【详解】易知直线220x y ++=的斜率为2-,由两直线垂直条件得直线420ax y +-=的斜率142a -=,解得2a =-;联立2202420x y x y ++=⎧⎨-+-=⎩,解得10x y =-⎧⎨=⎩;即交点为()1,0-故选:C.8.(2024高二下·四川广元·期中)若直线2mx ny +=过点()2,2A ,其中m ,n 是正实数,则12m n+的最小值是()A .3B .3+C .92D .5【答案】B 【分析】由点A 在直线上可知1m n +=【详解】因为直线2mx ny +=过点(2,2)A ,所以222m n +=,由m 和n 都是正实数,所以1m n +=,0m >,0n >.所以()12122123n m m n m n m n m n⎛⎫+=++=+++≥+ ⎪⎝⎭当2n m m n =时取等号,即1m =,2n =-所以12m n+的最小值是3+故选:B .9.(2024高二上·全国·课后作业)若直线230x y --=与420x y a -+=,则a 的值为()A .4B 6C .4或16-D .8或16-【答案】C【分析】将直线230x y --=化为4260x y --=,再根据两平行直线的距离公式列出方程,求解即可.【详解】将直线230x y --=化为4260x y --=,则直线230x y --=与直线420x y a -+=之间的距离d ==,即|6|10a +=,解得4a =或16a =-,所以a 的值为4a =或16a =-.故选:C10.(2024高二上·全国·课后作业)抛物线214y x =的焦点关于直线10x y --=的对称点的坐标是()A .(2,1)-B .(1,1)-C .11,44⎛⎫- ⎪⎝⎭D .11,1616⎛⎫- ⎪⎝⎭【答案】A【分析】求出抛物线214y x =焦点坐标为(0,1)F ,设(0,1)F 关于直线10x y --=的对称点的坐标是(,)F m n ',列出关于,m n 的方程组求解即可.【详解】抛物线214y x =即24x y =,其焦点坐标为(0,1)F ,设(0,1)F 关于直线10x y --=的对称点的坐标是(,)F m n ',则1110011022n m m n -⎧⨯=-⎪⎪-⎨++⎪--=⎪⎩,解得21m n =⎧⎨=-⎩,则(2,1)F '-,故选:A .11.(2024·四川)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A.B.C.D.【答案】B【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.所以sin()124πθ≤+≤PA PB ≤+≤选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、三角代换.12.(2024·全国)点(0,﹣1)到直线()1y k x =+距离的最大值为()A .1B CD .2【答案】B【分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果.【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.13.(2024·北京东城·二模)已知三条直线1:220l x y -+=,2:20l x -=,3:0+=l x ky 将平面分为六个部分,则满足条件的k 的值共有()A .1个B .2个C .3个D .无数个【答案】C【分析】考虑三条直线交于一点或3l 与1l 或2l 平行时,满足条件,求出答案.【详解】当三条直线交于一点时,可将平面分为六个部分,联立1:220l x y -+=与2:20l x -=,解得22x y =⎧⎨=⎩,则将22x y =⎧⎨=⎩代入3:0+=l x ky 中,220k +=,解得1k =-,当3:0+=l x ky 与1:220l x y -+=平行时,满足要求,此时2k =-,当3:0+=l x ky 与2:20l x -=平行时,满足要求,此时0k =,综上,满足条件的k 的值共有3个.故选:C14.(2024高二上·辽宁沈阳·阶段练习)两直线方程为1:3260l x y --=,22:0x y l --=,则1l 关于2l 对称的直线方程为()A .3240x y --=B .2360x y +-=C .2340x y --=D .3260x y --=【答案】C【分析】根据题意,设所求直线上任一点M (x ,y )且M 关于直线22:0x y l --=的对称点1(M x ',1)y ,利用轴对称的性质列出方程组解出用x 、y 表示1x 、1y 的式子,再由点M '在直线3260x y --=上代入,化简即得所求对称直线方程;【详解】设所求直线上任一点(,)M x y ,M 关于直线20x y --=的对称点1(M x ',1)y ,则111112022y y x x x x y y -⎧=-⎪-⎪⎨++⎪--=⎪⎩,解出112(*)2x y y x =+⎧⎨=-⎩ 点M '在直线3260x y --=上,∴将(*)式代入,得3(2)2(2)60y x +---=,化简得2340x y --=,即为1l 关于2l 对称的直线方程.故选:C15.(2024高一下·海南·期末)设,,a b c 分别是ABC V 中,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ⋅++=与sin sin 0bx B y C -⋅+=的位置关系是()A .平行B .重合C .垂直D .相交但不垂直【答案】C【分析】根据直线方程确定斜率,利用三角形边角关系及直线垂直的判定判断两直线的位置关系即可.【详解】由题设,sin 0A x ay c ⋅++=的斜率为sin Aa-,sin sin 0bx B y C -⋅+=的斜率为sin b B ,又sin sin b aB A =,则1sin sin b BA a ⋅=--,即两直线垂直.故选:C16.(2024高三下·江西·开学考试)费马点是指三角形内到三角形三个顶点距离之和最小的点.当三角形三个内角均小于120°时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等且均为120°.根据以上性质,.则(,)F x y =的最小值为()A .4B.2+C.3+D.4+【答案】B【分析】根据题意作出图形,证明出三角形ABC 为等腰直角三角形,作出辅助线,找到费马点,求出最小值.【详解】由题意得:(,)F x y 的几何意义为点E 到点()(),1,1,0,2A B C 的距离之和的最小值,因为AB =CB =4AC ==,所以222AB CB AC +=,故三角形ABC 为等腰直角三角形,,取AC 的中点D ,连接BD ,与AO 交于点E ,连接CE ,故122BD AC ==,AE CE =,因为3CO AO =,所以30CAO ∠=︒,故120AEC ∠=︒,则120BEC AEB ∠=∠=︒,故点E 到三角形三个顶点距离之和最小,即(,)F x y 取得最小值,因为122AD CD AC ===,所以cos 303AD AE ==︒,同理得:3CE =,3DE =,2BE BD DE =-=-,故(,)F x y 的最小值为22333AE CE BE ++=++-=+故选:B17.(2024·贵州毕节·模拟预测)直线()()1:11l x a y a a R ++=-∈,直线21:2l y x =-,下列说法正确的是()A .R a ∃∈,使得12l l ∥B .R a ∃∈,使得12l l ⊥C .R a ∀∈,1l 与2l 都相交D .R a ∃∈,使得原点到1l 的距离为3【答案】B 【分析】对A ,要使12l l ∥,则12k k ∥,所以1112a -=-+,解之再验证即可判断;对B ,要使12l l ⊥,121k k ×=-,1112a -=-+,解之再验证即可判断;对C ,当1a =时,1l 与2l 重合,即可判断;对D ,根据点到直线距离列方程即可判断.【详解】对A ,要使12l l ∥,则12k k ∥,所以1112a -=-+,解之得1a =,此时1l 与2l 重合,选项A 错误;对B ,要使12l l ⊥,121k k ×=-,11112a ⎛⎫⎛⎫-⋅-=- ⎪ ⎪+⎝⎭⎝⎭,解之得32a =-,所以B 正确;对C ,()1:11l x a y a ++=-过定点()2,1-,该定点在2l 上,但是当1a =时,1l 与2l 重合,所以C 错误;对D ,3d ==,化简得2820170a a -+=,此方程0∆<,a 无实数解,所以D错误.故选:B.18.(2024·全国)如果直线2y ax =+与直线3y x b =-关于直线y x =对称,那么()A .1,63a b ==B .1,63a b ==-C .3,2a b ==-D .3,6a b ==【答案】A【分析】由题意在2y ax =+上任取一点(0,2),其关于直线y x =的对称点在3y x b =-上,代入可求出b ,然后在3y x b =-上任取一点,其关于直线y x =的对称点在2y ax =+上,代入可求出a .【详解】在2y ax =+上取一点(0,2),则由题意可得其关于直线y x =的对称点(2,0)在3y x b =-上,所以06b =-,得6b =,在36y x =-上取一点(0,6)-,则其关于直线y x =的对称点(6,0)-在2y ax =+上,所以062a =-+,得13a =,综上1,63a b ==,故选:A19.(2024高一·全国·课后作业)已知ΔA 的顶点()2,1B ,()6,3C -,其垂心为()3,2H -,则其顶点A 的坐标为A .()19,62--B .()19,62-C .()19,62-D .()19,62【答案】A【分析】由垂心的定义可知AH BC ⊥,BH AC ⊥;根据垂直时斜率乘积为1-可知4AH k =,5AC k =,利用两点连线斜率公式可构造出方程组求得结果.【详解】H 为ΔA 的垂心AH BC ∴⊥,BH AC⊥又311624BC k -==---,211325BH k -==---∴直线,AH AC 斜率存在且4AH k =,5AC k =设(),A x y ,则243356AH AC y k x y k x -⎧==⎪⎪+⎨-⎪==⎪+⎩,解得:1962x y =-⎧⎨=-⎩()19,62A ∴--本题正确选项:A【点睛】本题考查根据直线与直线垂直的位置关系求解参数的问题;关键是能够利用垂心的性质得到直线与直线的垂直关系.20.(2024高三·全国·课后作业)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为()A .B .C .D .【答案】A【解析】先求出点M 所在直线的方程为l :x +y +m =0,再求出m 的值和原点到直线l 的距离即得解.【详解】依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,所以|m +7|=|m +5|,所以m =-6,即l :x +y -6=0.根据点到直线的距离公式得M=.故选:A.【点睛】本题主要考查平行线间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平.21.(2024高二上·湖北·阶段练习)在等腰直角三角形ABC 中,3AB AC ==,点P 是边AB 上异于A B 、的一点,光线从点P 出发,经BC CA 、反射后又回到点P ,如图,若光线QR 经过ABC V 的重心,则AP =()A .32B .34C .1D .2【答案】C【分析】根据题意,建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点1P 的坐标,和P 关于y 轴的对称点2P 的坐标,由1P ,Q ,2RP四点共线可得直线的方程,由于过ABC V 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值,即可得答案.【详解】根据题意,建立如图所示的坐标系,可得(3,0)B ,(0,3)C ,故直线BC 的方程为3x y +=,又由(0,0)A ,(3,0)B ,(0,3)C ,则ABC V 的重心为(1,1),设(,0)P a ,其中0<<3a ,点P 关于直线BC 的对称点1(,)P x y ,则有03220(1)1a x y y x a++⎧+=⎪⎪⎨-⎪⨯-=-⎪-⎩,解得33x y a =⎧⎨=-⎩,即1(3,3)P a -,易得P 关于y 轴的对称点2(,0)P a -,由光的反射原理可知1P ,Q ,R ,2P 四点共成直线QR 的斜率33ak a-=+,故直线QR 的方程为3()3ay x a a-=++,由于直线QR 过ABC V 的重心(1,1),代入化简可得20a a -=,解得:1a =或0(a =舍),即(1,0)P ,故1AP =,故选:C .22.(2024高一上·湖南长沙·开学考试)如下图,一次函数4y x =+的图象与x 轴,y 轴分别交于点A ,B ,点(2,0)C -是x 轴上一点,点E ,F 分别为直线4y x =+和y 轴上的两个动点,当CEF △周长最小时,点E ,F 的坐标分别为()A .53,22E ⎛⎫- ⎪⎝⎭,(0,2)F B .(2,2)E -,(0,2)F C .53,22E ⎛⎫- ⎪⎝⎭,20,3F ⎛⎫ ⎪⎝⎭D .(2,2)E -,20,3F ⎛⎫⎪⎝⎭【答案】C【分析】作C 关于y 轴的对称点G ,作C 关于4y x =+的对称点D ,连接DG 交y 轴于F ,交AB 于E ,有++=++=EC FC EF ED FG EF DG ,即此时CEF △周长最小,求出D 点坐标,可得直线DG 方程,与4y x =+联立求出E 点坐标,令0x =可得F 点坐标.【详解】作(2,0)C -关于y 轴的对称点(2,0)G ,作(2,0)C -关于4y x =+的对称点(,)D a b ,连接DG 交y 轴于F ,交AB 于E ,所以,==FG FC EC ED ,此时CEF △周长最小,即++=++=EC FC EF ED FG EF DG ,由(2,0)C -,直线AB 方程为4y x =+,所以122422ba b a ⎧=-⎪⎪+⎨-⎪=+⎪⎩,解得42a b =-⎧⎨=⎩,所以(4,2)D -,可得直线DG 方程为022042--=---y x ,即1233y x =-+,由41233y x y x =+⎧⎪⎨=-+⎪⎩,解得5232x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以53,22E ⎛⎫- ⎪⎝⎭,令0x =可23y =,所以20,3F ⎛⎫⎪⎝⎭.故选:C.23.(2024高二上·广东深圳·期中)过定点A 的动直线0x ky +=和过定点B 的动直线210kx y k --+=交于点M ,则MA MB +的最大值是()A.B .3CD【答案】C【分析】求出A ,B 的坐标,并判断两直线垂直,推出点M 在以AB为直径的圆上,求得||AB =,即225MA MB +=,结合基本不等式即可求得答案.【详解】由题意知0x ky +=过定点(0,0)A ,动直线210kx y k --+=即(2)10k x y --+=过定点(2,1)B ,对于直线0x ky +=和动直线210kx y k --+=满足1(1)0k k ⨯+⨯-=,故两直线垂直,因此点M 在以AB为直径的圆上,||AB ==则225MA MB +=,所以22222()22()10MA MB MA MB MA MB MA MB +++=+≤=,当且仅当MA MB ==故MA MB +,故选:C24.(2024高二下·陕西西安·期末)设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是()AB C .5D .10【答案】C【分析】先求出两条直线经过的定点,然后根据两条直线的位置关系可判断它们垂直,从而PA PB ⊥,在利用勾股定理和基本不等式求解.【详解】显然0x my +=过定点(0,0)A 30mx y m --+=可化成(1)3y m x =-+,则经过定点()1,3B ,根据两条直线垂直的一般式方程的条件,1(1)0m m ⨯+⨯-=,于是直线0x my +=和直线30mx y m --+=垂直,又P 为两条直线的交点,则PA PB ⊥,又AB =222102PA PB AB PA PB +==≥⋅,则5PA PB ⋅≤,当PA PB ==PA PB ⋅的最大值是5.故选:C25.(河北省张家口市2023-2024学年高二上学期期末数学试题)已知0x y +=,则)AB .CD .【答案】C【分析】设点(,)P x y 为直线0x y +=上的动点,题意可转化成求(,)P x y 与()1,1的距离和(,)P x y 与()2,0的距离之和的最小值,求出1(1)M ,关于直线0x y +=的对称点)1(1M '--,,故PM PN PM PN M N''+=+≥=,即可求出答案【详解】设点(,)P x y 为直线0x y +=上的动点,可看作(,)P x y 与()1,1的距离和(,)P x y 与()2,0的距离之和,设点()()1,12,0M N ,,则点()1,1M '--为点1(1)M ,关于直线0x y +=的对称点,故PM PM '=,且M N ==',所以P M PN =+PM PN M N ''=+≥=,当且仅当,,P M N '三点共线时,取等号,.故选:C26.(2024·贵州·模拟预测)已知,x y +∈R ,满足22x y +=,则x 的最小值为()A .45B .85C .1D 【答案】B【分析】先求出点O 关于线段22x y +=的对称点C C PO P ==.根据几何意义,结合图象,即可得出取最小值时,点P 的位置,进而得出答案.【详解】如图,过点O 作点O 关于线段22x y +=的对称点C ,则PO PC =.设()00,C x y ,则有()0000212222y x x y ⎧⨯-=-⎪⎪⎨⎪⨯+=⎪⎩,解得008545x y ⎧=⎪⎪⎨⎪=⎪⎩,所以84,55C ⎛⎫⎪⎝⎭.设(),P x y,则PO =C PO P ==,又,x y +∈R ,所以点P 到y 轴的距离为x ,所以,x 可视为线段22x y +=上的点(),P x y 到y 轴的距离和到84,55C ⎛⎫⎪⎝⎭的距离之和.过P 作PD x ⊥轴,过点C 作CH x ⊥轴,显然有PD PC CH +≥,当且仅当,,C P H 三点共线时,和有最小值.则CH 即为最小值,CH 与线段AB 的交点1P ,即为最小值时P 的位置.因为85CH =,所以x 的最小值为85.故选:B .27.(2024·上海静安·二模)设直线1:220l x y --=与2l 关于直线:240l x y --=对称,则直线2l 的方程是()A .112220x y +-=B .11220x y ++=C .5110x y +-=D .10220x y +-=【答案】A【分析】根据三条直线交于一点,再利用点关于直线的对称点公式,求直线2l 上一点,即可求解.【详解】联立220240x y x y --=⎧⎨--=⎩,得20x y =⎧⎨=⎩,取直线1:220l x y --=上一点()0,1-,设点()0,1-关于直线:240l x y --=的对称点为(),a b ,则112124022b a a b +⎧=-⎪⎪⎨-⎪⨯--=⎪⎩,解得:1211,55a b ==-,直线2l 的斜率112k =-,所以直线2l 的方程为()1122y x =--,整理为:112220x y +-=.故选:A28.(2024高三·北京·+的最小值所属区间为()A .[10,11]B .(11,12]C .(12,13]D .前三个答案都不对【答案】C【分析】利用代数式的几何意义可求最小值.【详解】如图,设(,0),(0,),(9,2),(3,3)P x Q y A B --.根据题意,设题中代数式为M,则||||||||13M AP PQ QB AB =++≥==,等号当P ,Q 分别为直线AB 与x 轴,y 轴交点时取得.因此所求最小值为13.故选:C.29.(2024·北京)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .4【答案】C【分析】P 为单位圆上一点,而直线20x my --=过点()2,0A ,则根据几何意义得d 的最大值为1OA +.【详解】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.【点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.二、多选题30.(2024高二下·江苏南京·期末)已知动点,A B 分别在直线1:3460l x y -+=与2:34100l x y -+=上移动,则线段AB 的中点P 到坐标原点O 的距离可能为()A B .75C D 【答案】CD【分析】根据直线平行可得P 在直线:3480l x y -+=上运动,即可根据点到直线的距离公式即可求解.【详解】解: 动点,A B 分别在直线13460l x y -+=:与234100l x y -+=:上移动,又线段AB 的中点为P ,21//l l ,P ∴在直线:3480l x y -+=上运动,O ∴到直线l 的距离85d ==.P ∴到坐标原点O 的距离大于等于85.故选:CD .31.(24-25高二上·全国·单元测试)已知两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +-=,下列结论正确的是()A .若12//l l ,则6a =B .若12//l l ,则两条平行直线之间的距离为74C .若12l l ⊥,则323a =D .若6a ≠,则直线1l ,2l 一定相交【答案】AD【分析】根据两直线平行求出a 的值,可判断A 选项;利用平行线间的距离公式可判断B 选项;根据两直线垂直求出a 的值,可判断C 选项;根据两直线相交求出a 的范围,可判断D 选项.【详解】两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +-=,它们不重合,若12//l l ,则438a =⨯,得6a =,检验符合,故A 选项正确;若12//l l ,由A 选项可知,2l :68110x y +-=,直线1l 的方程可化为68240x y ++=,72=,故B 选项不正确;若12l l ⊥,则3480a +⨯=,得323a =-,故C 选项不正确;由A 选项知,当6a =时,12//l l ,所以若6a ≠,则直线1l ,2l 一定相交,故D 选项正确.故选:AD.32.(24-25高二上·全国·课后作业)已知直线l10y -+=,则下列结论正确的是()A .直线l的一个法向量为)B .若直线m:10x +=,则l m ⊥C.点)到直线l 的距离是2D.过()2与直线l40y --=【答案】CD【分析】对于A :根据直线方向向量与斜率之间的关系分析判断;对于B :根据直线垂直分析判断;对于C :根据点到直线的距离公式运算求解;对于D :根据直线平行分析求解.【详解】对于A ,因为直线l10y -+=的斜率k =11=≠-,可知)不为直线l 的一个法向量,故A 错误;对于B ,因为直线m:10x +=的斜率3k '=,且11kk '=≠-,所以直线l 与直线m 不垂直,故B 对于C,点)到直线l 的距离2d =,故C 正确;对于D ,过()2与直线l平行的直线方程是2y x -=-40y --=,故D 正确.故选:CD.33.(2024高二下·江西南昌·阶段练习)已知曲线e 2xy =和直线:240l x y --=,则()A .曲线上与直线l 平行的切线的切点为e 1,2⎛⎫⎪⎝⎭B .曲线上与直线l 平行的切线的切点为10,2⎛⎫⎪⎝⎭C .曲线上的点到直线l D.曲线上的点到直线l 的最短距离为(3e 5+【答案】BC【分析】根据导数得出切线斜率求切点判断A,B,再结合点到直线距离求出最短距离判断C,D.【详解】设与直线122y x =-平行的直线和e 2xy =相切,则斜率为12k =.因为e 2x y =,所以e 2x y '=,令e 122x k ==,可得切点为10,2⎛⎫ ⎪⎝⎭,故A 错误,B 正确;则点10,2⎛⎫ ⎪⎝⎭到直线240x y --=的距离就是曲线e 2xy =上的点到直线240x y --=的最短距离,C 正确,D 错误.故选:BC.34.(福建省莆田第三中学,励志学校2023-2024学年高二上学期期中联考数学试卷)以下四个命题叙述正确的是()A .直线210x y -+=在x 轴上的截距是1B .直线0x ky +=和2380x y ++=的交点为P ,且P 在直线10x y --=上,则k 的值是12-C .设点(,)M x y 是直线20x y +-=上的动点,O 为原点,则OM 的最小值是2D .直线()12:310:2110L ax y L x a y ++=+++=,,若12//L L ,则3a =-或2【答案】BC【分析】求出直线的横截距判断k 判断B ;求出点到直线的距离判断C ;验证判断D.【详解】对于A ,直线210x y -+=在x 轴上的截距是12-,A 错误;对于B ,由238010x y x y ++=⎧⎨--=⎩解得12x y =-⎧⎨=-⎩,即(1,2)P --,则120k --=,解得12k =-,B 正确;对于C,依题意,min OM =C 正确;对于D ,当2a =时,直线12:2310,:2310L x y L x y ++=++=重合,D 错误.故选:BC三、填空题35.(2024高二·全国·课后作业)已知(),6A a ,()2,B b -,点()2,3P 是线段AB 的中点,则a b +=.【答案】6【分析】利用中点坐标公式可求得,a b ,由此可得结果.【详解】由中点坐标公式知:222a -=,632b +=,解得:6a =,0b =,6a b ∴+=.故答案为:6.36.(2024高二·江苏·假期作业)已知点(),4M x -与点()2,3N 间的距离为x =.【答案】9或5-【分析】根据两点间的距离公式列方程求解即可.【详解】由MN =得MN ==即24450x x --=,解得9x =或5-.故答案为:9或5-.37.(2024高三上·河北廊坊·阶段练习)与直线:2310l x y -+=关于点()4,5对称的直线的方程为.【答案】23130x y -+=【分析】根据直线关于点对称方程的特点可设直线方程,在利用点到两条直线的距离相等即可求解直线方程.【详解】解:直线:2310l x y -+=关于点()4,5对称的直线的方程可设为230x y m -+=,其中1m ≠又()4,5点到直线:2310l x y -+=与到直线230x y m -+=的距离相等76m -=,所以13m =或1m =(舍).故所求直线方程为:23130x y -+=.故答案为:23130x y -+=.38.(2024高一·全国·课后作业)已知直线l 与直线1:1l y =及直线2:70l x y +-=分别交于点P ,Q .若PQ 的中点为点()1,1M -,则直线l 的斜率为.【答案】23-【分析】由点,P Q 关于点M 对称,运算可得解.【详解】解:设(),1P a ,则()2,3Q a --.由点Q 在直线2l 上,得2370a -+-=,2a =-.故()2,1P -.所以直线l 的斜率为()1121k --=--,所以23k =-故答案为23-【点睛】本题考查了点关于点对称问题,属基础题.39.(2024高二上·辽宁大连·阶段练习)设点A 在x 轴上,点B 在y 轴上,AB 的中点是1(2)P -,,则AB 等于【答案】【解析】根据点A 在x 轴上,点B 在y 轴上,且AB 的中点是1(2)P -,,利用中点坐标公式得到A ,B 的坐标,再利用两点间的距离公式求解.【详解】因为点A 在x 轴上,点B 在y 轴上,且AB 的中点是1(2)P -,,所以(40),(02),,-A B ,所以=AB 故答案为:【点睛】本题主要考查两点间的距离公式和中点坐标公式的应用,属于基础题.40.(2024高三上·黑龙江哈尔滨·期中)点()0,1-到直线()2y k x =+的距离的最大值是.【分析】直线()2y k x =+恒过点()2,0A -,根据几何关系可得,点()0,1B -到直线()1y k x =+的距离的最大值为||AB .【详解】因为直线()2y k x =+恒过点()2,0A -,记()0,1B -,直线()2y k x =+为直线l ,则当AB l ⊥时,此时点()0,1B -到直线()1y k x =+的距离最大,∴点()0,1-到直线()1y k x =+距离的最大值为:AB =.41.(2024高二上·江苏南通·期中)已知点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标为()2,1-,则线段AB 的长度为.【答案】25【分析】利用直角三角形的几何性质得出2AB OM =,利用两点间的距离公式可求得结果.【详解】在平面直角坐标系中,AO BO ⊥,则ABO 为直角三角形,且AB 为斜边,故()22222125AB OM ==+-=.故答案为:542.(2024高二·全国·课堂例题)已知点()2,1A ,()3,4B ,()2,1C --,则ABC V 的面积为.【答案】5【分析】利用两点间距离公式求出一边长,再根据两点式求出该边所在直线的方程,利用点到直线的距离公式求高,进而求得三角形面积.【详解】设AB 边上的高为h ,则h 就是点C 到AB 所在直线的距离.易知()()22324110AB -+-.由两点式可得AB 边所在直线的方程为124132y x --=--,即350x y --=.点()2,1C --到直线350x y --=的距离()()()2232151031h ⨯----==+-所以ABC V 的面积为111010522ABC S AB h =⨯⨯=⨯△.故答案为:543.(2024·云南保山·一模)已知坐标原点为O ,过点()P 2,6作直线()2mx 4m n y 2n 0(m,-++=n 不同时为零)的垂线,垂足为M ,则OM 的取值范围是.【答案】5⎡+⎣【分析】根据题意,将直线变形为()()2420m x y n y ---=,分析可得该直线恒过点()4,2,设()4,2Q ,进而分析可得点M 的轨迹是以PQ 为直径的圆,其方程为()()22345x y -+-=,据此分析可得答案.【详解】根据题意,直线()2420mx m n y n -++=,即()()2420m x y n y ---=,则有2402x y y -=⎧⎨=⎩,解可得42x y =⎧⎨=⎩,则直线l 恒过点()4,2.设()4,2Q ,又由MP 与直线垂直,且M 为垂足,则点M 的轨迹是以PQ 为直径的圆,其方程为()()22345x y -+-=,所以55OM -≤+;即OM 的取值范围是5⎡+⎣;故答案为5⎡+⎣.【点睛】此类问题为“隐形圆问题”,常规的处理办法是找出动点所在的轨迹(通常为圆),常见的“隐形圆”有:(1)如果,A B 为定点,且动点M 满足()1MA MB λλ=≠,则动点M 的轨迹为圆;(2)如果ΔA 中,BC 为定长,A 为定值,则动点A 的轨迹为一段圆弧.特别地,当2A π=,则A 的轨迹为圆(除去,B C );(3)如果,A B 为定点,且动点M 满足22MA MB λ+=(λ为正常数),则动点M 的轨迹为圆;44.(2024高二上·全国·课后作业)已知点(),2P a 、()2,3A --、()1,1B ,且PA PB =,则a =.【答案】92-【分析】利用平面内两点间的距离公式可得出关于a 的等式,解之即可.【详解】已知点(),2P a 、()2,3A --、()1,1B ,且PA PB =,92a =-.故答案为:92-.45.(2024高二上·安徽六安·期中)已知两直线1110a x b y +-=和2210a x b y +-=的交点为(1,2)P ,则过111(,),Q a b 222(,)Q a b 两点的直线方程为.【答案】210x y +-=【分析】根据两直线1110a x b y +-=和2210a x b y +-=的交点列方程,对比后求得直线12Q Q 的方程.【详解】依题意两直线1110a x b y +-=和2210a x b y +-=的交点为(1,2)P ,所以112212210,210,a b a b Q Q +-=+-=,在直线210x y +-=上,所以过111(,),Q a b 222(,)Q a b 两点所在直线方程为210x y +-=.故答案为:210x y +-=46.(2024高三上·上海青浦·阶段练习)在平面直角坐标系xOy 中,若动点(,)P a b 到两直线1:l y x =和2:2l y x =-+,则22a b +的最大值为.【答案】8【分析】由已知可知两直线12l l ⊥,取P 在12,l l 的右侧时,分别过P 作两直线的垂线,结合几何性质确定P 点轨迹,即可求得22a b +的最大值,其他位置同理可得.【详解】若动点(),P a b 到两直线1:l y x =和2:2l y x =-+12,l l 交点为()121,1,,T l l 的斜率分别为1,1-,则12l l ⊥,P 在12,l l 的右侧时,过P 分别向12,l l 引垂线,垂足分别为Q R 、,那么PQ PR +过P 作y 轴的平行线,与12,l l 交点为C B 、如图,则,PQ TR PR RB ==,所以TR RB +其它位置同理,那么点P 轨迹为正方形ABCD ,当P 在()2,2C 时,PO 取得最大值222||a b PO +=取得最大值8.故答案为:8.。
【非常考案】高考数学(通用版)一轮复习阶段规范强化练5(含答案解析)
阶段规范强化练(五) 平面向量一、选择题1.(2015·朝阳区模拟)设a ,b 是两个非零的平面向量,下列说法正确的是( ) ①若a·b =0,则有|a +b|=|a -b|;②|a·b|=|a||b|;③若存在实数λ,使得a =λb ,则|a +b|=|a|+|b|;④若|a +b|=|a|-|b|,则存在实数λ,使得a =λb.A .①③B .①④C .②③D .②④【解析】 ①中利用平行四边形法则,可以得到以a ,b 为邻边的平行四边形为矩形,故|a +b|=|a -b|;②直接利用数量积公式,不正确;③中只有a ,b 同向时才成立;④|a +b|=|a|-|b|,则a ,b 反向,故正确,故选B.【答案】 B2.(2016·长春模拟)已知向量a ,b 满足a +b =(5,-10),a -b =(3,6),则a ,b 夹角的余弦值为( )A .-1313 B.1313C .-21313 D.21313【解析】 a = a +b + a -b 2=(4,-2), b = a +b - a -b 2=(1,-8), 则a ,b 夹角的余弦值为 cos θ=a·b |a|·|b|=2020×65=21313. 故选D.【答案】 D3.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ的值等于( )A .-1B .-12C .1 D.12【解析】 由a =2e 1-e 2与b =e 1+λe 2共线,则存在实数k ,使b =ka ,即e 1+λe 2=k(2e 1-e 2),则⎩⎪⎨⎪⎧1=2k ,λ=-k , 可得λ=-12. 【答案】 B4.(2015·安庆模拟)已知a ,b 为平面向量,若a +b 与a 的夹角为π3,a +b 与b 的夹角为π4,则|a||b|=( ) A.33 B.64 C.53 D.63【解析】 利用向量加法的几何意义,可以得到以|a|,|b|为邻边的三角形的内角分别为π4和π3. 由正弦定理,得|a||b|=63. 【答案】 D5.(2016·台州模拟)已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x ,y ,使得A O →=xAB →+yAC →,且x +2y =1,则cos ∠BAC 的值为( ) A.23B.33C.23D.13【解析】 设线段AC 的中点为点D ,则直线OD ⊥AC.因为A O →=xAB →+yAC →,所以AO →=xAB →+2yAD →.又因为x +2y =1,所以点O ,B ,D 三点共线,即点B 在线段AC 的中垂线上,则AB=BC =3.在△ABC 中, cos ∠BAC =32+42-322×3×4=23. 故选A.【答案】 A6.若a ,b ,c 均为单位向量,且a·b =0,(a -c)·(b -c)≤0,则|a +b -c|的最大值为( )A.2-1 B .1 C.2 D .2【解析】 设a =(1,0),b =(0,1),c =(x ,y),则x 2+y 2=1,a -c =(1-x ,-y),b -c =(-x,1-y),则(a -c)·(b -c)=(1-x)(-x)+(-y)(1-y)=x 2+y 2-x -y =1-x -y≤0,即x +y≥1.又a +b -c =(1-x,1-y),∴|a +b -c|= 1-x 2+ 1-y 2= x -1 2+ y -1 2.①法一:如图,c =(x ,y)对应点在AB 上,而①式的几何意义为点P 到AB 上点的距离,其最大值为1.法二:|a +b -c|=x -1 2+ y -1 2 = x 2+y 2-2x -2y +2 =3+2 -x -y =3-2 x +y ,由x +y≥1,∴|a +b -c|≤3-2=1,最大值为1.【答案】 B二、填空题7.(2015·启东模拟)已知平面上四个互异的点A ,B ,C ,D 满足:(AB →-AC →)·(2AD →-BD →-CD →)=0,则△ABC 的形状是________.【解析】 由(AB →-AC →)·(2AD →-BD →-CD →)=0,可知(AB →-AC →)·(AB →+AC →)=0.所以四边形ABCD 是菱形,故△ABC 是等腰三角形.【答案】 等腰三角形8.(2015·天水模拟)在直角三角形ABC 中,∠C =π2,AB =2,AC =1,若AD →=32AB →,则CD →·CB →=________.【解析】 根据题意,可知B =π6,而 CD →·CB →=(CA →+AD →)·CB →=⎝ ⎛⎭⎪⎫CA →+32 AB →·CB →=32A B →·C B →=32·2·3·32=92. 【答案】 92三、解答题9.(2015·启东模拟)已知函数f(x)=2cos ⎝⎛⎭⎫π6x +π3 (0≤x≤5),点A ,B 分别是函数y =f(x)图象上的最高点和最低点.(1)求点A ,B 的坐标以及OA →·OB →的值;(2)设点A ,B 分别在角α,β(α,β∈[0,2π])的终边上,求sin ⎝⎛⎭⎫α2-2β的值.【解】 (1)∵0≤x≤5,∴π3≤π6x +π3≤7π6. ∴-1≤cos ⎝⎛⎭⎫π6x +π3≤12,当π6x +π3=π3,即x =0时,f(x)取得最大值1, 当π6x +π3=π,即x =4时,f(x)取得最小值-2. 因此,所求的坐标为A(0,1),B(4,-2).则OA →=(0,1),OB →=(4,-2),∴OA →·OB →=-2.(2)∵点A(0,1),B(4,-2)分别在角α,β(α,β∈[0,2π])的终边上,则α=π2,sin β=-55,cos β=255, 则sin 2β=2sin βcos β=2×⎝⎛⎭⎫-55×255=-45, cos 2β=2cos 2 β-1=2×⎝⎛⎭⎫2552-1=35, ∴sin ⎝⎛⎭⎫α2-2β=sin ⎝⎛⎭⎫π4-2β=22⎝⎛⎭⎫35+45=7210.10.已知向量m =(sin x ,-1),n =(cos x,3). (1)当m ∥n 时,求sin xcos x 3sin x -2cos x的值; (2)已知在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,3c =2asin(A +B),函数f(x)=(m +n)·m ,求f ⎝⎛⎭⎫B +π8的取值范围. 【解】 (1)由m ∥n ,可得3sin x =-cos x ,∴tan x =-13, ∴sin x +cos x 3sin x -2cos x =tan x +13tan x -2=-13+13×⎝⎛⎭⎫-13-2=-29. (2)在△ABC 中,∵A +B =π-C ,∴sin(A +B)=sin C ,由正弦定理,得3sin C =2sin Asin C ,∵sin C≠0,∴sin A =32. 又△ABC 为锐角三角形,∴A =π3,∴π6<B<π2. ∵f(x)=(m +n)·m =(sin x +cos x,2)·(sin x ,-1)=sin 2x +sin xcos x -2=1-cos 2x 2+12sin 2x -2 =22sin ⎝⎛⎭⎫2x -π4-32, ∴f ⎝⎛⎭⎫B +π8=22sin ⎣⎡⎦⎤2⎝⎛⎭⎫B +π8-π4-32 =22sin 2B -32.由π6<B<π2,得π3<2B<π, ∴0<sin 2B≤1,-32<22sin 2B -32≤22-32, 即f ⎝⎛⎭⎫B +π8∈⎝⎛⎦⎤-32,22-32.。
非常考案通用版高考数学一轮复习第五章数列分层限时跟踪练_3
分层限时跟踪练(三十)(限时40分钟) [基 础 练]扣教材 练双基一、选择题1.(2014·全国卷Ⅱ)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1)C.n n +12D.n n -12【解析】 由a 2,a 4,a 8成等比数列,得a 24=a 2a 8,即(a 1+6)2=(a 1+2)(a 1+14),∴a 1=2.∴S n =2n +n n -12×2=2n +n 2-n =n (n +1).【答案】 A2.已知函数f (n )=⎩⎪⎨⎪⎧n 2n 为奇数,-n 2n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .-100B .100C .-1020D .1020【解析】 当n 为奇数时,a n =n 2-(n +1)2=-(2n +1). 当n 为偶数时,a n =-n 2+(n +1)2=2n +1.∴a 1+a 2+a 3+…+a 100=-3+5-7+9-…-199+201 =(-3+5)+(-7+9)+…+(-199+201) =2×50=100. 【答案】 B3.已知幂函数f (x )=x α的图象过点(4,2),令a n =f (n +1)+f (n ),n ∈N *,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,则S n =10时,n 的值是( )A .10B .120C .130D .140【解析】 ∵幂函数f (x )=x α过点(4,2), ∴4α=2,∴α=12,f (x )=x 12,∴a n =f (n +1)+f (n )=n +1+n ,∴1a n=1n +1+n=n +1-n .∴S n =(2-1)+(3-2)+…+ (n +1-n )=n +1-1. 又S n =10, ∴n +1-1=10, ∴n =120.故选B. 【答案】 B4.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A .(3n-1)2B.12(9n-1) C .9n -1D.14(3n-1) 【解析】 ∵a 1+a 2+…+a n =3n-1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n-3n -1=2·3n -1,又n =1时,a 1=2适合上式, ∴a n =2·3n -1,∴a 2n =4·9n -1,n ∈N *.故数列{a 2n }是首项为4,公比为9的等比数列. 因此a 21+a 22+…+a 2n =41-9n1-9=12(9n-1). 【答案】 B5.(2015·重庆模拟)已知等差数列{a n }满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N *),数列{b n }的前n 项和为S n ,则S 100的值为( )A.10125B.3526C.25101D.310【解析】 在等差数列{a n }中,a 5+a 7=2a 6=26⇒a 6=13,又数列{a n }的公差d =a 6-a 36-3=13-73=2,所以a n =a 3+(n -3)d =7+(n -3)×2=2n +1,那么b n =1a 2n -1=14n n +1=14⎝ ⎛⎭⎪⎫1n -1n +1,故S n =b 1+b 2+…+b n =14⎝ ⎛⎭⎪⎫1-1n +1⇒S 100=14⎝ ⎛⎭⎪⎫1-1101=25101.【答案】 C 二、填空题6.(2015·沈阳模拟)数列{a n }是等比数列,若a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1= .【解析】 设等比数列{a n }的公比为q ,由a 5=a 2q 3,求得q =12,所以a 1=4,所以a n=4⎝ ⎛⎭⎪⎫12n -1=23-n ,a n a n +1=23-n ·22-n =25-2n,所以{a n a n +1}是以8为首项,14为公比的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1=8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=323(1-4-n).【答案】323(1-4-n) 7.已知数列{a n }的前n 项和为S n ,且a n =11+2+3+…+n ,则S 2 013= .【解析】 ∵a n =11+2+3+…+n =1n n +12=2⎝ ⎛⎭⎪⎫1n -1n +1, ∴S 2 013=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 013-12 014=2⎝⎛⎭⎪⎫1-12 014=2 0131 007. 【答案】2 0131 0078.数列32,94,258,6516,…,n ·2n+12n的前n 项和为 . 【解析】 由于a n =n ·2n +12n=n +12n ,∴前n 项和S n =⎝ ⎛⎭⎪⎫1+121+⎝ ⎛⎭⎪⎫2+122+ ⎝ ⎛⎭⎪⎫3+123+…+⎝ ⎛⎭⎪⎫n +12n =(1+2+3+…+n )+⎝ ⎛⎭⎪⎫12+122+123+ (12)=n +1n 2+12⎝⎛⎭⎪⎫1-12n 1-12=n n +12-12n +1. 【答案】n n +12-12n +1 三、解答题9.(2015·浙江高考)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+ (1)b n =b n +1-1(n ∈N *). (1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .【解】 (1)由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *). 由题意知:当n =1时,b 1=b 2-1,故b 2=2.当n ≥2时,1n b n =b n +1-b n .整理得b n +1n +1=b nn ,所以b n =n (n ∈N *). (2)由(1)知a n b n =n ·2n,因此T n =2+2·22+3·23+…+n ·2n, 2T n =22+2·23+3·24+…+n ·2n +1,所以T n -2T n =2+22+23+ (2)-n ·2n +1.故T n =(n -1)2n +1+2(n ∈N *).10.已知各项都不相等的等差数列{a n }的前6项和为60,且a 6为a 1和a 21的等比中项. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n +1-b n =a n (n ∈N *),且b 1=3,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .【解】 (1)设等差数列{a n }的公差为d (d ≠0),则⎩⎪⎨⎪⎧6a 1+15d =60,a 1a 1+20d =a 1+5d2,解得⎩⎪⎨⎪⎧d =2,a 1=5,∴a n =2n +3.(2)b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=a n -1+a n -2+…+a 1+b 1=(n -1)(n +3)+3=n (n +2).∴1b n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2,∴T n =12⎝ ⎛⎭⎪⎫1-13+12-14+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=3n 2+5n4n +1n +2.[能 力 练]扫盲区 提素能1.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=( )A .1-4nB .4n-1 C.1-4n 3D.4n-13【解析】 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1,选B.【答案】 B2.(2015·太原一模)已知数列{a n }的通项公式为a n =(-1)n(2n -1)·cos n π2+1(n ∈N *),其前n 项和为S n ,则S 60=( )A .-30B .-60C .90D .120【解析】 由题意可得,当n =4k -3(k ∈N *)时,a n =a 4k -3=1;当n =4k -2(k ∈N *)时,a n =a 4k -2=6-8k ;当n =4k -1(k ∈N *)时,a n =a 4k -1=1;当n =4k (k ∈N *)时,a n =a 4k =8k .∴a 4k -3+a 4k -2+a 4k -1+a 4k =8,∴S 60=8×15=120.【答案】 D3.已知数列{a n }中,a 1=1,a 2n =n -a n ,a 2n +1=a n +1,则a 1+a 2+a 3+…+a 99= . 【解析】 ∵a n =n -a 2n ,a n =a 2n +1-1,∴a 2n +1+a 2n =n +1,∴a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=1+2+3+…+50=1 275. 【答案】 1 2754.(2015·陕西二模)已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和为 .【解析】 ∵a 2n +1-6a 2n =a n +1a n ,∴(a n +1-3a n )(a n +1+2a n )=0,∵a n >0,∴a n +1=3a n ,又a 1=2,∴{a n }是首项为2,公比为3的等比数列,∴S n =21-3n1-3=3n-1.【答案】 3n-15.(2015·菏泽模拟)数列{a n }的前n 项和为S n ,且S n =n (n +1)(n ∈N *), (1)求数列{a n }的通项公式; (2)若数列{b n }满足:a n =b 13+1+b 232+1+b 333+1+…+b n3n +1,求数列{b n }的通项公式; (3)令c n =a nb n4(n ∈N *),求数列{c n }的前n 项和T n .【解】 (1)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n (n +1)-(n -1)n =2n , 又a 1=2满足该式,∴数列{a n }的通项公式为a n =2n ,n ∈N *. (2)a n =b 13+1+b 232+1+…+b n3n +1(n ≥1),①a n +1=b 13+1+b 232+1+…+b n 3n +1+b n +13n +1+1, ② ②-①得,b n +13n +1+1=a n +1-a n =2,即b n +1=2(3n +1+1),又当n =0时,b 1=8,所以b n =2(3n+1),n ∈N *. (3)c n =a nb n4=n (3n +1)=n ·3n+n ,∴T n =c 1+c 2+c 3+…+c n =(1×3+2×32+3×33+…+n ×3n)+(1+2+…+n ), 令H n =1×3+2×32+3×33+…+n ×3n,① 则3H n =1×32+2×33+3×34+…+n ×3n +1,②①-②得,-2H n =3+32+33+ (3)-n ×3n +1=33n-13-1-n ×3n +1,∴H n =2n -1×3n +1+34.∴数列{c n }的前n 项和T n =2n -1×3n +14+n n +12+34. 6.(2014·山东高考)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令 b n =(-1)n -1·4na n a n +1,求数列{b n }的前n 项和T n .【解】 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n -14na n a n +1=(-1)n -14n 2n -12n +1=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数,⎝⎛⎭⎪⎫或T n =2n +1+-1n -12n +1。
非常考案通用版高考数学一轮复习阶段规范强化练三角函数恒等变换及解三角形
阶段规范强化练(四) 三角函数、恒等变换及解三角形一、选择题1.(2016·安阳模拟) 已知函数f (x )=23sin(π-x )·cos x -1+2cos 2x ,其中x ∈R ,则下列结论中正确的是( )A .f (x )的一条对称轴是x =π2B .f (x )在⎣⎢⎡⎦⎥⎤-π3,π6上单调递增 C .f (x )是最小正周期为π的奇函数D .将函数y =2sin 2x 的图象左移π6个单位得到函数f (x )的图象【解析】 因为f (x )=23sin(π-x )·cos x -1+2cos 2x =3sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6,可以排除A ,C ,D ,故选B. 【答案】 B2.(2015·宿州模拟)在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C 的值为( )A.35B.53C.58D.85【解析】 cos A =AB 2+AC 2-BC 22·AB ·AC =25+AC 2-492·5·AC =-12.∴AC =3或AC =-8(舍去).由正弦定理AC sin B =AB sin C ,得3sin B =5sin C,∴sin B sin C =35,故选A. 【答案】 A3.(2016·广东六校联考)已知sin α+cos α=2,则tan α+cos αsin α的值为( )A .-1B .-2 C.12D .2【解析】 ∵sin α+cos α=2,∴(sin α+cos α)2=2,∴sin αcos α=12,∴tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α=2.【答案】 D4.(2015·丹东模拟) 设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2,且其图象关于y 轴对称,则函数y =f (x )的一个单调递减区间是( )A.⎝⎛⎭⎪⎫0,π2B.⎝ ⎛⎭⎪⎫π2,πC.⎝ ⎛⎭⎪⎫-π2,-π4D.⎝⎛⎭⎪⎫3π2,2π【解析】 因为f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3的图象关于y轴对称,所以θ=-π6,所以f (x )=-2cos 12x 在⎝ ⎛⎭⎪⎫-π2,-π4上递减,故选C. 【答案】 C5.(2016·东北师大附中模拟)已知f (x )=2sin(ωx +φ)的部分图象如图1所示,则f (x )的表达式为( )图1A .f (x )=2sin ⎝ ⎛⎭⎪⎫32x +π4B .f (x )=2sin ⎝ ⎛⎭⎪⎫32x +5π4C .f (x )=2sin ⎝ ⎛⎭⎪⎫43x +2π9D .f (x )=2sin ⎝ ⎛⎭⎪⎫43x +258π 【解析】 由图象,得3T 4=5π6+π6=π,即T =2πω=4π3,解得ω=32.因为函数的图象过点⎝⎛⎭⎪⎫5π6,2,则2sin ⎝ ⎛⎭⎪⎫32×5π6+φ=2,即5π4+φ=5π2, 解得φ=5π4,即f (x )=2sin ⎝ ⎛⎭⎪⎫32x +5π4,故选B. 【答案】 B6.(2016·云南师大附中模拟)已知sin ⎝ ⎛⎭⎪⎫π6-α=35,则sin ⎝ ⎛⎭⎪⎫π6+2α=( ) A.45 B.725 C.925D.1625【解析】 sin ⎝ ⎛⎭⎪⎫π6+2α=sin ⎣⎢⎡⎦⎥⎤π2-2⎝ ⎛⎭⎪⎫π6-α=cos 2⎝ ⎛⎭⎪⎫π6-α=1-2sin 2⎝ ⎛⎭⎪⎫π6-α=1-2×⎝ ⎛⎭⎪⎫352=725.【答案】 B 二、填空题7.若将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________.【解析】 f (x )=sin ⎝⎛⎭⎪⎫2x +π4――→向右平移φ个单位g (x )=sin ⎣⎢⎡⎦⎥⎤2x -φ+π4=sin ⎝⎛⎭⎪⎫2x +π4-2φ, 关于y 轴对称,即函数g (x )为偶函数,则π4-2φ=k π+π2,∴φ=-k 2π-π8(k ∈Z ), 显然,k =-1时,φ有最小正值π2-π8=3π8.【答案】3π88.如图2所示,位于东海某岛的雷达观测站A ,发现其北偏东45°,与观测站A 距离20 2 海里的B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北θ(0°<θ<45°)的C 处,且cos θ=45.已知A ,C 两处的距离为10海里,则该货船的船速为________海里/小时.图2【解析】 因为cos θ=45,0°<θ<45°,所以sin θ=35,cos(45°-θ)=22×45+22×35=7210,在△ABC 中,BC 2=800+100-2×202×10×7210=340,所以BC =285,该货船的船速为485 海里/小时.【答案】 485 三、解答题9.(2015·龙岩模拟)某同学用“五点法”画函数f (x )=A sin(ωx +φ)在某一个周期的图象时,列表并填入的部分数据如下表:x 2π3 x 18π3 x 2x 3ωx +φ 0 π2 π 3π2 2π A sin(ωx +φ)2-2(1)求x 1,x 23(2)将函数f (x )的图象向左平移π个单位,可得到函数g (x )的图象,求函数y =f (x )·g (x )在区间⎝⎛⎭⎪⎫0,5π3上的最小值. 【解】 (1)由2π3ω+φ=0,8π3ω+φ=π,可得ω=12,φ=-π3.由12x 1-π3=π2;12x 2-π3=3π2;12x 3-π3=2π, 得x 1=5π3,x 2=11π3,x 3=14π3.又∵A sin ⎝ ⎛⎭⎪⎫12×5π3-π3=2,∴A =2.∴f (x )=2sin ⎝ ⎛⎭⎪⎫12x -π3.(2)由f (x )=2sin ⎝ ⎛⎭⎪⎫12x -π3的图象向左平移π个单位,得g (x )=2sin ⎝ ⎛⎭⎪⎫12x -π3+π2=2cos ⎝ ⎛⎭⎪⎫x 2-π3的图象, ∴y =f (x )·g (x )=2×2sin ⎝ ⎛⎭⎪⎫x 2-π3·cos ⎝ ⎛⎭⎪⎫x 2-π3=2sin ⎝⎛⎭⎪⎫x -2π3,∵x ∈⎝ ⎛⎭⎪⎫0,5π3时,x -2π3∈⎝ ⎛⎭⎪⎫-2π3,π, ∴当x -2π3=-π2时,即x =π6时,y min =-2.10.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2a +b c =cos A +Ccos C .(1) 求角C 的大小;(2) 若c =2,求使△ABC 面积最大时a, b 的值.【解】 (1)∵cos(A +C )=cos(π-B )=-cos B ,由题意及正弦定理,得 2sin A +sin B sin C =-cos Bcos C,即2sin A cos C =-(sin B cos C +cos B sin C )=-sin(B +C )=-sin A , ∵A ∈(0,π),∴sin A >0,∴cos C =-12.又∵C ∈(0,π),∴C =2π3.(2)由余弦定理,得4=a 2+b 2-2ab ·⎝ ⎛⎭⎪⎫-12,即4=a 2+b 2+ab .∴4=a 2+b 2+ab ≥2ab +ab =3ab . ∴4≥3ab ,ab ≤43.(当且仅当a =b 时成立)∵S △ABC =12ab sin C =34ab .∴当a =b 时,△ABC 面积最大为33,此时a =b =233. 故当a =b =233时,△ABC 的面积最大为33.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阶段规范强化练(一) 集合与简易逻辑
一、选择题
1.(2016·安徽省示范高中联考)设命题p :“任意x>0,log 3x>log 4x”,则非p 为( )
A .存在x>0,log 3x>log 4x
B .存在x>0,log 3x≤log 4x
C .任意x>0,log 3x≤log 4x
D .任意x>0,log 3x =log 4x
【解析】 全称命题的否定是特称命题,故非p 为“存在x>0,log 3x≤log 4x”.
【答案】 B
2.(2016·孝感模拟)已知集合A ={x ∈R|x 2+x -6>0},B ={x ∈R|-π<x<e},则( )
A .A∩
B =∅
B .A ∪B =R
C .B ⊆∁R A
D .A ⊆B
【解析】 A ={x ∈R|x 2+x -6>0}={x|(x +3)(x -2)>0}={x|x<-3或x>2},所以A ∪B =R ,故选B.
【答案】 B
3.(2016·安阳模拟)已知集合A ={x|x 2-3x<0},B ={1,a},且A∩B 有4个子集,则实数a 的取值范围是( )
A .(0,3)
B .(0,1)∪(1,3)
C .(0,1)
D .(-∞,1)∪(3,+∞)
【解析】 A ={x|x 2-3x<0}={x|0<x<3},由A∩B 有4个子集可知A∩B 中含有2个元素,又B ={1,a},所以实数a 的取值范围是(0,1)∪(1,3).
【答案】 B
4.(2016·广州六校联考)已知a ∈R ,则“a>2”是“a 2>2a”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
【解析】 ∵a 2>2a ,∴a<0或a>2,
∴“a>2”是“a 2>2a”的充分不必要条件.
【答案】 A
5.(2016·邯郸模拟)已知集合A ={x|log 4x<-1},B =⎩⎨⎧⎭
⎬⎫x|x≤12,命题p : ∀x ∈A,2x <3x ;命题q :∃x ∈B ,x 3=1-x 2,则下列命题中为真命题的是( )
A .p ∧q
B .p ∧﹁q
C .﹁p ∧q
D .﹁p ∧﹁q
【解析】 ∵A ={x|log 4x<-1}=⎩⎨⎧⎭⎬⎫x ⎪⎪
0<x<14, ∀x ∈A,2x <3x 恒成立,即命题p 是真命题.
设f(x)=x 3+x 2-1,∴f′(x)=3x 2+2x ,
易知函数f(x)的单调递增区间为⎝⎛⎭⎫-∞,-23,(0,+∞);递减区间为⎝⎛⎭
⎫-23,0. 由于f ⎝⎛⎭⎫-23<0,f(0)<0,f ⎝⎛⎭
⎫12<0,故不存在x ∈B ,使f(x)=x 3+x 2-1=0,即x 3=1-x 2成立.故命题q 是假命题.故选B.
【答案】 B
6.(2016·孝感模拟)下列说法正确的是( )
A .a 2>b 2是a>b 的必要条件
B .“若a ∈(0,1),则关于x 的不等式ax 2+2ax +1>0解集为R”的逆命题为真
C .“若a ,b 不都是偶数,则a +b 不是偶数”的否命题为假
D .“已知a ,b ∈R ,若a +b≠3,则a≠2或b≠1”的逆否命题为真
【解析】 A .a 2>b 2是a>b 的既不充分也不必要条件;B.“若a ∈(0,1),则关于x 的不等式ax 2+2ax +1>0解集为R”的逆命题是“关于x 的不等式ax 2+2ax +1>0解集为R ,则a ∈(0,1)”,当a =0时,1>0恒成立,故该命题为假命题;C.“若a ,b 不都是偶数,则a +b 不是偶数”的否命题为“若a ,b 都是偶数,则a +b 是偶数”,是真命题;D.“已知a ,b ∈R ,若a +b≠3,则a≠2或b≠1”的逆否命题为“已知a ,b ∈R ,若a =2且b =1,则a +b =3”,为真,所以选D.
【答案】 D
二、填空题
7.设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 有________个元素.
【解析】 由集合中元素的互异性,可知集合M ={5,6,7,8},所以集合M 共有4个元素.
【答案】 4
8.若命题“∃x ∈R ,使得x 2+(a -1)x +1<0”是真命题,则实数a 的取值范围是________.
【解析】 ∵“∃x ∈R ,使得x 2+(a -1)x +1<0”是真命题,∴Δ=(a -1)2-4>0,即(a -1)2>4,
∴a -1>2或a -1<-2,
∴a >3或a <-1.
【答案】 (-∞,-1)∪(3,+∞)
三、解答题
9.设命题p :方程x 2+2mx +1=0有两个不相等的正根;命题q :方程x 2+2(m -2)x -3m +10=0无实根.求使p ∨q 为真,p ∧q 为假的实数m 的取值范围.
【解】 设方程x 2+2mx +1=0的两根分别为x 1,x 2,由⎩⎪⎨⎪⎧
Δ1=4m 2-4>0,x 1+x 2=-2m>0, 得m <-1,
所以命题p 为真时,m <-1.
由方程x 2+2(m -2)x -3m +10=0无实根,可知Δ2=4(m -2)2-4(-3m +10)<0,得-2<m <3,所以命题q 为真时,-2<m <3.
由p ∨q 为真,p ∧q 为假,可知命题p ,q 一真一假,
当p 真q 假时,⎩
⎪⎨⎪⎧ m<-1,m≥3或m≤-2, 此时m≤-2; 当p 假q 真时,⎩⎪⎨⎪⎧
m≥-1,-2<m<3, 此时-1≤m <3, 所以实数m 的取值范围是m≤-2或-1≤m <3.
10. 已知定义在R 上的奇函数f(x),当x≥0时,f(x)=log 3(x +1).若关于x 的不等式f[x 2+a(a +2)]≤f(2ax +2x)的解集为A ,函数f(x)在[-8,8]上的值域为B ,若“x ∈A”是“x ∈B”的充分不必要条件,求实数a 的取值范围.
【解】 ∵f(x)是奇函数,且当x≥0时,f(x)=log 3(x +1)为增函数,∴f(x)在[-8,8]上也为增函数,且f(8)=log 3(8+1)=log 39=2,即函数f(x)在[-8,8]上的值域为B =[-2,2],由f[x 2+a(a +2)]≤f(2ax +2x)得x 2+a(a +2)≤2ax +2x ,即x 2-2(a +1)x +a(a +2)≤0,则(x -a)[x -(a +2)]≤0,即a≤x≤a +2,即A =[a ,a +2],
∵“x ∈A”是“x ∈B”的充分不必要条件,∴
, 即⎩⎪⎨⎪⎧
a≥-2,a +2≤2, 解得-2≤a≤0, 故实数a 的取值范围是[-2,0].。