2019-2020年高中数学《 算法与程序框图 》教案1 新人教A版必修3
2019-2020年高中数学算法与程序框图算法的概念教案新课标人教版必修3(A)
2019-2020年高中数学算法与程序框图算法的概念教案新课标人教版必修3(A)(一)算法的概念算法 (algorithm)指的是用阿拉伯数字进行算术运算的过程。
在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确的和有效的,而且能够在有限步之内完成。
描述算法可以有不同的方式,例如,可以用自然语言和数学语言加以叙述;也可以用算法语言给出精确的说明;或者用框图直观地显示算法的全貌。
(二)例题讲解1、写出解二元一次方程组⎩⎨⎧=+-=-,,1212y x y x的一个算法。
解:算法:第一步:②-①×2,得5y=3,第二步:解③得y= 第三步:将y=代入①,得x=。
. 思考:试写出解一般的二元一次方程组的一个算法。
2、任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判定。
解:算法:第一步:判断n 是否等于2。
若n=2,则n 是质数;若n>2,则执行第二步。
第二步:依次从2到(n-1)检验是不是n 的因数,即整除n 的数。
若有这样的数,则n 不是质数;若没有这样的数,则n 是质数。
(三)算法的特点(1)有穷性:即一个算法的步骤序列是有限的;(2)确定性:即算法中的每一步应该是确定的并且能有效地执行且得到确定的结果;(3)逻辑性:即算法从初始步骤开始,分为若干明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,而且每一步都是正确无误的,从而组成了一个有着很强逻辑性的步骤序列;(4)不唯一性:即求解一个问题的算法不一定是唯一的;(5)普遍性:即很多具体的问题,都可以设计合理的算法去解决。
例3、用二分法设计一个求方程x 2-2=0的近似根的算法。
解:算法:第一步:令f(x)=x 2-2。
因为f(1)<0,f(2)>0,所以设x 1=1,x 2=2。
第二步:令 m= ,判断f(m)是否为0。
2019-2020年高中数学1.3算法案例教案新人教A版必修3
019-2020年高中数学1.3算法案例教案新人教A版必修3(1)教学目标(a)知识与技能1. 理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。
2. 基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。
(b)过程与方法在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的约分求公因式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。
(c)情态与价值1. 通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
2. 在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力。
(2)教学重难点重点:理解辗转相除法与更相减损术求最大公约数的方法。
难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。
(3)学法与教学用具学法:在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法与更相减损术的程序框图与算法程序。
教学用具:电脑,计算器,图形计算器(4)教学设想(一)创设情景,揭示课题1. 教师首先提出问题:在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?2. 接着教师进一步提出问题,我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?这就是我们这一堂课所要探讨的内容。
(二)研探新知1. 辗转相除法例1求两个正数8251和6105的最大公约数。
(分析:8251与6105两数都比较大,而且没有明显的公约数,如能把它们都变小一点,根据已有的知识即可求出最大公约数)解:8251 = 6105 X 1 + 2146显然8251的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251 的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。
2019-2020年高中数学 《算法的概念》教案 新人教A版必修3
2019-2020年高中数学 《算法的概念》教案 新人教A 版必修3【教材的地位和作用分析】算法是一个全新的课题,已经成为计算科学的重要基础,它在科学技术和社会发展中起着越来越重要的作用.算法的思想和初步知识,也正在普通公民的常识. 算法思想将贯穿高中数学课程的相关部分.【教学重点】通过实例体会算法思想,初步理解算法的含义.【教学重点】算法概念的理解和对算法的描述.【教学过程】一.引入:引例1:解二元一次方程组:分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,下面用加减消元法写出它的求解过程.解:第一步:② - ①×2,得: 5y=3; ③第二步:解③得 ;第三步:将代入①,得 .评注:1.以上求解的步骤就是解二元一次方程组的算法.2.本题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法.引例2:写出求方程组()01221222111≠-⎩⎨⎧=+=+b a b a ②c y b x a ①c y b x a的解的算法.(可以让学生上台演板) 解:第一步:②×a 1 - ①×a 2,得:()12211221c a c a y b a b a -=- ③ 第二步:解③得 ;第三步:将代入①,得.二.概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.说明:1.“算法”没有一个精确化的定义,教科书只对它作了描述性的说明.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限是、事先设计好的步骤加以解决.三.例题讲评:例1.任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判断.分析:(1)质数是只能被1和自身整除的大于1的整数.(2)要判断一个大于1的整数n是否为质数,只要根据质数的定义,用比这个整数小的数去除n,如果它只能被1和本身整除,而不能被其它整数整除,则这个数便是质数.解:算法:第一步:判断n是否等于2.若n=2,则n是质数;若n>2,则执行第二步.第二步:依次从2~(n-1)检验是不是n的因数,即整除n的数.若有这样的数,则n不是质数;若没有这样的数,则n是质数.说明:本算法是用自然语言的形式描述的.设计算法一定要做到以下要求:(1)写出的算法必须能解决一类问题,并且能够重复使用.(2)要使算法尽量简单、步骤尽量少.(3)要保证算法正确,且计算机能够执行.例2.用二分法设计一个求方程的近似根的算法.分析:该算法实质是求的近似值的一个最基本的方法.解:设所求近似根与精确解的差的绝对值不超过0.005,算法:第一步:令.因为,所以设x1=1,x2=2.第二步:令,判断f(m)是否为0.若是,则m为所求;若否,则继续判断大于0还是小于0.第三步:若,则x1=m;否则,令x2=m.第四步:判断是否成立?若是,则x1、x2之间的任意值均为满足条件的近似根;若否,则返回第二步.说明:按以上步骤,我们将依次得到课本第4页的表1-1和图1.1-1.于是,开区间(1.4140625,1.41796875)中的实数都满足假设条件的原方程是近似根.四.练习:让学生举出一些算法的例子,老师再选出一个简单的具有代表性的例子.如:写出解方程的一个算法.分析:本题是求一元二次方程的解的问题,方法很多,下面分别用配方法、判别式法写出这个问题的两个算法.解:算法1:第一步:移项,得:;①第二步:①式两边同加1并配方,得:②第三步:②式两边开方得: x-1=±2 ③第四步:解③得: x=3或x=-1.算法2:第一步:计算方程的判别式并判断其符号:=22+4×3=16>0;第二步:将a=1,b=-2,c=-3代入求根公式.得: x1=3,x2=-1.说明:给出此题的目的是使学生加深对算法概念的理解. (老师辅导学生完成)五.小结:算法的概念及其特点.六.作业:(课本第四页练习)1.任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.解:算法步骤:第一步:输入任意一个正实数r;第二步:计算以r为半径的圆的面积:;第三步:输出圆的面积S.2.任意给定一个大于1的正整数n,设计一个算法求出n的所有因数.解:算法步骤:第一步:依次以2~(n-1)为除数去除n,检查余数是否为0.若是,则是n的因数;若不是,则不是n的因数;第二步:在n的因数中加入1和n;第三步:输出n的所有因数.2019-2020年高中数学《系统抽样》教案北师大版必修3教学目标:1.结合实际问题情景,理解系统抽样的必要性和重要性2.学会用系统抽样的方法从总体中抽取样本教学重点:学会用系统抽样的方法从总体中抽取样本教学过程:1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
高中数学《 算法与程序框图 》教案1 新人教A版必修3
高一数学框图的人教实验版(A)一. 教学内容:框图的复习二. 学习目标通过具体实例,进一步认识框图;能绘制简单实际问题的流程图和结构图,体会框图在解决实际问题中的作用;三. 考点分析1、流程图:流程图常常用来表示一个动态过程,通常会有一个“起点”,一个或多个“终点”。
程序框图是流程图的一种。
流程图可以直观、明确地表示动态过程从开始到结束的全部步骤。
它是由图形符号和文字说明构成的图示。
流程图用于描述一个过程性的活动,活动的每一个明确的步骤构成流程图和一个基本单元,基本单元之间用流程线产生联系。
基本单元中的内容要根据需要而确定。
可以在基本单元中具体说明,也可以为基本单元设置若干子单元。
2、绘制流程图的一般过程首先,用自然语言描述流程步骤;其次,分析每一步骤是否可以直接表达,或需要借助于逻辑结构来表达;再次,分析各步骤之间的关系;最后,画出流程图表示整个流程。
3、结构图:表示一个系统中各部分之间的组成结构的框图叫做结构图。
4、绘制结构图步骤:(1)确定组成系统的基本要素,及它们之间的关系。
(2)将系统的主体要素及其之间的关系表示出来。
(3)确定主体要素的下位要素(从属主体的要素)“下位”要素比“上位”要素更为具体,“上位”要素比“下位”要素更为抽象。
(4)逐步细化各层要素,直到将整个系统表示出来为止。
5、结构图与流程图的区别流程图和结构图不同。
流程图是表示一系列活动相互作用、相互制约的顺序的框图。
结构图是表示一个系统中各部分之间的组成结构的框图。
流程图描述动态过程,结构图刻画系统结构。
流程图通常会有一个“起点”,一个或多个“终点”,其基本单元之间由有向线连接;结构图则更多地表现为“树”状结构,其基本要素之间一般为逻辑关系。
【典型例题】例1、画出解关于x 的不等式,0<+b ax (R b a ∈,)的流程图。
解:例2、按照下面的流程图操作,将得到怎样的数集?开始写下1加3写下结果你已写下10个数了吗?结束对这个刚写下的数加上一个比前面加过的那个数大2的数NY 16+(7+2)=16+9=25,25+(9+2)=25+11=36 , 36+(11+2)=36+13=49, 49+(13+2)=49+15=64,64+(15+2)=64+17=81, 81+(17+2)=81+19=100.这样,可以得到数集{1,4,9,16,25,36,49,64,81,100}.例3、某保险公司业务流程如下:(1)保户投保:填单交费、公司承保、出具保单;(2)保户提赔:公司勘查;同意,则赔偿,不同意,则拒赔. 试画出该公司业务流程图. 解:例4、根据如图所示的程序框图写出所打印数列的前5项,并建立数列的递推公式,这个数列是等差数列吗?解:设打印出来的数列的项依次记为54321,,,,a a a a a则11=a431312=+=+=a a 734323=+=+=a a 1037334=+=+=a a 13310345=+=+=a a于是可得递推公式2,3,111≥∈+==-n N n a a a n n 且.因为31=--n n a a ,所以这个数列是等差数列.例5、某地行政服务中心办公分布结构如下.(1)服务中心管理委员会全面管理该中心工作,下设办公室、综合业务处、督察投诉中心,这三部门在一楼,其余局、委办理窗口分布在其他楼层;(2)二楼:公安局、民政局、财政局;(3)三楼:工商局、地税局、国税局、技监局、交通局; (4)四楼:城建局、人防办、计生办、规划局; (5)五楼:其余部门办理窗口. 试绘制该中心结构图. 解:【模拟试题】一、选择题(本大题共6小题,每小题5分,共30分) 1. 下列流程图的基本符号中,表示判断的是( )2. 下列的流程图示中表示选择结构的是()3. 下列对程序框图的描述,正确的是()A. 只有一个起点,一个终点B. 只有一个起点,一个或多个终点C. 多个起点,一个或多个终点D. 多个起点,只有一个终点4、下图是《集合》的知识结构图,如果要加入“子集”,则应该放在()A. “集合的概念”的下位B. “集合的表示”的下位C. “基本关系”的下位D. “基本运算”的下位5. 下面的程序框图的作用是按大小顺序输出两数,则括号处的处理可以是()输入A、B A<B?(________)输出A、B 结束开始YNA. A←B:B←AB. T←B:B←A :A←TC. T←B:A←T :B←AD. A←B:T←A :B←T6. 某成品的组装工序图如右,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是()A. 11小时B. 13小时C. 15小时D. 17小时二、填空题(本题共4小题,每小题5分,共20分)7、一般来说,一个复杂的流程图都可以分解成_________、_________、__________三种结构;8、一般地,对于树状结构图,下位比上位________,上位比下位___________; 9、读下面的流程图,若输入的值为-5时,输出的结果是__________.10、如图是数学中的一算法流程图:则其表示的数学算式为___________________________________.三、解答题(本大题共4题,共50分)11、试画出一个判断函数f (x )单调性的流程图。
2019-2020年高中数学必修三1.1.2《程序框图与算法的基本逻辑结构》第3课时教案
2019-2020年高中数学必修三1.1.2《程序框图与算法的基本逻辑结构》第3课时教案导入新课思路1(情境导入)我们都想生活在一个优美的环境中,希望看到的是碧水蓝天,大家知道工厂的污水是怎样处理的吗?污水进入处理装置后进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,直到达到排放标准.污水处理装置是一个循环系统,对于处理需要反复操作的事情有很大的优势.我们数学中有很多问题需要反复操作,今天我们学习能够反复操作的逻辑结构——循环结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构.推进新课新知探究提出问题(1)请大家举出一些常见的需要反复计算的例子.(2)什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4)指出两种循环结构的相同点和不同点.讨论结果:(1)例如用二分法求方程的近似解、数列求和等.(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理的过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示,它的功能是当给定的条件P成立时,执行A框,A 框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构.继续执行下面的框图.2°直到型循环结构,如图(2)所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立.继续重复操作,直到某一次给定的判断条件P时成立为止,此时不再返回来执行A框,离开循环结构.继续执行下面的框图.见示意图:当型循环结构直到型循环结构(4)两种循环结构的不同点:直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.两种循环结构的相同点: 两种不同形式的循环结构可以看出,循环结构中一定包含条件结构,用于确定何时终止执行循环体.应用示例思路1例1 设计一个计算1+2+……+100的值的算法,并画出程序框图.算法分析:通常,我们按照下列过程计算1+2+……+100的值.第1步,0+1=1.第2步,1+2=3.第3步,3+3=6.第4步,6+4=10.……第100步,4 950+100=5 050.显然,这个过程中包含重复操作的步骤,可以用循环结构表示.分析上述计算过程,可以发现每一步都可以表示为第(i-1)步的结果+i=第i步的结果.为了方便、有效地表示上述过程,我们用一个累加变量S来表示第一步的计算结果,即把S+i的结果仍记为S,从而把第i步表示为S=S+i,其中S的初始值为0,i依次取1,2,…,100,由于i同时记录了循环的次数,所以也称为计数变量.解决这一问题的算法是:第一步,令i=1,S=0.第二步,若i≤100成立,则执行第三步;否则,输出S,结束算法.第三步,S=S+i.第四步,i=i+1,返回第二步.程序框图如右:上述程序框图用的是当型循环结构,如果用直到型循环结构表示,则程序框图如下:点评:这是一个典型的用循环结构解决求和的问题,有典型的代表意义,可把它作为一个范例,仔细体会三种逻辑结构在程序框图中的作用,学会画程序框图.变式训练已知有一列数1,,43,32,21+n n ,设计框图实现求该列数前20项的和. 分析:该列数中每一项的分母是分子数加1,单独观察分子,恰好是1,2,3,4,…,n ,因此可用循环结构实现,设计数器i ,用i=i+1实现分子,设累加器S ,用S=1++i i S ,可实现累加,注意i 只能加到20.解:程序框图如下:方法一: 方法二:点评:在数学计算中,i=i+1不成立,S=S+i 只有在i=0时才能成立.在计算机程序中,它们被赋予了其他的功能,不再是数学中的“相等”关系,而是赋值关系.变量i 用来作计数器,i=i+1的含义是:将变量i 的值加1,然后把计算结果再存贮到变量i 中,即计数器i 在原值的基础上又增加了1.变量S 作为累加器,来计算所求数据之和.如累加器的初值为0,当第一个数据送到变量i中时,累加的动作为S=S+i,即把S的值与变量i的值相加,结果再送到累加器S中,如此循环,则可实现数的累加求和.例2 某厂2005年的年生产总值为200万元,技术革新后预计以后每年的年生产总值都比上一年增长5%,设计一个程序框图,输出预计年生产总值超过300万元的最早年份.算法分析:先写出解决本例的算法步骤:第一步,输入2005年的年生产总值.第二步,计算下一年的年生产总值.第三步,判断所得的结果是否大于300,若是,则输出该年的年份,算法结束;否则,返回第二步.由于“第二步”是重复操作的步骤,所以本例可以用循环结构来实现.我们按照“确定循环体”“初始化变量”“设定循环控制条件”的顺序来构造循环结构.(1)确定循环体:设a为某年的年生产总值,t为年生产总值的年增长量,n为年份,则循环体为t=0.05a,a=a+t,n=n+1.(2)初始化变量:若将2005年的年生产总值看成计算的起始点,则n的初始值为2005,a 的初始值为200.(3)设定循环控制条件:当“年生产总值超过300万元”时终止循环,所以可通过判断“a>300”是否成立来控制循环.程序框图如下:思路2例1 设计框图实现1+3+5+7+…+131的算法.分析:由于需加的数较多,所以要引入循环结构来实现累加.观察所加的数是一组有规律的数(每相临两数相差2),那么可考虑在循环过程中,设一个变量i,用i=i+2来实现这些有规律的数,设一个累加器sum,用来实现数的累加,在执行时,每循环一次,就产生一个需加的数,然后加到累加器sum中.解:算法如下:第一步,赋初值i=1,sum=0.第二步,sum=sum+i,i=i+2.第三步,如果i≤131,则反复执第二步;否则,执行下一步.第四步,输出sum.第五步,结束.程序框图如右图.点评:(1)设计流程图要分步进行,把一个大的流程图分割成几个小的部分,按照三个基本结构即顺序、条件、循环结构来局部安排,然后把流程图进行整合.(2)框图画完后,要进行验证,按设计的流程分析是否能实现所求的数的累加,分析条件是否加到131就结束循环,所以我们要注意初始值的设置、循环条件的确定以及循环体内语句的先后顺序,三者要有机地结合起来.最关键的是循环条件,它决定循环次数,可以想一想,为什么条件不是“i<131”或“i=131”,如果是“i<131”,那么会少执行一次循环,131就加不上了.例2 高中某班一共有40名学生,设计算法流程图,统计班级数学成绩良好(分数>80)和优秀(分数>90)的人数.分析:用循环结构实现40个成绩的输入,每循环一次就输入一个成绩s,然后对s的值进行判断.设两个计数器m,n,如果s>90,则m=m+1,如果80<s≤90,则n=n+1.设计数器i,用来控制40个成绩的输入,注意循环条件的确定.解:程序框图如下图:知能训练由相应的程序框图如右图,补充完整一个计算1+2+3+…+100的值的算法.(用循环结构)第一步,设i的值为_____________.第二步,设sum的值为_____________.第三步,如果i≤100执行第_____________步,否则,转去执行第_____________步.第四步,计算sum+i并将结果代替_____________.第五步,计算_____________并将结果代替i.第六步,转去执行第三步.第七步,输出sum的值并结束算法.分析:流程图各图框的内容(语言和符号)要与算法步骤相对应,在流程图中算法执行的顺序应按箭头方向进行.解:第一步,设i的值为1.第二步,设sum的值为0.第三步,如果i≤100,执行第四步,否则,转去执行第七步.第四步,计算sum+i并将结果代替sum.第五步,计算i+1并将结果代替i.第六步,转去执行第三步.第七步,输出sum的值并结束算法.拓展提升设计一个算法,求1+2+4+…+249的值,并画出程序框图.解:算法步骤:第一步,sum=0.第二步,i=0.第三步,sum=sum+2i.第四步,i=i+1.第五步,判断i是否大于49,若成立,则输出sum,结束.否则,返回第三步重新执行.程序框图如右图:点评:(1)如果算法问题里涉及的运算进行了许多次重复的操作,且先后参与运算的数之间有相同的规律,就可引入变量循环参与运算(我们称之为循环变量),应用于循环结构.在循环结构中,要注意根据条件设计合理的计数变量、累加和累乘变量及其个数等,特别要求条件的表述要恰当、精确.(2)累加变量的初始值一般取0,而累乘变量的初始值一般取1.课堂小结(1)熟练掌握两种循环结构的特点及功能.(2)能用两种循环结构画出求和等实际问题的程序框图,进一步理解学习算法的意义. 作业习题1.1A组2.设计感想本节的引入抓住了本节的特点,利用计算机进行循环往复运算,解决累加、累乘等问题.循环结构是逻辑结构中的难点,它一定包含一个条件结构,它能解决很多有趣的问题.本节选用了大量精彩的例题,对我们系统掌握程序框图有很大的帮助.。
2019-2020年高中数学 第一章《算法初步》教案 新人教A版必修3
2019-2020年高中数学第一章《算法初步》教案新人教A版必修3一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
2019-2020年高中数学《1.1.2程序框图与算法的基本逻辑结构》第2课时教案新人教A版必修3
2019-2020年高中数学《1.1.2程序框图与算法的基本逻辑结构》第2课导入新课思路1 (情境导入)我们以前听过这样一个故事,野兽与鸟发生了一场战争,蝙蝠来了,野兽们喊道:你有牙齿是我们一伙的,鸟们喊道:你有翅膀是我们一伙的,蝙蝠一时没了主意.过了一会儿蝙蝠有了一个好办法,如果野兽赢了,就加入野兽这一伙,否则加入另一伙,事实上蝙蝠用了分类讨论思想,在算法和程序框图中也经常用到这一思想方法,今天我们开始学习新的逻辑结构——条件结构•思路2 (直接导入)前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的,今天我们开始学习有分支的逻辑结构一一条件结构推进新课新知探究提出问题(1)举例说明什么是分类讨论思想?(2)什么是条件结构?(3)试用程序框图表示条件结构.(4)指出条件结构的两种形式的区别• 讨论结果:(1)例如解不等式ax>8(a工0),不等式两边需要同除a,需要明确知道a的符号,但条件没有给出,因此需要进行分类讨论,这就是分类讨论思想(2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向•条件结构就是处理这种过程的结构•(3)用程序框图表示条件结构如下.条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构(或分支结构),如图1 所示•执行过程如下:条件成立,则执行A框;不成立,则执行B框.注:无论条件是否成立,只能执行A、B之一,不可能两个框都执行. A、B两个框中,可以有一个是空的,即不执行任何操作,如图 2.(4 )一种是在两个“分支”中均包含算法的步骤,符合条件就执行“步骤A”,否则执行“步骤B”;另一种是在一个“分支”中均包含算法的步骤A,而在另一个“分支”上不包含算法的任何步骤,符合条件就执行“步骤A”,否则执行这个条件结构后的步骤.图1 图2应用示例例1任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图算法分析:判断以3个任意给定的正实数为三条边边长的三角形是否存在,只需验证这3个数中任意两个数的和是否大于第3个数.这个验证需要用到条件结构•算法步骤如下:第一步,输入3个正实数a,b, c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形•程序框图如右图:点评:根据构成三角形的条件,判断是否满足任意两边之和大于第三边,如果满足则存在这样的三角形,如果不满足则不存在这样的三角形•这种分类讨论思想是高中的重点,在画程序框图时,常常遇到需要讨论的问题,这时要用到条件结构例2 设计一个求解一元二次方程ax2+bx+c=0的算法,并画出程序框图表示算法分析:我们知道,若判别式△ =b2-4ac>0,则原方程有两个不相等的实数根X l=,X 2=;若△ =0,则原方程有两个相等的实数根x i=X2=;若△ <0,则原方程没有实数根•也就是说,在求解方程之前,可以先判断判别式的符号,根据判断的结果执行不同的步骤,这个过程可以用条件结构实现又因为方程的两个根有相同的部分,为了避免重复计算,可以在计算X1和X2之前,先计算p=, q=.解决这一问题的算法步骤如下:第一步,输入3个系数a, b, c.第二步,计算△ =b2-4ac.第三步,判断△ >0是否成立.若是,则计算p=, q=;否则,输出“方程没有实数根”,结束算法•第四步,判断△ =0是否成立•若是,则输出x i=X2=p;否则,计算X i=p+q, X2=p-q,并输出X1 , X2.程序框图如下:/输人口山匸例3设计算法判断一元二次方程ax2+bx+c=0是否有实数根,并画出相应的程序框图解:算法步骤如下: 第一步,输入3个系数:a, b, c.第二步,计算△ =b2—4ac.第三步,判断△》0是否成立.若是,则输出“方程有实根”;否则,输出“方程无实根” 结束算法.相应的程序框图如右:[开紀/输M肛/厶出‘方程冇实fit/ /输出“方程无实郴;/结東点评:根据一兀二次方程的意义,需要计算判别式△ =b2—4ac的值.再分成两种情况处理:(1)(2) 当△》0时,当△ v 0时,-兀二次方程有实数根;元二次方程无实数根.该问题实际上是一个分类讨论问题,根据一元次方程系数的不同情况,最后结果就不同.因而当给出一个一元二次方程时,必须先确定判别式的值,然后再用判别式的值的取值情况确定方程是否有解的,要对判别式的值进行判断,需要用到条件结构.例4 (1)设计算法,求ax+b=O的解,并画出流程图.解:对于方程ax+b=0来讲,应该分情况讨论方程的解我们要对一次项系数a和常数项b的取值情况进行分类,分类如下:(1 )当a^0时,方程有唯一的实数解是;(2 )当a=0, b=0时,全体实数都是方程的解;(3)当a=0, b^0时,方程无解.联想数学中的分类讨论的处理方式,可得如下算法步骤:第一步,判断a^0是否成立.若成立,输出结果“解为”.第二步,判断a=0, b=0是否同时成立.若成立,输出结果“解集为R'.第三步,判断a=0, b^0是否同时成立.若成立,输出结果“方程无解”,结束算法程序框图如下:.该例仅用顺序结构是办不到点评:这是条件结构叠加问题,条件结构叠加,程序执行时需依次对“条件2”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作知能训练解:算法步骤:程序框图如下:点评:条件结构嵌套与条件结构叠加的区别:(1 )条件结构叠加,程序执行时需依次对“条件1”“条件2”“条件3”……都进行判断, 只有遇到能满足的条件才执行该条件对应的操作1”“条件设计算法,找出输入的三个不相等实数a、b、c中的最大值,并画出流程图第一步,输入a,b,c的值.第二步,判断a>b是否成立,若成立,则执行第三步;否则执行第四步第三步,判断a>c是否成立,若成立,则输出a,并结束;否则输出c,并结束.第四步,判断b>c是否成立,若成立, 则输出b,并结束;否则输出c,并结束./输人绻血输出“解栄为ET输出臨为-黔输出“方穆无解](2)条件结构的嵌套中,“条件2”是“条件1”的一个分支,“条件3”是“条件2”的一个分支……依此类推,这些条件中很多在算法执行过程中根据所处的分支位置不同可能不被执行•(3)条件结构嵌套所涉及的“条件2”“条件3”……是在前面的所有条件依次一个一个的满足“分支条件成立”的情况下才能执行的此操作,是多个条件同时成立的叠加和复合•例5 “特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式•某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:05%,© 兰50),f=丿50 汉0.53 +(⑷一50)汉0.85,(⑷> 50).其中f (单位:元)为托运费,3为托运物品的重量(单位:千克)试画出计算费用f的程序框图.分析:这是一个实际问题,根据数学模型可知,求费用f的计算公式随物品重量3的变化而有所不同,因此计算时先看物品的重量,在不同的条件下,执行不同的指令,这是条件结构的运用,是二分支条件结构.其中,物品的重量通过输入的方式给出.解:算法程序框图如右图:拓展提升有一城市,市区为半径为15 km的圆形区域,近郊区为距中心15—25 km的范围内的环形地带,距中心25 km以外的为远郊区,如右图所示•市区地价每公顷100万元,近郊区地价每公顷60万元,远郊区地价为每公顷20万元,输入某一点的坐标为(x,y),求该点的地价.分析:由该点坐标(x , y),求其与市中心的距离r=,确定是市区、近郊区,还是远郊区,[100,0 c r 兰15,进而确定地价p •由题意知,p= 60,15 :::r - 25,20,r ■ 25.解:程序框图如下:课堂小结(1)理解两种条件结构的特点和区别•(2)能用学过的两种条件结构解决常见的算法问题作业习题1.1A组3.设计感想本节采用引人入胜的方法引入正课,选用的例题难度适中,有的经典实用,有的新颖独特,每个例题都是很好的素材.条件结构是逻辑结构的核心,是培养学生逻辑推理的好素材,本节设计符合新课标精神,难度设计略高于教材2019-2020年高中数学《1.1.2程序框图与算法的基本逻辑结构》第3课时教案新人教A版必修3导入新课思路1 (情境导入)我们都想生活在一个优美的环境中,希望看到的是碧水蓝天,大家知道工厂的污水是怎样处理的吗?污水进入处理装置后进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,直到达到排放标准.污水处理装置是一个循环系统,对于处理需要反复操作的事情有很大的优势.我们数学中有很多问题需要反复操作,今天我们学习能够反复操作的逻辑结构——循环结构.思路2 (直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构推进新课新知探究提出问题(1 )请大家举出一些常见的需要反复计算的例子(2 )什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4 )指出两种循环结构的相同点和不同点讨论结果:(1 )例如用二分法求方程的近似解、数列求和等(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构•反复执行的步骤称为循环体•(3)在一些算法中要求重复执行同一操作的结构称为循环结构•即从算法某处开始,按照一定条件重复执行某一处理的过程•重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构1°当型循环结构,如图(1)所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构.继续执行下面的框图•2°直到型循环结构,如图(2)所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立• 继续重复操作,直到某一次给定的判断条件P时成立为止,此时不再返回来执行A框,离开循环结构•继续执行下面的框图•见示意图:当型循环结构直到型循环结构(4) 两种循环结构的不同点:直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环⑴⑵当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环•两种循环结构的相同点:两种不同形式的循环结构可以看出,循环结构中一定包含条件结构,用于确定何时终止执行循环体.应用示例思路1例1设计一个计算1+2+ +100的值的算法,并画出程序框图.算法分析:通常,我们按照下列过程计算1+2+……+100的值.第1 步,0+1=1.第2 步,1+2=3.第3 步,3+3=6.第4 步,6+4=10.第100 步,4 950+100=5 050.显然,这个过程中包含重复操作的步骤,可以用循环结构表示.分析上述计算过程,可以发现每一步都可以表示为第(i-1 )步的结果+i=第i步的结果.为了方便、有效地表示上述过程,我们用一个累加变量S来表示第一步的计算结果,即把S+i的结果仍记为S,从而把第i步表示为S=S+i,其中S的初始值为0, i依次取1, 2,…,100,由于i同时记录了循环的次数,所以也称为计数变量•解决这一问题的算法是:第一步,令i=1 , S=0.第二步,若i < 100成立,则执行第三步;否则,输出S,结束算法.第三步,S=S+i.第四步,i=i+1,返回第二步.程序框图如右:上述程序框图用的是当型循环结构,如果用直到型循环结构表示,则程序框图如下:点评:这是一个典型的用循环结构解决求和的问题,有典型的代表意义,可把它作为一个范例,仔细体会三种逻辑结构在程序框图中的作用,学会画程序框图变式训练已知有一列数,设计框图实现求该列数前20项的和.分析:该列数中每一项的分母是分子数加1,单独观察分子,恰好是1, 2, 3, 4,…,n, 因此可用循环结构实现,设计数器i ,用i=i+1实现分子,设累加器S,用S=,可实现累加, 注意i只能加到20.解:程序框图如下:方法一:方法二:点评:在数学计算中,i=i+1不成立,S=S+i只有在i=0时才能成立.在计算机程序中,它们被赋予了其他的功能,不再是数学中的“相等”关系,而是赋值关系.变量i用来作计数器,i=i+1的含义是:将变量i的值加1,然后把计算结果再存贮到变量i中,即计数器i在原值的基础上又增加了1.变量S作为累加器,来计算所求数据之和.如累加器的初值为0,当第一个数据送到变量i中时,累加的动作为S=S+i,即把S的值与变量i的值相加,结果再送到累加器S中, 如此循环,则可实现数的累加求和.例2 某厂xx年的年生产总值为200万元,技术革新后预计以后每年的年生产总值都比上一年增长5%设计一个程序框图,输出预计年生产总值超过300万元的最早年份.算法分析:先写出解决本例的算法步骤:第一步,输入xx年的年生产总值.第二步,计算下一年的年生产总值•第三步,判断所得的结果是否大于300,若是,则输出该年的年份,算法结束;否则,返回第二步•由于“第二步”是重复操作的步骤,所以本例可以用循环结构来实现•我们按照“确定循环体” “初始化变量”“设定循环控制条件”的顺序来构造循环结构(1 )确定循环体:设a为某年的年生产总值,t为年生产总值的年增长量,n为年份,则循环体为t=0.05a,a=a+t,n=n+1.(2)初始化变量:若将xx年的年生产总值看成计算的起始点,则n的初始值为xx,a的初始值为200.(3)设定循环控制条件:当“年生产总值超过300万元”时终止循环,所以可通过判断“ a>300"是否成立来控制循环程序框图如下:思路2例1 设计框图实现1+3+5+7+…+131的算法.分析:由于需加的数较多,所以要引入循环结构来实现累加. 观察所加的数是一组有规律的数(每相临两数相差2),那么可考虑在循环过程中,设一个变量i,用i=i+2来实现这些有规律的数,设一个累加器sum,用来实现数的累加,在执行时,每循环一次,就产生一个需加的数,然后加到累加器sum中.解:算法如下:第一步,赋初值i=1 , sum=0.第二步,sum=sum+i, i=i+2.第三步,如果i < 131,则反复执第二步;否则,执行下一步第四步,输出sum.第五步,结束. 程序框图如右图.(=15U1T1I=O2Lsum=sum-'-i(结束[点评:(1)设计流程图要分步进行,把一个大的流程图分割成几个小的部分,按照三个基本结构即顺序、条件、循环结构来局部安排,然后把流程图进行整合.(2)框图画完后,要进行验证,按设计的流程分析是否能实现所求的数的累加,分析条件是否加到131就结束循环,所以我们要注意初始值的设置、循环条件的确定以及循环体内语句的先后顺序,三者要有机地结合起来. 最关键的是循环条件,它决定循环次数,可以想一想,为什么条件不是“ i<131 ”或“i=131”,如果是“ i<131”,那么会少执行一次循环,131就加不上了.例2高中某班一共有40名学生,设计算法流程图,统计班级数学成绩良好(分数>80)和优秀(分数>90)的人数.分析:用循环结构实现40个成绩的输入,每循环一次就输入一个成绩s,然后对s的值进行判断•设两个计数器m,n,如果s>90,贝U m=m+1如果80<s< 90,贝U n=n+1.设计数器i , 用来控制40个成绩的输入,注意循环条件的确定.解:程序框图如下图:知能训练由相应的程序框图如右图,补充完整一个计算1+2+3+- +100的值的算法•(用循环结构)第一步,设i的值为___________________ .第二步,设sum的值为_________________ .第三步,如果i < 100执行第___________________ 步,否则,转去执行第__________________ 步.第四步,计算sum+ i并将结果代替___________________ .第五步,计算_______________ 并将结果代替i.第六步,转去执行第三步•第七步,输出sum的值并结束算法•分析:流程图各图框的内容(语言和符号)要与算法步骤相对应,在流程图中算法执行的顺序应按箭头方向进行.解:第一步,设i的值为1.第二步,设sum的值为0.第三步,如果i < 100,执行第四步,否则,转去执行第七步.第四步,计算sum+ i并将结果代替sum.第五步,计算i + 1并将结果代替i.第六步,转去执行第三步.第七步,输出sum的值并结束算法.拓展提升设计一个算法,求1+2+4+- +2 49的值,并画出程序框图.解:算法步骤:第一步,sum-0.第二步,i=0.第三步,sum=sum+ 2_第四步,i=i+1.第五步,判断i是否大于49,若成立,则输出sum,结束.否则,返回第三步重新执行程序框图如右图:点评:(1)如果算法问题里涉及的运算进行了许多次重复的操作,且先后参与运算的数之间有相同的规律,就可引入变量循环参与运算(我们称之为循环变量),应用于循环结构•在循环结构中,要注意根据条件设计合理的计数变量、累加和累乘变量及其个数等,特别要求条件的表述要恰当、精确•(2)累加变量的初始值一般取0,而累乘变量的初始值一般取 1.课堂小结(1 )熟练掌握两种循环结构的特点及功能(2 )能用两种循环结构画出求和等实际问题的程序框图,进一步理解学习算法的意义.作业习题1.1A组2.设计感想本节的引入抓住了本节的特点,利用计算机进行循环往复运算,解决累加、累乘等问题.循环结构是逻辑结构中的难点,它一定包含一个条件结构,它能解决很多有趣的问题.本节选用了大量精彩的例题,对我们系统掌握程序框图有很大的帮助。
人教版高中数学必修3第一章算法与程序框图 同步教案
星火教育一对一辅导教案学生姓名性别年级学科数学授课教师上课时间年月日第()次课共()次课课时:2课时教学课题人教版必修3 第一章算法与程序框图同步教案教学目标知识目标:体会算法的思想、了解算法的含义及特点,掌握程序框图与算法的基本逻辑结构。
能力目标:逐步发展学生有条理的思考与表达的能力,提高学生的逻辑思维能力。
情感态度价值观:让学生体会算法在科学技术和社会发展中的重要作用,培养学生刻苦学习,努力拼搏,努力成才的学习积极性。
教学重点与难点程序框图的设计教学过程(一)算法的概念知识梳理1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成。
2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的。
(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。
(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法。
(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决。
例题精讲【题型一、算法概念的理解】【例1】下列说法不正确的是()A.算法就是某个问题的解题过程;B.算法执行后可以产生不同的结果;C.解决某一个具体问题算法不同结果不同;D.算法执行步骤的次数不可以很大,否则无法实施【方法技巧】结合算法的五大特点去理解算法概念;做题时尽量能联想到实际例子。
【题型二、算法设计】【例1】任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积。
【方法技巧】特别注意解决问题的过程一定要分为若干个明确的步骤。
高中数学必修3第一章第一节《算法与程序框图》全套教案
1.1.1算法基本逻辑结构——循环结构
【教学目标】
1.通过对具体实例的分析和解决,使学生体验算法的思想在生活中的应用,并
由此实例出发,使学生理解循环结构的概念,
2.通过分析两种循环结构的结构差异,准确区分两种循环结构,并能运用两种
循环结构框图解决具体数学问题,从中体会循环结构的三要素,即循环变量初始值,循环体和循环控制条件对循环结构起到的决定性作用
3.情感态度与价值观:通过本节的探究性学习,培养严谨的学习态度以及勇于
探索的学习精神。
【教学重点难点】
教学重点:理解循环结构的概念,并能准确区分两种循环结构,明确循环结构三要素.
教学难点:循环结构三要素的变化对循环过程及结果产生的影响.
【学前准备】:多媒体,预习例题
算法的概念
【教学目标】
(1)了解算法的含义,体会算法的思想;
(2)能够用自然语言叙述算法;
(3)掌握正确的算法应满足的要求;
(4)会写出解线性方程(组)的算法;
(5)会写出一个求有限整数序列中的最大值的算法;
(6)会应用Scilab求解方程组。
【教学重难点】
重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
【学前准备】:多媒体,预习例题电脑,计算器,图形计算器。
2019-2020年人教版高中数学必修三教案:1-1-2 程序框图与算法的基本逻辑结构
2019-2020年人教版高中数学必修三教案:1-1-2 程序框图与算法的基本逻辑结构)椭圆形框:平行四边形框:矩形框:表示计算、)菱形框:表示程序的流向.)圆圈:顺序结构循环结构应用示例例1 请用程序框图表示前面讲过的“判断整数求和问题,共99项100991⨯+的值. 已知一个三角形三条边的边长分别为a ,b 公式设计一个计算三角形面积的算法,并画出程序框图表示别为a,b,c ,则三很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构下图所示的是一个算法的流程图,已知a1=311.写出通过尺轨作图确定线段AB的一个这个算法步骤具有一般性,对于任意自然数n,都可以按照这个算法的思想,设计出确定线段的n等分点的步骤,解决问题,通过本题学习可以巩固顺序结构的应用.知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为在这种情况下,某种品牌的钢琴2004年的价格)掌握程序框的画法和功能.)了解什么是程序框图,知道学习程序框图的意义并能解决与顺序结构有关的程序框图的画法图1 图2根据构成三角形的条件,判断是否满足任意两边之和大于第三边,如果满足则存在这样的三角形,如果不满足则不存在这样的三角形分类讨论思想是高中的重点,在画程序框图时,常常遇到需要讨论的问题,这时要用到条件结构.根据一元二次方程的意义,需要计算判别式Δ=b2-成两种情况处理:(1)当Δ≥0时,一元二次方程有实数根;时,一元二次方程无实数根.该问题实际上是一个分类讨论问题,根据一元二次方程系数的不同情况,最后结果就不同这是条件结构叠加问题,条件结构叠加,程序执行时需依次对“条2”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作.设计算法,找出输入的三个不相等实数a、b、c中的最大值,并画条件结构嵌套与条件结构叠加的区别:)条件结构叠加,程序执行时需依次对“条件1”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作条件结构的嵌套中,“条件2”是“条件1”的一个分支,2”的一个分支……依此类推,这些条件中很多在算法执行过程中根据所处的分支位置不同可能不被执行.这是一个实际问题,根据数学模型可知,求费用的变化而有所不同,因此计算时先看物品的重量,在不同的条件下,执行不同的指令,这是条件结构的运用,是二分支条件结构中,物品的重量通过输入的方式给出.算法程序框图如右图:y),求其与市中心的距离是远郊区,进而确定地解:程序框图如下:课堂小结(1)理解两种条件结构的特点和区别.(2)能用学过的两种条件结构解决常见的算法问题.作业习题1.1A组3.第3课时循环结构导入新课(直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构.推进新课新知探究提出问题(1)请大家举出一些常见的需要反复计算的例子.(2)什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4)指出两种循环结构的相同点和不同点.当型循环结构直到型循环结构两种循环结构的不同点:直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足这是一个典型的用循环结构解决求和的问题,有典型的代表意义,可把它作为一个范例,仔细体会三种逻辑结构在程序框图中的作用,学1,+n n ,设计框图实现求该列数前该列数中每一项的分母是分子数加1,单独观察分子,恰好是在数学计算中,i=i+1不成立,S=S+i只有在i=0时才能成立.在计算机程序中,它们被赋予了其他的功能,不再是数学中的“相等”关系,而是赋值关系.变量i用来作计数器,i=i+1的含义是:将变量然后把计算结果再存贮到变量中,即计数器i在原值的基础上.作为累加器,来计算所求数据之和.如累加器的初值为第一个数据送到变量i中时,累加的动作为S=S+i,即把S的值与变量的值相加,结果再送到累加器中,如此循环,则可实现数的累加求和.由相应的程序框图如右图,补充完整一个计算的值为_____________.的值为_____________.)算法步骤中的“第五步”包含一个条件结构,这个条件结构与“第三步”“第四步”构成一个循环结构,循环体由“第三步”和“第四步”组成,终止循环的条件是“|a-b|<d或f(m)=0”.在“第五步”中,还包含由循环结构与“输出m”组成的顺序结构(如下图))将各步骤的程序框图连接起来,并画出“开始”与“结束”两个终在用自然语言表述一个算法后,可以画出程序框图,用顺序结构、条件结构和循环结构来表示这个算法,这样表示的算法清楚、简练,便相传古代的印度国王要奖赏国际象棋的发明者,问他需要什么明者说:陛下,在国际象棋的第一个格子里面放1粒麦子,第三个格子放4粒麦子,以后每个格子中的麦粒数都是它前一个格子中麦粒数的二倍,依此类推(国际象棋棋盘共有请将这些麦子赏给我,我将感激不尽.国王想这还不容易,就让人扛了一袋小麦,但不到一会儿就没了,最后一算结果,全印度一年生国王很奇怪,小小的“棋盘”,不足运费计算方法是:行李质量不超过50 kg时按0.元/kg;超过50 kg5的算法,画出算法的程序设计一个用有理数数幂逼近无理指数幂2算法步骤:给定精确度d,令i=1.2的到小数点后第i位的不足近似值,记为a。
2021年高中数学《 算法与程序框图 》教案1 新人教A版必修3
2021年高中数学《算法与程序框图》教案1 新人教A版必修3一. 教学内容:框图的复习二. 学习目标通过具体实例,进一步认识框图;能绘制简单实际问题的流程图和结构图,体会框图在解决实际问题中的作用;三. 考点分析1、流程图:流程图常常用来表示一个动态过程,通常会有一个“起点”,一个或多个“终点”。
程序框图是流程图的一种。
流程图可以直观、明确地表示动态过程从开始到结束的全部步骤。
它是由图形符号和文字说明构成的图示。
流程图用于描述一个过程性的活动,活动的每一个明确的步骤构成流程图和一个基本单元,基本单元之间用流程线产生联系。
基本单元中的内容要根据需要而确定。
可以在基本单元中具体说明,也可以为基本单元设置若干子单元。
2、绘制流程图的一般过程首先,用自然语言描述流程步骤;其次,分析每一步骤是否可以直接表达,或需要借助于逻辑结构来表达;再次,分析各步骤之间的关系;最后,画出流程图表示整个流程。
3、结构图:表示一个系统中各部分之间的组成结构的框图叫做结构图。
4、绘制结构图步骤:(1)确定组成系统的基本要素,及它们之间的关系。
(2)将系统的主体要素及其之间的关系表示出来。
(3)确定主体要素的下位要素(从属主体的要素)“下位”要素比“上位”要素更为具体,“上位”要素比“下位”要素更为抽象。
(4)逐步细化各层要素,直到将整个系统表示出来为止。
5、结构图与流程图的区别流程图和结构图不同。
流程图是表示一系列活动相互作用、相互制约的顺序的框图。
结构图是表示一个系统中各部分之间的组成结构的框图。
流程图描述动态过程,结构图刻画系统结构。
流程图通常会有一个“起点”,一个或多个“终点”,其基本单元之间由有向线连接;结构图则更多地表现为“树”状结构,其基本要素之间一般为逻辑关系。
【典型例题】例1、画出解关于的不等式,()的流程图。
解:例2、按照下面的流程图操作,将得到怎样的数集?开始写下1加3写下结果你已写下10个数了吗?结束对这个刚写下的数加上一个比前面加过的那个数大2的数NY1+3=4,4+(3+2)=4+5=99+(5+2)=9+7=16,16+(7+2)=16+9=25,25+(9+2)=25+11=36 ,36+(11+2)=36+13=49,49+(13+2)=49+15=64,64+(15+2)=64+17=81,81+(17+2)=81+19=100.这样,可以得到数集{1,4,9,16,25,36,49,64,81,100}.例3、某保险公司业务流程如下:(1)保户投保:填单交费、公司承保、出具保单;(2)保户提赔:公司勘查;同意,则赔偿,不同意,则拒赔.试画出该公司业务流程图.解:例4、根据如图所示的程序框图写出所打印数列的前5项,并建立数列的递推公式,这个数列是等差数列吗?解:设打印出来的数列的项依次记为则于是可得递推公式2,3,111≥∈+==-nNnaaann且.因为,所以这个数列是等差数列.例5、某地行政服务中心办公分布结构如下.(1)服务中心管理委员会全面管理该中心工作,下设办公室、综合业务处、督察投诉中心,这三部门在一楼,其余局、委办理窗口分布在其他楼层;(2)二楼:公安局、民政局、财政局;(3)三楼:工商局、地税局、国税局、技监局、交通局;(4)四楼:城建局、人防办、计生办、规划局;(5)五楼:其余部门办理窗口.试绘制该中心结构图.解:【模拟试题】一、选择题(本大题共6小题,每小题5分,共30分)1. 下列流程图的基本符号中,表示判断的是()2. 下列的流程图示中表示选择结构的是()3. 下列对程序框图的描述,正确的是()A. 只有一个起点,一个终点B. 只有一个起点,一个或多个终点C. 多个起点,一个或多个终点D. 多个起点,只有一个终点4、下图是《集合》的知识结构图,如果要加入“子集”,则应该放在()A. “集合的概念”的下位B. “集合的表示”的下位C. “基本关系”的下位D. “基本运算”的下位5. 下面的程序框图的作用是按大小顺序输出两数,则括号处的处理可以是()输入A、B A<B?(________)输出A、B 结束开始YNA. A←B:B←AB. T←B:B←A :A←TC. T←B:A←T :B←AD. A←B:T←A :B←T6. 某成品的组装工序图如右,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是()A. 11小时B. 13小时C. 15小时D. 17小时二、填空题(本题共4小题,每小题5分,共20分)7、一般来说,一个复杂的流程图都可以分解成_________、_________、__________三种结构;8、一般地,对于树状结构图,下位比上位________,上位比下位___________;9、读下面的流程图,若输入的值为-5时,输出的结果是__________.输入A A<0?A←A+2 A←2×A 输出A 结束开始YN 10、如图是数学中的一算法流程图:则其表示的数学算式为___________________________________.三、解答题(本大题共4题,共50分)11、试画出一个判断函数f(x)单调性的流程图。
程序框图(第1课时)教案
新课程人教A版数学必修(Ⅲ)教案§1.1.2 程序框图(第1课时)一、教学目标:1、知识与技能:理解程序框图的概念;学会用通用的图形符号表示算法,掌握算法的两个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。
2、过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
3、情感态度与价值观:通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的两种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。
二、重点与难点:重点是程序框图的基本概念、基本图形符号和3种基本逻辑结构,难点是能综合运用这些知识正确地画出程序框图。
三、学法与教学用具:1、通过上节学习我们知道,算法就是解决问题的步骤,在我们利用计算机解决问题的时候,首先我们要设计计算机程序,在设计计算机程序时我们首先要画出程序运行的流程图,使整个程序的执行过程直观化,使抽象的问题就得十分清晰和具体。
有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端。
2、我们在学习这部分内容时,首先要弄清各种图形符号的意义,明确每个图形符号的使用环境,图形符号间的联结方式。
例如“起止框”只能出现在整个流程图的首尾,它表示程序的开始或结束,其他图形符号也是如此,它们都有各自的使用环境和作用,这是我们在学习这部分知识时必须要注意的一个方面。
另外,在我们描述算法或画程序框图时,必须遵循一定的逻辑结构,事实证明,无论如何复杂的问题,我们在设计它们的算法时,只需用顺序结构、条件结构和循环结构这三种基本逻辑就可以了,因此我们必须掌握并正确地运用这三种基本逻辑结构。
3、教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:从 1.1.1节算法可以看出,算法步骤有明确的顺序性,而且有些步骤只有在一定条件下才会被执行,有些步骤在一定条件下被重复执行.因此,我们有必要探究使算法表法得更直观、准确的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中数学《算法与程序框图》教案1 新人教A版必修3一. 教学内容:
框图的复习
二. 学习目标
通过具体实例,进一步认识框图;能绘制简单实际问题的流程图和结构图,体会框图在解决实际问题中的作用;
三. 考点分析
1、流程图:流程图常常用来表示一个动态过程,通常会有一个“起点”,一个或多个“终点”。
程序框图是流程图的一种。
流程图可以直观、明确地表示动态过程从开始到结束的全部步骤。
它是由图形符号和文字说明构成的图示。
流程图用于描述一个过程性的活动,活动的每一个明确的步骤构成流程图和一个基本单元,基本单元之间用流程线产生联系。
基本单元中的内容要根据需要而确定。
可以在基本单元中具体说明,也可以为基本单元设置若干子单元。
2、绘制流程图的一般过程
首先,用自然语言描述流程步骤;
其次,分析每一步骤是否可以直接表达,或需要借助于逻辑结构来表达;
再次,分析各步骤之间的关系;
最后,画出流程图表示整个流程。
3、结构图:表示一个系统中各部分之间的组成结构的框图叫做结构图。
4、绘制结构图步骤:
(1)确定组成系统的基本要素,及它们之间的关系。
(2)将系统的主体要素及其之间的关系表示出来。
(3)确定主体要素的下位要素(从属主体的要素)
“下位”要素比“上位”要素更为具体,
“上位”要素比“下位”要素更为抽象。
(4)逐步细化各层要素,直到将整个系统表示出来为止。
5、结构图与流程图的区别
流程图和结构图不同。
流程图是表示一系列活动相互作用、相互制约的顺序的框图。
结构图是表示一个系统中各部分之间的组成结构的框图。
流程图描述动态过程,结构图刻画系统结构。
流程图通常会有一个“起点”,一个或多个“终点”,其基本单元之间由有向线连接;结构图则更多地表现为“树”状结构,其基本要素之间一般为逻辑关系。
【典型例题】
例1、画出解关于的不等式,()的流程图。
解:
例2、按照下面的流程图操作,将得到怎样的数集?
16+(7+2)=16+9=25,
25+(9+2)=25+11=36 ,
36+(11+2)=36+13=49,
49+(13+2)=49+15=64,
64+(15+2)=64+17=81,
81+(17+2)=81+19=100.
这样,可以得到数集{1,4,9,16,25,36,49,64,81,100}.
例3、某保险公司业务流程如下:
(1)保户投保:填单交费、公司承保、出具保单;
(2)保户提赔:公司勘查;同意,则赔偿,不同意,则拒赔.
试画出该公司业务流程图.
解:
例4、根据如图所示的程序框图写出所打印数列的前5项,并建立数列的递推公式,这个数列是等差数列吗?
解:设打印出来的数列的项依次记为
则
于是可得递推公式
2
,3
,1
1
1
≥
∈
+
=
=
-
n
N
n
a
a
a
n
n
且
.
因为,所以这个数列是等差数列.
例5、某地行政服务中心办公分布结构如下.
(1)服务中心管理委员会全面管理该中心工作,下设办公室、综合业务处、督察投诉中心,这三部门在一楼,其余局、委办理窗口分布在其他楼层;
(2)二楼:公安局、民政局、财政局;
(3)三楼:工商局、地税局、国税局、技监局、交通局;
(4)四楼:城建局、人防办、计生办、规划局;
(5)五楼:其余部门办理窗口.
试绘制该中心结构图.
解:
【模拟试题】
一、选择题(本大题共6小题,每小题5分,共30分)
1. 下列流程图的基本符号中,表示判断的是()
2. 下列的流程图示中表示选择结构的是()
3. 下列对程序框图的描述,正确的是( )
A. 只有一个起点,一个终点
B. 只有一个起点,一个或多个终点
C. 多个起点,一个或多个终点
D. 多个起点,只有一个终点 4、下图是《集合》的知识结构图,如果要加入“子集”,则应该放在( )
A. “集合的概念”的下位
B. “集合的表示”的下位
C. “基本关系”的下位
D. “基本运算”的下位
5. 下面的程序框图的作用是按大小顺序输出两数,则括号处的处理可以是( )
A. A ←B :B ←A
B. T ←B :B ←A :A ←
T
C. T ←B :A ←T :B ←A
D. A ←B :T ←A :B ←T
6. 某成品的组装工序图如右,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是( )
A. 11小时
B. 13小时
C. 15小时
D. 17小时
二、填空题(本题共4小题,每小题5分,共20分)
7、一般来说,一个复杂的流程图都可以分解成_________、_________、__________三种
结构;
8、一般地,对于树状结构图,下位比上位________,上位比下位___________;
9、读下面的流程图,若输入的值为-5时,输出的结果是__________.
10、如图是数学中的一算法流程图:
则其表示的数学算式为___________________________________.
三、解答题(本大题共4题,共50分)
11、试画出一个判断函数f(x)单调性的流程图。
12、画一个程序框图,输入一个整数,判断其是奇数还是偶数.
13、设计一个计算的算法,并画出它的程序流程图.
14、观察下面的过程,回答问题:
因为;
;
;
;
;
,
所以
(1)上面的计算求的是什么?
(2)根据上面的例子归纳出算法,并画出流程图。
试题答案
1、D
2、A
3、A
4、C
5、B
6、B
7、顺序 条件(选择) 循环
8、具体, 抽象(其他类似正确答案也可) 9、2
10、10086422⨯⋯⨯⨯⨯⨯⨯=S ; 11、解:
12、解:
13、解:算法: 第一步:S=1; 第二步:i=3 ; 第三步:;
第四步: i=i+2;
第五步:如果,那么转到第三步; 第六步:输出S. 算法流程图:(如图所示)
14、解:(1)计算的是xx和1600的最大公约数(2)设置两个数较大数为m,较小数为n,第一步,计算m除n的余数r;
第二步,除数变成被除数,余数变成除数
第三步,回到第一步,直到余数为0
流程图略。