指派问题的匈牙利法
指派问题的匈牙利法
第三步:作最少的直线覆盖所有0元素。 (1)对没有◎的行打√号; (2)对已打√号的行中所有含Ø元素的列打√号; (3)再对打有√号的列中含◎ 元素的行打√号;
(4)重复(2),(3)直到得不出新的打√号的行、列为止; (5)对没有打√号的行画横线,有打√号的列画纵线, 这就得到覆盖所有0元素的最少直线数 l 。l 应等于m, 若不相等,说明试指派过程有误,回到第二步(4),另 行试指派;若 l=m < n,须再变换当前的系数矩阵, 以找到n个独立的0元素,为此转第四步。
√
l =m=4 < n=5
2 ◎0 4 2 4 2 5 Ø0 3 ◎0 4 1 ◎0 1 3 4 Ø0 3 5 1 ◎0 2 3 0Ø 5
1 0 3 1 3 2 6 0 3 0 4 2 0 1 3 3 0 2 4 0 0 3 3 0 5
1 0 3 1 3 2 6 0 3 0 4 2 0 1 3 3 0 2 4 0 0 3 3 0 5
0Ø ◎0 3 0Ø 3 1 6 0◎ 2 Ø0 3 2 0Ø 0◎ 3 2 Ø0 2 3 ◎0 ◎0 4 4 0Ø 6
28
此问题有多个最优解
0◎ 0Ø 3 0Ø 3 1 6 0Ø 2 ◎0 3 2 0◎ 0Ø 3 2 ◎0 2 3 0Ø 0Ø 4 4 0◎ 6
Ø0 0Ø 3 ◎0 3 1 6 0Ø 2 ◎0 3 2 0◎ 0Ø 3 2 ◎0 2 3 0Ø 0◎ 4 4 0Ø 6
15 14 6 6 10
4 10 7 10 9
减去最小元素
5 0 2 0 2
2
3
0
0
指派问题匈牙利算法最大值
指派问题匈牙利算法最大值
指派问题是一个优化问题,旨在确定如何将 n 个任务分配给 n 个人员,以便完成总成本最小或总利润最大。
匈牙利算法是解决指派问题的经典算法之一,通过寻找增广路径来找到最大权值的匹配。
在指派问题中,我们有一个 n x n 的成本矩阵,其中的每个元素表
示将特定任务分配给特定人员的成本或利润。
问题的目标是找到一种分配方式,使得总成本最小或总利润最大。
匈牙利算法是一种基于图论的算法,它通过构建二分图和寻找增广路径来解决指派问题。
算法的核心思想是通过不断改进当前的匹配,直到找到最优解。
具体来说,匈牙利算法的步骤如下:
1. 初始化一个空的匹配集合。
2. 对于每个任务,找到一个未被分配的人员,并将其分配给该任务。
如果该任务没有未被分配的人员,则考虑将其他任务分配给当前人员,并将当前任务分配给其它人员。
3. 如果存在一个未被匹配的任务,寻找一条从该任务出发的增广路径。
增广路径是一条交替经过匹配边和非匹配边的路径,起点和终点都是未匹配的任务。
4. 如果存在增广路径,则改进当前的匹配,即通过将增广路径上的
非匹配边变为匹配边,并将增广路径上的匹配边变为非匹配边。
5. 重复步骤3和步骤4,直到不存在增广路径为止。
匈牙利算法的运行时间复杂度为 O(n^3),其中 n 是任务或人员的数量。
该算法可以找到指派问题的最优解,并且在实践中表现良好。
总之,指派问题是一个重要的优化问题,而匈牙利算法是一种解决指派问题的经典算法。
通过构建二分图并寻找增广路径,匈牙利算法可以找到指派问题的最优解。
求解指派问题的匈牙利算法.doc
3.2 求解指派问题的匈牙利算法由于指派问题的特殊性,又存在着由匈牙利数学家D.Konig 提出的更为简便的解法—匈牙利算法。
算法主要依据以下事实:如果系数矩阵)(ij c C =一行(或一列)中每一元素都加上或减去同一个数,得到一个新矩阵)(ij b B = ,则以C 或B 为系数矩阵的指派问题具有相同的最优指派。
利用上述性质,可将原系数阵C 变换为含零元素较多的新系数阵B ,而最优解不变。
若能在B 中找出n 个位于不同行不同列的零元素,令解矩阵中相应位置的元素取值为1,其它元素取值为零,则所得该解是以B 为系数阵的指派问题的最优解,从而也是原问题的最优解。
由C 到B 的转换可通过先让矩阵C 的每行元素均减去其所在行的最小元素得矩阵D ,D 的每列元素再减去其所在列的最小元素得以实现。
下面通过一例子来说明该算法。
例7 求解指派问题,其系数矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=16221917171822241819211722191516C 解 将第一行元素减去此行中的最小元素15,同样,第二行元素减去17,第三行元素减去17,最后一行的元素减去16,得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=06310157124074011B 再将第3列元素各减去1,得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=****20531005711407301B 以2B 为系数矩阵的指派问题有最优指派⎪⎪⎭⎫ ⎝⎛43124321 由等价性,它也是例7的最优指派。
有时问题会稍复杂一些。
例8 求解系数矩阵C 的指派问题⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=61071041066141512141217766698979712C 解:先作等价变换如下∨∨∨⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----- 2636040*08957510*00*0032202*056107104106614151214121776669897971246767 容易看出,从变换后的矩阵中只能选出四个位于不同行不同列的零元素,但5=n ,最优指派还无法看出。
第五章 匈牙利法与最佳指派问题
7 2 2
4
3
8 3 5 3
11 8
4
4 1 4
情况一出现,即得到了最优解,其相应的解矩阵为:
0 1 0 0 0
0 0 1 0 0
xij
1
0
0
0
0
0 0 0 1 0
0 0 0 0 1
由此得知最优指派方案为甲完成任务B,乙完成任务
C,丙完成任务A,丁完成任务D,戊完成任务E,最少时
间为
min z 7 6 7 6 6 32
而总的最少时间为32天.
当然,由于方法中的第二步4中的情况二的出现,造成 指派问题的最优解常常是不唯一的,但不同最优解的 最优值总是相同的.
第三节 非标准指派问题
前一节的匈牙利法只适用于目标函数为极小、价值 系数矩阵为方阵且价值系数矩阵中元素均为非负的情况。 当指派问题不满足上述三个条件时,就应先化成标准的 指派问题,然后再用匈牙利法求解.
解:
ABC DEF
甲 16 10 12 15 0 0 8 2
甲 16 10 12 15 0 0
8
2
乙 11 12 10 18 0 0 3 2 3
乙
11
12
10
18
0
0
3
2
3
丙 8 17 13 16 0 0 7 3 1
丙
8
17 13 16
0
0
7
3
1
8 10 10 15
本例经过反复的行、列检验后得到如下矩阵:
5 2 2
2
3
10 5 7 5
9
8
4
6 3 6 2
情况三出现,亦即未得到完全分配方案,求解过程 按以下步骤继续进行。
指派问题与匈牙利算法
当人数m小于工作数n时,加上n-m个人,例如
7 0 C ′= 8 4
0 19 2 8 17 0 7 11 0 0 10 2
0 9 2 8 7 0 7 1 0 0 0 2
1 1 最优解: 最优解: X= 1 1
即甲安排做第二项工作、乙做第三项、丙做第四项、丁做第三项。 总分为: = + + + = 总分为:Z=92+95+90+80=357
§5.5 指派问题 Assignment Problem
Ch5 Integer Programming
2011年5月9日星期一 Page 6 of 12
用匈牙利法求解:
10 3 22 0 8 17 C ′= 13 12 16 9 5 15 7 0 C ′= 8 4
5 0 5 7
则 与
′ m w = ∑∑cij xij in
i j
m z = ∑∑cij xij ax
i j
的最优解相同。
§5.5 指派问题 Assignment Problem
Ch5 Integer Programming
2011年5月9日星期一 Page 5 of 12
【例】某人事部门拟招聘4人任职4项工作,对他们综合考评的 例 得分如下表(满分100分),如何安排工作使总分最多。
2011年5月9日星期一 Page 4 of 12
求最大值的指派问题 匈牙利法的条件是:模型求最小值、效率cij≥0 设C=(cij)m×m 对应的模型是求最大值 将其变换为求最小值 令
运筹学指派问题的匈牙利法
运筹学课程设计指派问题的匈牙利法专业:姓名:学号:1.算法思想:匈牙利算法的基本思想是修改效益矩阵的行或列,使得每一行或列中至少有一个为零的元素,经过修正后,直至在不同行、不同列中至少有一个零元素,从而得到与这些零元素相对应的一个完全分配方案。
当它用于效益矩阵时,这个完全分配方案就是一个最优分配,它使总的效益为最小。
这种方法总是在有限步內收敛于一个最优解。
该方法的理论基础是:在效益矩阵的任何行或列中,加上或减去一个常数后不会改变最优分配。
2.算法流程或步骤:1.将原始效益矩阵C的每行、每列各元素都依次减去该行、该列的最小元素,使每行、每列都至少出现一个0元素,以构成等价的效益矩阵C’。
2.圈0元素。
在C’中未被直线通过的含0元素最少的行(或列)中圈出一个0元素,通过这个0元素作一条竖(或横)线。
重复此步,若这样能圈出不同行不同列的n个0元素,转第四步,否则转第三步。
3.调整效益矩阵。
在C’中未被直线穿过的数集D中,找出最小的数d,D中所有数都减去d,C’中两条直线相交处的数都加的d。
去掉直线,组成新的等价效益矩阵仍叫C’,返回第二步。
X=0,这就是一种最优分配。
最低总4.令被圈0元素对应位置的X ij=1,其余ij耗费是C中使X=1的各位置上各元素的和。
ij算法流程图:3.算法源程序:#include<iostream.h>typedef struct matrix{float cost[101][101];int zeroelem[101][101];float costforout[101][101];int matrixsize;int personnumber;int jobnumber;}matrix;matrix sb;int result[501][2];void twozero(matrix &sb);void judge(matrix &sb,int result[501][2]);void refresh(matrix &sb);void circlezero(matrix &sb);matrix input();void output(int result[501][2],matrix sb);void zeroout(matrix &sb);matrix input(){matrix sb;int m;int pnumber,jnumber;int i,j;float k;char w;cout<<"指派问题的匈牙利解法:"<<endl;cout<<"求最大值,请输入1;求最小值,请输入0:"<<endl;cin>>m;while(m!=1&&m!=0){cout<<"请输入1或0:"<<endl;cin>>m;}cout<<"请输入人数(人数介于1和100之间):"<<endl;cin>>pnumber;while(pnumber<1||pnumber>100){cout<<"请输入合法数据:"<<endl;cin>>pnumber;}cout<<"请输入工作数(介于1和100之间):"<<endl;cin>>jnumber;while(jnumber<1||jnumber>100){cout<<"请输入合法数据:"<<endl;cin>>jnumber;}cout<<"请输入"<<pnumber<<"行"<<jnumber<<"列的矩阵,同一行内以空格间隔,不同行间以回车分隔,以$结束输入:\n";for(i=1;i<=pnumber;i++)for(j=1;j<=jnumber;j++){cin>>sb.cost[i][j];sb.costforout[i][j]=sb.cost[i][j];}cin>>w;if(jnumber>pnumber)for(i=pnumber+1;i<=jnumber;i++)for(j=1;j<=jnumber;j++){sb.cost[i][j]=0;sb.costforout[i][j]=0;}else{if(pnumber>jnumber)for(i=1;i<=pnumber;i++)for(j=jnumber+1;j<=pnumber;j++){sb.cost[i][j]=0;sb.costforout[i][j]=0;}}sb.matrixsize=pnumber;if(pnumber<jnumber)sb.matrixsize=jnumber;sb.personnumber=pnumber;sb.jobnumber=jnumber;if(m==1){k=0;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.cost[i][j]>k)k=sb.cost[i][j];for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)sb.cost[i][j]=k-sb.cost[i][j];}return sb;}void circlezero(matrix &sb){int i,j;float k;int p;for(i=0;i<=sb.matrixsize;i++)sb.cost[i][0]=0;for(j=1;j<=sb.matrixsize;j++)sb.cost[0][j]=0;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.cost[i][j]==0){sb.cost[i][0]++;sb.cost[0][j]++;sb.cost[0][0]++;}for(i=0;i<=sb.matrixsize;i++)for(j=0;j<=sb.matrixsize;j++)sb.zeroelem[i][j]=0;k=sb.cost[0][0]+1;while(sb.cost[0][0]<k){k=sb.cost[0][0];for(i=1;i<=sb.matrixsize;i++){if(sb.cost[i][0]==1){for(j=1;j<=sb.matrixsize;j++)if(sb.cost[i][j]==0&&sb.zeroelem[i][j]==0)break;sb.zeroelem[i][j]=1;sb.cost[i][0]--;sb.cost[0][j]--;sb.cost[0][0]--;if(sb.cost[0][j]>0)for(p=1;p<=sb.matrixsize;p++)if(sb.cost[p][j]==0&&sb.zeroelem[p][j]==0){sb.zeroelem[p][j]=2;sb.cost[p][0]--;sb.cost[0][j]--;sb.cost[0][0]--;}}}for(j=1;j<=sb.matrixsize;j++){if(sb.cost[0][j]==1){for(i=1;i<=sb.matrixsize;i++)if(sb.cost[i][j]==0&&sb.zeroelem[i][j]==0)break;sb.zeroelem[i][j]=1;sb.cost[i][0]--;sb.cost[0][j]--;sb.cost[0][0]--;if(sb.cost[i][0]>0)for(p=1;p<=sb.matrixsize;p++)if(sb.cost[i][p]==0&&sb.zeroelem[i][p]==0){sb.zeroelem[i][p]=2;sb.cost[i][0]--;sb.cost[0][p]--;sb.cost[0][0]--;}}}}if(sb.cost[0][0]>0)twozero(sb);elsejudge(sb,result);}void twozero(matrix &sb){int i,j;int p,q;int m,n;float k;matrix st;for(i=1;i<=sb.matrixsize;i++)if(sb.cost[i][0]>0)break;if(i<=sb.matrixsize){for(j=1;j<=sb.matrixsize;j++){st=sb;if(sb.cost[i][j]==0&&sb.zeroelem[i][j]==0){sb.zeroelem[i][j]=1;sb.cost[i][0]--;sb.cost[0][j]--;sb.cost[0][0]--;for(q=1;q<=sb.matrixsize;q++)if(sb.cost[i][q]==0&&sb.zeroelem[i][q]==0){sb.zeroelem[i][q]=2;sb.cost[i][0]--;sb.cost[0][q]--;sb.cost[0][0]--;}for(p=1;p<=sb.matrixsize;p++)if(sb.cost[p][j]==0&&sb.zeroelem[p][j]==0){sb.zeroelem[p][j]=2;sb.cost[p][0]--;sb.cost[0][j]--;sb.cost[0][0]--;}k=sb.cost[0][0]+1;while(sb.cost[0][0]<k){k=sb.cost[0][0];for(p=i+1;p<=sb.matrixsize;p++){if(sb.cost[p][0]==1){for(q=1;q<=sb.matrixsize;q++)if(sb.cost[p][q]==0&&sb.zeroelem[p][q]==0)break;sb.zeroelem[p][q]=1;sb.cost[p][0]--;sb.cost[0][q]--;sb.cost[0][0]--;for(m=1;m<=sb.matrixsize;m++)if(sb.cost[m][q]=0&&sb.zeroelem[m][q]==0){sb.zeroelem[m][q]=2;sb.cost[m][0]--;sb.cost[0][q]--;sb.cost[0][0]--;}}}for(q=1;q<=sb.matrixsize;q++){if(sb.cost[0][q]==1){for(p=1;p<=sb.matrixsize;p++)if(sb.cost[p][q]==0&&sb.zeroelem[p][q]==0)break;sb.zeroelem[p][q]=1;sb.cost[p][q]--;sb.cost[0][q]--;sb.cost[0][0]--;for(n=1;n<=sb.matrixsize;n++)if(sb.cost[p][n]==0&&sb.zeroelem[p][n]==0){sb.zeroelem[p][n]=2;sb.cost[p][0]--;sb.cost[0][n]--;sb.cost[0][0]--;}}}}if(sb.cost[0][0]>0)twozero(sb);elsejudge(sb,result);}sb=st;}}}void judge(matrix &sb,int result[501][2]){int i,j;int m;int n;int k;m=0;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1)m++;if(m==sb.matrixsize){k=1;for(n=1;n<=result[0][0];n++){for(i=1;i<=sb.matrixsize;i++){for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1)break;if(i<=sb.personnumber&&j<=sb.jobnumber)if(j!=result[k][1])break;k++;}if(i==sb.matrixsize+1)break;elsek=n*sb.matrixsize+1;}if(n>result[0][0]){k=result[0][0]*sb.matrixsize+1;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1){result[k][0]=i;result[k++][1]=j;}result[0][0]++;}}else{refresh(sb);}}void refresh(matrix &sb){int i,j;float k;int p;k=0;for(i=1;i<=sb.matrixsize;i++){for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1){sb.zeroelem[i][0]=1;break;}}while(k==0){k=1;for(i=1;i<=sb.matrixsize;i++)if(sb.zeroelem[i][0]==0){sb.zeroelem[i][0]=2;for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==2){sb.zeroelem[0][j]=1;}}for(j=1;j<=sb.matrixsize;j++){if(sb.zeroelem[0][j]==1){sb.zeroelem[0][j]=2;for(i=1;i<=sb.matrixsize;i++)if(sb.zeroelem[i][j]==1){sb.zeroelem[i][0]=0;k=0;}}}}p=0;k=0;for(i=1;i<=sb.matrixsize;i++){if(sb.zeroelem[i][0]==2){for(j=1;j<=sb.matrixsize;j++){if(sb.zeroelem[0][j]!=2)if(p==0){k=sb.cost[i][j];p=1;}else{if(sb.cost[i][j]<k)k=sb.cost[i][j];}}}}for(i=1;i<=sb.matrixsize;i++){if(sb.zeroelem[i][0]==2)for(j=1;j<=sb.matrixsize;j++)sb.cost[i][j]=sb.cost[i][j]-k;}for(j=1;j<=sb.matrixsize;j++){if(sb.zeroelem[0][j]==2)for(i=1;i<=sb.matrixsize;i++)sb.cost[i][j]=sb.cost[i][j]+k;}for(i=0;i<=sb.matrixsize;i++)for(j=0;j<=sb.matrixsize;j++)sb.zeroelem[i][j]=0;circlezero(sb);}void zeroout(matrix &sb){int i,j;float k;for(i=1;i<=sb.matrixsize;i++){k=sb.cost[i][1];for(j=2;j<=sb.matrixsize;j++)if(sb.cost[i][j]<k)k=sb.cost[i][j];for(j=1;j<=sb.matrixsize;j++)sb.cost[i][j]=sb.cost[i][j]-k;}for(j=1;j<=sb.matrixsize;j++){k=sb.cost[1][j];for(i=2;i<=sb.matrixsize;i++)if(sb.cost[i][j]<k)k=sb.cost[i][j];for(i=1;i<=sb.matrixsize;i++)sb.cost[i][j]=sb.cost[i][j]-k;}}void output(int result[501][2],matrix sb) {int k;int i;int j;int p;char w;float v;v=0;for(i=1;i<=sb.matrixsize;i++){v=v+sb.costforout[i][result[i][1]];}cout<<"最优解的目标函数值为"<<v;k=result[0][0];if(k>5){cout<<"解的个数超过了限制."<<endl;k=5;}for(i=1;i<=k;i++){cout<<"输入任意字符后输出第"<<i<<"种解."<<endl;cin>>w;p=(i-1)*sb.matrixsize+1;for(j=p;j<p+sb.matrixsize;j++)if(result[j][0]<=sb.personnumber&&result[j][1]<=sb.jobnumber)cout<<"第"<<result[j][0]<<"个人做第"<<result[j][1]<<"件工作."<<endl;}}void main(){result[0][0]=0;sb=input();zeroout(sb);circlezero(sb);output(result,sb);}4. 算例和结果:自己运算结果为:->⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡3302102512010321->⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡330110241200032034526635546967562543----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡可以看出:第1人做第4件工作;第2人做第1件工作;第3人做第3件工作;第4人做第2件工作。
指派问题匈牙利算法最大值
指派问题匈牙利算法最大值
匈牙利算法(匈牙利算法,也被称为“插入-删除算法”或“排序算法”)是一种整数排序算法,在指派问题中可以将一个整数数组按照一定规则排序,使得所有指派中最大的元素出现的位置都不相同。
以下是匈牙利算法在解决指派问题的最大值问题的步骤:
1. 将数组分为两个部分,左半部分尽可能地小,右半部分尽可能地大。
2. 从右半部分开始,将一个元素与它的指派对象的最大值进行
比较。
如果两个元素之间的指派关系不符合要求,就将它们交换位置。
3. 接下来,从左边半部分开始,将一个元素与它的指派对象的最大值进行比较。
如果两个元素之间的指派关系不符合要求,就将它们交换位置。
4. 重复步骤2和步骤3,直到左半部分的最大值与右半部分的最大值相等。
5. 在最右半部分找到最大的元素,将它与左半部分的最大值交换。
6. 重复步骤1到步骤5,直到数组中的所有元素都被排序。
匈牙利算法的时间复杂度为O(nlogn),其中n为数组的长度。
在实际应用中,该算法通常用于小规模数据的排序,对于大规模数据的
排序则需要使用更高效的算法。
匈牙利法解决人数及任务数不等的指派问题
匈牙利法解决人数与任务数不等的指派问题于凯重庆科技学院经济管理学院物流专业重庆沙坪坝区摘要:本文将讨论运筹学中的指派问题,而且属于非标准指派问题,即人数与任务数不相等的指派问题,应当视为一个多目标决策问题,首先要求指派给个人任务数目两两之间相差不能超过1,其次要求所需总时间最少,并且给出了该类问题的求解方法。
关键词:运筹学指派问题匈牙利算法系数矩阵解矩阵引言:在日常的生产生活中常遇到这样的问题:有n项任务,有n个人员可以去承担这n 项任务,但由于每位人员的特点与专长不同,各对象完成各项任务所用的时间费用或效益不同;有因任务性质要求和管理上需要等原因,每项任务只能由一个人员承担来完成,这就涉及到应该指派哪个人员去完成哪项任务,才能使完成n项任务花费总时间最短,总费用最少,产生的总效益最佳。
我们把这类最优匹配问题称为指派问题或分配问题。
1.指派问题的解法——匈牙利法早在1955年库恩(,该方法是以匈牙利数学家康尼格(koning)提出的一个关于矩阵中0元素的定理为基础,因此得名匈牙利法(The Hungonrian Method of Assignment)1.1匈牙利解法的基本原理和解题思路直观的讲,求指派问题的最优方案就是要在n阶系数矩阵中找出n个分布于不用行不同列的元素使得他们的和最小。
而指派问题的最优解又有这样的性质:若从系数矩阵C(ij)的一行(列)各元素都减去该行(列)的最小元素,得到新矩阵CB(ij),那么以CB(ij)为系数矩阵求得的最优解和原系数矩阵C(ij)求得的最优解相同。
由于经过初等变换得到的新矩阵CB(ij)中每行(列)的最小元素均为“○”,因此求原指派问题C(ij)的最优方案就等于在新矩阵CB(ij)中找出n个分布于不同行不同列的“○”元素(简称为“独立○元素”),这些独立○元素就是CB(ij)的最优解,同时与其对应的原系数矩阵的最优解。
1.2匈牙利法的具体步骤第一步:使指派问题的系数矩阵经过变换在各行各列中都出现○元素。
指派问题与匈牙利解法
指派问题与匈⽛利解法指派问题概述:实际中,会遇到这样的问题,有n项不同的任务,需要n个⼈分别完成其中的1项,每个⼈完成任务的时间不⼀样。
于是就有⼀个问题,如何分配任务使得花费时间最少。
通俗来讲,就是n*n矩阵中,选取n个元素,每⾏每列各有1个元素,使得和最⼩。
如下图:指派问题性质:指派问题的最优解有这样⼀个性质,若从矩阵的⼀⾏(列)各元素中分别减去该⾏(列)的最⼩元素,得到归约矩阵,其最优解和原矩阵的最优解相同.匈⽛利法:12797989666717121491514661041071091.⾏归约:每⾏元素减去该⾏的最⼩元素502022300001057298004063652.列归约:每列元素减去该列的最⼩元素502022300001057298004063653.试指派:(1)找到未被画线的含0元素最少的⾏列,即,遍历所有未被画线的0元素,看下该0元素所在的⾏列⼀共有多少个0,最终选取最少个数的那个0元素。
(2)找到该⾏列中未被画线的0元素,这就是⼀个独⽴0元素。
对该0元素所在⾏和列画线。
50202230000105729800406365502022300001057298004063655020223000010572980040636550202230000105729800406365(3)暂时不看被线覆盖的元素,重复(1)(2)直到没有线可以画。
(4)根据(2)找到的0元素个数判断,找到n个独⽴0元素则Success,⼩于n个则Fail.(本例⼦中,n=5,可以看到,第⼀次试指派之后,独⽴0元素有4个,不符合)4.画盖0线:⽬标:做最少的直线数覆盖所有0元素,直线数就是独⽴0元素的个数。
注意:这跟3的线不同;不能⽤贪⼼法去画线,⽐如1 0 01 1 01 0 1若先画横的,则得画3条线,实际只需2条;若先画竖的,将矩阵转置后同理。
步骤3得出的独⽴0元素的位置50202230000105729800406365(1)对没有独⽴0元素的⾏打勾、(2)对打勾的⾏所含0元素的列打勾(3)对所有打勾的列中所含独⽴0元素的⾏打勾(4)重复(2)(3)直到没有不能再打勾(5)对打勾的列和没有打勾的⾏画画线,这就是最⼩盖0线。
2023年运筹学指派问题的匈牙利法实验报告
2023年运筹学指派问题的匈牙利法实验报告一、前言运筹学是一门涉及多学科交叉的学科,其主要研究通过数学模型和计算机技术来提高生产和管理效率的方法和技术。
其中,指派问题是运筹学中的重要研究方向之一。
针对指派问题,传统的解决方法是匈牙利法。
本文将基于匈牙利法,通过实验的方法来探讨2023年指派问题的发展。
二、指派问题1.定义指派问题是指在一个矩阵中指定每一行和每一列只选一个数,使得多个行和列没有相同的数,而且总和最小。
2.传统算法匈牙利算法是一种经典的用于解决指派问题的算法。
该算法基于图论的思想,用于寻找最大匹配问题中的最大流。
匈牙利算法的时间复杂度为 $O(n^3)$,但是,该算法仍然被广泛应用于实际问题求解。
三、实验设计1.实验目的本实验旨在探究匈牙利算法在指派问题中的应用以及其发展趋势,同时,通过对比算法运行速度来评估其效率和实用性。
2.实验原材料本实验将采用Python语言来实现匈牙利算法,数据集选取为UCI Machine Learning Repository中的鸢尾花数据集。
3.实验步骤步骤1:导入数据集,并进行数据预处理。
步骤2:计算每个样本在所有类别中的得分,并选取得分最高的类别作为预测结果。
步骤3:使用匈牙利算法对预测结果进行优化,以求得更优的分类方案。
步骤4:对比优化前后的分类结果,评估算法的实用性和效率。
四、实验结果本实验的最终结果表明,匈牙利算法在指派问题中的应用具有很好的效果。
实验数据表明,经过匈牙利算法优化后,分类器的准确率有了显著提高,分类结果更加精确。
同时,通过对比算法运行时间,也发现该算法具有较高的运行速度和效率。
五、实验结论本实验通过大量数据实验表明,匈牙利算法在指派问题中的应用具有很高的效率和精度。
将算法运用到实际生产和管理中,可有效地提高生产效率和管理水平。
但是,由于算法的时间复杂度比较高,因此在实际运用过程中需要合理选择算法,并对算法进行优化,以确保其效率达到最大化。
第五讲 分配问题(指派问题)与匈牙利法
n 件工作
y1 , y2 , … , yn 。 已 知 工 人 xi 完 成 工 作 yj 所 需 时 间 为 cij
分派方案满足下述两个条件: 分派方案满足下述两个条件:
1.任一个工人都不能去做两件或两件以上的工作 1.任一个工人都不能去做两件或两件以上的工作 2.任一件工作都不能同时接受两个及以上的工人去做 2.任一件工作都不能同时接受两个及以上的工人去做
min
4 7 6 6 6
8 7 15 12 4 0 4 3 11 8 0 3 0 11 8 9 17 14 10 7 0 2 10 7 3 0 1 7 7 3 9 12 8 7 6 ⇒ 0 3 6 2 1 ⇒ 0 2 3 2 1 7 14 6 10 6 0 1 8 0 4 0 0 5 0 4 0 3 6 4 0 0 2 3 4 0 9 12 10 6 6 min 0 1 3 0 0
5 0 2 0 2 3 0 0 0 10 5 7 9 8 0 0 0 6 3 6
9 8 5 4 0
尝试对所有零元素做标记,确定独立零元素。 尝试对所有零元素做标记,确定独立零元素。 标记 独立零元素
(2)逐列检验 )
与行检验类似:对只有一个未标记的零元素的列 用记号O将该 与行检验类似:对只有一个未标记的零元素的列,用记号 将该 零元素圈起,然后将被圈起的零元素所在行 零元素圈起,然后将被圈起的零元素所在行的其他未标记的零元 素用记号/划去 划去。 素用记号 划去。 重复列检验,直到没有未被标记的零元素或至少有两个未被标记 没有未被标记的零元素 重复列检验,直到没有未被标记的零元素或 的零元素为止。 的零元素为止。
分配问题(指派问题) 第5讲 分配问题(指派问题)与匈牙利法
分配问题与匈牙利法
分配问题与匈牙利法
Page 5
例4.6 有一份中文说明书,需译成英、日、德、俄四种文字, 分别记作A、B、C、D。现有甲、乙、丙、丁四人,他们将 中文说明书译成不同语种的说明书所需时间如下表所示,问 如何分派任务,可使总时间最少?
任务
A
B
C
D
人员
甲
6
7
11
2
乙
4
5
9
8
丙
3
1
10
4
丁
5
9
8
2
分配问题与匈牙利法
0 1 0 4
2 0 4 3
3 7 1 0
4 5 4 ◎
◎
1
Ø
4
2 ◎ 4 3
3
7
1
Ø
找到 3 个独立零元素
但m=3< n= 4
分配问题与匈牙利法
Page 7
3)作最少的直线覆盖所有0元素
4 5 4 ◎ √
◎
1
Ø
4
2 ◎ 4 3
3
若仍有没有划圈的0元素,且同行(列)的0元素至少有两个,比 较这行各0元素所在列中0元素的数目,选择0元素少这个0元素 加圈(表示选择性多的要“礼让”选择性少的)。然后划掉同行同 列的其它0元素。可反复进行,直到所有0元素都已圈出和划掉为 止。
分配问题与匈牙利法
Page 3
若◎ 元素的数目m 等于矩阵的阶数n(即:m=n),那么这
7
8 5 4 6 9 4
7 3 6 9 6 3
4 6 7 5 11 4
2 0 4 3 6 2 5 0 4 2 4 1 0 2 5 4 0 3 6 3 0 2 3 1 7
分配问题与Hungarian算法
分配问题与Hungarian算法分配问题与Hungarian算法分配问题指派问题匈⽛利算法匈⽛利⽅法是⼀种能够在多项式时间内解决分配问题(assignment problem)的组合优化算法。
它由Harold Kuhn 与1955年发展并提出,由于该算法很⼤程度上依赖于先前两位匈⽛利数学家:Denes Konig 和 Jeno Egervary,所以被命名为“匈⽛利⽅法”。
1957年James Munkres重新审视了这个⽅法,证明发现该⽅法是严格polynomial的,所以之后该⽅法也被称为Kuhn-Munkres 算法或者Munkres分配算法。
原始的匈⽛利算法的时间复杂度是,然⽽之后Edmonds和Karp,以及Tomizawa独⽴发现经过⼀定的修改,该算法能改达到的时间复杂度。
Ford和Fulkerson将该⽅法扩展到⼀般运输问题的求解上。
2006年,研究发现Carl Custav Jacobi在19实际就解决了assignment问题,并且在其逝世后的1890年求解过程被以拉丁语形式发表。
指派问题匈⽛利法解决的指派问题应该具有两个约束条件workes 和tasks的数⽬应该相同,即o2o问题。
求解的是最⼩化问题,如⼯作时间的最⼩化、费⽤的最⼩化等等指派问题⽰例:有三个workers: Jim, Steve和Alan,现在有3个⼯作:clean the bathroom, sweep the floors和wash the windows需要交给这三个⼈,每个⼈只能完成⼀个任务,对应的cost matrix如下---Clean bathroom Sweep floors Wash windowsJim$2$3$3Steve$3$2$3Alan$3$3$2那么如何分配任务是开销最⼩就是⼀个指派问题匈⽛利法步骤问题: 假定某单位有甲、⼄、丙、丁、戊五个员⼯,现需要完成A、B、C、D、E五项任务,每个员⼯完成某项任务的时间如下图所⽰,应该如何分配任务,才能保证完成任务所需要的时间开销最⼩?1476015762594.jpg解:1. 写出系数矩阵2. 更新系数矩阵,使系数矩阵的每⼀⾏每⼀列都减去该⾏该列的最⼩值,保证每⼀⾏每⼀列都有0元素出现,参见定理2.3. 选择只有⼀个0元素的⾏或列将该0元素标注为独⽴0元素,并将该0元素所在的列或⾏中0元素划掉,直⾄找不到满⾜条件的⾏或列,需要注意的是在循环时,划掉的0元素不再视为0元素。
匈牙利法解决人数及任务数不等的指派问题
匈牙利法解决人数与任务数不等的指派问题于凯重庆科技学院经济管理学院物流专业重庆沙坪坝区摘要:本文将讨论运筹学中的指派问题,而且属于非标准指派问题,即人数与任务数不相等的指派问题,应当视为一个多目标决策问题,首先要求指派给个人任务数目两两之间相差不能超过1,其次要求所需总时间最少,并且给岀了该类问题的求解方法。
关键词:运筹学指派问题匈牙利算法系数矩阵解矩阵引言:在日常的生产生活中常遇到这样的问题:有n项任务,有n个人员可以去承担这n 项任务,但由于每位人员的特点与专长不同,各对象完成各项任务所用的时间费用或效益不同:有因任务性质要求和管理上需要等原因,每项任务只能由一个人员承担来完成,这就涉及到应该指派哪个人员去完成哪项任务,才能使完成n项任务花费总时间最短,总费用最少, 产生的总效益最佳。
我们把这类最优匹配问题称为指派问题或分配问题。
1. 指派问题的解法——匈牙利法早在1955年库恩(w.w.ku.hn)就提出了指派问题的解法,该方法是以匈牙利数学家康尼格(koning)提岀的一个关于矩阵中0元素的定理为基础,因此得爼匈牙利法(The Hungonrian Method of Assignment)1.1匈牙利解法的基本原理和解题思路直观的讲,求指派问题的最优方案就是要在n阶系数矩阵中找出n个分布于不用行不同列的元素使得他们的和最小。
而指派问题的最优解又有这样的性质:若从系数矩阵C (ij)的一行(列)各元素都减去该行(列)的最小元素,得到新矩阵CB (ij),那么以CB (ij)为系数矩阵求得的最优解和原系数矩阵C (ij)求得的最优解相同。
由于经过初等变换得到的新矩阵CB (ij)中每行(列)的最小元素均为"O”,因此求原指派问题C (ij)的最优方案就等于在新矩阵CB (ij)中找出n个分布于不同行不同列的"O”元素(简称为“独立O元素”),这些独立O元素就是CB (ij)的最优解,同时与其对应的原系数矩阵的最优解。
匈牙利法解决人数与任务数不等的指派问题1
匈牙利法解决人数与任务数不等的指派问题于凯重庆科技学院经济管理学院物流专业重庆沙坪坝区摘要:本文将讨论运筹学中的指派问题,而且属于非标准指派问题,即人数与任务数不相等的指派问题,应当视为一个多目标决策问题,首先要求指派给个人任务数目两两之间相差不能超过1,其次要求所需总时间最少,并且给出了该类问题的求解方法。
关键词:运筹学指派问题匈牙利算法系数矩阵解矩阵引言:在日常的生产生活中常遇到这样的问题:有n项任务,有n个人员可以去承担这n 项任务,但由于每位人员的特点与专长不同,各对象完成各项任务所用的时间费用或效益不同;有因任务性质要求和管理上需要等原因,每项任务只能由一个人员承担来完成,这就涉及到应该指派哪个人员去完成哪项任务,才能使完成n项任务花费总时间最短,总费用最少,产生的总效益最佳。
我们把这类最优匹配问题称为指派问题或分配问题。
1.指派问题的解法——匈牙利法早在1955年库恩(w.w.ku.hn)就提出了指派问题的解法,该方法是以匈牙利数学家康尼格(koning)提出的一个关于矩阵中0元素的定理为基础,因此得名匈牙利法(The Hungonrian Method of Assignment)1.1匈牙利解法的基本原理和解题思路直观的讲,求指派问题的最优方案就是要在n阶系数矩阵中找出n个分布于不用行不同列的元素使得他们的和最小。
而指派问题的最优解又有这样的性质:若从系数矩阵C(ij)的一行(列)各元素都减去该行(列)的最小元素,得到新矩阵CB(ij),那么以CB(ij)为系数矩阵求得的最优解和原系数矩阵C(ij)求得的最优解相同。
由于经过初等变换得到的新矩阵CB(ij)中每行(列)的最小元素均为“○”,因此求原指派问题C(ij)的最优方案就等于在新矩阵CB(ij)中找出n个分布于不同行不同列的“○”元素(简称为“独立○元素”),这些独立○元素就是CB(ij)的最优解,同时与其对应的原系数矩阵的最优解。
匈牙利法解决人数及任务数不等的指派问题
匈牙利法解决人数与任务数不等的指派问题于凯重庆科技学院经济管理学院物流专业重庆沙坪坝区摘要:本文将讨论运筹学中的指派问题,而且属于非标准指派问题,即人数与任务数不相等的指派问题,应当视为一个多目标决策问题,首先要求指派给个人任务数目两两之间相差不能超过1,其次要求所需总时间最少,并且给出了该类问题的求解方法。
关键词:运筹学指派问题匈牙利算法系数矩阵解矩阵引言:在日常的生产生活中常遇到这样的问题:有n项任务,有n个人员可以去承担这n 项任务,但由于每位人员的特点与专长不同,各对象完成各项任务所用的时间费用或效益不同;有因任务性质要求和管理上需要等原因,每项任务只能由一个人员承担来完成,这就涉及到应该指派哪个人员去完成哪项任务,才能使完成n项任务花费总时间最短,总费用最少,产生的总效益最佳。
我们把这类最优匹配问题称为指派问题或分配问题。
1.指派问题的解法——匈牙利法早在1955年库恩(w.w.ku.hn)就提出了指派问题的解法,该方法是以匈牙利数学家康尼格(koning)提出的一个关于矩阵中0元素的定理为基础,因此得名匈牙利法(The Hungonrian Method of Assignment)1.1匈牙利解法的基本原理和解题思路直观的讲,求指派问题的最优方案就是要在n阶系数矩阵中找出n个分布于不用行不同列的元素使得他们的和最小。
而指派问题的最优解又有这样的性质:若从系数矩阵C(ij)的一行(列)各元素都减去该行(列)的最小元素,得到新矩阵CB(ij),那么以CB(ij)为系数矩阵求得的最优解和原系数矩阵C(ij)求得的最优解相同。
由于经过初等变换得到的新矩阵CB(ij)中每行(列)的最小元素均为“○”,因此求原指派问题C(ij)的最优方案就等于在新矩阵CB(ij)中找出n个分布于不同行不同列的“○”元素(简称为“独立○元素”),这些独立○元素就是CB(ij)的最优解,同时与其对应的原系数矩阵的最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= min{c kj }
∑ ∑ c′ x
j =1 i =1 ij
ij
= ∑ ( ∑ cij xij + ( c kj c ) x kj )
j =1 n i =1 i≠k n n
= ∑ ∑ cij xij c ∑ x kj = ∑ ∑ cij xij c
j =1 i =1 j =1 i =1 n n j =1
1, 第i个工人做第j件事 xij = 0, 第i个工人不做第j件事
则数学模型如下
min z = ∑∑ cij xij
j =1 i =1
n
m
n ∑ xij = 1, i = 1,2, , m = jm1 ∑ xij = 1, j = 1,2, , n i =1 xij = 0,1; i = 1,2, , m; j = 1,2, , n
减去最小元素
5 0 2 0 2 2 3 0 0 0 0 10 5 7 2 9 8 0 0 10 0 6 3 6 5
圈零划零
5 0 2 0 2 2 3 0 0 0 0 10 5 7 2 9 8 0 0 10 0 6 3 6 5
打勾划线确定调整行和列
5 0 2 0 2 2 3 0 0 0 0 10 5 7 2 √ 9 8 0 0 10 0 6 3 6 5 √
指派问题
指派问题是一种特殊的整数规划问题 一,问题的提出 设有m个工人,能做n件事,但效率不 同,并规定每个工人做且只能做一件事, 每件事有且只能有一个工人做,问应该如 何安排他们的工作,使花费的总时间(成 本)最少或效率最高?
二,指派问题的数学模型
设第i个工人做第j件事的时间是 c ij ,决策 量是
得最优解
将圈起的零改为1,其它元素改为0,即得 最优解如下
0 0 (xij ) = 0 1
最小总时间为22.
0 1 0 1 0 0 0 0 1 0 0 0
再看一例
请求解如下矩阵表达的指派问题
12 7 9 7 9 8 9 6 6 6 7 17 12 14 9 15 14 6 6 10 4 10 7 10 9
举例说明 1)表上作业法 2)匈牙利法
例 有四个工人和四台不同的机床,每位工人在不 同的机床上完成给定的任务的工时如表5.12所示, 问安排哪位工人操作哪一台机床可使总工时最少?
任务1 工人1 工人2 工人3 工人4 2 15 13 4
任务2 10 4 14 7
任务3 3 14 16 13
任务4 7 8 11 9
将时间矩阵C的每一行都减去相应行的最小元素 和每一列都减去相应列的最小元素,使每一行 和每一列都含有零; 从最少零数的行或列开始,将"零"圈起来, 并划去它所在行和所在列的其它零; 反复做2),直到所有零被圈起或被划掉为止. 得到初始解. 判断是否为最优解:圈起的零的个数是否等于n.
确定调整行和列
在没有圈起的零所在行上打"√"; 在打"√"行中所有零所在的列打"√"; 在打"√"列中含有圈起零的行上打"√", 反复执行2)和3)两步,直到不能打"√"为止; 用直线划去打"√"的列和不打"√"的行,没 有划去的行构成调整的行,划去的列构成调整 列.
调整可行解的方法
在调整行中寻找最小的元素,将它作为调 整量; 将调整行各元素减去调整量,对调整列中 各元素加上调整量. 再次执行"圈零"和"划零"的操作,并 循环以上的步骤,直到圈起的零数等于n 为止.
同解问题
′ min z = ∑∑ cij xij
j =1 i =1 n m
n ∑ xij = 1, i = 1,2, , m = jm1 ∑ xij = 1, j = 1,2, , n i =1 xij = 0,1; i = 1,2, , m; j = 1,2, , n
获得初始解:圈零/划零操作
匈牙利法解例3.3
时间矩阵
2 10 3 7 15 4 14 8 13 14 16 11 4 7 13 9 各行各列减去最小元素后得 0 11 2 0
8 0 5 0 9 4 3 4 0 3 8 5
圈零划零
0 11 2 0
8 0 5 0 9 4 3 4 0 3 8 5
1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0
另一最优解
0 0 ( xij ) = 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0
最小时间(成本)min z=32
�
例3.3的数学模型 4 4
4
min z = ∑∑ cij xij
j =1 i =1
∑ xij = 1, i = 1,2,3,4 j4=1 ∑ xij = 1, j = 1,2,3,4 i =1 xij = 0,1; i = 1,2,3,4; j = 1,2,3,4
匈牙利解法
匈牙利解法的依据,设 c n n 则 n n
√
调整可行解
7 4 0 11 0
0 2 0 3 0 0 8 3 5 8 0 0 4 1 4
2 0 0 10 3
再圈零划零
7 4 0 11 0
0 3 8 8
0 2 0 0 5 0 0 10 4 1 4 3 2 0 3 0
得最优解
0 0 (x ( xij ) = 0 0 1