苏科版八年级数学上册秋学期期末数学模拟试卷(7)含答案

合集下载

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2) 2.4的平方根是( ) A .2B .2±C .2D .2± 3.若点P 在y 轴负半轴上,则点P 的坐标有可能是( )A .()1,0-B .()0,2-C .()3,0D .()0,4 4.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .55.下列四个图形中,不是轴对称图案的是( )A .B .C .D . 6.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四 7.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)8.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x--=2 9.如果m 是任意实数,则点()P m 4m 1-+,一定不在 A .第一象限 B .第二象限 C .第三象限 D .第四象限10.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( )A .7cmB .9cmC .9cm 或12cmD .12cm 11.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数 12.若2x -在实数范围内有意义,则x 的取值范围( ) A .x≥2B .x≤2C .x >2D .x <2 13.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( )A .AC =2CDB .AD =2CDC .AD =3BD D .AB =2BC 14.估算x =5值的大小正确的是( )A .0<x <1B .1<x <2C .2<x <3D .3<x <415.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB 的两边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线画法中用到三角形全等的判定方法是( )A .SSS B .SAS C .ASA D .HL二、填空题16.如图,点O 是边长为2的等边三角ABC 内任意一点,且OD AC ⊥,OE AB ⊥,OF BC ⊥,则OD OE OF ++=__________.17.若x +2y =2xy ,则21+x y的值为_____. 18.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点,已知点A (0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m ,当m =3时,则点B 的横坐标是_____.19.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a 、b 且a <b )拼成的边长为c 的大正方形,如果每个直角三角形的面积都是3,大正方形的边长是13,那么b -a =____.20.1x -在实数范围内有意义的条件是__________. 21.点(2,1)P 关于x 轴对称的点P'的坐标是__________. 22.点()2,3A 关于y 轴对称点的坐标是______.23.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.24.化简:23(3)2716--+=_____.25.如图,一次函数y kx b =+与y mx n =+的图像交于点(2,1)P -,则由函数图像得不等式kx b mx n +≥+的解集为________.三、解答题26.如图1,在平面直角坐标系xOy 中,点A 的坐标是(0,2),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形(90ACP ︒∠=,点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合).(初步探究)(1)写出点B 的坐标________;(2)点C 在x 轴上移动过程中,作PD x ⊥轴,垂足为点D ,都有AOC CDP ∆∆≌,请在图2中画出当等腰直角AOP ∆的顶点P 在第四象限时的图形,并求证:AOC CDP ∆∆≌.(深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.探究点P 在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;(4)直接写出2AP 的最小值为________.27.某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.28.在Rt △ABC 中,∠ACB =90°,AC =15,AB =25,点D 为斜边AB 上动点.(1)如图1,当CD ⊥AB 时,求CD 的长度;(2)如图2,当AD =AC 时,过点D 作DE ⊥AB 交BC 于点E ,求CE 的长度;(3)如图3,在点D 的运动过程中,连接CD ,当△ACD 为等腰三角形时,直接写出AD 的长度.29.直角三角形ABC 中,90ABC ∠=︒,点D 为AC 的中点,点E 为CB 延长线上一点,且BE CD =,连接DE .(1)如图1,求证2C E ∠=∠(2)如图2,若6AB =、5BE =,ABC ∆的角平分线CG 交BD 于点F ,求BCF ∆的面积.30.如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA 表示货车离开甲地的距离y (km )与时间x (h )之间的函数关系;折线BCD 表示轿车离开甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象解答下列问题:(1)甲、乙两地相距 km ,轿车比货车晚出发 h ;(2)求线段CD 所在直线的函数表达式;(3)货车出发多长时间两车相遇?此时两车距离甲地多远?31.如图,在△ABC 中,AD 平分∠BAC ,点E 在BA 的延长线上,且EC ∥AD .证明:△ACE 是等腰三角形.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【详解】如图所示:点A的对应点A2的坐标是:(2,﹣3).故选B.2.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】解:4的平方根是2故选:D【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键. 3.B解析:B【解析】【分析】根据y轴上的点的坐标特点,横坐标为0,然后根据题意求解.【详解】解:∵y轴上的点的横坐标为0,又因为点P在y轴负半轴上,∴(0,-2)符合题意故选:B【点睛】本题考查坐标轴上的点的坐标特点,利用数形结合思想解题是本题的解题关键.4.C【解析】【分析】延长CE 交AD 于F ,连接BD ,先判定△ABC ∽△CAF ,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF 为△ABD 的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD 的长.【详解】解:如图,延长CE 交AD 于F ,连接BD ,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE 为中线,∴CE=AE=BE=1 2.52AB =, ∴∠ACF=∠BAC ,又∵∠AFC=∠BCA=90°,∴△ABC ∽△CAF ,∴CF AC AC BA =,即445CF =, ∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC ,AE=DE ,∴CE 垂直平分AD ,又∵E 为AB 的中点, ∴EF 为△ABD 的中位线,∴BD=2EF=1.4,∵AE=BE=DE ,∴∠DAE=∠ADE ,∠BDE=∠DBE ,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt △ABD 中,2222245 1.45AB BD -=-=, 故选:C .本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题.5.A解析:A【解析】【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A不是轴对称图形,B、C、D都是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.6.C解析:C【解析】试题分析:直线y=﹣5x+3与y轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.故选C.考点:一次函数的图象和性质.7.C解析:C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.8.A【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x 米,则实际每天施工(x+30)米, 根据题意,可列方程:1000100030x x -+=2, 故选A .点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程. 9.D解析:D【解析】【分析】求出点P 的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.【详解】∵()()m 1m 4m 1m 450+--=+-+=>,∴点P 的纵坐标一定大于横坐标..∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标.∴点P 一定不在第四象限.故选D .10.D解析:D【解析】【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【详解】解:当三边是2cm ,2cm ,5cm 时,不符合三角形的三边关系;当三角形的三边是5cm ,5cm ,2cm 时,符合三角形的三边关系,此时周长是5+5+2=12cm .故选:D .【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.11.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A中,例如42=,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.12.A解析:A【解析】【分析】二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x的取值范围.【详解】∵2x-在实数范围内有意义,∴x−2≥0,解得x≥2.故答案选A.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 13.B解析:B【解析】【分析】在Rt△ABC中,由∠A的度数求出∠B的度数,在Rt△BCD中,可得出∠BCD度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD,由BD的长求出BC 的长,在Rt△ABC中,同理得到AB=2BC,于是得到结论.【详解】解:∵△ABC中,∠ACB=90°,∠A=30°,∴AB=2BC;∵CD⊥AB,∴AC=2CD,∴∠B=60°,又CD⊥AB,∴∠BCD=30°,在Rt△BCD中,∠BCD=30°,CD,在Rt△ABC中,∠A=30°,AD=3BD,故选:B.【点睛】此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.14.C解析:C【解析】【分析】.【详解】∴23,故选:C.【点睛】此题主要考查无理数的估值,熟练掌握,即可解题.15.A解析:A【解析】【分析】根据全等三角形的判定方法即可解决问题.【详解】由题意:OM=ON,CM=CN,OC=OC,∴△COM≌△CON(SSS),∴∠COM=∠CON,故选:A.【点睛】此题主要考查三角形全等判定的应用,熟练掌握,即可解题.二、填空题16.【解析】【分析】过点A作AG⊥BC于点G,由等边三角形的性质求出BG的长,再根据勾股定理求出AG的长;连接OA,OB,OC,根据三角形的面积公式即可得出结论.【详解】解:过点A作AG⊥BC解析:3【解析】【分析】过点A作AG⊥BC于点G,由等边三角形的性质求出BG的长,再根据勾股定理求出AG的长;连接OA,OB,OC,根据三角形的面积公式即可得出结论.【详解】解:过点A作AG⊥BC于点G,连接OA,OB,OC,∵AB=AC=BC=2,∴BG=12BC=1,∴22213∵S△ABC=S△ABO+S△BOC+S△AOC,∴12AB×(OD+OE+OF)=12BC•AG,∴3.3【点睛】本题考查的是等边三角形的性质,以及勾股定理,熟知等边三角形三线合一的性质是解答此题的关键.17.【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy,∴原式==2,故答案为:2【点睛】此题考查了分式的化简求值,熟解析:【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy,∴原式=22x y xyxy xy+==2,故答案为:2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.3或4【解析】【分析】作出图形,然后根据图形判断出横坐标的可能值即可;【详解】解:如图当点B为(3,0),(4,0)记ΔAOB内部(不包括边界)的整点为(1,1),(1,2),(2,1解析:3或4【解析】【分析】作出图形,然后根据图形判断出横坐标的可能值即可;【详解】解:如图当点B为(3,0),(4,0)记内部(不包括边界)的整点为(1,1),(1,2),(2,1)共三个点,故当时,则点的横坐标可能是3,4.故填3,4.【点睛】此题考查了点的坐标,关键是根据题意画出图形,找出点B的横坐标与△AOB内部(不包括边界)的整点m之间的关系,考查数形结合的数学思想方法.19.1【解析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知c =,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解】解:根据题意,可知,∵c =,132ab =, ∴221()42b a ab c -+⨯=,213c =, ∴2()13431b a -=-⨯=,∴1b a -=±;∵a b <,即0b a ->,∴1b a -=;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的思想是解题的关键.20.【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】解:式子在实数范围内有意义的条件是:x-1>0,解得:x >1.故答案为:.【点睛】此题主要考查了二次根式有意解析:1x >【解析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】在实数范围内有意义的条件是:x-1>0,解得:x>1.x>.故答案为:1【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.21.(2,-1)【解析】【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.解析:(2,-1)【解析】【分析】关于x轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】P关于x轴对称的点P'的坐标是(2,-1)点(2,1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称. 理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;22.(−2,3)【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于y轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对解析:(−2,3)【解析】平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(−x ,y ),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y 轴对称的点的坐标是(−2,3),故答案为(−2,3).【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y 轴对称的点,纵坐标相同,横坐标互为相反数,关于x 轴对称的点,横坐标相同,纵坐标互为相反数.23..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k1x+b1与y =k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组的解是.解析:21x y =⎧⎨=⎩. 【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 24.4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键. 解析:4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】3344=-+=故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键.25.【解析】【分析】观察函数图象得到,当x2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+bmx+n 的解集.【详解】∵当x2时,一次函数y=kx+b 的解析:2x ≥【解析】【分析】观察函数图象得到,当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+b ≥mx+n 的解集.【详解】∵当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,∴不等式kx+b ≥mx+n 的解集为x ≥2.故答案是:x ≥2.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题26.(1)()2,0B ;(2)证明见解析;(3)点P 在直线上运动;2y x =-;(4)8.【解析】【分析】(1)根据等腰三角形的性质即可求解;(2)根据题意作图,再根据等腰直角三角形的性质判定AOC CDP∆∆≌;(3)根据题意去特殊点,再利用待定系数法即可求解;(4)当P在B点时,AP最小,故可求解.【详解】(1)∵点A的坐标是(0,2),△AOB为等腰直角三角形,∴AO=BO∴()2,0B(2)如图,∵ACP∆是等腰直角三角形,且90ACP∠=︒∴AC PC=∵PD BC⊥∴90PDC∠=︒∴90AOC PDC∠=∠=︒,90DPC PCD∠+∠=︒∵90ACP∠=︒∴90ACB PCD∠+∠=︒∴DPC ACB∠=∠在AOC∆和CDP∆中,,,.AOC PDCDPC ACBAC PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOC CDP AAS∆∆≌(3)点P在直线上运动;∵两点确定一条直线∴可以取两个特殊点当P在y轴上时,2OP OC OA===,∴()0,2P-当P在x轴上时,2OP OA==,∴()2,0P设所求函数关系式为y kx b=+;将()2,0和()0,2-代入,得20,2.k bb+=⎧⎨=-⎩220bk b=-⎧⎨+=⎩解得1,2.kb=⎧⎨=-⎩21bk=-⎧⎨=⎩所以所求的函数表达式为2y x=-;(4)如图,作AP⊥直线2y x=-,即P与B点重合,∴AP2=22+22=8.【点睛】此题主要考查一次函数的几何综合,解题的关键是熟知一次函数的性质。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.若a 满足3a a =,则a 的值为( ) A .1 B .0 C .0或1 D .0或1或1-2.已知一次函数y=kx +3(k≠0)的图象经过点A ,且函数值y 随x 的增大而增大,则点A 的坐标可能是( )A .(﹣2,﹣4)B .(1,2)C .(﹣2,4)D .(2,﹣1)3.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是( )A .B .C .D .4.由四舍五入得到的近似数48.0110⨯,精确到( )A .万位B .百位C .百分位D .个位5.若+1x 有意义,则x 的取值范围是( ).A .x >﹣1B .x ≥0C .x ≥﹣1D .任意实数6.下列交通标识中,是轴对称图形的是( )A .B .C .D .7.估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间C .3和4之间D .4和5之间 8.如图,正方形OACB 的边长是2,反比例函数k y x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4-9.如图(1),在四边形ABCD 中,AB CD ∥,90ABC ∠=︒,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,ABP ∆的面积为y ,如果y 关于x 的函数图象如图(2)所示,则BCD ∆的面积是( )A .6B .5C .4D .3 10.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( ) A .1-B .0C .1D .2 11.某种鲸鱼的体重约为1.36×105kg ,关于这个近似数,下列说法正确的是( )A .它精确到百位B .它精确到0.01C .它精确到千分位D .它精确到千位 12.如果m 是任意实数,则点()P m 4m 1-+,一定不在A .第一象限B .第二象限C .第三象限D .第四象限 13.点M (3,-4)关于y 轴的对称点的坐标是( )A .(3,4)B .(-3,4)C .(-3,-4)D .(-4,3) 14.下列计算正确的是( )A .5151+22=5B .512﹣512=2 C .515122⨯=1 D .515122⨯=3﹣515.到ABC ∆的三顶点距离相等的点是ABC ∆的是( )A .三条中线的交点B .三条角平分线的交点C .三条高线的交点D .三条边的垂直平分线的交点二、填空题16.在平面直角坐标系中,过点()5,6P 作PA x ⊥轴,垂足为点A ,则PA 的长为______________.17.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.18.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____.19.观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对(2,4)来表示,则红“马”到达B 点后,B 点的位置可以用数对表示为__________.20.如图,在△ABC 中,PH 是AC 的垂直平分线,AH =3,△ABP 的周长为11,则△ABC 的周长为_____.21.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.22.在ABC 中,,AB AC BD =是高,若40ABD ∠=︒,则C ∠的度数为______.23.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a 与b 的大小关系是__________。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( )A .80°B .90°C .100°D .110°2.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .13.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E ,若4BD =,7DE =,则线段EC 的长为( )A .3B .4C .3.5D .2 4.分式221x x -+的值为0,则x 的值为( ) A .0 B .2 C .﹣2 D .125.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)6.下列图形是轴对称图形的是( )A .B .C .D .7.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中能使△ABC ≌△DEF 的条件有( )A .1组B .2组C .3组D .4组8.关于三角形中边与角之间的不等关系,提出如下命题:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形; 命题4:直角三角形中斜边最长;以上真命题的个数是( )A .1B .2C .3D .49.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC的长为( )A 51B 51C 31D 3110.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--11.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣112.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数 13.已知A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点,m =(a ﹣c )(b ﹣d ),则当m <0时,k 的取值范围是( )A .k <3B .k >3C .k <2D .k >214.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm ,内壁高12cm ,则这只铅笔的长度可能是( )A .9cmB .12cmC .15cmD .18cm 15.点P(2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题16.17.85精确到十分位是_____.17.对于分式23x a b a b x++-+,当1x =时,分式的值为零,则a b +=__________. 18.点(−1,3)关于x 轴对称的点的坐标为____. 19.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.20.计算:52x x ⋅=__________.21.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.22.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.23.如图,点E ,F 在AC 上,AD=BC ,DF=BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是________(添加一个即可)24.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.25.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.三、解答题26.如图,△AB C 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D .(1)若△BCD 的周长为8,求BC 的长;(2)若∠A=40°,求∠DBC 的度数.27.一次函数(0)y kx b k =+≠的图象经过点(3,1)A 和点(0,2)B -.(1)求一次函数的表达式;(2)若此一次函数的图像与x 轴交于点C ,求BOC ∆的面积.28.已知A 、B 两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止甲、乙两车相距的路程y (千米)与甲车的行驶时间x (时)之间的函数关系如图所示:(1)乙年的速度为______千米/时,a =_____,b =______.(2)求甲、乙两车相遇后y 与x 之间的函数关系式,并写出相应的自变量x 的取值范围.29.(本题满分10分) 如图,直线23y x =+与x 轴相交于点A ,与y 轴相交于点B .(1)求△AOB 的面积;(2)过B 点作直线BP 与x 轴相交于P ,△ABP 的面积是92,求点P 的坐标. 30.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C -A B C(1)作出三角形ABC关于y轴对称的三角形111(2)点1A的坐标为 .(3)①利用网络画出线段AB的垂直平分线L;②P为直线上L上一动点,则PA PC 的最小值为 .31.如图,M、N两个村庄落在落在两条相交公路AO、BO内部,这两条公路的交点是O,现在要建立一所中学C,要求它到两个村庄的距离相等,到两条公路的距离也相等.试利用尺规找出中学的位置(保留作图痕迹,不写作法).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由四边形ABCD是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A 的度数,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∴∠C=∠A=100°.故选:C .【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.D解析:D【解析】【分析】图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长.【详解】直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB ,又∵AD ⊥OC ,BE ⊥OC ,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB ,在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE是解题的关键.3.A解析:A【解析】【分析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代换即可求出线段CE的长.【详解】解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF//BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE-DF=7-4=3.故选:A.【点睛】本题考查了平行线的性质和角平分线的性质,解决本题的关键是正确理解题意,熟练掌握平行线和角平分线的性质,能够找到相等的量.4.B解析:B【解析】【分析】直接利用分式的值为零,则分子为零进而得出答案.【详解】解:∵分式22 1x x -+的值为0,∴x﹣2=0,解得:x=2.故选:B.【点睛】此题主要考查了分式为零的条件,正确把握分式为零的条件是解题关键.5.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长将Rt ABC度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.6.B解析:B【解析】【分析】根据轴对称图形的概念,一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形. 据此进行选择即可.【详解】根据轴对称图形定义,图形A、C、D中不是轴对称图形,而B是轴对称图形.故选B【点睛】本题主要考查了轴对称图形的辨识,解答本题的关键是熟练掌握轴对称图形的概念.7.C解析:C【解析】【分析】根据全等三角形的判定方法:SSS、SAS、ASA及AAS,即可判定.【详解】①满足SSS,能判定三角形全等;②满足SAS,能判定三角形全等;③满足ASA,能判定三角形全等;④的条件是两边及其一边的对角分别对应相等,不能判定三角形全等.△≌△全等的条件有3组.∴能使ABC DEF故选:C.【点睛】本题考查全等三角形的判定,解题关键是熟练掌握各种判定方法并注意“两边及其一边的对角分别对应相等”不能判定三角形全等.8.D解析:D【解析】【分析】根据三角形边与角的关系逐一分析即可得解.【详解】假设它们所对的边相等,则根据等腰三角形的性质定理,“等边对等角”知它们所对的角也相等,这就与题设两个角不等相矛盾,因此假设不成立,故原结论成立,同时根据三角形中大边对大角,大角对大边可知命题1,2正确;因为三角形中大边对大角,大角对大边,所以当最大边所对角是锐角时,可知另外两个角也为锐角,则命题3正确;因为直角三角形中,直角所对的边时斜边,而另外两个角为锐角,所以直角所对斜边最大,所以命题4正确,故选:D.【点睛】本题主要考查了三角形边与角的关系,熟练掌握相关知识点是解决本题的关键.9.B解析:B【解析】【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1.【详解】解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB∴BD AD ==在Rt △ADC 中,由勾股定理得:DC 1===∴1故选B【点睛】 本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.10.D解析:D【解析】【分析】求直线平移后的解析式时要注意平移时k 的值不变,只有b 发生变化.上下平移时只需让b 的值加减即可.【详解】y=-3x+4的k=-3,b=4,沿x 轴向左平移2个单位后,新直线解析式为:y=-3(x+2)+4=-3x-2.故选:D.【点睛】本题考查了一次函数的平移变换,属于基础题,关键掌握将直线上下平移时k 的值不变,只有b 发生变化.解析:D【解析】因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+, 可化为23x x ->+,解不等式可得:1x <-,故选D.12.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A 2=,是有理数,错误;B 中,例如π,是无理数,错误;C 中,无限循环小数是有理数,错误;D 正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.13.A解析:A【解析】【分析】将点A ,点B 坐标代入解析式可求k−3=b d ac --,即可求解. 【详解】∵A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点,∴b =ka ﹣3a +2,d =kc ﹣3c +2,且a ≠c ,∴k ﹣3=b d a c--. ∵m =(a ﹣c )(b ﹣d )<0,∴k <3.故选:A .【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−3=b d a c--是关键,是一道基础题.解析:D【解析】【分析】首先根据题意画出图形,利用勾股定理计算出AC 的长.【详解】根据题意可得图形:AB=12cm ,BC=9cm ,在Rt △ABC 中:2222=129AB BC ++(cm ),则这只铅笔的长度大于15cm .故选D .【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.15.D解析:D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P 所在的象限.解答:解:∵点P 的横坐标为正,纵坐标为负,∴点P (2,-3)所在象限为第四象限.故选D .二、填空题16.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.17.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】解:∵分式23x a b a b x ++-+,当1x =时,分式的值为零, ∴10a b 且230a b ,∴1a b +=-,且5233a b , 故答案为:-1且5233ab ,. 【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.18.(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标变化规律.19.【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.20.【解析】【分析】根据同底数幂相乘底数不变指数相加的法则即可得解.【详解】,故答案为:.【点睛】本题主要考查了同底数幂的乘法运算,熟练掌握相关运算公式是解决本题的关键.解析:7x【解析】【分析】根据同底数幂相乘底数不变指数相加的法则即可得解.【详解】52527x x x x +⋅==,故答案为:7x .【点睛】本题主要考查了同底数幂的乘法运算,熟练掌握相关运算公式是解决本题的关键. 21.【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标解析:()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4). 考点:象限内点的坐标特征.22.y=-2x+5.【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题解析:y=-2x+5.【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题考查一次函数图形的平移变换和函数解析式之间的关系,解题关键是在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.23.∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, D解析:∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, DF=BE,∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.故答案为∠D=∠B.【点睛】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS).24.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.25.15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△A解析:15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,BD CDADB EDCAD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=12AD•AB=15.故答案为15.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.三、解答题26.(1)3cm ;(2)30°.【解析】【分析】(1)根据线段垂直平分线定理得出AD=BD ,根据BC+CD+BD=8cm 求出AC+BC=8cm ,把AC 的长代入求出即可;(2)已知∠A=40°,AB=AC 可得∠ABC=∠ACB ,再由线段垂直平分线的性质可求出∠ABC=∠A ,易求∠DBC .【详解】(1)∵D 在AB 垂直平分线上,∴AD=BD ,∵△BCD 的周长为8cm ,∴BC+CD+BD=8cm ,∴AD+DC+BC=8cm ,∴AC+BC=8cm ,∵AB=AC=5cm ,∴BC=8cm ﹣5cm=3cm ;(2)∵∠A=40°,AB=AC ,∴∠ABC=∠ACB=70°,又∵DE 垂直平分AB ,∴DB=AD∴∠ABD=∠A=40°,∴∠DBC=∠ABC ﹣∠ABD=70°﹣40°=30°.考点:(1)线段垂直平分线的性质;(2)等腰三角形的性质.27.(1)2y x =-;(2)2.【解析】【分析】(1)根据待定系数法将A 、B 两点的坐标代入求出k 、b 的值即可解决;(2)根据求出C 点坐标,由B 、C 两点的坐标即可求出△BOC 的面积.【详解】解:(1)将(3,1)A 和点(0,2)B -代入(0)y kx b k =+≠,得:312k b b +=⎧⎨=-⎩解得:1k ⎨=⎩故一次函数解析式为:2y x =-.(2)令y=0得:0=x-2,x=2,所以C 点坐标为(2,0),OC=2所以三角形OBC 的面积=22222OC OB ⋅⨯== 【点睛】本题考查了待定系数法求函数解析式,利用点的坐标求三角形面积,解决本题的关键是熟练掌握待定系数法.28.(1)75;3.6;4.5;(2) 当2 3.6x <≤时,135270y x =-;当3.6 4.5x <≤时,60y x =.【解析】【分析】(1)根据图像可知两车2小时候相遇,根据路程和为270千米即可求出乙车的速度,然后根据“路程、速度、时间”的关系确定a 、b 的值;(2)根据图像可知相遇后图像分为两段,将相遇后点的坐标和分段处以及到达B 地后的坐标分别表示出来,然后运用待定系数法解决即可;【详解】解:(1)乙车的速度为:(270-60×2)÷2=75(千米/时);a =270÷75=3.6,b=270÷60=4.5故答案为:75;3.6;4.5;(2)60×3.6=216(千米),如图,可得(2,0)M ,(3.6,216)N ,(4.5,270)Q .设当2 3.6x <≤时的解析式为11y k x b =+,1111203.6216k b k b +=⎧⎨+=⎩,解得1270b ⎨=-⎩ ∴当2 3.6x <≤时,135270y x =-,设当3.6 4.5x <≤时的解析式为22y k x b =+,则22223.62164.5270k b k b +=⎧⎨+=⎩, 解得22600k b =⎧⎨=⎩, 当3.6 4.5x <≤时,60y x =.【点睛】本题考查了分段函数实际问题,解决本题的关键是能够读懂函数图像,从函数图像中找到相关的量,能够熟练运用待定系数法求函数解析式.29.(1)94 ;(2)P(1.5,0) 或 (-4.5,0) 【解析】【分析】(1)分别求直线与x,y 轴交点坐标,再求面积.(2)利用面积,可求得P 点距离A 点的距离,求出P 点坐标.【详解】(1) 由x=0得:y=3,即:B (0,3).由y=0得:2x+3=0,解得:32x =-∴OA =32,OB =3 . ∴△AOB 的面积:1393224⨯⨯=. (2) ∵△ABP 的面积是92, OB =3 3922AP ∴= ∴AP =3∴P (1.5,0) 或 (-4.5,0)【点睛】本题考查了一次函数图象上点的坐标特征.30.(1)见解析(2)点1A 的坐标为(3,6);(3)①见解析.【解析】【分析】(1)首先确定A 、B 、C 三点关于y 轴的对称点位置A 1、B 1、C 1,再连接即可得到△ABC 关于y 轴对称的△A 1B 1C 1;(2)根据平面直角坐标系写出点1A 的坐标;(3)①根据垂直平分线的定义画图即可;②根据轴对称的性质以及两点之间线段最短得PA PC +的最小值为BC 的长,再由勾股定理求解即可.【详解】(1)如图所示:(2)点1A 的坐标为(3,6);(3)①如图所示:②PA PC +的最小值为BC 的长,即2224+=20【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.31.作图见解析.【解析】【分析】先连接MN ,根据线段垂直平分线的性质作出线段MN 的垂直平分线DE ,再作出∠AOB 的平分线OF ,DE 与OF 相交于C 点,则点C 即为所求.【详解】点C 为线段MN 的垂直平分线与∠AOB 的平分线的交点,则点C 到点M 、N 的距离相等,到AO 、BO 的距离也相等,作图如下:.【点睛】此题考查作图-应用与设计作图,熟练地应用角平分线的作法以及线段垂直平分线作法是解决问题的关键.。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .2 2.下列四个实数:223,0.1010017π,3,,其中无理数的个数是( ) A .1个 B .2个C .3个D .4个 3.已知实数,a b 满足2|2|(4)0a b -+-=,则以,a b 的值为两边的等腰三角形的周长是( )A .10B .8或10C .8D .以上都不对 4.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( ) A .仍是直角三角形 B .一定是锐角三角形 C .可能是钝角三角形 D .一定是钝角三角形5.下列四个图形中,不是轴对称图案的是( )A .B .C .D .6.下列实数中,无理数是( )A .0B .﹣4C .5D .177.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)8.下列交通标识中,是轴对称图形的是( )A .B .C .D .9.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cm B .0.0001cm C .0.00001cm D .0.000001cm10.甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:5011.给出下列实数:227、25-、39、 1.44、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),其中无理数有()A.2个B.3个C.4个D.5个12.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D的长度为()A.12cm B.1cm C.2cm D.32cm13.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC14.如图,在△ABC中,AC的垂直平分线交AC于点E,交BC于点D,△ABD的周长为16cm,AC为5cm,则△ABC的周长为( )A .24cmB .21cmC .20cmD .无法确定15.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题16.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.17.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点,已知点A (0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m ,当m =3时,则点B 的横坐标是_____.18.已知3a b +=,2ab =,代数式32232a b a b ab ++=__________.19.点()2,3A 关于y 轴对称点的坐标是______.20.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.21.点()11,12A 与点()11,12B -关于_________对称.(填“x 轴”或“y 轴”)22.比较大小:-2______-3.23.如图,等边△ABC 的周长是18,D 是AC 边上的中点,点E 在BC 边的延长线上.如果DE =DB ,那么CE 的长是_____.24.如图,ABC ∆中,B C ∠=∠,D ,E ,F 分别是BC ,AC ,AB 上的点,且BF CD =,BD CE =,55FDE ∠=︒,则A ∠=__________︒.25.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.三、解答题26.(1)0451)(2)解方程:23(1)120x --=27.已知y 是x 的函数,自变量x 的取值范围是x >0,下表是y 与x 的几组对应值. x ··· 1 2 3 5 7 9 ···y ··· 1.98 3.95 2.63 1.58 1.13 0.88 ··· 小腾根据学习一次函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整: (1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x =4对应的函数值y 约为________;②该函数的一条性质:__________________.28.如图所示是甲乙两个工程队完成某项工程的进度图,首先是甲独做了10天,然后两队合做,完成剩下的工程.(1)甲队单独完成这项工程,需要多少天?(2)求乙队单独完成这项工程需要的天数;(3)实际完成的时间比甲独做所需的时间提前多少天?29.已知2y -与x 成正比例,当2x =时,6y =. (1)求y 与x 的函数关系式;(2)当6y >时,求x 的取值范围.30.如图,ABC ∆中,90BAC ∠=,8AC cm =,DE 是BC 边上的垂直平分线,ABD ∆的周长为14cm ,求BC 的长.31.一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示,根据图像进行以下研究:(1)甲、乙两地之间的距离为km;线段AB的解析式为;线段OC的解析式为;(2)经过多长时间,快慢车相距50千米?(3)设快、慢车之间的距离为y(km),并画出函数的大致图像.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.B解析:B【解析】【分析】根据无理数的定义解答即可.【详解】227,0.101001是有理数;3.故选B.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3π等;②③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.3.A解析:A【解析】【分析】先根据非负数的性质求出a 和b 的值,然后分两种情况求解即可.【详解】∵2|2|(4)0a b -+-=,∴a-2=0,b-4=0,∴a=2,b=4,当a 为腰时,2+2=4,不合题意,舍去;当b 为腰时,2+4>4,符合题意,∴周长=4+4+2=10.故选A.【点睛】此题主要考查了等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键. 4.A解析:A【解析】【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k 倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a 、b ,斜边为c .则满足a 2+b 2=c 2.若各边都扩大k 倍(k >0),则三边分别为ak 、bk 、ck(ak )2+(bk )2=k 2(a 2+b 2)=(ck )2∴三角形仍为直角三角形.故选:A .【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.5.A解析:A【解析】【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A 不是轴对称图形,B 、C 、D 都是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.6.C解析:C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:0,﹣4是整数,属于有理数;17 故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 7.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.8.B解析:B【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B是轴对称图形,故选B9.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5810-⨯=0.00008,∴近似数5810-⨯是精确到十万分位,即0.00001.故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.10.B解析:B【解析】【分析】根据图象可知走前一半路程用了1小时,由此可得走前一半路程的速度为40km/h,从而可得走后一半路程的速度为60km/h,根据时间=路程÷速度即可求得答案.【详解】由图象知走前一半路程用的时间为1小时,所以走前一半路程时的速度为40km/h,因为匀速行驶了一半的路程后将速度提高了20km/h ,所以以后的速度为20+40=60km/h ,时间为4060×60=40分钟, 故该车到达乙地的时间是当天上午10:40,故选B .【点睛】 本题考查了函数的图象,读懂图象,从中找到必要的信息是解题的关键.11.B解析:B【解析】【分析】根据无理数是无限不循环小数,可得答案.【详解】解:−5,实数:227、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个02π、-0.1010010001…(每相邻两个1之间依次多一个0)共3个.故选:B .【点睛】 本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.12.D解析:D【解析】【分析】先在直角△AOB 中利用勾股定理求出AB =5cm ,再利用直角三角形斜边上的中线等于斜边的一半得出OD =12AB =2.5cm .然后根据旋转的性质得到OB 1=OB =4cm ,那么B 1D =OB 1﹣OD =1.5cm .【详解】∵在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,∴AB =5cm ,∵点D 为AB 的中点,∴OD =12AB =2.5cm . ∵将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,∴OB 1=OB =4cm ,∴B 1D =OB 1﹣OD =1.5cm .故选:D .【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边上的中线等于斜边的一半”是解题的关键.13.C解析:C【解析】试题分析:解:选项A 、添加AB=DE 可用AAS 进行判定,故本选项错误;选项B 、添加AC=DF 可用AAS 进行判定,故本选项错误;选项C 、添加∠A=∠D 不能判定△ABC ≌△DEF ,故本选项正确;选项D 、添加BF=EC 可得出BC=EF ,然后可用ASA 进行判定,故本选项错误.故选C .考点:全等三角形的判定.14.B解析:B【解析】【分析】由垂直平分线可得AD =DC ,进而将求△ABC 的周长转换成△ABD 的周长再加上AC 的长度即可.【详解】∵DE 是AC 的垂直平分线,∴AD=DC ,∵△ABD 的周长=AB+BD+AD=16,∴△ABC 的周长为AB+BC+AC=AB+BD+AD+AC=16+5=21.故选:B .【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD =DC ,进而将求△ABC 的周长转换成△ABD 的周长再加上AC 的长度.15.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题16.3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解析:3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB10cm,由翻折变换的性质得,BC′=BC=6cm,C′D=CD,∴AC′=AB﹣BC′=10﹣6=4cm,设CD=x,则C′D=x,AD=8﹣x,在Rt△AC′D中,由勾股定理得,AC′2+C′D2=AD2,即42+x2=(8﹣x)2,解得x=3,即CD=3cm.故答案为:3cm.【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.17.3或4【解析】【分析】作出图形,然后根据图形判断出横坐标的可能值即可;【详解】解:如图当点B为(3,0),(4,0)记ΔAOB内部(不包括边界)的整点为(1,1),(1,2),(2,1解析:3或4【解析】【分析】作出图形,然后根据图形判断出横坐标的可能值即可;【详解】解:如图当点B为(3,0),(4,0)记内部(不包括边界)的整点为(1,1),(1,2),(2,1)共三个点,故当时,则点的横坐标可能是3,4.故填3,4.【点睛】此题考查了点的坐标,关键是根据题意画出图形,找出点B的横坐标与△AOB内部(不包括边界)的整点m之间的关系,考查数形结合的数学思想方法.18.18【解析】【分析】先提取公因式ab,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:=当,时,原式,故答案为:18【点睛】此题考查了整式的混解析:18【解析】【分析】先提取公因式ab ,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:32232a b a b ab ++=222ab a ab b 2=ab a b当3a b +=,2ab =时,原式2=23=18,故答案为:18【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.19.(−2,3)【解析】【分析】平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(−x ,y ),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y 轴对解析:(−2,3)【解析】【分析】平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(−x ,y ),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y 轴对称的点的坐标是(−2,3),故答案为(−2,3).【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y 轴对称的点,纵坐标相同,横坐标互为相反数,关于x 轴对称的点,横坐标相同,纵坐标互为相反数.20.11【解析】【分析】根据函数图象可以直接得到AB 、BC 和三角形ADB 的面积,从而可以求得AD 的长,作辅助线CE⊥AD,从而可得CD 的长,进而求得点P 从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.21.轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11解析:y轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y轴对称,故答案为:y轴.【点睛】本题考查了关于x轴、y轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x轴对称;横坐标互为相反数,纵坐标相等的两点关于y轴对称”是解题的关键.22.>【解析】, .解析:>【解析】23<,>23.3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E=30°,再证出∠CDE=∠E,得出CD=CE=AC=3即可.【详解】∵△ABC为等边解析:3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=12AC=3即可.【详解】∵△ABC为等边三角形,D为AC边上的中点,∴BD为∠ABC的平分线,且∠ABC=60°,∴∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC 的周长为18,∴AC=6,且∠ACB=60°,∴∠CDE=∠ACB-∠E=30°,∴∠CDE=∠E ,∴CD=CE=12AC=3. 故答案为:3.【点睛】 此题考查了等边三角形的性质、等腰三角形的判定以及三角形的外角性质等知识;熟练掌握等边三角形的性质,证明CD=CE 是解题的关键.24.【解析】【分析】根据SAS 定理判定△FBD≌△DCE,然后根据全等三角形的性质求得∠FDB=∠DEC,从而求得∠DEC+∠EDC 的度数,然后求出∠C 的度数,最后利用等腰三角形的性质求∠A.【解析:70︒【解析】【分析】根据SAS 定理判定△FBD ≌△DCE ,然后根据全等三角形的性质求得∠FDB=∠DEC ,从而求得∠DEC+∠EDC 的度数,然后求出∠C 的度数,最后利用等腰三角形的性质求∠A.【详解】解:∵BF CD =,B C ∠=∠,BD CE =∴△FBD ≌△DCE∴∠FDB=∠DEC∵55FDE ∠=︒∴∠FDB++∠EDC=∠DEC+∠EDC=180°-55°=125°∴∠C=180°-125°=55°∴∠A=180°-2×55°=70°【点睛】本题考查全等三角形的判定和性质及等腰三角形的性质,掌握判定定理正确推理论证是本题的解题关键.25.−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y 、y 的值都大于0的x 的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y 1>0,当x<2时,y 2>0,∴使y 1、y 2的值都大于0的x 的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x 轴上方的图象的y 值大于0三、解答题26.(1)3;(2)3x =或1x =-.【解析】【分析】(1)根据实数的运算法则将每一项进行化简然后计算求解即可.(2)根据一元二次方程的解法步骤,将12移到等号右边,然后进行开平方运算求出方程的解即可.【详解】解:(1)01)原式21=+3=(2)解方程:23(1)120x --=2(1)4x -=12x -=±3x =或1x =-【点睛】本题考查了实数的运算和一元二次方程的解法,解决本题的关键是熟练掌握实数的运算法则,掌握一元二次方程的解法步骤,在选择解法时要注意灵活选择合适的方法.27.(1)作图见解析;(2)①2(2.1到1.8之间都正确);②该函数有最大值(其他正确性质都可以).【解析】试题分析:(1)描点即可作出函数的图象;(2)①观察图象可得出结论;②观察图象可得出结论.试题解析:(1)如下图:(2)①2(2.1到1.8之间都正确)②该函数有最大值(其他正确性质都可以).考点:函数图象,开放式数学问题.28.(1)40天;(2)60天;(3)12天.【解析】【分析】(1)由第一段图像可知,甲队独做10天完成总工作量的0.25,则可求出甲的工作效率,再用总量1除以这个效率即可得出甲队单独完成这项工程需要的天数;(2)由第二段图像可知,甲乙6天完成总量的(0.5-0.25)即0.25,甲6天做的工作量可求,于是求出乙6天的工作量,进而求出乙的工作效率,再用总量除以这个效率即可得出乙队单独完成这项工程需要的天数;(3)因为甲队独做用40天,再求出实际完成的时间,两个数相减即可,甲乙合作完成了总量的0.75,除以他们的效率和再加上10,即是实际完成的时间,用40减这个数值即可得出结论.【详解】(1)因为甲队独做10天完成总工作量的0.25,所以甲一天做了0.25÷10=140,于是甲队单独完成这项工程需要的天数为:1÷140=40天;(2)甲乙6天完成总量的(0.5-0.25)即0.25,则乙6天的工作量是0.25-140×6=110,所以乙的效率是110÷6=160,所以乙队单独完成这项工程需要的天数为1÷160=60天;(3)甲乙合作完成了总量的0.75,除以他们的效率和再加上10,即是实际完成的时间,即0.75÷(140+160)+10=18+10=28(天),因为甲队独做需用40天,所以40-28=12天,故实际完成的时间比甲独做所需的时间提前12天.考点:实际问题与一次函数.29.(1) y=2x+2 (2) 6y>时,x>2【解析】【分析】(1) 根据正比例函数的定义设y-2=kx(k≠0)然后把x,y的值代入求出k,即可求出解析式;(2)根据 (1)中的解析式,判断即可.【详解】(1)∵y-2与x成正比例函数∴设 y-2=kx(k≠0)将x=2,y=6 代入得,2k=6-2 k=2∴ y-2=2x∴y=2x+2(2)根据函数解析式 y=2x+2得到y随x的增加而增大∵ y=6时 x=2∴6y>时,x>2.【点睛】此题主要考查了待定系数法求一次函数解析式及判断函数取值范围,熟练掌握相关概念是解题的关键.30.10BC=【解析】【分析】由垂直平分线的性质得到BD=CD,则得到AB+AC=14,然后求出AB,由勾股定理即可求出BC的长度.【详解】解:∵DE是BC边上的垂直平分线,∴BD=CD,∵ABD∆的周长为14cm,∴AB+AD+DB=14,∴AB+AD+DC=AB+AC=14,∵8AC=,∴1486AB=-=,在Rt △ABC 中,由勾股定理,得10BC =.【点睛】本题考查了垂直平分线的性质定理,勾股定理,解题的关键是掌握由垂直平分线的性质定理,求出AB 的长度.31.(1)450, y 1=﹣150x +450,y 2=75x;(2)当经过169、209小时,快慢车相距50千米;(3)见解析【解析】【分析】(1)利用A 点坐标为(0,450),可以得出甲,乙两地之间的距离,B 点坐标为(3,0),代入y 1=kx+b 求出即可,利用线段OC 解析式为y 2=ax 求出a 即可;(2)分两种情况考虑:y 1﹣y 2=50,y 2﹣y 1=50,得出方程求解即可;(3)利用(2)中所求得出,y=|y 1-y 2|进而求出函数解析式,得出图象即可.【详解】(1)由图象可得,甲、乙两地之间的距离为450km设线段AB 对应的函数解析式为y 1=kx +b , 45030b k b =⎧⎨+=⎩,得150450k b =-⎧⎨=⎩, 即线段AB 对应的函数解析式为y 1=﹣150x +450,设线段OC 对应的函数解析式为y 2=ax ,450=6a ,得a =75,即线段OC 对应的函数解析式为y 2=75x ,(2) y 1﹣y 2=50,即﹣150x+450-75x=50,169=x y 2﹣y 1=50,即75x ﹣(﹣150x+450)=50,209x =当经过169、209小时,快慢车相距50千米 (3)甲车的速度为:450÷3=150km /h ,乙车的速度为:450÷6=75km /h ,故甲乙两车相遇的时间为:450÷(150+75)=2h ,设快、慢车之间的距离为y (km ),这个函数的大致图象如右图所示.【点睛】此题主要考查了一次函数的应用和待定系数法求解析式,根据已知图象上的点得出函数解析式以及利用分段函数分析是解题关键.。

【苏科版】数学八年级上册《期末考试卷》(含答案解析)

【苏科版】数学八年级上册《期末考试卷》(含答案解析)

2020-2021学年度第一学期期末测试苏科版八年级数学试题一、选择题(本大题有8小題,每小题3分,共24分,每小题只有一个选项是正确的,请把你认为正确的选项代号涂在答题卡相应位置上)1.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A. ()23-, B. ()23, C. ()23--, D. ()23-,2.下列四组线段中,可以构成直角三角形的是 ( )A. 4,5,6B. 2,3,4C. 7 ,3 ,4D. 1,2 ,3 3.下列无理数中,在﹣1与2之间的是( )A. ﹣3B. ﹣2C. 2D. 54.下列运算正确的是( )A. 4=2B. |﹣3|=﹣3C. 4=±2D. 39=35.一次函数y=-5x+3的图象经过的象限是( )A. 一、二、三B. 二、三、四C. 一、二、四D. 一、三、四 6.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A. 18B. 22.5C. 36D. 457.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A. 62︒B. 56︒C. 34︒D. 124︒8.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,则下列说法不正确的是( )A. 甲的速度保持不变B. 乙的平均速度比甲的平均速度大C. 在起跑后第180秒时,两人不相遇D. 在起跑后第50秒时,乙在甲的前面二、填空题(本大题有8小题,每小题3分,共24分,请把答案直接填写在答题卡上) 9.如果点P (m+1,m+3)在y 轴上,则m=_____.10.等腰三角形的一个外角是80°,则其底角是_____度.11.在311,2π,122-,0,0.454454445319______个. 12.圆周率π=3.1415926…精确到千分位的近似数是_____.13.已知实数x 、y 满足|3|20x y ++-=,则代数式()2019x y +的值为______.14.将函数y=3x+1图象沿y 轴向下平移2个单位长度,所得直线的函数表达式为_____.15.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.16.如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是_____.三、解答题(本题有10小题,共102分.解答时应写出必要的步骤、过程或文字说明)17.计算:2201931125272-⎛⎫-+--⎪⎝⎭18.求下列各式中的x:(1)()2116x-=;(2)321x+=. 19.已知2y-与x成正比,且当2x=时,6y=-. (1)求y与x之间的函数关系式;(2)若点(),10a在这个函数图像上,求a的值. 20.如图,点C线段AB上,//AD EB,AC BE=,AD BC=.CF平分DCE∠.求证:(1)ACD BEC≅;(2)CF DE⊥ .21.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.22.如图,一次函数y ax b =+与正比例函数y kx =的图像交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图像,写出关于x 的不等式kx ax b >+的解集;(3)求MOP ∆的面积.23.某学校是乒乓球体育传统项目校,为进一步推动该项目发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.24.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.25.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______.(2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.26.【模型建立】如图1,等腰直角三角形ABC 中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ∆∆≌;【模型应用】①已知直线1l :443y x =+与x 轴交于点A ,与y 轴交于点B ,将直线1l 绕着点A 逆时针旋转45︒至直线2l ,如图2,求直线2l 的函数表达式;②如图3,在平面直角坐标系中,点()8,6B ,作BA y ⊥轴于点A ,作BC x ⊥轴于点C ,P 是线段BC 上的一个动点,点Q 是直线26y x =-上的动点且在第一象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请直接写出此时点Q 的坐标,若不能,请说明理由.答案与解析一、选择题(本大题有8小題,每小题3分,共24分,每小题只有一个选项是正确的,请把你认为正确的选项代号涂在答题卡相应位置上)1.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A. ()23-,B. ()23,C. ()23--,D. ()23-,【答案】B【解析】【分析】根据关于x 轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数的性质解答即可.【详解】∵P (2,-3)关于x 轴对称,∴对称点与点P 横坐标相同,纵坐标互为相反数,∴对称点的坐标为(-2,-3).故答案为(-2,-3).【点睛】本题考查的是坐标与图形的变换,关于y 轴对称的点的坐标与原坐标纵坐标相等,横坐标互为相反数;关于x 轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数;掌握轴对称的性质是解题的关键,2.下列四组线段中,可以构成直角三角形的是 ( )A. 4,5,6B. 2,3,4 ,4 D. 1 【答案】D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A .42+52≠62,不可以构成直角三角形,故A 选项错误;B .22+32≠42,不可以构成直角三角形,故B 选项错误;C 2+2≠42,可以构成直角三角形,故C 选项错误.D .12+22,可以构成直角三角形,故D 选项正确.故选D .【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.下列无理数中,在﹣1与2之间的是()A. B. C. D.【答案】C【解析】试题分析:A1,故错误;B<﹣1,故错误;C.﹣1<2,故正确;2,故错误;故选C.【考点】估算无理数的大小.4.下列运算正确的是()A. =2B. |﹣3|=﹣3C. =±2D.【答案】A【解析】【分析】根据算术平方根和立方根的定义、绝对值的性质逐一计算可得结论.【详解】A=2,此选项计算正确;B.|﹣3|=3,此选项计算错误;C=2,此选项计算错误;D故选A.【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.5.一次函数y=-5x+3的图象经过的象限是()A. 一、二、三B. 二、三、四C. 一、二、四D. 一、三、四【答案】C【解析】试题分析:直线y=﹣5x+3与y轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.故选C .考点:一次函数的图象和性质.6.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A. 18B. 22.5C. 36D. 45【答案】B【解析】【分析】 易得BE =DE ,利用勾股定理求得DE 的长,利用三角形的面积公式可得阴影部分的面积.【详解】根据翻折的性质可知:∠EBD =∠DBC .又∵AD ∥BC ,∴∠ADB =∠DBC ,∴∠ADB =∠EBD ,∴BE =DE .设BE =DE =x ,∴AE =12﹣x .∵四边形ABCD 是矩形,∴∠A =90°,∴AE 2+AB 2=BE 2,即(12﹣x )2+62=x 2,x =7.5,∴S △EDB =12×7.5×6=22.5. 故选B .【点睛】本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE 的长是解决本题的关键.7.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A. 62︒B. 56︒C. 34︒D. 124︒【答案】A【解析】【分析】由AB=AC ,利用等边对等角得到一对角相等,再由BF=CD ,BD=CE ,利用SAS 得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解.【详解】解:∵AB=AC ,∴∠B=∠C ,在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩===∴△BFD ≌△EDC (SAS ),∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-12∠A=62°. 故选:A .【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键. 8.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,则下列说法不正确的是( )A. 甲的速度保持不变B. 乙的平均速度比甲的平均速度大C. 在起跑后第180秒时,两人不相遇D. 在起跑后第50秒时,乙在甲的前面【答案】B【解析】【分析】 A 、由于线段OA 表示甲所跑的路程S (米)与所用时间t (秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B 、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C 、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D 、根据图象知道起跑后50秒时OB 在OA 的上面,由此可以确定乙是否在甲的前面.【详解】解:A 、∵线段OA 表示甲所跑的路程S (米)与所用时间t (秒)之间的函数图象,∴甲的速度是没有变化的,故不选A ;B 、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选B ;C 、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故不选C ;D 、∵起跑后50秒时OB 在OA 的上面,∴乙是在甲的前面,故不选D .故选:B .【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本大题有8小题,每小题3分,共24分,请把答案直接填写在答题卡上) 9.如果点P (m+1,m+3)在y 轴上,则m=_____.【答案】﹣1.【解析】∵点P (m+1,m+3)在y 轴上,∴m+1=0,∴m=-1.故答案为-1.10.等腰三角形的一个外角是80°,则其底角是_____度.【答案】40【解析】【分析】首先判断出与80°角相邻的内角是底角还是顶角,然后再结合等腰三角形的性质及三角形内角和定理进行计算.【详解】与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故答案为40.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.11.在311,2π,122-,0,0.454454445______个. 【答案】3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,2π,0.4544544453个. 故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.12.圆周率π=3.1415926…精确到千分位的近似数是_____.【答案】3.142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点睛】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.13.已知实数x 、y 满足|3|0x +=,则代数式()2019x y +的值为______. 【答案】-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出()2019x y +的值即可.【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴()2019x y +=(-3+2)2019=(-1)2019=-1.故答案为:-1.【点睛】本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键.14.将函数y=3x+1的图象沿y 轴向下平移2个单位长度,所得直线的函数表达式为_____.【答案】y=3x-1【解析】∵y=3x +1的图象沿y 轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x ﹣1.故答案为y=3x ﹣1.15.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.【答案】21x y =⎧⎨=⎩. 【解析】 分析】 利用方程组的解就是两个相应的一次函数图象的交点坐标求解. 【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1), ∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 16.如图,在平面直角坐标系中,点P (﹣1,a )在直线y =2x +2与直线y =2x +4之间,则a 的取值范围是_____.【答案】0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.三、解答题(本题有10小题,共102分.解答时应写出必要的步骤、过程或文字说明)17.计算:2201931125272-⎛⎫-+-- ⎪⎝⎭【答案】-5【解析】【分析】根据实数的运算法则进行计算.【详解】解:原式=-1+4-5-3=-5.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、算术平方根等考点的运算.18.求下列各式中的x :(1)()2116x -=;(2)321x +=.【答案】(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x +=,x 3=-1,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型. 19.已知2y -与x 成正比,且当2x =时,6y =-.(1)求y 与x 之间的函数关系式;(2)若点(),10a 在这个函数图像上,求a 的值.【答案】(1)42y x =-+;(2)2a =-.【解析】分析】(1)设y-2=kx ,把已知条件代入可求得k 的值,则可求得y 与x 的函数关系式;(2)把点的坐标代入函数解析式可得关于a 的方程,则可求得a 的值.【详解】(1)设()20y kx k -=≠,则622k --=,∴4k =-,∴y 与x 的函数关系式是:42y x =-+;(2)当10y =时,1042a =-+,解得2a =-.【点睛】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.20.如图,点C 在线段AB 上,//AD EB ,AC BE =,AD BC =.CF 平分DCE ∠.求证:(1)ACD BEC ≅;(2)CF DE ⊥.【答案】(1)见解析;(2)见解析【解析】试题分析:(1)根据平行线性质求出∠A=∠B ,根据SAS 推出即可.(2)根据全等三角形性质推出CD=CE ,根据等腰三角形性质求出即可.试题解析:()1∵//AD BE ,∴A B ∠=∠,在ACD 和BEC 中AD BC A B AC BE =⎧⎪∠=∠⎨⎪=⎩∴()ACD BEC SAS ≅,()2∵ACD BEC ≅,∴CD CE =,又∵CF 平分DCE ∠,∴CF DE ⊥.21.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.【答案】24m 2.【解析】【分析】连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,根据△ABC 的面积减去△ACD 的面积就是所求的面积.【详解】解:连接AC∵AD DC ⊥∴90ADC ∠=︒在Rt ADC ∆中,根据勾股定理 2222435(m)AC AD CD =+=+=在ABC ∆中,∵22222251213AC BC AB +=+==ABC ∆是直角三角形∴()25123424m 22ABC AC A CD D B S S S ∆∆⨯⨯=-=-=四边形.【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.22.如图,一次函数y ax b =+与正比例函数y kx =的图像交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图像,写出关于x 的不等式kx ax b >+的解集;(3)求MOP ∆的面积.【答案】(1)22y x =-,y x =;(2)2x <;(3)1.【解析】【分析】(1)先把P (1,0),(0,-2)代入y=ax+b,可求出a,b 的值,然后把M 点坐标代入一次函数可求出m 的值;再将点M 的坐标代入y=kx 可得出k 的值.(2)观察函数图象,写出正比例函数图象在一次函数图象上方所对应的自变量的范围即可.(3)作MN 垂直x 轴,然后根据三角形面积求得即可.【详解】解:(1)∵y ax b =+经过()1,0和()0,2-∴02k b b=+⎧⎨-=⎩解得2k =,2b =- 一次函数表达式为:22y x =-∵点M 在该一次函数上,∴2222m =⨯-=,M 点坐标为()2,2又∵M 在函数y kx =上,∴2122m k ===. ∴正比例函数为y x =.(2)由图像可知,2x <时,22x x >-(3)作MN 垂直x 轴,由M 的纵坐标知2MN =, ∴故11212MOP S ∆=⨯⨯=.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.23.某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.【答案】(1)1个甲种乒乓球的售价是5元,乙种售价是7元;(2)当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【解析】【分析】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,根据题意列出二元一次方程组,解方程组即可;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,根据题意列出费用关于a 的一次函数,根据一次函数的性质解答即可.【详解】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1个甲种乒乓球的售价是5元,乙种售价是7元;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,()5720021400w a a a =+-=-+,∵()3200a a -,∴150a ≤,∴当150a =时,w 取得最小值,此时1100w =,20050a -=,答:当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【点睛】本题考查的是列二元一次方程组、一元一次不等式解实际问题/一次函数的性质等知识,解题的关键是学会利用一次函数的性质解决最值问题.24.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.【答案】(1)详见解析;(2)2.【解析】【分析】(1)在三角形ABE 与三角形ABC 中,由一对公共角相等,以及已知角相等,利用内角和定理即可得证; (2)由FD 与BC 平行,得到一对同位角相等,再由第一问的结论等量代换得到一对角相等,根据AF 为角平分线得到一对角相等,再由AF=AF ,利用ASA 得到三角形ABE 与三角形ADF 全等,利用全等三角形对应边相等得到AB=AD ,由AC-AD 求出DC 的长即可.【详解】(1)证明:在ABE ∆中,180ABE BAE AEB ∠=-∠-∠︒,在ABC ∆中,180C BAC ABC ∠=︒-∠-∠,∵AEB ABC ∠=∠,BAE BAC ∠=∠,∴ABE C ∠=∠;(2)解:∵FD BC ,∴ADF C =∠∠,又ABE C ∠=∠,∴ABE ADF ∠=∠,∵AF 平分BAE ∠,∴BAF DAF ∠=∠,ABE ∆和ADF ∆中,ABE ADF AF AFBAF DAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABE ADF ASA ∆∆≌, ∴AB AD =,∵8AB =,10AC =,∴1082DC AC AD =-=-=.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键. 25.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______.(2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.【答案】(1)50;80;3(2)()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩(3)货车出发3小时或5小时后两车相距90千米【解析】【分析】(1)观察图象即可解决问题;(2)分别求出得A 、B 、C 的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【详解】解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=. 故答案为50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩;(3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.【点睛】本题主要考查根据图象的信息来解答问题,关键在于函数的解析式的解答,这是这类题的一个难度,必须分段研究.26.【模型建立】如图1,等腰直角三角形ABC 中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ∆∆≌;【模型应用】①已知直线1l :443y x =+与x 轴交于点A ,与y 轴交于点B ,将直线1l 绕着点A 逆时针旋转45︒至直线2l ,如图2,求直线2l 的函数表达式;②如图3,在平面直角坐标系中,点()8,6B ,作BA y ⊥轴于点A ,作BC x ⊥轴于点C ,P 是线段BC 上的一个动点,点Q 是直线26y x =-上的动点且在第一象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请直接写出此时点Q 的坐标,若不能,请说明理由.【答案】【模型建立】详见解析;【模型应用】①721y x =--;②Q 点坐标为(4,2)或(203,223). .【解析】【分析】模型建立:根据△ABC 为等腰直角三角形,AD ⊥ED ,BE ⊥ED ,可判定△ACD ≌△CBE ;模型应用:①过点B 作BC ⊥AB ,交l 2于C ,过C 作CD ⊥y 轴于D ,根据△CBD ≌△BAO ,得出BD=AO=2,CD=OB=3,求得C (-3,5),最后运用待定系数法求直线l 2的函数表达式;②分两种情况考虑:如图3,∠AQP=90°,AQ=PQ ,设Q 点坐标为(a ,2a-6),利用三角形全等得到a+6-(2a-6)=8,得a=4,易得Q 点坐标;如图4,同理求出Q 的坐标.【详解】模型建立:证明:∵AD CD ⊥,BE EC ⊥∴90D E ∠=∠=︒.∵CB CA =,∠ACB=90°.∴1809090ACD BCE ︒︒∠+∠=-=︒.又∵90EBC BCE ∠+∠=︒,∴ACD EBC ∠=∠.在ACD ∆与CBE ∆中,D E ACD EBC CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BEC CDA ∆∆≌.模型应用:如图2,过点B 作BC AB ⊥交2l 于C ,过C 作CD y ⊥轴于D ,∵45BAC ∠=︒,∴ABC ∆为等腰直角三角形.由(1)可知:CBD BAO ∆∆≌,∴BD AO =,CD OB =. ∵144,3:l y x =+∴令0y =,得3x =-,∴()30A -,, 令0x =,得4y =,∴()0,4B .∴3BD AO ==,4CD OB ==,∴437OD =+=.∴()4,7C -.设2l 的解析式为y kx b =+∴7403k b k b =-+⎧⎨=-+⎩∴721k b =-⎧⎨=-⎩2l 的解析式:721y x =--.分以下两种情况:如图3,当∠AQP=90°时,AQ=PQ ,过点Q 作EF ⊥y 轴,分别交y 轴和直线BC 于点E 、F .在△AQE 和△QPF 中,由(1)可得,△AQE ≌△QPF (AAS ),AE=QF ,设点Q 的坐标为(a,2a-6),即6-(2a-6)=8-a ,解得a=4.此时点Q 的坐标为(4,2).如图4:当∠AQP=90°时,AQ=PQ 时,过点Q 作EF ⊥y 轴,分别交y 轴和直线BC 于点E 、F ,设点Q 的坐标为(a,2a-6),则AE=2a-12,FQ=8-a .,在△AQE和△QPF中,同理可得△AQE≌△QPF(AAS),AE=QF,即2a-12=8-a,解得a=20 3.此时点Q的坐标为(203,223).综上所述:A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,点Q的坐标为(4,2)或(203,223).【点睛】本题考查一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,需要考虑的多种情况,解题时注意分类思想的运用.。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( )A .80°B .90°C .100°D .110°2.如图,一只蚂蚁从点A 沿数轴向右直爬行2个单位到达点B ,点A 表示-2,设点B 所表示的数为m ,则1m -+(m+6)的值为 ( )A .3B .5C .7D .9 3.下列成语描述的事件为随机事件的是( )A .守株待兔B .水中捞月C .瓮中捉鳖D .水涨船高 4.已知一次函数y=kx +3(k≠0)的图象经过点A ,且函数值y 随x 的增大而增大,则点A 的坐标可能是( )A .(﹣2,﹣4)B .(1,2)C .(﹣2,4)D .(2,﹣1)5.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴6.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .67.已知一次函数()1y m x =-的图象上两点11(,)A x y ,22(,)B x y ,当12x x >时,有12y y <,那么m 的取值范围是( )A .0m >B .0m <C .1m >D .1m <8.下列图案中,不是轴对称图形的是( )A .B .C .D .9.在下列分解因式的过程中,分解因式正确的是( )A .-xz +yz =-z(x +y)B .3a 2b -2ab 2+ab =ab(3a -2b)C .6xy 2-8y 3=2y 2(3x -4y)D .x 2+3x -4=(x +2)(x -2)+3x10.下列图案中,属于轴对称图形的是( )A .B .C .D .11.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m ≥-C .3n x m -≤≤D .以上都不对12.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE 的长为( )A 3xB .23xC 3xD 3x13.点P(-2,3)关于x 轴的对称点的坐标为( )A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2)14.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg 15.在平面直角坐标系中,点M (﹣3,2)关于y 轴对称的点的坐标为( )A .(﹣3,﹣2)B .(﹣2,﹣3)C .(3,2)D .(3,﹣2) 二、填空题16.如图,在ABC ∆中,AB AC =,点P 为边AC 上一动点,过点P 作PD BC ⊥,垂足为点D ,延长DP 交BA 的延长线于点E ,若10AC =,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为__________.(不需写出x 的取值范围)17.如图,在数轴上,点A 、B 表示的数分别为0、2,BC ⊥AB 于点B ,且BC=1,连接AC ,在AC 上截取CD=BC ,以A 为圆心,AD 的长为半径画弧,交线段AB 于点E ,则点E 表示的实数是_____.18.如图,已知等腰三角形ABC ,AB =AC ,若以点B 为圆心,BC 长为半径画弧,分别与腰AB ,AC 交于点D ,E .给出下列结论:正确的结论有:_____(把你认为正确的结论的序号都填上).①AE =BE ;②AD =DE ;③∠EBC =∠A ;④∠BED =∠C .19.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.20.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.21.3a 2,则满足条件的奇数a 有_______个.22. 在实数范围内分解因式35x x -=___________.23.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.24.使函数6y x =-x 的取值范围是_______.25.点P (3,-4)到 x 轴的距离是_____________.三、解答题26.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.27.用函数方法研究动点到定点的距离问题.在研究一个动点P (x ,0)到定点A (1,0)的距离S 时,小明发现:S 与x 的函数关系为S =1,1,10,1,1,1,x x x x x x -<⎧⎪-==⎨⎪->⎩并画出图像如图:借助小明的研究经验,解决下列问题:(1)写出动点P (x ,0)到定点B (-2,0)的距离S 的函数表达式,并求当x 取何值时,S 取最小值?(2)设动点P (x ,0)到两个定点M (1,0)、N (5,0)的距离和为y .①随着x 增大,y 怎样变化?②当x 取何值时,y 取最小值,y 的最小值是多少?③当x <1时,证明y 随着x 增大而变化的规律.28.如图,在边长为12cm 的正方形ABCD 中,M 是AD 边的中点,点P 从点A 出发,在正方形边上沿A B C D →→→的方向以大于1 cm/s 的速度匀速移动,点Q 从点D 出发,在CD 边上沿D C →方向以1 cm/s 的速度匀速移动,P 、Q 两点同时出发,当点P 、Q 相遇时即停止移动.设点P 移动的时间为t(s),正方形ABCD 与PMQ ∠的内部重叠部分面积为y (cm 2).已知点P 移动到点B 处,y 的值为96(即此时正方形ABCD 与PMQ ∠的内部重叠部分面积为96cm 2).(1)求点P 的速度:(2)求y 与t 的函数关系式,并直接写出的取值范围.29.在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系.(1)在网格中画出△111A B C ,使它与△ABC 关于y 轴对称;(2)点A 的对称点1A 的坐标为 ;(3)求△111A B C 的面积.30.计算:(1)2(2)|386+(2)23(12)88-+31.3x y -+(x +y ﹣1)2=0,求y ﹣2x 的平方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由四边形ABCD 是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A的度数,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∴∠C=∠A=100°.故选:C.【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.C解析:C【解析】【分析】【详解】解:意,得+2∴0<m<1,∴|m-1|+(m+6)=1-m+m+6=7,故选C.【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m的值,确定m的范围.3.A解析:A【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选:A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.A解析:A【解析】【分析】先根据一次函数的增减性判断出k 的符号,再对各选项进行逐一分析即可.【详解】∵一次函数y=kx+2(k≠0)的函数值y 随x 的增大而增大,∴k>0.A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误. 故答案选A..【点睛】本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.5.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.故选D.【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 6.B解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC 上截取AE=AN ,连接BE ,∵∠BAC 的平分线交BC 于点D ,∴∠EAM=∠NAM ,在△AME 与△AMN 中,===AE ANEAM NAM AM AM∴△AME ≌△AMN (SAS ),∴ME=MN .∴BM+MN=BM+ME≥BE ,当BE 是点B 到直线AC 的距离时,BE ⊥AC ,此时BM+MN 有最小值,∵2AB ,∠BAC=45°,此时△ABE 为等腰直角三角形,∴2,即BE 2,∴BM+MN 2.故选:B .【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN 进行转化,是解题的关键.7.D解析:D【解析】【分析】先根据12x x >时,有12y y <判断y 随x 的增大而减小,所以x 的比例系数小于0,那么m-1<0,解出即可.【详解】解:∵当12x x >时,有12y y <∴ y 随x 的增大而减小∴m-1<0∴ m <1故选 D.【点睛】此题主要考查了一次函数的图像性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.8.D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.9.C解析:C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】-xz+yz=-z(x-y),故此选项错误;3a2b-2ab2+ab=ab(3a-2b+1),故此选项错误;6xy2-8y3=2y2(3x-4y)故此选项正确;x2+3x-4=(x+2)(x-2)+3x,此选项没把一个多项式转化成几个整式积的形式,此选项错误.故选:C.【点睛】因式分解的意义.10.D解析:D【解析】【分析】根据轴对称图形的定义逐一分析即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项不是轴对称图形,故本选项不符合题意;D选项是轴对称图形,故本选项符合题意;故选D.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.解析:C【解析】【分析】 首先根据交点得出3b n m k -=-,判定0,0m k <>,然后即可解不等式组. 【详解】∵直线y mx n =+与y kx b =+的图像交于点(3,-1)∴31,31m n k b +=-+=-∴33m n k b +=+,即3b n m k-=- 由图象,得0,0m k <>∴mx n kx b +≥+,解得3x ≤0mx n +≤,解得n x m≥- ∴不等式组的解集为:3n x m -≤≤ 故选:C.【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.12.D解析:D【解析】【分析】根据等腰三角形和三角形外角性质求出BD=DE ,求出BC ,在Rt △BDC 中,由勾股定理求出BD 即可.【详解】解:∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,AB=BC ,∵BD 为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE ,∴∠E=∠CDE ,∵∠E+∠CDE=∠ACB ,∴∠E=30°=∠DBC ,∴BD=DE ,∵BD 是AC 中线,CD=x ,∴AD=DC=x ,∵△ABC是等边三角形,∴BC=AC=2x,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==∴==DE BD故选:D.【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.13.B解析:B【解析】【分析】根据平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【详解】解:根据平面直角坐标系中对称点的规律可知,点P(-2,3)关于x轴的对称点坐标为(-2,-3).故选:B.【点睛】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.15.C解析:C【解析】【分析】直接利用关于y 轴对称则纵坐标相等横坐标互为相反数进而得出答案.【详解】解:点M (﹣3,2)关于y 轴对称的点的坐标为:(3,2).故选:C .【点睛】本题考查的知识点是关于x 轴、y 轴对称的点的坐标,属于基础题目,易于掌握.二、填空题16.【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E=∠CPD,再根据对顶角相等得到∠E=∠APE,根据等角对等边得到AE=AP ,即可得到结论.【详解】∵AB=AC,∴∠B解析:20y x =-【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E =∠CPD ,再根据对顶角相等得到∠E =∠APE ,根据等角对等边得到AE =AP ,即可得到结论.【详解】∵AB =AC ,∴∠B =∠C .∵PD ⊥BC ,∴∠EDB =∠PDC =90°,∴∠B +∠E =90°,∠C +∠CPD =90°,∴∠E =∠CPD .∵∠APE =∠CPD ,∴∠E =∠APE ,∴AE =AP .∵AB =AC =10,PC =x ,∴AP =AE =10-x .∵BE =AB +AE ,∴y =10+10-x =20-x .故答案为:y =20-x .【点睛】本题考查了等腰三角形的性质和判定以及直角三角形的性质.解题的关键是得到∠E =∠CPD .17.【解析】∵∠ABC=90°,AB=2,BC=1,∴AC= = ,∵CD=CB=1,∴AD=AC-CD= -1,∴AE= -1,∴点E表示的实数是 -1.【解析】∵∠ABC=90°,AB=2,BC=1,∴,∵CD=CB=1,∴ -1,∴,∴点E18.③【解析】【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BD=BE=B解析:③【解析】【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BD=BE=BC,∴∠ACB=∠BEC,∠BDE=∠BED,∴∠BEC=∠ABC=∠ACB,∴∠EBC=∠A,无法得到①AE=BE;②AD=DE;④∠BED=∠C.故答案为:③.【点睛】本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.19.(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标解析:(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),故填:(-1,-3).【点睛】本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.20.8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长AB===10米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本解析:8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.21.9【解析】的整数部分为,则可求出a 的取值范围,即可得到答案.【详解】解:的整数部分为,则a 的取值范围 8<a <27所以得到奇数有:9、11、13、15、17、19、21、23、2解析:9【解析】【分析】的整数部分为2,则可求出a 的取值范围,即可得到答案.【详解】2,则a 的取值范围 8<a <27所以得到奇数a 有:9、11、13、15、17、19、21、23、25 共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.22.【解析】提取公因式后利用平方差公式分解因式即可,即原式=.故答案为解析:(x x x -【解析】提取公因式后利用平方差公式分解因式即可,即原式=2(5)(x x x x x -=-.故答案为(.x x x23.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.24.【解析】【分析】根据二次根式,被开方数a≥0,可得6-x≥0,解不等式即可.【详解】解:∵有意义∴6-x ≥0∴故答案为:【点睛】本题考查了函数自变量的取值范围,二次根式有意义的条解析:6x ≤【解析】【分析】a≥0,可得6-x≥0,解不等式即可.【详解】解:∵y =∴6-x≥0∴6x ≤故答案为:6x ≤【点睛】,被开方数a≥0是解题的关键.25.4【解析】试题解析:根据点与坐标系的关系知,点到x 轴的距离为点的纵坐标的绝对值,故点P (3,﹣4)到x 轴的距离是4.解析:4【解析】试题解析:根据点与坐标系的关系知,点到x 轴的距离为点的纵坐标的绝对值,故点P (3,﹣4)到x 轴的距离是4.三、解答题26.(1)详见解析;(2)2.【解析】【分析】(1)在三角形ABE 与三角形ABC 中,由一对公共角相等,以及已知角相等,利用内角和定理即可得证;(2)由FD 与BC 平行,得到一对同位角相等,再由第一问的结论等量代换得到一对角相等,根据AF 为角平分线得到一对角相等,再由AF=AF ,利用ASA 得到三角形ABE 与三角形ADF 全等,利用全等三角形对应边相等得到AB=AD ,由AC-AD 求出DC 的长即可.【详解】(1)证明:在ABE ∆中,180ABE BAE AEB ∠=-∠-∠︒,在ABC ∆中,180C BAC ABC ∠=︒-∠-∠,∵AEB ABC ∠=∠,BAE BAC ∠=∠,∴ABE C ∠=∠;(2)解:∵FD BC ,∴ADF C =∠∠,又ABE C ∠=∠,∴ABE ADF ∠=∠,∵AF 平分BAE ∠,∴BAF DAF ∠=∠,在ABE ∆和ADF ∆中,ABE ADF AF AFBAF DAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABE ADF ASA ∆∆≌, ∴AB AD =,∵8AB =,10AC =,∴1082DC AC AD =-=-=.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.27.(1)S =2,2,20,2,2,2,x x x x x x --<-⎧⎪+==-⎨⎪+>-⎩,当x =-2时,S 的最小值为0;(2)①当x <1时,y 随x 增大而减小;当1≤x ≤5时,y 是一个固定的值;当x >5时,y 随x 增大而增大,②当1≤x ≤5时,y 取最小值,y 的最小值是4,③当x <1时,y 随x 增大而减小.【解析】【分析】(1)根据x 轴上两点之间的距离等于它们差的绝对值,以及绝对值的意义可直接写出结论; (2)根据x 轴上两点之间的距离等于它们差的绝对值,得出PM 和PN 的距离,它们之和即为y.①分情况讨论,根据一次函数的性质可得y 的变化情况;②根据y 的变化情况可求;③当x <1时,62y x =-,根据函数的增减性可得.【详解】(1)S =2,2,20,2,2,2,x x x x x x --<-⎧⎪+==-⎨⎪+>-⎩;∵当x <2时y 随x 增大而减小,当x >2时y 随x 的增大而增大,∴当x =-2时,S 的最小值为0.(2)由题意得y =|1|x -+|5|x -,根据绝对值的意义,可转化为y =62,14,1526,5x x x x x -<⎧⎪⎨⎪->⎩①当x <1时,y 随x 增大而减小;当1≤x ≤5时,y 是一个固定的值;当x >5时,y 随x 增大而增大.②当1≤x ≤5时,y 取最小值,y 的最小值是4.③当x <1时,62y x =-,∵-2<0∴当x <1时,y 随x 增大而减小.【点睛】本题考查一次函数的应用,一次函数的性质,化简绝对值.掌握x 轴上两点之间的距离公式,能分段讨论化简绝对值是解决此题的关键.28.(1)3 cm/s ;(2)()()()144120418021481081289t t y t t t t ⎧-≤≤⎪=-<≤⎨⎪-<≤⎩. 【解析】【分析】(1)由于P 的速度比Q 的速度大,因此P 到达B 点时,Q 在DC 边上,此时重叠部分面积为正方形的面积减去△DQM 和△ABM 的面积,求解即可;(2)分三种情况讨论:当点P 在边AB 上时,当点P 在边BC 上时,当点P 在边CD 上时,根据题意列函数关系式即可.【详解】解:(1)由已知得,AB=AD=CD=BC=12,∵M 是AD 边的中点,∴AM=MD=6,由题意可知当P 到达B 点时Q 在DC 边上,DQ=t ,∴ABM DMQ ABCD y S S S =--△△正方形 , ∴11961212612622t =⨯-⨯⨯-⨯⨯, 解得,t=4,∴ P 点的速度为12÷4=3 cm/s ;(2)当点P 在边AB 上时,04t ≤≤, APM DMQ ABCD y S S S =--△△正方形,111212636=144-1222y t t t =⨯-⨯⨯-⨯⨯ 当点P 在边BC 上时,48t <≤,DMQ ABCD AMPB y S S S =--△正方形梯形()1112123126126=180-2122y t t t =⨯-⨯-+⨯-⨯⨯ 当点P 在边CD 上时,8t <≤9,MQ y S =△P ,()112336=108-122y t t t =⨯⨯--⨯; 综上所述,y 与t 的函数关系式为()()()144120418021481081289t t y t t t t ⎧-≤≤⎪=-<≤⎨⎪-<≤⎩. 【点睛】本题考查了四边形的动点问题,注意分类讨论是解题的关键.29.(1)见解析;(2)(-3,5);(3)7.【解析】【分析】(1)分别作出点A 、B 、C 关于y 轴的对称点,再顺次连接可得;(2)根据所作图形可得A 1点的坐标;(3)根据割补法求解可得△111A B C 的面积等于矩形的面积减去三个三角形的面积.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)由图知A 1的坐标为(-3,5);故答案是:(-3,5);(3)△111A B C 的面积为4×4-12×2×3-12×1×4-12×2×4=7. 【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.30.(1)32)1﹣24 【解析】【分析】(1)首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】(1)2(2)|386+ 333(2)23(12)88-+=3﹣2224- =1﹣224+=1﹣24【点睛】此题主要考查二次根式的混合运算,熟练掌握,即可解题.31.±2.【解析】【分析】直接利用非负数的性质得出关于x ,y 的方程组进而得出答案.【详解】(x +y ﹣1)2=0,∴3010x y x y-+=⎧⎨+=⎩﹣, 解得:12x y =-⎧⎨=⎩, 故2224yx =+=﹣, 则y ﹣2x 的平方根为:±2.【点睛】此题主要考查了算术平方根以及偶次方的性质,正确得出x ,y 的值是解题关键.。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.下列图书馆的馆徽不是..轴对称图形的是( ) A . B . C . D .2.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .53.在平面直角坐标系中,点P (﹣3,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限4.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)5.3329a b a b a b a(a >0,b >0)的结果是( ) A 53ab B 23ab C 179ab D 89ab 6.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒ 7.在3π-,3127-,7,227-,中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个8.已知一次函数()1y m x =-的图象上两点11(,)A x y ,22(,)B x y ,当12x x >时,有12y y <,那么m 的取值范围是( )A .0m >B .0m <C .1m >D .1m <9.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD10.如图,在△ABC 中,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点E ,F ,连接AE ,BE ,作直线EF 交AB 于点M ,连接CM ,则下列判断不正确...的是A .AM =BMB .AE =BEC .EF ⊥ABD .AB =2CM 11.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x >12.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b 的图象大致是( )A .B .C .D .13.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( ) A .1 B .2 C .4 D .无数14.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( )A .总体B .个体C .样本D .样本容量 15.下列各组数是勾股数的是( )A .6,7,8B .1,3,2C .5,4,3D .0.3,0.4,0.5 二、填空题16.“徐宿淮盐”铁路是一条连接徐州与盐城的高速铁路,全长约为316000米.将数据316000用四舍五入法精确到万位,并用科学记数法表示为____________.17.圆周率π=3.1415926…精确到千分位的近似数是_____.18.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.19.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.20.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,且50A ∠=︒,则EBC ∠的度数是__________.21.如图,已知直线3y x b =+与2y ax =-的交点的横坐标为-2,则关于x 的不等式32x b ax +>-的解集为______.22.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____.23.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.24.等腰三角形的一个内角是100︒,则它的底角的度数为_________________.25.如图,ABC ∆中,B C ∠=∠,D ,E ,F 分别是BC ,AC ,AB 上的点,且BF CD =,BD CE =,55FDE ∠=︒,则A ∠=__________︒.三、解答题26.如图,一次函数23y mx m =++的图像与12y x =-的图像交于点C ,与x 轴和y 轴分别交于点A 和点B ,且点C 的横坐标为3-.(1)求m 的值与AB 的长;(2)若点Q 为线段OB 上一点,且14OCQ BAO S S ∆∆=,求点Q 的坐标.27.如图是88⨯的正方形网格,每个小方格都是边长为1的正方形,在网格中建立平面直角坐标系xOy ,使点A 坐标为()2,3-,点B 坐标为()41-,.(1)试在图中画出这个直角坐标系;(2)标出点()1,1C ,连接AB 、AC ,画出ABC ∆关于y 轴对称的111A B C ∆.28.如图1,在直角坐标系xoy 中,点A 、B 分别在x 、y 轴的正半轴上,将线段AB 绕点B 顺时针旋转90°,点A 的对应点为点C .(1)若A (6,0),B (0,4),求点C 的坐标;(2)以B 为直角顶点,以AB 和OB 为直角边分别在第一、二象限作等腰Rt △ABD 和等腰Rt △OBE ,连DE 交y 轴于点M ,当点A 和点B 分别在x 、y 轴的正半轴上运动时,判断并证明AO 与MB 的数量关系.29.如图①,A 、B 两个圆柱形容器放置在同一水平桌面上,开始时容器A 中盛满水,容器B 中盛有高度为1 dm 的水,容器B 下方装有一只水龙头,容器A 向容器B 匀速注水.设时间为t (s),容器A 、B 中的水位高度A h (dm)、B h (dm)与时间t (s)之间的部分函数图像如图②所示.根据图中数据解答下列问题:(1)容器A 向容器B 注水的速度为 dm 3/s(结果保留π),容器B 的底面直径m = dm;(2)当容器B 注满水后,容器A 停止向容器B 注水,同时开启容器B 的水龙头进行放水,放水速度为4πdm 3/s.请在图②中画出容器B 中水位高度B h 与时间 (4t ≥)的函数图像,说明理由; (3)当容器B 注满水后,容器A 继续向容器B 注水,同时开启容器B 的水龙头进行放水,放水速度为2πdm 3/s ,直至容器A 、B 水位高度相同时,立即停止放水和注水,求容器A 向容器B 全程注水时间.(提示:圆柱体积=圆柱的底面积×圆柱的高)30.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.31.如图,函数 483y x =-+的图像分别与 x 轴、 y 轴交于 A 、 B 两点,点 C 在 y 轴上, AC 平分 OAB ∠.(1) 求点 A 、 B 的坐标;(2) 求 ABC 的面积;(3) 点 P 在坐标平面内,且以A 、 B 、P 为顶点的三角形是等腰直角三角形,请你直接写出点 P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意;故选:D.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C解析:C【解析】【分析】延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.【详解】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE 为中线, ∴CE=AE=BE=1 2.52AB =, ∴∠ACF=∠BAC ,又∵∠AFC=∠BCA=90°,∴△ABC ∽△CAF , ∴CF AC AC BA =,即445CF =, ∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC ,AE=DE ,∴CE 垂直平分AD ,又∵E 为AB 的中点,∴EF 为△ABD 的中位线,∴BD=2EF=1.4,∵AE=BE=DE ,∴∠DAE=∠ADE ,∠BDE=∠DBE ,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt △ABD 中,2222245 1.45AB BD -=-=, 故选:C .【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题. 3.B解析:B【解析】【分析】根据各象限的点的坐标的符号特征判断即可.【详解】∵-3<0,2>0,∴点P (﹣3,2)在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.4.D解析:D【解析】【分析】先求出A 点绕点C 顺时针旋转90°后所得到的的坐标A ',再求出A '向右平移3个单位长度后得到的坐标A '',A ''即为变换后点A 的对应点坐标.【详解】将Rt ABC ∆先绕点C 顺时针旋转90°,得到点坐标为A '(-1,2),再向右平移3个单位长度,则A '点的纵坐标不变,横坐标加上3个单位长度,故变换后点A 的对应点坐标是A ''(2,2).【点睛】本题考察点的坐标的变换及平移.5.A解析:A【解析】【分析】23a b a a b a ⨯⨯即可求解.【详解】解:∵a >0,b >0,23a b a a b a ⨯⨯=故选:A .【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.6.C解析:C【解析】【分析】由已知条件,根据轴对称的性质可得∠C =∠C ′=30°,利用三角形的内角和等于180°可求答案.【详解】∵△ABC 与△A ′B ′C ′关于直线l 对称,∴∠A =∠A ′=30°,∠C =∠C ′=60°;∴∠B =180°−30°-60°=90°.故选:C .【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.7.B解析:B【解析】【分析】根据无理数的定义判断即可.【详解】解:3π-1-3 ,227-可以化成分数,不是无理数. 故选 B【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.8.D解析:D【解析】【分析】先根据12x x >时,有12y y <判断y 随x 的增大而减小,所以x 的比例系数小于0,那么m-1<0,解出即可.【详解】解:∵当12x x >时,有12y y <∴ y 随x 的增大而减小∴m-1<0∴ m <1故选 D.【点睛】此题主要考查了一次函数的图像性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.9.D解析:D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.10.D解析:D【解析】【分析】由作图可知EF是AB的垂直平分线,据此对各项进行分析可得答案.【详解】解:由作图可知EF是AB的垂直平分线,所以AM=BM,AE=BE,EF⊥AB,即选项A,B,C均正确,CM是AB边上的中线,AB=2CM错误.故选:D【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.11.A解析:A【解析】【分析】由图知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大,由此得出当x>0时,y>2,进而可得解.【详解】根据图示知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大;即当x>0时函数值y的范围是y>2;因而当不等式kx+b-2>0时,x的取值范围是x>0.故选:A.【点睛】本题主要考查的是一次函数与一元一次不等式,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.12.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.13.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.14.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.15.C解析:C【解析】【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可.【详解】解:A 、222768+≠,故此选项错误;BC 、222345+=,故此选项正确;D 、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.二、填空题16.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于解析:53.210⨯【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】316000≈320000=3.2×105.故答案为:3.2×105.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,正确确定a 的值以及n 的值是解题的关键.17.142【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分解析:142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点睛】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.18.【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.19.a=-1或a=-7.【解析】由点P 到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a 的值即可.【详解】解:∵点P 到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-解析:a=-1或a=-7.【解析】【分析】由点P 到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a 的值即可.【详解】解:∵点P 到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.20.15°【解析】【分析】根据等边对等角和三角形的内角和定理,即可求出∠ABC,然后根据垂直平分线的性质和等边对等角即可求出∠EBA,从而求出的度数.【详解】解:∵,∴∠ABC=∠ACB=(解析:15°【解析】【分析】根据等边对等角和三角形的内角和定理,即可求出∠ABC ,然后根据垂直平分线的性质和等边对等角即可求出∠EBA ,从而求出EBC ∠的度数.【详解】解:∵AB AC =,50A ∠=︒∴∠ABC=∠ACB=12(180°-∠A )=65° ∵ED 垂直平分线段AB∴∠EBA=∠A=50°=∠ABC-∠EBA=15°∴EBC故答案为:15°.【点睛】此题考查的是等腰三角形的性质、垂直平分线的性质和三角形的内角和,掌握等边对等角、垂直平分线的性质和三角形的内角和定理是解决此题的关键.21.x>−2【解析】【分析】直线y=3x+b与y=ax−2的交点的横坐标为−2,求不等式3x+b>ax−2的解集,就是看函数在什么范围内y=3x+b的图象在函数y=ax−2的图象上方.【详解】解析:x>−2【解析】【分析】直线y=3x+b与y=ax−2的交点的横坐标为−2,求不等式3x+b>ax−2的解集,就是看函数在什么范围内y=3x+b的图象在函数y=ax−2的图象上方.【详解】解:从图象得到,当x>−2时,y=3x+b的图象在y=ax−2的图象上方,∴不等式3x+b>ax−2的解集为:x>−2.故答案为x>−2.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.22.t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温解析:t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温t(℃)与高度h(m)的函数关系式为t=﹣0.006h+20,故答案为:t=﹣0.006h+20.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.23.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征解析:a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征.24.【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是解析:40【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查了等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.25.【解析】【分析】根据SAS 定理判定△FBD≌△DCE,然后根据全等三角形的性质求得∠FDB=∠DEC,从而求得∠DEC+∠EDC 的度数,然后求出∠C 的度数,最后利用等腰三角形的性质求∠A.【解析:70︒【解析】【分析】根据SAS 定理判定△FBD ≌△DCE ,然后根据全等三角形的性质求得∠FDB=∠DEC ,从而求得∠DEC+∠EDC 的度数,然后求出∠C 的度数,最后利用等腰三角形的性质求∠A.【详解】解:∵BF CD =,B C ∠=∠,BD CE =∴△FBD ≌△DCE∴∠FDB=∠DEC∵55FDE ∠=︒∴∠FDB++∠EDC=∠DEC+∠EDC=180°-55°=125°∴∠C=180°-125°=55°∴∠A=180°-2×55°=70°【点睛】本题考查全等三角形的判定和性质及等腰三角形的性质,掌握判定定理正确推理论证是本题的解题关键.三、解答题26.(1) 32m =,AB =(2) (0,2)Q . 【解析】【分析】(1)把点C 的横坐标代入正比例函数解析式,求得点C 的纵坐标,然后把点C 的坐标代入一次函数解析式即可求得m 的值,从而得到一次函数的解析式,则易求点A 、B 的坐标,然后根据勾股定理即可求得AB ;(2)由14OCQ BAO S S ∆∆=得到OQ 的长,即可求得Q 点的坐标. 【详解】(1)∵点C 在直线12y x =-上,点C 的横坐标为−3, ∴点C 坐标为3(3,)2-,又∵点C 在直线y =mx +2m +3上,∴33232m m -++=, ∴32m =, ∴直线AB 的函数表达式为362y x =+, 令x =0,则y =6,令y =0,则3602x +=,解得x =−4, ∴A (−4,0)、B (0,6),∴2246213AB =+=;(2)∵14OCQ BAO S S ∆∆=,∴111346242OQ ⨯⋅=⨯⨯⨯, ∴OQ =2,∴点Q 坐标为(0,2).【点睛】 考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大.27.(1)详见解析;(2)详见解析.【解析】【分析】(1)由点A的坐标可建立平面直角坐标系;(2)先作出点C,再分别作出点A、B、C关于y轴的对称点,顺次连接即可得.【详解】如图所示;(2)如图所示.【点睛】本题考查了作图﹣轴对称变换,熟知轴对称变换的性质是解答此题的关键.28.(1)C(-4,-2);(2)AO= 2MB.证明见解析.【解析】【分析】(1)过C点作y轴的垂线段,垂足为H点,证明△ABO≌△BCH,利用全等三角形的性质结合C在第三象限即可求得C点坐标;(2)过D点作DN⊥y轴于点N,证明△DBN≌△BAO,根据全等三角形对应边相等BN=AO,DN=BO,再证明△DMN≌△EMB,可得MN=MB,于是可得AO=2MB.【详解】(1)解:过C点作y轴的垂线段,垂足为H点.∴∠BHC=∠AOB=90°,∵A(6,0),B(0,4)∴OA=6,OB=4∵∠ABC=90°,∴∠ABO+∠OBC=90°,又∠ABO+∠OAB=90°,∴∠OBC=∠OAB,∵在△ABO和△BCH中BHC AOBOBC OABAB BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABO≌△BCH,∴AO=BH=6,CH=BO=4,∴OH=2,∴C(-4,-2).(2)AO= 2MB.过D点作DN⊥y轴于点N,∴∠BND=∠AOB=90°,∵△ABD、△OBE为等腰直角三角形,∴∠ABD=∠OBE=90°,AB=BD,BO=BE,∴∠DBN+∠ABO=∠BAO+∠ABO=90°,∴∠DBN=∠BAO,∴△DBN≌△BAO,∴BN=AO,DN=BO,在△DMN和△EMB中,∵DN=BO=BE,∠DNM=∠EBM,∠DMN=∠EMB,∴△DMN≌△EMB,∴MN=MB=12BN=12AO∴AO=2MB.【点睛】本题考查坐标与图形,旋转的性质,全等三角形的性质与判定,等腰直角三角形的性质.能正确作出辅助线,并根据全等三角形的判定定理证明三角形全等是解决此题的关键. 29.(1)34π,2;(2)见详解;(3)6s.【解析】 【分析】 (1)通过注水速度=注水体积÷注水时间以及圆柱体积=圆柱的底面积×圆柱的高,代入公式进行计算即可;(2)通过放水时间=放水体积÷放水速度,求出时间即可求出放水时间,然后画出图像; (3)列出容器A 和容器B 中水的高度与时间t 的关系,通过水位高度相同求解即可.【详解】解:(1)由图象可知,4秒时间A 容器内水的高度下降了1dm ,B 容器内水的高度上升了3dm ,B 容器增加的水的体积等于A 容器减少的水的体积,A 容器减少的水的体积22313A V sh ππ⎛⎫==⨯= ⎪ ⎪⎝⎭,则注水速度为34V t π=, B 容器流入的水的体积 2332B m V sh ππ⎛⎫==⨯= ⎪⎝⎭, 解得m=2,故答案为34π;2. (2)注满后B 容器中水的总体积为:22442ππ⎛⎫⨯= ⎪⎝⎭, ∵放水速度为4π, ∴放空所需要的时间为:4π÷4π=16 s . 如图所示,(3)4秒时A容器体积为226ππ⨯=⎝⎭此时B 容器体积为4π根据注水速度,A 容器内水的高度为()36414334t t πππ--=- B 容器内水的高度:()()344245494t t t ππππ+---=- 由153944t t -=- 解得t=6, ∴容器A 向容器B 全程注水时间t 为6s .【点睛】此题的关键是找到题中各个量之间的关系,注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,理解题意是解题的关键.30.(1)(0,3);(2)112y x =-. 【解析】【分析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标;(2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入即可得到2l 的解析式.【详解】(1)在Rt △AOB 中,∵222OA OB AB +=,∴2222OB +=,∴OB=3,∴点B 的坐标是(0,3) .(2)∵ABC S ∆=12BC•OA , ∴12BC×2=4, ∴BC=4,∴C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入得:20{1k b b +==-,∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质. 31.(1)A (6,0),B (0,8);(2)15;(3)使△PAB 为等腰直角三角形的P 点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【解析】【分析】(1)在函数解析式中分别令y=0和x=0,解相应方程,可求得A 、B 的坐标;(2)过C 作CD ⊥AB 于点D ,由勾股定理可求得AB ,由角平分线的性质可得CO=CD ,再根据S △AOB =S △AOC +S △ABC ,可求得CO ,则可求得△ABC 的面积;(3)可设P (x ,y ),则可分别表示出AP 2、BP 2,分∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,分别可得到关于x 、y 的方程组,可求得P 点坐标.【详解】解:(1)在483y x =-+中, 令y=0可得0=-43x+8,解得x=6, 令x=0,解得y=8,∴A (6,0),B (0,8);(2)如图,过点C 作CD ⊥AB 于点D ,∵AC 平分∠OAB ,∴CD=OC ,由(1)可知OA=6,OB=8,∴AB=10,∵S △AOB =S △AOC +S △ABC ,∴12×6×8=12×6×OC+12×10×OC ,解得OC=3, ∴S △ABC =12×10×3=15; (3)设P (x ,y ),则AP 2=(x-6)2+y 2,BP 2=x 2+(y-8)2,且AB 2=100,∵△PAB为等腰直角三角形,∴有∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,①当∠PAB=90°时,则有PA2=AB2且PA2+AB2=BP2,即222222(6)100(6)100(8)x yx y x y⎧-+=⎨-++=+-⎩,解得146xy=⎧⎨=⎩或26xy=-⎧⎨=-⎩,此时P点坐标为(14,6)或(-2,-6);②∠PBA=90°时,有PB2=AB2且PB2+AB2=PA2,即222222(8)100(8)100(6)x yx y x y⎧+-=⎨+-+=-+⎩,解得814xy=⎧⎨=⎩或82xy=-⎧⎨=⎩,此时P点坐标为(8,14)或(-8,2);③∠APB=90°时,则有PA2=PB2且PA2+PB2=AB2,即22222222(6)(8)(6)(8)100x y x yx y x y⎧-+=+-⎨-+++-=⎩,解得11xy=-⎧⎨=⎩或77xy=⎧⎨=⎩,此时P点坐标为(-1,1)或(7,7);综上可知使△PAB为等腰直角三角形的P点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【点睛】本题为一次函数的综合应用,涉及函数图象与坐标轴的交点、勾股定理、三角形的面积、角平分线的性质、等腰直角三角形的性质、分类讨论思想及方程思想等知识.在(1)中注意函数图象与坐标轴的交点的求法,在(2)中利用角平分线的性质和等积法求得OC的长是解题的关键,在(3)中用P点坐标分别表示出PA、PB的长,由等腰直角三角形的性质得到关于P点坐标的方程组是解题的关键.本题考查知识点较多,综合性较强,计算较大,难度较大.。

苏科版八年级上册数学期末测试卷及含答案

苏科版八年级上册数学期末测试卷及含答案

苏科版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,△ABC和△AB′C′关于直线l对称,下列结论中:①△ABC≌△AB′C′;②∠BAC′=∠B′AC;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在l上.其中正确的有( )A.4个B.3个C.2个D.1个2、如图,ABCD四点在同一条直线上,△ACE≌△BDF,则下列结论正确的是()A.△ACE和△BDF成轴对称B.△ACE经过旋转可以和△BDF重合C.△ACE和△BDF成中心对称D.△ACE经过平移可以和△BDF重合3、如图,正方形ABCD的边长为2,,线段MN的两端在CD,AD上滑动,当与以D,M,N为顶点的三角形相似时,DM的长为()A. B. 或 C. D. 或4、如图,矩形ABCG(AB<BC)与矩形CDEF全等,点B,C,D在同一条直线上,∠APE的顶点P在线段BD上移动,使∠APE为直角的点P的个数是()A.0B.1C.2D.35、如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对6、如图,反比例函数第一象限内的图象经过的顶点A,C,,且轴,点A,C,的横坐标分别为1,3,若,则k的值为()A.1B.C.D.27、如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C. D.8、在平面直角坐标系中,下列各点在第二象限的是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)9、如图,在△ABC中AD是∠A的外角平分线,P是AD上一动点且不与点A,D 重合,记AB+AC=a,PB+PC=b,则a、b的大小关系是()A.a<bB.a=bC.a>bD.不能确定10、在平面直角坐标系中,点A的坐标为(-4,3),AB∥y轴,AB=5,则点B 的坐标为()A.(1,3)B.(-4,8)C.(-4,8)或(-4,-2)D.(1,3)或(-9,3)11、如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为80.8千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有()A.1个B.2个C.3个D.4个12、如图,在和中,,添加一个条件,不能证明和全等的是()A. B. C. D.13、如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是( )A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形14、下列交通标志中既是中心对称图形,又是轴对称图形的是()A. B. C. D.15、向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是()A. B. C.D.二、填空题(共10题,共计30分)16、如图,已知直线l:y= x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N 1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M8坐标为________.17、在公式s=v0t+2t2(v为已知数)中,常量是________ ,变量是________ .18、如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD 的中点,则EC=________.19、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,则以AB为边长的正方形面积为________.20、如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于________.21、在平面直角坐标系中,点A(2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为________.22、点M(-8,12)到x轴的距离是________,到y轴的距离是________.23、如图,在△ABC中,∠B=90°,AB= ,将AC沿AE折叠,使点C与点D 重合,且DE⊥BC,则AE=________.24、如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是________.25、已知点(﹣2,y1),(3,y2)都在直线y=kx﹣1上,若y1<y2,则k________0.(填>,<或=)三、解答题(共5题,共计25分)26、计算:27、已知:等边△ABC,CE∥AB,D为BC上一点,且∠ADE=60°,求证:△ADE 是等边三角形.28、在中,垂直平分,是边上一点,连接,是延长线上一点,连接,若平分,求证:.29、如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC 上,BE=FC.求证:BD=DF.30、如图,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.求证:BD+CE=DE.参考答案一、单选题(共15题,共计45分)1、B3、D4、C5、D6、C7、B8、C9、A10、C11、A12、B13、A14、D15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、30、。

苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( ) A .80°B .90°C .100°D .110°2.下列四个实数:223,0.1010017π,3,,其中无理数的个数是( ) A .1个B .2个C .3个D .4个3.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )A .B .C .D .4.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cmB .0.0001cmC .0.00001cmD .0.000001cm5.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC的长为( )A 51B 51C 31D 316.在平面直角坐标系中,把直线23y x =-沿y 轴向上平移2个单位后,所得直线的函数表达式为( ) A .22y x =+B .25y x =-C .21y x =+D .21y x =-7.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m≥-C .3nx m-≤≤ D .以上都不对8.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( ) A .1 B .2 C .4 D .无数 9.直线y=ax+b(a <0,b >0)不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.点P(2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.若△ABC 的三边长分别为a ,b ,c .下列条件:①∠A =∠B ﹣∠C ;②a 2=(b +c )(b ﹣c );③∠A :∠B :∠C =3:4:5;④a :b :c =5:12:13.其中能判断△ABC 是直角三角形的是_____(填序号).12.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是________.13.地球的半径约为6371km ,用科学记数法表示约为_____km .(精确到100km ) 14.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的部分对应值, x … ﹣2 ﹣1 0 … y…m2n…则m +n 的值为_____.15.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.16.如图,已知直线3y x b =+与2y ax =-的交点的横坐标为-2,则关于x 的不等式32x b ax +>-的解集为______.17.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____.18.如图,在长方形ABCD 中,5,6AB BC ==,将长方形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则AE 的长为__________.19.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.20.点A (2,-3)关于x 轴对称的点的坐标是______.三、解答题21.如图,直线l 与x 轴、y 轴分别交于点(3,0)A 、点(0,2)B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,90BAC ∠=,点(1,)P a为坐标系中的一个动点.(1)请直接写出直线l 的表达式; (2)求出ABC ∆的面积;(3)当ABC ∆与ABP ∆面积相等时,求实数a 的值.22.我们知道,假分数可以化为整数与真分数的和的形式.例如:31122=+.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像11x x +-,22x x -,…这样的分式是假分式;像42x - ,221x x +,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:112122111111()x x x x x x x x +-+-==+=+-----’ 2244(2)(2)4422222x x x x x x x x x -++-+===++----. (1)将分式12x x -+化为整式与真分式的和的形式; (2)如果分式2211x x --的值为整数,求x 的整数值.23.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”,例如分式31x +与31x x+互为“3阶分式”. (1)分式1032xx+与 互为“5阶分式”; (2)设正数,x y 互为倒数,求证:分式22x x y +与22yy x +互为“2阶分式”; (3)若分式24a a b +与222ba b+互为“1阶分式”(其中,a b 为正数),求ab 的值. 24.(1)求x 的值:225x =(225.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为 千米; (2)求快车和慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.四、压轴题26.已知ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM=BM,连接AD.(1)如图①,求证:DAM≌BCM;(2)已知点N是BC的中点,连接AN.①如图②,求证:ACN≌BCM;②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.27.如图,直线11 2y x b=-+分别与x轴、y轴交于A,B两点,与直线26y kx=-交于点()C4,2.(1)b= ;k= ;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P,Q,A,B四个点能构成一个菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.28.问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE .拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE 、BD 、CE 三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),请直接写出B 点的坐标.29.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.30.如图,直线l1的表达式为:y=-3x+3,且直线l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由四边形ABCD是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A 的度数,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∴∠C=∠A=100°.故选:C.【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.B解析:B 【解析】 【分析】根据无理数的定义解答即可. 【详解】227,0.101001是有理数;3. 故选B. 【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3π等;②③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.3.A解析:A 【解析】 【分析】由题意知x 表示时间,y 表示壶底到水面的高度,然后根据x 、y 的初始位置及函数图象的性质来判断. 【详解】由题意知:开始时,壶内盛一定量的水,所以y 的初始位置应该大于0,可以排除B 选项,由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C 、D 选项, 故选A . 【点睛】本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.4.C解析:C 【解析】 【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位. 【详解】∵5810-⨯=0.00008,∴近似数5810-⨯是精确到十万分位,即0.00001. 故选:C . 【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.5.B解析:B 【解析】 【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1. 【详解】解:∵∠ADC 为三角形ABD 外角 ∴∠ADC=∠B+∠DAB ∵ADC 2B ∠=∠ ∴∠B=∠DAB∴BD AD ==在Rt △ADC 中,由勾股定理得:DC 1===∴1 故选B 【点睛】本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.6.D解析:D 【解析】 【分析】根据平移法则“上加下减”可得出平移后的解析式. 【详解】解:直线23y x =-沿y 轴向上平移2个单位后的解析式为:y=2x-3+2,即y=2x-1. 故选:D . 【点睛】本题考查一次函数图象平移问题,掌握平移法则“左加右减,上加下减”是解决此题的关键.7.C解析:C 【解析】 【分析】首先根据交点得出3b nm k-=-,判定0,0m k <>,然后即可解不等式组. 【详解】∵直线y mx n =+与y kx b =+的图像交于点(3,-1) ∴31,31m n k b +=-+=- ∴33m n k b +=+,即3b nm k-=- 由图象,得0,0m k <> ∴mx n kx b +≥+,解得3x ≤0mx n +≤,解得n x m ≥-∴不等式组的解集为:3nx m-≤≤ 故选:C. 【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.8.B解析:B 【解析】 【分析】直接利用轴对称图形的性质画出对称轴即可. 【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条. 故选:B .【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.9.C解析:C 【解析】 【分析】先根据一次函数的图象与系数的关系得出直线y =ax +b (a <0,b >0)所经过的象限,故可得出结论. 【详解】∵直线y=ax+b中,a<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.10.D解析:D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵点P的横坐标为正,纵坐标为负,∴点P(2,-3)所在象限为第四象限.故选D.二、填空题11.①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△A解析:①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故①符合题意;∵a2=(b+c)(b﹣c)∴a2+c2=b2,∴△ABC是直角三角形,故②符合题意;∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故③不符合题意;∵a:b:c=5:12:13,∴a2+b2=c2,∴△ABC是直角三角形,故④符合题意;故答案为:①②④.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知勾股定理逆定理与三角形的内角和定理的运用.12.x>-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故解析:x>-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故答案为:x>-2【点睛】本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.13.4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).解析:4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答案为:6.4×103【点睛】本题主要考查科学记数法和近似数,掌握科学记数法的定义和近似数精确度的意义是解题的关键.14.【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+解析:【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=4.故答案为:4.【点睛】本题主要考查一次函数的待定系数法,把m+n看作一个整体,进行计算,是解题的关键.15.(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标解析:(-1,-3)【解析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),故填:(-1,-3).【点睛】本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.16.x>−2【解析】【分析】直线y=3x+b与y=ax−2的交点的横坐标为−2,求不等式3x+b>ax−2的解集,就是看函数在什么范围内y=3x+b的图象在函数y=ax−2的图象上方.【详解】解析:x>−2【解析】【分析】直线y=3x+b与y=ax−2的交点的横坐标为−2,求不等式3x+b>ax−2的解集,就是看函数在什么范围内y=3x+b的图象在函数y=ax−2的图象上方.【详解】解:从图象得到,当x>−2时,y=3x+b的图象在y=ax−2的图象上方,∴不等式3x+b>ax−2的解集为:x>−2.故答案为x>−2.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.17.t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温解析:t=﹣0.006h+20【解析】根据题意得到每升高1m 气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m 气温下降6℃,∴每升高1m 气温下降0.006℃,∴气温t (℃)与高度h (m )的函数关系式为t=﹣0.006h+20,故答案为:t=﹣0.006h+20.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.18.【解析】【分析】结合长方形与折叠的性质在在中根据勾股定理可得的长,设设,可知,中,由勾股定理得方程,求出x 值即可.【详解】解:四边形ABCD 是长方形由折叠的性质可得在中,根据勾股解析:6【解析】【分析】结合长方形与折叠的性质在在'Rt BAC 中根据勾股定理可得'AC 的长,设设AE x =,可知',6,A E x DE x CE x ==-=+Rt CDE △中,由勾股定理得方程222(6)5(x x -+=+,求出x 值即可.【详解】 解:四边形ABCD 是长方形90,5,6A D AB CD AD BC ︒∴∠=∠=====由折叠的性质可得''',5,90A E AE A B AB EA B A ︒===∠=∠=在'Rt BAC 中,根据勾股定理得'AC ==设AE x =,则',6,A E x DE x CE x ==-=+在Rt CDE △中,根据勾股定理得222DE CD CE +=即222(6)5(x x -+=+可得2236122511x x x -++=++12)50x ∴=6)6x∴====-=故答案为:6【点睛】本题考查了勾股定理,灵活利用折叠三角形的性质结合勾股定理求线段长是解题的关键. 19..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.解析:21xy=⎧⎨=⎩.【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组1122y k x by k x b-=⎧⎨-=⎩的解是21xy=⎧⎨=⎩.故答案为21xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.20.(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A (2,-3)关于x 轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x 轴,y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.三、解答题21.(1)223y x =-+;(2)132ABC S =;(3)当ABC ∆与ABP ∆面积相等时,实数a 的值为173或3-. 【解析】【分析】 (1)设y=kx+b ,把(3,0)A 、点(0,2)B 代入,用待定系数法求解即可;(2)先根据勾股定理求出AB 的长,然后根据三角形的面积公式求解即可;(3)分点P 在第一象限和点P 在第四象限两种情况求解即可.【详解】解:(1)设y=kx+b ,把(3,0)A 、点(0,2)B 代入,得302k b b +=⎧⎨=⎩, 解得223b k =⎧⎪⎨=-⎪⎩, ∴223y x =-+ ; (2)∵(3,0)A 、(0,2)B , ∴OA=3,OB=2,在Rt ABC ∆中,依勾股定理得:222223213AB OA OB =+=+=,∵ABC ∆为等腰直角三角形,∴21322ABC AB S ==; (3)连接,,BP PO PA ,则:①若点P 在第一象限时,如图:∵1=23ABO OA SOB ⋅=,2213APO O S A a a ⋅==,1=121BOP OB S ⨯=, ∴132ABP BOP APO ABO S S S S =+-=, 即3131322a +-=,解得173a =; ②若点P 在第四象限时,如图:∵3312ABO APO BOP SS a S ==-=,,, ∴132ABP ABO APO BOP S S S S =+-=, 即3133122a --=,解得3a =-, ∴当ABC ∆与ABP ∆面积相等时,实数a 的值为173或3-. 【点睛】本题考查了待定系数法求一次函数解析式,勾股定理,三角形的面积公式,以及分类讨论的数学思想,分类讨论是解答本题的关键.22.(1)312x ;(2)2或0 【解析】【分析】(1)根据题意把分式12x x -+化为整式与真分式的和形式即可; (2)根据题中所给出的例子把原式化为整式与真分式的和形式,再根据分式的值为整数即可得出x 的值.【详解】(1)12x x -+()232x x +-=+ 2322x x x +=-++ 312x =-+ . (2)2211x x --22211x x -+=- ()()21111x x x +-+=- ()1211x x =++-. ∵分式的值为整数,且x 为整数,∴11x -=±,∴x =2或0.【点睛】本题考查了分式的混合运算,熟知分式混合运算的法则是解答此题的关键.23.(1)1532x +;(2)详见解析;(3)12 【解析】【分析】(1)根据分式的加法,设所求分式为A ,然后进行通分求解即可;(2)根据题意首先利用倒数关系,将x ,y 进行消元,然后通过分式的加法化简即可得解;(3)根据1阶分式的要求对两者相加进行分式加法化简,通过通分化简即可得解.【详解】(1)依题意,所求分式为A ,即:10+532x A x =+, ∴1015101015532323232x x x A x x x x+=-=-=++++; (2)∵正数,x y 互为倒数∴1xy =,即1x y= ∴33223332212222222(1)211111x y y y y y x y y x y y y y y y y ++=+=+==+++++++∴分式22x x y +与22y y x +互为“2阶分式”; (3)由题意得222142a b a b a b +=++,等式两边同乘22(4)(2)a b a b ++ 化简得: 2222(2)2(4)(2)(4)a a b b a b a b a b +++=++即:32232848ab b a b b +=+∴22420a b ab -=,即2(21)0ab ab -= ∴12ab =或0 ∵,a b 为正数 ∴12ab =. 【点睛】 本题主要考查了分式的加减,熟练掌握分式的通分约分运算知识是解决此类问题的关键.24.(1)5x =±;(2)4【解析】【分析】(1)直接开平方,即可得到答案;(2)先根据二次根式的性质进行化简,然后合并同类项即可.【详解】解:(1)225x =,∴5x =±;(22244=-+=; 【点睛】本题考查了二次根式的性质,立方根,以及直接开平方法解方程,解题的关键是熟练掌握二次根式的性质进行解题.25.(1)560;(2)快车的速度是80km/h ,慢车的速度是60km/h .(3)y=-60x+540(8≤x≤9).【解析】【分析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D ,E 点坐标,进而得出函数解析式.【详解】(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20,∴快车的速度是80km/h,慢车的速度是60km/h.(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km,∴D(8,60),∵慢车往返各需4小时,∴E(9,0),设DE的解析式为:y=kx+b,∴90 860 k bk b+⎧⎨+⎩==,解得:60540kb-⎧⎨⎩==.∴线段DE所表示的y与x之间的函数关系式为:y=-60x+540(8≤x≤9).【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D,E 点坐标是解题关键.四、压轴题26.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M是AC中点知AM=CM,结合∠AMD=∠CMB和DM=BM即可得证;(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC 即可得证;②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AEF,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE≌△DFE得∠EAD=∠EDA=∠ANC,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM即可得证.【详解】解:(1)∵点M是AC中点,∴AM=CM,在△DAM和△BCM中,∵AM CMAMD CMBDM BM=⎧⎪∠=∠⎨⎪=⎩,∴△DAM ≌△BCM (SAS );(2)①∵点M 是AC 中点,点N 是BC 中点,∴CM=12AC ,CN=12BC , ∵△ABC 是等腰直角三角形,∴AC=BC ,∴CM=CN ,在△BCM 和△ACN 中,∵CM CN C C BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△BCM ≌△ACN (SAS );②证明:取AD 中点F ,连接EF ,则AD=2AF ,∵△BCM ≌△ACN ,∴AN=BM ,∠CBM=∠CAN ,∵△DAM ≌△BCM ,∴∠CBM=∠ADM ,AD=BC=2CN ,∴AF=CN ,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC ,由(1)知,△DAM ≌△BCM ,∴∠DBC=∠ADB ,∴AD ∥BC ,∴∠EAF=∠ANC ,在△EAF 和△ANC 中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.27.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q点坐标为()-,()4,()0,4-或()5,4. 【解析】【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解;(2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2),∴2=4k -6,∴k =2, ∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4, ∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m ,∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =, ∴51042m -=, 解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形. (3)存在.此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q -+,即()45,4-; 当()845,0P +时,()8458,04Q ++,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.28.(1)证明见解析;(2)DE =BD +CE ;(3)B(1,4)【解析】【分析】(1)证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE ,证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(3)根据△AEC ≌△CFB ,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴∠ADB =∠CEA =90°∵∠BAC =90°∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°∴∠CAE =∠ABD∵在△ADB 和△CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△CEA (AAS )∴AE=BD,AD=CE∴DE=AE+AD=BD+CE即:DE=BD+CE(2)解:数量关系:DE=BD+CE理由如下:在△ABD中,∠ABD=180°-∠ADB-∠BAD,∵∠CAE=180°-∠BAC-∠BAD,∠BDA=∠AEC,∴∠ABD=∠CAE,在△ABD和△CAE中,ABD CAEBDA AECAB CA∠∠⎧⎪∠∠⎨⎪⎩===∴△ABD≌△CAE(AAS)∴AE=BD,AD=CE,∴DE=AD+AE=BD+CE;(3)解:如图,作AE⊥x轴于E,BF⊥x轴于F,由(1)可知,△AEC≌△CFB,∴CF=AE=3,BF=CE=OE-OC=4,∴OF=CF-OC=1,∴点B的坐标为B(1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.29.(1522213221【解析】【分析】(1)分别过点B,C向l1作垂线,交l1于M,N两点,证明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分别过点B,C向l1作垂线,交l1于点P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,证明△AMB≌△CAN,得到CN=AM,再通过△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的长;(3)在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交l3于点P,过A作l3的垂线,交l3于点Q,证明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中,===AMB CNA MAB NCA AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴AB=22251=+;(2)分别过点B ,C 向l 1作垂线,交l 1于P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC ,在△AMB 和△CNA 中,===AMB CNA ABM NAC AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△AMB ≌△CNA (AAS ),∴CN=AM ,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=12BM ,NQ=12NC , ∵PB=1,CQ=2,设PM=a ,NQ=b ,∴2221=4aa +,2222=4b b +,解得:3=a ,23=b , ∴CN=AM=222323⎛⎫+ ⎪ ⎪⎝⎭=433, ∴AB=22AP BP +=()22AM PM BP ++=221;(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q ,∵△ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM ,在△BCN 和△CAM 中,BNC CMA NBC MAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCN ≌△CAM (AAS ),∴CN=AM ,BN=CM ,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP ,在△BPN 中,222BP NP BN +=,即22224NP NP +=,解得:NP=33, ∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM ,在△AQM 中,222AQ QM AM +=,即22234QM QM +=,解得:QM=3,∴AM=23=CN ,∴PC=CN-NP=AM-NP=43, 在△BPC 中,BP 2+CP 2=BC 2,即BC=22224322123BP CP ⎛⎫+=+= ⎪ ⎪⎝⎭, ∴AB=BC=221.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.30.(1)(1,0);(2)362y x -=;(3)92;(4)(6,3). 【解析】【分析】(1)由题意已知l 1的解析式,令y=0求出x 的值即可;(2)根据题意设l 2的解析式为y=kx+b ,并由题意联立方程组求出k ,b 的值;(3)由题意联立方程组,求出交点C 的坐标,继而即可求出S △ADC ;(4)由题意根据△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到AD 的距离进行分析计算.【详解】解:(1)由y=-3x+3,令y=0,得-3x+3=0,∴x=1,∴D (1,0);(2)设直线l 2的解析表达式为y=kx+b ,由图象知:x=4,y=0;x=3,y =32-,代入表达式y=kx+b ,∴40332k b k b +⎧⎪⎨+-⎪⎩==, ∴326k b ⎧⎪⎨⎪-⎩==,∴直线l 2的解析表达式为362y x -=; (3)由33362y x y x ⎪-+-⎧⎪⎨⎩==,解得23x y ⎧⎨⎩-==, ∴C (2,-3),∵AD=3, ∴331922ADC S =⨯⨯-=; (4)△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到直线AD 的距离,即C 纵坐标的绝对值=|-3|=3,则P 到AD 距离=3,∴P 纵坐标的绝对值=3,点P 不是点C ,∴点P 纵坐标是3,∵y=1.5x-6,y=3,∴1.5x-6=3,解得x=6,所以P (6,3).【点睛】本题考查的是一次函数图象的性质以及三角形面积的计算等有关知识,熟练掌握求一次函数解析式的方法以及一次函数图象的性质和三角形面积的计算公式是解题的关键.。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .12.如图,△ABC ≌△ADE ,∠B=20°,∠E=110°,则∠EAD 的度数为( )A .80°B .70°C .50°D .130° 3.在平面直角坐标系中,下列各点位于第四象限的点是( )A .(2,3)-B .()4,5-C .(1,0)D .(8,1)-- 4.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )A .B .C .D .5.下列根式中是最简二次根式的是( )A 23B 3C 9D 126.在平面直角坐标系中,点(1,2)P 到原点的距离是( )A .1B .3C .2D .57.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是() A . B .C .D .9.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 10.在-227,-π,0,3.14, 0.1010010001,-313中,无理数的个数有 ( ) A .1个 B .2个 C .3个 D .4个11.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是( )A .1B .43C .53D .212.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0) 13.在下列黑体大写英文字母中,不是轴对称图形的是( ) A . B . C . D .14.2的算术平方根是()A .4B .±4C .2D .2±15.若关于x 的分式方程211x a x -=+的解为负数,则字母a 的取值范围为( ) A .a ≥﹣1 B .a ≤﹣1且a ≠﹣2C .a >﹣1D .a <﹣1且a ≠﹣2 二、填空题16.如图,在ABC ∆中,AB AC =,点P 为边AC 上一动点,过点P 作PD BC ⊥,垂足为点D ,延长DP 交BA 的延长线于点E ,若10AC =,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为__________.(不需写出x 的取值范围)17.已知直线l 1:y =x +a 与直线l 2:y =2x +b 交于点P (m ,4),则代数式a ﹣12b 的值为___. 18.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”).19.如果点P (m+1,m+3)在y 轴上,则m=_____.20.矩形ABCD 中,其中三个顶点的坐标分别是(0,0)、(5,0)、(5,3),则第四个顶点的坐标是______.21.使函数6y x =-x 的取值范围是_______.22.已知一次函数y =mx -3的图像与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则m 的取值范围是________.23.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.24.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”)25.将一次函数y =2x +2的图象向下平移2个单位长度,得到相应的函数表达式为____.三、解答题26.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形; (2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A 、B 、C 是小正方形的顶点,求∠ABC 的度数.27.已知A 、B 两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止甲、乙两车相距的路程y (千米)与甲车的行驶时间x (时)之间的函数关系如图所示:(1)乙年的速度为______千米/时,a =_____,b =______.(2)求甲、乙两车相遇后y 与x 之间的函数关系式,并写出相应的自变量x 的取值范围.28.如图,一次函数y ax b =+与正比例函数y kx =的图像交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图像,写出关于x 的不等式kx ax b >+的解集;(3)求MOP ∆的面积.29.已知y 与2x -成正比例,且当1x =时,2y =-.(1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.30.先化简,再求值22333x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中2x =-31.某商场计划购进A 、B 两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示: 类型价格进价/(元/盏) 售价/(元/盏) A 型30 45 B 型 50 70(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B 型台灯的进货数量不超过A 型台灯进货数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长.【详解】直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB ,又∵AD ⊥OC ,BE ⊥OC ,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB ,在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键. 2.C解析:C【解析】【分析】根据全等的性质知∠D=∠B=20°,再根据三角形的内角和即可求出∠EAD.【详解】∵△ABC ≌△ADE ,∠B=20°,∠E=110°,∴∠D=∠B=20°,∴∠EAD=180°-20°-110°=50°,故选C.【点睛】本题是对三角形全等知识的考查,熟练掌握全等知识及三角形的内角和是解决本题的关键.3.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.4.A解析:A【解析】【分析】由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.【详解】由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除B选项,由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C、D选项,故选A.【点睛】本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.5.B解析:B【解析】【分析】【详解】ABC,故此选项错误;D=考点:最简二次根式.6.D解析:D【解析】【分析】根据:(1)点P(x ,y)到x 轴的距离等于|y|; (2)点P(x ,y)到y 轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点(1,2)P 到原点的距离是22125+=故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.7.B解析:B【解析】【分析】【详解】∵-20,2x +10,∴点P (-2,2x +1)在第二象限,故选B .8.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.9.B解析:B【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.10.A解析:A【解析】【分析】根据无理数的定义进行求解.【详解】解:无理数有:−π,共1个.故选:A.【点睛】本题考查了无理数,解答本题的关键是掌握无理数常见的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.11.C解析:C【分析】先根据勾股定理求出EC 的长,进而可得出OE 的长,在Rt △DOE 中,由DE=AD 及勾股定理可求出AD 的长.【详解】解:根据各点坐标可得AB=OC=BE=5,AO=BC=3,设AD=x ,则DE=x ,DO=3-x∴=4,∴OE=1,在Rt △DOE 中,DO 2+OE 2=DE 2,解得x=53, ∴AD=53, 故选C.【点睛】本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答.12.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.13.C解析:C【解析】【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A .“E ”是轴对称图形,故本选项不合题意;B .“M ”是轴对称图形,故本选项不合题意;C .“N ”不是轴对称图形,故本选项符合题意;D .“H ”是轴对称图形,故本选项不合题意.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.14.C解析:C【解析】【分析】根据算术平方根的定义求解即可.【详解】解:2故选C.【点睛】本题主要考查了算术平方根的定义,熟练掌握概念是解题的关键.15.D解析:D【解析】【分析】先求出分式方程的解,由分式方程有意义的条件可知1x ≠-,即方程的解1≠-,由解为负数可知分式方程的解小于0,可得字母a 的取值范围.【详解】解:方程两边同时乘以(x +1),得2x ﹣a =x +1,解得:x =a +1,∵解为负数,∴a +1<0,∴a <﹣1,因为分式有意义,则10x +≠,1x ≠-,即11a +≠-,解得2a ≠-∴a <﹣1且a ≠﹣2,故选:D .【点睛】本题考查了分式方程,根据分式方程解的情况确定参数的取值范围,解题过程中易忽视分式有意义的条件,熟练掌握分式方程的解法是解题的关键.二、填空题16.【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E=∠CPD ,再根据对顶角相等得到∠E=∠APE ,根据等角对等边得到AE=AP ,即可得到结论.【详解】∵AB=AC ,∴∠B解析:20y x =-【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E =∠CPD ,再根据对顶角相等得到∠E =∠APE ,根据等角对等边得到AE =AP ,即可得到结论.【详解】∵AB =AC ,∴∠B =∠C .∵PD ⊥BC ,∴∠EDB =∠PDC =90°,∴∠B +∠E =90°,∠C +∠CPD =90°,∴∠E =∠CPD .∵∠APE =∠CPD ,∴∠E =∠APE ,∴AE =AP .∵AB =AC =10,PC =x ,∴AP =AE =10-x .∵BE =AB +AE ,∴y =10+10-x =20-x .故答案为:y =20-x .【点睛】本题考查了等腰三角形的性质和判定以及直角三角形的性质.解题的关键是得到∠E =∠CPD .17.【解析】【分析】将点P 代入y =x+a 和y =2x+b 中,再进行适当变形可得代数式a ﹣b 的值.【详解】解:把点P (m ,4)分别代入y =x+a 和y =2x+b 得:4=m+a①,4=2m+b , ∴2解析:【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣12b的值.【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2=m+12b②,∴①﹣②得,a﹣12b=2,故答案为:2.【点睛】本题考查了一次函数,一次函数图像上的点适合该函数的解析式,熟练掌握函数图像上的点与函数解析式的关系是解题的关键.18.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,且x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.19.﹣1.【解析】∵点P(m+1,m+3)在y轴上,∴m+1=0,故答案为:-1.解析:﹣1.【解析】∵点P(m+1,m+3)在y轴上,∴m+1=0,∴m=-1.故答案为:-1.20.(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直解析:(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直,对边平行.本题画出图后可很快求解.21.【解析】【分析】根据二次根式,被开方数a≥0,可得6-x≥0,解不等式即可. 【详解】解:∵有意义∴6-x≥0∴【点睛】本题考查了函数自变量的取值范围,二次根式有意义的条解析:6x ≤【解析】【分析】a≥0,可得6-x≥0,解不等式即可.【详解】解:∵y =∴6-x≥0∴6x ≤故答案为:6x ≤【点睛】,被开方数a≥0是解题的关键. 22.1≤m≤【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.【详解】当时,,∴,当时,,,当时,,,m 的取值范围为:1≤m≤故答案为:1≤m≤【点睛】解析:1≤m ≤32 【解析】【分析】根据题意求得x 0,结合已知2≤x 0≤3,即可求得m 的取值范围.【详解】当0y =时,3x m=,∴03x m=, 当03x =时,33m =,1m =, 当02x =时,32m =,32m =, m 的取值范围为:1≤m ≤32 故答案为:1≤m ≤32【点睛】 本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x 轴的交点横坐标的范围求得m 的取值范围是解题的关键.23.60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经解析:60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.24.>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.解:如下图所示,是等腰直角三角形,∴,∴.故答案为另:此题也可直接测量得到结果.【点解析:>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,AFG 是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠.故答案为.>另:此题也可直接测量得到结果.【点睛】本题考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.25.y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y 解析:y =2x【解析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x +2的图象向下平移2个单位长度后,所得图象的函数关系式为y =2x +2﹣2=2x .故答案为:y =2x .【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x 左加右减;上下平移,b 上加下减”是解此题的关键.三、解答题26.(1)详见解析;(2)详见解析;(3)450【解析】【分析】(1)根据勾股定理画出边长为的正方形即可;(2)根据勾股定理和已知画出符合条件的三角形即可;(3)连接AC 、CD ,求出△ACB 是等腰直角三角形即可.【详解】(1)如图1的正方形的边长是,面积是10; (2)如图2的三角形的边长分别为2,、; (3)如图3,连接AC , 因为AB 2=22+42=20,AC 2=32+12=10,BC 2=32+12=10,所以AB 2= AC 2+ BC 2,AC=BC∴三角形ABC 是等腰直角三角形,∴∠ABC=∠BAC=45°.【点睛】本题考查了勾股定理逆定理,三角形的面积,直角三角形的判定的应用,主要考查学生的计算能力和动手操作能力.27.(1)75;3.6;4.5;(2) 当2 3.6x <≤时,135270y x =-;当3.6 4.5x <≤时,60y x =.【分析】(1)根据图像可知两车2小时候相遇,根据路程和为270千米即可求出乙车的速度,然后根据“路程、速度、时间”的关系确定a、b的值;(2)根据图像可知相遇后图像分为两段,将相遇后点的坐标和分段处以及到达B地后的坐标分别表示出来,然后运用待定系数法解决即可;【详解】解:(1)乙车的速度为:(270-60×2)÷2=75(千米/时);a=270÷75=3.6,b=270÷60=4.5故答案为:75;3.6;4.5;(2)60×3.6=216(千米),如图,可得(2,0)M,(3.6,216)N,(4.5,270)Q.设当2 3.6x<≤时的解析式为11y k x b=+,1111203.6216k bk b+=⎧⎨+=⎩,解得11135270kb=⎧⎨=-⎩∴当2 3.6x<≤时,135270y x=-,设当3.6 4.5x<≤时的解析式为22y k x b=+,则22223.62164.5270k bk b+=⎧⎨+=⎩,解得2260kb=⎧⎨=⎩,当3.6 4.5x<≤时,60y x=.【点睛】本题考查了分段函数实际问题,解决本题的关键是能够读懂函数图像,从函数图像中找到相关的量,能够熟练运用待定系数法求函数解析式.28.(1)22y x =-,y x =;(2)2x <;(3)1.【解析】【分析】(1)先把P (1,0),(0,-2)代入y=ax+b,可求出a,b 的值,然后把M 点坐标代入一次函数可求出m 的值;再将点M 的坐标代入y=kx 可得出k 的值.(2)观察函数图象,写出正比例函数图象在一次函数图象上方所对应的自变量的范围即可.(3)作MN 垂直x 轴,然后根据三角形面积求得即可.【详解】解:(1)∵y ax b =+经过()1,0和()0,2-∴02k b b =+⎧⎨-=⎩解得2k =,2b =- 一次函数表达式为:22y x =-∵点M 在该一次函数上,∴2222m =⨯-=,M 点坐标为()2,2又∵M 在函数y kx =上,∴2122m k ===. ∴正比例函数为y x =.(2)由图像可知,2x <时,22x x >-(3)作MN 垂直x 轴,由M 的纵坐标知2MN =,∴故11212MOP S ∆=⨯⨯=.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.29.(1)y=2x-4;(2)-6<y <0.【解析】【分析】(1)设y=k (x-2),把x=1,y=-2代入求出k 值即可;(2)把x=-1,x=2代入解析式求出相应的y 值,然后根据函数的增减性解答即可.【详解】解:(1)因为y 与x-2成正比例,可得:y=k (x-2),把x=1,y=-2代入y=k (x-2),得k (1-2)=-2,解得:k=2,所以解析式为:y=2(x-2)=2x-4;(2)把x=-1,x=2分别代入y=2x-4,可得:y=-6,y=0,∵y=2x-4中y 随x 的增大而增大,∴当-1<x <2时,y 的范围为-6<y <0.【点睛】本题考查了用待定系数法求一次函数的解析式及一次函数的性质,熟练掌握一次函数的性质是解题关键.30.29x ,92【解析】【分析】 原式括号内两项通分并利用同分母分式的减法运算法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】22333x x x x x ⎛⎫-+÷ ⎪++⎝⎭, 22(3)(3)333x x x x x x x⎛⎫-++=-⋅ ⎪++⎝⎭ 2933x x x +=⋅+ 29x=当x =2992x == 【点睛】此题考查了分式的化简和求值,熟练掌握运算法则是解本题的关键.31.(1)75盏;25盏 (2)购进A 型台灯20盏,B 型台灯80盏;1900元【解析】【分析】(1)设商场应购进A 型台灯x 盏,表示出B 型台灯为(100﹣x )盏,然后根据进货款=A 型台灯的进货款+B 型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y 元,根据获利等于两种台灯的获利总和列式整理,再求出x 的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设购进A型台灯x盏,则购进B型台灯(100﹣x)盏,由题意可得:30x+50(100﹣x)=3500∴x=75∴100﹣x=25答:购进A型台灯75盏,购进B型台灯25盏;(2)设商场销售完这批台灯可获利y元,y=15x+20(100﹣x)=﹣5x+2000又∵100﹣x≤4x,∴x≥20∵k=﹣5<0,∴y随x的增大而减小∴当x=20时,y取得最大值,最大值是1900.答:购进A型台灯20盏,购进B型台灯80盏时获利最多,此时利润为1900元.【点睛】本题考查了一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( ) A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--2.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-,3.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒4.下列根式中是最简二次根式的是( ) A .23B .3C .9D .125.若分式242x x -+的值为0,则x 的值为( )A .-2B .0C .2D .±26.如图,在放假期间,某学校对其校内的教学楼(图中的点A ),图书馆(图中的点B )和宿含楼(图中的点C )进行装修,装修工人需要放置一批装修物资,使得装修物资到点A ,点B 和点C 的距离相等,则装修物资应该放置在( )A .AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处 C .在A ∠、B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处 7.下列图案属于轴对称图形的是( )A .B .C .D .8.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( ) A .1000100030x x -+=2 B .1000100030x x-+=2 C .1000100030x x --=2 D .1000100030x x--=2 9.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( ) A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-10.在下列各数中,无理数有( )33224,3,8,9,07π A .1个B .2个C .3个D .4个11.如果m 是任意实数,则点()P m 4m 1-+,一定不在 A .第一象限B .第二象限C .第三象限D .第四象限12.下列各点中,位于平面直角坐标系第四象限的点是( ) A .(1,2) B .(﹣1,2) C .(1,﹣2) D .(﹣1,﹣2) 13.下列说法中正确的是( ) A .带根号的数都是无理数 B .不带根号的数一定是有理数 C .无限小数都是无理数D .无理数一定是无限不循环小数14.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( ) A .48 kgB .48.9 kgC .49 kgD .49.0 kg15.函数111y k x b =+与222y k x b =+的部分自变量和对应函数值如下: x -4 -3 -2 -1 y-1-2-3-4x -4 -3 -2 -1 y-9-6-3当12y y >时,自变量x 的取值范围是( ) A .2x >-B .2x <-C .1x >-D .1x <-二、填空题16.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.17.如图,在ABC ∆中,AB AC =,点P 为边AC 上一动点,过点P 作PD BC ⊥,垂足为点D ,延长DP 交BA 的延长线于点E ,若10AC =,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为__________.(不需写出x 的取值范围)18.如图,在平面直角坐标系中,函数y mx n =+的图像与y kx b =+的图像交于点(1,2)P -,则方程组,y mx n y kx b =+⎧⎨=+⎩的解为________.19.如图,直线483y x =-+与x 轴,y 轴分别交于点A 和B ,M 是OB 上的一点,若将ABM ∆沿AM 折叠,点B 恰好落在x 轴上的点B ′处,则直线AM 的解析式为_____.20.已知22139273m ⨯⨯=,求m =__________. 21.计算222mm m+--的结果是___________22.如图,已知一次函数()0y ax b a =+≠和()0y kx k =≠的图象交于点P ,则二元一次方程组220y ax b y kx --=⎧⎨--=⎩的解是 _______.23.如图,在ABC ∆中,90C =∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=,2CD =,则ABC ∆周长等于__________.24.如图,在平面直角坐标系中,点B 在x 轴的正半轴上,AO =AB ,∠OAB =90°,OB =12,点C 、D 均在边OB 上,且∠CAD =45°,若△ACO 的面积等于△ABO 面积的13,则点D 的坐标为 _______ 。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上期末测试题(Word版含答案)一、选择题1.若一次函数(2)1y k x=-+的函数值y随x的增大而增大,则()A.2k<B.2k>C.0k>D.k0<2.若一个数的平方等于4,则这个数等于()A.2±B.2C.16±D.163.某一次函数的图像与x轴交于正半轴,则这个函数表达式可能是()A.2y x=B.1y x=+C.1y x=--D.1y x=-4.一次函数y=-5x+3的图象经过的象限是()A.一、二、三B.二、三、四C.一、二、四D.一、三、四5.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,点B恰好落在AB的中点E 处,则∠A等于( )A.25°B.30°C.45°D.60°6.下列各点中在第四象限的是( )A.()2,3--B.()2,3-C.()3,2-D.()3,27.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组111222,y k x by k x b=+⎧⎨=+⎩的解为()A.2,4xy=⎧⎨=⎩B.4,2xy=⎧⎨=⎩C.4,xy=-⎧⎨=⎩D.3,xy=⎧⎨=⎩8.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中能使△ABC≌△DEF的条件有()A.1组B.2组C.3组D.4组9.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是( )A.a>b B.a=b C.a<b D.以上都不对10.若分式12xx-+的值为0,则x的值为()A.1 B.2-C.1-D.211.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D的长度为()A.12cm B.1cm C.2cm D.32cm12.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB的两边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB的平分线画法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL13.点P(2,-3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限14.已知正比例函数y=kx的图象经过点(﹣2,1),则k的值()A.﹣2 B.﹣12C.2 D.1215.在平面直角坐标系xOy中,线段AB的两个点坐标分别为A(﹣1,﹣1),B(1,2).平移线段AB,得到线段A′B′.已知点A′的坐标为(3,1),则点B′的坐标为()A.(4,4)B.(5,4)C.(6,4)D.(5,3)二、填空题16.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y (千米)与时间t (分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.17.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”).18.将函数y=3x+1的图象沿y 轴向下平移2个单位长度,所得直线的函数表达式为_____.19.使3x -有意义的x 的取值范围是__________.20.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN .连接FN ,并求FN 的长__________.21.已知一次函数()12y k x =-+,若y 随x 的增大而减小,则k 的取值范围是___. 22.如图,在ABC 中,∠A =60°,D 是BC 边上的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于ABC 内一点P ,连接PC ,若∠ACP =m °,∠ABP =n °,则m 、n 之间的关系为______.23.如图,已知点M (-1,0),点N (5m ,3m +2)是直线AB :4y x =-+右侧一点,且满足∠OBM=∠ABN ,则点N 的坐标是_____.24.当x =_____时,分式22xx x-+值为0. 25.如图,一次函数y kx b =+与y mx n =+的图像交于点(2,1)P -,则由函数图像得不等式kx b mx n +≥+的解集为________.三、解答题26.已知一次函数的图象经过点P (0,-2),且与两条坐标轴截得的直角三角形的面积为6,求这个一次函数的解析式.27.计算:(1)2(43)x y -(2)(1)(1)x y x y +++-(3)2293169a a a a -⎛⎫÷- ⎪++⎝⎭(4)22222233a b a b a a a b a b a b b +-⎛⎫⋅-÷ ⎪-+-⎝⎭28.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C - (1)作出三角形ABC 关于y 轴对称的三角形111A B C (2)点1A 的坐标为 .(3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .29.阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:()1一个直角三角形的两条直角边分别为512、,那么这个直角三角形斜边长为____; ()2如图①,AD BC ⊥于,,,10,6D AD BD AC BE AC DC ====,求BD 的长度; ()3如图②,点A 在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数10B 点(保留痕迹).30.已知一次函数y=2x+b.(1)它的图象与两坐标轴所围成的图形的面积等于4,求b 的值; (2)它的图象经过一次函数y=-2x+1、y=x+4图象的交点,求b 的值.31.已知A 、B 两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止甲、乙两车相距的路程y (千米)与甲车的行驶时间x (时)之间的函数关系如图所示:(1)乙年的速度为______千米/时,a=_____,b=______.(2)求甲、乙两车相遇后y与x之间的函数关系式,并写出相应的自变量x的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y 随x的增大而增大;当k<0时,y随x的增大而减小.2.A解析:A【解析】【分析】平方为44,由此可得出答案.【详解】4±2.所以这个数是:±2.故选:A.【点睛】本题考查了平方根的知识,比较简单,注意不要漏解.3.D解析:D【解析】【分析】分别求出每个函数与x轴的交点,即可得出结论.【详解】A.y=2x与x轴的交点为(0,0),故本选项错误;B.y=x+1与x轴的交点为(-1,0),故本选项错误;C.y=-x-1与x轴的交点为(-1,0),故本选项错误;D.y=x-1与x轴的交点为(1,0),故本选项正确.故选:D.【点睛】本题考查了一次函数的性质.掌握求一次函数与x轴的交点坐标的方法是解答本题的关键.4.C解析:C【解析】试题分析:直线y=﹣5x+3与y轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.故选C.考点:一次函数的图象和性质.5.B解析:B【解析】【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【详解】解:∵△ABC沿CD折叠B与E重合,∴BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.【点睛】本题考查折叠的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质:折叠前后的对应边相等,对应角相等.6.C解析:C 【解析】 【分析】根据第四象限点的坐标特点,在选项中找到横坐标为正,纵坐标为负的点即可. 【详解】解:A .(-2,-3)在第三象限; B .(-2,3)在第二象限; C .(3,-2)在第四象限; D .(3,2)在第一象限; 故选:C . 【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,用到的知识点为:点在第四象限内,那么横坐标大于0,纵坐标小于0.7.A解析:A 【解析】 【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案. 【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4), ∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩故选A. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.8.C解析:C 【解析】 【分析】根据全等三角形的判定方法:SSS 、SAS 、ASA 及AAS ,即可判定. 【详解】①满足SSS ,能判定三角形全等; ②满足SAS ,能判定三角形全等;③满足ASA,能判定三角形全等;④的条件是两边及其一边的对角分别对应相等,不能判定三角形全等.∴能使ABC DEF△≌△全等的条件有3组.故选:C.【点睛】本题考查全等三角形的判定,解题关键是熟练掌握各种判定方法并注意“两边及其一边的对角分别对应相等”不能判定三角形全等.9.A解析:A【解析】【分析】【详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.10.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.11.D解析:D【解析】【分析】先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=12AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【详解】∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=5cm,∵点D为AB的中点,∴OD=12AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故选:D.【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边上的中线等于斜边的一半”是解题的关键.12.A解析:A【解析】【分析】根据全等三角形的判定方法即可解决问题.【详解】由题意:OM=ON,CM=CN,OC=OC,∴△COM≌△CON(SSS),∴∠COM=∠CON,故选:A.【点睛】此题主要考查三角形全等判定的应用,熟练掌握,即可解题.13.D解析:D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵点P的横坐标为正,纵坐标为负,∴点P(2,-3)所在象限为第四象限.故选D.14.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.15.B解析:B【解析】【分析】由题意可得线段AB平移的方式,然后根据平移的性质解答即可.【详解】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,1),∴线段AB先向右平移4个单位,再向上平移2个单位,∴B(1,2)平移后的对应点B′的坐标为(1+4,2+2),即(5,4).故选:B.【点睛】本题考查了平移变换的性质,一般来说,坐标系中点的平移遵循:上加下减,左减右加的规律,熟练掌握求解的方法是解题关键.二、填空题16.5.【解析】【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解解析:5.【解析】【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解析式,再把t=45代入即可.【详解】设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b.∵图象经过(40,2)(60,0),∴240060k bk b=+⎧⎨=+⎩,解得:1106kb⎧=-⎪⎨⎪=⎩,∴y与t的函数关系式为y=﹣16 10t+,当t=45时,y=﹣110×45+6=1.5.故答案为1.5.【点睛】本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.17.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,且x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.18.y=3x-1【解析】∵y=3x+1的图象沿y轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x﹣1.故答案为y=3x ﹣1.解析:y=3x-1【解析】∵y=3x +1的图象沿y 轴向下平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x ﹣1.故答案为y=3x ﹣1.19.【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x 的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为【点睛】考查二次根式有意义的条件:二次根式的解析:3x ≥【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x 的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为3x ≥【点睛】考查二次根式有意义的条件:二次根式的被开方数是非负数;20.【解析】【分析】设,则,由翻折的性质可知,在Rt△ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt△ADN 中由勾股定理求得AN 的长即可.【详解】【解析】【分析】设NC x =,则8DN x ,由翻折的性质可知8EN DN x ==-,在Rt △ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt △ADN 中由勾股定理求得AN 的长即可.【详解】解:如图所示,连接AN ,设NC x =,则8DNx , 由翻折的性质可知:8EN DN x ==-,在Rt ENC 中, 有222EN EC NC =+,()22284x x -=+,解得:3x =,即5DN cm .在Rt 三角形ADN 中, 22228589AN AD ND , 由翻折的性质可知89FNAN .【点睛】 本题主要考查的是翻折的性质、勾股定理,利用勾股定理的到关于x 的方程是解题的关键.21.k <1.【解析】【分析】一次函数y=kx+b ,当k <0时,y 随x 的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y 随x 的增大而减小,∴k -1<0,解得k解析:k <1.【解析】【分析】一次函数y=kx+b ,当k <0时,y 随x 的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y 随x 的增大而减小,∴k-1<0,解得k<1,故答案是:k<1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.22.m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【解析:m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【详解】解:∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,∠+∠+∠=︒A ABC ACB180,∴∠PBC+∠PCB+∠ABP=120°-m°,∴3∠ABP=120°-m°,∴3n°+m°=120°,故答案为:m+3n=120.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.23.【解析】【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(解析:5,3 3⎛⎫ ⎪⎝⎭【解析】【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q (5,1),易得直线BQ的解析式,所以将点N代入该解析式来求m的值即可.【详解】解:在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(-1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为y=−35x+4,将N(5m,3m+2)代入y=−35x+4,得3m+2=﹣35×5m+4解得 m=13,∴N5,33⎛⎫ ⎪⎝⎭.故答案为:5,3 3⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.24.2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x解析:2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x(x+1)≠0,所以x≠0或x≠﹣1;而分式值为0,即分子2﹣x=0,解得:x=2,符合题意故答案为:2.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.25.【解析】【分析】观察函数图象得到,当x2时,一次函数y=kx+b的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+bmx+n的解集.【详解】∵当x2时,一次函数y=kx+b的x解析:2【解析】【分析】观察函数图象得到,当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+b ≥mx+n 的解集.【详解】∵当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,∴不等式kx+b ≥mx+n 的解集为x ≥2.故答案是:x ≥2.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题26.y=-13x-2或y=13x-2. 【解析】【分析】 分一次函数与x 轴交点Q 在正半轴与负半轴两种情况确定出Q 的坐标,即可确定出一次函数解析式.【详解】解:设一次函数与x 轴的交点为Q,则①当一次函数与x 轴交点Q 在x 轴负半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q (-6,0),设一次函数解析式为y=kx+b ,将P 与Q 坐标代入得:2,60,b k b -⎧⎨-+⎩==解得1,32.k b ⎧=-⎪⎨⎪=-⎩ 此时一次函数解析式为y=-13x-2; ②当一次函数与x 轴交点在x 轴正半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q (6,0),设一次函数解析式为y=mx+n ,将P 与Q 坐标代入得:2,60,n m n -⎧⎨+⎩==解得1,32.m b ⎧=⎪⎨⎪=-⎩ 此时一次函数解析式为y=13x-2.故所求一次函数解析式为:y=-13x-2或y=13x-2. 【点睛】 此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.27.(1)2216249x xy y -+;(2)2221x xy y ++-;(3)3a a +;(4)22223()()a ab b a b a b +++- 【解析】【分析】(1)根据完全平方公式直接写出结果即可;(2)先将x y +看做一个整体运用平方差公式计算,再利用完全平方公式展开即可; (3)将分式利用平方差公式和完全平方公式分解因式,再约分化简即可;(4)运用分式的混合运算法则化简即可.【详解】(1)2(43)x y -=2216249x xy y -+;(2)2222(1)(1)()121x y x y x y x xy y +++-=+-=++-;(3)22293(3)(3)169(3)33a a a a a a a a a a a -+-⎛⎫÷-=⋅= ⎪+++-+⎝⎭; (4)22222233a b a b a a a b a b a b b+-⎛⎫⋅-÷ ⎪-+-⎝⎭ 22222()2()()3()a b a b a b a b a b a b a +-=⋅-⋅-+- 2222()13()()1a b a b a b a b a b +=⋅-⋅-+- 2222()3()()a b ab a b a b a b+=--+- 2224233()()a ab b ab a b a b ++-=+- 22223()()a ab b a b a b ++=+-. 【点睛】本题主要考查了整式得乘除法及分式的乘除法,熟练运用整式得乘法公式,幂运算,及分式的通分约分等计算技巧是解决本题的关键.28.(1)见解析(2)点1A 的坐标为(3,6);(3)①见解析.【解析】【分析】(1)首先确定A 、B 、C 三点关于y 轴的对称点位置A 1、B 1、C 1,再连接即可得到△ABC 关于y 轴对称的△A 1B 1C 1;(2)根据平面直角坐标系写出点1A 的坐标;(3)①根据垂直平分线的定义画图即可;②根据轴对称的性质以及两点之间线段最短得PA PC +的最小值为BC 的长,再由勾股定理求解即可.【详解】(1)如图所示:(2)点1A 的坐标为(3,6);(3)①如图所示: ②PA PC +的最小值为BC 的长,即2224+=20 【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.29.()113;()28BD =;()35.数轴上画出表示数10的B 点.见解析.【解析】【分析】(1) 根据勾股定理计算;(2) 根据勾股定理求出AD ,根据题意求出BD;(3) 根据勾股定理计算即可.【详解】 ()1∵这一个直角三角形的两条直角边分别为512、225+12=13故答案为:13()2∵AD BC ⊥∴90ADC BDE ∠=∠=︒在ADC 中,90,10,6ADC AC DC ∠=︒==,则由勾股定理得8BD =,在t R ADC 和t R BDE △中AD BD AC BE =⎧⎨=⎩∴t t R ADC R BDE ≌∴8BD AD ==(3)点A 在数轴上表示的数是:22-215+=- , 由勾股定理得,221+3=10OC =以O 为圆心、OC 为半径作弧交x 轴于B ,则点B 即为所求,故答案为:5点为所求.【点睛】本题考查的是勾股定理与数轴上的点的应用,掌握任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方是解题的关键.30.(1)±4;(2)5【解析】【分析】(1)分别求出一次函数y=2x+b 与坐标轴的交点,然后根据它的图象与坐标轴所围成的图象的面积等于4列出方程即可求出b 的值;(2)由题意可知:三条直线交于一点,所以可先求出一次函数y=-2x+1与y=x+4的交点坐标,然后代入y=2x+b 求出b 的值.【详解】解:(1)令x=0代入y=2x+b ,∴y=b ,令y=0代入y=2x+b ,∴x=-2b , ∵y=2x+b 的图象与坐标轴所围成的图象的面积等于4,∴12×|b|×|-2b |=4, ∴b 2=16,∴b=±4;(2)联立214y x y x =-+⎧⎨=+⎩, 解得:13x y =-⎧⎨=⎩, 把(-1,3)代入y=2x+b ,∴3=-2+b ,∴b=5,【点睛】本题考查了一次函数与坐标轴的交点,图形与坐标的性质,待定系数求一次函数的解析式,解题的关键是根据条件求出b 的值,本题属于基础题型.31.(1)75;3.6;4.5;(2) 当2 3.6x <≤时,135270y x =-;当3.6 4.5x <≤时,60y x =.【解析】【分析】(1)根据图像可知两车2小时候相遇,根据路程和为270千米即可求出乙车的速度,然后根据“路程、速度、时间”的关系确定a 、b 的值;(2)根据图像可知相遇后图像分为两段,将相遇后点的坐标和分段处以及到达B 地后的坐标分别表示出来,然后运用待定系数法解决即可;【详解】解:(1)乙车的速度为:(270-60×2)÷2=75(千米/时);a =270÷75=3.6,b=270÷60=4.5故答案为:75;3.6;4.5;(2)60×3.6=216(千米),如图,可得(2,0)M ,(3.6,216)N ,(4.5,270)Q .设当2 3.6x <≤时的解析式为11y k x b =+,1111203.6216k b k b +=⎧⎨+=⎩,解得11135270k b =⎧⎨=-⎩ ∴当2 3.6x <≤时,135270y x =-,设当3.6 4.5x <≤时的解析式为22y k x b =+,则22223.62164.5270k b k b +=⎧⎨+=⎩, 解得22600k b =⎧⎨=⎩, 当3.6 4.5x <≤时,60y x =.【点睛】本题考查了分段函数实际问题,解决本题的关键是能够读懂函数图像,从函数图像中找到相关的量,能够熟练运用待定系数法求函数解析式.。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案) 一、选择题1.若点P 在y 轴负半轴上,则点P 的坐标有可能是( ) A .()1,0- B .()0,2- C .()3,0 D .()0,4 2.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362B .332C .6D .33.下列无理数中,在﹣1与2之间的是( )A .3B .2C 2D 54.下列四个实数中,属于无理数的是( )A .0B 9C .23D 125.下列各数中,是无理数的是( )A 38B 39C .4-D .2276.把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( ) A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的12 7.下列各组数不是勾股数的是( )A .3,4,5B .6,8,10C .4,6,8D .5,12,13 8.点(3,2)A -关于y 轴对称的点的坐标为( )A .(3,2)B .(3,2)-C .(3,2)--D .(2,3)- 9.下列四组线段a 、b 、c ,能组成直角三角形的是( )A .4a =,5b =,6c =B .3a =,4b =,5c =C .2a =,3b =,4c =D .1a =,2b =3c =10.下列各点中,位于平面直角坐标系第四象限的点是( )A .(1,2)B .(﹣1,2)C .(1,﹣2)D .(﹣1,﹣2)11.下列一次函数中,y 随x 增大而增大的是( )A .y=﹣3xB .y=x ﹣2C .y=﹣2x+3D .y=3﹣x12.下列式子中,属于最简二次根式的是( ) A .12 B .0.5 C .5 D .1213.点M (3,-4)关于y 轴的对称点的坐标是( )A .(3,4)B .(-3,4)C .(-3,-4)D .(-4,3)14.设2的整数部分用a 表示,小数部分用b 表示,4﹣2的整数部分用c 表示,小数部分用d 表示,则b d ac +值为( ) A .12 B .14 C .21- D .2+1 15.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)二、填空题16.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 17.9的平方根是_________. 18.计算222m m m+--的结果是___________ 19.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .20.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.21.如图,在Rt ABC △中,90B ∠=︒,30A ∠=︒,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若1BD =,则AC 的长是__________.22.如图,在△ABC 中,∠ACB=90°,AC=BC=4,O 是BC 的中点,P 是射线AO 上的一个动点,则当∠BPC=90°时,AP 的长为______.23.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.24.化简 2(0,0)3b a b a>≥结果是_______ . 25.用四舍五入法将2.0259精确到0.01的近似值为_____.三、解答题26.春节前小明花1200元从市场购进批发价分别为每箱30元与50元的A 、B 两种水果进行销售,分别以每箱35元与60元的价格出售,设购进A 水果x 箱,B 水果y 箱. (1)求y 关于x 的函数表达式;(2)若要求购进A 水果的数量不少于B 水果的数量,则应该如何分配购进A 、B 水果的数量并全部售出才能获得最大利润,此时最大利润是多少?27.分别画出满足下列条件的点:(尺规作图,请保留作图痕迹,不写作法.作图痕迹请加粗加黑!)(1)在边BC 上找一点P ,使P 到AB 和AC 的距离相等;(2)在射线AP 上找一点Q ,使QA QC =.28.计算:2201931125272-⎛⎫-+- ⎪⎝⎭29.已知2y -与x 成正比,且当2x =时,6y =-. (1)求y 与x 之间的函数关系式;(2)若点(),10a 在这个函数图像上,求a 的值.30.已知21a =,求代数式223a a -+的值.31.小明从家出发沿一条笔直的公路骑自行车前往图书馆看书,他与图书馆之间的距离y (km )与出发时间t (h )之间的函数关系如图1中线段AB 所示,在小明出发的同时,小明的妈妈从图书馆借书结束,沿同一条公路骑电动车匀速回家,两人之间的距离s (km )与出发时间t (h )之间的函数关系式如图2中折线段CD ﹣DE ﹣EF 所示.(1)小明骑自行车的速度为 km/h 、妈妈骑电动车的速度为 km/h ;(2)解释图中点E 的实际意义,并求出点E 的坐标;(3)求当t为多少时,两车之间的距离为18km.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据y轴上的点的坐标特点,横坐标为0,然后根据题意求解.【详解】解:∵y轴上的点的横坐标为0,又因为点P在y轴负半轴上,∴(0,-2)符合题意故选:B【点睛】本题考查坐标轴上的点的坐标特点,利用数形结合思想解题是本题的解题关键.2.D解析:D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,3∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,3∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=3,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.3.C解析:C【解析】试题分析:A31,故错误;B2<﹣1,故错误;C.﹣12<2,故正确;52,故错误;故选C.【考点】估算无理数的大小.4.D解析:D【解析】【分析】根据无理数的定义,即可得到答案.【详解】1223=D正确;093=,23是有理数,故ABC错误;故选择:D.本题考查了无理数的定义,解题的关键是熟记定义.5.B解析:B【解析】【分析】根据无理数的定义结合算术平方根和立方根逐一判断即可得.【详解】2=,为有理数,故该选项错误;D.2-,为有理数,故该选项错误; D.227,为有理数,故该选项错误. 故选B.【点睛】 本题考查无理数的定义,立方根,算术平方根. 初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A【解析】 把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xy x y x y x y ⋅==---,由此可得分式的值不变,故选A. 7.C解析:C【解析】【分析】根据勾股数的定义:有a 、b 、c 三个正整数,满足a 2+b 2=c 2,称为勾股数.由此判定即可.【详解】解:A 、32+42=52,能构成勾股数,故选项错误;B 、62+82=102,能构成勾股数,故选项错误C 、42+62≠82,不能构成勾股数,故选项正确;D 、52+122=132,能构成勾股数,故选项错误.故选:C .【点睛】本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.解析:A【解析】【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】解:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,A 关于y轴对称的点为(3,2).∴点(3,2)故选:A【点睛】本题考查了坐标系中的轴对称,掌握坐标系中的轴对称的特点是解题的关键.在平面直角坐标系中,关于x轴对称的点,横坐标相同,纵坐标互为相反数,关于y轴对称的点,纵坐标相同,横坐标互为相反数.9.B解析:B【解析】【分析】根据勾股定理的逆定理,依次对各选项进行分析即可得答案.【详解】解:A.因为42+52≠62,所以不能围成直角三角形,此选项错误;B.因为32+42=52,所以能围成直角三角形,此选项正确;C. 因为22+32≠42,所以不能围成直角三角形,此选项错误;D. 因为12+2≠32,所以不能围成直角三角形,此选项错误;故选:B.【点睛】本题考查了勾股定理的逆定理. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.能依据这一定理判断三角形是否为直角三角形是解决此题的关键. 10.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.B解析:B【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A、∵一次函数y=﹣3x中,k=﹣3<0,∴此函数中y随x增大而减小,故本选项错误;B、∵正比例函数y=x﹣2中,k=1>0,∴此函数中y随x增大而增大,故本选项正确;C、∵正比例函数y=﹣2x+3中,k=﹣2<0,∴此函数中y随x增大而减小,故本选项错误;D、正比例函数y=3﹣x中,k=﹣1<0,∴此函数中y随x增大而减小,故本选项错误.故选B.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.12.C解析:C【解析】,被开方数含分母,不是最简二次根式,故本选项错误;2D.故选C.13.C解析:C【解析】【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y 轴的对称点P′的坐标是(−x,y).【详解】∵点M(3,−4),∴关于y轴的对称点的坐标是(−3,−4).故选:C.【点睛】此题主要考查了关于x轴、y轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.14.A解析:A【解析】【分析】和4的值,确定其整数部分,再用原数减去其整数部分可得小数部分,将求得的值代入求解即可.【详解】解:∵1<2<4,∴1<2.∴a=1,b﹣1,∵2<4<3∴c=2,d=4﹣2=2.∴b+d=1,ac=2.∴b dac=12.故选:A.【点睛】本题考查了实数的估算,灵活的利用估算确定无理数的整数部分与小数部分是解题的关键. 15.C解析:C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.二、填空题16.【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1解析:12且a a>≠【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为: a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析17.±3【解析】分析:根据平方根的定义解答即可.详解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是解析:±3【解析】分析:根据平方根的定义解答即可.详解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母. 19.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 20.【解析】【分析】根据线段垂直平分线的性质可得AE=BE ,AG=GC ,据此计算即可.【详解】解:∵ED ,GF 分别是AB ,AC 的垂直平分线,∴AE=BE ,AG=GC ,∴△AEG 的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE ,AG=GC ,据此计算即可.【详解】解:∵ED ,GF 分别是AB ,AC 的垂直平分线,∴AE=BE ,AG=GC ,∴△AEG 的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.21.【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答案为.解析:【解析】解:90B ∠=︒,30A ∠=︒,∴60ACB ∠=︒.又∵DE 垂直平分AC ,∴CD AD =,30ACD A DCB ∠=∠=︒=∠.∵1BD =,∴2CD AD ==,∴3AB =,30A ∠=︒,12BC AC =.由勾股定理可得AC =故答案为 22.22【解析】【分析】在Rt △AOC 中利用勾股定理即可求出AO 的长度,再根据直角三角形中斜边上的中线等于斜边的一半即可求出OP 的长度,由线段间的关系即可得出AP 的长度.【详解】解:依照题意画解析:±2【解析】【分析】在Rt △AOC 中利用勾股定理即可求出AO 的长度,再根据直角三角形中斜边上的中线等于斜边的一半即可求出OP 的长度,由线段间的关系即可得出AP 的长度.解:依照题意画出图形,如图所示.∵∠ACB=90°,AC=BC=4,O是BC的中点,∴CO=BO=12BC=2,AO=22AC CO+=25,∵∠BPC=90°,O是BC的中点,∴OP=12BC=2,∴AP=AO-OP=25-2,或AP=AO+OP=25+2.故答案为:25±2.【点睛】本题考查了直角三角形斜边上的中线以及勾股定理,根据直角三角形中斜边上的中线等于斜边的一半求出OP的长度是解题的关键.23.27【解析】【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛解析:27【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.24.【解析】【分析】首先将被开方数的分子和分母同时乘以3a ,然后再依据二次根式的性质化简即可.【详解】解:原式=,故答案为:.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知【解析】【分析】首先将被开方数的分子和分母同时乘以3a ,然后再依据二次根式的性质化简即可.【详解】解:原式=. 【点睛】 本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似解析:03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似数精确到哪一位,就看它的后面一位,进行四舍五入计算即可.三、解答题26.(1)3245y =-+;(2)应购进A 水果15箱、B 水果15箱能够获得最大利润,最大利润为225元【解析】【分析】 (1)根据A 水果总价+B 水果总价=1200列出关于x 、y 的二元一次方程,对方程进行整理变形即可得出结论;(2)设利润为W 元,找出利润W 关于x 的函数关系式,由购进A 水果的数量不得少于B 水果的数量找出关于x 的一元一次不等式,解不等式得出x 的取值范围,再利用一次函数的性质即可解决最值问题.【详解】(1)∵30501200x y∴y 关于x 的函数表达式为:3245y =-+. (2)设获得的利润为w 元,根据题意得510w x y , ∴240w x =-+∵A 水果的数量不得少于B 水果的数量,∴x y ≥,解得15x ≥.∵10-<,∴w 随x 的增大而减小,∴当15x =时,w 最大225=,此时120315155y -⨯==. 即应购进A 水果15箱、B 水果15箱能够获得最大利润,最大利润为225元.【点睛】本题考查了二元一次方程的应用、一次函数的应用;根据题意得出等量关系列出方程组或得出函数关系式或由不等关系得出不等式是解决问题的关键.27.(1)见解析;(2)见解析.【解析】【分析】(1)根据角平分线的性质可知,角平分线上的点到角两边的距离相等,故做角A 的角平分线交BC 于点P ,P 点即为所求.(2)根据垂直平分线的性质,垂直平分线上的点到线段两端点的距离相等,故作出线段AC 的垂直平分线,交射线AP 与点Q ,Q 点即为所求.【详解】作法:1.以点A 为圆心,以任意长为半径画弧,两弧交角BAC 两边于点M ,N.2.分别以点M ,N 为圆心,以大于12MN 的长度为半径画弧,两弧交于点D. 3.作射线AD ,交BC 与点P ,如图所示,点P 即为所求.(2)作法:1.以线段的AC 两个端点为圆心,以大于AC 一半长度为半径分别在线段两边画相交弧; 2得出相交弧的两个交点F 、E ;3用直尺连接这两个交点,所画得的直线与射线AP 交与点Q ,如图所示,点Q 即为所求.【点睛】本题考查了角平分线的性质和垂直平分线的性质,根据角平分线和垂直平分线的作法即可解决问题,能够熟练掌握二者的作法是解决本题的关键.28.-5【解析】【分析】根据实数的运算法则进行计算.【详解】解:原式=-1+4-5-3=-5.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、算术平方根等考点的运算.29.(1)42y x =-+;(2)2a =-.【解析】【分析】(1)设y-2=kx ,把已知条件代入可求得k 的值,则可求得y 与x 的函数关系式; (2)把点的坐标代入函数解析式可得关于a 的方程,则可求得a 的值.【详解】(1)设()20y kx k -=≠,则622k --=,∴4k =-,∴y 与x 的函数关系式是:42y x =-+;(2)当10y =时,1042a =-+,解得2a =-.【点睛】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键. 30.4【解析】试题分析:先将223a a -+变形为(a-1)2+2,再将21a =代入求值即可.试题解析:223a a -+=221a a -++2=(a-1)2+2当时,原式=-1)2+2=)2+2=2+2=4.31.(1)16,20;(2)点E表示妈妈到了甲地,此时小明没到,E(95,1445);(3)12或3 2【解析】【分析】(1)由点A,点B,点D表示的实际意义,可求解;(2)理解点E表示的实际意义,则点E的横坐标为小明从家到图书馆的时间,点E纵坐标为小明这个时间段走的路程,即可求解;(3)根据题意列方程即可得到结论.【详解】解:(1)由题意可得:小明速度=362.25=16(km/h)设妈妈速度为xkm/h由题意得:1×(16+x)=36,∴x=20,答:小明的速度为16km/h,妈妈的速度为20km/h,故答案为:16,20;(2)由图象可得:点E表示妈妈到了家,此时小明没到,∴点E的横坐标为:369 205,点E的纵坐标为:95×16=1445∴点E(95,1445);(3)根据题意得,(16+20)t=(36﹣18)或(16+20)t=36+18,解得:t=12或t=32,答:当t为12或32时,两车之间的距离为18km.【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型.。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案) 一、选择题 1.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .不能确定2.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-, 3.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .1,2,5B .3,4,5C .3,6,9D .23,7,61 4.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<325.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .6.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( )A .B .C .D . 7.已知a >0,b <0,那么点P(a ,b)在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.在直角坐标系中,将点(-2, -3)向左平移2个单位长度得到的点的坐标是( )A .(-2,-5)B .(-4,-3)C .(0,-3)D .(-2,1) 9.下列实数中,无理数是( )A .227B .3πC .4-D .32710.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m ≥-C .3n x m -≤≤D .以上都不对11.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg12.下列各式成立的是( )A .93=±B .235+=C .()233-=±D .()233-=13.下列关于10的说法中,错误的是( )A .10是无理数B .3104<<C .10的平方根是10D .10是10的算术平方根14.如图,已知AB AD =,下列条件中,不能作为判定ABC ≌ADC 条件的是A .BC DC =B .BAC DAC ∠=∠ C .90BD ︒∠=∠= D .ACB ACD ∠=∠15.如图,若BD 为等边△ABC 的一条中线,延长BC 至点E ,使CE =CD =1,连接DE ,则DE 的长为( )A .32B .3C .52D .5二、填空题16.在平面直角坐标系中,过点()5,6P 作PA x ⊥轴,垂足为点A ,则PA 的长为______________.17.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”).18.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.19.对于分式23x a b a b x++-+,当1x =时,分式的值为零,则a b +=__________. 20.若关于x 的多项式322ax bx +-的一个因式是231+-x x ,则+a b 的值为__________.21.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.22.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.23.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.24.3的平方根是_________.25.在平面直角坐标系中,点()2,0A ,()0,4B ,作BOC ,使BOC 与ABO 全等,则点C 坐标为____.(点C 不与点A 重合)三、解答题26.如图,已知一次函数2y x =-的图像与y 轴交于点A ,一次函数4y x b =+的图像与y 轴交于点B ,且与x 轴以及一次函数2y x =-的图像分别交于点C 、D ,点D 的坐标为()2,m -.(1)关于x 、y 的方程组24y x y x b -=-⎧⎨-=⎩的解为______________. (2)关于x 的不等式24x x b -≥+的解集为__________________.(3)求四边形OADC 的面积;(4)在x 轴上是否存在点E ,使得以点C ,D ,E 为顶点的三角形是直角三角形?若存在,求出点E 的坐标:若不存在,请说明理由.27.分别画出满足下列条件的点:(尺规作图,请保留作图痕迹,不写作法.作图痕迹请加粗加黑!)(1)在边BC 上找一点P ,使P 到AB 和AC 的距离相等;(2)在射线AP 上找一点Q ,使QA QC =.28.如图,ABC ∆中,90BAC ∠=,8AC cm =,DE 是BC 边上的垂直平分线,ABD ∆的周长为14cm ,求BC 的长.29.计算与求值: (1)计算:()203120195274+-+--. (2)求x 的值:24250x -=30.解方程:21142x x x x --=-+ 31.已知 2x k x+=,k 为正实数. (1)当k =3时,求x 224x+的值; (2)当k =10时,求x ﹣2x的值; (3)小安设计一个填空题并给出答案,但被老师打了两个“×”小安没看懂老师为什么指出两个错误?如果你看懂了,请向小安解释一下.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可.【详解】解:∵一次函数1y =+的系数k <0,y 随x 增大而减小,又∵两点的横坐标2<3,∴12y y >故选C.【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.2.B解析:B【解析】【分析】根据关于x 轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数的性质解答即可.【详解】∵P (2,-3)关于x 轴对称,∴对称点与点P 横坐标相同,纵坐标互为相反数,∴对称点的坐标为(-2,-3).故答案为(-2,-3).【点睛】本题考查的是坐标与图形的变换,关于y 轴对称的点的坐标与原坐标纵坐标相等,横坐标互为相反数;关于x 轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数;掌握轴对称的性质是解题的关键,3.C解析:C【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、∵12+222,故A 选项能构成直角三角形;B 、∵32+42=52,故B 选项能构成直角三角形;C 、∵32+62≠92,故C 选项不能构成直角三角形;D 、∵72+()22,故D 选项能构成直角三角形.故选:C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.B解析:B【解析】【分析】由mx ﹣2<(m ﹣2)x+1,即可得到x <32;由(m ﹣2)x+1<mx ,即可得到x >12,进而得出不等式组mx ﹣2<kx+1<mx 的解集为12<x <32. 【详解】 把(12,12m )代入y 1=kx+1,可得 12m=12k+1, 解得k=m ﹣2,∴y 1=(m ﹣2)x+1,令y 3=mx ﹣2,则当y 3<y 1时,mx ﹣2<(m ﹣2)x+1,解得x <32; 当kx+1<mx 时,(m ﹣2)x+1<mx , 解得x >12, ∴不等式组mx ﹣2<kx+1<mx 的解集为12<x <32, 故选B .【点睛】 本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.5.B解析:B【解析】【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故错误;B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确;C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误;过原点,而图中两条直线都不过原点,故错误.D .y kx故选 B【点睛】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.6.C解析:C【解析】【分析】对于各选项:先通过一次函数的性质确定m、n的符合,从而得到mn的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确.【详解】A、由一次函数图象得m>0,n>0,所以mn>0,则正比例函数图象过第一、三象限,所以A选项错误;B、由一次函数图象得m>0,n<0,所以mn<0,则正比例函数图象过第二、四象限,所以B选项错误;C、由一次函数图象得m<0,n>0,所以mn<0,则正比例函数图象过第二、四象限,所以C选项正确;D、由一次函数图象得m<0,n>0,所以mn<0,则正比例函数图象过第二、四象限,所以D选项错误.故选:C.【点睛】本题考查了正比例函数图象:正比例函数y=kx经过原点,当k>0,图象经过第一、三象限;当k<0,图象经过第二、四象限.也考查了一次函数的性质.7.D解析:D【解析】试题分析:根据a>0,b<0和第四象限内的坐标符号特点可确定p在第四象限.∵a>0,b<0,∴点P(a,b)在第四象限,故选D.考点:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点点评:解答本题的关键是掌握好四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.B解析:B【解析】【分析】直接利用平移的性质得出答案.(−2,−3)向左平移2个单位长度得到的点的坐标是:(−4,−3).故选B.【点睛】考查点的平移,掌握上下改变纵坐标,左右横左标变化是解题的关键.9.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 A.227是有理数,不符合题意; B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.10.C解析:C【解析】【分析】 首先根据交点得出3b n m k -=-,判定0,0m k <>,然后即可解不等式组. 【详解】∵直线y mx n =+与y kx b =+的图像交于点(3,-1)∴31,31m n k b +=-+=-∴33m n k b +=+,即3b n m k-=- 由图象,得0,0m k <>∴mx n kx b +≥+,解得3x ≤0mx n +≤,解得n x m≥- ∴不等式组的解集为:3n x m -≤≤ 故选:C.此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.11.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.12.D解析:D【解析】【分析】根据算术平方根的定义对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对C、D进行判断.【详解】=,所以A选项错误;解:A3B B选项错误;=,所以C选项错误;C3D、(23=,所以D选项正确.故选D.【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.13.C解析:C【解析】试题解析:A是无理数,说法正确;B、3<4,说法正确;C、10,故原题说法错误;D是10的算术平方根,说法正确;故选C.14.D解析:D【解析】【分析】利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.【详解】解:A、AB=AD,BC=DC,再加上公共边AC=AC可利用SSS判定△ABC≌△ADC,故此选项不符合题意;B、AB=AD,∠BAC=∠DAC再加上公共边AC=AC可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、AB=AD,∠B=∠D=90°再加上公共边AC=AC可利用HL判定△ABC≌△ADC,故此选项不合题意;D、AB=AD,∠ACB=∠ACD再加上公共边AC=AC不能判定△ABC≌△ADC,故此选项合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.B解析:B【解析】【分析】由等边三角形的性质及已知条件可证BD=DE,可知BC长及BD⊥AC,在Rt△BDC中,由勾股定理得BD长,易知DE长.【详解】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=12∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=CD=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,且BD⊥AC,在Rt△BDC中,由勾股定理得:BD==即DE=BD故选:B.【点睛】本题主要考查了等边三角形的性质,灵活利用等边三角形三线合一及三个角都是60度的性质是解题的关键.二、填空题16.【解析】【分析】根据题意得出PA就是P到x轴的距离,即可得出结论.【详解】∵PA⊥x轴,∴PA=|6|=6.故答案为:6.【点睛】本题考查了点到x轴的距离.掌握点到坐标轴的距离是解解析:6【解析】【分析】根据题意得出PA就是P到x轴的距离,即可得出结论.【详解】∵PA⊥x轴,∴PA=|6|=6.故答案为:6.【点睛】本题考查了点到x轴的距离.掌握点到坐标轴的距离是解答本题的关键.17.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,且x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.18.【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.--解析:(1,1)【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.【详解】解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC,∴AC=OC,由勾股定理得:2AC2=OA2=4,∴2,由三角形的面积公式得:AC×OC=OA×CD ,=2CD ,∴CD=1,∴OD=CD=1,∴B (-1,-1).故答案为:(-1,-1).【点睛】本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B 和C 重合时,线段AB 最短,题目比较典型,主要培养了学生的理解能力和计算能力.19.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】解:∵分式23x a b a b x ++-+,当1x =时,分式的值为零, ∴10a b 且230a b ,∴1a b +=-,且5233ab , 故答案为:-1且5233ab ,. 【点睛】 此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.20.26【解析】【分析】根据题意,令,进而整理得到a ,b 的值即可得解.【详解】根据题意,令整理得:∴,解得:,∴,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的解析:26【解析】【分析】根据题意,令3222()(31)ax bx ax k x x +-=++-,进而整理得到a ,b 的值即可得解.【详解】根据题意,令3222()(31)ax bx ax k x x +-=++-整理得:3232(3)(3)2ax k a x k a x k ax bx +++--=+- ∴3302k a b k a k +=⎧⎪-=⎨⎪=⎩,解得:6202a b k =⎧⎪=⎨⎪=⎩,∴26a b +=,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的乘法运算方法及技巧是解决本题的关键. 21.130°或90°.【解析】分析:根据题意可以求得∠B 和∠C 的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.详解:∵在△ABC 中,AB=AC ,∠BAC=100°,∴∠B=∠C=40°解析:130°或90°.【解析】分析:根据题意可以求得∠B 和∠C 的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.详解:∵在△ABC 中,AB=AC ,∠BAC=100°,∴∠B=∠C=40°,∵点D 在BC 边上,△ABD 为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.22.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435∵C (0,-1),∴OC=1,∴BC=3+1=4,∴1122ABCS BC AO AB CD==,即1144=522CD⨯⨯⨯⨯,解得,165 CD=.故答案为:16 5.【点睛】此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD的长.23.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.24.【解析】试题解析:∵()2=3,∴3的平方根是.故答案为.解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为25.或或【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵,∴OB=4,OA=2∵△BOC ≌△ABO∴OB=OB=4,OA=OC=2解析:()2,4或()2,0-或()2,4-【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵()2,0A ,()0,4B∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2∴123C (2,0),C (2,4),C (2,4)-- 故答案为:()2,4或()2,0-或()2,4-【点睛】本题考查坐标与全等三角形的性质和判定,注意要分多种情况讨论是解题的关键 三、解答题26.(1)24x y =-⎧⎨=-⎩;(2)2x -≤;(3)4;(4)点E 坐标为(2,0)-或(18,0)-. 【解析】【分析】(1)把D (-2,m )代入y =x -2可得D 的坐标.由图象可得结论;(2)观察图象可得结论;(3)过点D 作DH ⊥AB 于H .根据S 四边形OADC =S ΔABD -S ΔOBC 计算即可;(4)分三种情况讨论:①当点E 为直角顶点时,过点D 作DE 1⊥x 轴于E 1,即可得出结论;②当点C 为直角顶点时,x 轴上不存在点E ;③当点D 为直角顶点时,过点D 作DE 2⊥CD 交x 轴于点E 2.设E 2(t ,0),利用勾股定理即可得出结论.【详解】(1)∵D (-2,m )在y =x -2上,∴m =-2-2=-4,∴D (-2,-4).由图象可知:关于x 、y 的方程组24y x y x b -=-⎧⎨-=⎩的解为24x y =-⎧⎨=-⎩; (2)由图象可知:关于x 的不等式x -2≥4x +b 的解集为x ≤-2;(3)如图1,过点D 作DH ⊥AB 于H .由(1)知D (-2,-4),∴DH =2.在y =x -2中,当x =0时,y =-2,∴A (0,-2).把D (-2,-4)代入y =4x +b 得:-4=4×(-2)+b ,解得:b =4.∴B (0,4),∴直线BD 的函数表达式为y =4x +4.∴AB =4-(-2)=6,∴S ΔABD =12AB ⋅DH =12×6×2=6. 在y =4x +4中,当y =0时,0=4x +4,解得:x =-1.∴C (-1,0),∴OC =1.∵B (0,4),∴OB =4,∴S ΔOBC =12OB ⋅OC =12×4×1=2, ∴S 四边形OADC =S ΔABD -S ΔOBC =6-2=4.(4)如图2,①当点E 为直角顶点时,过点D 作DE 1⊥x 轴于E 1.∵D (-2,-4),∴E 1(-2,0)②当点C 为直角顶点时,x 轴上不存在点E .③当点D 为直角顶点时,过点D 作DE 2⊥CD 交x 轴于点E 2.设E 2(t ,0).∵C (-1,0),E 1(-2,0),∴CE 2=-1-t ,E 1E 2=-2-t .∵D (-2,-4),∴DE 1=4,CE 1=-1-(-2)=1.在12Rt DE E ∆中,由勾股定理得:()2222222211242420DE DE E E t t t =+=+--=++. 在1Rt CDE ∆中,由勾股定理得:2221417CD =+=.在2Rt CDE ∆中,由勾股定理得:22222CE DE CD =+.∴(-1-t)2=t2+4t+20+17解得:t=-18.∴E2(-18,0).综合上所述:点E坐标为(-2,0)或(-18,0).【点睛】本题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,勾股定理,一次函数与方程组、一次函数与不等式的解集,利用了数形结合的思想,熟练掌握一次函数的性质是解答本题的关键.27.(1)见解析;(2)见解析.【解析】【分析】(1)根据角平分线的性质可知,角平分线上的点到角两边的距离相等,故做角A的角平分线交BC于点P,P点即为所求.(2)根据垂直平分线的性质,垂直平分线上的点到线段两端点的距离相等,故作出线段AC的垂直平分线,交射线AP与点Q,Q点即为所求.【详解】作法:1.以点A为圆心,以任意长为半径画弧,两弧交角BAC两边于点M,N.2.分别以点M,N为圆心,以大于12MN的长度为半径画弧,两弧交于点D.3.作射线AD,交BC与点P,如图所示,点P即为所求.(2)作法:1.以线段的AC两个端点为圆心,以大于AC一半长度为半径分别在线段两边画相交弧;2得出相交弧的两个交点F、E;3用直尺连接这两个交点,所画得的直线与射线AP交与点Q,如图所示,点Q即为所求.【点睛】本题考查了角平分线的性质和垂直平分线的性质,根据角平分线和垂直平分线的作法即可解决问题,能够熟练掌握二者的作法是解决本题的关键.28.10BC=【解析】【分析】由垂直平分线的性质得到BD=CD,则得到AB+AC=14,然后求出AB,由勾股定理即可求出BC的长度.【详解】解:∵DE是BC边上的垂直平分线,∴BD=CD,∵ABD∆的周长为14cm,∴AB+AD+DB=14,∴AB+AD+DC=AB+AC=14,∵8AC=,∴1486AB=-=,在Rt△ABC中,由勾股定理,得226810BC+=.【点睛】本题考查了垂直平分线的性质定理,勾股定理,解题的关键是掌握由垂直平分线的性质定理,求出AB的长度.29.(1)52;(2)52x=±.【解析】【分析】(1)分别计算零指数幂,利用平方根的性质化简,计算立方根和算术平方根,然后把所得的结果相加减;(2)依次移项,系数化为1,两边同时开平方即可.【详解】解:(1)原式=115(3)2++--=52; (2)移项得:2425x =,系数化为1得:2254x =, 两边同时开平方得:52x =±. 【点睛】本题考查实数的混合运算和利用平方根解方程.(1||a =,2(0)a a =≥;(2)中需注意的是方程右边的常数项(正数)有正负两个平方根,不要漏解.30.3x =【解析】【分析】将分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21142x x x x --=-+, 方程两边同时乘以(2)(2)x x +-,得2(1)(2)4x x x x ---=-,解这个方程,得3x =.验证:当3x =时,(2)(2)0x x +-≠ ∴原方程的解为:3x =.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.31.(1)5;(2);(3)见解析【解析】【分析】(1)根据22242()4x x x x+=+-代入可得结果;(2)先根据2x x +=22242()4x x x x +=+-的值,再由2x x -=解;(3)由224xx +=+可知题目错误,由错误题目求解可以得出结果错误. 【详解】解:(1)当3k =时,23x x +=, 222242()4345x x x x+=+-=-=;(2)当k =2x x +=222242()446x x x x+=+-=-=,2x x ∴-===(3)由题可知x>0,∴2244xx +=+≥,42x x∴+,即使当2x x +时,22242()42x x x x +=+-=, ∴224+x x 的值也不对; ∴题干错误,答案错误,故老师指出了两个错误.【点睛】此题考查了完全平方公式的运用.将所求式子进行适当的变形是解本题的关键.。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题 1.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--2.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( ) A .2k < B .2k > C .0k >D .k 0< 3.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是( )A .B .C .D .4.下列标志中属于轴对称图形的是( )A .B .C .D .5.已知:△ABC ≌△DCB ,若BC=10cm ,AB=6cm ,AC=7cm ,则CD 为( )A .10cmB .7cmC .6cmD .6cm 或7cm6.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .107.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是() A . B .C .D .8.如图,动点P 从点A 出发,按顺时针方向绕半圆O 匀速运动到点B ,再以相同的速度沿直径BA 回到点A 停止,线段OP 的长度d 与运动时间t 的函数图象大致是( )A .B .C .D .9.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对10.下列实数中,无理数是( )A .227B .3πC .4-D 32711.下列说法正确的是( )A .(﹣3)2的平方根是3B 16±4C .1的平方根是1D .4的算术平方根是212.在下列各数中,无理数有( ) 33224,3,8,9,07π A .1个B .2个C .3个D .4个 13.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( )A .7cmB .9cmC .9cm 或12cmD .12cm 14.点P(2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限15.设2的整数部分用a 表示,小数部分用b 表示,4﹣2的整数部分用c 表示,小数部分用d 表示,则b d ac +值为( ) A .12 B .14 C .212- D .2+12二、填空题16.在平面直角坐标系中,过点()5,6P 作PA x ⊥轴,垂足为点A ,则PA 的长为______________.17.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.18.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.19.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____.20.若x +2y =2xy ,则21+x y的值为_____. 21.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =34x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.22.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________.23.如图,直线l 上有三个正方形,,a b c ,若,a c 的面积分别为5和11,则b 的面积为__________.24.如图,已知ABD CBD ∠∠=,若以“SAS”为依据判定ABD ≌CBD ,还需添加的一个直接条件是______.25.等腰三角形的一个内角是100︒,则它的底角的度数为_________________.三、解答题26.解方程:12242x x x -=--. 27.如图,一次函数的图像经过点P (1,3),Q (0,4).(1)求该函数的表达式;(2)该图像怎样平移后经过原点?28.(本题满分10分) 如图,直线23y x =+与x 轴相交于点A ,与y 轴相交于点B .(1)求△AOB 的面积;(2)过B 点作直线BP 与x 轴相交于P ,△ABP 的面积是92,求点P 的坐标. 29.一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y 1(km )与行驶的时间x (h )之间的函数关系,如图中线段AB 所示,慢车离乙地的路程y 2(km )与行驶的时间x (h )之间的函数关系,如图中线段OC 所示,根据图像进行以下研究:(1)甲、乙两地之间的距离为km;线段AB的解析式为;线段OC的解析式为;(2)经过多长时间,快慢车相距50千米?(3)设快、慢车之间的距离为y(km),并画出函数的大致图像.30.已知△ABC中,AB=17,AC=10,BC边上得高AD=8,则边BC的长为________ 31.在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在格点上(网格线的交点).(1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A坐标为(﹣1,2),点B的坐标为(﹣5,2);(画出直角坐标系)(2)点C的坐标为(,)(直接写出结果)(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①请在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出点P2的坐标为(,);(直接写出结果)③试在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,此时,QA2+QC2的长度之和最小值为.(在图中画出点Q的位置,并直接写出最小值答案)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据左加右减,上加下减的平移规律解题.【详解】解:把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4y x =-++,整理得:32y x =--,故选D.【点睛】本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.2.B解析:B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k ≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.3.D解析:D【解析】【分析】易得所求的图形与看到的图形关于水平的一条直线成轴对称,找到相应图形即可.【详解】解:如下图,∴正确的图像是D ;故选择:D.【点睛】解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形,也可根据所给图形的特征得到相应图形.4.C解析:C【解析】【分析】根据对称轴的定义,关键是找出对称轴即可得出答案.【详解】解:根据对称轴定义A 、没有对称轴,所以错误B 、没有对称轴,所以错误C 、有一条对称轴,所以正确D 、没有对称轴,所以错误故选 C【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.5.C解析:C【解析】【分析】全等图形中的对应边相等.【详解】根据△ABC ≌△DCB ,所以AB=CD,所以CD=6,所以答案选择C 项.【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.6.B解析:B【解析】【分析】根据正方形的面积公式及勾股定理即可求得结果.【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形,所以AB 2=AC 2+BC 2所以123S S S =+因为12316S S S ++=所以1S =8故选:B【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.7.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.8.B解析:B【解析】【分析】根据P 点半圆O 、线段OB 、线段OA 这三段运动的情况分析即可.【详解】解:①当P 点半圆O 匀速运动时,OP 长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A 答案;②当P 点在OB 段运动时,OP 长度越来越小,当P 点与O 点重合时OP =0,排除C 答案; ③当P 点在OA 段运动时,OP 长度越来越大,B 答案符合.故选B .【点睛】本题主要考查动点问题的函数图象,熟练掌握是解题的关键.9.A解析:A【解析】【分析】【详解】∵k=﹣2<0,∴y 随x 的增大而减小,∵1<2,∴a >b .故选A.10.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.11.D解析:D【解析】【分析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B4,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.12.B解析:B【解析】【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】,∴这一组数中的无理数有:32个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.13.D解析:D【解析】【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【详解】解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.14.D解析:D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵点P的横坐标为正,纵坐标为负,∴点P(2,-3)所在象限为第四象限.故选D.15.A解析:A【解析】【分析】和4的值,确定其整数部分,再用原数减去其整数部分可得小数部分,将求得的值代入求解即可.【详解】解:∵1<2<4,∴1<2.∴a=1,b﹣1,∵2<4<3∴c=2,d=4﹣2=2.∴b+d=1,ac=2.∴b dac=12.故选:A.【点睛】本题考查了实数的估算,灵活的利用估算确定无理数的整数部分与小数部分是解题的关键.二、填空题16.【解析】【分析】根据题意得出PA就是P到x轴的距离,即可得出结论.【详解】∵PA⊥x轴,∴PA=|6|=6.故答案为:6.【点睛】本题考查了点到x轴的距离.掌握点到坐标轴的距离是解解析:6【解析】【分析】根据题意得出PA就是P到x轴的距离,即可得出结论.【详解】∵PA⊥x轴,∴PA=|6|=6.故答案为:6.【点睛】本题考查了点到x轴的距离.掌握点到坐标轴的距离是解答本题的关键.17.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.18.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.19.【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数的图象向上平移3个单位长度可得:.故答案为:【点睛】本题考查了函数图像平移,解决本解析:31y x =-【解析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数34y x =-的图象向上平移3个单位长度可得:34331y x x =-+=-. 故答案为:31y x =-【点睛】本题考查了函数图像平移,解决本题的关键是熟练掌握函数图像的平移规律,要与点的坐标平移区别开.20.【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y =2xy ,∴原式==2,故答案为:2【点睛】此题考查了分式的化简求值,熟解析:【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y =2xy , ∴原式=22x y xy xy xy+==2, 故答案为:2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB 时线段PM 最短,分别求出PB 、OB 、OA 、AB 的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P 作P M⊥AB, 解析:285【解析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,22345+=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PMAB AO=,即:754PM =,所以可得:PM=285.22.22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当解析:22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当底边是4,腰长是9时,能构成三角形,则其周长=4+9+9=22.故答案为22.【点睛】考查等腰三角形的性质以及三边关系,熟练掌握等腰三角形的性质是解题的关键. 23.16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BC解析:16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BCA=∠AED=90°,∴∠ABC=∠DAE,∴ΔBCA≌ΔAED(ASA),∴BC=AE,AC=ED,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA≌ΔAED,而利用全等三角形的性质和勾股定理得到b=a+c则是解题的关键. 24.AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD解析:AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD,BD=BD,∴添加AB=CB时,可以根据SAS判定△ABD≌△CBD,故答案为AB=CB.【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.25.【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是解析:40【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查了等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.三、解答题26.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x-2=4(x-2)解得:x=2.检验:当x=2时,2(x-2)=0,∴x=2是增根.∴方程无解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.27.(1)y=-x+4;(2)向下平移4个单位长度(或向上平移-4个单位长度);向左平移4个单位长度;或先向左平移1个单位长度,再向下平移3个单位长度;或先向下平移3个单位长度,再向左平移1个单位长度(此问答案不唯一).【解析】【分析】(1)设y=kx+b(k≠0),直接将P(1,3),Q(0,4)代入,即可用待定系数法求得函数解析式;(2)平移后经过原点,则平移之后解析式为y=-x,根据函数y=-x+4变形为y=-x的过程,结合函数的平移符合“左加右减,上加下减”即可得出平移方式(答案不唯一).【详解】(1)设y=kx+b(k≠0),所以43bk b=⎧⎨=+⎩,解得14 kb=-⎧⎨=⎩所以函数表达式为y=-x+4.(2)若平移后经过原点,则平移后函数的解析式为y=-x.∵y=-x+4-4=-x,∴可向下平移4个单位长度(或向上平移-4个单位长度);∵y=-( x+4)+4=- x,∴可向左平移4个单位长度;∵y=-(x+1)+4-3,∴可先向左平移1个单位长度,再向下平移3个单位长度或先向下平移3个单位长度,再向左平移1个单位长度.【点睛】本题考查用待定系数法求一次函数解析式,一次函数的平移问题.(1)熟练掌握用待定系数法求一次函数解析式是解题关键;(2)中函数的平移满足“左加右减,上加下减”.28.(1)94;(2)P(1.5,0) 或(-4.5,0)【解析】【分析】(1)分别求直线与x,y轴交点坐标,再求面积.(2)利用面积,可求得P 点距离A 点的距离,求出P 点坐标.【详解】(1) 由x=0得:y=3,即:B (0,3).由y=0得:2x+3=0,解得:32x =-∴OA =32,OB =3 . ∴△AOB 的面积:1393224⨯⨯=. (2) ∵△ABP 的面积是92, OB =3 3922AP ∴= ∴AP =3∴P (1.5,0) 或 (-4.5,0)【点睛】本题考查了一次函数图象上点的坐标特征.29.(1)450, y 1=﹣150x +450,y 2=75x;(2)当经过169、209小时,快慢车相距50千米;(3)见解析【解析】【分析】(1)利用A 点坐标为(0,450),可以得出甲,乙两地之间的距离,B 点坐标为(3,0),代入y 1=kx+b 求出即可,利用线段OC 解析式为y 2=ax 求出a 即可;(2)分两种情况考虑:y 1﹣y 2=50,y 2﹣y 1=50,得出方程求解即可;(3)利用(2)中所求得出,y=|y 1-y 2|进而求出函数解析式,得出图象即可.【详解】(1)由图象可得,甲、乙两地之间的距离为450km设线段AB 对应的函数解析式为y 1=kx +b , 45030b k b =⎧⎨+=⎩,得150450k b =-⎧⎨=⎩, 即线段AB 对应的函数解析式为y 1=﹣150x +450,设线段OC 对应的函数解析式为y 2=ax ,450=6a ,得a =75,即线段OC 对应的函数解析式为y 2=75x ,(2) y 1﹣y 2=50,即﹣150x+450-75x=50,169=xy2﹣y1=50,即75x﹣(﹣150x+450)=50,209 x=当经过169、209小时,快慢车相距50千米(3)甲车的速度为:450÷3=150km/h,乙车的速度为:450÷6=75km/h,故甲乙两车相遇的时间为:450÷(150+75)=2h,设快、慢车之间的距离为y(km),这个函数的大致图象如右图所示.【点睛】此题主要考查了一次函数的应用和待定系数法求解析式,根据已知图象上的点得出函数解析式以及利用分段函数分析是解题关键.30.21或9【解析】【分析】由题意得出∠ADB=∠ADC=90°,由勾股定理求出BD、CD,分两种情况,容易得出BC的长.【详解】分两种情况:①如图1所示:∵AD是BC边上的高,∴∠ADB=∠ADC=90°,2222222217815,1086BD AB AD CD AC AD=-=-==-=-=∴BC=BD+CD=15+6=21;②如图2所示:同①得:BD=15,CD=6,∴BC=BD-CD=15-6=9;综上所述:BC的长为21或9.【点睛】本题考查了勾股定理、分类讨论思想;熟练掌握勾股定理,并能进行推理计算是解决问题的关键.31.(1)见解析;(2)(-2,5);(3)①见解析;②点P2的坐标为(﹣m,n﹣6);③32【解析】【分析】(1)建立适当的平面直角坐标系,根据点A坐标为(﹣1,2),点B的坐标为(﹣5,2)即可画出直角坐标系;(2)根据坐标系即可写出点C的坐标;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①即可在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,即可写出点P2的坐标;③根据对称性即可在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,进而可以求出QA2+QC2的长度之和最小值.【详解】(1)∵点A坐标为(﹣1,2),点B的坐标为(﹣5,2),如图所示:即为所画出的直角坐标系;(2)根据坐标系可知:点C的坐标为(﹣2,5),故答案为:﹣2,5;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①如图即为坐标系中画出的△A2B2C2;②点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,∴点P2的坐标为(﹣m,n﹣6),故答案为:﹣m,n﹣6;③根据对称性可知:在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,∴连接A2C1交y轴于点Q,此时QA2+QC2的长度之和最小,∴QA2+QC2的长度之和最小值为2.故答案为:2.【点睛】此题主要考查平面直角坐标系中三角形的平移以及对称性的运用,熟练掌握,即可解题.。

苏教版八年级秋学期期末数学模拟试卷含答案

苏教版八年级秋学期期末数学模拟试卷含答案

苏教版八年级秋学期期末数学模拟试卷含答案(满分:100分 时间:90分钟)一、选择题(每题2分,共16分)1.下列四个图形中轴对称图形的个数是 ( )A .1B .2C .3D .42.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD ≌△ACD 的条件是 ( ) A .AB =AC B .∠BAC =90° C .BD =AC D .∠B =45°3.实数a ,b 在数轴上的位置如图所示,若a >b a b +的结果为 ( ) A .2a +bB .-2a +bC .bD .2a -b4.用四舍五入法按要求对0.05049分别取近似值,其中错误的是 ( ) A .0.1(精确到0.1) B .0.05(精确到千分位) C .0.05(精确到百分位) D .0.050(精确到0.001) 5.卞列各式化简结果为无理数的是 ( )A B .-1)0 CD 6.如图,在△ABC 中,AB =AC =10,BC =8,AD 平分∠BAC 交BC 于点D .若点E 为AC 的中点,连接DE ,则△CDE 的周长为 ( ) A .20 B .12 C .14 D .137.周一的升旗仪式上,同学们看到匀速上升的旗子,下面能反映其高度与时间关系的大致图像是( )8.已知两个变量x 和y ,它们之间的3组对应值如下表所示:则y 与x 之间的函数关系式可能是 A .y =xB .y =2x +1C .y =x 2+x +1D .3y x=二、填空题(每题2分,共20分)9.在平面直角坐标系中,点(1,2)位于第_______象限. 10.若一个汽车牌在水中的倒影为,则该车牌照号码为_______.11.在平面直角坐标系中,点(-3,4)关于y 轴对称的点的坐标是_______.12.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D .若CD =4,则点D 到AB 的距离为_______.13.如图,已知△ABC 是等边三角形,点B ,C ,D ,E 在同一直线上.若CG =CD ,DF =DE ,则∠E =_______.14.一次函数y =-x +1的图像不经过第_______象限.15.已知(2a +1)20,则-a 2+b 2004=_______.16.在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm ,则正方形a ,b ,c ,d 的面积之和是_______cm 2.17.如图,已知函数y =x -2和y =-2x +1的图像交于点P ,根据图像可得方程组221x y x y -=⎧⎨+=⎩的解是_______.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用了45min ,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60km/h ,两车的距离y(km)与货车行驶的时间x(h)之间的函数图像如图所示.现有以下4个结论: ①快递车从甲地到乙地的速度为100km/h ; ②甲、乙两地之间的距离为120km ;③图中点B 的坐标为(334,75);④快递车从乙地返回时的速度为90km/h . 其中正确的是_______.(填序号)三、解答题(共64分) 19.(本题6分)计算下列各题.(1)()01232π--+-- (2)12.20.(本题5分)如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥LAB,PM⊥AC,垂足分别为点N,M.求证:BN=CM.21.(本题6分)如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离B0=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?22.(本题5分)如图所示是一个正比例函数与一个一次函数的图像,它们交于点A(4,3),一次函数的图像与y轴交于点B,且OA=OB,求这两个函数的解析式.23.(本题6分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且么GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系,并说明理由.24.(本题5分)小明根据某个一次函数的关系式填写了下面这张表.其中有一格不慎被墨迹遮住了,想想看,该空格里原来填的数是多少?说明你的理由.25.(本题8分)一农民带上若千千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆的千克数与他手中持有的钱数(含备用零钱)韵关系如图所示,结合图像回答下列问题:(1)农民自带的零钱是多少?(2)试求降价前y与x之间的函数关系式;(3)由表达式你能求出降价前每千克土豆的价格是多少吗?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?26.(本题9分)已知点P是直角三角形ABC斜边AB上一动点(不与A、B重合),分别过点A,B向直线CP作垂线,垂足分别为点E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是_______,QE与QF的数量关系是_______.(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,(2)中的结论是否成立?请画出图形并给予证明.27.(本题9分)在社会主义新农村建设电,菜乡镇决定对A,B两材之间的公路进行改造,并由甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工队单独完成,直到公路修通.下图是甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系图像,请根据图像所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求、出甲、乙两工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.(3)若该工程由甲、乙两工程队一直合作施工,需几天完成?参考答案一、选择题1.C2.A3.C4.B5.C6.C7.D8.B二、填空题9.一10.M17936 11.(3,4) 12.4 13.15°14.三15.3416.49 17.11xy=⎧⎨=-⎩18.①③④三、解答题19.(1)-12(2)原式=120.略21.(1)12m(2)4m22.y=2x-523.(1)略(2)EG⊥DF24.-2.25.(1)5元(2)y=0.5x+5 (3)0.5元/千克(4)45千克26.(1)AE//BF,QE=QF (2)QE=QF.(3)(2)中结论仍然成立.27.(1)120米(2)y甲=60x (3)9天完成。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.若点P 在y 轴负半轴上,则点P 的坐标有可能是( ) A .()1,0- B .()0,2- C .()3,0 D .()0,42.如图,△ABC ≌△ADE ,∠B=20°,∠E=110°,则∠EAD 的度数为( )A .80°B .70°C .50°D .130°3.11的值应在( ) A .2和3之间 B .3和4之间 C .4和5之间 D .5和6之间4.下列四组线段中,可以构成直角三角形的是 ( ) A .4,5,6B .2,3,4C 7 3,4D .12 35.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为( ) A .x=1B .x=-1C .x=3D .x=-3 6.在3π-3127-7,227-,中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个7.已知一次函数()1y m x =-的图象上两点11(,)A x y ,22(,)B x y ,当12x x >时,有12y y <,那么m 的取值范围是( )A .0m >B .0m <C .1m >D .1m < 8.64的立方根是( )A .4B .±4C .8D .±8 9.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x--=2 10.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A.①②③B.①②④C.①③④D.①②③④11.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.12.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y(km)与行驶时间x(h)的完整的函数图像(其中点B、C、D在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100km;②前半个小时,货车的平均速度是40km/h;③8∶00时,货车已行驶的路程是60km;④最后40 km货车行驶的平均速度是100km/h;⑤货车到达乙地的时间是8∶24,其中,正确的结论是()A.①②③④B.①③⑤C.①③④D.①③④⑤13.以下问题,不适合用普查的是()A .旅客上飞机前的安检B .为保证“神州9号”的成功发射,对其零部件进行检查C .了解某班级学生的课外读书时间D .了解一批灯泡的使用寿命14.下列二次根式中属于最简二次根式的是( )A .32B .24x yC .y xD .24+x y15.计算2263y y x x÷的结果是( ) A .3318y x B .2y x C .2xy D .2xy 二、填空题16.若等腰三角形的两边长为10cm ,5cm ,则周长为__________cm .17.已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____.18.如图,点P 是BAC ∠的平分线AD 上一点,PE AC ⊥于点E ,若3PE =,则点P 到AB 的距离是______.19.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.20.计算222m m m+--的结果是___________ 21.等边三角形有_____条对称轴. 22.若某个正数的两个平方根分别是21a +与25a -,则a =_______.23.如图,点E ,F 在AC 上,AD=BC ,DF=BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是________(添加一个即可)24.化简20,0)3b a b a>≥结果是_______ .25.函数y1=x+1与y2=ax+b的图象如图所示,那么,使y1、y2的值都大于0的x的取值范围是______.三、解答题26.分别画出满足下列条件的点:(尺规作图,请保留作图痕迹,不写作法.作图痕迹请加粗加黑!)(1)在边BC上找一点P,使P到AB和AC的距离相等;(2)在射线AP上找一点Q,使QA QC=.27.先化简,再求值:(1﹣11a-)÷2244a aa a-+-,其中a=2+2.28.已如,在平面直角坐标系中,点A的坐标为()6,0、点B的坐标为(0,8),点C在y 轴上,作直线AC.点B关于直线AC的对称点B′刚好在x轴上,连接CB'.(1)写出一点B′的坐标,并求出直线AC对应的函数表达式;(2)点D在线段AC上,连接DB、DB'、BB',当DBB∆'是等腰直角三角形时,求点D坐标;(3)如图②,在(2)的条件下,点P从点B出发以每秒2个单位长度的速度向原点O运动,到达点O时停止运动,连接PD,过D作DP的垂线,交x轴于点Q,问点P运动几秒时ADQ∆是等腰三角形.29.(1)求式中x 的值:2(1)16x -=;(2)计算:2020312527--+- 30.如图,在△ABC 中,AD 是高,E 、F 分别是AB 、AC 的中点.(1)AB =12,AC =9,求四边形AEDF 的周长;(2)EF 与AD 有怎样的位置关系?证明你的结论.31.甲、乙两个工程队同时挖掘两段长度相等的隧道,如图是甲、乙两队挖掘隧道长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题:()1在前2小时的挖掘中,甲队的挖掘速度为 米/小时,乙队的挖掘速度为 米/小时. ()2①当26x <<时,求出y 乙与x 之间的函数关系式;②开挖几小时后,两工程队挖掘隧道长度相差5米?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据y 轴上的点的坐标特点,横坐标为0,然后根据题意求解.【详解】解:∵y 轴上的点的横坐标为0,又因为点P 在y 轴负半轴上,∴(0,-2)符合题意故选:B【点睛】本题考查坐标轴上的点的坐标特点,利用数形结合思想解题是本题的解题关键.2.C解析:C【解析】【分析】根据全等的性质知∠D=∠B=20°,再根据三角形的内角和即可求出∠EAD.【详解】∵△ABC≌△ADE,∠B=20°,∠E=110°,∴∠D=∠B=20°,∴∠EAD=180°-20°-110°=50°,故选C.【点睛】本题是对三角形全等知识的考查,熟练掌握全等知识及三角形的内角和是解决本题的关键. 3.B解析:B【解析】【分析】直接利用32=9,42=16的取值范围.【详解】∵32=9,42=16,在3和4之间.故选:B.【点睛】本题考查了估算无理数的大小,正确得出接近无理数的有理数是解题的关键.4.D解析:D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.42+52≠62,不可以构成直角三角形,故A选项错误;B.22+32≠42,不可以构成直角三角形,故B选项错误;C)2+2≠42,可以构成直角三角形,故C选项错误.D.12+)22,可以构成直角三角形,故D选项正确.故选D.【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.解析:A【解析】当x =1时,分母为零,没有意义,所以是增根.故选A .6.B解析:B【解析】【分析】根据无理数的定义判断即可.【详解】解:3π-1-3 ,227-可以化成分数,不是无理数. 故选 B【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.7.D解析:D【解析】【分析】先根据12x x >时,有12y y <判断y 随x 的增大而减小,所以x 的比例系数小于0,那么m-1<0,解出即可.【详解】解:∵当12x x >时,有12y y <∴ y 随x 的增大而减小∴m-1<0∴ m <1故选 D.【点睛】此题主要考查了一次函数的图像性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.8.A解析:A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.9.A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.10.A解析:A【解析】【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.11.B解析:B【解析】【分析】根据P点半圆O、线段OB、线段OA这三段运动的情况分析即可.【详解】解:①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.【点睛】本题主要考查动点问题的函数图象,熟练掌握是解题的关键.12.D解析:D【解析】【分析】根据折线图,把货车从甲地驶往乙地分为三段,再根据图象的时间和路程进行计算判断.【详解】①甲乙两地之间的路程是100 km ,①正确;②前半个小时,货车的平均速度是:400.580?km/h ÷=,②错误;③8∶00时,货车已行驶了一个小时,路程是60 km ,③正确;④最后40 km 货车行驶的平均速度就是求BC 段的速度,时间为1.3-1=0.3小时,路程为90-60=30km ,平均速度是300.3100?km /h ÷=,④正确;⑤货车走完BD 段所用时间为:401000.4÷=小时,即0.46024⨯=分钟∴货车走完全程所花时间为:1小时24分钟,∴货车到达乙地的时间是8∶24,⑤正确;综上:①③④⑤正确;故选:D【点睛】本题考查了一次函数的应用,能够正确理解函数图象的横、纵坐标表示的意义,理解问题的过程,并能通过图象得到自变量和函数值之间的数量关系是解题的关键.13.D解析:D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:旅客上飞机前的安检适合用普查;为保证“神州9号”的成功发射,对其零部件进行检查适合用普查;了解某班级学生的课外读书时间适合用普查;了解一批灯泡的使用寿命不适合用普查.故选D .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.14.D【解析】【分析】最简二次根式即被开方数不含分母且不含能开得尽方的因数或因式,由此判断即可.【详解】解:AB2CD故选:D.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式的概念是解题的关键.15.D解析:D【解析】【分析】利用分式的除法法则,将分式的除法转化为乘法再约分即可.【详解】解:原式22362y x xyx y==.故选:D.【点睛】本题主要考查了分式的除法,熟练掌握分式的除法运算是解题的关键.二、填空题16.【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm为腰时,三角形周长为10+10+5=25cm;②以5解析:25cm【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm 为腰时,三角形周长为10+10+5=25cm ;②以5cm 为腰,因为5+5=10,不符合三角形两边之和大于第三边,此情况不成立;故答案为:25cm .【点睛】此题主要考查三角形三边关系及等腰三角形的性质,注意分类讨论思想的应用是本题的解题关键.17.【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将代入函数解析式得:b=2a+1,将此式变形即可得到:解析:2-【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:2-.【点睛】本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.18.3【解析】【分析】根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可.【详解】解:∵点是的平分线上一点,且,∴P 点到AB 上的距离也是3.故答案为3.【点睛】本题考解析:3【解析】【分析】根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可.【详解】解:∵点P 是BAC ∠的平分线AD 上一点,且PE AC ⊥,∴P 点到AB 上的距离也是3.故答案为3.【点睛】本题考查了角平分线的性质,解决本题的关键是正确的理解题意,能够熟练掌握角平分线的性质.19.(-1,-3)【解析】【分析】让点A 的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A (2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标解析:(-1,-3)【解析】【分析】让点A 的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A (2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),故填:(-1,-3).【点睛】本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.20.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母. 21.3【解析】试题解析:等边三角形有3条对称轴.考点:轴对称图形.解析:3【解析】试题解析:等边三角形有3条对称轴.考点:轴对称图形.22.1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a 值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解解析:1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a 值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,故答案为:1【点睛】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.23.∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, D解析:∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, DF=BE,∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.故答案为∠D=∠B.【点睛】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS).24.【解析】【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【详解】解:原式=,故答案为:.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知解析:3a【解析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【详解】解:原式=.故答案为:3a【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.25.−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】>0,如图所示,x>−1时,y1当x<2时,y2>0,、y2的值都大于0的x的取值范围是:−1<x<2.∴使y1故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0三、解答题26.(1)见解析;(2)见解析.【解析】【分析】(1)根据角平分线的性质可知,角平分线上的点到角两边的距离相等,故做角A的角平分线交BC于点P,P点即为所求.(2)根据垂直平分线的性质,垂直平分线上的点到线段两端点的距离相等,故作出线段AC的垂直平分线,交射线AP与点Q,Q点即为所求.作法:1.以点A 为圆心,以任意长为半径画弧,两弧交角BAC 两边于点M ,N.2.分别以点M ,N 为圆心,以大于12MN 的长度为半径画弧,两弧交于点D. 3.作射线AD ,交BC 与点P ,如图所示,点P 即为所求.(2)作法:1.以线段的AC 两个端点为圆心,以大于AC 一半长度为半径分别在线段两边画相交弧; 2得出相交弧的两个交点F 、E ;3用直尺连接这两个交点,所画得的直线与射线AP 交与点Q ,如图所示,点Q 即为所求.【点睛】本题考查了角平分线的性质和垂直平分线的性质,根据角平分线和垂直平分线的作法即可解决问题,能够熟练掌握二者的作法是解决本题的关键.27.原式=2a a -2. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ----=2a a -当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.28.(1)(4,0)B '-,132y x =-+(2)点D 坐标为(2,2),(3)点P 运动时间为1秒秒或3.75秒. 【解析】【分析】(1)由勾股定理求出AB=10,即可求出A B '=10,从而可求出(4,0)B '-,设C (0,m ),在直角三角形COB '中,运用勾股定理可求出m 的值,从而确定点C 的坐标,再利用待定系数法求出AC 的解析式即可;(2)由AC 垂直平分BB '可证90BDB ∠'=°,过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F ,证明FDB EDB ∆∆'≌可得DE=DF ,设D (a ,a )代入132y x =-+求解即可; (3)分三种情况:①当DQ DA =时,②当AQ AD =时,③当QD QA =时,分类讨论即可得解:【详解】(1)(6,0),(0,8)A B ,6,8OA OB ∴==,90AOB ︒∠=,222OA OB AB ∴+=,22268AB ∴+=,10AB ∴=,点B ′、B 关于直线AC 的对称,AC ∴垂直平分BB ',,10CB CB AB AB ''∴===,(4,0)B '∴-,设点C 坐标为(0,)m ,则OC m =,8CB CB m '∴==-,在Rt COB ∆'中,COB ∠'=90°,222OC OB CB ''∴+=,2224(8),m m ∴+=-3m ∴=,∴点C 坐标为(0,3).设直线AC 对应的函数表达式为(0)y kx b k =+≠,把(6,0),(0,3)A C 代入,得603k b b +=⎧⎨=⎩, 解得123k b ⎧=-⎪⎨⎪=⎩,∴直线AC 对应的函数关系是为132y x =-+, (2)AC 垂直平分BB ',DB DB ='∴,BDB ∆'∴是等腰直角三角形,90BDB ∠'=∴° 过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F .90DFO DFB DEB '︒∴∠=∠=∠=,360EDF DFB DEO EOF ︒∠=-∠-∠-∠,90EOF ︒∠=,90EDF ︒∴∠=,EDF BDB '∴∠=∠,BDF EDB '∴∠=∠,FDB EDB ∴∆∆'≌,DF DE ∴=,∴设点D 坐标为(,)a a ,把点(,)D a a 代入132y x =-+, 得0.53a a =-+2a ∴=, ∴点D 坐标为(2,2),(3)同(2)可得PDF QDE ∠=∠又2,90DF DE PDF QDE ︒==∠=∠=PDF QDE ∴∆∆≌PF QE ∴=①当DQ DA =时,DE x ⊥∵轴,4QE AE ==∴4PF QE ∴==642BP BF PF ∴=-=-=∴点P 运动时间为1秒.②当AQ AD =时,(6,0),(2,2)A D20,AD ∴=204AQ ∴=-,204PF QE ∴==-6(204)1020BP BF PF ∴=-=--=-∴点P 运动时间为1020-秒.③当QD QA =时,设QE n =,则4QD QA n ==-在Rt DEQ ∆中,90DEQ ∠=°,222DE EQ DQ ∴+=2222(4), 1.5n n n ∴+=-∴=1.5PF QE ∴==6 1.57.5BP BF PF ∴=+=+=∴点P 运动时间为3.75秒.综上所述,点P 运动时间为11020-秒或3.75秒. 【点睛】此题涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键,第三问题要注意分类讨论,不要丢解.29.(1)x =5或﹣3;(2)﹣9.【解析】【分析】(1)直接利用平方根的定义化简得出答案;(2)直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(x ﹣1)2=16,x ﹣1=±4,解得:x =5或﹣3;(2)2020312527--=﹣1﹣5﹣3=﹣9.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.30.(1)21;(2)EF ⊥AD ,证明详见解析.【解析】【分析】(1)根据在直角三角形中,斜边上的中线等于斜边的一半可得ED =EB =12AB ,DF =FC =12AC ,再由AB =12,AC =9,可得答案;(2)根据到线段两端点距离相等的点在线段的垂直平分线证明.【详解】(1)∵AD 是高,∴∠ADB =∠ADC =90°,∵E 、F 分别是AB 、AC 的中点, ∴ED =EB =12AB ,DF =FC =12AC ,∵AB =12,AC =9,∴AE +ED =12,AF +DF =9,∴四边形AEDF 的周长为12+9=21;(2)EF ⊥AD ,理由:∵DE =AE ,DF =AF ,∴点E 、F 在线段AD 的垂直平分线上,∴EF ⊥AD .【点睛】本题主要考查了线段垂直平分线的判定,直角三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.31.(1)10;15; (2) ①520z y x =+;②挖掘1小时或3小时或5小时后两工程队相距5米.【解析】【分析】(1)分别根据速度=路程除以时间列式计算即可得解;(2)①设,y kx b =+乙 然后利用待定系数法求一次函数解析式解答即可;②求出甲队的函数解析式,然后根据-=5-=5y y y y 甲乙乙甲, 列出方程求解即可.【详解】()1甲队:60610÷=米/小时,乙队: 30215÷=米/小时:故答案为:10,15;()2①当26x <<时,设z y kx b =+,则230650k b k b +=⎧⎨+=⎩, 解得520k b =⎧⎨=⎩,∴当26x <<时,520z y x =+;②易求得:当02x ≤≤时,15z y x =, 当26x ≤≤时,520z y x =+;当06x ≤≤时=10y x 甲,由()10520x x =+解得4x =,1° 当02x ≤≤, 15105x x -=,解得:1x =,2°当24x <≤,()520105x x +-=解得:3x =,3°当46x <≤,()105205x x -+=,解得: 5x =答:挖掘1小时或3小时或5小时后,两工程队相距5米.【点睛】本题考查了一次函数的应用, 主要利用了待定系数法求一-次函数解析式,准确识图获取必要的信息是解题的关键,也是解题的难点.。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题 1.在平面直角坐标系中,下列各点在第二象限的是( )A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1)2.在平面直角坐标系中,下列各点位于第四象限的点是( )A .(2,3)-B .()4,5-C .(1,0)D .(8,1)--3.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .不能确定4.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒ 5.某种鲸的体重约为,关于这个近似数,下列说法正确的是( )A .精确到百分位B .精确到0.01C .精确到千分位D .精确到千位 6.下列四个实数中,属于无理数的是( )A .0B .9C .23D .127.下列图案中,不是轴对称图形的是( )A .B .C .D .8.在同一平面直角坐标系中,函数y x =-与34y x =-的图像交于点P ,则点P 的坐标为( )A .(1,1)-B .(1,1)-C .(2,2)-D .(2,2)-9.在下列各数中,无理数有( )33224,3,8,9,07π A .1个 B .2个C .3个D .4个 10.下列计算,正确的是( ) A .a 2﹣a=aB .a 2•a 3=a 6C .a 9÷a 3=a 3D .(a 3)2=a 611.点M (3,-4)关于y 轴的对称点的坐标是( )A .(3,4)B .(-3,4)C .(-3,-4)D .(-4,3)12.如图,在平面直角坐标系xOy 中,直线y =﹣43x +4与x 轴、y 轴分别交于点A 、B ,M 是y 轴上的点(不与点B 重合),若将△ABM 沿直线AM 翻折,点B 恰好落在x 轴正半轴上,则点M 的坐标为( )A .(0,﹣4 )B .(0,﹣5 )C .(0,﹣6 )D .(0,﹣7 )13.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .1214.下列各组数是勾股数的是( )A .6,7,8B .1,3,2C .5,4,3D .0.3,0.4,0.515.在平面直角坐标系xOy 中,线段AB 的两个点坐标分别为A (﹣1,﹣1),B (1,2).平移线段AB ,得到线段A ′B ′.已知点A ′的坐标为(3,1),则点B ′的坐标为( )A .(4,4)B .(5,4)C .(6,4)D .(5,3)二、填空题16.3-的绝对值是 .17.点A (3,-2)关于x 轴对称的点的坐标是________.18.对于分式23x a b a b x++-+,当1x =时,分式的值为零,则a b +=__________. 19.已知22139273m ⨯⨯=,求m =__________. 20.化简:|32|-=__________.21.若函数y=kx +3的图象经过点(3,6),则k=_____.22.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是_____.23.如图,△ABC 中,BD 平分∠ABC ,交AC 于D ,DE ⊥AB 于点E ,△ABC 的面积是42cm 2,AB =10cm ,BC =14cm ,则DE =_____cm .24.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在y 轴,x 轴的正半轴上,OA =6,OC =3.∠DOE =45°,OD ,OE 分别交BC ,AB 于点D ,E ,且CD =2,则点E 坐标为_____.25.如图,平面直角坐标系中,若点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,则k 的值为_____.三、解答题26.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.27.(1)计算:)10131133-⎛⎫ ⎪⎝⎭+--(2)已知()23227x -=,求x 的值. 28.小明和小华加工同一种零件,己知小明比小华每小时多加工15个零件,小明加工300个零件所用时间与小华加工200个零件所用的时间相同,求小明每小时加工零件的个数.29.已知21a -的算术平方根是3,31a b +-的平方根是4±,c 是25的整数部分,求2a b c +-的平方根.30.证明:最长边上的中线等于最长边的一半的三角形是直角三角形.31.如图,已知直线l 1:y 1=x +b 经过点A (﹣5,0),交y 轴于点B ,直线l 2:y 2=﹣2x ﹣4与直线l 1:y 1=x +b 交于点C ,交y 轴于点D .(1)求b 的值;(2)求△BCD 的面积;(3)当0≤y 2<y 1时,则x 的取值范围是 .(直接写出结果)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由第二象限中坐标特点为,横坐标为负,纵坐标为正,由此即可判断.【详解】A. (3,1)位于第一象限;B. (3,-1)位于第四象限;C. (-3,1)位于第二象限;D. (-3,-1)位于第三象限;故选C.【点睛】此题主要考察直角坐标系的各象限坐标特点.2.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x 轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.3.C解析:C【解析】【分析】根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可.【详解】解:∵一次函数1y =+的系数k <0,y 随x 增大而减小,又∵两点的横坐标2<3,∴12y y >故选C.【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.4.A解析:A【解析】【分析】由AB=AC ,利用等边对等角得到一对角相等,再由BF=CD ,BD=CE ,利用SAS 得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解.【详解】解:∵AB=AC ,∴∠B=∠C ,在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩=== ∴△BFD ≌△EDC (SAS ),∴∠BFD=∠EDC,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A︒-∠=90°+12∠A,则∠EDF=180°-(∠FDB+∠EDC)=90°-12∠A=62°.故选:A.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.5.D解析:D【解析】【分析】先写出其原数,看看近似数的最末一位在原数什么数位上,那么它就是精确到了哪个数位.【详解】解:1.36×105kg=136000kg的最后一位的6表示6千,即精确到千位.故选D.【点睛】本题考查了近似数,掌握用科学记数法表示的数的精确度是解题关键.近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.6.D解析:D【解析】【分析】根据无理数的定义,即可得到答案.【详解】=D正确;03=,23是有理数,故ABC错误;故选择:D.【点睛】本题考查了无理数的定义,解题的关键是熟记定义. 7.D解析:D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、是轴对称图形,故此选项不合题意;B 、是轴对称图形,故此选项不合题意;C 、是轴对称图形,故此选项不合题意;D 、不是轴对称图形,故此选项符合题意.故选:D .【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.8.B解析:B【解析】【分析】联立两直线解析式,解方程组即可.【详解】联立34y x y x -⎧⎨-⎩==, 解得11x y ⎧⎨-⎩==, 所以,点P 的坐标为(1,-1).故选B .【点睛】本题考查了两条直线的交点问题,通常利用联立两直线解析式解方程组求交点坐标,需要熟练掌握.9.B解析:B【解析】【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】,∴这一组数中的无理数有:32个.故选:B .【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.10.D解析:D【解析】【详解】A、a2-a,不能合并,故A错误;B、a2•a3=a5,故B错误;C、a9÷a3=a6,故C错误;D、(a3)2=a6,故D正确,故选D.11.C解析:C【解析】【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y 轴的对称点P′的坐标是(−x,y).【详解】∵点M(3,−4),∴关于y轴的对称点的坐标是(−3,−4).故选:C.【点睛】此题主要考查了关于x轴、y轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.12.C解析:C【解析】【分析】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,而AB的长度根据已知可以求出,所以C点的坐标由此求出;又由于折叠得到CM=BM,在直角△CMO中根据勾股定理可以求出OM,也就求出M的坐标.【详解】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,∵直线y=﹣43x+4与x轴、y轴分别交于点A、B,∴A(3,0),B(0,4),∴AB5,设OM=m,由折叠知,AC=AB=5,CM=BM=OB+OM=4+m,∴OC=8,CM=4+m,根据勾股定理得,64+m2=(4+m)2,解得:m=6,∴M(0,﹣6),故选:C.【点睛】本题主要考查一次函数的图象,图形折叠的性质以及勾股定理,通过勾股定理,列方程,是解题的关键.13.B解析:B【解析】【分析】将点(﹣2,1)代入y =kx 即可求出k 的值.【详解】解:∵正比例函数y =kx 的图象经过点(﹣2,1),∴1=﹣2k ,解得k =﹣12, 故选:B .【点睛】 本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.14.C解析:C【解析】【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可.【详解】解:A 、222768+≠,故此选项错误;B 3C 、222345+=,故此选项正确;D 、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.15.B解析:B【解析】【分析】由题意可得线段AB平移的方式,然后根据平移的性质解答即可.【详解】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,1),∴线段AB先向右平移4个单位,再向上平移2个单位,∴B(1,2)平移后的对应点B′的坐标为(1+4,2+2),即(5,4).故选:B.【点睛】本题考查了平移变换的性质,一般来说,坐标系中点的平移遵循:上加下减,左减右加的规律,熟练掌握求解的方法是解题关键.二、填空题16..【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是..【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的,所以17.(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.解析:(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.18.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】解:∵分式23x a b a b x ++-+,当1x =时,分式的值为零, ∴10a b 且230a b ,∴1a b +=-,且5233ab , 故答案为:-1且5233ab ,. 【点睛】 此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.19.8【解析】【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【详解】∵,即,∴,解得,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练解析:8【解析】【分析】根据幂的乘方可得293m m ,3273=,再根据同底数幂的乘法法则解答即可. 【详解】∵22139273m ⨯⨯=,即22321333m ,∴22321m ,解得8m =, 故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.20.【解析】【分析】先判断两个实数的大小关系,再根据绝对值的代数意义化简,进而得出答案.【详解】解:∵,∴原式,故答案为:.【点睛】此题主要考查了绝对值的代数意义,正确判断实数的大小解析:2【解析】【分析】先判断两个实数的大小关系,再根据绝对值的代数意义化简,进而得出答案.【详解】2<,∴原式2)=-2=-故答案为:2.【点睛】此题主要考查了绝对值的代数意义,正确判断实数的大小是解题关键.21.1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.解析:1【解析】∵函数y=kx+3的图象经过点(3,6),∴336k+=,解得:k=1.故答案为:1.22.8【解析】【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【详解】解:如图,作AF⊥BC于点F,作解析:8【解析】【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【详解】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=12AB•PC=12BC•AF=12×5CP=12×6×4得:CP=4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用.23.【解析】【分析】作DF⊥BC于F,如图,根据角平分线的性质得到DE=DF,再利用三角形面积公式得到×10×DE+×14×DF=42,则5DE+7DE=42,从而可求出DE的长.【详解】作D解析:7 2【解析】【分析】作DF⊥BC于F,如图,根据角平分线的性质得到DE=DF,再利用三角形面积公式得到1 2×10×DE+12×14×DF=42,则5DE+7DE=42,从而可求出DE的长.【详解】作DF⊥BC于F,如图所示:∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,∵S△ADB+S△BCD=S△ABC,∴12×10×DE+12×14×DF=42,∴5DE+7DE=42,∴DE=72(cm).故答案为72.【点睛】此题主要考查角平分线的性质,解题关键是利用三角形面积公式构建方程,即可解题. 24.(,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,5【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,通过证明△ODC∽△FDH,可得HF HDOC CD=,即可求解.【详解】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,∵∠EOF=45°,EF⊥EO,∴∠EOF=∠EFO=45°,∴OE=EF,∵∠AOE+∠AEO=90°,∠AEO+∠GEF=90°,∴∠GEF=∠AOE,且∠OAE=∠G=90°,OE=EF,∴△AEO≌△GEF(AAS)∴AE=GF,EG=AO=6,∴BG=EG﹣BE=6﹣(3﹣AE)=3+AE,∵FH⊥BC,∠G=∠CBG=90°,∴四边形BGFH是矩形,∴BH=GF=AE,BG=HF=3+AE,HF∥BG∥OC,∴HD=BD﹣BH=4﹣AE,∵HF∥OC,∴△ODC∽△FDH,∴HF HD OC CD=,∴3432AE AE +-=∴AE=65,5故答案为:(65,6) 【点睛】此题主要考查利用全等三角形和相似三角形的判定与性质判定矩形在平面直角坐标系中的坐标,解题关键是利用其性质构建方程.25.k =±1.【解析】【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当 解析:k =±1.【解析】【分析】根据一次函数y =kx +4(k ≠0)图象一定过点(0,4),点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,可分为两种情况进行解答,即,①当直线y =kx +4(k ≠0)与直线AB 平行时,②当直线y =kx +4(k ≠0)与直线AB 不平行时分别进行解答即可.【详解】一次函数y =kx +4(k ≠0)图象一定过(0,4)点,①当直线y =kx +4(k ≠0)与直线AB 平行时,如图1,设直线AB 的关系式为y =kx +b ,把A (3,0),B (4,1)代入得,3041k b k b +=⎧⎨+=⎩,解得,k =1,b =﹣3, ∴一次函数y =kx +4(k ≠0)中的k =1;②当直线y =kx +4(k ≠0)与直线AB 不平行时,如图2,根据题意,直线y =kx +4(k ≠0)垂直平分线段AB ,此时一定经过点C ,∴点C 的坐标为(4,0),代入得,4k +4=0,解得,k =﹣1,因此,k =1或k =﹣1.故答案为:k =±1.【点睛】本题考查了一次函数的图象和性质,掌握两条平行直线的k 值相等和一次函数的图象和性质是解决问题的关键.三、解答题26.(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.27.(1) )- (2) x=5或x=-1 【解析】【分析】(1) 按顺序分别进行0指数幂运算,负指数幂运算,化简绝对值,然后再按运算顺序进行计算即可;(2) 利用直接开平方法进行求解即可.【详解】(1)原式=1-3-)=)-(2) ()23227x -=(x-2)2=9x-2=±3x=5或x=-1.【点睛】此题主要考查了实数的综合运算能力及解一元二次方程的方法,熟记概念是解题的关键. 28.45【解析】【分析】设小明每小时加工零件x 个,则小华每小时加工(x-15)个, 根据时间关系,得30020015x x =- 【详解】 解:设小明每小时加工零件x 个,则小华每小时加工(x-15)个由题意,得30020015x x =- 解得:x =45 经检验:x =45是原方程的解,且符合题意.答:小明每小时加工零件45个.【点睛】考核知识点:分式方程应用.理解题,根据时间关系列方程是关键.29.【解析】【分析】根据算术平方根的定义求出a 的值,根据平方根的定义求出b 的值,根据微粒数的估算求出c 的值,然后代入计算,即可得到答案.【详解】解:∵21a -的算术平方根是3,∴21=9a -,∴5a =;∵31a b +-的平方根是4±,∴31=16a b +-,∴351=16b ⨯+-,∴2b =;∵又45<<,∴4,∴4c =,∴252245a b c +-=+⨯-=,∴2a b c +-的平方根为:【点睛】本题考查了算术平方根、平方根、估算无理数的大小等知识点,能根据已知得出a 、b 、c 的值是解此题的关键.30.证明见解析.【解析】【分析】如图,在△ABC 中,AB 是最长边,CD 是边AB 的中线,可得BD AD =,再根据最长边上的中线等于最长边的一半可得CD BD AD ==,根据等边对等角以及三角形内角和定理即可得证.【详解】证明:如图,在△ABC 中,AB 是最长边,CD 是边AB 的中线∵CD 是边AB 的中线∴BD AD =∵最长边上的中线等于最长边的一半∴CD BD AD ==∴,A ACD B BCD ==∠∠∠∠∵180A B ACB ∠+∠+∠=︒ ∴1180902ACB ACD BCD =+=⨯︒=︒∠∠∠ ∴△ABC 是直角三角形∴最长边上的中线等于最长边的一半的三角形是直角三角形.【点睛】本题考查了直角三角形的证明问题,掌握直角三角形的性质、等边对等角、三角形内角和定理、中线的性质是解题的关键.31.(1)b=5;(2)272;(3)﹣3<x≤﹣2【解析】【分析】(1)把点A的坐标代入直线l1:y1=x+b,列出方程并解答;(2)利用两直线相交求得点C的坐标,由直线l2、l1求得点B、D的坐标,根据三角形的面积公式解答;(3)结合图形直接得到答案.【详解】(1)把A(﹣5,0)代入y1=x+b,得﹣5+b=0解得b=5;(2)由(1)知,直线l1:y1=x+5,且B(0,5).根题意知,524 y xy x=+⎧⎨=--⎩.解得32xy=-⎧⎨=⎩,即C(﹣3,2).又由y2=﹣2x﹣4知,D(0,﹣4).所以BD=9.所以S△BCD=12BD•|x C|=1932⨯⨯=272;(3)由(2)知,C(﹣3,2).当y=0时,﹣2x﹣4=0,此时x=﹣2.所以由图象知,当0≤y2<y1时,则x的取值范围是﹣3<x≤﹣2.故答案是:﹣3<x≤﹣2.【点睛】此题主要考查一次函数性质的综合应用,熟练掌握,即可解题.。

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word版 含答案)

苏科版苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.下列四组线段中,可以构成直角三角形的是 ( )A .4,5,6B .2,3,4C .7 ,3 ,4D .1,2 ,3 2.下列运算正确的是( )A .=2B .|﹣3|=﹣3C .=±2D .=3 3.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为( ) A .x=1 B .x=-1 C .x=3 D .x=-34.如图,CD 是Rt△ABC 斜边AB 上的高,将△BCD 沿CD 折叠,点B 恰好落在AB 的中点E 处,则∠A 等于( )A .25°B .30°C .45°D .60° 5.已知等腰三角形的两边长分别为3和4,则它的周长为( ) A .10B .11C .10或11D .7 6.下列运算正确的是( )A .236a a a ⋅=B .235()a a -=-C .109(0)a a a a ÷=≠D .4222()()bc bc b c -÷-=- 7.下列等式从左到右的变形,属于因式分解的是( ) A .()a x y ax ay -=-B .()()311x x x x x -=+-C .()()21343x x x x ++=++D .()22121x x x x ++=++ 8.下列图案中,属于轴对称图形的是( )A .B .C .D .9.4 的算术平方根是( )A .16B .2C .-2D .2±10.在下列各数中,无理数有( )33224,3,8,9,07π A .1个 B .2个 C .3个 D .4个11.一次函数y =﹣2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限12.如图,在平面直角坐标系xOy 中,直线y =﹣43x +4与x 轴、y 轴分别交于点A 、B ,M 是y 轴上的点(不与点B 重合),若将△ABM 沿直线AM 翻折,点B 恰好落在x 轴正半轴上,则点M 的坐标为( )A .(0,﹣4 )B .(0,﹣5 )C .(0,﹣6 )D .(0,﹣7 )13.下列各式成立的是( )A .93=±B .235+=C .()233-=±D .()233-=14.下列四个图案中,不是轴对称图案的是( )A .B .C .D .15.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题16.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则CD =_______________.17.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.18.已知点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,若x1<x2,则y1﹣y2_____0(填“>”、“<”或“=”).19.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.20.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.21.如图,已知直线l1:y=kx+4交x轴、y轴分别于点A(4,0)、点B(0,4),点C为x轴负半轴上一点,过点C的直线l2:12y x n=+经过AB的中点P,点Q(t,0)是x轴上一动点,过点Q作QM⊥x轴,分别交l1、l2于点M、N,当MN=2MQ时,t的值为_____.22.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是_______23.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________24.等腰三角形的一个内角是100︒,则它的底角的度数为_________________.25.如图,△ABC 中,AB =AC ,AB 的垂直平分线分别交边AB ,BC 于D ,E 点,且AC =EC ,则∠BAC =_____.三、解答题26.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为 千米;(2)求快车和慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.27.如图,已知一次函数2y x =-的图像与y 轴交于点A ,一次函数4y x b =+的图像与y 轴交于点B ,且与x 轴以及一次函数2y x =-的图像分别交于点C 、D ,点D 的坐标为()2,m -.(1)关于x 、y 的方程组24y x y x b -=-⎧⎨-=⎩的解为______________. (2)关于x 的不等式24x x b -≥+的解集为__________________.(3)求四边形OADC 的面积;(4)在x 轴上是否存在点E ,使得以点C ,D ,E 为顶点的三角形是直角三角形?若存在,求出点E 的坐标:若不存在,请说明理由.28.在△ABC 中,AB=6,AC=BC=5,将△ABC 绕点A 按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B 的对应点为点D,点C 的对应点为点E,连接BD ,BE .(1)如图,当α=60°时,延长BE 交AD 于点F .①求证:△ABD 是等边三角形;②求证:BF ⊥AD ,AF=DF ;③请直接写出BE 的长;(2)在旋转过程中,过点D 作DG 垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG 与线段AE 无公共点时,请直接写出BE+CE 的值.29.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A 坐标为(1,3)点B 坐标为(2,1);(2)请作出△ABC 关于y 轴对称的△A 'B 'C ',并写出点C '的坐标;(3)判断△ABC 的形状.并说明理由.30.如图,四边形ABCD 中,∠B =90°,AB =4,BC =3,CD =13,AD =12,求四边形ABCD 的面积.31.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)若△DAF的周长为10,求BC的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.42+52≠62,不可以构成直角三角形,故A选项错误;B.22+32≠42,不可以构成直角三角形,故B选项错误;C7)2+32≠42,可以构成直角三角形,故C选项错误.D.12+2)232,可以构成直角三角形,故D选项正确.故选D.【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2.A解析:A【分析】根据算术平方根和立方根的定义、绝对值的性质逐一计算可得结论.【详解】A.=2,此选项计算正确;B.|﹣3|=3,此选项计算错误;C.=2,此选项计算错误;D.不能进一步计算,此选项错误.故选A.【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.3.A解析:A【解析】当x=1时,分母为零,没有意义,所以是增根.故选A.4.B解析:B【解析】【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【详解】解:∵△ABC沿CD折叠B与E重合,∴BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.【点睛】本题考查折叠的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质:折叠前后的对应边相等,对应角相等.5.C解析:C【解析】【分析】可分3是腰长与底边,两种情况讨论求解即可.解:①3是腰长时,三角形的三边分别为:3、3、4,能组成三角形,周长=3+3+4=10,②3是底边时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,∴三角形的周长为10或11.故选择:C.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键,难点在于要分情况讨论.6.C解析:C【解析】【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【详解】A. a2 a3=a5,故A错误;B. (−a2)3=−a6,故B错误;C. a10÷a9=a(a≠0),故C正确;D. (−bc)4÷(−bc)2=b2c2,故D错误;故答案选C.【点睛】本题考查了同底数幂的相关知识点,解题的关键是熟练的掌握同底数幂的乘法与除法的运算.7.B解析:B【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A、不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、不是因式分解,故本选项不符合题意;D、不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.8.D【解析】【分析】根据轴对称图形的定义逐一分析即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项不是轴对称图形,故本选项不符合题意;D选项是轴对称图形,故本选项符合题意;故选D.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.9.B解析:B【解析】【分析】根据算术平方根的定义直接求解即可.【详解】解:42,故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键.10.B解析:B【解析】【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】,∴这一组数中的无理数有:32个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.11.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.12.C解析:C【解析】【分析】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,而AB的长度根据已知可以求出,所以C点的坐标由此求出;又由于折叠得到CM=BM,在直角△CMO中根据勾股定理可以求出OM,也就求出M的坐标.【详解】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,∵直线y=﹣43x+4与x轴、y轴分别交于点A、B,∴A(3,0),B(0,4),∴AB=223+4=5,设OM=m,由折叠知,AC=AB=5,CM=BM=OB+OM=4+m,∴OC=8,CM=4+m,根据勾股定理得,64+m2=(4+m)2,解得:m=6,∴M(0,﹣6),故选:C.【点睛】本题主要考查一次函数的图象,图形折叠的性质以及勾股定理,通过勾股定理,列方程,是解题的关键.13.D解析:D【分析】根据算术平方根的定义对A 进行判断;根据二次根式的加减法对B 进行判断;根据二次根式的性质对C 、D 进行判断.【详解】解:A 3=,所以A 选项错误;B B 选项错误;C 3=,所以C 选项错误;D 、(23=,所以D 选项正确. 故选D.【点睛】 此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.14.B解析:B【解析】【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】解:A .此图案是轴对称图形,不符合题意;B .此图案不是轴对称图形,符合题意;C .此图案是轴对称图形,不符合题意;D .此图案是轴对称图形,不符合题意;故选:B .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.15.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度二、填空题16.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CDAB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜解析:2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CD12AB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.17.(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同. 【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛解析:(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成. 18.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,且x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.19.8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长AB===10米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本解析:8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.20..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,-,.解析:(21)【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).21.10或【解析】【分析】先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;解析:10或227 【解析】【分析】先求出k n ,的值,确定12l l ,的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;【详解】解:把()40A ,代入到4y kx =+中得:440k +=,解得:1k =-, ∴1l 的关系式为:4y x =-+,∵P 为AB 的中点,()40A ,,()0,4B ∴由中点坐标公式得:()2,2P ,把()2,2P 代入到12y x n =+中得:1222n ⨯+=,解得:1n =, ∴2l 的关系式为:112y x =+, ∵QM x ⊥轴,分别交直线1l ,2l 于点M N 、,()0Q t ,, ∴(),4M t t -+,1,12N t t ⎛⎫+ ⎪⎝⎭,∴()1341322MN t t t ⎛⎫=-+-+=- ⎪⎝⎭,44MQ t t =-+=-, ∵2MN MQ =, ∴33242t t -=-, 分情况讨论得:①当4t ≥时,去绝对值得:()33=242t t --, 解得:10t =;②当24t ≤<时,去绝对值得:()33=242t t --, 解得:227t =; ③当2t <时,去绝对值得:()33=242t t --, 解得:102t =>,故舍去;综上所述:10t =或227t =; 故答案为:10或227. 【点睛】本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.22.—1【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴AC=,∵A 点表示-1,∴E 点表示的数为:1【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴=∵A 点表示-1,∴E ,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.23.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.24.【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是解析:40【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查了等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.25.108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB解析:108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB=AC,∴∠B=∠C,∵AB的垂直平分线分别交边AB,BC于D,E点,∴AE=BE,∴∠B=∠BAE,∵AC=EC,∴∠EAC=∠AEC,设∠B=x°,则∠EAC=∠AEC=2x°,则∠BAC=3x°,在△AEC中,x+2x+2x=180,解得:x=36,∴∠BAC=3x°=108°,故答案为:108°.【点睛】此题主要考查等腰三角形的性质,解题关键是利用三角形内角和构建方程.三、解答题26.(1)560;(2)快车的速度是80km/h,慢车的速度是60km/h.(3)y=-60x+540(8≤x≤9).【解析】【分析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D,E点坐标,进而得出函数解析式.【详解】(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20,∴快车的速度是80km/h,慢车的速度是60km/h.(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km,∴D(8,60),∵慢车往返各需4小时,∴E(9,0),设DE的解析式为:y=kx+b,∴90 860 k bk b+⎧⎨+⎩==,解得:60540kb-⎧⎨⎩==.∴线段DE所表示的y与x之间的函数关系式为:y=-60x+540(8≤x≤9).【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D,E 点坐标是解题关键.27.(1)24xy=-⎧⎨=-⎩;(2)2x-≤;(3)4;(4)点E坐标为(2,0)-或(18,0)-.【解析】【分析】(1)把D(-2,m)代入y=x-2可得D的坐标.由图象可得结论;(2)观察图象可得结论;(3)过点D作DH⊥AB于H.根据S四边形OADC=SΔABD-SΔOBC计算即可;(4)分三种情况讨论:①当点E为直角顶点时,过点D作DE1⊥x轴于E1,即可得出结论;②当点C为直角顶点时,x轴上不存在点E;③当点D为直角顶点时,过点D作DE2⊥CD 交x轴于点E2.设E2(t,0),利用勾股定理即可得出结论.【详解】(1)∵D(-2,m)在y=x-2上,∴m=-2-2=-4,∴D(-2,-4).由图象可知:关于x、y的方程组24y xy x b-=-⎧⎨-=⎩的解为24xy=-⎧⎨=-⎩;(2)由图象可知:关于x的不等式x-2≥4x+b的解集为x≤-2;(3)如图1,过点D作DH⊥AB于H.由(1)知D(-2,-4),∴DH=2.在y=x-2中,当x=0时,y=-2,∴A(0,-2).把D(-2,-4)代入y=4x+b得:-4=4×(-2)+b,解得:b=4.∴B(0,4),∴直线BD的函数表达式为y=4x+4.∴AB=4-(-2)=6,∴SΔABD=12AB⋅DH=12×6×2=6.在y=4x+4中,当y=0时,0=4x+4,解得:x=-1.∴C(-1,0),∴OC=1.∵B(0,4),∴OB=4,∴SΔOBC=12OB⋅OC=12×4×1=2,∴S四边形OADC=SΔABD-SΔOBC=6-2=4.(4)如图2,①当点E为直角顶点时,过点D作DE1⊥x轴于E1.∵D(-2,-4),∴E 1(-2,0)②当点C 为直角顶点时,x 轴上不存在点E . ③当点D 为直角顶点时,过点D 作DE 2⊥CD 交x 轴于点E 2.设E 2(t ,0).∵C (-1,0),E 1(-2,0),∴CE 2=-1-t ,E 1E 2=-2-t .∵D (-2,-4),∴DE 1=4,CE 1=-1-(-2)=1.在12Rt DE E ∆中,由勾股定理得:()2222222211242420DE DE E E t t t =+=+--=++. 在1Rt CDE ∆中,由勾股定理得:2221417CD =+=.在2Rt CDE ∆中,由勾股定理得:22222CE DE CD =+.∴(-1-t )2=t 2+4t +20+17解得:t =-18.∴E 2 (-18,0).综合上所述:点E 坐标为(-2,0)或(-18,0).【点睛】本题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,勾股定理,一次函数与方程组、一次函数与不等式的解集,利用了数形结合的思想,熟练掌握一次函数的性质是解答本题的关键.28.(1)①②详见解析;③3﹣4;(2)13.【解析】【分析】(1)①由旋转性质知AB=AD ,∠BAD=60°即可得证;②由BA=BD 、EA=ED 根据中垂线性质即可得证;③分别求出BF 、EF 的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB 、∠DAE=∠BAC 得∠BAE=∠BAC 且AE=AC ,根据三线合一可得CE ⊥AB 、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.【详解】(1)①∵△ABC 绕点A 顺时针方向旋转60°得到△ADE ,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD, AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×3=33,∴BE=BF﹣EF=33﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=12 CE,∵AC=BC,∴AH=BH=12AB=3, 则CE=2CH=8,BE=5,∴BE+CE=13.【点睛】本题主要考查旋转的性质、等边三角形的判定与性质、中垂线的性质、三角形内角和定理等知识点,熟练掌握旋转的性质是解题的关键.29.(1)如图见解析;(2)如图见解析,C'的坐标为(﹣5,5);(3)△ABC 是直角三角形.【解析】试题分析:(1)根据A B 、两点的坐标建立平面直角坐标系即可; (2)作出各点关于y 轴的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断出ABC 的形状即可.试题解析:(1)如图所示:(2)如图所示:'''A B C 即为所求:C '的坐标为()55-,;(3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=,∴ABC 是直角三角形.点睛:一个三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形. 30.36【解析】【分析】连接AC ,根据勾股定理求出AC ,根据勾股定理的逆定理求出△CAD 是直角三角形,分别求出△ABC 和△CAD 的面积,即可得出答案.【详解】连接AC ,如图所示:在△ABC 中,∵∠B =90°,AB =4,BC =3, ∴2222AC AB BC 435=++=,1143622ABC S AB BC =⋅=⨯⨯=, 在△ACD 中,∵AD =12,AC =5,CD =13,∴AD 2+AC 2=CD 2,∴△ACD 是直角三角形, ∴115123022ACD S AC AD =⋅=⨯⨯=. ∴四边形ABCD 的面积=S △ABC +S △ACD =6+30=36.【点睛】此题主要考查勾股定理的运用,解题关键是将四边形分成两个直角三角形来解.31.(1)20°;(2)10.【解析】【分析】(1)根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质得到DA =DB ,FA =FC ,得到∠DAB =∠ABC =30︒,∠FAC =∠ACB =50︒,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【详解】(1)∠BAC =180︒﹣∠ABC ﹣∠ACB =180︒﹣30︒﹣50︒=100︒,∵DE 是AB 的垂直平分线,∴DA =DB ,∴∠DAB =∠ABC =30︒,∵FG 是AC 的垂直平分线,∴FA =FC ,∴∠FAC =∠ACB =50︒,∴∠DAF =∠BAC ﹣(∠DAB +∠FAC )=20︒;(2)∵△DAF 的周长为10,∴AD +DF +FC =10,∴BC =BD +DF +FC =AD +DF +FC =10.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。

苏科版八年级数学上册秋学期期末模拟试卷.docx

苏科版八年级数学上册秋学期期末模拟试卷.docx

初中数学试卷马鸣风萧萧八年级秋学期期末数学模拟试卷(时间:100分钟 满分:100分)一、选择题(每小题3分,共24分)1.如图,与左边正方形图案属于全等的图案是 ()2.估算7的值是 ( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 3.在平行四边形、角、等边三角形、线段四种图形中是轴对称图形有 ( ) A .1个B .2个C .3个D .4个4.如图,在△ABC 中,AB =AC ,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,有下列4种说法:①DA 平分∠EDF ;②AE =AF ,DE =DF ;③AD 上任意一点到B ,C 两点的距离相等;④图中共有3对全等三角形.其中,说法正确的有 ( ) A .1个B .2个C .3个D .4个5.如图所示是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是 ( ) A .(0,-2)B .(1,一2)C .(2,-1)D .(1,2)6.一个长为4 cm ,宽为3 cm 的矩形被直线分成面积为x ,y 两部分,则y 与x 之间的函数关系只可能是 ( )7.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是D →C →B →A ,设P 点经过的路程为x ,以点A ,P ,D 为顶点的三角形的面积是y ,则下列图像能大致反映y 与x 的函数关系的是 ( )8.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处.已知BC =12,∠B =30°,则DE 的长是 ( )A .6B .4C .3D .2二、填空题(每小题2分,共20分) 9.9的平方根为_______.10.等腰三角形的两边长分别为4 cm 和9 cm ,则第三边长为_______cm . 11.一个介于-3与-4之间的无理数为_______(写出一个即可). 12.如图,若△ABC ≌△ADE ,且∠B =70°,则∠CAE =_______.13.在平面直角坐标系中,若点M(-1,3)与点N(x ,3)之间的距离是5,则x 的值是_______.14.已知21x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则m +3n 的立方根为_______.15.在平面直角坐标系中,把直线y =2x +1向上平移—个单位后,得到的直线解析式为_______. 16.如图,一束光线从点A(3,3)出发,经过y 轴上点(0,1)反射后经过点B(1,0),则光线从点A 到点B经过的路程为_______.17.在Rt△ABC中,∠C=90°,AC=5 cm,BC=12 cm,D为斜边的中点,则CD=_______cm.18.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使△MNP为等腰直角三角形,请写出符合条件的点P的坐标_______(写出一个即可).三、解答题(共56分)19.(8分)已知正比例函数y=kx的图像过点P(3,-3).(1)写出这个正比例函数的解析式;(2)已知点A(a,2)在这个正比例函数的图像上,求a的值.20.(8分)已知:如图,锐角△ABC的两条高BD,CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.21.(9分)在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC的顶点B,C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续9次这样的变换得到△A'B'C',则点A的对应点A的坐标是_______.22.(9分)某公司准备与汽车租赁公司签订租车合同.以每月用车路程x(km)计算,甲汽车租赁公司的月租费y1元,乙汽车租赁公司的月租费是y2元.如果y1,y2与x之间的关系如图所示.(1)求y1,y2与x之间的函数关系;(2)每月用车路程在什么范围内,租用甲汽车租赁公司的车所需费用较少?23.(10分)如图,一直线AC与已知直线AB:y=2x+1关于y轴对称.(1)求直线AC的解析式;(2)说明两直线与x轴围成的三角形是等腰三角形.24.(12分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图像进行以下探究:(1)请解释图中点B的实际意义;(2)求慢车和快车的速度;(3)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级秋学期期末数学模拟试卷(7)
(时间:100分钟满分:100分)
一、选择题(每小题2分,共16分)
1.如图,与左边正方形图案属于全等的图案是( )
2.估算7的值是( )
A.在1和2之间 B.在2和3之间C.在3和4之间D.在4和5之间
3.在平行四边形、角、等边三角形、线段四种图形中是轴对称图形有( )
A.1个B.2个C.3个D.4个
4.如图,在△ABC中,AB=AC,AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,有下列4种说法:
①DA平分∠EDF;②AE=AF,DE=DF;③AD上任意一点到B,C两点的距离相等;
④图中共有3对全等三角形.
其中,说法正确的有( )
A.1个B.2个C.3个D.4个
5.如图所示是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是( ) A.(0,-2) B.(1,一2) C.(2,-1) D.(1,2)
6.一个长为4 cm,宽为3 cm的矩形被直线分成面积为x,y两部分,则y与x之间的函数关系只可能是( )
7.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是D→C→B→A,设P点经过的路程为x,以点A,P,D为顶点的三角形的面积是y,则下列图像能大致反映y与x的函数关系的是( )
8.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处.已知BC =12,∠B =30°,则DE 的长是 ( )
A .6
B .4
C .3
D .2 二、填空题(每小题2分,共20分) 9.9的平方根为_______.
10.等腰三角形的两边长分别为4 cm 和9 cm ,则第三边长为_______cm . 11.一个介于-3与-4之间的无理数为_______(写出一个即可). 12.如图,若△ABC ≌△ADE ,且∠B =70°,则∠CAE =_______.
13.在平面直角坐标系中,若点M(-1,3)与点N(x ,3)之间的距离是5,则x 的值是_______.
14.已知21x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩
的解,则m +3n 的立方根为_______.
15.在平面直角坐标系中,把直线y =2x +1向上平移—个单位后,得到的直线解析式为
_______.
16.如图,一束光线从点A(3,3)出发,经过y 轴上点(0,1)反射后经过点B(1,0),则光线从点A 到点B 经过的路程为_______.
17.在Rt △ABC 中,∠C =90°,AC =5 cm ,BC =12 cm ,D 为斜边的中点,则CD =_______cm .
18.如图,点M 是直线y =2x +3上的动点,过点M 作MN 垂直于x 轴于点N ,y 轴上是否存在点P ,使△MNP 为等腰直角三角形,请写出符合条件的点P 的坐标_______(写出一个即可).
三、解答题(共64分) 19.(7分)已知正比例函数y =kx 的图像过点P(3,-3).
(1)写出这个正比例函数的解析式;
(2)已知点A(a,2)在这个正比例函数的图像上,求a的值.
20.(7分)已知:如图,锐角△ABC的两条高BD,CE相交于点O,且OB=OC.
(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的角平分线上,并说明理由.
21.(7分)在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC的顶点B,C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续9次这样的变换得到△A'B'C',则点A的对应点A的坐标是_______.
22.(7分)如图,已知△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,
AD与BE相交于点F.
(1)求证:△ABE≌△CAD;
(2)求∠BFD的度数.
23.(8分)某公司准备与汽车租赁公司签订租车合同.以每月用车路程x(km)计算,甲汽车租赁公司的月租费y1元,乙汽车租赁公司的月租费是y2元.如果y1,y2与x之间的关系如图所示.
(1)求y1,y2与x之间的函数关系;
(2)每月用车路程在什么范围内,租用甲汽车租赁公司
的车所需费用较少?
24.(9分)如图,△ABC和△ADC都是边长相等的等边三角形,点E,F同时分别从点B,A出发,各自沿BA,AD方向运动到点A,D停止,运动的速度相同,连接EC,FC.
(1)在点E,F运动过程中∠ECF的大小是否随之变化?请说明理由;
(2)在点E,F运动过程中,以点A,E,C,F为顶点的四边形的面积变化了吗?请说明理由;
(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由.
25.(9分)如图,一直线AC与已知直线AB:y=2x+1关于y轴对称.
(1)求直线AC的解析式;
(2)说明两直线与x轴围成的三角形是等腰三角形.
26.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图像进行以下探究:
(1)请解释图中点B的实际意义;
(2)求慢车和快车的速度;
(3)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;
参考答案
1.C 2.B 3.C 4.D 5.B 6.A 7.A 8.B 9.±3 10.9 11.答案不唯
一12.40°13.-6或4 14.2 15.y=2x+2 16.13+217.6.5 18.(0,
0)或(0,1)(答案不唯一)
19.(1)y=-x.(2)a=-2.
20.(1)略(2)点D在∠BAC的角平分线上.
21.(16,1+3)
22.(1)利用SAS证明即可.(2)∠BFD=60°.
23.(1)y1=x,y2=1
2
x+1000;(2)0到2000 km范围内
24.(1)∠ECF的大小不变,理由略.(2)没有变化.理由略.(3)∠AFE=LFCD=∠ACE.理由略.
25.(1)y=-2x+1.(2)理由略.
26.(1)图中点B的实际意义是:当慢车行驶4 h时,慢车和快车相遇.
(2)慢车的速度为75( km/h) 快车的速度为150 km/h.
(3)y=225x-900.自变量x的取值范围是4≤x≤6.。

相关文档
最新文档