2016届高考数学总复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与必要条件

合集下载

高考数学集合与常用逻辑用语

高考数学集合与常用逻辑用语

第一单元集合与常用逻辑用语第1讲集合课前双基巩固1.元素与集合(1)集合元素的性质:、、无序性.(2)集合与元素的关系:①属于,记为;②不属于,记为.(3)集合的表示方法: 列举法、和.(4)常见数集及其符号表示:2.集合间的基本关系A B或B A 3.集合的基本运算}}常用结论(1)非常规性表示常用数集:如{x|x=2(n-1),n∈Z}为偶数集,{x|x=4n±1,n∈Z}为奇数集等.(2)①一个集合的真子集必是其子集,一个集合的子集不一定是其真子集;②任何一个集合是它本身的子集;③对于集合A,B,C,若A⊆B,B⊆C,则A⊆C(真子集也满足);④若A⊆B,则有A=⌀和A≠⌀两种可能.(3)集合子集的个数:集合A中有n个元素,则集合A有2n个子集、2n-1个真子集、2n-1个非空子集、2n-2个非空真子集.(4)①并集的性质:A∪⌀=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A;②交集的性质:A∩⌀=⌀;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B;③补集的性质:A∪(∁U A)=U;A∩(∁U A)=⌀;∁U(∁U A)=A;∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).题组一常识题1.[教材改编]已知集合A={-1,0,1,2},B={-1,1,2,5},则集合A∩B所含元素之和为.2.[教材改编]已知集合A={a,b},若A∪B={a,b,c},则满足条件的集合B有个.3.[教材改编]设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B= .4.[教材改编]已知集合A={-1,1},B={a,a2+2}.若A∩B={1},则实数a的值为.题组二常错题◆索引:忽视集合元素的性质致错;对集合的表示方法理解不到位致错;忘记空集的情况导致出错;集合运算中端点取值致错;对子集的概念理解不到位致错.5.已知集合A={1,3,},B={1,m},若B⊆A,则m= .6.已知集合A={x|y=log2(x+1)},集合B=y y=,x>0,则A∩B= .7.已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是.8.设集合A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R},若A B,则a的取值范围为.9.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为.课堂考点探究探究点一集合的含义与表示1 (1)设集合A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B中的元素有 ()A.5个B.4个C.3个D.无数个(2)设集合A={-4,2a-1,a2},B={9,a-5,1-a},且A,B中有唯一的公共元素9,则实数a的值为.[总结反思] (1)研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合,然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的意义.(2)依据元素与集合的关系确定参数时,往往要对集合中含参数的元素取值情况进行分类讨论,并要注意检验集合中的元素是否满足互异性.式题(1)设集合A={-1,0,2},集合B={-x|x∈A且2-x∉A},则B=()A.{1}B.{-2}C.{-1,-2}D.{-1,0}(2)已知集合A={x|x=3k-1,k∈Z},则下列表示正确的是()A.-1∉AB.-11∈AC.3k2-1∈AD.-34∉A探究点二集合间的基本关系2 (1)[2017·江西八校联考]集合M=x x=+1,n∈Z,N=y y=m+,m∈Z,则两集合M,N 的关系为()A.M∩N=⌀B.M=NC.M⊆ND.N⊆M(2)[2017·大庆三模]已知集合A={y|0≤y<a,y∈N},B={x|x2-2x-3≤0,x∈N},若A⫋B,则满足条件的正整数a所构成集合的子集的个数为()A.2B.4C.8D.16[总结反思] (1)判断两集合之间的关系的方法:当两集合不含参数时,可直接利用数轴、图示法进行判断;当集合中含有参数时,需要对满足条件的参数进行分类讨论或采用列举法.(2)要确定非空集合A的子集的个数,需先确定集合A中的元素的个数,再求解.不要忽略任何非空集合是它自身的子集.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、图示法来解决这类问题.式题(1)[2017·长沙一中月考]已知集合A={x|x2-2x≤0},B={x|x≤a},若A⊆B,则实数a的取值范围是()A.a≥2B.a>2C.a<0D.a≤0(2)[2017·临川一中模拟]若集合A∪B=B∩C,则对于集合A,B,C的关系,下列表示正确的是()A.A⊆B⊆CB.C⊆B⊆AC.B⊆C⊆AD.B⊆A⊆C探究点三集合的基本运算考向1集合的运算3 (1)[2017·保定二模]设集合P={3,log2a},Q={a,b},若P∩Q={0},则P∪Q=()A.{3,0}B.{3,0,2}C.{3,0,1}D.{3,0,1,2}(2)已知集合A={(x,y)|y=x+1,0≤x≤1},集合B={(x,y)|y=2x,0≤x≤10},则集合A∩B= ()A.{1,2}B.{x=1,y=2}C.{(1,2)}D.{x=1,x=2}(3)[2017·河西五市二模]已知全集U=R,集合A={x|y=lg(x-1)},B={y|y=},则A∩(∁B)=()UA.[1,2]B.[1,2)C.(1,2]D.(1,2)[总结反思] 解决集合的基本运算问题一般应注意以下几点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决运算问题的前提.(2)对集合化简.有些集合是可以化简的,如果先化简再研究其关系并进行运算,可使问题变得简单明了,易于解决.(3)注意数形结合思想的应用.集合运算常用的数形结合形式有数轴和Venn图.考向2利用集合运算求参数4 (1)[2017·邯郸二模]已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B有三个元素,则实数m的取值范围是()A.[3,6)B.[1,2)C.[2,4)D.(2,4](2)[2017·泰安二模]设全集U=R,集合A={x|x>1},集合B={x|x>p},若(∁U A)∩B=⌀,则p应该满足的条件是()A.p>1B.p≥1C.p<1D.p≤1[总结反思] 根据集合运算结果求参数,主要有以下两种形式:(1)用列举法表示的集合,直接依据交、并、补的定义求解,重点注意公共元素;(2)由描述法表示的集合,一般先要对集合化简,再依据数轴确定集合的运算情况,特别要注意端点值的情况.考向3集合语言的运用5 设P和Q是两个集合,定义集合P-Q={x|x∈P且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于()A.{x|0<x<1}B.{x|0<x≤1}C.{x|1≤x<2}D.{x|0≤x<2}[总结反思] 解决集合新定义问题,应做到:(1)准确转化.解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目的要求进行恰当转化,切忌同已有概念或定义相混淆.(2)方法选取.对于新定义问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解.强化演练1.【考向1】[2017·资阳二模]设全集U=R,集合A={x|(x+1)(x-3)<0},B={x|x-1≥0},则图1-1-1中阴影部分所表示的集合为()图1-1-1A.{x|x≤-1或x≥3}B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤-1}2.【考向1】[2017·汕头三模]已知集合A={x∈N|x<3},B={x|x=a-b,a∈A,b∈A},则A∩B=()A.{1,2}B.{-2,-1,0,1,2}C.{1}D.{0,1,2}3.【考向2】[2017·天津静海一中二模]设集合A={-1,1,2},B={a+1,a2-2},若A∩B={-1,2},则a 的值为()A.-2或-1B.0或1C.-2或1D.0或-24.【考向2】[2017·厦门一中模拟]已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a 的取值范围是()A.a≤1B.a<1C.a≥2D.a>25.【考向3】若数集A={a1,a2,…,a n}(1≤a1<a2<…<a n,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n),a i a j 与两数中至少有一个属于A,则称集合A为“权集”.则()A.{1,3,4}为“权集”B.{1,2,3,6}为“权集”C.“权集”中元素可以有0D.“权集”中一定有元素1第2讲命题及其关系、充分条件与必要条件课前双击巩固1.命题(1)命题概念:在数学中把用语言、符号或式子表达的,能够判断的陈述句叫作命题.其中的语句叫作真命题,的语句叫作假命题.(2)四种命题及其相互关系图1-2-1注:若两个命题互为逆否命题,则它们有相同的真假性.2.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的条件;(2)如果q⇒p,则p是q的条件;(3)如果既有p⇒q又有q⇒p,记作p⇔q,则p是q的条件.常用结论1.充要条件的两个结论(1)若p是q的充分不必要条件,q是r的充分不必要条件,则p是r的充分不必要条件;(2)若p是q的充分不必要条件,则q是p的充分不必要条件.2.充分、必要条件与集合的关系使p成立的对象构成的集合为A,使q成立的对象构成的集合为BB⊆AA BB A题组一常识题1.[教材改编]对于下列语句:①垂直于同一直线的两条直线必平行吗?②作△ABC∽△A'B'C';③x2+2x-3<0;④四边形的内角和是360°.其中是命题的是.(填序号)2.[教材改编]下面有4个命题:①集合N中最小的数是1;②若-a不属于N,则a属于N;③若a ∈N,b∈N,则a+b的最小值为2;④x2+1=2x的解可表示为.其中真命题的个数为.3.[教材改编]命题“若整数a不能被2整除,则a是奇数”的逆否命题是.4.[教材改编]已知集合M={x|1<x<a},N={x|1<x<3},则“a=3”是“M⊆N”的条件. 题组二常错题◆索引:命题的条件与结论不明确;含有大前提的命题的否命题易出现否定大前提的情况;真、假命题的推理考虑不全面;对充分必要条件判断错误.5.命题“若a2+b2=0,a,b∈R,则a=b=0”的逆否命题是.6.已知命题“∀a,b∈R,若ab>0,则a>0”,则它的否命题是.7.若命题“ax2-2ax-3≤0成立”是真命题,则实数a的取值范围是.8.已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件,那么p是q的条件.课堂考点探究探究点一四种命题及其相互关系1 (1)已知命题α:如果x<3,那么x<5,命题β:如果x≥3,那么x≥5,命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系,下列三种说法正确的是()①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③B.②C.②③D.①②③(2) 给出以下五个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数;⑤若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递减.其中为真命题的是.(写出所有真命题的序号)[总结反思] (1)写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)当一个命题不易直接判断真假时,根据“互为逆否的命题同真同假”的结论,可转化为判断与其等价的命题的真假.式题(1)命题“若a,b,c成等比数列,则b2=ac”的逆否命题是()A.若a,b,c成等比数列,则b2≠acB.若a,b,c不成等比数列,则b2≠acC.若b2=ac,则a,b,c成等比数列D.若b2≠ac,则a,b,c不成等比数列(2)[2017·枣庄二模]已知命题“若x>1,则2x<3x”,则在它的逆命题、否命题、逆否命题中,真命题的个数是()A.0B.1C.2D.3探究点二充分﹑必要条件的判断2 (1)[2017·北京卷]设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)[2017·天津卷]设θ∈R,则“θ-<”是“sin θ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[总结反思] 充要条件的三种判断方法:(1)定义法.根据p⇒q,q⇒p进行判断.(2)集合法.根据p,q成立时对应的集合之间的包含关系进行判断.(3)等价转化法.根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断,这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的何种条件,即可转化为判断“x=1且y=1”是“xy=1”的何种条件.式题(1)对任意的实数x,若[x]表示不超过x的最大整数,则“-1<x-y<1”是“[x]=[y]”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)[2017·衡水一模]设p:<1,q:log2x<0,则p是q的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件探究点三充分、必要条件的应用3 (1)[2017·湖北新联考四联]若“x>2m2-3”是“-1<x<4”的必要不充分条件,则实数m的取值范围是()A.[-1,1]B.[-1,0]C.[1,2]D.[-1,2](2)已知条件p:≤-1,条件q:x2+x<a2-a,且q的一个充分不必要条件是p,则a的取值范-围是()A.--B.C.[-1,2]D.-∪[2,+∞)[总结反思] (1)求解充分、必要条件的应用问题时,一般是把充分、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意对区间端点值进行检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现错误.式题(1)[2017·武汉三模]下面四个条件中,使a>b成立的必要而不充分条件是() A.a-1>b B.a+1>bC.|a|>|b|D.a3>b3(2)“直线x-y-k=0与圆(x-1)2+y2=2有两个不同的交点”的一个充分不必要条件可以是()A.-1≤k<3B.-1≤k≤3C.0<k<3D.k<-1或k>3第3讲简单的逻辑联结词、全称量词与存在量词课前双击巩固1.简单的逻辑联结词命题中的、、叫作逻辑联结词,用符号分别表示为、、.2.全称量词与存在量词(1)短语“对所有的”“对任意一个”在逻辑中通常叫作,用符号“”表示.(2)短语“存在一个”“至少有一个”在逻辑中通常叫作,用符号“”表示.(3)含有一个量词的命题的否定:全称命题p:∀x∈M,p(x),它的否定是.特称命题q:∃x0∈M,q(x0),它的否定是.常用结论1.否命题是把原命题的条件与结论都否定,命题的否定只需否定命题的结论.2.用“并集”的概念来理解“或”,用“交集”的概念来理解“且”,用“补集”的概念来理解“非”.3.记忆口诀:(1)“p或q”,有真则真;(2)“p且q”,有假则假;(3)“非p”,真假相反.4.命题p∧q的否定是p∨q;命题p∨q的否定是p∧q.题组一常识题1.[教材改编]给出下列命题:①函数y=ln x是减函数;②2是方程x+2=0的根又是方程x-2=0的根;③28是5的倍数或是7的倍数.其中是“p或q”形式的命题的是.(填序号)2.[教材改编]p∨q是真命题,q是真命题,则p是(填“真”或“假”)命题.3.已知命题p:∃x0∈R,+x0-1<0,则命题p是.4.[教材改编]命题“有的四边形是平行四边形”的否定是.题组二常错题◆索引:全称命题或特称命题的否定出错;不会利用真值表判断命题的真假;复合命题的否定中出现逻辑联结词错误;考查命题真假时忽视对参数的讨论.5.[教材改编]命题“所有奇数的立方都是奇数”的否定是.6.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数.则下列命题中为真命题的是.(填序号)①p∨q;②p∧q;③p∧q;④p∨q.7.已知命题:若ab=0,则a=0或b=0,则其否命题为.8.已知命题“∀x∈R,ax2+4x+1>0”是假命题,则实数a的取值范围是.课堂考点探究探究点一含逻辑联结词的命题及真假1 在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.p∨qB.p∨qC.p∧qD.p∨q(2)给出下列两个命题:命题p:若在边长为1的正方形ABCD内任取一点M,则|MA|≤1的概率为.命题q:若函数f(x)=x+,则f(x)在区间1,上的最小值为4.那么,下列命题为真命题的是()A.p∧qB.pC.p∧qD.p∧q[总结反思] 判断含有逻辑联结词的命题真假的一般步骤:(1)判断复合命题的结构;(2)判断构成这个命题的每个简单命题的真假;(3)依据“或”:一真即真,“且”:一假即假,“非”:真假相反,作出判断即可.式题(1)[2017·惠州调研]设命题p:若定义域为R的函数f(x)不是偶函数,则∀x∈R,f(-x)≠f(x),命题q:f(x)=x|x|在(-∞,0)上是减函数,在(0,+∞)上是增函数.则下列判断错误..的是() A.p为假B.q为真C.p∨q为真D.p∧q为假(2)已知命题p:若x>y,则-x<-y,命题q:若x<y,则x>y2.给出命题:①p∧q;②p∨q;③p∧q;④p ∨q.其中为真命题的是()A.①③B.①④C.②③D.②④探究点二全称命题与特称命题2 (1)[2017·陕西师大附中二模]若命题p:对任意的x∈R,都有x3-x2+1<0,则p为()A.不存在x0∈R,使得-+1<0B.存在x0∈R,使得-+1<0C.对任意的x∈R,都有x3-x2+1≥0D.存在x0∈R,使得-+1≥0(2)下列命题中为假命题的是()A.∃α,β∈R,sin(α+β)=sin α+sin βB.∀φ∈R,函数f(x)=sin(2x+φ)都不是偶函数C.∃x0∈R,+a+bx0+c=0(a,b,c∈R且为常数)D.∀a>0,函数f(x)=(ln x)2+ln x-a有零点[总结反思] 全称命题与特称命题的真假判断及其否定:∀x∈M,p(x)式题[2017·山东师大附中二模]已知f(x)=e x-x,g(x)=ln x+x+1,命题p:∀x∈R,f(x)>0,命题q:∃x0∈(0,+∞),g(x0)=0,则下列说法正确的是()A.p是真命题,p:∃x0∈R,f(x0)<0B.p是假命题,p:∃x0∈R,f(x0)≤0C.q是真命题,q:∀x∈(0,+∞),g(x)≠0D.q是假命题,q:∀x∈(0,+∞),g(x)≠0探究点三根据命题的真假求参数的取值范围3 (1)[2017·南充一模]设p:∃x0∈1,,g(x0)=log2(t+2x0-2)有意义,若p为假命题,则t 的取值范围为.(2)[2017·湖南十三校二联]已知命题p:函数f(x)=2ax2-x-1(a≠0)在(0,1)内恰有一个零点; 命题q:函数y=x2-a在(0,+∞)上是减函数.若p且q为真命题,则实数a的取值范围是. [总结反思] 根据命题真假求参数的方法步骤:(1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)求出每个命题是真命题时参数的取值范围;(3)根据每个命题的真假情况,求出参数的取值范围.式题(1)[2018·衡水中学模拟]已知命题p:∃x0∈R,+ax0+a<0,若p是真命题,则实数a 的取值范围为()A.[0,4]B.(0,4)C.(-∞,0)∪(4,+∞)D.(-∞,0]∪[4,+∞)(2)[2017·太原二模]若命题“∀x∈(0,+∞),x+≥m”是假命题,则实数m的取值范围是.。

2016版新课标高考数学题型全归纳理科PPT.第一章集合与常用逻辑用语

2016版新课标高考数学题型全归纳理科PPT.第一章集合与常用逻辑用语

【例1.5变式2】 【解析】
3 2 1 0 1 2 3 4 5 6 a
【评注】
端点值的判断通常是初学者的难题,我们可用假设法帮助 判断,即假设参数取端点后,与已知吻合,假设成立;若 与已知不吻合,则假设不成立.
三、集合关系中的子集个数问题
【例1.6】已知集合A x x2 3x 10 0,x Z ,则集
故选C. 【评注】 解法一是数学中“求同比异”的思想,值得学习;
解法二易于入手,也是做选择题的常用方法.
【解析】 故选B.
【例1.4】设 A x | x2 8x 15 0 , B x | ax 1 0.
.
⑴若
a
1 5
,试判断集合 A 与
B的关系;
⑵若B A ,求实数a 组成的集合 C .
【解析】 【评注】
二、已知集合间的关系,求参数的取值范围
【例1.5】 (2012大纲全国理2)已知集合A={1,3, m }, B={1,m},
A∪B=A,则m=( ).
A. 0或 3 B. 0或3 C. 1或 3 D. 1或3
【解析】
所以m=0或3. 故选B.
【例1.5变式1】
【解析】
故选C.
【解析】⑴由 x2 8x 15 0,得x 3或 x 5 ,所以 A 3,5.
若a
1 5
,由ax
1
0,得
1 5
x
1
0,即
x
5
,所以
B
5
,
所以 B A .
⑵因为A 3,5,又 B A .
①当B 时,则方程 ax 1 0 无解,则 a 0 ;
②当 B
时,则
a
0
,由
ax

高三总复习集合与常用逻辑用语

高三总复习集合与常用逻辑用语

第一章集合与常用逻辑用语1.集合与元素(1)概念:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)。

构成集合的每个对象叫做这个集合的元素(或成员)(2)集合中元素的特征:1确定性:作为一个集合,必须是确定的2互异性:集合中的元素必须是互异的3无序性:集合与其中元素的排列顺序无关(3)元素与集合的两种关系:(属于)(不属于)(4)集合的分类:有限集,无限集,空集(5)常用的数集及其表示符号名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N+N*Z Q R (6)集合的表示方法:列举法、描述法、图示法(Venn图)2.集合间的基本关系关系自然语言符号表示图示子集集合 A 中的任意一个元素都在集(或A)A BB BA 合B 中(即 x A,则 x B)真子集集合 A 是集合 B 的子集,且集合 B A BBA 中至少有一个元素不在集合 A 中等集集合 A ,B 中的元素完全相同或集A=BA(B)合 A,B 互为子集交集由属于集合 A 且属于集合 B 的所有 A ∩B={x |x∈A B元素组成的集合A,且 x ∈B}并集由所有属于集合 A 或属于集合 B A ∪B={x |x∈A B的元素组成的集合A,或 x∈B}补集由全集 U 中不属于集合 A 的所有U A={x |x∈U,UA且 x≠A} .元素组成的集合3.集合间基本关系的几个结论(1)空集是任意一个集合的子集,是任意一个非空集合的真子集(2)任何一个集合都是它本身的子集, A A。

空集只有一个子集,即它本身。

(3)集合的子集和真子集具有传递性:若A B,B C,则A C;若A B,B C,则A C(4)含有 n 个元素的集合有2n个子集,有2n -1 真子集,有2n -1 非空子集,有2n-2个非空真子集。

4.逻辑联结词(1)命题:可以判断真假的语句叫命题。

正确的叫真命题,错误的叫假命题。

2016届高考数学大一轮复习精品讲义第一章集合与常用逻辑用语(含解析)

2016届高考数学大一轮复习精品讲义第一章集合与常用逻辑用语(含解析)

一、重视教材习题的母题功能你知道高考题是怎样命制的吗?看完本讲内容,洞晓了高考命题的5大常用手段,你就明白了教材经典题目的重要性.你还会陷入“高考高于天,教材放一边”的备考误区吗?编写本讲的目的,我们旨在提醒您:一轮复习要“抓纲靠本”,“纲”就是考纲,“本”就是课本.要重拾起被遗忘忽视的课本,重温基础知识,重做典型题目,重视教材“母题”的引领作用,发挥教材母题做一当十的功效.在此,仅以2014年新课标全国卷两套试题为例进行说明,以佐证教材习题的重要性.教材这样练《人教A 版·必修4》P119 B 组第1题第(4)小题.已知D ,E ,F 分别是△ABC的边BC ,CA ,AB 的中点,且BC =a ,CA =b ,AB =c ,则①EF =12c -12b ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0中正确的等式的个数为( )A .1B .2C .3D .4高考这样变(2014·新课标全国卷Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB +FC =( )A .AD B.12ADC .BC D.12BC教材这样练《人教A 版·选修2-1》P69例4.斜率为1的直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A ,B 两点,求线段AB 的长. 高考这样变(2014·新课标全国卷Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A.303B .6C .12D .7 3教材这样练《人教B版·必修5》P30练习A. 写出下面数列{a n}的前5项:1.a1=2,a n=12a n-1(n=2,3,4,…);2.a1=3,a n=a n-1+2(n=2,3,4,…);3.a1=1,a n=a n-1+1a n-1(n=2,3,4,…).高考这样变(2014·新课标全国卷Ⅱ)数列{a n}满足a n+1=11-a n,a8=2,则a1=________.教材这样练《人教A版·必修5》P14例5.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶D在西偏北15°的方向上,行驶5 km后到达B处,测得此山顶在西偏北25°的方向上,仰角为8°,求此山的高度CD(精确到1 m).高考这样变(2014·新课标全国卷Ⅰ)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100 m,则山高MN=________m.教材这样练《人教A版·必修1》P39B 组第3题.已知函数f(x)是偶函数,而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明你的判断.高考这样变(2014·新课标全国卷Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是________.总之,教材中的例题、习题是经过精心挑选而设计的,它蕴藏着丰富的思想方法和研究资源.不少试题所涉及的思想方法,都源于教材.高考数学一轮复习中,要做到对教材中的经典题目能够熟练地求解,掌握它的通性通法、答题规范、思路分析及知识内涵.研读教材、汲取营养,充分发挥例题、习题潜在的功能,发挥教材“母本”的作用.为减少考生翻阅教材、查找典型题目之苦,充分发挥我们编者占有广泛教学资源的优势,我们在人教A版、人教B版、北师大版等教材中优中选优地筛选了一些经典题目,做为课前自检基础知识使用,就是充分发挥教材母题的引领带动作用.二、重视经典题目的发散思维本讲内容是上一讲内容的顺承和拓展,其主旨还是让学生在做题的过程中学会多思考和多领悟.如果说上一讲是教给学生“做什么”的问题,那么这一讲是教给学生“怎么做”的问题.在平时的复习备考中,做海量试题必不可少,但绝非上策.应当充分发挥典型试题的带动作用和举一反三的功能,注意培养多题一解、一题多解和一题多变思维能力的养成.多题一解有利于培养学生的求同思维,一题多解有利于培养学生的求异思维,一题多变有利于培养学生思维的灵活性与深刻性.多题一解和一题多解主要靠学生在平时做题的过程中,发挥主观能动性,多思考,多总结,而一题多解则需要教师多找一些典型题目多拓展,多发散,帮学生举一反三、悟通练透.本书在“一题多变”上主要做了以下两方面的尝试:(一)经典“题根”的发散茫茫题海,寻根是岸.木有本,水有源,题有根.在平时的训练中,可将一些经典的题目做为“题根”,在题目发散中,要学会演变题目条件、背景,变换设问,在不断变换的过程中,将此类问题厘清弄透,从一个个小问题中获取大知识,让其“枝繁叶茂”、“生机盎然”,从而彻底打通各知识点间的关节.示例:利用基本不等式求最值(二)考查角度的发散高考中的一些热门考点,虽知年年必考,但学生往往却在这类考点上失分,究其原因,主要是此类考点考查灵活、角度多变.为将这类考点练深练透,有必要对这类考点进行多维探究.备考不留死角,高考不留遗憾!角度二:比较两个函数值或两个自变量的大小若本题条件变为:已知a >0,b >0,a +2b =3,则2a +1b的最小值为________. 本题的条件变为:已知a >0,b>0,c >0,且a +b +c =1,则1a +1b +1c的最小值为________. 本题的条件和结论互换,即:已知a >0,b >0,1a +1b =4,则a +b的最小值为________.已知a >0,b >0,a +b =1,则1a +1b的最小值为________.[解析] ∵a >0,b >0,a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4,即1a +1b的最小值为4,当且仅当a =b =12时等号成立.[答案] 4已知各项为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m ·a n =22a 1,则1m +4n 的最小值为________.本题的条件不变,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________.利用基本不等式求最值的方法及注意点(1)知和求积的最值:求解此类问题的关键:明确“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立. (2)知积求和的最值:明确“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.(4)利用基本不等式求最值时应注意:①非零的各数(或式)均为正;②和或积为定值;③等号能否成立,即“一正、二定、三相等”,这三个条件缺一不可.角度三:解函数不等式 ⇑角度四:利用单调性求参数的取值范围或值4.已知函数f (x )=⎩⎪⎨⎪⎧a -x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2满足对任意的实数x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝ ⎛⎦⎥⎤-∞,138 C .(-∞,2] D.⎣⎢⎡⎭⎪⎫138,2 由单调性求参数范[类题通法] 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的.(4)利用单调性求最值.应先确定函数的单调性,然后再由单调性求出最值.第一章集合与常用逻辑用语第一节集__合对应学生用书P5基础盘查一元素与集合(一)循纲忆知1.了解集合的含义、元素与集合的属于关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(二)小题查验1.判断正误(1)一个集合中可以找到两个相同的元素( )(2)集合{x|x>3}与集合{t|t>3}表示的是同一集合( )(3)a在集合A中,可用符号表示为a⊆A( )(4)零不属于自然数集( )答案:(1)×(2)√(3)×(4)×2.(人教A版教材练习)选择适当的方法表示下列集合:(1)由小于8的所有素数组成的集合;(2)不等式4x-5<3的解集.答案:(1){2,3,5,7} (2){x|x<2}基础盘查二集合间的基本关系(一)循纲忆知1.理解集合之间包含与相等的含义,能识别给定集合的子集.2.在具体情境中,了解全集与空集的含义.(二)小题查验1.判断正误(1)若A=B,则A⊆B( )(2)若A B,则A⊆B且A≠B( )(3)N*N Z( )(4)空集是任何集合的子集,两元素集合是三元素集合的子集( )答案:(1)√(2)√(3)√(4)×2.(人教A版教材例题改编)集合{a,b}的所有子集为________________.答案:{a},{b},{a,b},∅基础盘查三集合的基本运算(一)循纲忆知1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.3.能使用韦恩(Venn)图表达集合的关系及运算.(二)小题查验1.判断正误(1)若A∩B=A∩C,则B=C( )(2)集合A与集合A在全集U中的补集没有公共元素( )(3)并集定义中的“或”能改为“和”()(4)A∩B是由属于A且属于B的所有元素组成的集合( )答案:(1)×(2)√(3)×(4)√2.(人教A版教材习题改编)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=________.答案:{2,4}3.已知集合A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________________.答案:{x|x≤2或x≥10}对应学生用书P6考点一集合的基本概念(基础送分型考点——自主练透)[必备知识]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)集合中元素与集合的关系:元素与集合之间的关系有属于和不属于两种,表示符号为∈和∉. (3)集合的表示法:列举法、描述法、Venn 图. 2.常见数集及其表示符号自然数集用N 表示,正整数集用N *或N +表示,整数集用Z 表示,有理数集用Q 表示,实数集用R 表示.[提醒] 解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[题组练透]1.(2015·洛阳统考)已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( )A .3B .6C .8D .9解析:选D 集合B 中元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.2.现有三个实数的集合,既可以表示为⎩⎨⎧⎭⎬⎫a ,b a ,1,也可以表示为{a 2,a +b,0},则a2 015+b2 015=________.解析:由已知,得b a=0及a ≠0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 015+b2 015=(-1)2 015=-1.答案:-13.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 解析:因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.答案:-32[类题通法]1.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.考点二 集合间的基本关系(重点保分型考点——师生共研)[必备知识](1)子集:对任意的x ∈A ,都有x ∈B ,则A ⊆B (或B ⊇A ); (2)真子集:若集合A ⊆B ,但存在元素x ∈B ,且x ∉A ,则A B (或B A );(3)性质:∅⊆A ;A ⊆A ;A ⊆B ,B ⊆C ⇒A ⊆C . (4)集合相等:若A ⊆B ,且B ⊆A ,则A =B . [提醒] 写集合的子集时不要忘了空集和它本身.[典题例析]1.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4解析:选D 用列举法表示集合A ,B ,根据集合关系求出集合C 的个数. 由x 2-3x +2=0得x =1或x =2, ∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. 2.已知集合A ={x |x 2-2 015x +2 014<0},B ={x |x <m },若A ⊆B ,则实数m 的取值范围是________.解析:由x 2-2 015x +2 014<0,解得1<x <2 014,故A ={x |1<x <2 014}. 而B ={x |x <m },由于A ⊆B ,如图所示,则m ≥2 014.答案:[2 014,+∞)[类题通法](1)已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.注意区间端点的取舍.(2)当题目中有条件B ⊆A 时,不要忽略B =∅的情况![演练冲关]1.(2015·中原名校联盟一模)设A ={1,4,2x },若B ={1,x 2},若B ⊆A ,则x =________. 解析:由B ⊆A ,则x 2=4或x 2=2x .当x 2=4时,x =±2,但x =2时,2x =4,这与集合元素的互异性相矛盾;当x 2=2x 时,x =0或x =2,但x =2时,2x =4,这与集合元素的互异性相矛盾.综上所述,x =-2或x =0.答案:0或-22.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.解析:当B =∅时,有m +1≥2m -1, 则m ≤2.当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4. 答案:(-∞,4]考点三 集合的基本运算(题点多变型考点——全面发掘)[必备知识]1.集合的并、交、补运算: 并集:A ∪B ={x |x ∈A ,或x ∈B }; 交集:A ∩B ={x |x ∈A ,且x ∈B };补集:∁U A ={x |x ∈U ,且x ∉A };U 为全集,∁U A 表示集合A 相对于全集U 的补集. 2.集合的运算性质(1)A ∪B =A ⇔B ⊆A ,A ∩B =A ⇔A ⊆B ; (2)A ∩A =A ,A ∩∅=∅; (3)A ∪A =A ,A ∪∅=A ;(4)A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .[提醒] Venn 图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.[一题多变][典型母题]已知集合A ={y |y =x 2-2x ,x ∈R },B ={y |y =-x 2+2x +6,x ∈R },则A ∩B = .[解析] y =x 2-2x =x -2-1≥-1,y =-x 2+2x +6=-x -2+7≤7,∴A ={y |y ≥-1},B ={y |y ≤7}, 故A ∩B ={y |-1≤y ≤7}. [答案] {y |-1≤y ≤7}[题点发散1] 若集合A 变为A ={x |y =x 2-2x ,x ∈R },其他条件不变,求A ∩B . 解:因A 中元素是函数自变量,则A =R , 而B ={y |y ≤7},则A ∩B ={y |y ≤7}.[题点发散2] 若集合A 、B 中元素都为整数,求A ∩B . 解:A ∩B ⊆{y |-1≤y ≤7},又因为y ∈Z , 故A ∩B ={-1,0,1,2,3,4,5,6,7}.[题点发散3] 若集合A 、B 不变,试求∁R A ∪∁R B . 解:∵A ={y |y ≥-1},B ={y |y ≤7}, ∴∁R A ={y |y <-1},∁R B ={y |y >7}, 故∁R A ∪∁R B ={y |y <-1或y >7}.[题点发散4] 若集合A 、B 变为:A ={(x ,y )|y =x 2-2x ,x ∈R },B ={(x ,y )|y =-x 2+2x +6,x ∈R },求A ∩B .解:由⎩⎪⎨⎪⎧y =x 2-2x ,y =-x 2+2x +6⇒x 2-2x -3=0,解得x =3或x =-1.于是,⎩⎪⎨⎪⎧x =3,y =3或⎩⎪⎨⎪⎧x =-1,y =3,故A ∩B ={(3,3),(-1,3)}.[类题通法]解集合运算问题应注意以下三点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和韦恩(Venn)图.考点四 集合的新定义问题(重点保分型考点——师生共研)[典题例析]1.如图所示的Venn 图中,A ,B 是非空集合,定义集合A B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x,x >0},则A B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}解析:选D 因为A ={x |0≤x ≤2},B ={y |y >1},A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2},所以A B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2},故选D.2.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a ja i两数中至少有一个属于A ,则称集合A 为“权集”,则( )A .{1,3,4}为“权集”B .{1,2,3,6}为“权集”C .“权集”中元素可以有0D .“权集”中一定有元素1解析:选B 由于3×4与43均不属于数集{1,3,4},故A 不正确,由于1×2,1×3,1×6,2×3,62,63,11,22,33,66都属于数集{1,2,3,6},故B 正确,由“权集”的定义可知a ja i需有意义,故不能有0,同时不一定有1,C ,D 错误,选B.[类题通法]解决集合创新型问题的方法(1)紧扣新定义:首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质:集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.[演练冲关]1.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )A .1B .3C .7D .31解析:选B 具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.2.对于任意两个正整数m ,n ,定义运算(用⊕表示运算符号):当m ,n 都是正偶数或都是正奇数时,m ⊕n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ⊕n =m ×n .例如4⊕6=4+6=10,3⊕7=3+7=10,3⊕4=3×4=12.在上述定义中,集合M ={(a ,b )|a ⊕b =12,a ,b ∈N *}的元素有________个.解析:m ,n 同奇同偶时有11组:(1,11),(2,10),…,(11,1);m ,n 一奇一偶时有4组:(1,12),(12,1),(3,4),(4,3),所以集合M 的元素共有15个.答案:15对应A 本课时跟踪检测一一、选择题1.(2015·广州测试)已知集合A =⎩⎨⎧⎭⎬⎫x |x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5解析:选C ∵32-x∈Z ,∴2-x 的取值有-3,-1,1,3,又∵x ∈Z ,∴x 值分别为5,3,1,-1,故集合A 中的元素个数为4,故选C.2.(2014·江西高考)设全集为R ,集合A ={x |x 2-9<0},B ={x |-1<x ≤5},则A ∩(∁RB )=( )A .(-3,0)B .(-3,-1)C .(-3,-1]D .(-3,3)解析:选C 由题意知,A ={x |x 2-9<0}={x |-3<x <3},∵B ={x |-1<x ≤5},∴∁R B ={x |x ≤-1或x >5}.∴A ∩(∁R B )={x |-3<x <3}∩{x |x ≤-1或x >5}={x |-3<x ≤-1}. 3.已知集合A ={x |y =1-x 2},B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B ⊆A解析:选B 由题意知A ={x |y =1-x 2},∴A ={x |-1≤x ≤1},∴B ={x |x =m 2,m ∈A }={x |0≤x ≤1},∴B A ,故选B.4.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为( )A .[-1,0]B .(-1,0)C .(-∞,-1)∪[0,1)D .(-∞,-1]∪(0,1)解析:选D 因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1], 所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1),选D.5.(2015·西安一模)设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( )A .0B .1C .2D .3解析:选C 由题中集合可知,集合A 表示直线x +y =1上的点,集合B 表示直线x -y =3上的点,联立⎩⎪⎨⎪⎧x +y =1,x -y =3可得A ∩B ={(2,-1)},M 为A ∩B 的子集,可知M 可能为{(2,-1)},∅,所以满足M ⊆(A ∩B )的集合M 的个数是2,故选C.6.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2 014∈[4];②-3∈[3];③Z =[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一‘类’”的充要条件是“a -b ∈[0]”.其中,正确结论的个数是( ) A .1 B .2 C .3D .4解析:选C 因为2 014=402×5+4,又因为[4]={5n +4|n ∈Z },所以2 014∈[4],故①正确;因为-3=5×(-1)+2,所以-3∈[2],故②不正确;因为所有的整数Z 除以5可得的余数为0,1,2,3,4,所以③正确;若a ,b 属于同一‘类’,则有a =5n 1+k ,b =5n 2+k ,所以a -b =5(n 1-n 2)∈[0],反过来,如果a -b ∈[0],也可以得到a ,b 属于同一“类”,故④正确.故有3个结论正确.二、填空题7.已知A ={0,m,2},B ={x |x 3-4x =0},若A =B ,则m =________. 解析:由题知B ={0,-2,2},A ={0,m,2},若A =B ,则m =-2. 答案:-28.(2014·重庆高考)设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.解析:由题意,得U ={1,2,3,4,5,6,7,8,9,10},故∁U A ={4,6,7,9,10},所以(∁U A )∩B ={7,9}.答案:{7,9}9.(2015·昆明二模)若集合A ={x |x 2-9x <0,x ∈N *},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪4y∈N *,y ∈N *,则A ∩B中元素的个数为________.解析:解不等式x 2-9x <0可得0<x <9,所以A ={x |0<x <9,x ∈N *}={1,2,3,4,5,6,7,8},又4y∈N *,y ∈N *,所以y 可以为1,2,4,所以B ={1,2,4},所以A ∩B=B ,A ∩B 中元素的个数为3.答案:310.(2015·南充调研)已知集合A ={x |4≤2x≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________.解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2] 三、解答题11.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值. (1)9∈(A ∩B ); (2){9}=A ∩B .解:(1)∵9∈(A ∩B ),∴2a -1=9或a 2=9, ∴a =5或a =3或a =-3.当a =5时,A ={-4,9,25},B ={0,-4,9};当a =3时,a -5=1-a =-2,不满足集合元素的互异性; 当a =-3时,A ={-4,-7,9},B ={-8,4,9}, 所以a =5或a =-3.(2)由(1)可知,当a =5时,A ∩B ={-4,9},不合题意, 当a =-3时,A ∩B ={9}. 所以a =-3.12.(2015·福州一模)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围. 解:(1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}. (2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,解得m ≤-2,即实数m 的取值范围为(-∞,-2]. (3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).第二节命题及其关系、充分条件与必要条件对应学生用书P8基础盘查一 四种命题及其关系 (一)循纲忆知 1.理解命题的概念.2.了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(二)小题查验 1.判断正误(1)“x 2+2x -3<0”是命题( ) (2)“sin 45°=1”是真命题( )(3)命题“若p ,则q ”的否命题是“若p ,则綈q ”( )(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真( ) 答案:(1)× (2)× (3)× (4)√2.(人教A 版教材习题)已知命题:若m >0,则方程x 2+x -m =0有实数根.则其逆否命题为____________________________________.答案:若方程x2+x-m=0无实根,则m≤0基础盘查二充分条件与必要条件(一)循纲忆知理解必要条件、充分条件与充要条件的意义.(二)小题查验1.判断正误(1)当q是p的必要条件时,p是q的充分条件( )(2)当p是q的充要条件时,也可说成q成立当且仅当p成立( )(3)q不是p的必要条件时,“p⇒/q”成立( )答案:(1)√(2)√(3)√2.(人教A版教材练习)在下列各题中,p是q的什么条件?(1)p:x2=3x+4,q:x=3x+4;(2)p:x-3=0,q:(x-3)(x-4)=0;(3)p:b2-4ac≥0(a≠0),q:ax2+bx+c=0(a≠0)有实根.答案:(1)必要(2)充分(3)充要对应学生用书P8考点一命题及其相互关系(基础送分型考点——自主练透)[必备知识]1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.[提醒] 当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动.[题组练透]1.命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为( )A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C 根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故选C.2.以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析:对于①,若log2a>0=log21,则a>1,所以函数f(x)=log a x在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题是“若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.答案:②④[类题通法]1.由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.2.命题真假的判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题和其逆否命题的等价关系进行判断.考点二充分必要条件的判定(重点保分型考点——师生共研)[必备知识]1.充分条件与必要条件的相关概念(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q⇒/p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇒/q,则p是q的必要不充分条件;(5)如果p⇒/q,且q⇒/p,则p是q的既不充分又不必要条件.2.从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={p(x)},B={q(x)},则关于充分条件、必要条件又可以叙述为:(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分又不必要条件.[提醒] 充分条件与必要条件的两个特征(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”.(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“p⇒q且q⇒r”⇒“p⇒r”(“p⇐q且q⇐r”⇒“p⇐r”).[典题例析]1.(2014·浙江高考)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选A 当四边形ABCD为菱形时,必有对角线互相垂直,即AC⊥BD.当四边形ABCD 中AC⊥BD时,四边形ABCD不一定是菱形,还需要AC与BD互相平分.综上知,“四边形ABCD 为菱形”是“AC⊥BD”的充分不必要条件.2.给定两个命题p,q.若綈p是q的必要而不充分条件,则p是綈q的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 由q⇒綈p且綈p⇒/q可得p⇒綈q且綈q⇒/p,所以p是綈q的充分不必要条件.[类题通法]充分条件、必要条件的判定方法有定义法、集合法和等价转化法.三种不同的方法各适用于不同的类型,定义法适用于定义、定理判断性问题,而集合法多适用于命题中涉及字母的范围的推断问题,等价转化法适用于条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.[提醒] 区别A是B的充分不必要条件(A⇒B且B⇒/A)与A的充分不必要条件是B(B⇒A 且A⇒/B)两者的不同.[演练冲关]1.若p:|x|=x,q:x2+x≥0.则p是q的( )A.充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A p :{x ||x |=x }={x |x ≥0}=A ,q :{x |x 2+x ≥0}={x |x ≥0或x ≤-1}=B ,∵AB ,∴p 是q 的充分不必要条件.2.(2015·石家庄第一次模拟)若命题p :φ=π2+k π,k ∈Z ,命题q :f (x )=sin(ωx+φ)(ω≠0)是偶函数,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 当φ=π2+k π,k ∈Z 时,f (x )=±cos ωx 是偶函数,所以p 是q 的充分条件;若函数f (x )=sin(ωx +φ)(ω≠0)是偶函数,则sin φ=±1,即φ=π2+k π,k ∈Z ,所以p 是q 的必要条件,故p 是q 的充要条件,故选A.考点三 充分必要条件的应用(题点多变型考点——全面发掘)[一题多变][典型母题]已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.[解] 由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].[题点发散1] 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.[题点发散2] 本例条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围.解:由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇒/ P . ∴[--m,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).[类题通法]利用充要条件求参数的值或范围,关键是合理转化条件,准确地将每个条件对应的参数的范围求出来,然后转化为集合的运算,一定要注意区间端点值的检验.其思维方式是:(1)若p 是q 的充分不必要条件,则p ⇒q 且q ⇒/ p ; (2)若p 是q 的必要不充分条件,则p ⇒/ q ,且q ⇒p ; (3)若p 是q 的充要条件,则p ⇔q .对应B 本课时跟踪检测二一、选择题1.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B M ={x |0<x ≤3},N ={x |0<x ≤2},所以N M ,故a ∈M 是a ∈N 的必要不充分条件.2.(2014·陕西高考)原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假解析:选B 原命题正确,所以逆否命题正确.模相等的两复数不一定互为共轭复数,同时因为逆命题与否命题互为逆否命题,所以逆命题和否命题错误.故选B.3.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.4.(2014·湖北高考)设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C 是A ∩B ≠∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件解析:选C 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.5.命题“任意x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4 B .a ≤4 C .a ≥5D .a ≤5解析:选C 命题“任意x ∈[1,2],x 2-a ≤0”为真命题的充要条件是a ≥4.故其充分不必要条件是集合[4,+∞)的真子集,正确选项为C.6.在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“若两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,则a 1b 2-a 2b 1=0”.那么f (p )等于( )A .1B .2C .3D .4解析:选B 原命题p 显然是真命题,故其逆否命题也是真命题.而其逆命题是:若a 1b 2-a 2b 1=0,则两条直线l 1与l 2平行,这是假命题,因为当a 1b 2-a 2b 1=0时,还有可能l 1与l 2重合,逆命题是假命题,从而否命题也为假命题,故f (p )=2.二、填空题7.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:原命题为假命题,则逆否命题也为假命题,逆命题也是假命题,则否命题也是假命题.故假命题的个数为3.答案:38.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围。

2016届高考数学理科一轮复习课件 第一章 集合与常用逻辑用语1-2

2016届高考数学理科一轮复习课件 第一章 集合与常用逻辑用语1-2
答案:A
第题正确的是( )
①“a>b”是“a2>b2”的充分条件;
②“|a|>|b|”是“a2>b2”的充要条件;
③“a>b”是“a+c>b+c”的充要条件;
④“a>b”是“ac2>bc2”的充要条件.
A.②④
B.②③
C.②③④
D.③④
解析:由于|a|>|b|⇔a2>b2,a>b⇔a+c>b+c,故②③正确.由于 a>b
第十三页,编辑于星期五:二十一点 三十八分。
充分条件和必要条件的判定(师生共研)
例2 (2014年高考北京卷)设a,b是实数,则“a>b”是“a2>b2”
的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析 当a=0,b=-1时,a>b成立,但a2=0,b2=1,a2>b2不成
第二页,编辑于星期五:二十一点 三十八分。
三、四种命题的真假关系 1.两个命题互为逆否命题,它们有 相同 的真假性. 2.两个命题互为逆命题或互为否命题,它们的真假性 没有 关 系. 四、充分条件与必要条件
1.如果p⇒q,则p是q的 充分条件 ,q是p的 必要条件 . 2.如果p⇒q,q⇒p,则p是q的 充要条件 .
第十八页,编辑于星期五:二十一点 三十八分。
规律方法 利用充要条件求参数的值或范围,关键是合理转化条件, 准确地将每个条件对应的参数的范围求出来,然后转化为集合的包含、 相等关系,一定要注意区间端点值的检验.
第十九页,编辑于星期五:二十一点 三十八分。
2.已知不等式x2-5x+4≤0成立的充分不必要条件是-1≤x+2m≤1, 求实数m的取值范围.

浙江专用高考数学一轮复习第一章集合与常用逻辑用语第2讲命题及其关系充分条件与必要条件课件

浙江专用高考数学一轮复习第一章集合与常用逻辑用语第2讲命题及其关系充分条件与必要条件课件

p 是 q 的_充__分__不__必__要___条件
p⇒q 且 q⇒/ p
p 是 q 的_必__要__不__充__分___条件
p⇒/ q 且 q⇒p
p 是 q 的__充__要__条件
p⇔q
p 是 q 的_既__不__充___分__也__不__必__要__条件
p⇒/ q 且 q⇒/ p
常用结论 集合与充要条件的关系
已知条件 p:|x-4|≤6,条件 q:(x-1)2-m2≤0(m>0).若﹁p 是﹁q 的充分不必要条件,则 m 的取值范围为______. 【解析】 条件 p:-2≤x≤10,条件 q:1-m≤x≤1+m,又﹁p 是﹁q
m>0,
的充分不必要条件,则 q 是 p 的充分不必要条件.故有1-m≥-2 ,所以 1+m≤10,
[诊断自测] 1.命题“若 a2+b2=0,a,b∈R,则 a=b=0”的逆否命题是________. 答案:若 a≠0 或 b≠0,a,b∈R,则 a2+b2≠0
2.已知命题“对任意 a,b∈R,若 ab>0,则 a>0”,则它的否命题是________. 答案:对任意 a,b∈R,若 ab≤0,则 a≤0
设 p,q 成立的对象构成的集合分别为 A,B, (1)p 是 q 的充分不必要条件⇔A B;
(2)p 是 q 的必要不充分条件⇔A B; (3)p 是 q 的充要条件⇔A=B.
[思考辨析] 判断正误(正确的打“√”,错误的打“×”) (1)当 q 是 p 的必要条件时,p 是 q 的充分条件.( √ ) (2)q 不是 p 的必要条件时,“p⇒/ q”成立.( √ )
1-m≤1+m, 则1-m≥-2, 所以 0≤m≤3.
1+m≤10, 所以当 0≤m≤3 时,p 是 q 的必要条件, 即所求 m 1.(变问法)本例条件不变,若 x∈P 的必要条件是 x∈S,求 m 的取值范围. 解:由例题知 P={x|-2≤x≤10},若 x∈P 的必要条件是 x∈S,即 x∈S 是

高中数学知识点总结(第一章 集合与常用逻辑用语)

高中数学知识点总结(第一章 集合与常用逻辑用语)

第一章 集合与常用逻辑用语第一节 集 合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁U A.二、常用结论(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.(4)补集的性质:A∪∁U A=U,A∩∁U A=∅,∁U(∁U A)=A,∁A A=∅,∁A∅=A.(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.第二节命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.全称命题与特称命题4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.。

高考数学一轮复习 第1章 集合与常用逻辑用语 第2讲 命题及其关系课件

高考数学一轮复习 第1章 集合与常用逻辑用语 第2讲 命题及其关系课件

第二十六页,共三十九页。
考向 充分必要条件的应用 例 4 [2018·辽宁模拟]已知命题 p:|x-4|≤6,命题 q: 1-m≤x≤1+m,m>0,若綈 p 是綈 q 的必要而不充分条件,
求实数 m 的取值范围. 解 p:x∈[-2,10],q:x∈[1-m,1+m],m>0. ∵綈 p 是綈 q 的必要而不充分条件,即 p⇒q 且 q⇒/ p.
12/11/2021
第二十页,共三十九页。
解析 ①命题“若 x+y=0,则 x,y 互为相反数”的 逆命题为“若 x,y 互为相反数,则 x+y=0”,显然①为 真命题;②不全等的三角形的面积也可能相等,故②为假 命题;③原命题正确,所以它的逆否命题也正确,故③为 真命题;④若 ab 是正整数,但 a,b 不一定都是正整数, 例如 a=-1,b=-3,故④为假命题.
12/11/2021
第二十二页,共三十九页。
解析 若 x>1 且 y>1,则有 x+y>2 成立,所以 p⇒q; 反之由 x+y>2 不能得到 x>1 且 y>1.所以 p 是 q 的充分不必 要条件.
12/11/2021
第二十三页,共三十九页。
命题角度 2 等价转化法判断充分、必要条件 例 3 给定两个命题 p,q.若綈 p 是 q 的必要而不充分
∴[-2,10] [1-m,1+m],
12/11/2021
第二十七页,共三十九页。
m>0,
即1-m≤-2, 1+m≥10.
解得 m≥9,
∴实数 m 的取值范围是[9,+∞).
12/11/2021
第二十八页,共三十九页。
触类旁通 根据充要条件求参数的取值范围
解决此类问题一般是把充分条件、必要条件或充要条件 转化为集合的包含、相等关系,然后列出有关参数的不等式 (组)求解;涉及参数问题,直接解决较为困难时,可用等价 转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来

高考一轮复习第1章集合与常用逻辑用语第2讲命题及其关系充分条件与必要条件

高考一轮复习第1章集合与常用逻辑用语第2讲命题及其关系充分条件与必要条件

第二讲命题及其关系、充分条件与必要条件知识梳理·双基自测知识点一命题及四种命题之间的关系1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①若两个命题互为逆否命题,则它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.知识点二充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且qpp是q的必要不充分条件pq且q⇒pp是q的充要条件p⇔qp是q的既不充分又不必要条件pq且qp重要结论1.若A={x|p(x)},B={x|q(x)},则(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且AB,则p是q的既不充分也不必要条件.2.充分条件与必要条件的两个特征:(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”.(2)传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”).注意:不能将“若p ,则q”与“p ⇒q ”混为一谈,只有“若p ,则q”为真命题时,才有“p ⇒q ”,即“p ⇒q ”⇔“若p ,则q”为真命题.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)语句x 2-3x +2=0是命题.( × )(2)命题“三角形的内角和是180°”的否命题是“三角形的内角和不是180°”.( × ) (3)已知集合A ,B ,则A∪B=A∩B 的充要条件是A =B .( √ ) (4)“α=β”是“tan α=tan β”的充分不必要条件.( × ) (5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( √ )[解析] (4)当α=β=π2时,tan α、tan β都无意义.因此不能推出tan α=tan β,当tan α=tan β时,α=β+k π,k∈Z,不一定α=β,因此是既不充分也不必要条件.题组二 走进教材2.(选修2-1P 8T3改编)下列命题是真命题的是( A ) A .矩形的对角线相等 B .若a>b ,c>d ,则ac>bd C .若整数a 是素数,则a 是奇数 D .命题“若x 2>0,则x>1”的逆否命题3.(选修2-1P 10T4改编)x 2-3x +2≠0是x≠1的充分不必要条件. [解析] x =1是x 2-3x +2=0的充分不必要条件. 题组三 走向高考4.(2020·天津,2,5分)设a∈R,则“a>1”是“a 2>a ”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] 易知a>1⇒a 2>a ,而a 2>a ⇒a<0或a>1,所以“a>1”是“a 2>a ”的充分不必要条件. 5.(2015·山东,5分)设m∈R,命题“若m>0,则方程x 2+x -m =0有实根”的逆否命题是( D ) A .若方程x 2+x -m =0有实根,则m>0 B .若方程x 2+x -m =0有实根,则m≤0 C .若方程x 2+x -m =0没有实根,则m>0 D .若方程x 2+x -m =0没有实根,则m≤0 [解析] 由原命题和逆否命题的关系可知D 正确.6.(2018·北京,5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是f(x)=sin_x(答案不唯一).[解析]这是一道开放性试题,答案不唯一,只要满足f(x)>f(0)对任意的x∈(0,2]都成立,且函数f(x)在[0,2]上不是增函数即可.如f(x)=sin x,答案不唯一.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一命题及其关系——自主练透例1 (1)(2021·新高考八省联考)关于x的方程x2+ax+b=0,有下列四个命题:甲:x=1是该方程的根;乙:x=3是该方程的根;丙:该方程两根之和为2;丁:该方程两根异号.如果只有一个假命题,则该命题是( A )A.甲B.乙C.丙D.丁(2)(2021·长春模拟)已知命题α:如果x<3,那么x<5,命题β:如果x≥3,那么x≥5,则命题α是命题β的( A )A.否命题B.逆命题C.逆否命题D.否定形式(3)(多选题)下列命题为真命题的是( CD )A.“若a2<b2,则a<b”的否命题B.“全等三角形面积相等”的逆命题C.“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题D.“若3x(x≠0)为有理数,则x为无理数”的逆否命题(4)命题“若a+b=0,则a,b中最多有一个大于零”的否定形式为若a+b=0,则a,b都大于零,否命题为若a+b≠0,则a,b都大于零.[解析](1)若乙、丙、丁正确,显然x1=-1,x2=3,两根异号,x1+x2=2,故甲错,因此选A.(2)命题α:如果x<3,那么x<5,命题β:如果x≥3,那么x≥5,则命题α是命题β的否命题.(3)对于A ,否命题为“若a 2≥b 2,则a≥b”,为假命题;对于B ,逆命题为“面积相等的三角形是全等三角形”,是假命题;对于C ,当a>1时,Δ=-12a<0,原命题正确,从而其逆否命题正确,故C 正确;对于D ,原命题正确,因此该命题的逆否命题也正确,D 正确.故选C 、D .(4)否定形式:若a +b =0,则a ,b 都大于零.否命题:若a +b ≠0,则a ,b 都大于零. 名师点拨 MING SHI DIAN BO(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,如果命题不是“若p ,则q”的形式,应先改写成“若p ,则q”的形式;如果命题有大前提,写其他三种命题时需保留大前提不变.(2)判断一个命题为真命题,要给出严格的推理证明;判断一个命题为假命题,只需举出反例. (3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.考点二 充分必要条件考向1 充分条件与必要条件的判断——师生共研 方法1:定义法判断例2 ( 2020·北京,9,4分)已知α,β∈R,则“存在k∈Z 使得α=k π+(-1)kβ”是“sinα=sin β”的( C )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] (1)充分性:已知存在k∈Z 使得α=k π+(-1)kβ,(ⅰ)若k 为奇数,则k =2n +1,n∈Z,此时α=(2n +1)π-β,n∈Z,sin α=sin(2n π+π-β)=sin(π-β)=sin β;(ⅱ)若k 为偶数,则k =2n ,n∈Z,此时α=2n π+β,n∈Z,sin α=sin(2n π+β)=sin β. 由(ⅰ)(ⅱ)知,充分性成立.(2)必要性:若sin α=sin β成立,则角α与β的终边重合或角α与β的终边关于y 轴对称,即α=β+2m π或α+β=2m π+π,m∈Z,即存在k∈Z 使得α=k π+(-1)kβ,必要性也成立,故选C . 方法2:集合法判断例3 (2020·天津一中高三月考)设x∈R,则“|x-1|<4”是“x -52-x >0”的( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 解绝对值不等式可得-4<x -1<4,即-3<x<5, 将分式不等式变形可得x -5x -2<0,解得2<x<5,因为(2,5)(-3,5),所以“|x-1|<4”是“x -52-x >0”的必要而不充分条件.方法3 等价转化法判断例4 (1)给定两个条件p ,q ,若¬ p 是q 的必要不充分条件,则p 是¬q 的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件(2)“已知命题p :cos α≠12,命题q :α≠π3”,则命题p 是命题q 的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)因为¬ p 是q 的必要不充分条件,则q ⇒¬ p ,但¬pq ,其逆否命题为p ⇒¬q ,但¬qp ,所以p 是¬q 的充分不必要条件.(2) ¬p :cos α=12,¬q :α=π3,显然¬q ⇒¬p ,¬p ¬q ,∴¬q 是¬p 的充分不必要条件,从而p 是q 的充分不必要条件,故选A .另解:若cos α≠12,则α≠2kπ±π3(k∈Z),则α也必然不等于π3,故p ⇒q ;若α≠π3,但α=-π3时,依然有cos α=12,故q p.所以p 是q 的充分不必要条件.故选A . 名师点拨 MING SHI DIAN BO有关充要条件的判断常用的方法(1)根据定义判断:①弄清条件p 和结论q 分别是什么;②尝试p ⇒q ,q ⇒p.若p ⇒q ,则p 是q 的充分条件;若q ⇒p ,则p 是q 的必要条件;若p ⇒q ,qp ,则p 是q 的充分不必要条件;若pq ,q ⇒p ,则p 是q 的必要不充分条件;若p ⇒q ,q ⇒p ,则p 是q 的充要条件.(2)利用集合判断 记法 A ={x|p(x)},B ={x|q(x)} 关系 ABBAA =BAB 且BA结论p 是q 的充分不必要条件p 是q 的必要不充分条件p 是q 的充要条件p 是q 的既不充分也不必要条件断¬q 是¬p 的什么条件.〔变式训练1〕(1)指出下列各组中,p 是q 的什么条件(在“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选出一种作答).①非空集合A ,B 中,p :x∈(A∪B),q :x∈B;②已知x ,y∈R,p :(x -1)2+(y -2)2=0,q :(x -1)(y -2)=0; ③在△ABC 中,p :A =B ,q :sin A =sin B ; ④对于实数x ,y ,p :x +y≠8,q :x≠2或y≠6.(2)(2020·天津部分区期末)设x∈R,则“x 2-2x<0”是“|x-1|<2”的( A ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件[解析] (1)①显然x∈(A∪B)不一定有x∈B,但x∈B 一定有x∈(A∪B),所以p 是q 的必要不充分条件.②条件p :x =1且y =2,条件q :x =1或y =2,所以p ⇒q 但qp ,故p 是q 的充分不必要条件. ③在△ABC 中,A =B ⇒sin A =sin B ;反之,若sin A =sin B ,因为A 与B 不可能互补(三角形三个内角之和为180°),所以只有A =B ,故p 是q 的充要条件.④易知¬p :x +y =8,¬q :x =2且y =6,显然¬q ⇒¬p ,但¬p ¬q ,所以¬q 是¬p 的充分不必要条件,根据原命题和逆否命题的等价性知,p 是q 的充分不必要条件.(2)解不等式x 2-2x<0得0<x<2,解不等式|x -1|<2得-1<x<3,所以“x 2-2x<0”是“|x-1|<2”的充分不必要条件.故选A .考向2 充要条件的应用——多维探究 角度1 充要条件的探究例 5 (多选题)下列函数中,满足“x 1+x 2=0”是“f(x 1)+f(x 2)=0”的充要条件的是( BC )A .f(x)=tan xB .f(x)=3x -3-xC .f(x)=x 3D .f(x)=log 3|x|[解析] 因为f(x)=tan x 是奇函数,所以x 1+x 2=0⇒f(x 1)+f(x 2)=0,但f ⎝ ⎛⎭⎪⎫π4+f ⎝ ⎛⎭⎪⎫3π4=0时,π4+3π4≠0,不符合要求,所以A 不符合题意;因为f(x)=3x -3-x 和f(x)=x 3均为单调递增的奇函数,所以满足“x 1+x 2=0”是“f(x 1)+f(x 2)=0”的充要条件,符合题意;对于选项D ,由f(x)=log 3|x|的图象易知不符合题意,故选BC .注:满足条件的函数是奇函数且单调. 角度2 利用充要条件求参数的值或取值范围例6 已知P ={x|x 2-8x -20≤0},非空集合S ={x|1-m ≤x ≤1+m}.若x ∈P 是x∈S 的必要条件,则m 的取值范围是[0,3].[解析] 由x 2-8x -20≤0,得-2≤x≤10, 所以P ={x|-2≤x≤10},由x∈P 是x∈S 的必要条件,知S ⊆P.则⎩⎪⎨⎪⎧1-m≤1+m ,1-m≥-2,1+m≤10,所以0≤m≤3. 所以当0≤m≤3时,x∈P 是x∈S 的必要条件,即所求m 的取值范围是[0,3].[引申1]若本例将条件“若x∈P 是x∈S 的必要条件”改为“若x∈P 是x∈S 的必要不充分条件”,则m 的取值范围是[0,3].[解析] 解法一:由(1)若x∈P 是x∈S 的必要条件,则0≤m ≤3,当m =0时,S ={1},不充分;当m =3时,S ={x|-2≤x≤4}也不充分,故m 的取值范围为[0,3].解法二:若x∈P 是x∈S 的必要且充分条件,则P =S ,即⎩⎪⎨⎪⎧1-m =-2,1+m =10⇒m 无解,∴m 的取值范围是[0,3].[引申2]若本例将条件“若x∈P 是x∈S 的必要条件”变为“若非P 是非S 的必要不充分条件”,其他条件不变,则m 的取值范围是[9,+∞).[解析] 由(1)知P ={x|-2≤x≤10), ∵非P 是非S 的必要不充分条件, ∴S 是P 的必要不充分条件,∴P ⇒S 且SP. ∴[-2,10] [1-m ,1+m].∴⎩⎪⎨⎪⎧1-m≤-2,1+m>10或⎩⎪⎨⎪⎧1-m<-2,1+m≥10. ∴m ≥9,即m 的取值范围是[9,+∞). 名师点拨 MING SHI DIAN BO充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)一定要注意端点值的取舍,处理不当容易出现漏解或增解的现象.(3)注意区别以下两种不同说法:①p 是q 的充分不必要条件,是指p ⇒q 但qp ;②p 的充分不必要条件是q ,是指q ⇒p 但pq.(4)注意下列条件的等价转化:①p 是q 的什么条件等价于¬q 是¬p 的什么条件,②p 是¬q 的什么条件等价于q 是¬ p 的什么条件.〔变式训练2〕(1)(角度1)(多选题)(2020·江西赣州十四县市高三上期中改编)角A ,B 是△ABC 的两个内角.下列四个条件下,“A>B”的充要条件是( ABD )A .sin A>sinB B .cos A<cos BC .tan A>tan BD .cos 2A<cos 2B(2)(角度2)(2021·山东省实验中学高三诊断)已知p :x≥k,q :(x +1)(2-x)<0.如果p 是q 的充分不必要条件,那么实数k 的取值范围是( B )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1][解析] (1)当A>B 时,根据“大边对大角”可知,a>b ,由于a sin A =bsin B ,所以sin A>sin B ,则A 是“A>B”的充要条件;由于0<B<A<π,余弦函数y =cos x 在区间(0,π)内单调递减,所以cos A<cosB ,则B 是“A>B”的充要条件;当A>B 时,若A 为钝角,B 为锐角,则tan A<0<tan B ,则C 不是“A>B”的充要条件;当cos 2A<cos 2B ,即1-sin 2A<1-sin 2B ,所以sin 2A>sin 2B ,所以D 是“A>B”的充要条件;故选A 、B 、D .(2)由q :(x +1)(2-x)<0,可知q :x<-1或x>2.因为p 是q 的充分不必要条件,所以x≥k ⇒x<-1或x>2,即[k ,+∞)是(-∞,-1)∪(2,+∞)的真子集,故k>2.故选B .名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG抽象命题间充要条件的判定例7 已知p 是r 的充分不必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①r 是q 的充要条件;②p 是q 的充分不必要条件;③r 是q 的必要不充分条件;④¬p 是¬s 的必要不充分条件;⑤r 是s 的充分不必要条件,则正确命题的序号是( B )A .①④⑤B .①②④C .②③⑤D .②④⑤[分析] 本题涉及命题较多,关系复杂,因此采用“图解法”.[解析] 由题意得p,显然q ⇒r 且r ⇒s ⇒q ,即q ⇔r ,①正确;p ⇒r ⇒s ⇒q 且qp ,②正确;r⇔q ,③错误;由p ⇒s 知¬ s ⇒¬ p ,但sp ,∴¬ p ¬ s ,④正确;r ⇔s ,⑤错误.故选B .名师点拨 MING SHI DIAN BO命题较多、关系复杂时,画出各命题间关系图求解,简洁直观,一目了然. 〔变式训练3〕若p 是r 的必要不充分条件,q 是r 的充分条件,则p 是q 的必要不充分条件. [解析] 由题意可知q ⇒rp ,∴p 是q 的必要不充分条件.。

高考新课标数学(理)大一轮复习讲义课件第1章集合与常用逻辑用语-第2节命题及其关系、充分条件与必要条件p

高考新课标数学(理)大一轮复习讲义课件第1章集合与常用逻辑用语-第2节命题及其关系、充分条件与必要条件p
答案:(1)√ (2)√
4.(2015·重庆卷)“x=1”是“x2-2x+1=0”的( ) A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件 解析:若 x=1,则 x2-2x+1=0;若 x2-2x+1=0,即 (x-1)2=0,则 x=1.故选 A.
答案:A
5.设 x∈R,则 x>2 的一个必要不充分条件是( )
2.(2015·山东卷)设 m∈R,命题“若 m>0,则方程 x2 +x-m=0 有实根”的逆否命题是( )
A.若方程 x2+x-m=0 有实根,则 m>0 B.若方程 x2+x-m=0 有实根,则 m≤0 C.若方程 x2+x-m=0 没有实根,则 m>0 D.若方程 x2+x-m=0 没有实根,则 m≤0
A.m<4
B.m>4
C.0<m<4
D.0≤m<4
【解析】 (1)因为函数 f(x)过点(1,0),所以函数 f(x) 有且只有一个零点⇔函数 y=-2x+a(x≤0)没有零点⇔函数 y=2x(x≤0)与直线 y=a 无公共点.由数形结合,可得 a≤0 或 a>1.
观察选项,根据集合间关系{a|a<0} {a|a≤0 或 a>1},
答案:(3,+∞)
1.对于命题正误的判断是高考的热点 之一,理应引起大家的关注,命题正误的 判断可涉及各章节的内容,覆盖面宽,也 是学生的易失分点.命题正误的判断的原 则是:正确的命题要有依据或者给以论证; 不一定正确的命题要举出反例,绝对不要主观臆断,这也是 最基本的数学逻辑思维方式.
解析:依题意,P={x|f(x+t)+1<3}={x|f(x+t)<2}= {x|f(x+t)<f(2)},Q={x|f(x)<-4}={x|f(x)<f(-1)}.

高考数学第一章集合与常用逻辑用语第二节命题及其关系、充分条件与必要条件教案文

高考数学第一章集合与常用逻辑用语第二节命题及其关系、充分条件与必要条件教案文

第二节命题及其关系、充分条件与必要条件1.命题2(1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充分条件与必要条件1.(2019·昆山中学检测)下列有关命题的说法不正确的有________个.①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②“x=-1”是“x2-5x-6=0”的必要不充分条件;③命题“∃x0∈R,x20+x0+1<0”的否定是“∀x∈R,x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案:32.设A,B是两个集合,则“A∩B=A”是“A⊆B”的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).答案:充要3.(2019·南通中学检测)命题“若x2+y2≤1,则x+y<2”的否命题为________________.答案:若x 2+y 2>1,则x +y ≥24.“x ≥1”是“x +1x≥2”的________条件.解析:若x >0,则x +1x≥2x ·1x=2,当且仅当x =1时取等号,显然[1,+∞) (0,+∞),所以x ≥1是x +1x≥2的充分不必要条件.答案:充分不必要1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且AB )两者的不同.[小题纠偏]1.(2019·海门中学检测)已知α,β表示两个不同平面,直线m 是α内一条直线,则“α∥β”是“m ∥β”的________条件.答案:充分不必要2.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:________________. 解析:原命题的条件:在△ABC 中,∠C =90°, 结论:∠A ,∠B 都是锐角.否命题是否定条件和结论. 即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”. 答案:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角 考点一 四种命题相互关系及真假判断基础送分型考点——自主练透[题组练透]1.(2018·启东中学期末检测)能够说明“设a ,b 是任意实数,若a 2<b 2,则a <b ”是假命题的一组整数a ,b 的值依次为________.解析:可令a =1,b =-2,满足a 2<b 2,但a >b . 答案:1,-2(答案不唯一)2.(2019·常州一中测试)命题“若α=π4,则tan α=1”的逆否命题是________________.解析:命题的条件是p :α=π4,结论是q :tan α=1.由命题的四种形式,可知命题“若p ,则q ”的逆否命题是“若非q ,则非p ”,显然非q :tan α≠1,非p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.答案:若tan α≠1,则α≠π43.给出以下四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②(易错题)“全等三角形的面积相等”的否命题; ③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题; ④若ab 是正整数,则a ,b 都是正整数. 其中真命题是________.(写出所有真命题的序号)解析:①命题“若xy =1,则x ,y 互为倒数”的逆命题为“若x ,y 互为倒数,则xy =1”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab 是正整数,但a ,b 不一定都是正整数,例如a =-1,b =-3,故④为假命题.答案:①③[谨记通法]1.判断命题真假的2种方法(1)直接判断:判断一个命题是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(2)间接判断(等价转化):由于原命题与其逆否命题为等价命题,如果原命题的真假不易直接判断,那么可以利用这种等价性间接地判断命题的真假.2.谨防3类失误(1)如果原命题是“若p ,则q ”,则否命题是“若綈p ,则綈q ”,而命题的否定是“若p ,则綈q ”,即否命题是对原命题的条件和结论同时否定,命题的否定仅仅否定原命题的结论(条件不变).(2)对于不是“若p ,则q ”形式的命题,需先改写. (3)当命题有大前提时,写其他三种命题时需保留大前提. 考点二 充分、必要条件的判定重点保分型考点——师生共研[典例引领]1.(2019·泰州中学高三学情调研)“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的________条件.解析:当a =0时,f (x )=x 3,所以函数f (x )是奇函数,当函数f (x )=x 3+ax 2(x ∈R)为奇函数时,f (-x )=-x 3+ax 2=-f (x )=-x 3-ax 2,所以2ax 2=0恒成立,所以a =0.所以“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的充要条件.答案:充要2.已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的____________条件. 解析:因为p :x +y ≠-2,q :x ≠-1或y ≠-1,所以綈p :x +y =-2, 綈q :x =-1且y =-1, 因为綈q ⇒綈p 但綈p 綈綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q 的充分不必要条件. 答案:充分不必要[由题悟法]充分、必要条件的3种判断方法 (1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.[即时应用]1.(2018·苏州新区实验中学测试)在△ABC 中,“A ≠60°”是“cos A ≠12”的________条件.解析:当A =60°时,可以推得cos A =12;当cos A =12时,由于A ∈(0,π),也可以推得A =60°,故“A =60°”是“cos A =12”的充要条件. 即“A ≠60°”是“cos A ≠12”的充要条件.答案:充要2.设p :x 2-x -20>0,q :log 2(x -5)<2,则p 是q 的______条件.解析:因为x 2-x -20>0,所以x >5或x <-4,所以p :x >5或x <-4.因为log 2(x -5)<2,所以0<x -5<4,即5<x <9,所以q :5<x <9,因为{x |5<x <9}{x |x >5或x <-4},所以p 是q 的必要不充分条件.答案:必要不充分3.设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的________________条件.解析:因为m =λn ,所以m ·n =λn ·n =λ|n|2. 当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m||n|cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝ ⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件. 答案:充分不必要考点三 充分、必要条件的应用重点保分型考点——师生共研 [典例引领]1.已知集合A ={x |y =lg(4-x )},集合B ={x |x <a },若“x ∈A ”是“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.解析:由题意知A ={x |x <4},且A B ,所以a >4. 答案:(4,+∞)2.(2019·响水中学检测)设p :x 2-2x <0,q :(x -m )(x -m -3)≤0,若p 是q 的充分不必要条件,则实数m 的取值范围是________.解析:由x 2-2x <0,得0<x <2,即p :0<x <2, 由(x -m )(x -m -3)≤0,得m ≤x ≤m +3, 即q :m ≤x ≤m +3,若p 是q 的充分不必要条件,则⎩⎪⎨⎪⎧m ≤0,m +3≥2,即-1≤m ≤0.答案:[-1,0][由题悟法]根据充分、必要条件求参数的值或范围的关键点(1)先合理转化条件,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时应用]1.(2018·兴化三校联考)已知p :x ≥a ,q :x 2-2x -3≥0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.解析:由x 2-2x -3≥0,得x ≤-1或x ≥3, 若p 是q 的充分不必要条件,则{x |x ≥a }⊆{x |x ≤-1或x ≥3},所以a ≥3. 答案:[3,+∞)2.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为________________.解析:命题p :x >m +3或x <m , 命题q :-4<x <1.因为p 是q 成立的必要不充分条件, 所以m +3≤-4或m ≥1, 故m ≤-7或m ≥1.答案:(-∞,-7]∪[1,+∞)3.(2019·高邮中学检测)若关于x 的不等式x 2-2x +3-a <0成立的一个充分条件是1<x <4,则实数a 的取值范围是________.解析:∵不等式x 2-2x +3-a <0成立的一个充分条件是1<x <4, ∴当1<x <4时,不等式x 2-2x +3-a <0成立. 设f (x )=x 2-2x +3-a ,则满足⎩⎪⎨⎪⎧f1≤0,f4≤0,即⎩⎪⎨⎪⎧1-2+3-a ≤0,16-8+3-a ≤0,解得a ≥11.答案:[11,+∞)一抓基础,多练小题做到眼疾手快1.(2019·张家港外国语学校检测)命题“若x 2-4x +3=0,则x =3”的逆否命题是________________________.答案:若x≠3,则x2-4x+3≠02.(2019·苏州实验中学检测)在△ABC中,角A,B,C的对边分别为a,b,c.命题甲:A+C=2B,且a+c=2b;命题乙:△ABC是正三角形,则命题甲是命题乙的________条件.答案:充要3.“m=3”是“两直线l1:mx+3y+2=0和l2:x+(m-2)y+m-1=0平行”的________条件.答案:充要4.(2018·南京模拟)有下列命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.解析:①原命题的否命题为“若a≤b,则a2≤b2”,假命题.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,真命题.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,真命题.答案:②③5.若x>5是x>a的充分条件,则实数a的取值范围为____________.解析:由x>5是x>a的充分条件知,{x|x>5}⊆{x|x>a},所以a≤5.答案:(-∞,5]6.(2018·苏州中学检测)已知集合A={x|x(x-3)<0},B={x||x-1|<2},则“x∈A”是“x∈B”的________条件.解析:因为集合A=(0,3),集合B=(-1,3),所以“x∈A”是“x∈B”的充分不必要条件.答案:充分不必要二保高考,全练题型做到高考达标1.命题“若一个数是负数,则它的平方是正数”的逆命题是________________.解析:依题意得,原命题的逆命题是“若一个数的平方是正数,则它是负数”.答案:“若一个数的平方是正数,则它是负数”2.(2018·南通中学高三测试)已知a,b都是实数,命题p:a+b=2;命题q:直线x +y=0与圆(x-a)2+(y-b)2=2相切,则p是q的________条件.解析:圆(x -a )2+(y -b )2=2的圆心为(a ,b ),半径r =2,直线x +y =0与圆相切,则圆心到直线的距离d =|a +b |1+1=2,解得|a +b |=2.即a +b =±2,所以p 是q 的充分不必要条件.答案:充分不必要3.(2018·南通模拟)设a ,b 都是不等于1的正数,则“3a >3b>3”是“log a 3<log b 3”的________条件.解析:因为3a >3b>3,所以a >b >1,此时log a 3<log b 3;反之,若log a 3<log b 3,则不一定得到3a >3b >3,例如当a =12,b =13时,log a 3<log b 3成立,但推不出a >b >1.故“3a>3b>3”是“log a 3<log b 3”的充分不必要条件.答案:充分不必要4.(2019·无锡一中检测)给出下列说法:①“若x +y =π2,则sin x =cos y ”的逆命题是假命题;②“在△ABC 中,sin B >sin C 是B >C 的充要条件”是真命题; ③x ≤3是|x |≤3的充分不必要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 以上说法正确的是________(填序号). 解析:对于①,“若x +y =π2,则sin x =cos y ”的逆命题是“若sin x =cos y ,则x +y =π2”,当x =0,y =3π2时,有sin x =cos y 成立,但x +y =3π2,故逆命题为假命题,①正确;对于②,在△ABC 中,由正弦定理得sin B >sin C ⇔b >c ⇔B >C ,②正确;对于③,因为|x |≤3x ≤3,所以x ≤3是|x |≤3的必要不充分条件,故③错误;对于④,根据否命题的定义知④正确.答案:①②④5.(2018·南通一中高三测试)已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________.解析:令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. 因为p 是q 的充分不必要条件,所以MN ,所以⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3.答案:(0,3)6.设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p是q 的________条件.解析:p 表示以点(1,1)为圆心,2为半径的圆面(含边界),如图所示.q 表示的平面区域为图中阴影部分(含边界).由图可知,p 是q 的必要不充分条件. 答案:必要不充分7.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:38.(2018·常熟中学测试)给定下列命题: ①若k >0,则方程x 2+2x -k =0有实数根; ②若x +y ≠8,则x ≠2或y ≠6;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件; ④“若xy =0,则x ,y 中至少有一个为零”的否命题. 其中真命题的序号是________.解析:①因为Δ=4-4(-k )=4+4k >0,所以①是真命题;②其逆否命题为真;故②是真命题;③“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;④否命题:“若xy ≠0,则x ,y 都不为零”是真命题.答案:①②④9.(2018·天一中学期末)已知p :|x -1|>2,q :x 2-2x +1-a 2≥0(a >0),若q 是p 的必要不充分条件,则实数a 的取值范围是________.解析:由|x -1|>2,得x -1>2或x -1<-2,即x >3或x <-1. 由x 2-2x +1-a 2≥0(a >0),得[x -(1-a )][x -(1+a )]≥0, 即x ≥1+a 或x ≤1-a ,a >0. 若q 是p 的必要不充分条件,则⎩⎪⎨⎪⎧a >0,1+a ≤3,1-a ≥-1,解得0<a ≤2.答案:(0,2]10.设等比数列{a n }的公比为q ,前n 项和为S n ,则“|q |=1”是“S 4=2S 2”的________条件.解析:因为等比数列{a n }的前n 项和为S n ,又S 4=2S 2, 所以a 1+a 2+a 3+a 4=2(a 1+a 2),所以a 3+a 4=a 1+a 2,所以q 2=1⇔|q |=1,所以“|q |=1”是“S 4=2S 2”的充要条件. 答案:充要11.(2019·南师大附中检测)设p :实数x 满足x 2+2ax -3a 2<0(a >0),q :实数x 满足x 2+2x -8<0,且綈p 是綈q 的必要不充分条件,求a 的取值范围.解:由x 2+2ax -3a 2<0(a >0),得-3a <x <a ,即p :-3a <x <a . 由x 2+2x -8<0,得-4<x <2,即q :-4<x <2. 因为綈p 是綈q 的必要不充分条件, 所以p 能推出q ,q 不能推出p , 所以{x |-3a <x <a }{x |-4<x <2}, 即⎩⎪⎨⎪⎧-3a ≥-4,a <2,a >0或⎩⎪⎨⎪⎧-3a >-4,a ≤2,a >0,解得0<a ≤43,故a 的取值范围是⎝ ⎛⎦⎥⎤0,43.12.已知集合A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫mx -1x <0,B ={x |x 2-3x -4≤0},C ={x |log 12x >1},命题p :实数m 为小于6的正整数,q :A 是B 成立的充分不必要条件,r :A 是C 成立的必要不充分条件.若命题p ,q ,r 都是真命题,求实数m 的值.解:因为命题p 是真命题, 所以0<m <6,m ∈N ,① 所以A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫mx -1x <0=⎩⎨⎧x ⎪⎪⎪⎭⎬⎫0<x <1m .由题意知,B ={x |x 2-3x -4≤0}={x |-1≤x ≤4},C =⎩⎨⎧⎭⎬⎫x |log 12x >1=⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫0<x <12.因为命题q ,r 都是真命题,所以A B ,C A ,所以⎩⎪⎨⎪⎧ 1m ≤4,1m >12.②由①②得m =1.三上台阶,自主选做志在冲刺名校1.设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的________条件. 解析:当等比数列{a n }的首项a 1<0,公比q >1时,如a n =-2n是递减数列,所以充分性不成立;反之,若等比数列{a n }为递增数列,则⎩⎪⎨⎪⎧ a 1<0,0<q <1或⎩⎪⎨⎪⎧ a 1>0,q >1,所以必要性不成立,即“q >1”是“{a n }为递增数列”的既不充分也不必要条件.答案:既不充分也不必要2.(2018·苏州木渎中学测试)若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围为________.解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,由⎩⎪⎨⎪⎧ a <0,Δ=4a 2+12a ≤0,得-3≤a <0,综上,实数a 的取值范围为[-3,0].答案:[-3,0]3.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}.(1)若x ∈A 是x ∈B 的充分条件,求a 的取值范围;(2)若A ∩B =∅,求a 的取值范围.解:A ={x |x 2-6x +8<0}={x |2<x <4}, B ={x |(x -a )(x -3a )<0}.(1)当a =0时,B =∅,不合题意.当a >0时,B ={x |a <x <3a },要满足题意,则⎩⎪⎨⎪⎧ a ≤2,3a ≥4,解得43≤a ≤2. 当a <0时,B ={x |3a <x <a },要满足题意, 则⎩⎨⎧ 3a ≤2,a ≥4,无解.综上,a 的取值范围为⎣⎢⎡⎦⎥⎤43,2. (2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a }则a ≥4或3a ≤2,即0<a ≤23或a ≥4. 当a <0时,B ={x |3a <x <a },则a ≤2或a ≥43,即a <0. 当a =0时,B =∅,A ∩B =∅.综上,a 的取值范围为⎝ ⎛⎦⎥⎤-∞,23∪[4,+∞).。

高中数学专题复习-集合与常用逻辑用语

高中数学专题复习-集合与常用逻辑用语

第一章⎪⎪⎪集合与常用逻辑用语第一节集__合1.集合的相关概念(1)集合元素的三个特性:确定性、无序性、互异性. (2)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (3)集合的三种表示方法:列举法、描述法、图示法. (4)五个特定的集合:集合 自然数集正整数集 整数集 有理数集实数集 符号NN *或N +ZQR2.集合间的基本关系表示关系文字语言符号语言记法基本关系子集集合A 的元素都是集合B 的元素x ∈A ⇒x ∈B A ⊆B 或B ⊇A真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不属于AA ⊆B ,且存在x 0∈B ,x 0∉AA B 或B A相等 集合A ,B 的元素完全相同 A ⊆B ,B ⊆A A =B 空集不含任何元素的集合.空集是任何集合A 的子集任意的x ,x ∉∅,∅⊆A∅3.集合的基本运算表示 运算 文字语言符号语言图形语言记法交集属于集合A 且属于集合B 的元素组成的集合{x |x ∈A ,且x ∈B }A ∩B并集属于集合A 或属于集合B 的元素组成的集合{x |x ∈A ,或x ∈B }A ∪B补集全集U 中不属于集合A 的元{x |x ∈U ,且x ∉A }∁U A素组成的集合4.集合问题中的几个基本结论 (1)集合A 是其本身的子集,即A ⊆A ; (2)子集关系的传递性,即A ⊆B ,B ⊆C ⇒A ⊆C ; (3)A ∪A =A ∩A =A ,A ∪∅=A ,A ∩∅=∅,∁U U =∅,∁U ∅=U . (4)A ∩B =A ⇒A ⊆B ,A ∪B =B ⇒A ⊆B . [小题体验]1.已知集合A ={1,2},B ={x |0<x <5,x ∈N },则满足A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4答案:D2.已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________. 答案:53.(江苏高考)已知集合A ={0,1,2,8},B ={-1,1,6,8},那么A ∩B =________. 解析:A ∩B ={0,1,2,8}∩{-1,1,6,8}={1,8}. 答案:{1,8}1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解集合问题的两个先决条件. 2.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系. 3.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身. 4.运用数轴图示法易忽视端点是实心还是空心.5.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[小题纠偏]1.(浙江名校联考)已知∁R M ={x |ln|x |>1},N =⎩⎨⎧⎭⎬⎫y ⎪⎪y =1x ,x >0,则M ∪N =( ) A .(0,e] B .[-e,+∞) C .(-∞,-e]∪(0,+∞)D .[-e,e]解析:选B 由ln|x |>1得|x |>e,∴M =[-e,e].N =(0,+∞),∴M ∪N =[-e,+∞).故选B.2.若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,则由m 的可能取值组成的集合为________.解析:当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,所以2≤m ≤3.故m <2或2≤m ≤3,即所求集合为{m |m ≤3}.答案:{m |m ≤3}3.已知集合A ={0, x +1,x 2-5x },若-4∈A ,则实数x 的值为________. 解析:∵-4∈A ,∴x +1=-4或x 2-5x =-4. ∴x =-5或x =1或x =4.若x =1,则A ={0, 2,-4},满足条件; 若x =4,则A ={0, 5,-4},满足条件; 若x =-5,则A ={0,-4,50},满足条件. 所以x =1或x =4或-5. 答案:1或4或-5考点一 集合的基本概念(基础送分型考点——自主练透)[题组练透]1.下列命题正确的有( ) ①很小的实数可以构成集合;②(易错题)集合{}y |y =x 2-1与集合{(x ,y )|y =x 2-1}是同一个集合; ③1,32,64,⎪⎪⎪⎪-12,0.5这些数组成的集合有5个元素; ④集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个D .3个解析:选A 由题意得,①不满足集合的确定性,故错误;②两个集合,一个是数集,一个是点集,故错误;③中⎪⎪⎪⎪-12=0.5,出现了重复,不满足集合的互异性,故错误;④不仅仅表示的是第二、四象限的点,还可表示原点,故错误.综上,没有正确命题,故选A.2.已知a >0,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,4,b a ={a -b,0,a 2},则a 2+b 2的值为( )A .2B .4C .6D .8解析:选B 由已知得a ≠0,则ba =0,所以b =0,于是a 2=4,即a =2或a =-2,因为a >0,所以a =2,故a 2+b 2=22+02=4.3.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a 等于( ) A.92 B.98C .0D .0或98解析:选D 若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意.当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的值为0或98.4.(易错题)(江西重点中学协作体联考)设集合A ={1,2,3},B ={2,3,4} ,M ={x |x =ab ,a ∈A ,b ∈B },则M 中的元素个数为________.解析:结合题意列表计算M 中所有可能的值如下:观察可得:M ={2,3,4,6,8,9,12},据此可知M 中的元素个数为7. 答案:7[谨记通法]与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性. 考点二 集合间的基本关系(重点保分型考点——师生共研)[典例引领]1.已知集合M ={1,2,3,4},则集合P ={x |x ∈M 且2x ∉M }的子集有( ) A .8个 B .4个 C .3个D .2个解析:选B 由题意,得P ={3,4},所以集合P 的子集有22=4个. 2.已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若B ⊆A ,则a =( ) A .-12或1B .2或-1C .-2或1或0D .-12或1或0解析:选D 集合A ={x |x 2+x -2=0}={-2,1}.当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D.[由题悟法]集合间基本关系的两种判定方法和一个关键[即时应用]1.集合{a ,b ,c ,d ,e }的真子集的个数为( ) A .32 B .31 C .30D .29解析:选B 因为集合有5个元素,所以其子集的个数为25=32个,其真子集的个数为25-1=31个. 2.已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为________. 解析:当m ≤0时,B =∅,显然B ⊆A . 当m >0时,∵A ={x |-1<x <3}.当B ⊆A 时,在数轴上标出两集合,如图,∴⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .∴0<m ≤1.综上所述m 的取值范围为(-∞,1]. 答案:(-∞,1]考点三 集合的基本运算(题点多变型考点——多角探明) [锁定考向]集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.常见的命题角度有: (1)集合的运算;(2)利用集合运算求参数; (3)新定义集合问题.[题点全练]角度一:集合的运算1.(北京高考)已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B =( ) A .{0,1} B .{-1,0,1} C .{-2,0,1,2}D .{-1,0,1,2}解析:选A ∵A ={x ||x |<2}={x |-2<x <2},B={-2,0,1,2},∴A∩B={0,1}.故选A.2.(全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=()A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:选B∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.则∁R A={x|-1≤x≤2}.故选B.角度二:利用集合运算求参数3.(浙江联盟校联考)已知集合P={x|-1<x<1},Q={x|0<x<a},若P∪Q={x|-1<x<2},则实数a的值为()A.1 B.2C.12D.32解析:选B因为P={x|-1<x<1},Q={x|0<x<a},所以当a≤1时,P∪Q={x|-1<x<1},不符合题意;当a>1时,P∪Q={x|-1<x<a},结合P∪Q={x|-1<x<2},可得a=2.角度三:新定义集合问题4.如果集合A,B,同时满足A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},就称有序集对(A,B)为“好集对”.这里有序集对(A,B)是指当A≠B时,(A,B)和(B,A)是不同的集对,那么“好集对”一共有()个() A.5个B.6个C.7个D.8个解析:选B因为A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},所以当A={1,2}时,B={1,3,4};当A={1,3}时,B={1,2,4};当A={1,4}时,B={1,2,3};当A={1,2,3}时,B={1,4};当A={1,2,4}时,B={1,3};当A={1,3,4}时,B={1,2}.所以满足条件的“好集对”一共有6个,故选B.[通法在握]解集合运算问题4个技巧[演练冲关]1.(浙江十校联盟适考)已知集合A={x|1<x<4},B={x∈Z|x2-6x<0},则(∁R A)∩B=()A.{1,4} B.{4,5}C.{1,4,5} D.{2,3}解析:选C法一:由x2-6x<0可得0<x<6,所以B={1,2,3,4,5},又∁R A={x|x≤1或x≥4},所以(∁R A)∩B={1,4,5}.法二:因为求的是(∁R A)∩B,故排除D,又1,5∈∁R A,1,5∈B,故选C.2.(长沙模拟)已知集合A={1,2,3},B={x|x2-3x+a=0,a∈A},若A∩B≠∅,则a的值为()A.1 B.2C.3 D.1或2解析:选B当a=1时,x2-3x+1=0,无整数解,则A∩B=∅;当a=2时,B={1,2},A∩B={1,2}≠∅;当a=3时,B=∅,A∩B=∅.因此实数a=2.3.(杭州高三四校联考)设集合A={x|(x-3)(x-a)=0,a∈R},B={x|(x-1)(x-4)=0},则A∪B的子集个数最多为()A.2 B.4C.8 D.16解析:选D由题意可知,要使A∪B的子集个数最多,则需A∪B中的元素个数最多,此时a≠1,a≠3,且a≠4,即集合A={3,a},B={1,4},A∪B={1,3,4,a},故A∪B的子集最多有24=16个.4.如图所示的Venn图中,A,B是非空集合,定义集合A B为阴影部分表示的集合.若x,y∈R,A={x|y=2x-x2},B={y|y=3x,x>0},则A B为()A.{x|0<x<2} B.{x|1<x≤2}C.{x|0≤x≤1或x≥2} D.{x|0≤x≤1或x>2}解析:选D因为A={x|0≤x≤2},B={y|y>1},A∪B={x|x≥0},A∩B={x|1<x≤2},所以A B=∁A∪(A∩B)={x|0≤x≤1或x>2},故选D.B一抓基础,多练小题做到眼疾手快1.(浙江考前热身联考)已知集合M={x|y=2x-x2},N={x|-1<x<1},则M∪N=()A.[0,1)B.(-1,2)C.(-1,2] D.(-∞,0]∪(1,+∞)解析:选C法一:易知M={x|0≤x≤2},又N={x|-1<x<1},所以M∪N=(-1,2].故选C.法二:取x=2,则2∈M,所以2∈M∪N,排除A、B;取x=3,则3∉M,3∉N,所以3∉M∪N,排除D,故选C.2.(浙江三地联考)已知集合P={x|||x<2},Q={x|-1≤x≤3},则P∩Q=()A.[-1,2) B.(-2,2)C.(-2,3] D.[-1,3]解析:选A由|x|<2,可得-2<x<2,所以P={x|-2<x<2},所以P∩Q=[-1,2).3.(嘉兴期末测试)已知集合P={x|x<1},Q={x|x>0},则()A .P ⊆QB .Q ⊆PC .P ⊆∁R QD .∁R P ⊆Q解析:选D 由已知可得∁R P =[1,+∞),所以∁R P ⊆Q .故选D.4.(浙江吴越联盟第二次联考)已知集合M ={0,1,2,3,4},N ={2,4,6},P =M ∩N ,则P 的子集有________个. 解析:集合M ={0,1,2,3,4},N ={2,4,6},P =M ∩N ={2,4},则P 的子集有∅,{2},{4},{2,4},共4个. 答案:45.已知集合A ={x |x ≥3},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________. 解析:因为集合A ={x |x ≥3},B ={x |x ≥m },且A ∪B =A ,所以B ⊆A ,如图所示,所以m ≥3. 答案:[3,+∞)二保高考,全练题型做到高考达标1.(杭州七校联考)已知集合A ={x |x 2>1},B ={x |(x 2-1)(x 2-4)=0},则集合A ∩B 中的元素个数为( ) A .1 B .2 C .3D .4解析:选B A ={x |x <-1或x >1},B ={-2,-1,1,2},A ∩B ={-2,2},故选B.2.(浙江六校联考)已知集合U ={x |y =3x },A ={x |y =log 9x },B ={y |y =-2x }则A ∩(∁U B )=( ) A .∅ B .R C .{x |x >0}D .{0}解析:选C 由题意得,U =R ,A ={x |x >0},因为y =-2x <0,所以B ={y |y <0},所以∁U B ={x |x ≥0},故A ∩(∁U B )={x |x >0}.故选C.3.(永康模拟)设集合M ={x |x 2-2x -3≥0},N ={x |-3<x <3},则( ) A .M ⊆N B .N ⊆M C .M ∪N =RD .M ∩N =∅解析:选C 由x 2-2x -3≥0,解得x ≥3或x ≤-1,所以M ={x |x ≤-1或x ≥3},所以M ∪N =R . 4.(宁波六校联考)已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( )A .(0,3)B .(0,1)∪(1,3)C .(0,1)D .(-∞,1)∪(3,+∞)解析:选B ∵A ∩B 有4个子集,∴A ∩B 中有2个不同的元素,∴a ∈A ,∴a 2-3a <0,解得0<a <3且a ≠1,即实数a 的取值范围是(0,1)∪(1,3),故选B.5.(镇海中学期中)若集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪y =lg2-x x ,N ={x |x <1},则M ∪N =( ) A .(0,1) B .(0,2) C .(-∞,2)D .(0,+∞)解析:选C 集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪y =lg2-xx ={x |0<x <2},N ={x |x <1}.M ∪N ={x |x <2}=(-∞,2).故选C.6.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z },则A ∩B =________.解析:依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z }={-1,0}. 答案:{-1,0}7.(嘉兴二模)已知集合A ={x |-1≤x ≤2},B ={x |x 2-4x ≤0},则A ∪B =________,A ∩(∁R B )=________. 解析:因为B ={x |x 2-4x ≤0}={x |0≤x ≤4},所以A ∪B ={x |-1≤x ≤4};因为∁R B ={x |x <0或x >4},所以A ∩(∁R B )={x |-1≤x <0}.答案:{x |-1≤x ≤4} {x |-1≤x <0}8.设集合A ={(x ,y )|y ≥|x -2|,x ≥0},B ={(x ,y )|y ≤-x +b },A ∩B ≠∅. (1)b 的取值范围是________;(2)若(x ,y )∈A ∩B ,且x +2y 的最大值为9,则b 的值是________. 解析:由图可知,当y =-x 往右移动到阴影区域时,才满足条件,所以b ≥2;要使z =x+2y 取得最大值,则过点(0,b ),有0+2b =9⇒b =92.答案:(1)[2,+∞) (2)929.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________.解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]10.已知集合A ={x |(x +2m )(x -m +4)<0},其中m ∈R ,集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-x x +2>0.(1)若B ⊆A ,求实数m 的取值范围; (2)若A ∩B =∅,求实数m 的取值范围.解:(1)集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1-xx +2>0={x |-2<x <1}. 当A =∅时,m =43,不符合题意.当A ≠∅时,m ≠43.①当-2m <m -4,即m >43时,A ={x |-2m <x <m -4},又因为B ⊆A ,所以⎩⎪⎨⎪⎧ m >43,-2m ≤-2,m -4≥1,即⎩⎪⎨⎪⎧m >43,m ≥1,m ≥5,所以m ≥5.②当-2m >m -4,即m <43时,A ={x |m -4<x <-2m },又因为B ⊆A ,所以⎩⎪⎨⎪⎧m <43,-2m ≥1,m -4≤-2,即⎩⎪⎨⎪⎧m <43,m ≤-12,m ≤2,所以m ≤-12.综上所述,实数m 的取值范围为⎝⎛⎦⎤-∞,-12∪[5,+∞). (2)由(1)知,B ={x |-2<x <1}. 当A =∅时,m =43,符合题意.当A ≠∅时,m ≠43.①当-2m <m -4,即m >43时,A ={x |-2m <x <m -4},又因为A ∩B =∅,所以-2m ≥1或者m -4≤-2, 即m ≤-12或者m ≤2,所以43<m ≤2.②当-2m >m -4,即m <43时,A ={x |m -4<x <-2m },又因为A ∩B =∅,所以m -4≥1或者-2m ≤-2, 即m ≥5或者m ≥1,所以1≤m <43.综上所述,实数m 的取值范围为[1,2]. 三上台阶,自主选做志在冲刺名校1.对于复数a ,b ,c ,d ,若集合S ={a ,b ,c ,d }具有性质“对任意x ,y ∈S ,必有xy ∈S ”,则当⎩⎪⎨⎪⎧a =1,b 2=1,c 2=b 时,b +c+d 等于( )A .1B .-1C .0D .i解析:选B ∵S ={a ,b ,c ,d },由集合中元素的互异性可知当a =1时,b =-1,c 2=-1,∴c =±i,由“对任意x ,y ∈S ,必有xy ∈S ”知±i ∈S ,∴c =i,d =-i 或c =-i,d =i,∴b +c +d =(-1)+0=-1.2.对于集合M ,N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-94,x ∈R ,B ={x |x <0,x ∈R },则A ⊕B =( )A.⎝⎛⎭⎫-94,0B.⎣⎡⎭⎫-94,0C.⎝⎛⎭⎫-∞,-94∪[0,+∞)D.⎝⎛⎦⎤-∞,-94∪(0,+∞) 解析:选C 依题意得A -B ={x |x ≥0,x ∈R },B -A =⎩⎨⎧x ⎪⎪⎭⎬⎫x <-94,x ∈R ,故A ⊕B =⎝⎛⎭⎫-∞,-94∪[0,+∞).故选C.3.已知函数f (x )=x -3-17-x的定义域为集合A ,且B ={x ∈Z |2<x <10},C ={x ∈R |x <a 或x >a +1}.(1)求:A 和(∁R A )∩B ;(2)若A ∪C =R ,求实数a 的取值范围. 解:(1)要使函数f (x )=x -3-17-x, 应满足x -3≥0,且7-x >0,解得3≤x <7, 则A ={x |3≤x <7}, 得到∁R A ={x |x <3或x ≥7},而B ={x ∈Z |2<x <10}={3,4,5,6,7,8,9}, 所以(∁R A )∩B ={7,8,9}.(2)C ={x ∈R |x <a 或x >a +1},要使A ∪C =R , 则有a ≥3,且a +1<7,解得3≤a <6. 故实数a 的取值范围为[3,6).第二节命题及其关系、充分条件与必要条件1.命题概念 使用语言、符号或者式子表达的,可以判断真假的陈述句特点 (1)能判断真假;(2)陈述句分类真命题、假命题2.四种命题及其相互关系 (1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件若p⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 成立的对象的集合为A ,q 成立的对象的集合为B p 是q 的充分不必要条件 p ⇒q 且q ⇒/p A 是B 的真子集 集合与充要条件p 是q 的必要不充分条件p ⇒/ q 且q ⇒pB 是A 的真子集p 是q 的充要条件 p ⇔q A =B p 是q 的既不充分也不必要条件 p ⇒/ q 且q ⇒/pA ,B 互不包含[小题体验]1.下列命题是真命题的是( )A .若log 2a >0,则函数f (x )=log a x (a >0,a ≠1)在其定义域上是减函数B .命题“若xy =0,则x =0”的否命题C .“m =3”是“直线(m +3)x +my -2=0与mx -6y +5=0垂直”的充要条件D .命题“若cos x =cos y ,则x =y ”的逆否命题 答案:B2.(温州高考适应性测试)已知α,β∈R ,则“α>β”是“cos α>cos β ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选D α>β ⇒/ cos α>cos β,如α=π3,β=π6,π3>π6,而cos π3<cos π6;cos α>cos β ⇒/ α>β,如α=π6,β=π3,cos π6>cos π3,而π6<π3.故选D. 3.设a ,b 是向量,则命题“若a =-b ,则|a |=| b |”的逆否命题为:________. 答案:若|a |≠|b |,则a ≠-b1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论. 2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.[小题纠偏]1.(杭州模拟)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B2.“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为:________________.解析:原命题的条件:在△ABC中,∠C=90°,结论:∠A,∠B都是锐角.否命题是否定条件和结论.即“在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角”.答案:在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角考点一四种命题及其相互关系(基础送分型考点——自主练透)[题组练透]1.命题“若a2>b2,则a>b”的否命题是()A.若a2>b2,则a≤b B.若a2≤b2,则a≤bC.若a≤b,则a2>b2D.若a≤b,则a2≤b2解析:选B根据命题的四种形式可知,命题“若p,则q”的否命题是“若綈p,则綈q”.该题中,p为a2>b2,q为a>b,故綈p为a2≤b2,綈q为a≤b.所以原命题的否命题为:若a2≤b2,则a≤b.2.命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为()A.“若x=4,则x2-3x-4=0”为真命题B.“若x≠4,则x2-3x-4≠0”为真命题C.“若x≠4,则x2-3x-4≠0”为假命题D.“若x=4,则x2-3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A,D,因为x2-3x-4=0,所以x=4或-1,故原命题为假命题,即逆否命题为假命题.3.给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②(易错题)“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中真命题是________.(写出所有真命题的序号)解析:①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.答案:①③[谨记通法]1.写一个命题的其他三种命题时的2个注意点(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.命题真假的2种判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.考点二充分必要条件的判定(重点保分型考点——师生共研)[典例引领]1.(杭州高三四校联考)“a>-1”是“x2+ax+14>0(x∈R)”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选A若x2+ax+14>0(x∈R),则a2-1<0,即-1<a<1,所以“a>-1”是“x2+ax+14>0(x∈R)”的必要不充分条件.故选A.2.(杭州高三质检)设数列{a n}的通项公式为a n=kn+2(n∈N*),则“k>2”是“数列{a n}为单调递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A法一:因为a n=kn+2(n∈N*),所以当k>2时,a n+1-a n=k>2,则数列{a n}为单调递增数列.若数列{a n}为单调递增数列,则a n+1-a n=k>0即可,所以“k>2”是“数列{a n}为单调递增数列”的充分不必要条件,故选A.法二:根据一次函数y=kx+b的单调性知,“数列{a n}为单调递增数列”的充要条件是“k>0”,所以“k>2”是“数列{a n}为单调递增数列”的充分不必要条件,故选A.[由题悟法]充要条件的3种判断方法(1)定义法:根据p⇒q,q⇒p进行判断;(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.[即时应用]1.设a >0,b >0,则“a 2+b 2≥1”是“a +b ≥ab +1”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 因为a >0,b >0,所以a +b >0,ab +1>0,故不等式a +b ≥ab +1成立的充要条件是(ab +1)2≤(a +b )2,即a 2+b 2≥a 2b 2+1.显然,若a 2+b 2≥a 2b 2+1,则必有a 2+b 2≥1,反之则不成立,所以a 2+b 2≥1是a 2+b 2≥a 2b 2+1成立的必要不充分条件,即a 2+b 2≥1是a +b ≥ab +1成立的必要不充分条件.2.(浙江期初联考)若a ,b ∈R ,使|a |+|b |>4成立的一个充分不必要条件是( ) A .|a +b |≥4 B .|a |≥4 C .|a |≥2且|b |≥2D .b <-4解析:选D 对选项A,若a =b =2,则|a |+|b |=2+2≥4,不能推出|a |+|b |>4;对选项B,若a =4≥4,b =0,此时不能推出|a |+|b |>4;对选项C,若a =2≥2,b =2≥2,此时不能推出|a |+|b |>4;对选项D,由b <-4可得|a |+|b |>4,但由|a |+|b |>4得不到b <-4.故选D.3.(宁波模拟)已知四边形ABCD 为梯形,AB ∥CD ,l 为空间一直线,则“l 垂直于两腰AD ,BC ”是“l 垂直于两底AB ,DC ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 因为四边形ABCD 是梯形,且AB ∥CD ,所以腰AD ,BC 是交线,由直线与平面垂直的判定定理可知,当l 垂直于两腰AD ,BC 时,l 垂直于ABCD 所在平面,所以l 垂直于两底AB ,CD ,所以是充分条件;当l 垂直于两底AB ,CD ,由于AB ∥CD ,所以l 不一定垂直于ABCD 所在平面,所以l 不一定垂直于两腰AD ,BC ,所以不是必要条件.所以是充分不必要条件.考点三 充分必要条件的应用(重点保分型考点——师生共研)[典例引领]若不等式x -m +1x -2m<0成立的一个充分不必要条件是13<x <12,则实数m 的取值范围是______________.解析:令A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -m +1x -2m <0,B =⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12. 因为不等式x -m +1x -2m <0成立的充分不必要条件是13<x <12,所以B ⊆A .①当m -1<2m ,即m >-1时,A ={x |m -1<x <2m }.由B ⊆A 得⎩⎪⎨⎪⎧m -1≤13,2m ≥12,m >-1,解得14≤m ≤43;②当m -1=2m ,即m =-1时,A =∅,不满足B ⊆A ;③当m -1>2m ,即m <-1时,A ={x |2m <x <m -1}.由B ⊆A 得⎩⎪⎨⎪⎧2m ≤13,m-1≥12,m <-1,此时m 无解.综上,m 的取值范围为⎣⎡⎦⎤14,43.答案:⎣⎡⎦⎤14,43[由题悟法]根据充要条件求参数的值或取值范围的关键点(1)先合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时应用]1.(杭州名校大联考)已知条件p :|x +1|>2,条件q :x >a ,且綈p 是綈q 的充分不必要条件,则实数a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-3,+∞)D .(-∞,-3]解析:选A 由|x +1|>2,可得x >1或x <-3,所以綈p :-3≤x ≤1;又綈q :x ≤a .因为綈p 是綈q 的充分不必要条件,所以a ≥1.2.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为________________.解析:命题p :x >m +3或x <m , 命题q :-4<x <1.因为p 是q 成立的必要不充分条件, 所以m +3≤-4或m ≥1, 故m ≤-7或m ≥1. 答案:(-∞,-7]∪[1,+∞)一抓基础,多练小题做到眼疾手快 1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x -1)x =0.故“(2x-1)x =0”是“x =0”的必要不充分条件.2.设a ,b ∈R ,则“a 3>b 3且ab <0”是“1a >1b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由a 3>b 3,知a >b ,由ab <0,知a >0>b ,所以此时有1a >1b ,故充分性成立;当1a >1b 时,若a ,b 同号,则a <b ,若a ,b 异号,则a >b ,所以必要性不成立.故选A. 3.设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 若φ=0,则f (x )=cos x 为偶函数;若f (x )=cos(x +φ)(x ∈R )为偶函数,则φ=k π(k ∈Z ).故“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的充分不必要条件.4.命题p :“若x 2<1,则x <1”的逆命题为q ,则p 与q 的真假性为( ) A .p 真q 真 B .p 真q 假 C .p 假q 真D .p 假q 假解析:选B q :若x <1,则x 2<1. ∵p :x 2<1,则-1<x <1.∴p 真,当x <1时,x 2<1不一定成立,∴q 假,故选B.5.若x >5是x >a 的充分条件,则实数a 的取值范围为( ) A .(5,+∞) B .[5,+∞) C .(-∞,5)D .(-∞,5] 解析:选D 由x >5是x >a 的充分条件知,{x |x >5}⊆{x |x >a },∴a ≤5,故选D. 二保高考,全练题型做到高考达标1.命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A .“若一个数是负数,则它的平方不是正数” B .“若一个数的平方是正数,则它是负数” C .“若一个数不是负数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是负数”解析:选B 依题意得,原命题的逆命题是“若一个数的平方是正数,则它是负数”.2.命题“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”为真命题的一个必要不充分条件是( )A .a ≥4B .a ≤4C .a ≥3D .a ≤3解析:选C 即由“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”可推出选项,但由选项推不出“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”.因为x ∈[1,2],所以x 2∈[1,4],x 2-a ≤0恒成立,即x 2≤a ,因此a ≥4;反之亦然.故选C.3.有下列命题:①“若x +y >0,则x >0且y >0”的否命题; ②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C ①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为,若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1. ∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.∴③是真命题;④原命题为真,逆否命题也为真.4.(浙江名校联考信息卷)已知直线l 的斜率为k ,倾斜角为θ,则“0<θ≤π4”是“k ≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 当0<θ≤π4时,0<k ≤1;反之,当k ≤1时,0≤θ≤π4或π2<θ<π.故“0<θ≤π4”是“k ≤1”的充分不必要条件,故选A.5.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:选B 要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,∴a >4是命题为真的充分不必要条件.6.命题“若a >b ,则ac 2>bc 2(a ,b ∈R )”,否命题的真假性为________. 解析:命题的否命题为“若a ≤b ,则ac 2≤bc 2”. 若c =0,结论成立.若c ≠0,不等式ac 2≤bc 2也成立. 故否命题为真命题.答案:真 7.下列命题:①“a >b ”是“a 2>b 2”的必要条件;②“|a |>|b |”是“a 2>b 2”的充要条件;③“a >b ”是“a +c >b +c ”的充要条件.其中是真命题的是________(填序号).解析:①a >b ⇒/ a 2>b 2,且a 2>b 2⇒/ a >b ,故①不正确; ②a 2>b 2⇔|a |>|b |,故②正确;③a >b ⇒a +c >b +c ,且a +c >b +c ⇒a >b ,故③正确. 答案:②③8.已知α,β∈(0,π),则“sin α+sin β<13”是“sin(α+β)<13”的________条件.解析:因为sin(α+β)=sin αcos β+cos αsin β<sin α+sin β,所以若sin α+sin β<13,则有sin(α+β)<13,故充分性成立;当α=β=π2时,有sin(α+β)=sin π=0<13,而sin α+sin β=1+1=2,不满足sin α+sin β<13,故必要性不成立.所以“sin α+sin β<13”是“sin(α+β)<13”的充分不必要条件.答案:充分不必要 9.已知p :实数m 满足m 2+12a 2<7am (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆.若p 是q 的充分不必要条件,则a 的取值范围是________.解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a ,即p :3a <m <4a ,a >0.由方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0,解得1<m <32,即q :1<m <32.因为p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ 3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32,解得13≤a ≤38,所以实数a 的取值范围是⎣⎡⎦⎤13,38. 答案:⎣⎡⎦⎤13,3810.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2, ∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2.由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 三上台阶,自主选做志在冲刺名校 1.已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1]解析:选B 由3x +1<1得,3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,解得x <-1或x >2,由p 是q 的充分不必要条件知,k >2,故选B.2.在整数集Z 中,被4除所得余数为k 的所有整数组成一个“类”,记为[k ]={4n +k |n ∈Z },k =0,1,2,3,则下列结论正确的为________(填序号).①2 018∈[2];②-1∈[3];③Z =[0]∪[1]∪[2]∪[3];④命题“整数a ,b 满足a ∈[1],b ∈[2],则a +b ∈[3]”的原命题与逆命题都正确;⑤“整数a ,b 属于同一类”的充要条件是“a -b ∈[0]”.解析:由“类”的定义[k ]={4n +k |n ∈Z },k =0,1,2,3,可知,只要整数m =4n +k ,n ∈Z ,k =0,1,2,3,则m ∈[k ],对于①中,2 018=4×504+2,所以2 018∈[2],所以符合题意;对于②中,-1=4×(-1)+3,所以符合题意;对于③中,所有的整数按被4除所得的余数分为四类,即余数分别为0,1,2,3的整数,即四“类”[0],[1],[2],[3],所以Z =[0]∪[1]∪[2]∪[3],所以符合题意;对于④中,原命题成立,但逆命题不成立,因为若a +b ∈[3],不妨设a =0,b =3,则此时a ∉[1]且b ∉[2],所以逆命题不成立,所以不符合题意;对于⑤中,因为“整数a ,b 属于同一类”,不妨设a =4m +k ,b =4n +k ,m ,n ∈Z ,且k =0,1,2,3,则a -b =4(m -n )+0,所以a -b ∈[0];反之,不妨设a =4m +k 1,b =4n +k 2,m ,n ∈Z ,k 1=0,1,2,3,k 2=0,1,2,3,则a -b =4(m -n )+(k 1-k 2),若a -b ∈[0],则k 1-k 2=0,即k 1=k 2,所以整数a ,b 属于同一类,故“整数a ,b 属于同一类”的充要条件是“a -b ∈[0]”,所以符合题意.答案:①②③⑤3.已知全集U =R ,非空集合A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x -2x -(3a +1)<0,B ={x |(x -a )(x -a 2-2)<0,命题p :x ∈A ,命题q :x ∈B .(1)当a =12时,若p 真q 假,求x 的取值范围; (2)若q 是p 的必要条件,求实数a 的取值范围.解:(1)当a =12时,A ={x |2<x <37},B ={x |12<x <146},因为p 真q 假. 所以(∁U B )∩A ={x |2<x ≤12},所以x 的取值范围为(2,12].(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B .因为a 2+2>a ,所以B ={x |a <x <a 2+2}.当3a +1>2,即a >13时,A ={x |2<x <3a +1}, 应满足条件⎩⎪⎨⎪⎧a ≤2,a 2+2≥3a +1,解得13<a ≤3-52; 当3a +1=2,即a =13时,A =∅,不符合题意; 当3a +1<2,即a <13时,A ={x |3a +1<x <2}, 应满足条件⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2解得-12≤a <13; 综上所述,实数a 的取值范围为⎣⎡⎭⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.命题点一 集合及其运算1.(浙江高考)已知全集U ={1,2,3,4,5},A ={1,3},则∁U A =( )A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}解析:选C ∵U ={1,2,3,4,5},A ={1,3},∴∁U A ={2,4,5}.2.(天津高考)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( )A .{x |0<x ≤1}B .{x |0<x <1}C .{x |1≤x <2}D .{x |0<x <2}解析:选B ∵全集为R ,B ={x |x ≥1},∴∁R B ={x |x <1}.∵集合A ={x |0<x <2},∴A ∩(∁R B )={x |0<x <1}.3.(浙江高考)已知集合P ={x |-1<x <1},Q ={x |0<x <2},那么P ∪Q =( )A .(-1,2)B .(0,1)C .(-1,0)D .(1,2)解析:选A 根据集合的并集的定义,得P ∪Q =(-1,2).4.(全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( )A .{0}B .{1}C .{1,2}D .{0,1,2}解析:选C ∵A ={x |x -1≥0}={x |x ≥1},B ={0,1,2},∴A ∩B ={1,2}.5.(全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4解析:选A 将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.6.(江苏高考)已知集合A ={1,2},B ={a ,a 2+3}.若A ∩B ={1},则实数a 的值为________.解析:因为a 2+3≥3,所以由A ∩B ={1}得a =1,即实数a 的值为1.答案:1命题点二 充要条件1.(2016·浙江高考)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A∵f (x )=x 2+bx =⎝⎛⎭⎫x +b 22-b 24,当x =-b 2时,f (x )min =-b 24,又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b 2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件.选A.2.(浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.3.(2015·浙江高考)设a ,b 是实数,则“a +b >0”是“ab >0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选D 特值法:当a =10,b =-1时,a +b >0,ab <0,故a +b >0⇒/ ab >0;当a =-2,b =-1时,ab >0,但a +b <0,所以ab >0⇒/ a +b >0.故“a +b >0”是“ab >0”的既不充分也不必要条件.4.(天津高考)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由⎪⎪⎪⎪x -12<12,得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪x -12<12”⇒“x 3<1”;由x 3<1,得x <1,当x ≤0时,⎪⎪⎪⎪x -12≥12,即“x 3<1”⇒ / “⎪⎪⎪⎪x -12<12”.所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.5.(天津高考)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪-π6-π12=π4>π12.故“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.6.(北京高考)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 由|a -3b |=|3a +b |,得(a -3b )2=(3a +b )2,即a 2+9b 2-6a ·b =9a 2+b 2+6a ·b .又a ,b 均为单位向量,所以a 2=b 2=1,所以a ·b =0,能推出a ⊥b .由a ⊥b ,得|a -3b |=10,|3a +b |=10,能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件.命题点三 四种命题及其关系1.(2015·山东高考)设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是() A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤0解析:选D 根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.2.(北京高考)能说明“若a >b ,则1a <1b”为假命题的一组a ,b 的值依次为________. 解析:只要保证a 为正b 为负即可满足要求.当a >0>b 时,1a >0>1b .答案:1,-1(答案不唯一)3.(北京高考)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为________.解析:因为“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题,则它的否定“设存在实数a ,b ,c .若a >b >c ,则a +b ≤c ”是真命题.由于a >b >c ,所以a +b >2c ,又a +b ≤c ,所以c <0.因此a ,b ,c 依次可取整数-1,-2,-3,满足a +b ≤c .答案:-1,-2,-3(答案不唯一)。

高考数学大一轮复习第一章集合与常用逻辑用语1.2命题及其关系、充分条件与必要条件教师用书理苏教版

高考数学大一轮复习第一章集合与常用逻辑用语1.2命题及其关系、充分条件与必要条件教师用书理苏教版

第一章集合与常用逻辑用语 1.2 命题及其关系、充分条件与必要条件教师用书理苏教版1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,且q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分又不必要条件.【知识拓展】从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分又不必要条件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3<0”是命题.( ×)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)若一个命题是真命题,则其逆否命题也是真命题.( √)(4)当q是p的必要条件时,p是q的充分条件.( √)(5)当p是q的充要条件时,也可说成q成立当且仅当p成立.( √)(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.( √)1.下列命题中为真命题的是________.(填序号)①命题“若x>y,则x>|y|”的逆命题;②命题“若x>1,则x2>1”的否命题;③命题“若x=1,则x2+x-2=0”的否命题;④命题“若x2>0,则x>1”的逆否命题.答案①解析对于①,其逆命题是若x>|y|,则x>y,是真命题,这是因为x>|y|≥y,必有x>y.2.(教材改编)命题“若x2>y2,则x>y”的逆否命题是________________________.答案若x≤y,则x2≤y2解析根据原命题和其逆否命题的条件和结论的关系,得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.3.(教材改编)给出下列命题:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;②命题“如果△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;③命题“若a>b>0,则3a>3b>0”的逆否命题;④命题“若m>1,则不等式mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.其中真命题的序号为________.答案①②③解析①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题为:“若b2-4ac≥0,则方程ax2+bx+c=0(a≠0)有实根”,根据一元二次方程根的判定知其为真命题.②命题“如果△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题为:“如果△ABC 为等边三角形,那么AB=BC=CA”,由等边三角形的定义可知其为真命题.③原命题“若a>b>0,则3a>3b>0”为真命题,由原命题与其逆否命题有相同的真假性可知其逆否命题为真命题.④原命题的逆命题为:“若不等式mx 2-2(m +1)x +(m -3)>0的解集为R ,则m >1”,不妨取m =2验证,当m =2时,有2x 2-6x -1>0,Δ=(-6)2-4×2×(-1)>0,其解集不为R ,故为假命题.4.(2016·北京改编)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的______________条件. 答案 既不充分又不必要解析 若|a |=|b |成立,则以a ,b 为邻边构成的四边形为菱形,a +b ,a -b 表示该菱形的对角线,而菱形的对角线不一定相等,所以|a +b |=|a -b |不一定成立;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边构成的四边形为矩形,而矩形的邻边不一定相等,所以|a |=|b |不一定成立,所以“|a |=|b |”是“|a +b |=|a -b |”的既不充分又不必要条件. 5.在下列三个结论中,正确的是________.(写出所有正确结论的序号) ①若A 是B 的必要不充分条件,则綈B 也是綈A 的必要不充分条件;②“⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件;③“x ≠1”是“x 2≠1”的充分不必要条件. 答案 ①②解析 易知①②正确.对于③,若x =-1,则x 2=1,充分性不成立,故③错误.题型一 命题及其关系例1 (2016·扬州模拟)下列命题: ①“若a 2<b 2,则a <b ”的否命题; ②“全等三角形面积相等”的逆命题;③“若a >1,则ax 2-2ax +a +3>0的解集为R ”的逆否命题; ④“若3x (x ≠0)为有理数,则x 为无理数”的逆否命题. 其中正确的命题是________.(填序号) 答案 ③④解析 对于①,否命题为“若a 2≥b 2,则a ≥b ”,为假命题;对于②,逆命题为“面积相等的三角形是全等三角形”,为假命题;对于③,当a >1时,Δ=-12a <0,原命题正确,从而其逆否命题正确,故③正确;对于④,原命题正确,从而其逆否命题正确,故④正确. 思维升华 (1)写一个命题的其他三种命题时,需注意: ①对于不是“若p ,则q ”形式的命题,需先改写; ②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(1)命题“若x>0,则x2>0”的否命题是__________.(2)(2016·徐州模拟)已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是______________________________.答案(1)若x≤0,则x2≤0(2)若a+b+c≠3,则a2+b2+c2<3解析(2)由于一个命题的否命题既否定题设又否定结论,因此原命题的否命题为“若a+b +c≠3,则a2+b2+c2<3”.题型二充分必要条件的判定例2 (1)(2016·江苏南京学情调研)已知直线l,m,平面α,m⊂α,则“l⊥m”是“l⊥α”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)(2)(2016·泰州模拟)给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.其中正确命题的序号为________.答案(1)必要不充分(2)③解析(1)根据直线与平面垂直的定义:若直线与平面内的任意一条直线都垂直,则称这条直线与这个平面垂直.现在是直线与平面内给定的一条直线垂直,而不是任意一条,故由“l⊥m”推不出“l⊥α”,但是由定义知“l⊥α”可推出“l⊥m”,故填必要不充分.(2)因为函数y=3x在R上为增函数,所以“a>b”是“3a>3b”的充要条件,故①错;由余弦函数的性质可知“α>β”是“cos α<cos β”的既不充分又不必要条件,故②错;当a=0时,f(x)=x3是奇函数,当f(x)是奇函数时,由f(-1)=-f(1)得a=0,所以③正确.思维升华充分条件、必要条件的三种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.(1)函数f(x)=13x-1+a (x≠0),则“f(1)=1”是“函数f(x)为奇函数”的________条件.(用“充分不必要”“必要不充分”“充要”“既不充分又不必要”填写)(2)(2017·镇江质检)已知p :关于x 的不等式x 2+2ax -a ≤0有解,q :a >0或a <-1,则p 是q 的________条件.(用“充分不必要”“必要不充分”“充要”“既不充分又不必要”填写)答案 (1)充要 (2)必要不充分 解析 (1)f (x )=13x-1+a (x ≠0)为奇函数,则f (-x )+f (x )=0,即13-x -1+a +13x -1+a =0,所以a =12,此时f (1)=13-1+12=1,反之也成立,因此填“充要”.(2)关于x 的不等式x 2+2ax -a ≤0有解,则4a 2+4a ≥0⇒a ≤-1或a ≥0,从而q ⇒p ,反之不成立,故p 是q 的必要不充分条件. 题型三 充分必要条件的应用例3 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 引申探究1.若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.本例条件不变,若x ∈綈P 是x ∈綈S 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇏P . ∴[-2,-m ,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.(2016·盐城期中)设集合A ={x |x 2+2x -3<0},集合B ={x ||x +a |<1}.(1)若a =3,求A ∪B ;(2)设p :x ∈A ,q :x ∈B ,若p 是q 成立的必要不充分条件,求实数a 的取值范围. 解 (1)解不等式x 2+2x -3<0, 得-3<x <1,故A =(-3,1). 当a =3时,由|x +3|<1, 得-4<x <-2,故B =(-4,-2), 所以A ∪B =(-4,1).(2)因为p 是q 成立的必要不充分条件,所以集合B 是集合A 的真子集. 又集合A =(-3,1),B =(-a -1,-a +1),所以⎩⎪⎨⎪⎧-a -1≥-3,-a +1<1或⎩⎪⎨⎪⎧-a -1>-3,-a +1≤1,解得0≤a ≤2,即实数a 的取值范围是0≤a ≤2.1.等价转化思想在充要条件中的应用典例 (1)已知p ,q 是两个命题,那么“p ∧q 是真命题”是“綈p 是假命题”的__________条件.(2)已知条件p :x 2+2x -3>0;条件q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是________.思想方法指导 等价转化是将一些复杂的、生疏的问题转化成简单的、熟悉的问题,在解题中经常用到.本题可将题目中条件间的关系和集合间的关系相互转化.解析 (1)因为“p ∧q 是真命题”等价于“p ,q 都为真命题”,且“綈p 是假命题”等价于“p 是真命题”,所以“p ∧q 是真命题”是“綈p 是假命题”的充分不必要条件. (2)由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件. 所以{x |x >ax |x <-3或x >1},所以a ≥1.答案 (1)充分不必要 (2)[1,+∞)1.下列命题中的真命题为________.(填序号) ①若1x =1y,则x =y ;②若x 2=1,则x =1; ③若x =y ,则x =y ; ④若x <y ,则x 2<y 2. 答案 ①2.(教材改编)命题“若a >b ,则2a>2b-1”的否命题为________________. 答案 若a ≤b ,则2a≤2b-1解析 ∵“a >b ”的否定是“a ≤b ”,“2a>2b-1”的否定是“2a≤2b-1”,∴原命题的否命题是“若a ≤b ,则2a≤2b-1”.3.(2016·南京模拟)给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________. 答案 1解析 原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个. 4.(2015·重庆改编)“x >1”是“12log (x +2)<0”的____________条件.答案 充分不必要解析 由x >1⇒x +2>3⇒12log (x +2)<0,12log (x +2)<0⇒x +2>1⇒x >-1,故“x >1”是“12log (x +2)<0”的充分不必要条件.5.(2016·山东改编)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的______________条件. 答案 充分不必要解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交.6.已知集合A ={x ∈R |12<2x<8},B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是__________. 答案 (2,+∞)解析 A ={x ∈R |12<2x<8}={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2.7.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的________条件. 答案 充要解析 由Venn 图易知充分性成立.反之,A ∩B =∅时,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.*8.(2015·湖北改编)设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则下列说法正确的是________.(填序号)①p 是q 的必要条件,但不是q 的充分条件; ②p 是q 的充分条件,但不是q 的必要条件; ③p 是q 的充分必要条件;④p 既不是q 的充分条件,也不是q 的必要条件. 答案 ②解析 若p 成立,设a 1,a 2,…,a n 的公比为q ,则(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=a 21(1+q 2+…+q2n -4)·a 22(1+q 2+…+q2n -4)=a 21a 22(1+q 2+…+q2n -4)2,(a 1a 2+a 2a 3+…+a n -1a n )2=(a 1a 2)2(1+q 2+…+q2n -4)2,故q 成立,故p 是q 的充分条件.取a 1=a 2=…=a n =0,则q成立,而p 不成立,故p 不是q 的必要条件.9.(2016·无锡模拟)设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的__________条件. 答案 充要解析 设f (x )=x |x |,则f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以f (x )是R 上的增函数,所以“a >b ”是“a |a |>b |b |”的充要条件. 10.有三个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“若a >b ,则a 2>b 2”的逆否命题;③“若x ≤-3,则x 2+x -6>0”的否命题. 其中真命题的序号为____________. 答案 ①解析 命题①为“若x ,y 互为相反数,则x +y =0”是真命题;因为命题“若a >b ,则a 2>b 2”是假命题,故命题②是假命题;命题③为“若x >-3,则x 2+x -6≤0”,因为x 2+x -6≤0⇔-3≤x ≤2,故命题③是假命题.综上知只有命题①是真命题.11.已知f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充要解析 ∵x ∈[0,1]时,f (x )是增函数, 又∵y =f (x )是偶函数,∴当x ∈[-1,0]时,f (x )是减函数. 当x ∈[3,4]时,x -4∈[-1,0], ∵T =2,∴f (x )=f (x -4).故x ∈[3,4]时,f (x )是减函数,充分性成立. 反之,若x ∈[3,4]时,f (x )是减函数, 此时x -4∈[-1,0], ∵T =2,∴f (x )=f (x -4), 则当x ∈[-1,0]时,f (x )是减函数. ∵y =f (x )是偶函数,∴当x ∈[0,1]时,f (x )是增函数,必要性也成立.故“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件.12.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________. 答案 [0,2]解析 由已知易得{x |x 2-2x -x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1,m +1<3,或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2.13.若“数列a n =n 2-2λn (n ∈N *)是递增数列”为假命题,则λ的取值范围是___________. 答案 [32,+∞)解析 若数列a n =n 2-2λn (n ∈N *)是递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N*都成立,于是可得3>2λ,即λ<32.故所求λ的取值范围是[32,+∞).*14.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件; ④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件. 正确的是________. 答案 ①④解析 由λ=0可以推出λa =0,但是由λa =0不一定推出λ=0成立,所以①正确; 由AB 2+AC 2=BC 2可以推出△ABC 是直角三角形,但是由△ABC 是直角三角形不能确定哪个角是直角,所以②不正确;由a 2+b 2≠0可以推出a ,b 不全为零, 反之,由a ,b 不全为零可以推出a 2+b 2≠0,所以“a 2+b 2≠0”是“a ,b 不全为零”的充要条件,而不是“a ,b 全不为零”的充要条件,所以③不正确,④正确.15.已知数列{a n }的前n 项和为S n =p n+q (p ≠0,且p ≠1).求证:数列{a n }为等比数列的充要条件为q =-1.证明 充分性:当q =-1时,a 1=p -1; 当n ≥2时,a n =S n -S n -1=p n -1(p -1),当n =1时也成立. ∴a n =pn -1(p -1),n ∈N *.又a n +1a n =p n p -p n -1p -=p ,∴数列{a n }为等比数列.必要性:当n =1时,a 1=S 1=p +q ; 当n ≥2时,a n =S n -S n -1=pn -1(p -1).∵p ≠0,且p ≠1,{a n }为等比数列, ∴a 2a 1=a n +1a n =p .∴p p -p +q=p ,即p -1=p +q ,∴q =-1.综上所述,q =-1是数列{a n }为等比数列的充要条件.。

【最高考系列】(教师用书)2016届高考数学一轮总复习 第一章 集合与常用逻辑用语课堂过关 理

【最高考系列】(教师用书)2016届高考数学一轮总复习 第一章 集合与常用逻辑用语课堂过关 理

第一章 集合与常用逻辑用语第1课时 集合的概念(对应学生用书(文)、(理)1~2页)1. (必修1P 10第5题改编)已知集合A ={m +2,2m 2+m},若3∈A,则m =________.答案:-32解析:因为3∈A,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不合题意,舍去;当2m 2+m =3时,解得m =-32或m=1(舍去),此时当m =-32时,m +2=12≠3满足题意.所以m =-32.2. (必修1P 7第4题改编)已知集合A ={(x ,y)|-1≤x≤1,0≤y<2,x 、y∈Z },用列举法可以表示集合A 为________.答案:{(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1)}解析:集合A 表示不等式组⎩⎪⎨⎪⎧-1≤x≤1,x ∈Z ,0≤y<2,y ∈Z 确定的平面区域上的格点集合,所以用列举法表示集合A 为{(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1)}.3. (必修1P 17第6题改编)已知集合A =[1,4),B =(-∞,a),A Í B ,则a∈________. 答案:[4,+∞)解析:在数轴上画出A 、B 集合,根据图象可知.4. (原创)若集合A ={x|y =x +1,x ∈R },B ={y|y =x 2-1,x ∈R },则集合A 、B 的关系是________.答案:A =B解析:由集合A 、B 的意义得A ={x|x≥-1},B ={y|y≥-1},所以A =B. 5. (必修1P 9练习1改编)设M 为非空的数集,M {0,1,2,3},且M 中至少含有一个偶数元素,则这样的集合M 共有________个.答案:12解析:集合{0,1,2,3}的所有子集共有24=16(个),只含有奇数的集合{1,3}的所有子集共有22=4(个),故满足要求的集合M 共有16-4=12(个).1. 集合的含义及其表示 (1) 集合的定义:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.其中集合中的每一个对象称为该集合的元素.(2) 集合中元素的特征:确定性、互异性、无序性.(3) 集合的常用表示方法:列举法、描述法、Venn 图法.(4) 集合的分类:若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类可分为点集、数集等.应当特别注意空集是一个特殊而又重要的集合,解题时切勿忽视空集的情形.(5) 常用数集及其记法:自然数集记作N ;正整数集记作N或N +;整数集记作Z ;有理数集记作Q ;实数集记作R ;复数集记作C .2. 两类关系(1) 元素与集合之间的关系包括属于与不属于关系,反映了个体与整体之间的从属关系.(2) 集合与集合之间的关系① 包含关系:如果集合A 中的每一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A Ê B 或B Ê A ,读作“集合A 包含于集合B”或“集合B 包含集合A”.② 真包含关系:如果A Í B ,并且A≠B,那么集合A 称为集合B 的真子集,记为AB 或BA ,读作“集合A 真包含于集合B”或“集合B 真包含集合A”.③ 相等关系:如果两个集合所含的元素完全相同,即A 中的元素都是B 中的元素且B 中的元素都是A 中的元素,则称这两个集合相等.(3) 含有n 个元素的集合的子集共有2n 个,真子集共有2n -1个,非空子集共有2n-1个,非空真子集有2n-2个.题型1 集合的基本概念例1 已知集合A ={x|ax 2-3x +2=0,a ∈R }. (1) 若A 是空集,求a 的取值范围;(2) 若A 中只有一个元素,求a 的值,并将这个元素写出来; (3) 若A 中至多有一个元素,求a 的取值范围.解: (1) 若A 是空集,则Δ=9-8a <0,解得a >98.(2) 若A 中只有一个元素,则Δ=9-8a =0或a =0,解得a =98或a =0;当a =98时,这个元素是43;当a =0时,这个元素是23.(3) 由(1)(2)知,当A 中至多有一个元素时,a 的取值范围是a≥98或a =0.备选变式(教师专享)已知a≤1时,集合[a ,2-a]中有且只有3个整数,则a 的取值范围是________. 答案:-1<a≤0解析:因为a≤1,所以2-a≥1,所以1必在集合中.若区间端点均为整数,则a =0,集合中有0,1,2三个整数,所以a =0适合题意;若区间端点不为整数,则区间长度2<2-2a<4,解得-1<a<0,此时,集合中有0,1,2三个整数,-1<a<0适合题意.综上,a 的取值范围是-1<a≤0.变式训练设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k 2+14,k ∈Z ,N ={x|x =k 4+12,k ∈Z },则M________N. 答案:真属于题型2 集合间的基本关系例2 (2014·兴化期中)已知集合A ={x|4-2k<x<2k -8}, B ={x|-k<x<k}, 若AB, 则实数k 的取值范围是____________.答案:(0, 4] 解析:由A 真属于B 知,B ≠Æ,-k<k ,即k>0.若A =Æ,则还需4-2k≥2k-8,∴ 0<k≤3.若A≠Æ,则⎩⎪⎨⎪⎧4-2k<2k -8,-k≤4-2k ,2k -8≤k,∴ 3<k ≤4.综上,实数k 的取值范围是(0, 4] .备选变式(教师专享)(2014·启东中学期中)已知集合M ={x|5-|2x -3|∈N *},则M 的所有非空真子集的个数是________.答案:254解析:∵ 5-|2x -3|∈N *,∴ |2x -3|=1,2,3,4,∴ x =-12,0,12,1,2,52,3,72,即M ={-12,0,12,1,2,52,3,72},故M 中共有8个元素,因此M 的所有非空真子集的个数是28-2=254.变式训练集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1,集合B ={a 2,a +b ,0},若A =B ,求a 2 014+b 2 015的值.解:由于a≠0,由b a=0,得b =0,则A ={a ,0,1},B ={a 2,a ,0}.由A =B ,可得a 2=1.又a 2≠a ,则a≠1,则a =-1.所以a 2 014+b 2 015=1.题型3 根据集合的关系求参数的取值范围例3 集合A ={x|-2≤x≤5},集合B ={x|m +1≤x≤2m-1}. (1) 若B ÍA ,求实数m 的取值范围;(2) 当x∈R 时,没有元素x 使x∈A 与x∈B 同时成立,求实数m 的取值范围. 解:(1) 当m +1>2m -1即m <2时,B =Æ满足B ÍA ;当m +1≤2m-1即m≥2时,要使B ÍA 成立,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,解得2≤m≤3.综上所述,当m≤3时有B Í A. (2) 因为x∈R ,且A ={x|-2≤x≤5},B ={x|m +1≤x≤2m-1},又没有元素x 使x∈A 与x∈B 同时成立,则① 若B =Æ,即m +1>2m -1,得m <2时满足条件;② 若B≠Æ,则要满足条件⎩⎪⎨⎪⎧m +1≤2m-1,m +1>5,解得m >4;或⎩⎪⎨⎪⎧m +1≤2m-1,2m -1<-2,无解. 综上所述,实数m 的取值范围为m <2或m >4. 备选变式(教师专享)已知集合A ={y|y =-2x ,x ∈[2,3]},B ={x|x 2+3x -a 2-3a>0}.若A ÍB ,求实数a 的取值范围.解:由题意有A =[-8,-4],B ={x|(x -a)(x +a +3)>0}.① 当a =-32时,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x∈R ,x ≠-32,所以A ÍB 恒成立;② 当a<-32时,B ={x|x<a 或x>-a -3}.因为A ÍB ,所以a>-4或-a -3<-8,解得a>-4或a>5(舍去),所以-4<a<-32;③ 当a>-32时,B ={x|x<-a -3或x>a}.因为A ÍB ,所以-a -3>-4或a<-8(舍去),解得-32<a<1.综上,当A ÍB 时,实数a 的取值范围是(-4,1).1. 已知全集S ={1,2,a 2-2a +3},A ={1,a},∁S A ={3},则实数a 等于________. 答案:2解析:由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2.2. (2014·潍坊模拟改)设集合A ={1,2,3},B ={4,5},C ={x|x =b -a ,a ∈A ,b ∈B},则C 中元素的个数是________.答案:4解析:∵ A={1,2,3},B ={4,5},∴ C ={x|x =b -a ,a ∈A ,b ∈B}={1,2,3,4},∴ C 中共有4个元素.3. 若x∈A,则1x ∈A ,就称A 是“伙伴关系集合”,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是________.答案:3解析:具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.4. 已知全集U =R ,集合M ={x|-2≤x-1≤2}和N ={x|x =2k -1,k =1,2,…}的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有________个.答案:2解析:由题图示可以看出阴影部分表示集合M 和N 的交集,所以由M ={x|-1≤x≤3},得M∩N={1,3},有2个.5. (2014·全国交流卷改)已知集合A ={a 1,a 2,…,a n },其中a k >0(k =1,2,…,n ,n ∈N *),集合B ={(a ,b )|a∈A,b ∈A ,a -b∈A},则集合B 的元素至多有________个.答案:(n -1)n 2解析:集合B 的元素至多有1+2+3+…+(n -1)=(1+n -1)(n -1)2=n (n -1)2个.1. (2014·郑州质检改)已知集合A ={x|x >2},B ={x|x <2m},且A Í (∁R B),则m 的值可以是________.答案:1解析:易知∁R B ={x|x≥2m},要使A Í (∁R B),则2m≤2,∴ m ≤1.2. (2014·宁波模拟)已知集合M ={1,m},N ={n ,log 2n}.若M =N ,则(m -n)2 015=________.答案:-1或0解析:因为M =N ,所以⎩⎪⎨⎪⎧n =1,log 2n =m 或⎩⎪⎨⎪⎧n =m ,log 2n =1,即⎩⎪⎨⎪⎧n =1,m =0或⎩⎪⎨⎪⎧n =2,m =2.故(m -n)2 015=-1或0.3. 已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ax -1x -a <0,且2∈A,3ÏA ,则实数a 的取值范围是________. 答案:⎣⎢⎡⎭⎪⎫13,12∪(2,3] 解析:因为2∈A,所以2a -12-a <0,即(2a -1)(a -2)>0,解得a >2或a <12.①若3∈A,则3a -13-a <0,即(3a -1)(a -3)>0,解得a >3或a <13,所以3ÏA 时,13≤a≤3.②由①②可知,实数a 的取值范围为⎣⎢⎡⎭⎪⎫13,12∪(2,3]. 4. (2014·福建)已知集合{a ,b ,c}={0,1,2},且下列三个关系:① a≠2;② b =2;③ c≠0有且只有一个正确,则100a +10b +c =________.答案:201解析: 若①正确,则②③不正确,由③不正确得c =0,由①正确得a =1,所以b =2,与②不正确矛盾,故①不正确;若②正确,则①③不正确,由①不正确得a =2,与②正确矛盾,故②不正确;若③正确,则①②不正确,由①不正确得a =2,由②不正确及③正确得b =0,c =1,故③正确.故100a +10b +c =100×2+10×0+1=201.1. 研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.注意区分{x|y =f(x)}、{y|y =f(x)}、{(x ,y)|y =f(x)}三者的不同.对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2. 空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A ÍB ,则需考虑A =Æ和A≠Æ两种可能的情况.3. 判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.4. 已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、Venn 图帮助分析.请使用课时训练(A )第1课时(见活页).第2课时 集合的基本运算(对应学生用书(文)、(理)3~4页)1. (必修1P 14习题10改编)已知全集U ={x|x<4,且x∈N },集合A ={0,1},B ={1,2,3},则(∁U A )∩B=________.答案:{2,3} 解析:全集U ={0,1,2,3},A ={0,1},∴ ∁U A ={2,3}.又B ={1,2,3},∴ (∁U A )∩B ={2,3}.2. (必修1P 17第13题改编)A 、B 是非空集合,定义A×B={x|x∈A∪B,且x A ∩B}.若A ={x|y =x 2-3x},B ={y|y =3x},则A×B=________.答案:(-∞,3)解析:A =(-∞,0]∪[3,+∞),B =(0,+∞).A∪B=R ,A ∩B =[3,+∞).所以A ×B =(-∞,3).3. (必修1P 14习题10改编)已知全集U =R ,集合A ={1,2,3,4,5},B =[3,+∞),则图中阴影部分所表示的集合为________.答案:{1,2}解析:由题意,阴影部分表示A∩(∁U B).因为∁U B ={x|x<3},所以A∩(∁U B)={1,2}. 4. (必修1P 12例2改编)某班有50名学生报名参加A、B 两项比赛,参加A 项的有30人,参加B 项的有33人,且A 、B 都不参加的同学比A 、B 都参加的同学的三分之一多一人,则只参加A 项、没有参加B 项的学生有________人.答案:9解析:设A 、B 都参加的有x 人,都不参加的有y 人,如图所示.则⎩⎪⎨⎪⎧30-x +x +33-x +y =50,y =13x +1,解得x =21.故只参加A 项,没有参加B 项的同学有30-21=9(人).5. (必修1P 17第6题改编)已知A ={1,2,3},B ={x∈R |x 2-ax +1=0,a ∈A},则A∩B =B 时,a =________.答案:1或2解析:验证a =1时B = 满足条件;验证a =2时B ={1}也满足条件.1. 集合的运算 (1) 交集:由属于A 且属于B 的所有元素组成的集合,叫做集合A 与B 的交集,记作A∩B,即A∩B={x|x∈A 且x∈B}.(2) 并集:由属于A 或属于B 的所有元素组成的集合,叫做集合A 与B 的并集,记作A∪B,即A∪B={x|x∈A 或x∈B}.(3) 全集:如果集合S 含有我们所研究的各个集合的全部元素,那么这个集合就可以看作一个全集,通常用U 来表示.一切所研究的集合都是这个集合的子集.(4) 补集:集合A 是集合S 的一个子集,由S 中所有不属于A 的元素组成的集合叫做A 的补集(或余集),记作∁S A ,即∁S A ={x|x∈S,但x ÏA}.2. 常用运算性质及一些重要结论(1) A∩A=A ,A ∩Æ=Æ,A ∩B =B∩A; (2) A∪A=A ,A ∪Æ=A ,A ∪B =B∪A; (3) A∩(∁U A)=Æ,A ∪(∁U A)=U ;(4) A∩B=A Û A Í B ,A ∪B =A Û B ÍA ; (5) ∁U (A∩B)=(∁U A )∪(∁U B),∁U (A∪B)=(∁U A )∩(∁U B).题型1 集合的运算例1 已知U =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫y =ln ⎝ ⎛⎭⎪⎫9x -1,x ∈Z ,M ={x||x -4|≤1, x ∈Z },N =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫6x ∈Z , x ∈N ,则M∩(∁U N)=________.答案:{4,5}解析:集合U 为函数y =ln ⎝ ⎛⎭⎪⎫9x -1的定义域内的整数集,由9x -1>0,即9-x x >0,解得0<x<9,又x∈Z ,所以x 可取1,2,3,4,5,6,7,8,故U ={1,2,3,4,5,6,7,8}.集合M 为满足不等式|x -4|≤1的整数集,解|x -4|≤1,得3≤x≤5,又x∈Z ,所以x 可取3,4,5,故M ={3,4,5}.集合N 是使6x 为整数的自然数集合,显然当x =1时,6x =6;当x =2时,6x=3;当x =3时,6x =2;当x =6时,6x =1.所以N ={1,2,3,6}.所以M∩(∁U N)={4,5}.变式训练设集合A ={x 2,2x -1,-4},B ={x -5,1-x ,9},若A∩B={9},求A∪B.解:由9∈A,可得x 2=9或2x -1=9,解得x =±3或x =5.当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去;当x =-3时,A ={9,-7,-4},B ={-8,4,9},A ∩B ={9}满足题意,故A∪B={-8,-7,-4,4,9};当x =5时,A ={25,9,-4},B ={0,-4,9}, 此时A∩B={-4,9}与A∩B={9}矛盾,故舍去. 综上所述,A ∪B ={-8,-7,-4,4,9}. 题型2 根据集合的运算求参数的取值范围例2 (2014·启东检测)已知集合A ={x|x 2-2x -3>0},B ={x|x 2-4x +a =0,a ∈R }.(1) 存在x∈B,使得A∩B≠Æ,求a 的取值范围; (2) 若A∩B=B ,求a 的取值范围.解:(1) 由题意得B≠Æ,故Δ=16-4a≥0,解得a≤4.①令f(x)=x 2-4x +a =(x -2)2+a -4,对称轴为x =2, ∵ A ∩B ≠ ,又A =(-∞,-1)∪(3,+∞), ∴ f(3)<0,解得a<3. ②由①②得a 的取值范围为(-∞,3). (2) ∵ A∩B=B ,∴ B Í A.当Δ=16-4a<0,即a>4时,B 是空集,这时满足A ∩B =B ; 当Δ=16-4a≥0,即a≤4. ③令f(x)=x 2-4x +a ,对称轴为x =2, ∵ A =(-∞,-1)∪(3,+∞)≠Æ, ∴ f(-1)<0,解得a<-5.④ 由③④得a<-5.综上得a 的取值范围为(-∞,-5)∪(4,+∞). 备选变式(教师专享)(2014·兴化期中)已知集合A ={x|x 2-3x +2=0},B ={x|0≤ax +1≤3}.若A∪B=B ,求实数a 的取值组成的集合.解:∵ A∪B=B ,∴ A ÍB ,∴ ⎩⎪⎨⎪⎧0≤a+1≤3,0≤2a +1≤3,∴ ⎩⎪⎨⎪⎧-1≤a≤2,-12≤a≤1.∴ -12≤a ≤1.∴ 实数a 的取值组成的集合为⎣⎢⎡⎦⎥⎤-12,1. 变式训练已知A ={x|ax -1>0},B ={x|x 2-3x +2>0}. (1) 若A∩B=A ,求实数a 的取值范围; (2) 若A∩∁R B ≠Æ,求实数a 的取值范围.解:(1) 由于A∩B=A 得A ÍB ,由题意知B ={x|x>2或x<1}.若a>0,则x>1a≥2,得0<a≤12;若a =0,则A =Æ,成立;若a <0,则x <1a <1,根据数轴可知均成立.综上所述,a ≤12.(2) ∁R B ={x|1≤x≤2},若a =0,则A =Æ,不成立;若a <0,则x <1a<1,不成立;若a >0,则x >1a ,由1a <2得a >12.综上所述,a >12.题型3 集合的综合应用例3 (2014·南通期中)已知集合M ={(x ,y)|x -3≤y ≤x -1},N ={P|PA≥2PB ,A(-1,0),B(1,0)},则表示M∩N 的图形面积等于________.答案:23+83π解析:设P(x ,y),由PA 2≥2PB 2,知(x +1)2+y 2≥2(x -1)2+2y 2.整理得(x -3)2+y 2≤8,则集合M∩N 示意图如下:∴ S M ∩N =S △HGN +2S 扇GNF .又N(3,0)到HG 距离d =2,从而△HGN 为等边三角形,∴ S △HGN =34×(22)2=23,2S 扇GNF =2×12lr =lr =r 2θ=8×π3=83π.综上知M ∩N 的图形面积为S △HGN + 2S 扇GNF =23+83π.备选变式(教师专享)(2014·湖北八市联考)已知集合M =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪y -3x -2=3,N ={(x ,y)|ax +2y +a =0},且M∩N=Æ,则a =________.答案:-6或-2解析:易知集合M 中的元素表示的是过点(2,3)且斜率为3的直线上除点(2,3)外的所有点.要使M∩N=Æ,则N 中的元素表示的是斜率为3且不过点(2,3)的直线,或过点(2,3)且斜率不为3的直线,∴ -a2=3或2a +6+a =0,∴ a =-6或a =-2.题型4 集合运算有关的新定义问题例4(2014·青岛模拟改)用C(A)表示非空集合A 中的元素个数,定义A*B =⎩⎪⎨⎪⎧C (A )-C (B ),C (A )≥C(B ),C (B )-C (A ),C (A )<C (B ),若A ={1,2},B ={x|(x 2+ax)(x 2+ax +2)=0},且A*B =1,设实数a 的所有可能取值构成的集合是S ,则C(S)=________.答案:3解析:由A ={1,2},得C(A)=2. 由A*B =1,得C(B)=1或C(B)=3.由(x 2+ax)(x 2+ax +2)=0,得x 2+ax =0或x 2+ax +2=0.当C(B)=1时,方程(x 2+ax)·(x 2+ax +2)=0只有实根x =0,这时a =0.当C(B)=3时,必有a≠0,这时x 2+ax =0有两个不相等的实根x 1=0,x 2=-a ,方程x 2+ax +2=0必有两个相等的实根,且异于x 1=0,x 2=-a ,由Δ=a 2-8=0,得a =±22,可验证均满足题意.故S ={-22,0,22},C(S)=3.备选变式(教师专享)(必修1P 14习题13改编)对任意两个集合M 、N ,定义:M -N ={x|x∈M 且x ÏN},M*N =(M -N)∪(N-M),设M ={y|y =x 2,x ∈R },N ={y|y =3sinx ,x ∈R },则M*N =________.答案:{y|y>3或-3≤y<0}解析:∵ M={y|y =x 2,x ∈R }={y|y≥0},N ={y|y =3sinx ,x ∈R }={y|-3≤y≤3},∴ M -N ={y|y>3},N -M ={y|-3≤y<0},∴ M*N =(M -N)∪(N-M)={y|y>3}∪{y|-3≤y<0}={y|y>3或-3≤y<0}.1. (2014·盐城中学期中)若集合A ={-1,0,1},B ={y|y =cos(πx),x ∈A},则A∩B =________.答案:{-1,1}解析:由题意,B ={-1,1},所以A∩B={-1,1}.2. (2014·山东卷改)设集合A ={x||x -1|<2},B ={y|y =2x,x ∈[0,2]},则∁R (A∪B)=________.答案:(-∞,-1]∪(4,+∞)解析:由题意,集合A ={x|-1<x <3},B ={y|1≤y≤4},所以A∪B={x|-1<x≤4},∁R (A∪B)=(-∞,-1]∪(4,+∞).3. 如图,已知U ={1,2,3,4,5,6,7,8,9,10},集合A ={2,3,4,5,6,8},B ={1,3,4,5,7},C ={2,4,5,7,8,9},用列举法写出图中阴影部分表示的集合为________.答案:{2,8}解析:阴影部分表示的集合为A∩C∩(∁U B)={2,8}.4. (2014·日照模拟)设集合A ={x|x 2+2x -3>0},B ={x|x 2-2ax -1≤0,a >0}.若A∩B 中恰含有一个整数,则实数a 的取值范围是________.答案:⎣⎢⎡⎭⎪⎫34,43 解析:A ={x|x 2+2x -3>0}={x|x >1或x <-3},因为函数y =f(x)=x 2-2ax -1的对称轴为x =a >0,f(-3)=6a +8>0,根据对称性可知,要使A∩B 中恰含有一个整数,则这个整数解为2,所以有f(2)≤0且f(3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎪⎨⎪⎧a≥34,a <43,即34≤a <43.5. 设P 和Q 是两个集合,定义集合P -Q ={x|x∈P,且x ÏQ},如果P ={x|log 2x<1},Q ={x||x -2|<1},那么P -Q =________.答案:{x|0<x≤1}解析:由log 2x<1,得0<x<2,所以P ={x|0<x<2};由|x -2|<1,得1<x<3,所以Q ={x|1<x<3}.由题意,得P -Q ={x|0<x ≤1}.1. (2014·通州中学期中)已知集合A ={x|x >2,或x <-1},B ={x|a≤x≤b}.若A∪B=R ,A ∩B ={x|2<x≤4},则ba=________.答案:-4解析:由题意得B ={x|-1≤x≤4},∴ a =-1,b =4,故ba=-4.2. 设全集U =R ,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎝ ⎛⎭⎪⎫12x ≥2,B ={y|y =lg(x 2+1)},则(∁U A )∩B=________.答案:{x|x≥0}解析:由于A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎝ ⎛⎭⎪⎫12x ≥2={x|x≤-1},B ={y|y =lg(x 2+1)}={y|y≥0},所以(∁U A )∩B={x|x>-1}∩{y|y ≥0}={x|x≥0}.3. 设全集I =R ,已知集合M ={}x |(x +3)2≤0,N ={x|x 2+x -6=0}. (1) 求(∁I M )∩N;(2) 记集合A =(∁I M )∩N,已知集合B ={x|a -1≤x≤5-a ,a ∈R },若B∪A=A ,求实数a 的取值范围.解:(1) ∵ M={x|(x +3)2≤0}={-3},N ={x|x 2+x -6=0}={-3,2}, ∴ ∁I M ={x|x∈R 且x≠-3}, ∴ (∁I M )∩N={2}. (2) A =(∁I M )∩N={2}, ∵ A ∪B =A , ∴ B A ,∴ B =Æ或B ={2}, 当B =Æ时,a -1>5-a , ∴ a>3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3.综上所述,所求a 的取值范围为{a|a≥3}.4. 已知A 、B 均为集合U ={1,2,3,4,5,6}的子集,且A∩B={3},(∁U B )∩A={1},(∁U A )∩(∁U B)={2,4},则B ∩(∁U A)=________.答案:{5,6}解析:依题意及韦恩图得B∩(∁U A)={5,6}.1. 集合的运算结果仍然是集合.进行集合运算时应当注意: (1) 勿忘对空集情形的讨论; (2) 勿忘集合中元素的互异性;(3) 对于集合A 的补集运算,勿忘A 必须是全集的子集; (4) 已知两集合间的关系求参数或参数范围问题时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常合理利用数轴、Venn 图化抽象为直观.还要注意“回代检验”,从而对所求数值进行合理取舍.2. 在集合运算过程中应力求做到“三化”(1) 意义化:首先明确集合的元素的意义,它是怎样的类型的对象(数集、点集,图形等)?是表示函数的定义域、值域,还是表示方程或不等式的解集?(2) 具体化:具体求出相关集合中函数的定义域、值域或方程、不等式的解集等;不能具体求出的,也应力求将相关集合转化为最简形式.(3) 直观化:借助数轴、直角坐标平面、韦恩图等将有关集合直观地表示出来,从而借助数形结合思想解决问题.请使用课时训练(B )第2课时(见活页).[备课札记]第3课时 简单的逻辑联结词、全称量词与存在量词(对应学生用书(文)、(理)5~6页)1. 命题“$x ∈R ,|x|≤0”的否定是“________________”. 答案:"x ∈R ,|x|>0解析:根据“$x ∈M ,p (x)”的否定为“"x ∈M ,Øp(x)”可直接写出答案. 2. 若命题p 的否命题为q ,命题q 的逆否命题为r ,则p 与r 的关系是__________. 答案:互为逆命题3. 已知p 、q 是r 的充分条件,r 是s 的充分条件,则s 是p 的__________条件. 答案:必要不充分4. (原创)写出命题“若x +y =5,则x =3且y =2”的逆命题、否命题、逆否命题,并判断它们的真假.答案:逆命题:若x =3且y =2,则x +y =5.是真命题. 否命题:若x +y≠5,则x≠3或y≠2.是真命题. 逆否命题:若x≠3或y≠2,则x +y≠5.是假命题.5. 设函数f(x)=log 2x ,则“a>b”是“f(a)>f(b)”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.答案:必要不充分解析:因为f(x)=log 2x 在区间(0,+∞)上是增函数,所以当a>b>0时,f(a)>f(b);反之,当f(a)>f(b)时,a>b.故“a>b”是“f(a)>f(b)”的必要不充分条件.6. (课本习题综合改编)已知命题p :"a ∈R ,且a>0,a +1a ≥2,命题q :$x 0∈R ,sinx 0+cosx 0= 3. 给出下列判断:① p 是假命题;② q 是真命题;③ p 且(Øq)是真命题;④ (Øp)且q 是真命题.其中正确的判断有________.(填序号)答案:③解析:依题意可知,命题p为真,命题q为假,由真值表知,正确的命题只有③.1. 四种命题及其关系(1) 四种命题(2)(3) 四种命题的真假关系两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.2. 充分条件与必要条件(1) 如果pÞq,那么称p是q的充分条件,q是p的必要条件.(2) 如果pÞq,且qÞp,那么称p是q的充要条件,记作pÛq.(3) 如果pÞq,q /p,那么称p是q的充分不必要条件.(4) 如果qÞp,p /q,那么称p是q的必要不充分条件.(5) 如果pÞ/ q,且qÞ/ p,那么称p是q的既不充分也不必要条件.3. 简单的逻辑联结词(1) 用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(2) 用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(3) 一个命题p的否定记作綈p,读作“非p”或“p的否定”.(4) 命题p∧q,p∨q,綈p的真假判断p∧q中p、q有一假为假,p∨q有一真为真,p与非p必定是一真一假.4. 全称量词与存在量词(1) 全称量词与全称命题短语“所有”“任意”“每一个”等表示全体的量词在逻辑中称为全称量词,并用符号“ x”表示.含有全称量词的命题,叫做全称命题.全称命题“对M中任意一个x,都有p(x)成立”可用符号简记为 x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2) 存在量词与存在性命题短语“有一个”“有些”“存在一个”等表示部分的量词在逻辑中称为存在量词,并用符号“ x”表示.含有存在量词的命题,叫做存在性命题.存在性命题“存在M中的一个x,使p(x)成立”可用符号简记为 x∈M,p(x),读作“存在一个x属于M,使p(x)成立”.5. 含有一个量词的命题的否定[备课札记]题型1充分、必要关系例1 (2014·黄冈中学改)下面四个命题:①“直线a∥直线b”的充要条件是“a平行于b所在的平面”;②“直线l⊥平面α内所有直线”的充要条件是“l⊥平面α”;③“直线a、b为异面直线”的充分不必要条件是“直线a、b不相交”;④“平面α∥平面β”的必要不充分条件是“α内存在不共线三点到β的距离相等”.其中正确的命题是________.(填序号)答案:②④解析:由立体几何知识知“直线a∥直线b”是“a平行于b所在的平面”的既不充分也不必要条件,①错误;“直线a、b为异面直线”是“直线a、b不相交” 的充分不必要条件,③错误;由线面垂直的定义知,②正确;由α内不共线三点可能在β的同侧或异侧知,④正确.备选变式(教师专享)把下列命题改写成“若p则q”的形式,并写出它们的逆命题、否命题、逆否命题.(1) 正三角形的三个内角相等;(2) 已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d.解:(1) 原命题:若一个三角形是正三角形,则它的三个内角相等.逆命题:若一个三角形的三个内角相等,则这个三角形是正三角形.否命题:若一个三角形不是正三角形,则它的三个内角不全相等.逆否命题:若一个三角形的三个内角不全相等,那么这个三角形不是正三角形.(2) 原命题:已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d.逆命题:已知a、b、c、d是实数,若a+c=b+d,则a=b且c=d.否命题:已知a、b、c、d是实数,若a与b,c与d不都相等,则a+c≠b+d.逆否命题:已知a、b、c、d是实数,若a+c≠b+d,则a与b,c与d不都相等.题型2命题及其关系例2 (2014·苏州中学调研)已知命题p:“若a=b,则|a|=|b|”,则命题p及其逆命题、否命题、逆否命题中,正确命题的个数是________.答案:2解析:由向量知识可知原命题为真,逆命题为假,由互为逆否命题等价知,p的否命题为假,逆否命题为真,故正确命题的个数为2.变式训练(2014·上海考前调研改)下列有关命题的说法正确的是________.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②若一个命题是真命题,则其逆命题也是真命题;③命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”;④命题“若x=y,则sinx=siny”的逆否命题为真命题.答案:④解析:命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,所以①不正确;原命题与逆命题不等价,所以②不正确;命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R ,均有x 2+x +1≥0”,所以③不正确;命题“若x =y ,则sinx =siny ”是真命题,所以逆否命题为真命题,④正确.题型3 逻辑联结词及真假性判断例3 (2014·阜宁中学调研)已知命题p :指数函数f(x)=(2a -6)x在R 上是单调减函数;命题q :关于x 的方程x 2-3ax +2a 2+1=0的两根均大于3.若p 或q 为真,p 且q 为假,求实数a 的范围.解:由p 真得0<2a -6<1,即3<a<72;由q 真得⎩⎪⎨⎪⎧9a 2-4(2a 2+1)≥0,3a2>3,9-9a +2a 2+1>0,解得a>52;若p 或q 为真,p 且q 为假,则p 、q 一真一假.若p 真q 假,则⎩⎪⎨⎪⎧3<a<72,a ≤52.解集为Æ;若p 假q 真,则⎩⎪⎨⎪⎧a≤3或a≥72,a>52,解得52<a ≤3或a≥72.综上所述52<a ≤3或a≥72.备选变式(教师专享)已知命题p :不等式|x -1|>m 的解集是R ,命题q :f(x)=2-mx在区间(0,+∞)上是减函数,若命题“p 或q”为真,命题“p 且q”为假,求实数m 的取值范围.解:当p 真时,m<0,当q 真时,2-m>0, 即m<2;由命题“p 或q”为真,命题“p 且q”为假可得p 真q 假或p 假q 真,故⎩⎪⎨⎪⎧m<0,m ≥2,或⎩⎪⎨⎪⎧m≥0,m<2.所以0≤m<2.所以实数m 的取值范围是0≤m<2. 题型4 全称命题与存在命题例4 若命题“$x ∈R ,使得x 2+(a -1)x +1<0”是真命题,则实数a 的取值范围是________.答案:(-∞,-1)∪(3,+∞)解析:∵$x ∈R ,使得x 2+(a -1)x +1<0是真命题,∴ Δ=(a -1)2-4>0,即(a -1)2>4,∴ a -1>2或a -1<-2,∴ a >3或a <-1. 备选变式(教师专享)(2014·泗阳中学检测)已知实数a>0,命题p :$ x ∈R ,|sinx|>a 有解;命题q :" x ∈⎣⎢⎡⎦⎥⎤π4,3π4,sin 2x +asinx -1≥0.(1) 写出Øq ;(2) 若p 且q 为真, 求实数a 的取值范围.解:(1) Øq : x ∈⎣⎢⎡⎦⎥⎤π4,3π4,sin 2x +asinx -1<0;(2) p 且q 为真,则p 、q 同时为真,由于实数a>0,则 p :0<a<1;q :x∈⎣⎢⎡⎦⎥⎤π4,3π4时,sinx ∈⎣⎢⎡⎦⎥⎤22,1,则由sin 2x +asinx -1≥0得a≥1sinx -sinx ,令t =sinx ,则t∈⎣⎢⎡⎦⎥⎤22,1,函数f(t)=1t -t 在区间(0,+∞)上为减函数,则当t∈⎣⎢⎡⎦⎥⎤22,1时,f(t)=1t -t≤f ⎝ ⎛⎭⎪⎫22=22, 要使a≥1sinx -sinx 在x∈⎣⎢⎡⎦⎥⎤π4,3π4上恒成立,则a≥22.综上可知,22≤a<1.1. 命题“所有能被2整除的数都是偶数”的否定是________________________________________________________________________________________________.答案:存在一个能被2整除的数不是偶数2. (2014·南京、盐城一模)“p∨q 为真命题”是“Øp 为假命题”成立的________条件.答案:必要不充分解析:“p∨q 为真命题”就是p 、q 中至少有一个为真;“Øp 为假命题”即得p 为真命题,可见“Øp 为假命题”可推出“p∨q 为真命题”,而“p∨q 为真命题”不能推出“綈p 为假命题”,故“p∨q 为真命题”是“Øp 为假命题”成立的必要不充分条件.3. “若a +b 为偶数,则a 、b 必定同为奇数或偶数”的逆否命题为______________________________.答案:若a 、b 不同为奇数且不同为偶数,则a +b 不是偶数4.已知命题p 1:函数y =ln(x +1+x 2)是奇函数,p 2:函数y =x 12为偶函数,则下列四个命题:① p 1∨p 2;② p 1∧p 2;③ (Øp 1)∨p 2;④ p 1∧(Øp 2).其中,真命题是________.(填序号)答案:①④解析:由函数的奇偶性可得命题p 1为真命题,命题p 2为假命题,再由命题的真值表可得②③为假,①④为真.5.(2014·海门调研)给出如下命题:① 若“p 且q”为假命题,则p 、q 均为假命题;② 命题“若a>b ,则2a >2b -1”的否命题为“若a≤b,则2a ≤2b-1”;③ 命题“$x 0∈R ,2x 0≤0”的否定是“"x ∈R ,2x>0”;④ “a≥5” 是 “"x ∈[1,2],x 2-a≤0恒成立”的充要条件. 其中所有正确的命题是________. (填序号) 答案:②③1. (2014·启东检测)已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则p 是q 的________.(填“逆命题”“否命题”“逆否命题”或“否定”)答案:否命题解析:根据四种命题的关系知,“正数a 的平方不等于0”的否命题是“若a 不是正数,则它的平方等于0”.故填“否命题”.2. (2014·海门调研)已知f(x)=x 2-2x +3,g(x)=kx -1,则“|k|≤2”是“f(x)≥g(x)在R 上恒成立”的________(填“充分不必要”“必要而不充分”“充要”或“既不充分也不必要”)条件.答案:充分不必要解析:若f(x)≥g(x)在R 上恒成立,即x 2-(2+k)x +4≥0恒成立,等价于(2+k)2-16≤0,即k∈[-6,2].由{k||k|≤2} [-6,2]知,“|k|≤2”是“f(x)≥g(x)在R 上恒成立”的充分不必要条件.3. (2014·江西师大三模改)下列命题正确的个数是________.① 命题“$x 0∈R ,x 20+1>3x 0”的否定是“"x ∈R ,x 2+1≤3x”;② “函数f(x)=cos 2ax -sin 2ax 的最小正周期为π”是“a=1”的必要不充分条件;③ x 2+2x≥ax 在x∈[1,2]上恒成立 (x 2+2x)min ≥(ax)max 在x∈[1,2]上恒成立; ④ “平面向量a 与b 的夹角是钝角”的充分必要条件是“a ·b <0”. 答案:2解析:根据存在性命题的否定是全称命题,∴ ①正确;f(x)=1+cos2ax 2-1-cos2ax2=cos2ax ,最小正周期是2π|2a|=πÞ a =±1,∴ ②正确;当a =2时,x 2+2x≥2x 在x∈[1,2]上恒成立,而(x 2+2x)min =3<2x max =4,∴ ③不正确;∵ a·b =|a||b|cos 〈a ,b 〉,当〈a ,b 〉=π时a·b <0,∴ ④错误.故命题正确的个数是2.4. 设数列{a n }、{b n }、{c n }满足:b n =a n -a n +2,c n =a n +2a n +1+3a n +2(n =1,2,3,…),求证:{a n }为等差数列的充分必要条件是{c n }为等差数列且b n ≤b n +1(n =1,2,3,…).证明:必要性:设{a n }是公差为d 1的等差数列,则 b n +1-b n =(a n +1-a n +3) - (a n -a n +2)= (a n +1-a n ) - (a n +3-a n +2)= d 1- d 1=0, 所以b n ≤b n +1(n =1,2,3,…)成立.又c n +1-c n =(a n +1-a n )+2(a n +2-a n +1)+3(a n +3-a n +2)= d 1+2d 1 +3d 1 =6d 1(常数)(n =1,2,3,…),所以数列{c n }为等差数列. 充分性:设数列{c n }是公差为d 2的等差数列,且b n ≤b n +1(n =1,2,3,…). ∵ c n =a n +2a n +1+3a n +2, ① ∴ c n +2=a n +2+2a n +3+3a n +4, ②①-②,得c n -c n +2=(a n -a n +2)+2 (a n +1-a n +3)+3 (a n +2-a n +4)=b n +2b n +1+3b n +2. ∵ c n -c n +2=(c n -c n +1)+(c n +1-c n +2)= -2d 2, ∴ b n +2b n +1+3b n +2=-2d 2, ③从而有b n +1+2b n +2+3b n +3=-2d 2, ④④-③,得(b n +1-b n )+2 (b n +2-b n +1)+3 (b n +3-b n +2)=0.⑤ ∵ b n +1-b n ≥0,b n +2-b n +1≥0,b n +3-b n +2≥0, ∴ 由⑤得b n +1-b n =0(n =1,2,3,…).由此不妨设b n =d 3 (n =1,2,3,…),则a n -a n +2=d 3(常数). 由此c n =a n +2a n +1+3a n +2 c n =4a n +2a n +1-3d 3, 从而c n +1=4a n +1+2a n +2-5d 3,两式相减得c n +1-c n =2(a n +1-a n ) -2d 3,因此a n +1-a n =12(c n +1-c n )+d 3=12d 2+d 3(常数) (n =1,2,3,…),∴ 数列{a n }为等差数列.1. 在判断四个命题间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性与等价性,判断四种命题真假的关键是熟悉四种命题的概念与互为逆否命题是等价的,即“原命题与逆否命题同真同假,逆命题与否命题同真同假”,而互逆命题、互否命题是不等价的,当一个命题直接判断不易进行时,通常可转化为判断其等价命题的真假;而判断一个命题为假命题只需举出反例即可.2. 充要条件的三种判断方法(1) 定义法:根据pÞq,qÞp进行判断;(2) 集合法:根据p、q成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.3. 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1) 把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解;(2) 要注意区间端点值的检验.4. 含有逻辑联结词的命题真假的判断规律(1) p∨q:p、q中有一个为真,则p∨q为真,即有真为真;(2) p∧q:p、q中有一个为假,则p∧q为假,即有假即假;(3) 綈p:与p的真假相反,即一真一假,真假相反.5. 要写一个命题的否定,需先分清其是全称命题还是存在性命题,对照否定结构去写,并注意与否命题区别;否定的规律是“改量词,否结论”.判定全称命题“ x∈M,p(x)”是真命题,需要对集合M中的每个元素x,证明p(x)成立;要判断存在性命题是真命题,只要在限定集合内至少能找到一个x=x0,使p(x0)成立.请使用课时训练(A)第3课时(见活页).[备课札记]。

2016届高考数学(理)大一轮复习精讲课件:第一章 集合与常用逻辑用语 第二节 命题及其关系、充分

2016届高考数学(理)大一轮复习精讲课件:第一章 集合与常用逻辑用语 第二节  命题及其关系、充分
第七页,编辑于星期五:二十一点 五十分。
[题组练透]
1.命题“若 x2+3x-4=0,则 x=4”的逆否命题及其真假性为( ) A.“若 x=4,则 x2+3x-4=0”为真命题 B.“若 x≠4,则 x2+3x-4≠0”为真命题 C.“若 x≠4,则 x2+3x-4≠0”为假命题 D.“若 x=4,则 x2+3x-4=0”为假命题
第二节
命题及其关系、充分条件与必要条件
基础盘查一 四种命题及其关系 (一)循纲忆知 1.理解命题的概念. 2.了解“若 p,则 q”形式的命题及其逆命题、否命题与逆否命
题,会分析四种命题的相互关系.
第一页,编辑于星期五:二十一点 五十分。
(二)小题查验 1.判断正误
(1)“x2+2x-3<0”是命题

A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
()
解析:由 q⇒綈 p 且綈 p q 可得 p⇒綈 q 且綈 q p,所以 p
是綈 q 的充分不必要条件.
第十五页,编辑于星期五:二十一点 五十分。
[类题通法]
充分条件、必要条件的判定方法有定义法、集合法和等价 转化法.三种不同的方法各适用于不同的类型,定义法适用于 定义、定理判断性问题,而集合法多适用于命题中涉及字母的 范围的推断问题,等价转化法适用于条件和结论带有否定性词 语的命题,常转化为其逆否命题来判断.
第二页,编辑于星期五:二十一点 五十分。
基础盘查二 充分条件与必要条件 (一)循纲忆知
理解必要条件、充分条件与充要条件的意义.
第三页,编辑于星期五:二十一点 五十分。
(二)小题查验 1.判断正误
(1)当 q 是 p 的必要条件时,p 是 q 的充分条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 命题及其关系、充分条件与必要条件最新考纲 1.理解命题的概念;2.了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;3.理解充分条件、必要条件与充要条件的含义.知 识 梳 理1.四种命题及其关系 (1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系. 2.充分条件、必要条件与充要条件的概念1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)“x 2+2x -8<0”是命题.(×) (2)一个命题非真即假.(√)(3)命题“三角形的内角和是180°”的否命题是“三角形的内角和不是180°”.(×) (4)“a =2”是“(a -1)(a -2)=0”的必要不充分条件.(×)(5)给定两个命题p ,q .若p 是q 的充分不必要条件,则¬p 是¬q 的必要不充分条件.(√) 2.命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tanα≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4解析 命题的条件是p :α=π4,结论是q :tan α=1.由命题的四种形式,可知命题“若p ,则q ”的逆否命题是“若¬q ,则¬p ”,显然¬q :tan α≠1,¬p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.答案 C3.(2013·福建卷)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析 a =3时,A ={1,3},显然A ⊆B . 但A ⊆B 时,a =2或3.所以A 正确. 答案 A4.(2014·浙江卷)设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 因为菱形的对角线互相垂直,所以“四边形ABCD 为菱形”⇒“AC ⊥BD ”,所以“四边形ABCD 为菱形”是“AC ⊥BD ”的充分条件;又因为对角线垂直的四边形不一定是菱形,所以“AC ⊥BD ” ⇒/ “四边形ABCD 为菱形”,所以“四边形ABCD 为菱形”不是“AC ⊥BD ”的必要条件.综上,“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件. 答案 A5.(人教A 选修1-1P10练习4改编)下列命题: ①x =2是x 2-4x +4=0的必要不充分条件;②圆心到直线的距离等于半径是这条直线为圆的切线的充分必要条件; ③sin α=sin β是α=β的充要条件;④ab ≠0是a ≠0的充分不必要条件. 其中为真命题的是__________(填序号). 答案 ②④考点一 四种命题及其相互关系 【例1】 (2014·陕西卷)原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假解析 从原命题的真假入手,由于a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列,即原命题和逆命题均为真命题,又原命题与其逆否命题同真同假,逆命题与否命题同真同假,则其逆命题、否命题和逆否命题均为真命题.答案 A规律方法 (1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键.(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(3)判断一个命题为假命题可举反例.【训练1】 已知:命题“若函数f (x )=e x-mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的是( )A .否命题是“若函数f (x )=e x-mx 在(0,+∞)上是减函数,则m >1”,是真命题 B .逆命题是“若m ≤1,则函数f (x )=e x-mx 在(0,+∞)上是增函数”,是假命题 C .逆否命题是“若m >1,则函数f (x )=e x -mx 在(0,+∞)上是减函数”,是真命题 D .逆否命题是“若m >1,则函数f (x )=e x -mx 在(0,+∞)上不是增函数”,是真命题解析 由f (x )=e x-mx 在(0,+∞)上是增函数,则f ′(x )=e x-m ≥0恒成立,∴m ≤1.∴命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”是真命题,所以其逆否命题“若m >1,则函数f (x )=e x-mx 在(0,+∞)上不是增函数”是真命题.答案 D考点二 充分、必要条件的判定与探求【例2 】 (1)(2014·新课标全国Ⅱ卷)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 (2)ax 2+2x +1=0至少有一个负实根的充要条件是( ) A .0<a ≤1 B .a <1C .a ≤1D .0<a ≤1或a <0解析 (1)设f (x )=x 3,f ′(0)=0,但是f (x )是单调增函数,在x =0处不存在极值,故“若p ,则q ”是一个假命题,由极值点的定义可得“若q ,则p ”是一个真命题.(2)法一 当a =0时,原方程为一元一次方程2x +1=0,有一个负实根.当a ≠0时,原方程为一元二次方程,有实根的充要条件是Δ=4-4a ≥0,即a ≤1. 设此时方程的两根分别为x 1,x 2,则x 1+x 2=-2a ,x 1x 2=1a,当只有一个负实根时,⎩⎪⎨⎪⎧a ≤1,1a<0⇒a <0;当有两个负实根时,⎩⎪⎨⎪⎧a ≤1,-2a<0,⇒0<a ≤1.1a >0综上所述,a ≤1.法二 (排除法)当a =0时,原方程有一个负实根,可以排除A ,D ; 当a =1时,原方程有两个相等的负实根,可以排除B. 答案 (1)C (2)C规律方法 判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.【训练2】 (1)(2014·北京卷)设a ,b 是实数,则“a >b ”是“a 2>b 2”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( ) A .x =-12B .x =-1C .x =5D .x =0解析 (1)令a =1,b =-2,显然a >b ,但a 2<b 2; ∴“a >b ”不是“a 2>b 2”的充分条件. 令a =-2,b =1,显然a 2>b 2,但a <b , ∴“a >b ”不是“a 2>b 2”的必要条件.∴“a >b ”是“a 2>b 2”的既不充分也不必要条件. (2)∵a =(x -1,2),b =(2,1), ∴a ·b =2(x -1)+2×1=2x . 又a ⊥b ⇔a ·b =0, ∴2x =0,∴x =0. 答案 (1)D (2)D考点三 根据充分、必要条件求参数的范围【例3】 已知命题p :x 2+2x -3>0;命题q :x >a ,且¬q 的一个充分不必要条件是¬p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]解析 由x 2+2x -3>0,得x <-3或x >1,由¬q 的一个充分不必要条件是¬p ,可知¬p 是¬q 的充分不必要条件,等价于q 是p 的充分不必要条件.故a ≥1.答案 A规律方法 解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解,在求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.【训练3】 若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________.解析 由已知易得{x |x 2-2x -3>0} {x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1,m +1<3或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2.答案 [0,2][思想方法]1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题及其逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.命题的充要关系的判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:利用A⇒B与¬B⇒¬A,B⇒A与¬A⇒¬B,A⇔B与¬B⇔¬A的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则“x∈A”是“x∈B”的充分条件或“x∈B”是“x∈A”的必要条件;若A=B,则“x∈A”是“x∈B”的充要条件.[易错防范]对于命题正误的判断是高考的热点之一,理应引起大家的关注,命题正误的判断可涉及各章节的内容,覆盖面宽,也是学生的易失分点.命题正误的判断的原则是正确的命题要有依据或者给以论证;不一定正确的命题要举出反例,绝对不要主观臆断,这也是最基本的数学逻辑思维方式.基础巩固题组(建议用时:30分钟)一、选择题1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”解析依题意,得原命题的逆命题:若一个数的平方是正数,则它是负数.答案 B2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析同时否定原命题的条件和结论,所得命题就是它的否命题.答案 A3.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是( )A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.答案 C4.(2015·郑州检测)已知直线l,m,其中只有m在平面α内,则“l∥α”是“l∥m”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析当l∥α时,直线l与平面α内的直线m平行、异面都有可能,所以l∥m不成立;当l∥m时,根据直线与平面平行的判定定理知直线l∥α,即“l∥α”是“l∥m”的必要不充分条件,故选B.答案 B5.(2014·云南统一检测)“lg x>lg y”是“x>y”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若lg x>lg y,则x>y>0,有x>y,所以充分性成立;反之,当x>0,y =0时,有x>y,但没有lg x>lg y,所以必要性不成立,所以“lg x>lg y”是“x >y”的充分不必要条件,故选A.答案 A6.(2014·成都二诊)下列说法正确的是( )A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.命题“∃x0∈R,x20>1”的否定是“∀x∈R,x2>1”C.命题“若x=y,则cos x=cos y”的逆否命题为假命题D.命题“若x=y,则cos x=cos y”的逆命题为假命题解析A项中否命题为“若x2≤1,则x≤1”,所以A错误;B项中否定为“∀x∈R,x2≤1”,所以B错误;因为逆否命题与原命题同真假,所以C错误;易知D正确,故选D.答案 D7.(2014·广东卷)在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件解析 结合正弦定理可知,a ≤b ⇔2R sin A ≤2R sin B ⇔sin A ≤sin B (R 为△ABC 外接圆的半径).故选A.答案 A8.(2014·东北三省四市联考)下列命题中真命题是( ) A .“a >b ”是“a 2>b 2”的充分条件 B .“a >b ”是“a 2>b 2”的必要条件 C .“a >b ”是“ac 2>bc 2”的必要条件 D .“a >b ”是“|a |>|b |”的充要条件解析 由a >b 不能得知ac 2>bc 2,当c 2=0时,ac 2=bc 2;反过来,由ac 2>bc 2可得a >b .因此,“a >b ”是“ac 2>bc 2”的必要不充分条件,故选C.答案 C 二、填空题9.命题“若x 2>y 2,则x >y ”的逆否命题是________. 答案 “若x ≤y ,则x 2≤y 2”10.“m <14”是“一元二次方程x 2+x +m =0有实数解”的________条件(填“充分不必要、必要不充分、充要”).解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14.答案 充分不必要11.函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是________. 解析 已知函数f (x )=x 2-2x +1的图象关于直线x =1对称,则m =-2;反之也成立.所以函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是m =-2.答案 m =-2 12.下列命题:①“全等三角形的面积相等”的逆命题; ②“若ab =0,则a =0”的否命题;③“正三角形的三个角均为60°”的逆否命题. 其中真命题的序号是________.解析 ①“全等三角形的面积相等”的逆命题为“面积相等的三角形全等”,显然该命题为假命题;②“若ab =0,则a =0”的否命题为“若ab ≠0,则a ≠0”,而由ab ≠0,可得a ,b 都不为零,故a ≠0,所以该命题是真命题;③因为原命题“正三角形的三个角均为60°”是一个真命题,故其逆否命题也是一个真命题.答案②③能力提升题组(建议用时:15分钟)13.(2014·天津十二区县重点中学联考)设x,y∈R,则“x2+y2≥9”是“x>3且y≥3”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析当x=-4时满足x2+y2≥9,但不满足x>3,所以充分性不成立;反之,当x>3且y≥3时,一定有x2+y2≥9,所以必要性成立,即“x2+y2≥9”是“x>3且y≥3”的必要不充分条件,故选B.答案 B14.(2014·临沂模拟)已知p:x≥k,q:(x+1)(2-x)<0,如果p是q的充分不必要条件,则k的取值范围是( )A.[2,+∞) B.(2,+∞) C.[1,+∞) D.(-∞,-1] 解析由q:(x+1)(2-x)<0,得x<-1或x>2,又p是q的充分不必要条件,所以k>2,即实数k的取值范围是(2,+∞),故选B.答案 B15.(2014·湖南高考诊断)下列选项中,p是q的必要不充分条件的是( )A.p:x=1,q:x2=xB.p:|a|>|b|,q:a2>b2C.p:x>a2+b2,q:x>2abD.p:a+c>b+d,q:a>b且c>d解析A中,x=1⇒x2=x,x2=x⇒x=0或x=1⇒/x=1,故p是q的充分不必要条件;B中,因为|a|>|b|,根据不等式的性质可得a2>b2,反之也成立,故p是q的充要条件;C 中,因为a2+b2≥2ab,由x>a2+b2,得x>2ab,反之不成立,故p是q的充分不必要条件;D中,取a=-1,b=1,c=0,d=-3,满足a+c>b+d,但是a<b,c>d,反之,由同向不等式可加性得a>b,c>d⇒a+c>b+d,故p是q的必要不充分条件.综上所述,故选D.答案 D16.设n∈N*,一元二次方程x2-4x+n=0有整数根的充要条件是n=________.解析已知方程有根,由判别式Δ=16-4n≥0,解得n≤4,又n∈N*,逐个分析,当n =1,2时,方程没有整数根;而当n =3时,方程有整数根1,3;当n =4时,方程有整数根2.答案 3或417.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案 (2,+∞)。

相关文档
最新文档