1.1.2双曲线的几何性质(学、教案)
双曲线高中数学教案
双曲线高中数学教案
教学目标:
1. 了解双曲线的定义和性质
2. 能够将双曲线的标准方程转化为一般方程
3. 能够根据给定的信息绘制双曲线的图像
4. 能够求解双曲线的焦点、直线渐近线等相关问题
教学重点:
1. 双曲线的定义
2. 双曲线的图像及性质
3. 双曲线的标准方程及一般方程的转化
4. 双曲线的焦点、渐近线等相关问题
教学过程:
一、导入:
通过展示一个双曲线的图像,引导学生了解什么是双曲线以及其特点。
二、讲解:
1. 双曲线的定义和性质
2. 双曲线的标准方程及一般方程的推导和转化
3. 双曲线的图像及相关参数的含义
三、练习:
1. 练习转化双曲线的标准方程为一般方程
2. 练习绘制双曲线的图像
3. 练习求解双曲线的焦点、渐近线等相关问题
四、总结:
总结本节课所学内容,强化学生对双曲线的理解。
五、作业:
布置相关练习作业以加深学生对双曲线的理解,并要求学生在下节课前完成。
教学反思:
通过本节课的学习,学生能够对双曲线有一个初步的了解,并能够运用所学知识解决相关问题。
在教学中要注意引导学生从图像入手,帮助他们更好地理解双曲线的性质和特点。
高中数学双曲线教案模板
高中数学双曲线教案模板教学目标:1. 了解双曲线的定义和基本性质;2. 掌握双曲线的标准方程和基本图形;3. 能够应用双曲线解决实际问题。
教学重点:1. 双曲线的定义和基本性质;2. 双曲线的标准方程和基本图形。
教学难点:1. 双曲线的性质证明;2. 双曲线的应用问题解决。
教学过程:一、导入新课通过展示双曲线的图像,引导学生观察并讨论双曲线的特点,引出双曲线的定义和基本性质。
二、讲解双曲线的定义和基本性质1. 定义:双曲线是平面上到两定点的距离之差等于常数的动点的轨迹;2. 基本性质:双曲线在原点对称,包含两支曲线,分别称为实轴和虚轴。
三、引导学生推导双曲线的标准方程1. 让学生思考双曲线的标准方程应该是什么形式;2. 结合双曲线的定义和基本性质,引导学生推导双曲线的标准方程。
四、讲解双曲线的基本图形1. 展示双曲线的标准方程,并解释各参数对双曲线的形状的影响;2. 让学生画出几种不同参数值的双曲线图形,加深他们对双曲线形状的认识。
五、练习1. 完成课堂练习题,巩固对双曲线的理解;2. 解答一些应用问题,训练学生运用双曲线解决实际问题的能力。
六、作业布置布置相关的作业,巩固学生对本节课知识点的理解。
七、课堂小结总结本节课的重点内容,并强调需要学生掌握的知识点。
教学反思:本节课主要围绕双曲线的定义、基本性质、标准方程和基本图形展开讲解,并引导学生进行练习和应用题目。
通过本节课的教学,学生应该能够掌握双曲线的相关概念和方法,为以后的学习打下基础。
在以后的教学中可以进一步引导学生进行深入的应用题目练习,巩固他们的知识掌握和解决问题的能力。
双曲线的几何性质教案
双曲线的几何性质教案【教案】一、教学目标:1.了解双曲线的定义及基本特点;2.学习双曲线的标准方程;3.掌握双曲线的几何性质。
二、教学重点:1.学习双曲线的标准方程;2.掌握双曲线的几何性质。
三、教学内容:1.双曲线的定义及基本特点:双曲线是平面上一类特殊的曲线,与椭圆和抛物线相似,它们都是二次曲线。
双曲线的特点是曲线上的每一点到两个固定点(称为焦点)的距离之差等于一个常数(称为离心率)的绝对值。
双曲线有两条分支,两个焦点分别位于两条分支的焦点处。
两条分支无限延伸,且永不相交。
2.双曲线的标准方程:标准方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 或$\frac{y^2}{b^2}-\frac{x^2}{a^2}=1$。
其中,a为双曲线横轴方向的半轴长,b为双曲线纵轴方向的半轴长。
3.双曲线的几何性质:(1) 对称性:双曲线关于x轴、y轴对称,关于原点对称;(2) 焦点性质:曲线上任意一点到两个焦点的距离之差等于离心率的绝对值;(3) 焦点到顶点的距离等于半轴长a;(4) 曲线和渐近线的关系:当$x\to+\infty$或$x\to-\infty$时,曲线趋于渐近线$y=\pm\frac{b}{a}x$;(5) 端点位置:双曲线与横轴和纵轴的交点分别称为端点,位于横轴上的端点坐标为$(\pm a, 0)$,位于纵轴上的端点坐标为$(0, \pm b)$;(6) 曲线的拐点:双曲线没有拐点。
四、教学过程:1.引入双曲线的概念,通过图像展示和对比椭圆、抛物线等曲线的差异,激发学生的兴趣。
2.介绍双曲线的定义及基本特点:说明双曲线与焦点、离心率的关系,引导学生思考对称性、焦点性质等几何特征。
3.讲解双曲线的标准方程:通过代入具体的数值,给予学生实际的例子,帮助他们理解标准方程的含义。
4.分析双曲线的几何性质:依次介绍对称性、焦点性质、焦点到顶点的距离、曲线和渐近线的关系、端点位置以及曲线的拐点等重要几何性质。
双曲线的简单几何性质教案
课题:双曲线的简单几何性质(1)一.教学目标:1.知识与能力了解双曲线的简单几何性质,如范围、对称性、顶点、渐近线、离心率.2.过程和方法通过观察、类比、探究来认识双曲线的几何性质.3.情感态度与价值观通过类比旧知识,探索新知识,培养学生学习数学的兴趣,探索新知识的能力, 激发学习热情,感受事物之间处处存在联系.二.教材分析:本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。
它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。
三.学情分析:学生已经学习了椭圆的标准方程和它的几何性质,并且类比、推导、归纳出了双曲线的标准方程,这节课将进一步研究、归纳出类似于椭圆的几何性质的双曲线的几何性质(范围、对称性、顶点、离心率)和双曲线独有的几何性质(实轴、虚轴、渐近线)。
通过对双曲线性质的探究学习,可使学生在已有的知识结构的基础上,拓展延伸,构建新的知识体系;同时对由方程讨论曲线性质的思想方法有更深刻的认识。
四.重点难点:重点:双曲线的简单几何性质难点:由双曲线的简单几何性质求双曲线的标准方程五.教学过程:1.导入新课:大家首先回顾一下双曲线的定义及其标准方程:(PPT )在椭圆部分,我们曾经从图形和标准方程两个角度来研究椭圆的几何性质。
那么,你认为应该研究双曲线22221(0,0)x y a b a b-=>>的哪些性质呢?(范围、对称性、顶点、离心率等)这就是我们今天要共同学习的内容:双曲线的简单几何性质 2.学案反馈:通过批改学案来了解学生对本节新课的理解和掌握情况,并对学案反馈出的问题做课堂讨论和解决。
同时通过速记、提问方式加强记忆。
3.探究活动:通过阅读教材5856P P -,完成下表合作探究一:已知双曲线方程求性质.144169122近线方程顶点坐标、离心率、渐、焦点坐标、的实半轴长、虚半轴长:求双曲线例=-y x自主学习——组内展开讨论——展示——小组评价 .43,450,40,4-0,50,5-34191622x y a c e b a y x ±======-渐近线方程:离心率))、(顶点坐标())、(焦点坐标(,虚半轴长可得实半轴长程解:把方程化为标准方类题通法:1.求双曲线性质时,应把双曲线方程化为标准方程,注意分清楚焦点位置,这样便于直接的写出a ,b 的数值,进而求出c 。
双曲线的简单几何性质精品教案
2.2.2 双曲线的简单几何性质学习目标 1.了解双曲线的简单几何性质(范围、对称性、顶点、实轴长和虚轴长等).2.理解离心率的定义、取值范围和渐近线方程.3.掌握标准方程中 a ,b ,c ,e 间的关系.4.能用双曲线的简单几何性质解决一些简单问题.知识点一 双曲线的简单几何性质思考 类比椭圆的几何性质,结合图象,你能得到双曲线x 2a 2-y 2b 2=1(a >0,b >0)的哪些几何性质?答案 范围、对称性、顶点、离心率、渐近线.x ≥a 或x ≤-a y ≥a 或y ≤-a 知识点二 双曲线的离心率思考1 如何求双曲线的渐近线方程?答案 将方程x 2a 2-y 2b 2=1(a >0,b >0)右边的“1”换成“0”,如图,即由x 2a 2-y 2b 2=0得x a ±yb =0,作直线x a ±y b =0,在双曲线x 2a 2-y 2b2=1的各支向外延伸时,与两直线无限接近,把这两条直线叫做双曲线的渐近线.思考2 椭圆中,椭圆的离心率可以刻画椭圆的扁平程度,在双曲线中,双曲线的“张口”大小是图象的一个重要特征,怎样描述双曲线的“张口”大小呢?答案 双曲线x 2a 2-y 2b 2=1的各支向外延伸无限接近渐近线,所以双曲线的“张口”大小取决于b a 的值,设e =c a ,则ba =c 2-a 2a=e 2-1. 当e 的值逐渐增大时,ba的值增大,双曲线的“张口”逐渐增大.双曲线的半焦距c 与实半轴长a 的比值e 叫做双曲线的离心率,其取值范围是(1,+∞).e 越大,双曲线的张口越大. 知识点三 双曲线的相关概念(1)双曲线的对称中心叫做双曲线的中心.(2)实轴和虚轴等长的双曲线叫做等轴双曲线,它的渐近线是y =±x .类型一 双曲线的简单几何性质例1 求与椭圆x 2144+y 2169=1有共同焦点,且过点(0,2)的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.解 椭圆x 2144+y 2169=1的焦点是(0,-5),(0,5),焦点在y 轴上,于是可设双曲线的方程是y 2a 2-x 2b 2=1(a >0,b >0).又双曲线过点(0,2),所以c =5,a =2, 所以b 2=c 2-a 2=25-4=21. 所以双曲线的标准方程为y 24-x 221=1.所以双曲线的实轴长为4,焦距为10,离心率e =c a =52,渐近线方程是y =±22121x .反思与感悟 根据双曲线方程研究其性质的基本思路(1)将双曲线的方程转化为标准方程.(2)确定双曲线的焦点位置,弄清方程中的a ,b 所对应的值,再利用c 2=a 2+b 2得到c 的值. (3)根据确定的a ,b ,c 的值求双曲线的实轴长、虚轴长、焦距、焦点坐标、离心率及渐近线方程等.跟踪训练1 求双曲线9y 2-16x 2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.解 把方程9y 2-16x 2=144化为标准方程y 242-x 232=1.由此可知,实半轴长a =4,虚半轴长b =3;c =a 2+b 2=42+32=5,焦点坐标是(0,-5),(0,5); 离心率e =c a =54;渐近线方程为y =±43x .类型二 由双曲线的几何性质求标准方程例2 求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程: (1)双曲线过点(3,92),离心率e =103; (2)过点P (2,-1),渐近线方程是y =±3x . 解 (1)e 2=109,得c 2a 2=109,设a 2=9k (k >0),则c 2=10k ,b 2=c 2-a 2=k .于是,设所求双曲线方程为x 29k -y 2k =1①或y 29k -x 2k =1.②把(3,92)代入①,得k =-161,与k >0矛盾,无解; 把(3,92)代入②,得k =9, 故所求双曲线方程为y 281-x 29=1.(2)由渐近线方程3x ±y =0,可设所求双曲线方程为x 219-y 2=λ(λ≠0),(*)将点P (2,-1)代入(*),得λ=35, ∴所求双曲线方程为x 2359-y 235=1.反思与感悟 由双曲线的几何性质求双曲线的标准方程,一般用待定系数法.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1 (mn >0),从而直接求得.若已知双曲线的渐近线方程为y =±bax ,还可以将方程设为x 2a 2-y 2b2=λ(λ≠0),避免讨论焦点的位置.跟踪训练2 已知圆M :x 2+(y -5)2=9,双曲线G 与椭圆C :x 250+y 225=1有相同的焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程. 解 椭圆C :x 250+y 225=1的两焦点为F 1(-5,0),F 2(5,0),故双曲线的中心在原点,焦点在x 轴上,且c =5.设双曲线G 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则G 的渐近线方程为y =±ba x ,即bx ±ay =0,且a 2+b 2=25.∵圆M 的圆心为(0,5),半径为r =3. ∴|5a |a 2+b 2=3⇒a =3,b =4. ∴双曲线G 的方程为x 29-y 216=1.类型三 直线与双曲线的位置关系例3 已知直线y =kx -1与双曲线x 2-y 2=4. (1)若直线与双曲线没有公共点,求k 的取值范围; (2)若直线与双曲线只有一个公共点,求k 的取值范围.解 由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=4,得(1-k 2)x 2+2kx -5=0.①(1)直线与双曲线没有公共点,则①式方程无解.∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+20(1-k 2)<0,解得k >52或k <-52, 则k 的取值范围为k >52或k <-52. (2)直线与双曲线只有一个公共点,则①式方程只有一解. 当1-k 2=0,即k =±1时,①式方程只有一解; 当1-k 2≠0时,应满足Δ=4k 2+20(1-k 2)=0, 解得k =±52,故k 的值为±1或±52.反思与感悟 (1)直线与双曲线的公共点就是以直线的方程与双曲线的方程联立所构成方程组的解为坐标的点,因此对直线与双曲线的位置关系的讨论,常常转化为对由它们的方程构成的方程组解的情况的讨论.(2)直线与椭圆的位置关系是由它们交点的个数决定的,而直线与双曲线的位置关系不能由其交点的个数决定.(3)弦长公式:直线y =kx +b 与双曲线相交所得的弦长与椭圆的相同:d =1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. 跟踪训练3 经过点M (2,2)作直线l 交双曲线x 2-y 24=1于A ,B 两点,且M 为AB 中点.(1)求直线l 的方程; (2)求线段AB 的长.解 (1)设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21-y 214=1①,x 22-y224=1②,①-②得(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)4=0.又x 1+x 2=4,y 1+y 2=4,∴y 1-y 2x 1-x 2=4=k . ∴直线l 的方程为y -2=4(x -2), 即4x -y -6=0.(2)由⎩⎪⎨⎪⎧4x -y -6=0,x 2-y 24=1,得3x 2-12x +10=0,∴x 1+x 2=4,x 1x 2=103.∴|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=21023.1.双曲线2x 2-y 2=8的实轴长是( ) A.2 B.2 2 C.4 D.4 2 答案 C解析 双曲线的标准方程为x 24-y 28=1,故实轴长为4.2.设双曲线x 2a +y 29=1的渐近线方程为3x ±2y =0,则a 的值为( )A.-4B.-3C.2D.1 答案 A解析 ∵方程表示双曲线,∴a <0,标准方程为y 29-x 2-a =1,∴渐近线方程为y =±3-ax , ∴3-a =32,解得a =-4. 3.已知双曲线x 2a 2-y 25=1(a >0)的右焦点为(3,0),则双曲线的离心率等于( )A.3414B.324C.32D.43答案 C解析 由题意知a 2+5=9, 解得a =2,e =c a =32.4.等轴双曲线的一个焦点是F 1(-6,0),则其标准方程为( ) A.x 29-y 29=1 B.y 29-x 29=1 C.y 218-x 218=1 D.x 218-y 218=1 答案 D解析 ∵等轴双曲线的焦点为(-6,0),∴c =6, ∴2a 2=36,a 2=18.∴双曲线的标准方程为x 218-y 218=1.5.若双曲线x 24-y 2m =1的渐近线方程为y =±32x ,则双曲线的焦点坐标是____________.答案 (±7,0)解析 由渐近线方程为y =±m 2x =±32x , 得m =3,c =7,且焦点在x 轴上.6.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为________________. 答案 y =±22x解析 由条件知2b =2,2c =23, ∴b =1,c =3,a 2=c 2-b 2=2,∴双曲线方程为x 22-y 2=1,因此其渐近线方程为y =±22x .1.渐近线是双曲线特有的性质,两方程联系密切,把双曲线的标准方程x 2a 2-y 2b 2=1(a >0,b >0)右边的常数1换为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ,再结合其他条件求得λ就可得双曲线方程.2.准确画出几何图形是解决解析几何问题的第一突破口.对圆锥曲线来说,渐近线是双曲线特有的性质.利用双曲线的渐近线来画双曲线特别方便,而且较为精确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.3.直线与双曲线的位置关系,可以通过由直线方程与双曲线方程得到的方程来判断,首先看二次项系数是否为零,如果不为零,再利用Δ来判断直线与双曲线的关系.4.弦长问题可以利用弦长公式,中点弦问题可使用点差法.一、选择题1.过双曲线x 2―y 2=4的右焦点且平行于虚轴的弦长是( ) A.1 B.2 C.3 D.4 答案 D解析 设弦与双曲线交点为A ,B (A 点在B 点上方),由AB ⊥x 轴且过右焦点,可得A ,B 两点横坐标为22,代入双曲线方程得A (22,2),B (22,-2),故|AB |=4. 2.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A.y =±14xB.y =±13xC.y =±12xD.y =±x答案 C解析 因为e =c a =52,所以c 2a 2=54,又因为c 2=a 2+b 2,所以a 2+b 2a 2=54,得b 2a 2=14,所以渐近线方程为y =±12x .3.若直线x =a 与双曲线x 24-y 2=1有两个交点,则a 的值可以是( )A.4B.2C.1D.-2 答案 A解析 ∵双曲线x 24-y 2=1中,x ≥2或x ≤-2,∴若x =a 与双曲线有两个交点,则a >2或a <-2,故只有A 选项符合题意.4.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为30°的直线,交双曲线右支于M 点,若MF 2垂直于x 轴,则双曲线的离心率为( ) A. 6 B. 3 C. 2 D.33答案 B解析 如图,在Rt △MF 1F 2中,∠MF 1F 2=30°. 又|F 1F 2|=2c , ∴|MF 1|=2c cos 30°=433c , |MF 2|=2c ·tan 30°=233c . ∴2a =|MF 1|-|MF 2|=233c .∴e =ca= 3. 5.如图,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,过点F 1作倾斜角为30°的直线l ,l 与双曲线的右支交于点P ,若线段PF 1的中点M 落在y 轴上,则双曲线的渐近线方程为( )A.y =±xB.y =±3xC.y =±2xD.y =±2x答案 C解析 设F 1(-c,0),M (0,y 0),因为M 为PF 1中点,且PF 1倾斜角为30°,则P ⎝⎛⎭⎫c ,233c ,将其代入双曲线方程得c 2a 2-43c 2b2=1,又有c 2=a 2+b 2,整理得3⎝⎛⎭⎫b a 4-4⎝⎛⎭⎫b a 2-4=0,解得⎝⎛⎭⎫b a 2=2或⎝⎛⎭⎫b a 2=-23(舍去). 故所求渐近线方程为y =±2x .6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 225=1 答案 A解析 令y =0,可得x =-5,即焦点坐标为(-5,0), ∴c =5,∵双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,∴ba =2, ∵c 2=a 2+b 2, ∴a 2=5,b 2=20,∴双曲线的方程为x 25-y 220=1.二、填空题7.已知双曲线C :x 24-y 2m =1的开口比等轴双曲线的开口更开阔,则实数m 的取值范围是____________. 答案 (4,+∞)解析 ∵等轴双曲线的离心率为2,且双曲线C 的开口比等轴双曲线更开阔, ∴双曲线C :x 24-y 2m =1的离心率e >2,即4+m 4>2.∴m >4.8.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是____________.答案 (-12,0)解析 双曲线方程可变为x 24-y 2-k =1,则a 2=4,b 2=-k ,c 2=4-k ,e =ca =4-k 2,又∵e ∈(1,2),则1<4-k2<2,解得-12<k <0. 9.过点(0,1)作直线l 与双曲线4x 2―ay 2=1相交于P ,Q 两点,且∠POQ =π2(O 为坐标原点),则a 的取值范围是______________. 答案 0<a ≤3解析 由⎩⎪⎨⎪⎧y =kx +1,4x 2-ay 2=1,得:(4-ak 2)x 2-2akx -a -1=0,得⎩⎪⎨⎪⎧Δ=(-2ak )2+4(a +1)(4-ak 2)>0, ①x 1x 2=-a -14-ak 2,y 1y 2=4-k 24-ak 2,由∠POQ =π2,得OP ⊥OQ ⇒x 1x 2+y 1y 2=0,则-a -14-ak 2+4-k 24-ak 2=0,② 由①②得0<a ≤3. 三、解答题10.根据下列条件,求双曲线的标准方程.(1)与双曲线x 29-y 216=1有共同的渐近线,且过点(-3,23);(2)顶点间距离为6,渐近线方程为y =±32x .解 (1)设所求双曲线方程为x 29-y 216=λ(λ≠0),将点(-3,23)代入得λ=14,所以双曲线方程为x 29-y 216=14,即4x 29-y 24=1.(2)设渐近线方程为y =±32x 的双曲线方程为x 24-y 29=λ. 当λ>0时,2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-y 2814=1或y 29-x 24=111.已知双曲线x 2-y 22=1,过P (1,1)能否作一条直线l ,与双曲线交于A ,B 两点,且点P 是线段AB 的中点?若能,求出l 的方程;若不能,请说明理由. 解 设l 与双曲线交于A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21-y 212=1,x 22-y222=1,两式相减得(x 1+x 2)(x 1-x 2)-(y 1+y 2)(y 1-y 2)2=0,即(x 1+x 2)-y 1+y 22·y 1-y 2x 1-x 2=0, 又直线过P (1,1)且为线段AB 中点,所以x 1+x 2=2,y 1+y 2=2,所以k AB =2,所以l 方程为y =2x -1,由⎩⎪⎨⎪⎧y =2x -1,2x 2-y 2=2,消去y ,得2x 2-4x +3=0, 因为Δ=16-4×2×3<0,故直线l 与双曲线没有交点,即直线l 不存在.12.已知直线l :x +y =1与双曲线C :x 2a 2-y 2=1(a >0). (1)若a =12,求l 与C 相交所得的弦长. (2)若l 与C 有两个不同的交点,求双曲线C 的离心率e 的取值范围.解 (1)当a =12时,双曲线C 的方程为4x 2-y 2=1, 联立⎩⎪⎨⎪⎧x +y =1,4x 2-y 2=1,消去y ,得3x 2+2x -2=0. 设两个交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-23,x 1x 2=-23, 于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+(x 1-x 2)2 =2·(x 1+x 2)2-4x 1x 2=2×289=2143. (2)将y =-x +1代入双曲线x 2a2-y 2=1中得(1-a 2)x 2+2a 2x -2a 2=0, 所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,解得0<a <2且a ≠1. 又双曲线的离心率e =1+a 2a =1a 2+1, 所以e >62且e ≠2, 即离心率e 的取值范围是⎝⎛⎭⎫62,2∪(2,+∞). 13.若原点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,求OP →·FP →的取值范围.解 由双曲线方程x 2a 2-y 2=1(a >0)知b =1, 又F (-2,0),∴c =2.∴a 2+1=c 2=4,∴a 2=3,∴双曲线方程为x 23-y 2=1. 设双曲线右支上点P (x ,y ),且x ≥ 3. OP →·FP →=(x ,y )·(x +2,y )=x 2+2x +y 2=43x 2+2x -1=43⎝⎛⎭⎫x +342-74. ∵x ≥3,∴当x =3时,上式有最小值3+2 3. 故OP →·FP →的取值范围为[3+23,+∞).。
双曲线的几何性质教案
双曲线的几何性质教案教案标题:双曲线的几何性质教案目标:1. 了解双曲线的定义和基本性质。
2. 掌握双曲线的几何性质,包括焦点、准线、渐近线等。
3. 能够应用所学知识解决与双曲线相关的几何问题。
教案步骤:引入活动:1. 引导学生回顾并复习椭圆和抛物线的几何性质,引出双曲线的概念。
2. 引导学生思考双曲线与椭圆、抛物线的异同之处。
知识讲解:3. 介绍双曲线的定义,以及与椭圆和抛物线的区别。
4. 解释双曲线的标准方程,并讲解如何根据方程确定双曲线的形状和位置。
性质探究:5. 讲解双曲线的焦点和准线的定义,以及它们与双曲线方程中的参数的关系。
6. 引导学生通过计算实例,理解焦点和准线对双曲线形状的影响。
应用实践:7. 引导学生通过实例,探究双曲线的渐近线的性质和方程。
8. 给学生一些实际问题,要求他们应用所学知识解决问题,如:给定双曲线的焦点和准线,求双曲线的方程。
巩固练习:9. 提供一些练习题,让学生巩固所学知识。
总结回顾:10. 总结双曲线的几何性质,强调重点和难点。
11. 鼓励学生提问和解答疑惑。
教学辅助:- 演示板或投影仪,用于展示双曲线的图形和方程。
- 教科书或教学PPT,用于讲解和示范。
- 计算器,用于计算实例。
教学评估:- 在课堂上观察学生的参与度和理解情况。
- 布置作业,检查学生对双曲线几何性质的掌握程度。
- 进行小组或个人演示,让学生展示他们对双曲线的理解和应用能力。
教案扩展:- 引导学生进一步探究双曲线的其他性质,如离心率、直线的切线等。
- 引导学生应用双曲线的性质解决更复杂的几何问题,如求解交点、证明性质等。
注意事项:- 确保讲解清晰,语言简明扼要,避免过于抽象或复杂的表达。
- 鼓励学生思考和提问,激发他们的兴趣和参与度。
- 根据学生的实际情况和学习进度,适当调整教学内容和步骤。
双曲线的简单几何性质(教案)
教案普通高中课程标准选修2-12.3.2双曲线的简单几何性质(第一课时)教材的地位与作用本节内容是在学习了曲线与方程、椭圆及其标准方程和简单几何性质、双曲线及其标准方程的基础上,进一步通过双曲线的标准方程推导研究双曲线的几何性质。
(可以类比椭圆的几何性质得到双曲线的几何性质。
)通过本节课的学习,使学生深刻理解双曲线的几何性质,体验数学中的类比、联想、数形结合、转化等思想方法。
二、教学目标 (一)知识与技能1、了解双曲线的范围、对称性、顶点、离心率。
2、理解双曲线的渐近线。
(二)过程与方法通过联想椭圆几何性质的推导方法,用类比方法以双曲线标准方程为工具推导双曲线的几何性质,从而培养学生的观察能力、联想类比能力。
(三)情感态度与价值观让学生充分体验探索、发现数学知识的过程,深刻认识“数”与“形”的关系,培养学生勇于攀登科学高峰的精神。
三、 教学重点难点双曲线的渐近线既是重点也是难点。
四、 教学过程 (一)课题引入1、前面我们学习了椭圆及其标准方程,并由标准方程推导出椭圆的几何性质,椭圆的几何性质有哪些?(教师用课件引导学生复习椭圆的几何性质,双曲线及其标准方程。
) 今天我们以标准方程为工具,研究双曲线的几何性质。
【板书】:双曲线)0,0(12222>>=-b a by a x 的性质2、双曲线有哪些性质呢?(范围、对称性、顶点、离心率、渐近线。
)3、双曲线的这些性质具体是什么?如何推导?请同学们对比椭圆的几何性质的推导方法,推导出双曲线的几何性质。
(讨论) (二)双曲线的性质 1、范围:把双曲线方程12222=-by a x 变形为22221b y a x +=。
因为022≥b y ,因此122≥a x ,即22a x ≥,所以a x a x ≥-≤或。
又因为022≥by ,故R y ∈。
【板书】:1、范围:a x a x ≥-≤或,R y ∈。
2、对称性:下面我们来讨论双曲线的的对称性,哪位同学能根据双曲线12222=-by a x 的标准方程,判断它的对称性?在标准方程中,把x 换成x -,或把y 换成y -,或把x ,y 同时换成x -,y -时,方程都不变,所以图形关于y 轴、x 轴和原点都是对称的。
《双曲线的几何性质》教案
《双曲线的几何性质》教案一、教学目标1. 理解双曲线的定义及其标准方程。
2. 掌握双曲线的几何性质,包括焦点、准线、渐近线等。
3. 能够运用双曲线的几何性质解决实际问题。
二、教学内容1. 双曲线的定义及标准方程引导学生回顾椭圆的定义及标准方程,引出双曲线的定义及标准方程。
强调双曲线的关键要素:中心、焦点、实轴、虚轴、顶点等。
2. 双曲线的焦点解释双曲线的焦点概念,引导学生理解焦点与实轴的关系。
引导学生通过实例验证双曲线的焦点性质。
3. 双曲线的准线介绍准线的概念,引导学生理解准线与虚轴的关系。
引导学生通过实例验证双曲线的准线性质。
4. 双曲线的渐近线解释双曲线的渐近线概念,引导学生理解渐近线与双曲线的关系。
引导学生通过实例验证双曲线的渐近线性质。
5. 双曲线的对称性引导学生理解双曲线的对称性,包括轴对称和中心对称。
引导学生通过实例验证双曲线的对称性。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过探索、发现双曲线的几何性质。
2. 利用图形软件或板书,直观展示双曲线的几何性质,帮助学生理解。
3. 提供丰富的实例,引导学生通过实践验证双曲线的几何性质。
四、教学评估1. 课堂练习:布置相关的练习题,检测学生对双曲线几何性质的理解。
2. 小组讨论:组织学生进行小组讨论,促进学生之间的交流与合作。
3. 课后作业:布置相关的作业题,巩固学生对双曲线几何性质的掌握。
五、教学资源1. 教学PPT:制作精美的教学PPT,展示双曲线的几何性质。
2. 图形软件:利用图形软件或板书,展示双曲线的几何性质。
3. 练习题及答案:提供相关的练习题及答案,方便学生自测。
教学反思:本节课通过问题驱动的教学方法,引导学生探索双曲线的几何性质。
通过实例验证,使学生更好地理解双曲线的焦点、准线、渐近线等性质。
利用图形软件或板书进行直观展示,帮助学生形成直观的双曲线几何性质的认识。
在教学过程中,要注意关注学生的学习情况,及时进行反馈和指导。
《双曲线的简单几何性质》教学设计
《双曲线的简单几何性质》教学设计【教材分析】1.教材中的地位及作用本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。
它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。
2.教学目标的确定及依据平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。
教学参考书中明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。
根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。
(1)知识目标:①使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、顶点、离心率、渐近线等几何性质;②掌握双曲线标准方程中c b a ,,的几何意义,理解双曲线的渐近线的概念及证明;③能运用双曲线的几何性质解决双曲线的一些基本问题。
(2)能力目标:①在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察能力,想象能力,数形结合能力,分析、归纳能力和逻辑推理能力,以及类比的学习方法;②使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的概念的理解。
(3)数学核心素养目标:培养学生对待知识的科学态度和探索精神,而且能够运用运动的,变化的观点分析理解事物。
3.重点、难点的确定及依据对圆锥曲线来说,渐近线是双曲线特有的性质,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。
因此,在教学过程中我利用一首情歌《悲伤的双曲线》引入今天的课题,这样一来渐近线的出现学生也易接受。
因此结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的重点。
4.教学方法这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。
数学教案-双曲线的几何性质
数学教案-双曲线的几何性质1. 引言在高中数学课程中,双曲线是重要的内容之一。
本教案将帮助学生了解双曲线的几何性质,包括双曲线的图像特征、焦点与准线的关系以及双曲线的切线方程等内容。
通过本教案的学习,学生将更好地理解和应用双曲线的几何性质。
2. 双曲线的定义双曲线是一类二次曲线,其定义通过焦点与准线之间的距离差等于常数来描述。
双曲线可分为两支,其图像形状类似于打开的弓形,两支曲线相互对称。
3. 双曲线的图像特征双曲线的图像特征包括离心率、焦点位置以及渐近线。
3.1 离心率离心率是描述双曲线形状的一个重要参数。
对于双曲线,离心率大于1,它的两个焦点在x轴上,曲线从(e,0)和(-e,0)分别延伸;离心率小于1,焦点在y轴上,曲线从(0,e)和(0,-e)分别延伸。
3.2 焦点位置双曲线的焦点是离心率与准线之间距离差为常数的固定点。
根据离心率的大小,焦点有不同的位置。
3.3 渐近线双曲线有两条渐近线,分别与曲线的两支无限接近,但永远不会相交。
渐近线的方程可以通过求极限来得到。
对于双曲线的两支,右支的渐近线为y=x/e,左支的渐近线为y=-x/e。
4. 焦点与准线的关系焦点与准线是双曲线的两个重要元素,它们之间有一定的关系。
4.1 焦点到准线的距离关系对于双曲线上任意一点P(x, y),其到焦点F1的距离减去到准线L的距离的差为常数。
即PF1-PL=2a,其中a为常数。
4.2 焦点与准线的联立方程焦点与准线的位置可以通过联立方程来求解。
设焦点的坐标为(F1, 0)和(F2, 0),准线的方程为y=±a/e,其中e为离心率,a为焦点到准线的距离。
5. 双曲线的切线方程双曲线的切线方程可以通过求导得到。
设双曲线的方程为y2/a2 - x2/b2 = 1,对其求导可以得到斜率的表达式。
然后将斜率代入点斜式方程,即可得到切线方程。
6. 总结通过本教案的学习,我们了解了双曲线的几何性质,包括双曲线的图像特征、焦点与准线的关系以及双曲线的切线方程。
双曲线的简单几何性质优秀教案
2.3.2 双曲线的几何性质(第一课时教案)一、 教学目标1. 知识与技能(1)理解并掌握双曲线的简单几何性质;(2)利用双曲线的几何性质解决双曲线的问题。
2. 过程与方法(1)通过类比椭圆的几何性质,得到双曲线的几何性质;(2)通过例题和练习掌握根据条件求双曲线几何性质的相关问题。
3. 情感、态度与价值观(1)培养学生的知识类比的数学思想和逻辑思维能力;(2)培养学生的方法归纳能力和应用意识。
二、 教学重难点1、教学重点:双曲线的几何性质2、教学难点:应用双曲线的几何性质解决双曲线的相关问题三、 教学过程结合双曲线图像以及几何画板动画,学习双曲线的相关几何性质。
1. 取值范围(1) 焦点在x 轴上:x a ≥或x a ≤-,y R ∈(2) 焦点在y 轴上:y a ≥或y a ≤-,x R ∈2. 对称性——既是轴对称图形,又是中心对称图形3. 顶点——双曲线与坐标轴的交点,即12,A A (以图为例)(1) 实轴——线段12A A 。
122,A A a a =为半实轴长;(2) 虚轴——记12(0,),(0,)B b B b -,则线段12B B 为虚轴。
122,B B b b =为半虚轴长。
(3) 等轴双曲线——实轴与虚轴长度相等的双曲线。
一般可设为:22,(0)x y m m -=≠4. 离心率:c e a= (1) 范围:1e >;(2) 变化规律:e 越大,双曲线开口越大;e 越小,双曲线开口越小.5. 渐近线(1) 若22221(0,0)x y a b a b -=>>,则渐近线为:b y x a=±, (2) 若)0,0(12222>>=-b a b x a y ,则渐近线为:a y x b=±, (3) 一般求法:令双曲线方程等于0,即22220x y a b -=(或22220y x a b-=) (4) 渐近线相同的双曲线可设为:2222(0)x y a bλλ-=≠题型一:求双曲线的标准方程例 求满足下列条件的双曲线标准方程(1) 顶点在x 轴上,两定点间的距离为8,54e =; (2) 焦点在y 轴上,焦距为16,43e =; (3) 以椭圆22185x y +=的焦点为顶点,顶点为焦点的双曲线; (4) 过点(3,1)A -的等轴双曲线.题型二:有关渐近线的计算例1 已知双曲线的渐近线方程为34y x =±,求双曲线的离心率为.例2 若双曲线的渐近线方程为3y x =±,它的一个焦点为),求双曲线的方程.例3 求与双曲线221916x y -=有共同的渐近线,且过点(3,-的双曲线方程.作业:P61 A 组 《导报》第8课时。
《双曲线的几何性质》教案
《双曲线的几何性质》教案一、教学目标1. 知识与技能:使学生了解双曲线的定义,掌握双曲线的标准方程及几何性质,能够运用双曲线的性质解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生发现双曲线的几何性质,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的抽象思维能力,感受数学在实际生活中的应用。
二、教学重点1. 双曲线的定义及标准方程。
2. 双曲线的几何性质:焦点、实轴、虚轴、顶点、渐近线等。
三、教学难点1. 双曲线几何性质的理解和应用。
2. 双曲线方程的求解。
四、教学准备1. 教师准备:双曲线的教学课件、教案、例题及练习题。
2. 学生准备:预习双曲线相关知识,准备课堂讨论。
五、教学过程1. 导入新课:通过复习椭圆的知识,引出双曲线的学习,激发学生的兴趣。
2. 讲解双曲线的定义及标准方程:引导学生了解双曲线的定义,讲解双曲线的标准方程及求解方法。
3. 分析双曲线的几何性质:引导学生观察双曲线的图形,分析双曲线的焦点、实轴、虚轴、顶点、渐近线等几何性质。
4. 例题讲解:挑选具有代表性的例题,讲解解题思路和方法,引导学生运用双曲线的几何性质解决问题。
5. 课堂练习:为学生提供一些有关双曲线的练习题,巩固所学知识,提高学生的解题能力。
6. 总结:对本节课的主要内容进行总结,强调双曲线的几何性质及其在实际问题中的应用。
7. 布置作业:布置一些有关双曲线的练习题,让学生课后巩固所学知识。
8. 课后反思:教师对本节课的教学进行反思,针对学生的掌握情况,调整教学策略。
六、教学评价1. 学生对双曲线的定义、标准方程及几何性质的掌握程度。
2. 学生运用双曲线性质解决问题的能力。
3. 学生对数学学习的兴趣和积极性。
七、教学建议1. 注重双曲线几何性质的讲解,让学生充分理解并掌握。
2. 多举例子,让学生在实际问题中感受双曲线的应用。
3. 鼓励学生提问、讨论,提高课堂互动性。
《双曲线的几何性质》教案
《双曲线的几何性质》教案一、教学目标:1. 让学生理解双曲线的定义及其标准方程。
2. 掌握双曲线的基本几何性质,包括渐近线方程、离心率、焦距等。
3. 能够应用双曲线的几何性质解决实际问题。
二、教学内容:1. 双曲线的定义与标准方程2. 双曲线的渐近线方程3. 双曲线的离心率4. 双曲线的焦距5. 双曲线与其他几何图形的关系三、教学重点与难点:1. 重点:双曲线的定义、标准方程及其几何性质。
2. 难点:双曲线渐近线方程的推导,离心率、焦距的计算。
四、教学方法:1. 采用问题驱动的教学方法,引导学生探索双曲线的几何性质。
2. 利用数形结合的方法,让学生直观地理解双曲线的特点。
3. 注重个体差异,鼓励学生提问和发表见解。
五、教学过程:1. 导入:回顾椭圆的几何性质,引导学生思考双曲线的定义及其与椭圆的区别。
2. 新课:讲解双曲线的定义与标准方程,引导学生理解双曲线的图形特点。
3. 探究:让学生自主探究双曲线的渐近线方程,教师给予指导。
4. 讲解:讲解双曲线的离心率和焦距的计算方法,结合实际例子进行演示。
5. 应用:布置练习题,让学生运用双曲线的几何性质解决实际问题。
6. 总结:对本节课的内容进行归纳总结,强调重点和难点。
7. 作业布置:布置适量作业,巩固所学知识。
六、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问和回答问题的情况。
2. 作业完成情况:检查学生作业的完成质量,巩固所学知识。
3. 练习题解答:评估学生在练习题中的表现,了解其对双曲线几何性质的掌握程度。
4. 课堂讨论:鼓励学生积极参与课堂讨论,提高其分析和解决问题的能力。
七、教学资源:1. 教案、PPT课件2. 数学教材3. 练习题及答案4. 几何画图软件(可选)八、教学进度安排:1. 第一课时:双曲线的定义与标准方程2. 第二课时:双曲线的渐近线方程3. 第三课时:双曲线的离心率4. 第四课时:双曲线的焦距5. 第五课时:双曲线与其他几何图形的关系九、教学反思:在教学过程中,关注学生的学习反馈,及时调整教学方法和节奏。
双曲线的简单几何性质 精品教案
双曲线的简单几何性质第三课时(一)教学目标1.掌握直线与双曲线位置关系的判定,能处理直线与双曲线截得的弦长,与弦的中点有关的问题.2.能综合应用所学知识解决较综合的问题,提高分析问题与解决问题的能力. (二)教学过程 【设置情境】练习:求下列直线和双曲线的交点坐标(课本P108.5)①02=-y x ,152022=-y x ②01634=--y x ,1162522=-y x ③01=+-y x ,322=-y x 答案:①(6,2),(14332-,)②(425,3)③()12--, 说出上边各例直线与双曲线的位置关系.不少学生会认为直线01=+-y x 与双曲线322=-y x 相切,让学生动手画图,很显然此时直线与双曲线相交,且只有一个交点.为什么会出现这种情况呢? 【探索研究】直线与双曲线的位置关系通过对第③小题的研究发现直线01=+-y x 与双曲线的渐近线平行,因而此时相交且只有一个公共点.从而得出结论直线与双曲线相切—只有一个公共点(只有一个公共点是直线与双曲线相切的必要条件,但不是充分条件).直线与双曲线相离—没有公共点. 【例题分析】例 1 如果直线1-=kx y 与双曲线422=-y x 没有公共点,求k 的取值范围.(课本P132第13题)解:由⎩⎨⎧=--=4122y x kx y 得()()*=-+-052122kx x k 即此方程无解.由()⎪⎩⎪⎨⎧<-+=∆≠-0120401222k k k 得25>k 或25-<k则k 的取值范围为25>k 或25-<k . 引申:(1)如果直线1-=kx y 与双曲线422=-y x 有两个公共点,求k 的取值范围. 解析:直线与双曲线有两个公共点()*⇔式方程有两个不等的根()25250120401222<<-⇔⎪⎩⎪⎨⎧>-+≠-⇔k k k k 且1±≠k (2)如果直线1-=kx y 与双曲线422=-y x 只有一个公共点,求k 的取值范围. 解析:此时等价于(﹡)式方程只有一解当012=-k 即1±=k 时,(﹡)式方程只有一解当012≠-k 时,应满足()0120422=-+=∆kk解得25±=k 故k 的值为1±或25±(3)如果直线1-=kx y 与双曲线422=-y x 的右支有两个公共点,求k 的取值范围. 解析:此时等价于(﹡)式方程有两个不等的正根()⎪⎪⎪⎩⎪⎪⎪⎨⎧>-->-->-+⇔015012012042222k k k k k 即251110112525<<⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧->><<-><<-k k k k k k 或或 (4)如果直线1-=kx y 与双曲线422=-y x 的左支有两个公共点,求k 的取值范围.(125-<<-k ) (5)如果直线1-=kx y 与双曲线422=-y x 两支各有一个交点,求k 的取值范围.解析:此时等价于(﹡)式方程有两个相异实根即0152<--k 即11<<-k . 例2 直线1+=kx y 与双曲线1322=-y x 相交于A 、B 两点.当k 为何值时,以AB 为直径的圆经过坐标原点.可由一位学生演板,教师讲评指出有关二次方程知识的应用.解:由方程组:⎩⎨⎧=-+=13122y x kx y 得()022322=---kx x k因为直线与双曲线交于A 、B 两点 ∴()038422>-+=∆k k解得66<<-k .设()11y x A ,,()22y x B ,,则:22132k k x x -=+,32221-=k x x , 而以AB 为直径的圆过原点,则OB OA ⊥, ∴02121=+y y x x .()()()111212122121+++=++=x x k x x k kx kx y y .于是()()01121212=++++x x k x x k ,即()0132321222=+-+-⋅+k kkkk. 解得1±=k 满足条件.故当1±=k 时,以AB 为直径的圆过原点.例3 已知双曲线方程1222=-y x ,试问过点()11,A 能否作直线l ,使与双曲线交于1P 、2P 两点,且点A 是线段1P 、2P 的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.由学生讨论完成,教师给予提示. 解:假设存在直线l 满足条件.显然斜率不存在时,直线1=x 不满足条件.设()11+-=x k y l :,代入双曲线方程整理得:()()032122222=-+--++k k x k k x k若022=-k 即2±=k ,则l 与渐近线平行,没有交点.∴022=-k 设()111y x P ,、()222y x P ,则:()221212k k k x x --=+由于()11,A 是1P 2P 的中点.∴()1212221=--=+k k k x x 解得2=k . 这时方程为03422=+-x x ,02416<-=∆,即直线l 与双曲线无交点. 故这样的直线l 不存在.例 4 已知1l 、2l 是过点()02,-P 的两条互相垂直的直线,且1l 、2l 与双曲线122=-x y 各有两个交点,分别为1A 、1B 和2A 、2B .(1)求1l 的斜率1k 的取值范围;(2)若22115B A B A =,求1l 、2l 的方程. 由教师讲解,弦长的求法要分步演算.解:(1)依题意,两直线的斜率都存在,由于()211+=x k y l :与双曲线有两个交点,则下述方程组有两组不同解:()()012221≠⎪⎩⎪⎨⎧=-+=k x y x k y 消去y 得()0122212121221=-++-k x k x k于是 ()⎪⎩⎪⎨⎧>-=∆≠-013401212k k ①同理由()⎪⎩⎪⎨⎧=-+-=121221x y x k y 得()0222121221=-++-k x x k ()⎪⎩⎪⎨⎧>-=∆≠-0134012121k k 解①②得1k 的取值范围是()()3113333113,,,,⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--- (2)设()11y x A ,,()22y x B ,,则212121122k k x x -=+ 12212121-=k k x x ∴()()()()[]212212122121211411x x x x k x x k B A -++=-+=()()()221212111314k k k --+=同理()()()22121412121221361k k k k k B A --++=由22115B A B A =得()()()()()()2212141212122121211361511314k k k k k k k k --++⋅=--+解得21±=k 当 21=k 时,()221+=x y l :,()2222+-=x y l :, 当21-=k 时, ()221+-=x y l :, ()2222+=x y l :. (三)随堂练习1.设双曲线1322=-y x C :的左准线与x 轴的交点是M ,则过点M 与双曲线C 有且只有一个交点的直线共有( )A .2条B .3条C .4条D .无数条2.过双曲线1222=-y x 的右焦点F 作直线l 交双曲线于A 、B 两点,4=AB ,则这样的直线l 有( )A .1条B .2条C .3条D .4条3.若过双曲线1322=-y x 的右焦点2F ,作直线l 与双曲线的两支都相交,则直线l 的倾斜角α的取值范围是________________.答案:1.C 2.C 3.()()180120600,,∈α2.注意二次曲线、二次方程、二次函数三者之间的内在联系,直线与双曲线的位置关系通常是转化为二次方程,运用判别式、根与系数关系以及两次方程实根分布原理来解决.(五)布置作业1.设双曲线()0012222>>=-b a by a x ,的一条准线与两条渐近线交于A 、B 两点,相应焦点为F ,若ABF ∆为正三角形,则双曲线的离心率为( )A .3B .3C .2D .22.直线l 过双曲线12222=-by a x 的右焦点,斜率2=k ,若l 与双曲线的两个交点分别在双曲线左、右两支上,则双曲线的离心率e 的取值范围是( )A .2>e B .31<<e C .51<<e D .5>e3.若过点()18,P 的直线与双曲线4422=-y x 相交于A 、B 两点,且P 是线段AB 的中点,则直线A 、B 的方程是________________.4.直线1+=ax y 与双曲线1322=-y x 相交于A 、B 两点,当α为何值时,A 、B 两点在双曲线的同一支上?5.过双曲线()0012222>>=-b a by a x ,上的点P 向x 轴作垂线恰好通过双曲线的左焦点1F ,双曲线的虚轴端点B 与右焦点2F 的连线平行于PO ,如图.(1)求双曲线的离心离;(2)若直线2BF 与双曲线交于M 、N 两点,且12=MN ,求双曲线方程.答案:1.D ;2.D ;3.0152=--y x ;4.63<<α或36-<<-α;5.(1)2=e (2)422=-y x(六)板书设计。
双曲线及其标准方程教学设计(教案)
双曲线及其标准方程教学设计(教案)第一章:双曲线的概念引入1.1 教学目标:(1) 使学生了解双曲线的起源和发展历程。
(2) 通过实例让学生感受双曲线的几何性质。
1.2 教学内容:(2) 双曲线的历史:介绍双曲线在数学、天文学和物理学等领域的应用,让学生了解双曲线的重要性。
(3) 双曲线的图形展示:利用多媒体展示双曲线的图形,让学生感受双曲线的美丽和神秘。
1.3 教学方法:(1) 实例分析:通过具体的例子,让学生感受双曲线的特点。
(3) 多媒体展示:利用多媒体展示双曲线的图形,增强学生的直观感受。
第二章:双曲线的标准方程2.1 教学目标:(1) 使学生掌握双曲线的标准方程及其实际应用。
(2) 培养学生利用双曲线标准方程解决实际问题的能力。
2.2 教学内容:(1) 双曲线的标准方程:介绍双曲线标准方程的推导过程,让学生理解并掌握双曲线标准方程。
(2) 双曲线标准方程的应用:通过实例,让学生了解双曲线标准方程在实际问题中的应用。
2.3 教学方法:(1) 讲解与演示:教师讲解双曲线标准方程的推导过程,利用图形演示双曲线标准方程的特点。
(2) 实例分析:让学生通过解决实际问题,掌握双曲线标准方程的应用。
(3) 练习与讨论:让学生在课堂上练习双曲线标准方程的计算,分组讨论解决问题。
第三章:双曲线的性质3.1 教学目标:(1) 使学生了解双曲线的基本性质。
(2) 培养学生利用双曲线性质解决实际问题的能力。
3.2 教学内容:(1) 双曲线的性质:介绍双曲线的几何性质,如渐近线、离心率等。
(2) 性质的应用:通过实例,让学生了解双曲线性质在实际问题中的应用。
3.3 教学方法:(1) 讲解与演示:教师讲解双曲线的性质,利用图形演示性质的特点。
(2) 实例分析:让学生通过解决实际问题,掌握双曲线性质的应用。
(3) 练习与讨论:让学生在课堂上练习双曲线性质的计算,分组讨论解决问题。
第四章:双曲线方程的求解4.1 教学目标:(1) 使学生掌握求解双曲线方程的方法。
高中数学双曲线的教案
高中数学双曲线的教案
教学目标:学生能够理解双曲线的定义、性质和方程,掌握双曲线的图像和基本变换规律。
教学重点:双曲线的定义、性质和方程。
教学难点:双曲线的基本变换规律和图像的绘制。
教学准备:教材、教具、黑板、彩色粉笔、实例习题。
教学过程:
第一步:导入
1. 导入双曲线的概念,引导学生思考什么是双曲线。
2. 引出本节课的主要内容和目标。
第二步:概念讲解
1. 讲解双曲线的定义和性质。
2. 介绍双曲线的标准方程及其特征。
第三步:例题讲解
1. 通过例题引导学生理解双曲线的方程和图像。
2. 讲解双曲线的标准方程与图像之间的关系。
第四步:练习训练
1. 放置几道练习题,让学生巩固理论知识。
2. 指导学生独立解题,然后进行讲评。
第五步:拓展延伸
1. 提供一些拓展题目,让学生进一步探索双曲线的特性。
2. 引导学生探讨双曲线在实际生活中的应用。
第六步:课堂总结
1. 总结本节课的内容和重点。
2. 提醒学生复习和练习重点知识。
教学反馈:布置相关练习题,鼓励学生在课后进行复习和巩固。
教学辅导:提供学生在学习过程中遇到的问题进行辅导和帮助。
教学延伸:引导学生通过互联网等多种途径学习双曲线的相关知识,拓展课外学习。
教学评价:在课堂结束时对学生学习情况进行评价,评估学生对双曲线知识的掌握情况。
以上就是本次双曲线教学内容,希望学生们能够在学习过程中认真思考,积极提问,希望大家能够充实自己的数学知识,提高自己的数学能力。
双曲线的简单几何性质(一) 精品教案
(1)双曲线的定义和标准方程?
(2)椭圆有哪些简单几何性质?(填表)
2、引入
类比椭圆的简单几何性质,猜想双曲线有哪些简单几何性质?
(三)类比探究,研究性质
以方程 为例研究双曲线的简单几何性质
1、范围:
提问:类比椭圆如何研究其范围?
(幻灯片)
2、对称性:
提问:看图可知其有怎样的对称性?
(幻灯片)对称性:双曲线关于x轴、y轴和原点都是对称的.
七、教学过程:
(一)欣赏美图,引出课题
提问:在以上图片中,有没有我们所熟悉的数学图形?
要想运用双曲线的知识做出精美的物品或建造如此宏伟的建筑物,光掌握双曲线的定义和标准方程是远远不够的,我们还有了解更多双曲线的知识,这节课我们就一起来学习《双曲线的简单几何性质》。(引导学生类比探究、交流归纳、总结提升,并充分利用多媒体辅助教学。
六、学法指导
在教师的组织引导下,从学生已有的知识和生活经验出发,让学生经历知识的形成过程。使学生真正成为学习的主体。通过阅读教材,以恰当的问题为纽带,给学生创设自主探究、合作交流的空间,让学生在参与中获得知识,发展思维,感悟数学。
(2)椭圆的离心率刻画了椭圆图形的什么几何特性,双曲线的离心率刻画了双曲线的什么几何特性?《几何画板》演示
5、渐近线:
从学生曾经学习过的反比例函数入手,它的图像是双曲线,当双曲线伸向远处时,它与x、y轴无限接近,此时x、y轴是 的渐近线。
提问:双曲线 有没有渐近线?渐近线方程是什么?《几何画板》演示
二、学情分析
在本节课之前,学生已经学习了椭圆的简单几何性质、双曲线及其标准方程,有了一定的知识储备,并且具备了较强的抽象思维能力和演绎推理能力,可以更好的在教师的引导下通过观察、类比、思考、归纳完成本节课的学习内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 1.2双曲线的几何性质
课前预习学案
一、预习目标
理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征.
二、预习内容
1、双曲线的几何性质及初步运用.
类比椭圆的几何性质.
2.双曲线的渐近线方程的导出和论证.
观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容
课内探究学案
一、教学过程
(一)复习提问引入新课
1.椭圆有哪些几何性质,是如何探讨的?
请一同学回答.应为:范围、对称性、顶点、离心率,是从标准方程探讨的.
2.双曲线的两种标准方程是什么?
再请一同学回答.应为:中心在原点、焦点在x轴上的双曲线的标
下面我们类比椭圆的几何性质来研究它的几何性质.
(二)类比联想得出性质(性质1~3)
引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发)
(三)问题之中导出渐近线(性质4)
在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计
仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想.
接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么?
下面,我们来证明它:
双曲线在第一象限的部分可写成:
当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.在其他象限内也可以证明类似的情况.
现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字
这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精
再描几个点,就可以随后画出比较精确的双曲线.
(四)离心率(性质5)
由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:
变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔.
这时,教师指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变.
(五)练习与例题
1.求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.
请一学生演板,其他同学练习,教师巡视,练习毕予以订正.
由此可知,实半轴长a=4,虚半轴长b=3.
焦点坐标是(0,-5),(0,5).
本题实质上是双曲线的第二定义,要重点讲解并加以归纳小结.
解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合:
化简得:(c2-a2)x2-a2y2=a2(c2-a2).
这就是双曲线的标准方程.
由此例不难归纳出双曲线的第二定义.
(六)双曲线的第二定义
1.定义(由学生归纳给出)
平面内点M与一定点的距离和它到一条直线的距离的比是常数e=
叫做双曲线的准线,常数e是双曲线的离心率.
2.说明
(七)小结(由学生课后完成)
将双曲线的几何性质按两种标准方程形式列表小结.
五、布置作业
1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.
(1)16x2-9y2=144;
(2)16x2-9y2=-144.
2.求双曲线的标准方程:
(1)实轴的长是10,虚轴长是8,焦点在x轴上;
(2)焦距是10,虚轴长是8,焦点在y轴上;
曲线的方程.
点到两准线及右焦点的距离.
六、板书设计
1.1.2双曲线的几何性质学案
一、课前预习目标
理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征.
二、预习内容
1、双曲线的几何性质及初步运用.
类比椭圆的几何性质.
2.双曲线的渐近线方程的导出和论证.
观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容
课内探究
1、椭圆与双曲线的几何性质异同点分析
2、描述双曲线的渐进线的作用及特征
3、描述双曲线的离心率的作用及特征
4、例、练习尝试训练:
例1.求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.
解:
解:
5、双曲线的第二定义
1).定义(由学生归纳给出)
2).说明
(七)小结(由学生课后完成)
将双曲线的几何性质按两种标准方程形式列表小结.
作业:
1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.
(1)16x2-9y2=144;
(2)16x2-9y2=-144.
2.求双曲线的标准方程:
(1)实轴的长是10,虚轴长是8,焦点在x轴上;
(2)焦距是10,虚轴长是8,焦点在y轴上;
曲线的方程.
点到两准线及右焦点的距离.。