专题39 古典概型与几何概型的计算策略-备战2016高考技巧大全之高中数学黄金解题模板(原卷版)
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧古典概型是概率论中最基本的概率模型之一,它涉及到对已知的随机试验的多种可能结果和其对应概率的求解。
在高中数学必修三中,古典概型的解题技巧是学生必须掌握的一部分内容。
下面将介绍几种常见的古典概型解题技巧。
1. 直接计数法直接计数法是指通过对试验结果的数量进行计数,从而求解概率。
该方法一般适用于试验结果较少且容易确定的情况。
有5个小球,其中2个红色,3个蓝色,求从中任意抽取2个小球,抽到两个红色小球的概率。
按照直接计数法,我们可以将这个问题转化为从5个小球中抽取2个小球的问题,同时我们知道其中2个小球是红色的。
我们可以计算红色小球和非红色小球的组合数,然后除以所有小球的组合数来求解概率。
2. 互补事件法互补事件法是指通过求解事件的互补事件概率来求解事件的概率。
互补事件是指与事件A互补的事件,即事件A不发生的事件。
对于互补事件,其概率加上事件的概率必然等于1。
有一个盒子中有3个红球和2个蓝球,从中任意抽取一个球,求抽到一个红球的概率。
按照互补事件法,我们可以将该事件的互补事件定义为抽到一个蓝球的事件。
我们可以先求解抽到一个蓝球的概率,然后用1减去该概率来求解抽到一个红球的概率。
3. 排列组合法排列组合法是指通过排列组合的知识来求解概率。
它适用于试验结果较多且不易直接计数的情况。
有8个字母a,b,c,d,e,f,g,h,从中任意抽取3个字母,求抽取的三个字母都是元音字母的概率。
按照排列组合法,我们可以先计算所有情况的数量,即从8个字母中任意抽取3个字母的组合数,然后计算抽取的三个字母都是元音字母的情况数量,并将其除以所有情况的数量来求解概率。
4. 事件的分解法通过掌握以上几种古典概型解题技巧,可以帮助高中数学学生更好地理解和应用古典概型,在解决实际问题时能够灵活运用这些技巧,提高解题能力。
高考数学(理)总复习讲义:古典概型与几何概型
第五节古典概型与几何概型扇霾歳議■基础——在批注中理解透 (单纯识记无意楚,深刻理解提能力)1. 古典概型(1) 古典概型的特征:①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;②等可能性:每个基本事件出现的可能性是相等的一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征一一有限性和等可能性.(2) 古典概型的概率计算的基本步骤:①判断本次试验的结果是否是等可能的,设出所求的事件为 A ;②分别计算基本事件的总数n和所求的事件A所包含的基本事件个数m;③利用古典概型的概率公式P(A) = m,求出事件A的概率.(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型(2) 几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等.(3) 计算公式:构成事件A的区域长度(面积或体积)P(A)=试验的全部结果所构成的区域长度面积或体积*几何概型应用中的关注点1关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.2确定基本事件时一定要选准度量,注意基本事件的等可能性[小题查验基础]、判断题(对的打“V” ,错的打“X” )(1)与面积有关的几何概型的概率与几何图形的形状有关.()(2)几何概型与古典概型中的基本事件发生的可能性都是相等的,其基本事件个数都有 限.()(3) 掷一枚硬币两次,出现“两个正面” “一正一反” “两个反面”,这三个事件是等可能事件.()A 中基本事件构成集合 A ,所有的基本事件构成集合I ,则事件A 的概率为詈f .(答案:(1)X (2)X 二、选填题C. i解析:选D 一枚硬币连掷2次可能出现(正,正卜(反,反)、(正,反)、(反,正)四种 2 1情况,只有一次出现正面的情况有两种,故P =4=-.2.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的, 超过2分钟的概率是()1.一枚硬币连掷2次, 只有 次出现正面的概率为()解析:选C 试验的全部结果构成的区域长度为 5,所求事件的区域长度为2,故所求2概率为P =-.53.已知四边形 ABCD 为长方形,AB = 2, BC = 1, O 为AB 的中点,在长方形 ABCD 内随机取一点,取到的点到 0的距离大于1的概率为( n A・n nB _ n n D /I —n解析:选B 如图,依题意可知所求概率为图中阴影部分与长方形的 2 — nS 阴影2n面积比,即所求概率P = S—= -=1—nS 长方形ABCD 2 4 4.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是 (4)在古典概型中,如果事件 Dl则他候车时间不解析:两数之和等于5有两种情况(1,4)和(2,3),总的基本事件有(1,2), (1,3), (1,4), (1,5), 2 1(2,3), (2,4), (2,5), (3,4), (3,5), (4,5),共 10 种,故所求概率P =命=5.5.袋中有形状、大小都相同的 4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为答案:5 在细解明规律(题目千变总有报,梳干理枝究其本)考点一古典概型[师生共研过关][典例精析](1)(2018全国卷n )我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果 哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如 30= 7+ 23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )(2)(2019武汉调研)将一枚质地均匀的骰子投掷两次, 得到的点数依次记为a 和b ,则方程ax 2 + bx + 1= 0有实数解的概率是()1 B.1[解析](1)不超过30的所有素数为 2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个 不同的数,共有C% = 45种情况,而和为30的有7+ 23,11 + 19,13+ 17这3种情况,所以所 3 1求概率P =—=—.45 15K a < 6, a € N *,⑵投掷骰子两次,所得的点数 a 和b 满足的关系为* 所以a 和b 的b < 6, b € N ,组合有36种.若方程ax 2+ bx + 1 = 0有实数解, 贝U △= b 2-4a >0,所以 b 2>4a.解析:A.7_ 36C. 19 36P = 1-56.1 1取1,2,3,4 ;当b= 5 时,a 可取1,2,3,4,5,6 ;当b= 6 时,a 可取1,2,3,4,5,6.1911满足条件的组合有19种,则方程ax2+ bx +1=0有实数解的概率P =两[答案]⑴c(2)C[解题技法]1.古典概型的概率求解步骤3.将A , B , C , D 这4名同学从左至右随机地排成一排,则“ A 与B 相邻且A 与C 之间恰好有1名同学”的概率是()(1)求出所有基本事件的个数n.(2)求出事件A 包含的所有基本事件的个数m.⑶代入公式2.基本事件个数的确定方法(1)列举法:此法适合于基本事件个数较少的古典概型(2)列表法:此法适合于从多个元素中选定两个元素的试验,也可看成坐标法 (3)树状图法:树状图是进行列举的一种常用方法,适用于有顺序的问题及较复杂问题 中基本事件数的探求.(4)运用排列组合知识计算.1.(20佃益阳、 减函数的概率是( [过关训练]湘潭调研)已知 a € { — 2,0,1,2,3}, b € {3,5},则函数 f(x)= (a 2— 2)e x + b 为3A — A.103B.3 1 %若函数 f(x)= (a 2— 2)e x + b 为减函数,则 a 2— 2v 0, 又 a € { — 2,0,1,2,3},故只有a = 0, a = 1满足题意,又b € {3,5},所以函数f(x)= (a 2— 2)e x + b 为减函数的概率是解析:选C2.从分别标有1,2,…,9的9张卡片中不放回地随机抽取 2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是4 B.4C "57 D.7解析:选C 由题意得,所求概率 5 X 4X 2 5 P= 9X 8 = 9.f (x )的图象与 x 轴有公共点的概率等于(2 A — A.15C .3[解析]11 D •亦•/ f(x) =— x 2+ mx + m 的图象与 x 轴有公共点,二 △= m 2+ 4m > 0,「. m < — 4或m >0,二在[—6,9]内取一个实数 m ,函数f (x )的图象与 x 轴有公共点的概率 P = 琴貴严”故选D. [答案]D类型(二)与面积有关的几何概型[例2] (1)(2018潍坊模拟)如图,六边形ABCDEF 是一个正六边形,2 C.23 DQ(2)(2019洛阳联考)如图,圆O : x 2 + y 2= n 内的正弦曲线 y = sin x 与 x 轴围成的区域记为 M (图中阴影部分),随机往圆O 内投一个点 A ,则点 A 落在区域M 内的概率是(A. nn4 B.~3 nC . nnD . nn[解析](1)设正六边形的中心为点 O , BD 与AC 交于点G , BC = 1,2 2 2BGC = 120° 在厶 BCG 中,由余弦定理得 1= BG + BG — 2BG cos 120°则 BG = CG ,/得 BG = ~33, 所1 1 \[3 V 3 "T 3 \[3 1以 S A BCG = 2XBG X BG X sin 120° = 寸 X 寸X 寸=材,因为 S 六边形 ABCDEF = S A BOC X 6 = ?1 1 %%解析:选B A , B , C , D 4名同学排成一排有 A 4= 24种排法.当A , C 之间是B 时, 4 + 2 1 D 时,有2种排法,所以所求概率P =吒-=£24 4考点二几何概型[全析考法过关[考法全析]类型(一)与长度有关的几何概型(2019濮阳模拟)在[—6,9]内任取一个实数 m ,设f (x ) = — x 2+ mx + m ,则函数有2X 2 = 4种排法,当A , C 之间是 [例1]x 1X 1 x Sin 60。
高考数学 专题44 古典概型与几何概型的计算策略黄金解题模板-人教版高三全册数学试题
专题44 古典概型与几何概型的计算策略【高考地位】古典概型与几何概型是高考中的常考知识点,对于古典概型,列举法仍是求解其概率的主要方法,而与排列、组合问题相结合的概率问题仍是命题的热点;对于几何概型除掌握其定义外,其题型的重点主要体现在两种常见的几何度量——长度、面积,难度不会太大,但题型可能较灵活,背景更新颖.在高考中通常是以易题出现,主要以选择题、填空题和解答题的形式考查,其试题难度属中档题.【方法点评】类型一古典概型的计算策略使用情景:求古典概型的概率解题模板:第一步判断试验是否是等可能的,其基本事件的个数是否是有限个;第二步分别计算事件A包含的基本事件的个数和基本事件的总数;第三步运用古典概型的计算公式计算即可得出结论.例1. 【2018某某耀华中学模拟】在6盒酸奶中,有2盒已经过了保质期,从中任取2盒,取到的酸奶中有已过保质期的概率为()A. B. C. D.【答案】C【解析】所求概率为 ,选C.【变式演练1】端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个,则三种粽子各取到1个的概率是()A. B. C. D.【答案】C考点:列举法计算基本事件数及事件发生的概率.【变式演练2】【2018某某兴宁沐彬中学模拟】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元,共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3.5元的概率是()A. B. C. D.【答案】B【解析】由题意可得总共情况有种,满足条件的有(2.28,1.83)(2.28,1.72)(2.28,1.55)(1.83,1.72)可以交换顺序,所以共8种,所以概率为,选B.【变式演练3】【2018某某某某外国语学校模拟】某工厂生产了一批颜色和外观都一样的跳舞机器人,从这批跳舞机器人中随机抽取了8个,其中有2个是次品,现从8个跳舞机器人中随机抽取2个分配给测验员,则测验员拿到次品的概率是()A. B. C. D.【答案】C类型二几何概型的计算策略使用情景:求几何概型的概率解题模板:第一步判断试验是否是等可能的,其基本事件的个数是否是无限个;第二步分别计算事件A和基本事件所包含的区域长度、面积或体积等;第三步运用几何概型的计算公式计算即可得出结论.例2在区间上随机取一个数,使得成立的概率为.【答案】【解析】试题分析:,所求概率测度为长度,即考点:几何概型概率,绝对值不等式【方法点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.例3. 【2018某某某某第一中学模拟】《九章算术》是我国古代数学名著,也是古代东方数学的代表作,书中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内投豆子,则落在其内切圆内的概率是()A. B. C. D.【答案】B【变式演练4】把长为的铁丝随机截成三段,则每段铁丝长度都不小于的概率是()A.B.C.D.【答案】.【解析】试题分析:设把长为的铁丝随机截成三段的长度分别为x,y,80-x-y,则由题意知:,所以包含事件每段铁丝长度都不小于所表示的面积为,而基本事件所表示的平面区域的面积为,所以由古典概型的计算公式即可得出每段铁丝长度都不小于的概率,故应选.考点:几何概型.【变式演练5】一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()A. B. C. D.【答案】D考点:几何概型.【变式演练6】【2018某某闽侯第四中学模拟】已知,是上的两个随机数,则到点的距离大于其到直线x=-1的距离的概率为()A. B. C. D.【答案】A【解析】,是上的两个随机数,则可由平面直角坐标系中点所确定的正方形表示所有满足题意的点组成概率空间,考查如下轨迹方程问题:到点的距离等于其到直线的距离,由抛物线的定义可得,轨迹方程为,则满足题意的点位于如图所示的阴影区域,对求解定积分可得其面积为:,据此可得,满足题意的概率值为.本题选择A选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,据此求解几何概型即可.【高考再现】1. 【2016高考新课标1卷】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()(A)(B)(C)(D)【答案】B考点:几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度由:长度、面积、体积等.2. 【2016高考新课标2理数】从区间随机抽取个数,,…,,,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有个,则用随机模拟的方法得到的圆周率的近似值为(A)(B)(C)(D)【答案】C【解析】试题分析:利用几何概型,圆形的面积和正方形的面积比为,所以.选C.考点:几何概型.【名师点睛】求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.3.【2016年高考理数】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【答案】C考点:概率统计分析.【名师点睛】本题将小球与概率知识结合,创新味十足,是能力立意的好题.如果所求事件对应的基本事件有多种可能,那么一般我们通过逐一列举计数,再求概率,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏.另外注意对立事件概率公式的应用. 3. 【2016高考某某卷】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是▲.【答案】【解析】点数小于10的基本事件共有30种,所以所求概率为考点:古典概型概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.某某对古典概型概率考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.4. 【2016高考某某理数】在上随机地取一个数k,则事件“直线y=kx与圆相交”发生的概率为 .【答案】5.【2016高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A. B. C. D.【答案】A【解析】考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.6. 【2017某某,7】记函数的定义域为.在区间上随机取一个数,则的概率是▲.【答案】【解析】由,即,得,根据几何概型的概率计算公式得的概率是.【考点】几何概型概率【名师点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.7.【2017课标II,文11】从分别写有1,2,3,4,5的5X卡片中随机抽取1X,放回后再随机抽取1X,则抽得的第一X卡片上的数大于第二X卡片上的数的概率为A. B. C. D.【答案】D【解析】如下表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数总计有25种情况,满足条件的有10种所以所求概率为【考点】古典概型概率【名师点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.9. 【2017某某,理8】从分别标有,,,的X卡片中不放回地随机抽取2次,每次抽取1X.则抽到的2X卡片上的数奇偶性不同的概率是(A)(B)(C)(D)【答案】C10. 【2017某某,文3】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(A)(B)(C)(D)【答案】【解析】试题分析:选取两支彩笔的方法有种,含有红色彩笔的选法为种,由古典概型公式,满足题意的概率值为.本题选择C选项.【考点】古典概型【名师点睛】本题主要考查的是古典概型及其概率计算公式.,属于基础题.解题时要准确理解题意,先要判断该概率模型是不是古典概型,利用排列组合有关知识,正确找出随机事件A包含的基本事件的个数和试验中基本事件的总数代入公式.11. .【2017某某,文】16(本小题满分12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.【答案】(Ⅰ);(Ⅱ),共个,所以所求事件的概率为;(2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:共个,包含但不包括的事件所包含的基本事件有共个,所以所求事件的概率为.【考点】古典概型【名师点睛】(1)对于事件A的概率的计算,关键是要分清基本事件总数n与事件A包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A是什么,它包含的基本事件有多少个.(2)如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式P(A)=求出事件A的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重不漏.【反馈练习】1. 【2018某某某某八中三模】如图,四边形为正方形,为线段的中点,四边形与四边形也为正方形,连接,,则向多边形中投掷一点,该点落在阴影部分内的概率为()A. B. C. D.【答案】A2.【2018某某某某中学三模】在不等式组表示的平面区域内任取一个点,则的概率为()A. B. C. D.【答案】C【解析】所以概率为,故选C。
古典概型问题的求解技巧
高考数学复习点拨:古典概型问题的求解技巧古典概型问题的求解技巧山东尹征曹贤波解决古典概型问题的关键是分清基本事件总数n与事件A中包含的结果数m,而这往往会遇到计算搭配个数的困难.因此,学习中有必要掌握一定的求解技巧.一、直接列举把事件所有发生的结果逐一列举出来,然后再进行求解.例1 袋中有6个球,其中4个白球,2个红球,从袋中任意取出两个,求下列事件的概率.(1)取出的两球都是白球;(2)取出的两球一个是白球,另一个是红球.分析:首先直接列举出任取两球的基本事件的总数,然后分别列举求出两个事件分别含有的基本事件数,再利用概率公式求解.解:设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取两个的所有可能结果如下:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.(1)从袋中的6个球中任取两个,所取的两球全是白球的方法数,即是从4个白球中任取两个的方法数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的两个球全是白球的概率为:;(2)从袋中的6个球中任取两个,其中一个是红球,而另一个为白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8个. ∴取出的两个球一个是白球,另一个是红球的概率为:.二、巧用图表由于古典概型问题中基本事件个数有限,故通过图表可以形象,直观地解决这类问题.例2 一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球,求摸出2个黑球的概率. 分析:运用集合中的Venn图直观分析.解:如图所示,所有结果组成的集合U含有6个元素,故共有6种不同的结果.U的子集A有3个元素,故摸出2个黑球有3种不同的结果. 因此,摸出2个黑球的概率是:.三、逆向思维对于较复杂的古典概型问题,若直接求解有困难时,可利用逆向思维,先求其对立事件的概率,进而再求所求事件的概率.例3 同时抛掷两枚骰子,求至少有一个5点或6点的概率. 分析:直接求解,运算较繁,而利用对立事件求概率则很简捷.解:至少有一个5点或6点的对立事件是:没有5点或6点.因为没有5点或6点的结果共有16个,而抛掷两枚骰子的结果共有36个,所以没有5点或6点的概率为:.至少有一个5点或6点的概率为.四、活用对称性例4 有A,B,C,D,E共5人站成一排,A在B的右边(A,B可以不相邻)的概率是多少?解析:由于A,B不相邻,A在B的右边和B在A的右边的总数是相等的,且A在B的右边的排法数与B在A的右边的排法数组成所有基本事件总数,所以A在B的右边的概率是.。
高考数学冲刺古典概型考点全面解析
高考数学冲刺古典概型考点全面解析高考对于每一位学子来说,都是人生中的一次重要挑战。
而数学作为其中的关键学科,更是备受关注。
在数学的众多考点中,古典概型是一个不容忽视的重要部分。
在高考冲刺阶段,对古典概型进行全面且深入的复习,对于提高数学成绩具有重要意义。
一、古典概型的基本概念古典概型是一种概率模型,具有两个重要特征:有限性和等可能性。
有限性指的是试验中所有可能出现的基本事件只有有限个;等可能性则表示每个基本事件出现的可能性相等。
例如,掷一枚质地均匀的骰子,出现的点数就是一个古典概型问题。
因为骰子的点数只有 1、2、3、4、5、6 这六种可能,且每种点数出现的可能性相同。
二、古典概型的概率计算公式在古典概型中,事件 A 的概率可以通过以下公式计算:P(A) =事件 A 包含的基本事件个数/试验中所有可能的基本事件个数例如,从装有 3 个红球和 2 个白球的口袋中随机取出一个球,求取出红球的概率。
这里试验中所有可能的基本事件个数为 5(3 个红球和2 个白球),取出红球的基本事件个数为 3,所以取出红球的概率为3/5。
三、古典概型的常见题型1、摸球问题这是古典概型中常见的一类问题。
例如,一个袋子里装有 5 个红球和 3 个白球,从中随机摸出 2 个球,求摸出一红一白的概率。
解决这类问题时,首先要确定总的基本事件个数,即从 8 个球中选2 个的组合数。
然后计算摸出一红一白的基本事件个数,可以分两步考虑,先选一个红球,再选一个白球,两者相乘即为摸出一红一白的基本事件个数。
2、掷骰子问题掷骰子问题常常会与其他条件相结合。
比如,同时掷两枚质地均匀的骰子,求点数之和大于 8 的概率。
对于这种问题,需要列出所有可能的基本事件,然后找出点数之和大于 8 的基本事件个数,最后计算概率。
3、抽样问题抽样问题可以分为有放回抽样和无放回抽样。
例如,从 10 件产品中抽取 3 件,有放回抽样和无放回抽样时,抽到特定产品的概率是不同的。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧高中数学必修三中的古典概型是概率论中的重要内容之一,也是考试中的常见题型,解题技巧的掌握对于我们正确解题非常重要。
下面将介绍几种解题技巧。
一、排列与组合排列与组合是古典概型中常见的几个基本概念,掌握好它们对于解题非常有帮助。
1. 排列:将若干个不同的元素按照一定的顺序排列成一列,这个过程称为排列。
例如:从字母A、B、C中任取三个字母,按顺序排列,共有3的阶乘种。
2. 组合:从n个不同元素中任取m个,不考虑顺序,这个过程称为组合。
例如:从字母A、B、C中任取两个字母,不考虑顺序,共有3个组合。
二、古典概型的解题步骤古典概型的解题步骤可以分为以下几个步骤:1. 明确问题与假设条件:首先要明确问题的描述和假设条件,理解题意非常重要。
例如:某班有男生10名,女生8名,从中随机选出两名学生,求出两名学生都是男生的概率。
2. 确定事件:根据问题的描述和假设条件,确定所求事件。
例如:确定所求事件为“从10个男生中选出两个男生”,记为A事件。
3. 确定样本空间:确定样本空间,即实验的所有可能结果的集合。
例如:由于是从10个男生中选出两个男生,所以样本空间为所有可能的组合数,记为S={C(10,2)}。
4. 确定事件A发生的可能数:确定事件A发生的可能数,即满足所求事件的有利组合数。
例如:由于是从10个男生中选出两个男生,所以有利组合数为C(10,2)。
5. 求解所求事件的概率:根据概率的定义,求解所求事件的概率。
例如:所求事件的概率为P(A)=有利组合数/样本空间。
1. 从n个人中随机选出m个人的概率。
解题思路:根据排列与组合的知识,所求事件的概率为C(n,m)/C(n,m)。
3. 从一扑克牌中随机取出一张牌,结果是红桃的概率。
解题思路:所求事件的概率为红桃的数量/总的牌的数量。
四、注意事项在解题过程中,要注意以下几个问题:1. 明确问题的假设条件,理解题意非常重要。
2. 注意样本空间的确定,样本空间是实验中所有可能结果的集合。
高考数学考点分析指导第2节 古典概型和几何概型
第2节 古典概型与几何概型
4.随机模拟 (1)使用计算机或者其他方法进行模拟试验,以便通过这个试验求出随机事件的 概率近似值的方法就是随机模拟. (2)随机模拟的基本步骤: 第一步:用计算机产生某个范围内的随机数,并赋予每个随机数一定的意义; 第二步:统计代表某意义的随机数的个数M以及总的随机数的个数N; 第三步:计算 作为所求概率的近似值.
共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )
【答案】C
第2节 古典概型与几何概型
考点3 随机模拟的应用
10.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其
启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个都小于1的正
第2节 古典概型与几何概型
真题自测 考向速览
考点1 古典概型概率的求法
【答案】A
第2节 古典概型与几何概型
2.[课标全国Ⅱ2018·8]我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先 的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7 +23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
【答案】B
第2节 古典概型与几何概型
【答案】
第2节 古典概型与几何概型
考点3 随机模拟的应用 9.[课标全国Ⅱ2016·10]从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…, yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对
实数对(x,y);再统计两数能与1构成钝角三角形三边的数对(x,y)的个数m,最后再根据统计数m估计
π的值,假如统计结果是m=34,那么可以估计π的值约为( )
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧古典概型是概率论中的基础概念之一,常用于求解事件的概率。
以下是高中数学必修三古典概型的几种解题技巧。
一、树状图法树状图法是古典概型中常用的解题方法,它可以清晰地表示出各种可能的情况。
以硬币为例,假设有一枚硬币,抛掷两次,求出现正面向上的概率。
树状图法的步骤如下:1. 以一条直线表示硬币的抛掷过程,从左到右按顺序表示每次抛掷;2. 在直线上的每个箭头上标注相应的可能结果,如正面向上(记作“正”)和反面向上(记作“反”);3. 沿着直线不断扩展出所有可能结果,直到达到所需的抛掷次数。
通过树状图得出的所有可能结果是等可能事件,即每个事件的概率都是相等的。
我们可以通过树状图上的路径来计算事件发生的概率。
在本例中,正面向上的概率就是出现正正的路径所占的比例。
二、排列组合法排列组合法是古典概型中常用的解题方法,特别适用于解决有序排列的问题。
在排列组合中,我们经常使用的有序排列方法有全排列、排列和组合。
全排列是将一组元素全部排列出来的情况,根据全排列的特性,可以使用阶乘来表示。
从1到10的数字中取出4个数字进行全排列,可以得到4的阶乘,即4!=4x3x2x1=24种排列方式。
排列是从一组元素中取出一部分元素进行排列的情况,排列的计算公式为:P(n,m) = n! / (n-m)!,其中n表示元素的总数,m表示取出的元素个数。
三、样本空间法样本空间法是古典概型中常用的解题方法,通过列出所有可能的结果,构建样本空间,再根据事件发生的情况求解事件的概率。
以抛掷两颗骰子为例,求两颗骰子点数和为9的概率。
我们需要列出骰子所有可能的结果,即从1到6的数字,每个数字都有可能出现。
然后,我们可以根据这些可能结果来构建样本空间,得到所有可能的点数和。
在这个问题中,样本空间是一个有序对组成的集合,它包含了所有可能的点数和。
我们通过统计样本空间中点数和为9的有序对的数量,计算出该事件发生的概率。
高考数学一轮复习专题训练—古典概型与几何概型
古典概型与几何概型考纲要求1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率;3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义.知识梳理1.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(3)古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.2.几何概型 (1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法.2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)概率为0的事件一定是不可能事件.()答案(1)×(2)×(3)√(4)×解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B .415C .35D .非以上答案答案 A解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p =615=25. 3.如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.答案 0.6解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4≈30200,∴S ≈0.6.4.(2020·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B .25C .12D .45答案 A解析 从O ,A ,B ,C ,D 这5个点中任取3点,取法有{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种,其中取到的3点共线的只有{O ,A ,C },{O ,B ,D }这2种取法,所以所求概率为210=15.故选A.5.(2019·全国Ⅲ卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B .14C.13 D .12答案 D解析 设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.6. (2021·郑州模拟)公元前5世纪下半叶,希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自阴影部分的概率是________.答案π+68π+4解析 上方阴影部分的面积等于△AOB 的面积,S △AOB =12×2×2=2,下方阴影部分面积等于14×π×22-⎣⎡⎦⎤14×π×22-12×2×2=π2+1,所以根据几何概型概率公式得所求概率P =2+π2+14π+2=π+68π+4.考点一 古典概型的简单计算1.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B .35C .25D .15答案 B解析 设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.2.(2021·安徽江南十校质量检测)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A.15 B .13C .35D .23答案 A解析 6拆成两个正整数的和的所有基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的为(3,3),所以所求概率为15,故选A.3.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________. 答案 19解析 列表如下:1 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112点数的和共有点数和为5的概率P =436=19.感悟升华 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. 考点二 古典概型与其他知识的简单交汇【例1】 (1)(2020·郑州一模)已知集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任取k ∈A ,则幂函数f (x )=x k 为偶函数的概率为________(结果用数值表示).(2)(2021·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 答案 (1)14 (2)12解析 (1)集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任意k ∈A 的基本事件总数为8,当k =±2时,幂函数f (x )=x k 为偶函数,从而幂函数f (x )=x k 为偶函数包含的基本事件个数为2,∴幂函数f (x )=x k 为偶函数的概率p =14.(2)∵m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p=36=12. 感悟升华 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【训练1】 设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( ) A.18 B .14C .13D .12答案 A解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ⊥(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.考点三 古典概型与统计的综合应用【例2】 某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量为[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量为[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a3,c1),(b1,b2),(b1,c1),(b2,c1),共15种取法,其中满足条件的有(a1,b1),(a1,b2),(a1,c1),(a2,b1),(a2,b2),(a2,c1),(a3,b1),(a3,b2),(a3,c1),(b1,c1),(b2,c1),共11种,故参加节目的2户来自不同组的概率P(A)=1115.感悟升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出的信息,准确从题中提炼信息是解题的关键.【训练2】海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为6300=1 50,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415.即这2件商品来自相同地区的概率为415.考点四 几何概型角度1 与长度(角度)有关的几何概型【例3】 (1)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215B .715C .35D .1115(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.答案 (1)D (2)34解析 (1)因为f (x )=-x 2+mx +m 的图象与x 轴有公共点,所以Δ=m 2+4m ≥0,所以m ≤-4或m ≥0,所以在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率p =[-4--6]+9-09--6=1115. (2)过点C 作CN 交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠ACN 内时,AM <AC ,又∠A =45°,所以∠ACN =67.5°,故所求概率为p =67.5°90°=34.感悟升华 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 角度2 与面积有关的几何概型【例4】 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225 B .1625C .1725D .1825答案 C解析 设这两个数是x ,y ,则试验所有的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1确定的平面区域,满足条件的事件包含的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1,x +y <65确定的平面区域,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫452=1725,所以这两个数之和小于65的概率是1725.感悟升华 几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率. 角度3 与体积有关的几何概型【例5】 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 由题意得该圆柱的体积V =π×12×2=2π.圆柱内满足点P 到点O 的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V 1=12×43π×13=23π,所以所求概率p =V -V 1V =23.感悟升华 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 (1)(2021·西安一模)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( ) A.12B .13C .24D .23(2) (2020·新疆一模)剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.剪纸艺术通过一把剪刀、一张纸就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.π64B .π32C .π16D .π8答案 (1)C (2)D解析 (1)圆x 2+y 2=1的圆心为(0,0), 圆心到直线y =k (x +3)的距离为|3k |k 2+1, 要使直线y =k (x +3)与圆x 2+y 2=1相交,则|3k |k 2+1<1,解得-24<k <24. ∴在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为24-⎝⎛⎭⎫-242=24. (2)设黑色小圆的半径为r .由题意得2r +2r +2×2r =1,解得r =18,所以白色区域的面积为π·⎝⎛⎭⎫122-4×π·⎝⎛⎭⎫182-π·⎝⎛⎭⎫142=π8.所以在正方形图案上随机取一点,该点取自白色区域的概率为π81×1=π8.故选D. 基础巩固一、选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B .14C .34D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.故选A.2.袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数: 343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B .16C .29D .518答案 C解析 由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29.故选C.3. (2021·河北六校联考)《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A.a 21-p r 2B .a 21+p r 2C.a1-p rD .a1+p r答案 A解析 由几何概型的概率计算公式,得πr 2-a 2πr 2=p ,化简得π=a 21-p r 2.故选A.4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( ) A.12 B .13C .34D .25答案 B解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.5.某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15—8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( )A.23 B .58C .13D .38答案 D解析 该职工在7:50至8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率p =1540=38.故选D.6.(2021·合肥质检)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC的概率为( ) A.13 B .49C .827D .1927答案 D解析 作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC, ∴V P -ABC ≤13V S -ABC 的概率p =1-827=1927.二、填空题7.(2020·太原模拟)下课以后,教室里还剩下2位男同学和1位女同学,若他们依次随机走出教室,则第2位走出的是女同学的概率是________.答案 13解析 2位男同学记为男1,男2,则三位同学依次走出教室包含的基本事件有:男1男2女,男1女男2,女男1男2,男2男1女,男2女男1,女男2男1,共6种,其中第2位走出的是女同学包含的基本事件有2种.故第2位走出的是女同学的概率是p =26=13.8.在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 ∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a , 则所求概率为33a a =33.9.(2021·郑州质量预测改编)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故p =212=16.三、解答题10.(2020·成都诊断)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030.(2)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M)=715.11.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=1115.能力提升12.(2021·长春质检)我国古人认为宇宙万物是由金、木、水、火、土这五种元素构成的,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出.这五种物质属性的相生相克关系如图所示,若从这五种物质中随机选取三种,则取出的三种物质中,彼此间恰好有一个相生关系和两个相克关系的概率为()A.35 B .12C .25D .13答案 B解析 (列举法)依题意,三种物质间相生相克关系如下表,金木水 金木火 金木土 金水火 金水土 金火土 木水火 木水土 木火土 水火土 × √√√×××√×√所以彼此间恰好有一个相生关系和两个相克关系的概率p =510=12,故选B.13.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.14.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.。
古典概型和几何概型
一、 古典概型1)基本事件:一次试验中所有可能的结果都是随机事件,这类随机事件称为基本事件. 2)基本事件的特点:① 任何两个基本事件是互斥的;② 任何事件(除不可能事件)都可以表示成基本事件的和. 3)我们将具有这两个特点的概率模型称为古典概率模型,其特征是: ① 有限性:即在一次试验中所有可能出现的基本事件只有有限个.② 等可能性:每个基本事件发生的可能性是均等的;称这样的试验为古典概型. 4)基本事件的探索方法:① 列举法:此法适用于较简单的实验.② 树状图法:这是一种常用的方法,适用于较为复杂问题中的基本事件探索.5)在古典概型中涉及两种不通的抽取放方法,下列举例来说明:设袋中有n 个不同的球,现从中一次模球,每次摸一只,则有两种摸球的方法: ① 有放回的抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球的方法称为有放回的抽样,显然对于有放回的抽样,依次抽得球可以重复,且摸球可以无限地进行下去. ② 无放回的抽样每次摸球后,不放回原袋中,在剩下的球中再摸一只,这种模球方法称为五放回抽样,每次摸的球不会重复出现,且摸球只能进行有限次. 二、 古典概型计算公式1)如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n; 2)如果某个事件A 包括的结果有m 个,那么事件A 的概率()m P A n=. 3)事件A 与事件B 是互斥事件()()()P AB P A P B =+4)事件A 与事件B 可以是互斥事件,也可以不是互斥事件()()()()P A B P A P B P A B =+-.古典概型注意:① 列举法:适合于较简单的试验.② 树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(),x y 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如()1,2与()2,1相同.三、几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 四、几何概型的计算1)几何概型中,事件A 的概率定义为()AP A μμΩ=,其中μΩ表示区域Ω的几何度量,A μ表示区域A 的几何度量. 2)两种类型线型几何概型:当基本事件只受一个连续的变量控制时.面型几何概型:当基本事件受两个连续的变量控制时,一般是把两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决. 五、几何概型具备以下两个特征:1)无限性:即每次试验的结果(基本事件)有无限多个,且全体结果可用一个有度量的几何区域来表示;2)等可能性:即每次试验的各种结果(基本事件)发生的概率都相等.一、古典概型古典概型是基本事件个数有限,每个基本事件发生的概率相等的一种概率模型,其概率等于随机事件所包含的基本事件的个数与基本事件的总个数的比值.【题干】甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( ) A .16B .14C .13D .12【答案】D.【解析】甲、乙在同一组:113P =.甲、乙不在同一组,但相遇的概率:2111362P =+=.【点评】【题干】有十张卡片,分别写有A 、B 、C 、D 、E 和a 、b 、c 、d 、,(1)从中任意抽取一张,①求抽出的一张是大写字母的概率;②求抽出的一张是或的概率;e A a(2)若从中抽出两张,③求抽出的两张都是大写字母的概率;④求抽出的两张不是同一个字母的概率; 【答案】 【解析】 【点评】【题干】袋子中装有编号为,a b 的2个黑球和编号为,,c d e 的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率; (3)求至少摸出1个黑球的概率.【答案】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de ;(2)0.6;(3)0.7. 【解析】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de .(2)由题意知本题是一个古典概型,试验发生包含了上一问列举的所有结果,记“恰好摸出1个黑球和1红球”为事件A ,则事件A 包含的基本事件为,,,,,ac ad ae bc bd be ,共6个基本事件,所以()60.610P A ==. (3)试验发生包含的事件共有10个,记“至少摸出1个黑球”为事件B ,则B 包含的基本事件为,,,,,,ab ac ad ae bc bd be ,共7个基本事件,所以()70.710P B ==. 【点评】步骤:用列举法求出基本事件的总数n ,求出具体时间包含的基本事件数m ,根据古典概型求出概率.二、一维情形的几何概型(长度)将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 【题干】在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( ) A .13 B . 2πC . 12D . 23 【答案】A【解析】∵0cos x <<12,∴52,233x k k ππππ⎛⎫∈++ ⎪⎝⎭.当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,,,2332x ππππ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ .在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率133P ππ==.【点评】【题干】平面上有一组平行线,且相邻平行线间的距离为3cm ,把一枚半径为1cm 的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( ) A.14B .13 C . 12D .23【答案】B【解析】为了确定硬币的位置,由硬币中心O 向靠的最近的平行线引垂线OM ,垂足为M ;线段OM 长度的取值范围就是30,2⎡⎤⎢⎥⎣⎦,只有当132OM <≤时,硬币不与平行线相碰,所以所求事件的概率33110223P ⎛⎫⎛⎫=-÷-= ⎪ ⎪⎝⎭⎝⎭. 【点评】【题干】在区间[010],中任意取一个数,则它与4之和大于10的概率是______. 【答案】25【解析】在区间[010],中,任意取一个数x ,则它与4之和大于10的x 满足4x +>10, 解得610x <≤,所以,概率为1062105-=. 【点评】【题干】在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与812cm 之间的概率为( ) A .56B .12C .13D .16【答案】D.【解析】由题意可得此概率是几何概率模型.因为正方形的面积介于362m 与812m 之间,座椅正方形的边长介于6cm 到9cm 之间,即线段AM 介于6cm 到9cm 之间,所以AM 的活动范围长度为:3.由几何概型的概率公式可得31186=.【点评】【题干】某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( ) A .113 B. 19 C . 14 D . 12【答案】B【解析】整个靶子是如图所示的大圆,而距离靶心距离小于2用图中的小圆所示:故此人射击中靶点与靶心的距离小于2的概率226129P ππ==.【点评】【题干】两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( ) A.12B .13C .14D .23【答案】13. 【解析】设事件A 为“灯与两端距离都大于2m ”,根据题意,事件A 对应的长度为2m 的部分,因此,事件A 发生的概率()2163P A ==. 【点评】三、二维情形的几何概型(面积)数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,利用公式可求.【题干】如图,60AOB ∠=°,2OA =,5OB =,在线段OB 上任取一点C ,试求: (1)AOC ∆为钝角三角形的概率;(2)AOC ∆为锐角三角形的概率.【答案】(1)0.4(2)0.6【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC ∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===,即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===,即AOC ∆为锐角三角形的概率为0.6. 【点评】AOC ∆为直角三角形的概率等于0,但直角三角形AOC ∆是存在的,因此概率为0的事件不一定是不可能事件.【题干】已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.【答案】36【解析】设图中阴影部分的面积为S ,由题意可得6001251000S =⨯,解得36S =. 【点评】【题干】小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率. 【答案】 【解析】 【点评】CE DBOA【题干】在平面直角坐标系xOy 中,平面区域W 中的点的坐标(),x y 满足225x y +≤,从区域W 中随机取点(),M x y .(1)若x ∈Z ,y ∈Z ,求点M 位于第四象限的概率;(2)已知直线():0l y x b b =-+>与圆22:5O x y +=求y x b ≥-+的概率. 【答案】(1)17;(2.【解析】(1)若x Z ∈,y Z ∈,则点M 的个数共有21个,列举如下:()2,1--,()2,0-,()2,1-,()1,2--,()1,1--,()1,0-,()1,1-,()1,2-,()0,2-,()0,1-,()0,0,()0,1,()0,2,()1,2-,()1,1-,()1,0,()1,1,()1,2,()2,1-,()2,0,()2,1时,点M 位于第四象限.当点M 的坐标为()1,2-,()1,1-,()2,1-时,点M 位于第四象限.故点M 位于第四象限的概率为17. (2)由已知可知区域W 的面积是5π.因为直线:l y x b =-+与圆22:5O x y +=的弦长为,如图,可求得扇形的圆心角为23π,所以扇形的面积为125233S ππ=⨯=,则满足y x b≥-+的点构成的区域的面积为122sin 233S ππ=⨯=,所以y x b≥-+的概率为20125ππ- .【点评】【题干】如图,60AOB ︒∠=,2OA =,5OB =,在线段OB 上任取一点C ,试求:(1)AOC ∆为钝角三角形的概率; (2)AOC ∆为锐角三角形的概率. 【答案】(1)0.4 ;(2)0.6 .【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===. 【点评】【题干】在区间[]1,1-上任取两实数,a b ,求二次方程2220x ax b ++=的两根都为实数的概率. 【答案】()12P A =【解析】方程有实根的条件为22440a b ∆=-≥,即||||a b ≥.在平面直角坐标系中,点(),a b 的取值范围为如图所示,的正方形的区域,随机事件A “方程有实根”的所围成的区域如图所示的阴影部分.易求得()12P A =.【点评】四、三维情形的几何概型(体积)【题干】在Rt ABC ∆中,30A ∠=,过直角顶点C 作射线CM 交线段AB 于M,求使CE DBOAAM AC >的概率.【答案】16. 【解析】设事件D 为“作射线CM ,使AM AC >”.在AB 上取点1C 使1AC AC =,因为1A C C ∆是等腰三角形,所以118030752ACC -∠==,907515A μ=-=,90μΩ=,所以()151906P D ==. 【点评】几何概型的关键是选择“测度”,如本例以角度为“测度”.因为射线CM 落在ACB ∠内的任意位置是等可能的.若以长度为“测度”,就是错误的,因M 在AB 上的落点不是等可能的.【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. (1)设“14P ABC V V -≥”的事件为X ,求概率()P X ; (2)设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】 【解析】 【点评】【题干】一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是( ) A .18 B .116 C .127 D .38【答案】C ;【解析】容易知道,当蜜蜂在边长为10,各棱平行于玻璃容器的棱的正方体内飞行时是安全的.于是安全飞行的概率为331013027=.【点评】【题干】在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】112π-【解析】点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球外.记点P 到点O 的距离大于1为事件A ,则()3331421231212P A ππ-⨯⨯==-. 【点评】【题干】在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于等于a 的概率为( )A.2 B .2 C. 16D . 16π【答案】C【解析】本题是几何概型问题,与点A 距离等于a 的点的轨迹是一个八分之一个球面, 其体积为:33114836a a V ππ=⨯⨯=,“点P 与点O 距离大于1的概率”事件对应的区域体积为:3314836a a ππ⨯⨯=,则点P 到点A 的距离小于等于a 的概率为:33166a a ππ=.【点评】【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. ①设“14P ABC V V -≥”的事件为X ,求概率()P X ; ②设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】①()2764P X =②18【解析】①分别取,,DA DB DC上的点,,E F G,并3,3,3DE EA DF FB DG GC ===,连结,,EF FG GE ,则平面EFG 平面ABC .当P 在正四面体DEFG 内部运动时(如图),满足14P ABC V V -≥,故()33327464D EFG D ABC V DE P X V DA --⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭.②在AB 上取点H ,使3AH HB =,在AC 上取点I ,使3AI IC =,在AD 上取点J ,使3AJ JD =,P 在正四面体AHIJ 内部运动时,满足14P BCD V V -≥.结合①,当P 在正四面体DEFG 的内部及正四面体AHIJ 的内部运动时,亦即P 在正四面体EMNJ 内部运动时(M 是EG 与IJ 的交点,N 是EF 与HJ 的交点),同时满足14P ABC V V -≥且14P BCD V V -≥,于是()331281J EMN D ABC JE D Y V A V P --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭=⎭⎝.【点评】五、高考汇编【题干】(2010年江苏理科 3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率________.【答案】【解析】【点评】【题干】(2010年江苏理科4)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]5,40 中,其频率分布直方图如图所示,则其抽样的100根中,有________根在棉花纤维的长度小于20mm .【答案】【解析】【点评】【题干】(2011江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是BAB A另一个的两倍的概率是________. 【答案】13【解析】【点评】【题干】(2011江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差2s =________. 【答案】165【解析】可以先把这组数都减去6再求方差,【点评】【题干】(2012年江苏省5分)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【答案】15.【解析】分层抽样又称分类抽样或类型抽样.将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性.因此,由35015334⨯=++知应从高二年级抽取15名学生. 【点评】【题干】(2012年江苏省5分)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 【答案】35. 【解析】∵以1为首项,3-为公比的等比数列的10个数为1,3-,9,27-,···其中有5个负数,1个正数1计6个数小于8, ∴从这10个数中随机抽取一个数,它小于8的概率是63105=. 【点评】。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧古典概型是高中数学必修三中的一个重要内容,通常包括排列、组合和分组的相关知识。
在解题过程中,我们可以采用一些技巧来辅助理解和解决问题。
1. 计数原则在解决排列和组合问题时,经常会用到计数原则。
计数原则是指如果一个实验有m种可能的结果,第二个实验有n种可能的结果,则这两个实验连在一起共有m*n种可能的结果。
在古典概型中,我们可以利用计数原则来简化复杂的问题,将问题逐步分解为几个简单的实验,然后再将它们的结果相乘得到最终的结果。
2. 排列的解题技巧排列是指从n个不同元素中取出r个元素,按一定的顺序排成一列的不同排列数。
在解决排列问题时,我们可以先确定有多少种选择元素的方式,然后再确定这些选择的元素有多少种排列方式。
对于排成一排的问题,我们可以先确定有多少种不同的元素可以选择,然后再确定这些元素可以排列的方式,最后相乘得到总的排列数。
3. 组合的解题技巧组合是指从n个不同的元素中取出r个元素的不同组合数。
在解决组合问题时,我们可以利用减法原则来简化问题。
减法原则指的是,如果一个实验包含有m种结果,并且有n种结果不合法,那么合法的结果数等于m-n。
在组合问题中,我们可以先确定有多少种选择元素的方式,然后再确定其中有多少种不合法的选择方式,最后用减法原则得到合法的结果数。
4. 分组的解题技巧分组是指将n个不同的元素分成r组的不同分组方式。
在解决分组问题时,我们可以利用排列和组合的知识来辅助理解。
分组问题可以看成是先将n个元素排成一列,然后再在这些元素之间加上r-1个隔板,最后将其中的分组方式看成是在这些元素和隔板中选择r-1个位置,并且将这些位置放上隔板。
这样就可以用组合数来求出分组的方式。
5. 确定权重在古典概型的问题中,有时候我们需要确定每个元素的权重,并且根据权重来求出最终的结果。
确定权重通常可以通过分情况讨论、排列组合的知识和实际问题的特点来得到。
通过确定权重,我们可以简化问题,并且找到最优的解决方式。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧概率论是数学中的一个重要分支,而“古典概型”是其中的基础概念之一。
在高中课程中,学生需要学习古典概型的概念、基本公式及其在实际问题中的应用。
本文将介绍一些古典概型的解题技巧,供学生参考。
一、古典概型的定义和公式古典概型是指试验所有可能的结果都是等可能发生的概率问题。
具体来说,古典概型要求试验的结果具有以下两个特点:1.试验的所有结果都是确定的;2.试验的每个结果发生的可能性相等。
对于一个具有n个等可能结果的试验,其中发生某一事件A的可能性为:P(A)=m/n其中m为事件A包含的有利结果数。
这个公式是古典概型的基础公式。
二、解题技巧1.画出样本空间对于一个古典概型问题,首要任务是确定样本空间。
样本空间是指试验中可能发生的所有结果的集合。
一个简单的技巧是画出样本空间的图形。
例如,在一次抛硬币的试验中,样本空间为{正面,反面},可以通过画出一张抛硬币的图像来形象地表示出来。
2.确定事件A一旦确定了样本空间,就需要确定事件A。
事件A是指样本空间中发生某种结果的集合。
它通常是通过一些自然语言描述的。
在确定事件A时,需要明确其含义,确定其范围和有价值的信息。
3.计算概率一旦确定了事件A和样本空间,就可以使用古典概型的基础公式计算概率。
需要包括以下步骤:2.计算事件A的有利结果数;例如,在一次掷骰子的试验中,样本空间为{1,2,3,4,5,6},事件A是小于等于4的结果,有利结果数为4,因此:4.注意问题描述的精确性在解题过程中,需要注意问题描述的精确性。
有些问题并不是古典概型问题,而是其他概率问题,如条件概率、贝叶斯公式等。
因此,在解题时需要仔细阅读问题,理解问题所涉及的概念和知识点。
5.利用公式简化计算根据古典概型的基础公式,可以利用数学计算和逻辑推理来简化计算,例如通过分式的化简和比例的运用等。
同时,需要注意计算中的精度和舍入误差。
6.灵活应用法则古典概型涉及到的概率基本概念和公式被广泛应用于各个领域和实际问题中。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧古典概型是概率论中最基本的一种概型,适用于试验的结果只有有限个、且每个结果发生的概率相等的情形。
在高中数学必修三中,我们学习了古典概型的基本概念和计算方法。
本文将介绍几种在解古典概型问题时常用的技巧。
一、加法原理在一些试验中,我们需要统计的实验结果并不是唯一的,而是可以通过不同的方法得到。
此时,可以使用加法原理求解。
加法原理的基本思想是:如果两个事件A、B互不干扰,即A事件的发生与B事件的发生无关,那么A、B两事件至少发生一个的概率等于两事件的概率之和,即P(A或B)=P(A)+P(B)。
例如,有6只红球和4只蓝球,从中任取一球,求取到的是红球或蓝球的概率。
此题实验结果可以是取到红球或蓝球,因此可以使用加法原理求解:P(红球或蓝球)=P(红球)+P(蓝球)=6/10+4/10=1。
需要注意的是,加法原理只适用于互不干扰的事件,如果A事件的发生与B事件的发生相关,则需要使用另外一种原理进行计算。
在一些试验中,我们需要统计若干个事件共同出现的概率。
此时,可以使用乘法原理进行计算。
乘法原理的基本思想是:如果试验中包含m个步骤,每个步骤有n1,n2,...,nm种不同的可能结果,且每个步骤的结果与其他步骤的结果无关,那么所有步骤的结果组合起来的总方案数为n1×n2×...×nm。
例如,从4个人中任选3位代表参加会议,求选出的代表组合中,甲、乙两人都参加的概率。
此题实验结果包括三个步骤:第一步,任选一名代表;第二步,从剩下的人中任选一名代表;第三步,从剩下的人中任选一名代表。
每个步骤的结果都对下一个步骤的结果没有影响,因此可以使用乘法原理求解:P(甲、乙都参加)=选甲的概率×选乙的概率×选第三人的概率=1/4×1/3×2/2=1/6。
三、排列组合在一些试验中,我们需要计算的实验结果具有一定的排列顺序或组合顺序,此时需要使用排列组合知识。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧古典概型是概率论中的一种重要概念,它是指一个事件发生的可能性相同且互不影响的情况下,求解概率的问题。
在高中数学的必修三中,我们学习了多种古典概型的解题技巧,下面将针对其中的几种技巧进行详细介绍。
我们来看排列组合的解题技巧。
排列是指从一组对象中按照一定顺序取出若干个对象,组成一个序列的方法数。
组合是指从一组对象中取出若干个对象,组成一个集合的方法数。
在解题中,我们需要灵活运用排列组合的知识,包括使用公式计算,找到适当的切入点,辨别问题中的约束条件等。
在解决选择与安排问题时,我们可以使用乘法原理求解,即把分步进行的多次选择和安排看成一个整体,求整体的方法数。
而在解决分发与邮件问题时,我们可以使用加法原理求解,即将问题划分为多个情况,再将各个情况的方法数相加。
通过灵活运用排列组合的知识,我们可以快速解决各类概率问题。
我们来看事件的互斥与对立的判断。
互斥事件是指两个事件不可能同时发生的情况,对立事件是指两个事件一定有一个发生的情况。
在解题中,我们需要根据问题的描述和事件的性质来判断互斥事件和对立事件。
在解决投掷硬币的问题时,我们可以把事件定义为“正面向上出现”和“反面向上出现”,这两个事件即为对立事件,因为它们一定有一个发生。
而在解决从一个扑克牌中选取一张红色牌的问题时,我们可以把事件定义为“选择一张红桃牌”和“选择一张方块牌”,这两个事件即为互斥事件,因为红桃牌和方块牌不可能同时被选取。
通过正确判断互斥事件和对立事件,我们可以简化概率计算过程,提高解题效率。
我们还要注意事件的独立性和依赖性。
独立事件是指两个事件的发生与否彼此无关的情况,依赖事件是指一个事件的发生与否依赖于另一个事件的情况。
在解题中,我们需要根据问题的描述和事件的性质来判断事件的独立性和依赖性。
在解决从一个扑克牌中选择两张黑桃牌的问题时,如果我们选择完第一张黑桃牌后,放回去再选择第二张黑桃牌,那么这两个事件是独立的,因为第一张黑桃牌的选择不会影响第二张黑桃牌的选择。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧古典概型是高中数学必修三中重要的一部分,涉及排列、组合、分配等问题。
在解题过程中,有一些常用的解题技巧可以帮助我们更轻松地解决古典概型的问题。
下面我们就来讨论几种解题技巧。
技巧一:分清题目中的条件在解决古典概型的问题时,首先要准确地理解题目,并分清题目中给出的条件。
只有了解了题目的条件,我们才能采取正确的方法解题。
当遇到排列组合的问题时,有时题目中会有特殊的条件,比如有些元素不能相邻,有些元素需要排在一起等,这些都是我们在解题时需要注意的地方。
技巧二:理清解题的思路在解决古典概型的问题时,我们需要理清解题的思路,选择合适的方法来解决问题。
通常情况下,我们可以采用排列、组合和分配等方法,根据题目中给出的条件来选择合适的方法。
当遇到要求从n个不同元素中取r个元素进行排列或组合的问题时,我们可以考虑使用排列组合的方法来解题,而当遇到要将n个元素进行分配的问题时,我们则可以考虑使用分配的方法来解题。
技巧三:灵活运用公式在解决古典概型的问题时,我们可以灵活运用排列组合的公式来解题。
排列和组合的公式可以帮助我们快速求解问题,并且减少计算的时间。
技巧四:多做练习在解决古典概型的问题时,我们需要多做练习,熟练掌握排列、组合和分配等方法的运用技巧。
只有通过多做练习,我们才能更加熟练地运用这些方法来解决古典概型的问题。
通过多做练习,我们还可以了解各种题型的解题思路,掌握不同类型题目的解题技巧,提高解题的效率。
技巧五:善于总结在解决古典概型的问题时,我们需要善于总结解题的方法和技巧。
通过总结,我们可以发现一些解题的规律,提高解题的效率。
我们可以总结解不相邻排列的方法和技巧,总结解相邻排列的特殊情况,总结解各种特殊条件下的排列组合和分配的技巧。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧1、排列组合问题古典概型中的排列组合问题是指从 n 个不同元素中取 r 个元素,考虑元素之间的排列或不考虑排列,求其组合数或排列数。
1.1 组合数设有 n 个不同元素,则从中取出 r 个元素的组合数为 C(n,r)。
其计算公式为:C(n,r)=n!/(r!×(n-r)!)例如,从 5 个不同字母中取出 3 个,不考虑排列方式,其组合数为:C(5,3)=5!/(3!×2!)=101.2 排列数2、二项式定理二项式定理是代数中的重要定理,它可以将一个二项式的幂展开为多项式。
二项式定理可以推广到实数、复数或矩阵等范畴中,但本文中仅考虑其在古典概型中的应用。
2.1 二项式定理的基本形式(a+b)^n=C(n,0)×a^n+C(n,1)×a^(n-1)b+⋯+C(n,k)×a^(n-k)b^k+⋯+C(n,n)×b^n其中,a、b 是任意实数,n 是任意非负整数,C(n,k) 为组合数。
二项式定理可以用于求和式,其中最常见的是求幂和式,例如:1+2+3+⋯+n=?分析该式,可将其改写为:再利用二项式定理,展开为多项式:(1+1)^2-(1^2)=2^2-(2^2)+3^2-(3^2)+⋯+n^2-(n-1)^2整理后得到:当从 n 个元素中取出 r 个元素,并排列时,元素可重复,其排列数为 n^r。
4^3=644、贝努利试验和二项分布贝努利试验是实验条件非常简单的一类随机试验,其特点是只有两个可能的结果,例如正反面、违法合法等。
二项分布是指对 n 次独立的贝努利试验中,成功次数的统计分布。
4.1 贝努利试验在贝努利试验中,设试验只有两个可能的结果,其中一个记作成功,发生的概率为 p,另一个记作失败,发生的概率为 q=1-p。
则进行 n 次独立的贝努利试验,设成功的次数为 X,则 X 的可能取值为 0 到 n,其分布律为:P(X=k)=C(n,k)×p^k×(1-p)^(n-k),k=0,1,2,⋯,n其中 P(X=k) 表示成功 k 次的概率,C(n,k) 表示从所有试验中取出 k 次成功的组合数。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧
在高中数学必修三中,古典概型是一个非常重要的概念。
古典概型是指一个实验中所有可能的元素都是等概率发生的,且实验间相互独立的情况。
解题时,可以使用以下几种技巧:
1. 树形图法:树形图法是一种直观的解题方法,可以清晰地展示出实验的过程和每个事件的发生情况。
将实验的每个步骤用树状结构表示出来,然后根据题目给出的条件计算出每个事件的概率,最后求出所需的概率。
2. 排列组合法:排列组合法是一种常用的解题方法,在古典概型中也可以有效地运用。
对于排列问题,可以使用排列公式计算出不同元素排列的数量;对于组合问题,可以使用组合公式计算出不同元素组合的数量。
根据题目的要求,计算出所需的事件发生的概率。
3. 计数法:在某些情况下,使用计数法可以更简单地解题。
计数法包括乘法原理和加法原理。
乘法原理可以用来求解多个独立事件同时发生的概率,而加法原理可以用来求解至少发生一个事件的概率。
4. 两个集合的关系:在古典概型中,常常涉及到两个集合之间的关系,例如并集、交集、差集等。
通过理解和运用集合的基本运算规律,可以简化解题过程。
特别是当两个集合之间相互独立时,可以直接使用集合的概率计算方法求解。
5. 概率的加法与乘法原理:概率的加法原理指的是当两个事件互斥时,它们的概率相加等于它们各自发生的概率之和;概率的乘法原理指的是当两个事件相互独立时,它们的概率相乘等于它们各自发生的概率之积。
这两个原理是古典概型解题中常用的技巧,可以根据题目条件合理运用。
古典概型解题技巧
古典概型解题技巧摘要概率论是数学学科中从数量的侧面来研究部分随机现象的规律性方面,其理论和方法渗透到了自然科学的各个领域,而古典概型是古典概率论的主要研究内容之一,也是概率论的研究中的一个经典的研究概型。
古典概型的主要研究对象是等可能事件,深入研究古典概型有助于我们更好地理解概率论中一些基本的概念,掌握概率论中的基本规律,有助于我们提高分析问题和解决问题的能力。
本文主要研究古典概型中的摸球问题,分球入盒问题,随机取数问题等几种模型,分析其解题思路,总结解题技巧以及思考其应用范围。
关键词:古典概型;分球入盒;摸球问题TitleAbstractKeywords:1 古典概型简介随机现象,是现实生活中非常常见,非常普遍的一种现象。
事件的发生或者是其走向,都是由随机决定的。
而这些随机性的事件都可以用概率模型来进行一定的分析,以求得相对准确的期望值。
随机性虽然容易给人们生活带来一定的烦恼,但同时也是最公平的象征。
在模拟计算,统计运筹中都有运用概率论的思想以及方法,所以,概率论有着明显的现实意义以及数学应用范畴。
在概率论的发展过程中,数学家们根据不同的问题,从各个不同的角度,给与了概率不同的定义和计算的方法。
但是这些定义或者计算的方法往往针对的是非常具体类型的事件和情况,所以多数都有一定的缺点,常常只是经验公式。
而经过长期的发展,概率论先后给出了古典概率,几何概率,统计概率,最后才给出了概率的数学定义。
在所有的随机事件中,有一类随机事件有两个明显的特点:第一,只有有限个可能的结果;第二,每个结果发生的可能性相同。
这类随机事件是概率论初期的研究对象,我们也把这类事件叫做古典概型。
2 古典概型的计算我们可以根据古典概型的等可能性和有限性的特点,得出模型下的概率。
古典概型的概率计算过程可以分解为三个步骤:第一,确定所研究的对象为古典概型;第二,计算样本点数;第三,利用公式计算概率。
如果本次随机事件只有有限个可能的结果,并且每一个可能的结果出现的可能性相同,则可以确定该事件为古典概型问题。
高中数学必修三古典概型的几种解题技巧
高中数学必修三古典概型的几种解题技巧高中数学必修三古典概型是数学中非常重要的一个部分,它涵盖了排列、组合和二项式定理等内容。
对于很多学生来说,古典概型的问题常常是解题困难的地方,因此需要一些解题技巧来帮助学生更好地理解和解决古典概型的问题。
本文就将介绍古典概型的几种解题技巧,希望能够帮助学生更好地掌握这一部分内容。
1. 排列和组合的区别和应用在古典概型中,排列和组合是两个非常重要的概念。
排列是指从一组元素中按照一定顺序取出一部分元素,组成一个序列,这个序列就是一种排列。
而组合则是从一组元素中取出一部分元素,不考虑元素之间的顺序,这个取出的元素的集合就是一种组合。
在解决古典概型的问题时,学生首先要清楚排列和组合的区别,并根据问题的具体情况选择使用排列还是组合的方法。
如果问题需要考虑元素的顺序,就应该使用排列的方法;而如果问题不考虑元素的顺序,就应该使用组合的方法。
掌握这一点可以帮助学生更准确地解决古典概型的问题。
2. 使用数列的思想解决排列和组合的问题在解决古典概型的问题时,有时候可以使用数列的思想帮助我们更好地理解和解决问题。
在排列和组合的问题中,可以将问题中的元素看作数列中的元素,然后根据数列的性质来解决问题。
这样做可以帮助学生更加直观地理解问题,并且可以减少一些繁杂的计算,提高解题速度。
二项式定理是古典概型中常用的计算公式,它可以帮助我们快速计算排列和组合的个数。
在解决古典概型的问题时,可以运用二项式定理来简化计算过程,提高解题效率。
学生也应该掌握二项式定理的基本性质,以便在解题过程中灵活运用。
4. 利用化简和递推的方法解决古典概型的问题在解决古典概型的问题时,学生应该根据问题的具体情况选择合适的解题方法,灵活运用排列、组合、二项式定理等知识,同时也要注重化简和递推的方法,以便更好地理解和解决问题。
希望以上几种解题技巧能够帮助学生更好地掌握古典概型的知识,提高解题能力,取得更好的学习成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高考地位】
古典概型与几何概型是高考中的常考知识点,对于古典概型,列举法仍是求解其概率的主要方法,而与排列、组合问题相结合的概率问题仍是命题的热点;对于几何概型除掌握其定义外,其题型的重点主要体现在两种常见的几何度量——长度、面积,难度不会太大,但题型可能较灵活,背景更新颖.在高考中通常是以易题出现,主要以选择题、填空题和解答题的形式考查,其试题难度属中档题.
【方法点评】
类型一古典概型的计算策略
使用情景:求古典概型的概率
解题模板:第一步判断试验是否是等可能的,其基本事件的个数是否是有限个;
第二步分别计算事件A包含的基本事件的个数和基本事件的总数;
第三步运用古典概型的计算公式计算即可得出结论.
例1.箱中有6张卡片,分别标有1,2,3, (6)
(1)抽取一张记下号码后不放回,再抽取一张记下号码,求两次之和为偶数的概率;
(2)抽取一张记下号码后放回,再抽取一张记下号码,求两个号码中至少一个为偶数的概率.
【变式演练1】端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个,则三种粽子各取到1个的概率是()
A. B. C. D.
【变式演练2】4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()
【变式演练3】如上图,在某城市中,M,N两地之间有整齐的方格形道路网,其中A1、A2、A3、A4是道路网中位于一条对角线上的4个交汇处.今在道路网M,N处的甲、乙两人分别要到N,M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N,M处为止.(1)求甲经过A2到达N 处的方法有多少种;(2)求甲、乙两人在A2处相遇的概率;(3)求甲、乙两人相遇的概率.
类型二几何概型的计算策略
使用情景:求几何概型的概率
解题模板:第一步 判断试验是否是等可能的,其基本事件的个数是否是无限个;
第二步 分别计算事件A 和基本事件所包含的区域长度、面积或体积等;
第三步 运用几何概型的计算公式计算即可得出结论.
例2 在集合A ={m|关于x 的方程x 2+mx +34
m +1=0无实根}中随机地取一元素m ,恰使式子lgm 有意义的概率为________.
例3.在平面区域{(x ,y)|y≤-x 2
+2x ,且y≥0}内任意取一点P ,则所取的点P 恰是平面区域{(x ,y)|y≤x,x +y≤2,且y≥0}内的点的概率为________.
【变式演练4】已知矩形ABCD ,5=AB ,7=BC ,在矩形ABCD 中随机取一点P ,则90APB ︒∠>出现的概率为 ()
A .556π
B .556
C .528π
D .528
【变式演练5】一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )
A .649
B .21
C .641
D .8
1 【变式演练6】16.如图,在边长为1的正方形OABC 中任取一点,则该点落在阴影部分中的概率为 .
【高考再现】
1.【2015高考新课标1,文4】如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
(A ) 310 (B )15 (C )110 (D )120
2.【2015高考广东,理4】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。
从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )
A .1 B. 2111 C. 2110 D. 21
5 3.【2015高考山东,文7】在区间[]0,2上随机地取一个数x ,则事件“12
1
-1log 2x ≤+≤()
1”发生的概率为( ) (A )
34 (B )23 (C )13 (D )14
4.【2015高考陕西,文12】 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( ) A .3142π+ B . 112π+ C .1142π- D . 112π
- 5.【2015高考湖北,文8】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤
”的概率,2p 为事件“12
xy ≤”的概率,则( ) A .1212p p <<
B .1212p p <<
C .2112p p <<
D .2112
p p << 6.【2015高考广东,文7】已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )
A .0.4
B .0.6
C .0.8
D .1
7.【2015高考福建,文8】如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点
D 在函数1,0()11,02
x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机 取一点,则该点取自阴影部分的概率等于( )
A .16
B .14
C .38
D .12
8.【2015高考重庆,文15】在区间[0,5]上随机地选择一个数p ,则方程22320x px p ++-=有两个负根
的概率为________.
9.【2015高考安徽,文17】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为
[40,50],[50,60],,[80,90],[90,100]
(Ⅰ)求频率分布图中a 的值;
(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;
(Ⅲ)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.
10.【2015高考湖南,文16】(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球12,A A 和1个白球B 的甲箱与装有2个红球12,a a 和2个白球12,b b 的
乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖。
(I )用球的标号列出所有可能的摸出结果;
(II )有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由。
11.【2015高考陕西,文19】随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
(I)在4月份任取一天,估计西安市在该天不下雨的概率;
(II)西安市某学校拟从4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的概率.
12.【2015高考天津,文15】(本小题满分13分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.
(I )求应从这三个协会中分别抽取的运动员人数;
(II )将抽取的6名运动员进行编号,编号分别为123456,,,,,A A A A A A ,从这6名运动员中随机抽取2名参加双打比赛.
(i )用所给编号列出所有可能的结果;
(ii )设A 为事件“编号为56,A A 的两名运动员至少有一人被抽到”,求事件A 发生的概率.
【反馈练习】
1. 从标有1,2,3,4,5,6的6张纸片中任取2张,那么这2张纸片数字之积为6的概率是( )
A .1
5 B .115 C .215 D .13
2.从写上0,1,2,…,9 十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片数字各不相同的概率是
A .109
B .1001
C .90
1 D .1 3.已知函数()1f x kx =+,其中实数k 随机选自区间[2,1]-,则对]1,1[-∈∀x ,都有0)(≥x f 恒成立的概率是 .
4.连续抛掷两次骰子,得到的点数分别为n m ,,记向量()(),,1,1a m n b →→==-的夹角为θ,则0,2πθ⎛
⎤∈ ⎥⎝⎦
的概率是( )
A .512
B .12
C .712
D .56
5.记集合(){}()221,1,,0
0x y A x y x y B x y x y ⎧+≤⎧⎫⎪⎪⎪=+≤=≥⎨⎨⎬⎪⎪⎪≥⎩⎭
⎩构成的平面区域分别为M,N ,现随机地向M 中抛一粒豆子(大小忽略不计),则该豆子落入N 中的概率为_________.
6.在长为12cm 的线段AB 上任取一点C ,现作一矩形,使邻边长分别等于线段AC 、CB 的长,则该矩形面积大于20cm 2
的概率为__________.
7.已知书架中甲层有英语书2本和数学书3本,乙层有英语书1本和数学书4本.现从甲、乙两层中各取两本书.
(1)求取出的4本书都是数学书的概率.
(2)求取出的4本书中恰好有1本是英语书的概率.
8.山东省济南市为了共享优质教育资源,实现名师交流,甲、乙两校各有3名教师报名交流,其中甲校2男1女,乙校1男2女.
(Ⅰ)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(Ⅱ)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
:。