八年级数学(下)第一单元测试卷
2020年北师大版八年级数学下册第一章 三角形的证明单元测试题及答案
北师大版八年级数学下册第一章三角形的证明单元测试题一.选择题(共10小题,每小题3分,共30分)1.等腰三角形的对称轴是()A.底边上的高所在的直线B.底边上的高C.底边上的中线D.顶角平分线2.如图在3×3的网格中,点A、B在格点处:以AB为一边,点P在格点处,则使△ABP为等腰三角形的点P有()个.A.2个B.3个C.4个D.5个3.如图,在△ABC中,∠B与∠C的角平分线相交于点I,过点I作BC的平行线,分别交AB、AC于点D、E.若AB=9,AC=6,BC=8,则△ADE的周长是()A.14 B.15 C.174.如图所示,在等边三角形ABC中,AD⊥BC,E为AD上一点,∠CED=50°,则∠ABE等于()A.10°B.15°C.20°D.25°5.在△ABC中,AB=AC,∠A=60°,BC=6,则AB的值是()A.12 B.8 C.6 D.36.用反证法证明“a≥b”,对于第一步的假设,下列正确的是()A.a≤b B.a≠b C.a<b D.a=b7.下列说法:①一个底角和一条边分别相等的两个等腰三角形全等;②底边及底边上的高分别相等的两个等腰三角形全等;③两边分别相等的两个直角三角形全等;④一个锐角和一条边分别相等的两个直角三角形全等,其中正确的个数是()A.1 B.2 C.3 D.48.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是()A.AE=3CE B.AE=2CE C.AE=BD D.BC=2CE9.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是边AB的中点,AB=10,DE =4,则S△AEC=()A.8 B.7.5 C.7 D.610.如图,在△ABC中,CD⊥AB于点D,BE平分∠ABC,交CD于点E,若S△BCE=10,BC=5,则DE等于()A.10 B.7 C.5 D.4二.填空题(共8小题,每小题3分,共24分)11.等腰三角形的周长为12cm,其中一边长为3cm,则该等腰三角形的腰长为.12.如图:已知∠B=20°,AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,以此类推∠A的度数是.13.如图,在△ABC中,AB=AC=10,AD平分∠BAC,点E为AC中点,则DE=.14.在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分AC,交AC于点E,交AB于点D,连接CD,若BD=2,则AD的长是.15.如图,DE是△ABC的边AC上的垂直平分线,AB=5cm,BC=8cm,则△ABD的周长为cm.16.如图,点D,P在△ABC的边BC上,DE,PF分别垂直平分AB,AC,连接AD、AP,若∠DAP=20°,则∠BAC=.17.如图,AB∥CD,∠BAC与∠ACD的平分线交于点P,过P作PE⊥AB于E,交CD于F,EF=10,则点P到AC的距离为.18.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=40,DE=4,AC=12,则AB长是.三.解答题(共7小题,共66分)19.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,求∠DBA的度数.20.如图,已知AB∥CD,∠BCF=180°,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.求证:AC⊥BD.21.已知:如图,在△ABC中,∠ACB=90°,CD是高,AE是△ABC内部的一条线段,AE交CD于点F,交CB于点E,且∠CFE=∠CEF.求证:AE平分∠CAB.22.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.(1)求∠B的度数:(2)求证:BC=3CE.23.如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB,BC于点D 和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.24.如图,已知AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.(1)求∠DBC的度数;(2)若△DBC的周长为14cm,BC=5cm,求AB的长.25.如图,已知AC∥BD,AE,BE分别平分∠CAB和∠DBA,点E在线段CD上.(1)求∠AEB的度数;(2)求证:CE=DE.参考答案一.选择题1.解:等腰三角形的对称轴是底边的垂直平分线,故选:A.2.解:如图所示,以AB为腰的等腰三角形的点P有2个,以AB为底边的等腰三角形的点P有3个,∴△ABP为等腰三角形的点P有5个;故选:D.3.解:∵BI平分∠DBC,∴∠DBI=∠CBI,又∵DE∥BC,∴∠DIB=∠IBC,∴∠DIB=∠DBI,∴BD=DI.同理CE=EI.∴△ADE的周长=AD+DI+IE+EA=AB+AC=15,故选:B.4.解:∵在等边三角形ABC中,AD⊥BC,∴AD是BC的线段垂直平分线,∵E是AD上一点,∴EB=EC,∴∠EBD=∠ECD,∵∠CED=50°,∴∠ECD=40°,又∵∠ABC=60°,∠ECD=40°,∴∠ABE=60°﹣40°=20°,故选:C.5.解:∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=BC=6,故选:C.6.解:反证法证明“a≥b”,第一步是假设,a<b,故选:C.7.解:①一个底角和一条边分别相等的两个等腰三角形不一定全等;②底边及底边上的高分别相等的两个等腰三角形全等,正确;③两边分别相等的两个直角三角形不一定全等;④如果在两个直角三角形中,例如:两个30°角的直角三角形,一个三角形的直角边与另一个三角形的斜边相等,这两个直角三角形肯定不全等,错误;故选:A.8.解:连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE,故选:B.9.解:∵在△ABC中,∠ACB=90°,C点E是边AB的中点,∴AE=BE=CE=AB=5,∵CD⊥AB,DE=4,∴CD==3,∴S△AEC=S△BEC=BE•CD=3=7.5,故选:B.10.解:作EF⊥BC于F,∵S△BCE=10,∴×BC×EF=10,即×5×EF=10,解得,EF=4,∵BE平分∠ABC,CD⊥AB,EF⊥BC,∴DE=EF=4,故选:D.二.填空题11.解:由题意知,应分两种情况:(1)当腰长为3cm时,则另一腰也为3cm,底边为12﹣2×3=7cm,∵3+3<7,∴边长分别为3,3,7不能构成三角形;(2)当底边长为3cm时,腰的长=(12﹣3)÷2=4.5cm,∵0<3<4.5+4.5=9,∴边长为3,4.5,4.5,能构成三角形,则该等腰三角形的一腰长是4.5cm.故答案为:4.5cm.12.解:∵∠B=20°,AB=A1B,∴∠A=(180°﹣∠B)=80°,故答案为:80°.13.解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,又点E为AC中点,∴DE=AC=5,故答案为:5.14.解:∵DE垂直平分AC,∴CD=AD,∴∠ACD=∠A=30°,∵在Rt△ABC中,∠B=90°,∠A=30°,∴∠ACB=90°﹣∠A=60°,∴∠BCD=∠ACB﹣∠ACD=30°,∴CD=2BD=2×2=4,∴AD=CD=4.故答案为:4.15.解:∵DE是△ABC中的边AC上的垂直平分线,∴AD=CD,∵AB=5cm,BC=8cm,∴△ABD的周长为:AB+BD+AD=AB+BD+CD=AB+BC=13(cm).故答案是:13.16.解:∵DE,PF分别垂直平分AB,AC,∴∠B=∠BAD,∠C=∠CAP,又∵∠DAP=20°,∴∠B+∠C=(180°﹣20°)=80°,∴∠BAC=180°﹣80°=100°,故答案为:100°.17.解:作PH⊥AC于H,∵AP平分∠BAC,PE⊥AB,PH⊥AC,∴PE=PH,∵AB∥CD,PE⊥AB,∴PF⊥CD,∵CP平分∠ACD,PF⊥CD,PH⊥AC,∴PF=PH,∴PH=PE=PF=EF=5,即点P到AC的距离为5,故答案为:5.18.解:作DF⊥AC于F,如图,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∵S△ABD+S△ADC=S△ABC,∴•4•AB+•12•4=40,∴AB=8.故答案为8.三.解答题19.解:∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠DBA=∠A=35°20.证明:∵AB∥CD,∴∠ABC=∠DCF.(两直线平行,同位角相等)∵BD平分∠ABC,CE平分∠DCF,∴∠2=∠ABC,∠4=∠DCF.(角平分线的定义)∴∠2=∠4.∴BD∥CE.(同位角相等,两直线平行)∴∠BGC=∠ACE.(两直线平行,内错角相等)∵∠ACE=90°,∴∠BGC=90°,即AC⊥BD.(垂直的定义)21.证明:∵CD⊥AB,∴在△ADF中,∠DAF=90°﹣∠AFD=90°﹣∠CFE.∵∠ACE=90°,∴在△AEC中,∠CAE=90°﹣∠CEF.∵∠CFE=∠CEF,∴∠DAF=∠CAE,即AE平分∠CAB.22.解:(1)∵AE⊥CD,∴∠AFC=∠ACB=90°,∴∠CAF+∠ACF=∠ACF+∠ECF=90°,∴∠ECF=∠CAF,∵∠EAD=∠DCB,∴∠CAD=2∠DCB,∵CD是斜边AB上的中线,∴CD=BD,∴∠B=∠DCB,∴∠CAB=2∠B,∵∠B+∠CAB=90°,∴∠B=30°;(2)∵∠B=∠BAE=∠CAE=30°,∴AE=BE,CE=AE,∴BC=3CE.23.解:(1)△CDE的周长为10.∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴△CDE的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴∠A=∠ACD,∠B=∠BCE,又∵∠ACB=125°,∴∠A+∠B=180°﹣125°=55°,∴∠ACD+∠BCE=55°,∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.24.解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠A=40°,∴∠ABC=∠ACB=70°,∵MN是AB的垂直平分线,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70﹣40°=30°;(2)∵MN是AB的垂直平分线,∴BD=AD,∵△DBC的周长为14cm,∴BD+BC+CD=14cm,∵BC=5cm,∴BD+CD=AD+CD=AC=9cm,∵AB=AC,∴AB=9cm.25.解:(1)∵AC∥BD,∴∠CAB+∠ABD=180°.∵AE平分∠CAB,∴∠EAB=∠CAB.同理可得∠EBA=∠ABD.∴∠EAB+∠EBA=90°,∴∠AEB=90°;(2)如图,在AB上截取AF=AC,连接EF,在△ACE和△AFE中,∴△ACE≌△AFE(SAS).∴CE=FE,∠CEA=∠FEA.∵∠CEA+∠DEB=90°,∠FEA+∠FEB=90°,∴∠DEB=∠FEB.在△DEB和△FEB中∴△DEB≌△FEB(ASA).∴ED=EF.∴ED=CE.。
(人教版)厦门市八年级数学下册第一单元《二次根式》测试题(包含答案解析)
C、 .故C正确.
D、 .故D正确.
故选B.
【点睛】
本题考查了算术平方根的定义、二次根式的除法及无理数的有关概念,正确的理解算术平方根是解决此题的关键.
3.B
解析:B
【分析】
直接将已知分母有理化,进而代入求出答案.
【详解】
解:∵
,
∴
.
【点评】
此题主要考查了分母有理化,正确化简二次根式是解题关键.
当m<0时, 不是二次根式;
对于任意的数x,x2+1>0,则 一定是二次根式;
是三次方根,不是二次根式;
﹣m2﹣1<0,则 不是二次根式;
是二次根式;
当a< 时,2a+1可能小于0,则 不一定是二次根式.
综上所述,一定是二次根式的有 ,共3个,
故选:A.
【点睛】
主要考查了二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.
解析:<
【分析】
直接利用二次根式的性质分别变形,进而比较得出答案.
【详解】
解: =
=
∵ >
∴
∴ <
故答案为:<.
【点睛】
此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.
18.>【分析】根式比较大小:通常先转化成分数指数幂寻找分母的最小公倍数作为新的指数从而进行解题【详解】解:分母2和3的最小公倍数为6;∴由于即故所以故答案为:>【点睛】本题考查了实数的比较大小解题的关键
一、选择题
1.B
解析:B
【分析】
对五个命题进行判断,即可求解.
【详解】
解:①带根号的数是无理数,判断错误;
② 与 是互为相反数,判断正确;
(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试题(包含答案解析)(1)
一、选择题1.如图的网格中,每个小正方形的边长为1,A ,B ,C 三点均在格点上,结论错误的是( )A .AB=25B .∠BAC=90°C .ABC S 10=D .点A 到直线BC 的距离是22.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒=D .20,A AD BC BD ∠=︒=+3.下列说法中,不正确的有( ) ①不在角的平分线上的点到这个角的两边的距离不相等;②三角形两内角的平分线的交点到各边的距离相等;③到三角形三边距离相等的点有1个④线段中垂线上的点到线段两端点的距离相等,⑤到三角形三个顶点距离相等的点有1个A .0个B .1个C .2个D .3个4.下列命题中真命题的个数( )(1)面积相等的两个三角形全等(2)无理数包含正无理数、零和负无理数(3)在直角三角形中,两条直角边长为n 2﹣1和2n ,则斜边长为n 2+1;(4)等腰三角形面积为12,底边上的高为4,则腰长为5.A .1个B .2个C .3个D .4个 5.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠A =30°,BD =1,则AD 的长为( )A .3B .2C .3D .236.如图,ABC 中,D 、E 为线段BE 上两点,且AC DC =,BA BE =,若52DAE BAC ∠=∠,则DAE ∠的度数为( )A .40︒B .45︒C .50︒D .60︒ 7.下列四组线段中,可以构成直角三角形的是( ) A .1,2,3B .2,3,4C .4,5,6D .()5,12,130a a a a >8.如图,在ABC 中,90BAC ∠=︒,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于G ,交BE 于H .下列结论:①BE BCE S S =△A △;②2BAG ACF ∠=∠;③AFG AGF ∠=∠;④BH CH =.其中所有正确结论的序号是( )A .①③B .①②③C .②③④D .①②③④ 9.如图,ABC 中,BAC 60∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分ADF ∠;④2AB AC AE +=.其中正确的有( )A .①②B .①②③④C .①②④D .②④ 10.如图,在△ABC 中,AD 平分∠BAC ,过B 点作BE ⊥AD 于E ,过E 作EF //AC 交AB 于F ,则( )A .不确定B .AF=BFC .AF >BFD .AF <BF11.如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 平分∠BACB .∠ADC =60° C .点D 在AB 的垂直平分线上 D .:DAC ABC S S =1:212.如图,以△ABC 的边AB 、AC 为边向外作等边△ABD 与等边△ACE ,连接BE 交DC 于点F ,下列结论:①CD =BE ;②FA 平分∠DFE ;③∠BFC =120°;④AFE EFC S AF S FC∆∆=.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题13.如图,在ABC 中,10,12,CA CB AB AB ===边上的中线8,CD AE =平分BAC ∠,P 是线段AE 上的一点,,PF AB PG BC ⊥⊥,若:1:2PF PG =,则PG =_________.14.如图所示,有n +1个边长为1的等边三角形,点A 、C 1、C 2、C 3、…、C n 都在同一条直线上,若记△B 1C 1D 1的面积为S 1,△B 2C 2D 2的面积为S 2,△B 3C 3D 3的面积为S 3,…,△B n C n D n 的面积为S n ,则(1)S 1=_____;(2)S n =_____.15.如图,某住宅小区在施工过程中留下了一块空地四边形ABCD ,经测量,3m AB =,4m BC =,12m CD =,13m DA =,90B ∠=︒.小区美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地需花_________元.16.如图,在ABC 中,6,,BC AD DC =分别平分,BAC ACB ∠∠,点E 为BC 上一点,若105ADC ︒∠=,则CD DE +的最小值为________.17.如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,ADC 的周长为15,7AB =,则ABC 的周长为______.18.如图所示,在ABC 中,AB AC =,BAD ∠=α,且AE AD =,则EDC ∠=______.19.已知:如图,在ABC 中,AB AC =,30C ∠=︒,AB AD ⊥,4cm AD =,则BC 的长为__________cm .20.如图,在ABC 中,AB AC =,38A ∠=︒,AB 的垂直平分线交AC 点E ,垂足为点D ,连接BE ,则EBC ∠的度数为________.三、解答题21.如图,已知E 、F 分别是ABC 的边AB 和AC 上的两个定点,在BC 上找一点M ,使EFM △的周长最小.(不写作法,保留作图痕迹)22.在ABC ∆中,AB AC =,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作ADE ∆,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图1,当点D 在线段BC 上,如果90BAC ∠=︒,则BCE ∠=__度;(2)如图2,如果60BAC ∠=︒,求BCE ∠的度数是多少?(3)设BAC α∠=,BCE β∠=.①如图3,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D 在直线BC 上移动,请直接写出α,β之样的数量关系,不用证明.23.(1)猜想:如图1,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E 试猜想DE 、BD 、CE 有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在ABC 中,AB AC =,D ,A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由.(3)解决问题:如图3,F 是角平分线上的一点,且ABF 和ACF 均为等边三角形,D 、E 分别是直线m 上A 点左右两侧的动点D 、E 、A 互不重合,在运动过程中线段DE 的长度始终为n ,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF 的形状,并说明理由.24.如图,网格中每个小正方形的边长均为1,点A ,B 都在格点上,点A 的坐标为(-1,4),点B 的坐标为(-3,2),请按要求回答下列问题:(1)请你在网格中建立合适的平面直角坐标系;(2)在y 轴左侧找一格点C ,使△ABC 是以AB 为腰的等腰直角三角形,则点C 的坐标为____,△ABC 的周长是 ;(3)在x 轴上是否存在点P ,使△ABP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.25.如图,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,BE 、CD 交于F .(1)求证:BE =CD ;(2)连接CE ,若BE =CE ,求证:从“①DE ⊥AC”、“②DE ∥AB”中选择一个填入(2)中,并完成证明26.已知:如图,在ABC 中,,90AC BC ACB =∠=︒,D 是AB 延长线上一点,过点C 作CE CD ⊥,使CE CD =,连结,BE DE .(1)求证:AD BE =.(2)求DBE ∠的度数.(3)连结AE ,若ADE 是等腰三角形,1AB =,求DE .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据勾股定理以及其逆定理和三角形的面积公式逐项分析即可得到问题答案.【详解】解:22242025+=A 正确,不符合题意;∵AC 22125+=BC 2234255=+==,∴22252025AC AB BC +=+==,∴△ACB 是直角三角形,∴∠CAB=90°,故选项B 正确,不符合题意;S △ABC 111442421345222=⨯-⨯⨯-⨯⨯-⨯⨯=,故选项C 错误,符合题意; 点A 到直线BC 的距离2552AC AB BC ===,故选项D 正确,不符合题意; 故选:C .【点睛】本题考查了勾股定理以及逆定理的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么 222+=a b c .熟记勾股定理的内容是解题得关键.2.D解析:D【分析】设∠ABC=∠C=2x ,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF ,BC=BE=EF ,在△BDC 中利用内角和定理列出方程,求出x 值,可得∠A ,再证明AF=EF ,从而可得AD =BC+BD .【详解】解:∵AB=AC ,BD 平分∠ABC ,设∠ABC=∠C=2x ,则∠A=180°-4x ,∴∠ABD=∠CBD=x ,第一次折叠,可得:∠BED=∠C=2x ,∠BDE=∠BDC ,第二次折叠,可得:∠BDE=∠FDE ,∠EFD=∠ABD=x ,∠BED=∠FED=∠C=2x ,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC ,∴AD=AF+FD=BC+BD ,故选D .【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.3.C解析:C【分析】根据角平分线的性质和线段垂直平分线的性质逐一进行判断即可.【详解】①根据角平分线的判定可知①正确;②根据角平分线的性质可知②正确;③缺乏前提条件:在三角形内部,若不限制条件,到三角形三边距离相等的点有4个,故③错误;④根据垂直平分线的性质可知④正确;⑤缺乏前提条件:在平面内,若不在平面内到三角形三个顶点距离相等的点有无数个,故⑤错误,∴错误的有2个,故选:C .【点睛】本题主要考查角平分线的性质和判定及垂直平分线的性质,掌握角平分线的性质和垂直平分线的性质是解题的关键.4.B解析:B【分析】根据三角形全等的性质、无理数的定义、勾股定理进行判断即可;【详解】面积相等的三角形不一定全等,故(1)是假命题;零不是无理数,故(2)是假命题;()()222242214211n n n n n -+=++=+,故(3)是真命题; 根据题意可得,底边长为12246⨯÷=,则底边长的一半为623÷=,腰长为5=,故(4)是真命题;综上所述,真命题有2个;故答案选B .【点睛】本题主要考查了命题的真假判断,结合全等三角形的定义、无理数定义、勾股定理判断是解题的关键.5.C解析:C【分析】求出∠BCD=30°,根据含30°角的直角三角形的性质求出BC=2,求出AB=4,即可得出答案.【详解】解:∵△ABC 中,∠ACB=90°,∠A=30°,∴∠B=60°,∵CD是高,∴∠CDB=90°,∴∠BCD=30°,∵BD=1,∴BC=2BD=2,∵在△ACB中,∠ACB=90°,∠A=30°,∴AB=2BC=4,∴AD=AB-BD=4-1=3,故选:C.【点睛】本题考查了三角形的内角和定理,含30度角的直角三角形的性质的应用,解题的关键是得出BC=2BD和AB=2BC,难度适中.6.A解析:A【分析】根据等腰三角形的性质可得出∠BAE=∠BEA,∠ADC=∠DAC,然后分别用外角的知识表示出这个关系,进而结合5∠DAE=2∠BAC可得出∠DAE的值.【详解】解:∵AC=DC,BA=BE,∴∠DAE+∠EAC=∠ADE=∠B+∠BAD①,∠EAD+∠BAD=∠AED=∠C+∠EAC②,①+②可得:∠DAE+∠EAC+∠EAD+∠BAD=∠B+∠BAD+∠C+∠EAC,整理,得∠DAE+∠BAC=180°﹣∠DAE,又5∠DAE=2∠BAC,设∠DAE=2x,则∠BAC=5x,上式即为2x+5x=180°-2x,解得:x=20°,即∠DAE=40°.故选:A.【点睛】本题考查等腰三角形的性质及三角形的内角和定理,有一定的难度,解答本题需用到等腰三角形的两底角相等、三角形的内角和等于180°.7.D解析:D【分析】根据勾股定理逆定理判断即可;【详解】≠A不正确;≠B不正确;≠C不正确;=,故D正确;故答案选D.【点睛】本题主要考查了勾股定理逆定理,准确计算是解题的关键.8.B解析:B【分析】根据中线的性质即可判断①;根据三角形内角和定理求出∠BAD=∠ACB,再用角平分线的定义推出②;根据三角形内角和定理求出∠ABC=∠DAC,再用外角的性质可判断③;根据等腰三角形的判定判断④.【详解】解:∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积,故①正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠BAG=2∠ACF,故②正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.9.C解析:C【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=60°,从而得到∠ABC为等边三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD.同理:DF=12 AD.∴DE+DF=AD.∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠EDF,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC是否等于60°不知道,∴不能判定MD平分∠EDF,故③错误.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.故选:C .【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.10.B解析:B【分析】根据角平分线的定义和两直线平行,内错角相等的性质得到FAE FEA ∠=∠,即可得到AF=EF ,再根据BE ⊥AD ,得到90AEB =︒∠,再根据等角的余角相等得到ABE BEF ∠=∠,根据等边对等角的性质得到BF=EF ,即可得解;【详解】∵AD 平分∠BAC ,EF //AC ,∴FAE FEA ∠=∠,∴AF=EF ,∵BE ⊥AD ,∴90FAE ABE ∠+=︒,90AEF BEF ∠+∠=︒, ∴ABE BEF ∠=∠, ∴BF=EF ,∴AF=BF ;故答案选B .【点睛】本题主要考查了平行线的性质、三角形的角平分线,准确分析证明是解题的关键. 11.D解析:D【分析】由作图可得:AD 平分,BAC ∠ 可判断A ,再求解1302DAC DAB BAC ∠=∠=∠=︒, 可得60,ADC ∠=︒ 可判断B ,再证明,DA DB = 可判断C ,过D 作DF AB ⊥于,F 再证明,DC DF = 再利用ACD ACD ABC ACD ABD S S SS S =+ ,可判断,D 从而可得答案. 【详解】解:90,30,C B ∠=︒∠=︒903060,BAC ∴∠=︒-︒=︒由作图可得:AD 平分,BAC ∠ 故A 不符合题意;1302DAC DAB BAC ∴∠=∠=∠=︒, 903060,ADC ∴∠=︒-︒=︒ 故B 不符合题意;30,DAB B ∠=∠=︒,DA DB ∴=D ∴在AB 的垂直平分线上,故C 不符合题意;过D 作DF AB ⊥于,F90,C AD ∠=︒平分,BAC ∠,DC DF ∴=30B ∠=︒,2,AB AC ∴=11,,22ACD ABD S AC CD S AB DF ∴== 121122ACDACD ABC ACD ABD AC CD SS S S S AC CD AB DF ∴==++ 1.233AC AC AC AC AB AC AC AC ====++ 故D 符合题意; 故选:.D【点睛】 本题考查的是三角形的内角和定理,角平分线的作图,角平分线的性质,线段垂直平分线的判定,等腰三角形的判定,掌握以上知识是解题的关键.12.A解析:A【分析】过点A 作AM ⊥CD 于M ,AN ⊥BE 于N ,过点C 作CH ⊥BE 于H ,证明△ADC ≌△ABE ,可判断①,再证明AM =AN ,结合AM ⊥CD 于M ,AN ⊥BE 于N ,可判断②,证明∠ACF +∠BEC +∠ACE =120°,结合三角形的外角的性质可判断③,证明∠FAN =∠FCH =30°, 利用含30的直角三角形的性质与勾股定理可得: 33,,22AN AF HC FC == 再利用三角形的面积公式可判断④.【详解】解:过点A 作AM ⊥CD 于M ,AN ⊥BE 于N ,过点C 作CH ⊥BE 于H ,∵△ABD ,△ACE 都是等边三角形,∴AD =AB ,AE =AC ,∠DAB =∠EAC =60°,∴∠DAC =∠BAE .在△ADC 和△ABE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△ABE (SAS ),∴CD =BE ,∠AEB =∠ACD ,故①正确∵△ADC ≌△ABE ,∴AM =AN .∵AM ⊥CD 于M ,AN ⊥BE 于N ,∴AF 平分∠DFE ,故②正确.∵∠AEB =∠ACD ,∴∠AEC +∠ACE =120°=∠AEB +∠BEC +∠ACE ,∴∠ACF +∠BEC +∠ACE =120°,∴∠BFC =∠ACF +∠BEC +∠ACE =120°,故③正确,∴∠DFE =120°, ∴∠DFA =∠EFA =60°=∠CFE .∵AN ⊥BE ,CH ⊥EF ,∴∠FAN =∠FCH =30°,∴22222,3,2,3,AF FN AN AF FN FN FC FH HC FC FH FH ==-===-=∴,,22AN AF HC FC ==∴12.12AEF EFC EF AN AF S AN AF S CH FC EF CH ⨯⨯====⨯⨯故④正确. 故选:A .【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,角平分线的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.二、填空题13.【分析】连接PBPC 过P 作PH ⊥AC 垂足为H 设PF=x 求出CD 的长从而算出△ABC 的面积再根据S △ABC=S △ABP+S △ACP+S △BCP=求出x 值可得结果【详解】解:连接PBPC 过P 作PH ⊥AC解析:167【分析】连接PB ,PC ,过P 作PH ⊥AC ,垂足为H ,设PF=x ,求出CD 的长,从而算出△ABC 的面积,再根据S △ABC =S △ABP +S △ACP +S △BCP =21x ,求出x 值,可得结果.【详解】解:连接PB ,PC ,过P 作PH ⊥AC ,垂足为H ,∵AP 平分∠BAC ,∴PF=PH ,设PF=x ,则PH=x ,PG=2x ,∵CA=CB=10,CD 是AB 中线,AB=12,∴AD=BD=6,则=8,∴S △ABC =12AB CD ⨯⨯=48, 又S △ABC =S △ABP +S △ACP +S △BCP =()12AB PF AC PH BC PG ⨯⋅+⋅+⋅ =()11210202x x x ⨯++ =21x=48解得:x=167, 即PG=167, 故答案为:167.【点睛】本题考查了等腰三角形三线合一的性质,角平分线的性质,勾股定理,三角形的面积,解题的关键是利用△ABC 的面积列出方程.14.【分析】首先求出S1S2S3…探究规律后即可解决问题【详解】解:如图过点B 作BE ⊥AC1于点E ∵△ABC1是等边三角形AB=AC1=BC1=1∴AE=∴∴由题意可知=…所以∵∴故答案为:【点睛】本题 解析:38 34(1)n n + 【分析】首先求出S 1,S 2,S 3,…,探究规律后即可解决问题.【详解】解:如图,过点B 作BE ⊥AC 1于点E ,∵△ABC1是等边三角形,AB=AC1=BC1=1∴AE=12, ∴22221312BE AB AE ⎛⎫=-=-= ⎪⎝⎭∴1113312AC B S ∆=⨯=由题意可知,11111111122B C D AC B AC B S S S S ∆∆∆====133248⨯=, 222211121233B C D AC B AC B S S S S ∆∆∆===, 333321131344B C D AC B AC B S S S S ∆∆∆===, …,所以111n AC B n S S n ∆=+, ∵111331224AC B S ∆=⨯⨯=, ∴3n n S =. 故答案为:3,3n 【点睛】本题考查了等边三角形的性质,三角形的面积等知识,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题,属于中考常考题型.15.3600【分析】连接AC 根据勾股定理的性质计算得AC ;根据勾股定理的逆定理推导得计算得从而得四边形面积;结合草坪每平方米100元通过计算即可得到答案【详解】如图连接AC ∵∴∵∴∴∴∴四边形面积为:∵解析:3600【分析】连接AC ,根据勾股定理的性质,计算得AC 、ABC S ;根据勾股定理的逆定理,推导得90ACD ∠=︒,计算得ACD S,从而得四边形ABCD 面积;结合草坪每平方米100元,通过计算即可得到答案.【详解】如图,连接AC∵3m AB =,4m BC =,90B ∠=︒∴225AC AB BC m =+=,2162ABC S AB BC m =⨯=△ ∵12m CD =,13m DA =∴22222512169DA AC CD =+=+=∴90ACD ∠=︒∴21302ACD S AC CD m =⨯=△ ∴四边形ABCD 面积为:236ABC ACD S S m +=△△∵草坪每平方米100元∴铺满这块空地需花:361003600⨯=元,故答案为:3600.【点睛】本题考查了勾股定理及其逆定理的知识;解题的关键是熟练掌握勾股定理和勾股定理逆定理,从而完成求解.16.3【分析】如图过作于连接先说明平分当时可得可得所以当三点共线时此时最短再求解结合从而可得答案【详解】解:如图过作于连接分别平分平分当时则所以当三点共线时此时最短分别平分即的最小值是故答案为:【点睛】 解析:3【分析】如图,过D 作DP AB ⊥于,P 连接,BD 先说明BD 平分,ABC ∠ 当DE BC ⊥时,可得,DP DE = 可得,CD DE CD DP +=+ 所以当,,C D P 三点共线时,,CD DP CP += 此时最短,再求解30ABC ∠=︒,结合,CP AB ⊥ 从而可得答案. 【详解】解:如图,过D 作DP AB ⊥于,P 连接,BD,AD DC 分别平分,BAC ACB ∠∠,BD ∴平分,ABC ∠当DE BC ⊥时,则,DP DE =,CD DE CD DP ∴+=+所以当,,C D P 三点共线时,,CD DP CP += 此时最短,105ADC ∠=︒,18010575DAC DCA ∴∠+∠=︒-︒=︒,,AD DC 分别平分,BAC ACB ∠∠,()2150,BAC BCA DAC DCA ∴∠+∠=∠+∠=︒18015030ABC ∴∠=︒-︒=︒,,CP AB ⊥116322CP BC ∴==⨯=, 即CD DE +的最小值是3,故答案为:3.【点睛】本题考查的是三角形的内角和定理,三角形的角平分线的性质,含30的直角三角形的性质,垂线段最短,掌握以上知识是解题的关键.17.22【分析】根据题意可得MN 为AB 的垂直平分线故即可求解【详解】解:根据题意可得MN 为AB 的垂直平分线∴∴的周长为故答案为:22【点睛】本题考查尺规作图-线段垂直平分线线段垂直平分线的性质得到MN 为 解析:22【分析】根据题意可得MN 为AB 的垂直平分线,故AD BD =,即可求解.【详解】解:根据题意可得MN 为AB 的垂直平分线,∴AD BD =,∴ABC 的周长为22AC AB BC AC CD BD AB AC CD AD AB ++=+++=+++=,故答案为:22.【点睛】 本题考查尺规作图-线段垂直平分线、线段垂直平分线的性质,得到MN 为AB 的垂直平分线是解题的关键.18.【分析】根据等边对等角和三角形的外角性质列出等式整理即可得出结论【详解】解:根据题意:在△ABC 中AB=AC ∴∠B=∠C ∵AE=AD ∴∠ADE=∠AED ∴∠B+∠α-∠EDC=∠C+∠EDC 化简可得 解析:12α 【分析】根据等边对等角,和三角形的外角性质列出等式整理即可得出结论.【详解】解:根据题意:在△ABC 中,AB=AC ,∴∠B=∠C,∵AE=AD,∴∠ADE=∠AED,∴∠B+∠α-∠EDC=∠C+∠EDC,化简可得:∠α=2∠EDC,∴∠EDC=12α,故答案为:12 .【点睛】本题考查了等腰三角形的性质,三角形外角定理,关键是熟悉三角形的一个外角等于与它不相邻的两个内角的和的知识点.19.【分析】已知AB=AC根据等腰三角形的性质可得∠B的度数再求出∠DAC 的度数然后根据30°角直角三角形的性质求得BD的长再根据等角对等边可得到CD的长即可求得BC的长【详解】∵AB=AC∠C=30°解析:12【分析】已知AB=AC,根据等腰三角形的性质可得∠B的度数,再求出∠DAC的度数,然后根据30°角直角三角形的性质求得BD的长,再根据等角对等边可得到CD的长,即可求得BC的长.【详解】∵AB=AC,∠C=30°,∴∠B=∠C=30°,∴∠BAC=120°,∵AB⊥AD,AD=4,∴∠BAD=90°,BD=2AD=8,∴∠DAC=120°-90°=30°,∴∠DAC =∠C=30°,∴AD=CD=4,∴CB=DB+CD=12故答案为:12【点睛】本题考查了等腰三角形的判定与性质及30°角直角三角形的性质,熟练运用等腰三角形的性质及30°角直角三角形的性质是解决问题的关键.20.33°【分析】先根据等腰三角形的性质求出再根据垂直平分线的性质求解即可;【详解】∵在中∴∵的垂直平分线交点垂足为点∴AE=BE∴∴;故答案是【点睛】本题主要考查了等腰三角形的判定与性质垂直平分线的性解析:33°【分析】先根据等腰三角形的性质求出71ABC C ∠=∠=︒,再根据垂直平分线的性质求解即可;【详解】∵在ABC 中,AB AC =,38A ∠=︒,∴71ABC C ∠=∠=︒,∵AB 的垂直平分线交AC 点E ,垂足为点D ,∴AE=BE ,∴38A ABE ∠=∠=︒,∴713833EBC ∠=︒-︒=︒;故答案是33︒.【点睛】本题主要考查了等腰三角形的判定与性质、垂直平分线的性质,准确计算是解题的关键.三、解答题21.画图见解析【分析】先作E 点关于直线BC 的对称点1,E 则1,ME ME = 再连接1,FE 交BC 于,M 从而可得到EFM △的周长最短.【详解】解:如图,EFM △是所求作的周长最小的三角形,【点睛】本题考查的轴对称的性质,过直线外一点作已知直线的垂线,线段的垂直平分线的性质,掌握利用轴对称的性质求解两条线段的和的最小值是解题的关键.22.(1)90;(2)120°;(3)①180αβ+=︒;见解析;②180αβ+=︒或αβ=【分析】(1)由等腰直角三角形的性质可得∠ABC =∠ACB =45°,由“SAS ”可证△BAD ≌△CAE ,可得∠ABC =∠ACE =45°,可求∠BCE 的度数;(2)由条件可得△ABC 为等边三角形,由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE =60°,则可得出结论;(3)①由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论;②分两种情况画出图形,由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论.【详解】解:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△BAD ≌△CAE (SAS )∴∠ABC =∠ACE =45°,∴∠BCE =∠ACB +∠ACE =90°,故答案为:90;(2)∵∠BAC =60°,AB =AC ,∴△ABC 为等边三角形,∴∠ABD =∠ACB =60°,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,∵∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE =60°,∴∠BCE =∠ACE +∠ACB =60°+60°=120°,故答案为:120.(3)①α+β=180°,理由:∵∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC .即∠BAD =∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .∵∠ACE +∠ACB =β,∴∠B +∠ACB =β,∵α+∠B +∠ACB =180°,∴α+β=180°.②如图1:当点D 在射线BC 上时,α+β=180°,连接CE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,在△ABC 中,∠BAC +∠B +∠ACB =180°,∴∠BAC +∠ACE +∠ACB =∠BAC +∠BCE =180°,即:∠BCE +∠BAC =180°,∴α+β=180°,如图2:当点D 在射线BC 的反向延长线上时,α=β.连接BE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,∴∠ABD =∠ACE =∠ACB +∠BCE ,∴∠ABD +∠ABC =∠ACE +∠ABC =∠ACB +∠BCE +∠ABC =180°,∵∠BAC =180°﹣∠ABC ﹣∠ACB ,∴∠BAC =∠BCE .∴α=β;综上所述:点D 在直线BC 上移动,α+β=180°或α=β.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,三角形的内角和定理,证明△ABD ≌△ACE 是解本题的关键.23.(1)DE BD CE =+;(2)成立,见解析;(3)等边三角形,见解析【分析】(1)根据垂直的定义得到90BAD CAE ∠+∠=︒,根据等角的余角相等得到ABD CAE ∠=∠,再证明()ADB CEA AAS ≌△△,根据全等三角形的性质即可得解; (2)根据条件证明()BAD ACE AAS ≌即可得解;(3)根据等边三角形的判定证明即可;【详解】解:(1)DE BD CE =+,理由:∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∴90BAD ABD ∠+∠=︒,∴ABD CAE ∠=∠,在ADB △和CEA 中,90ADB CEA ABD CAE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()ADB CEA AAS ≌△△, ∴BD AE =,AD CE =,∴DE AD AE BD CE =+=+,故答案为DE BD CE =+;(2)结论DE BD CE =+成立;理由如下:∵BAD CAE 180BAC ∠∠∠+=︒-,BAD ABD 180ADB ∠∠∠+=︒-,90BAD ABD ∠+∠=︒,∴ABD CAE ∠=∠, 在BAD 和ACE 中,ABD CAE ADB CEA AB AC α∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴()BAD ACE AAS ≌,∴BD AE =,AD CE =,∴DE DA AE BD CE =+=+;(3)DFE △为等边三角形,理由:由(2)得,BAD ACE ≌△△,∴BD AE =,ABD CAE ∠=∠,∴ABD FBA CAE FAC ∠+∠=∠+,即FBD FAE ∠=∠,在FBD 和FAE 中,FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,∴()FBD FAE SAS ≌,∴FD FE =,BFD AFE ∠=∠,∴60DFE DFA AFE DFA BFD ∠=∠+∠=∠+∠=︒, ∴DFE 为等边三角形.【点睛】 本题主要考查了三角形综合,结合三角形全等证明、等边三角形的判定是解题的关键. 24.(1)图见解析;(2)(-1,0),442+;(3)P 7(,0)3-. 【分析】(1)根据AB 坐标可知,A 点向右1个单位,向下4个单位即是原点(0,0),由此即可建立平面直角坐标系;(2)由网格的特点易得点,再根据勾股定理可求AB 边长为22,进而即可得出答案, (3)作点B 关于x 轴的对称点B ′,连接AB ′,交x 轴于点P ,则点P 即所求,再利用一次函数与直线交点求法求出交点P .【详解】解:(1)平面直角坐标系如图所示;(2)如图,当在y 轴左侧点C (-1,0)时,△ABC 为等腰直角三角形,此时222222AB BC ==+=故△ABC 的周长为42222442BC AB BC ++=+=+故填:(-1,0),442+;(3)如图,作点(3,2)B -关于x 轴的对称点(3,2)B '--,连接AB ′,交x 轴于点P ,则点P 即所求,设直线AB ′的解析式为y =kx +b ,将A (−1,4),B ′(−3,−2)代入得423k b k b=-+⎧⎨-=-+⎩, 解得37k b =⎧⎨=⎩, ∴直线AB ′的解析式为y =3x +7. 将y =0代入得,73x =-, ∴0()7,3P -.【点睛】本题考查了一次函数应用,勾股定理,轴对称与线段最小值等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.25.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可;(2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中, AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE =CD ;(2)∵BE =CD ,BE =CE ,∴CE =CD ,又∵AD =AE ,∴CA 垂直平分DE ,∴DE ⊥AC (可得①),又∵∠BAC =90°,∴DE//AB (可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.26.(1)见解析;(2)90°;(35【分析】(1)用SAS 证明△ACD ≌△BCE ,即可得到结论;(2)根据全等三角形的性质得到∠EBC=∠BAC=45°,可得∠DBE ;(3)分DA=DE ,DA=AE ,DE=AE ,三种情况根据等腰三角形的性质求解.【详解】解:(1)∵CE ⊥CD ,∴∠DCE=90°=∠ACB ,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠ECB ,∴在△ACD 和△BCE 中,AC BC ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD=BE ;(2)由(1)可知:△ACD ≌△BCE ,∴∠EBC=∠BAC=45°,∴∠DBE=180°-∠EBC-∠ABC=90°;(3)∵△ADE 是等腰三角形,若DA=DE ,则∠DAE=∠DEA ,∵∠DAC=∠DEC ,∴∠CAE=∠CEA ,∴AC=EC ,∵AC≠EC ,∴DA≠DE ;若DA=AE ,∵∠EBA=90°,∴AE>BE,∵△ACD≌△BCE,∴AD=BE,∴AE≠AD;若DE=AE,∵EB⊥AD,AE=DE,∴B是AD中点,∴AD=2AB=2BD=1,∵△ACD≌△BCE,∴BE=AD=2,由(2)可知:∠DBE=90°,∴DE=225+=;BE DB综上:DE的值为5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,解题的关键是注意分类讨论,灵活运用等腰三角形的性质.。
人教版八年级下册数学《一次函数》单元测试卷合集(含答案)
人教版八年级下册数学《一次函数》单元测试卷(一)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.函数y =的自变量的取值范围是( )A.22x -<≤B.22x -≤≤C.2x ≤且2x ≠D.22x -<<2.下列关系式中不是函数关系的是( )A.y =0x >)B.y x =(0x >)C.y =(0x >) D.y(x <3.小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10分钟后,用15分钟返回家里. 图中表示小红爷爷离家的时间与外出的距离之间的关系是 ( )A B C D4.甲、乙两个工程队完成某项工程,首先是甲队单独做10天,然后是乙队加入合作,完成剩下的全部工程,设工程总量是1,工程进度满足如图所示的函数图象,那么实际完成这项工程比甲单独完成这项工程的时间少( ) A.12天 B.13天 C.14天 D.15天分)分)分)分)5.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s (km )与行进时间t (小时)的函数图象的示意图,同学们画出的示意图如图所示,你认为正确的是( )6.如果(0)y kx k =≠的自变量增加4,函数值相应地减少16,则k 的值为( )A.4B.4-C.14D.14-7.你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x ,瓶中水面的高度为y ,下面能大致表示上面故事情节的图象是( )A B C D8.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为S ,则S 关于t 的函数图象大致为( )9.如果一次函数的图象经过第一象限,且与轴负半轴相交,那么( )A .,B .,C .,D .,10.如图,在矩形ABCD 中,AB=2,1BC =,动点P 从点B 出发,沿路线B C D→→作匀速运动,那么ABP ∆的面积S 与点P 运动的路程x 之间的函数图象大致是( )二 、填空题(本大题共5小题,每小题3分,共15分)11.函数2113y x =+的自变量x 的取值范围是 .12.已知一次函数的图象过点与,则这个一次函数随的增大而 .13.函数1x y x-=的自变量x 的取值范围是 .14.已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______. y kx b =+y 0k >0b >0k >0b <0k <0b >0k <0b <()0,3()2,1y x D C P BAO31 1 3 Sx A .O1 1 3 Sx O3 Sx 3O1 1 3 SxB .C .D .2BAOA .B .C .D .S t S tS tStOOOO15.已知直线123141535y x y x y x ==+=+,,的图象如图所示,若无论x 取何值,y 总取12y y ,,3y ,中的最小值,则y 的最大值为 .三 、解答题(本大题共7小题,共55分)16.等腰ABC ∆周长为10cm ,底边BC 长为cm y ,腰长为cm x .⑴写出y 关于x 的函数关系式; ⑵求x 的取值范围; ⑶求y 的取值范围.17.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点.②a 为何值时,一次函数的图象与y 轴交于点()0,9.18.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点. ②a 为何值时,一次函数的图象与y 轴交于点()0,9.19.右图是某汽车行驶的路程()S km 与时间()min t 的函数关系图.观察图中所提供的信息,解答下列问题:⑴汽车在前9分钟内的平均速度是 ; ⑵汽车在中途停了多长时间? ; ⑶当3016t ≤≤时,求S 与t 的函数关系式.20.判断下列式子中y是否是x的函数.⑴22(35)y x=-⑵y=⑶12y x=-⑷8y x=-21.等腰三角形的周长为30,写出它的底边长y与腰长x之间的函数关系,并写出自变量的取值范围?22.甲乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的方案:甲超市累计购买商品超出300元后,超出部分按原价的8折优惠,在已超市累计购买商品超出200元后,超出部分按原价8.5折优惠.设顾客预计累计购物X元.(X>300)试比较顾客到哪家超市购物更实惠?说明理由人教版八年级下册数学《一次函数》单元测试卷答案解析一、选择题1.A2.A3.D4.A5.C6.B;由题意得:16(4)y k x-=+,将y kx=带入等式,即16(4)kx k x-=+,所以解出4k=-7.B8.C9.B10.B;【解析】了解P点的运动路线,根据已知矩形的长和宽求出当点P运动到C点时的S值为1,即当x为1时的S值为1,之后面积保持不变.二、填空题11.x为任意实数12.减小13.0x>14.16;【解析】分别将点()8m,代入两个一次函数解析式,得8m a=-+和8m b=+,联立方程得88m a m b+=-+++,所以16a b+=15.3717;【解析】如图,分别求出123y y y,,交点的坐标3322A⎛⎫⎪⎝⎭,;252599B⎛⎫⎪⎝⎭,;60371717C ⎛⎫ ⎪⎝⎭, 当32x <,1y y =;当232529x y y =,;当2560917x <,2y y = 当36017x y y =,.看图象可得到C 点最高, ∴6017x =,16037=+1=31717y ⨯最大.三 、解答题16.⑴102y x =-;⑵2.55x <<;⑶05y <<【解析】⑴由题意,得10x x y ++=,即102y x =-⑵因为x 、y 为线段,所以0x >,0y >.所以1020x ->,即05x <<;又因为x 、y 为三角形的边长,所以x x y +>,即2102x x >-,所以 2.5x >.所以2.55x << ⑶由2.55x <<,得5210x <<,所以1025x -<-<-,所以01025x <-<.因此y 的取值范围是05y <<.17.①2a =-;②a =18.①2a =-;②a =19.⑴4/min 3km ;⑵7分钟;⑶()3022016t S t =-≤≤. 20.⑴、⑶不是,⑵、⑷是.“y 有唯一值与x 对应”.21.⑴302y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得15152x <<. 22.设在甲超市所付的购物费用为y 甲元,在乙超市所付的购物费用为y 乙元,由题意可得,y 甲=300+0.8(x-300)=60+0.8x ,y 乙=20090%200)0.920(300)x x x +⨯-=+>(当y 甲=y 乙时0.9200.860x x +=+,解得400x =; 当y 甲<y 乙,时0.9200.860x x +<+,解得400x >;当y甲>y乙,时0.9200.860x x+>+,解得400x<.所以当购买多于300元而少于400元的商品时,选择乙超市比较优惠,当购买400元的商品时,两个超市费用相同,选择哪个都可以,当购买商品大于400元时,选择甲超市比较优惠.人教版八年级下册数学《一次函数》单元测试卷(二)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
2020年北师大版八年级数学下册第一章 三角形的证明单元测试卷及答案
北师大版八年级数学下册第一章三角形的证明单元测试题一.选择题(共10小题,每小题3分,共30分)1.等腰三角形的对称轴是()A.底边上的高所在的直线B.底边上的高C.底边上的中线D.顶角平分线2.如图在3×3的网格中,点A、B在格点处:以AB为一边,点P在格点处,则使△ABP为等腰三角形的点P有()个.A.2个B.3个C.4个D.5个3.如图,在△ABC中,∠B与∠C的角平分线相交于点I,过点I作BC的平行线,分别交AB、AC于点D、E.若AB=9,AC=6,BC=8,则△ADE的周长是()A.14 B.15 C.174.如图所示,在等边三角形ABC中,AD⊥BC,E为AD上一点,∠CED=50°,则∠ABE等于()A.10°B.15°C.20°D.25°5.在△ABC中,AB=AC,∠A=60°,BC=6,则AB的值是()A.12 B.8 C.6 D.36.用反证法证明“a≥b”,对于第一步的假设,下列正确的是()A.a≤b B.a≠b C.a<b D.a=b7.下列说法:①一个底角和一条边分别相等的两个等腰三角形全等;②底边及底边上的高分别相等的两个等腰三角形全等;③两边分别相等的两个直角三角形全等;④一个锐角和一条边分别相等的两个直角三角形全等,其中正确的个数是()A.1 B.2 C.3 D.48.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是()A.AE=3CE B.AE=2CE C.AE=BD D.BC=2CE9.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是边AB的中点,AB=10,DE =4,则S△AEC=()A.8 B.7.5 C.7 D.610.如图,在△ABC中,CD⊥AB于点D,BE平分∠ABC,交CD于点E,若S△BCE=10,BC=5,则DE等于()A.10 B.7 C.5 D.4二.填空题(共8小题,每小题3分,共24分)11.等腰三角形的周长为12cm,其中一边长为3cm,则该等腰三角形的腰长为.12.如图:已知∠B=20°,AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,以此类推∠A的度数是.13.如图,在△ABC中,AB=AC=10,AD平分∠BAC,点E为AC中点,则DE=.14.在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分AC,交AC于点E,交AB于点D,连接CD,若BD=2,则AD的长是.15.如图,DE是△ABC的边AC上的垂直平分线,AB=5cm,BC=8cm,则△ABD的周长为cm.16.如图,点D,P在△ABC的边BC上,DE,PF分别垂直平分AB,AC,连接AD、AP,若∠DAP=20°,则∠BAC=.17.如图,AB∥CD,∠BAC与∠ACD的平分线交于点P,过P作PE⊥AB于E,交CD于F,EF=10,则点P到AC的距离为.18.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=40,DE=4,AC=12,则AB长是.三.解答题(共7小题,共66分)19.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,求∠DBA的度数.20.如图,已知AB∥CD,∠BCF=180°,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.求证:AC⊥BD.21.已知:如图,在△ABC中,∠ACB=90°,CD是高,AE是△ABC内部的一条线段,AE交CD于点F,交CB于点E,且∠CFE=∠CEF.求证:AE平分∠CAB.22.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.(1)求∠B的度数:(2)求证:BC=3CE.23.如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB,BC于点D 和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.24.如图,已知AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.(1)求∠DBC的度数;(2)若△DBC的周长为14cm,BC=5cm,求AB的长.25.如图,已知AC∥BD,AE,BE分别平分∠CAB和∠DBA,点E在线段CD上.(1)求∠AEB的度数;(2)求证:CE=DE.参考答案一.选择题1.解:等腰三角形的对称轴是底边的垂直平分线,故选:A.2.解:如图所示,以AB为腰的等腰三角形的点P有2个,以AB为底边的等腰三角形的点P有3个,∴△ABP为等腰三角形的点P有5个;故选:D.3.解:∵BI平分∠DBC,∴∠DBI=∠CBI,又∵DE∥BC,∴∠DIB=∠IBC,∴∠DIB=∠DBI,∴BD=DI.同理CE=EI.∴△ADE的周长=AD+DI+IE+EA=AB+AC=15,故选:B.4.解:∵在等边三角形ABC中,AD⊥BC,∴AD是BC的线段垂直平分线,∵E是AD上一点,∴EB=EC,∴∠EBD=∠ECD,∵∠CED=50°,∴∠ECD=40°,又∵∠ABC=60°,∠ECD=40°,∴∠ABE=60°﹣40°=20°,故选:C.5.解:∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=BC=6,故选:C.6.解:反证法证明“a≥b”,第一步是假设,a<b,故选:C.7.解:①一个底角和一条边分别相等的两个等腰三角形不一定全等;②底边及底边上的高分别相等的两个等腰三角形全等,正确;③两边分别相等的两个直角三角形不一定全等;④如果在两个直角三角形中,例如:两个30°角的直角三角形,一个三角形的直角边与另一个三角形的斜边相等,这两个直角三角形肯定不全等,错误;故选:A.8.解:连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE,故选:B.9.解:∵在△ABC中,∠ACB=90°,C点E是边AB的中点,∴AE=BE=CE=AB=5,∵CD⊥AB,DE=4,∴CD==3,∴S△AEC=S△BEC=BE•CD=3=7.5,故选:B.10.解:作EF⊥BC于F,∵S△BCE=10,∴×BC×EF=10,即×5×EF=10,解得,EF=4,∵BE平分∠ABC,CD⊥AB,EF⊥BC,∴DE=EF=4,故选:D.二.填空题11.解:由题意知,应分两种情况:(1)当腰长为3cm时,则另一腰也为3cm,底边为12﹣2×3=7cm,∵3+3<7,∴边长分别为3,3,7不能构成三角形;(2)当底边长为3cm时,腰的长=(12﹣3)÷2=4.5cm,∵0<3<4.5+4.5=9,∴边长为3,4.5,4.5,能构成三角形,则该等腰三角形的一腰长是4.5cm.故答案为:4.5cm.12.解:∵∠B=20°,AB=A1B,∴∠A=(180°﹣∠B)=80°,故答案为:80°.13.解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,又点E为AC中点,∴DE=AC=5,故答案为:5.14.解:∵DE垂直平分AC,∴CD=AD,∴∠ACD=∠A=30°,∵在Rt△ABC中,∠B=90°,∠A=30°,∴∠ACB=90°﹣∠A=60°,∴∠BCD=∠ACB﹣∠ACD=30°,∴CD=2BD=2×2=4,∴AD=CD=4.故答案为:4.15.解:∵DE是△ABC中的边AC上的垂直平分线,∴AD=CD,∵AB=5cm,BC=8cm,∴△ABD的周长为:AB+BD+AD=AB+BD+CD=AB+BC=13(cm).故答案是:13.16.解:∵DE,PF分别垂直平分AB,AC,∴∠B=∠BAD,∠C=∠CAP,又∵∠DAP=20°,∴∠B+∠C=(180°﹣20°)=80°,∴∠BAC=180°﹣80°=100°,故答案为:100°.17.解:作PH⊥AC于H,∵AP平分∠BAC,PE⊥AB,PH⊥AC,∴PE=PH,∵AB∥CD,PE⊥AB,∴PF⊥CD,∵CP平分∠ACD,PF⊥CD,PH⊥AC,∴PF=PH,∴PH=PE=PF=EF=5,即点P到AC的距离为5,故答案为:5.18.解:作DF⊥AC于F,如图,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∵S△ABD+S△ADC=S△ABC,∴•4•AB+•12•4=40,∴AB=8.故答案为8.三.解答题19.解:∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠DBA=∠A=35°20.证明:∵AB∥CD,∴∠ABC=∠DCF.(两直线平行,同位角相等)∵BD平分∠ABC,CE平分∠DCF,∴∠2=∠ABC,∠4=∠DCF.(角平分线的定义)∴∠2=∠4.∴BD∥CE.(同位角相等,两直线平行)∴∠BGC=∠ACE.(两直线平行,内错角相等)∵∠ACE=90°,∴∠BGC=90°,即AC⊥BD.(垂直的定义)21.证明:∵CD⊥AB,∴在△ADF中,∠DAF=90°﹣∠AFD=90°﹣∠CFE.∵∠ACE=90°,∴在△AEC中,∠CAE=90°﹣∠CEF.∵∠CFE=∠CEF,∴∠DAF=∠CAE,即AE平分∠CAB.22.解:(1)∵AE⊥CD,∴∠AFC=∠ACB=90°,∴∠CAF+∠ACF=∠ACF+∠ECF=90°,∴∠ECF=∠CAF,∵∠EAD=∠DCB,∴∠CAD=2∠DCB,∵CD是斜边AB上的中线,∴CD=BD,∴∠B=∠DCB,∴∠CAB=2∠B,∵∠B+∠CAB=90°,∴∠B=30°;(2)∵∠B=∠BAE=∠CAE=30°,∴AE=BE,CE=AE,∴BC=3CE.23.解:(1)△CDE的周长为10.∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴△CDE的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴∠A=∠ACD,∠B=∠BCE,又∵∠ACB=125°,∴∠A+∠B=180°﹣125°=55°,∴∠ACD+∠BCE=55°,∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.24.解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠A=40°,∴∠ABC=∠ACB=70°,∵MN是AB的垂直平分线,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70﹣40°=30°;(2)∵MN是AB的垂直平分线,∴BD=AD,∵△DBC的周长为14cm,∴BD+BC+CD=14cm,∵BC=5cm,∴BD+CD=AD+CD=AC=9cm,∵AB=AC,∴AB=9cm.25.解:(1)∵AC∥BD,∴∠CAB+∠ABD=180°.∵AE平分∠CAB,∴∠EAB=∠CAB.同理可得∠EBA=∠ABD.∴∠EAB+∠EBA=90°,∴∠AEB=90°;(2)如图,在AB上截取AF=AC,连接EF,在△ACE和△AFE中,∴△ACE≌△AFE(SAS).∴CE=FE,∠CEA=∠FEA.∵∠CEA+∠DEB=90°,∠FEA+∠FEB=90°,∴∠DEB=∠FEB.在△DEB和△FEB中∴△DEB≌△FEB(ASA).∴ED=EF.∴ED=CE.。
浙教版八年级数学下册第一章单元测试卷(含答案)
浙教版八年级数学下册第一章单元测试卷(含答案)一、单选题1.计算4√12+3√13−√8的结果是()A.√3+√2B.√3C.√33D.√3−√22.已知是正整数,则实数n的最大值为()A.12B.11C.8D.33.如果最简根式√3a−8与√17−2a是同类二次根式,那么使√4a−2x有意义的x的取值范围是()A.x≤10B.x≥10C.x<10D.x>104.已知a=√2+1,b=√2−1,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等5.已知x为实数,化简√−x3−x√−1x的结果为()A.(x−1)√−x B.(−1−x)√−x C.(1−x)√−x D.(1+x)√−x6.如果√−53−x是二次根式,那么x 应适合的条件是()A.x ≥3B.x ≤3C.x >3D.x <37.若等腰三角形的两边长分别为√50和√72,则这个三角形的周长为()A.11√2B.16√2或17√2C.17√2D.16√28.若√x−1+√x+y=0,则x2005+y2005的值为:()A.0B.1C.-1D.29.设等式√a(x−a)+√a(y−a)=√x−a−√a−y在实数范围内成立,其中a、x、y是两两不同的实数,则3x2+xy−y2x2−xy+y2的值是()A.3B.13C.2D.5 310.“分母有理化”是我们常用的一种化简的方法,2+√32−√3=(2+√3)(2+√3)(2−√3)(2+√3)=7+4√3,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于√3+√5√3−√5,设x= √3+√5√3−√5,易知√3+√5> √3−√5,故x>0,由x2= (√3+√5−√3−√5)2= 3+√5+3−√5−2√(3+√5)(3−√5)=2,解得x= √2,即√3+√5−√3−√5=√2。
根据以上方法,化简√3−√2√3+√2√6−3√3√6+3√3后的结果为()A.5+3 √6B.5+ √6C.5-√6D.5-3 √6二、填空题11.化简√14−8√3=12.化简√−a3=.13.若实数a=12−√3,则代数式a2−4a+4的值为.14.已知,y=√(x−3)2+4−x,当x分别取1,2,3,…,2021时,所对应的y值的总和是. 15.已知实数a满足|2014-a|+ √a−2015=a,那么a-20142+1的值是.16.若实数a,b,c满足关系式√a−9+b+√9−a−b=√4a−c+4b,则c的平方根为. 17.观察下列等式:①√3+1=√3−1(√3+1)(√3−1)=√3−12;②1√5+√3=√5−√3(√5+√3)(√5−√3)=√5−√32③√7+√5=√7−√5(√7+√5)(√7−√5)=√7−√52…参照上面等式计算方法计算:1+√3√3+√5√5+√7+⋯3√11+√101=.18.如果(x﹣√x2−2008)(y﹣√y2−2008)=2008,求3x2﹣2y2+3x﹣3y﹣2007=.19.已知a、b为有理数,m、n分别表示5−√7的整数部分和小数部分,且amn+bn2=1,则2a+b=.20.若实数x,y,m满足等式√3x+5y−3−m+(2x+3y−m)2=√x+y−2−√2−x−y,则m+4的算术平方根为.三、计算题21.先化简,再求值:[(√x+√y)(√x−√y)√x+√y√xy(√y−√x)÷√x−√y√xy,其中x=1,y=2.22.已知:x=√3+√2√3−√2,y=√3−√2√3+√2,求x3−xy2x4y−2x3y2+x2y3的值.四、综合题23.设a= √8−x,b=2,c= √6.(1)当a有意义时,求x的取值范围;(2)若a,b,c为直角三角形ABC的三边长,试求x的值.24.解答题.(1)已知x=√7+1,x的整数部分为a,小数部分为b,求ab的值.(2)已知a−b=√3+√2,b−c=√3−√2,求a2+b2+c2−ab−bc−ca的值.25.王老师让同学们根据二次根式的相关内容编写一道题,以下是王老师选出的两道题和她自己编写的一道题.先阅读,再回答问题.(1)小青编的题,观察下列等式:√3+1=√3(√3+1)(√3−1)=2(√3−1)(√3)2−12=2(√3−1)3−1=√3−1√5+√3=√5√3)(√5+√3)(√5−√3)=2(√5−√3)(√5)2−(√3)2=2(√5−√3)5−3=√5−√3直接写出以下算式的结果:√7+√5=;√2n+1+√2n−1(n为正整数)=;(2)小明编的题,由二次根式的乘法可知:(√3+1)2=4+2√3,(√5+√3)2=8+2√15,(√a+√b)2=a+b+2√ab(a≥0,b≥0)再根据平方根的定义可得√4+2√3=√3+1,√8+2√15=√5+√3,√a+b+2√ab=√a+√b(a≥0,b≥0)直接写出以下算式的结果:√6+2√5=,√4−2√3=,√7+4√3=:(3)王老师编的题,根据你的发现,完成以下计算:(√3+1√5+√3+√7+√5+√9+√7√11+√9)⋅√12+2√1126.阅读下列解题过程:例:若代数式√(2−a)2+√(a−4)2=2,求a的取值.解:原式=|a﹣2|+|a﹣4|,当a<2时,原式=(2﹣a)+(4﹣a)=6﹣2a=2,解得a=2(舍去);当2≤a<4时,原式=(a﹣2)+(4﹣a)=2,等式恒成立;当a≥4时,原式=(a﹣2)+(a﹣4)=2a﹣6=2,解得a=4;所以,a的取值范围是2≤a≤4.上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题:(1)当3≤a≤7时,化简:√(3−a)2+√(a−7)2=;(2)请直接写出满足√(a−1)2+√(a−6)2=5的a的取值范围;(3)若√(a+1)2+√(a−3)2=6,求a的取值.27.阅读下列材料,然后回答问题,在进行二次根式的化简与运算时,我们有时会碰上如如2√3+1一样的式子,其实我们还可以将其进一步化简:√3+1=2×(√3−1)(√3+1)(√3−1)=2(√3−1)(√3)2−12=√3−1(1)以上这种化简的步骤叫做分母有理化.√3+1还可以用以下方法化简:2√3+1=3−1√3+1=(√3)2−12√3+1=(√3+1)(√3−1)√3+1=√3−1(2)(1)请参照(1)(2)的方法用两种方法化简:√7+√5方法一:√7+√5=方法二:2√7+√5=(2)直接写出化简结果:2√13+√11=2√15+√13=(3)计算:2√5+√2+2√8+√5+2√11+√8+…+2√32+√29+2√35+√3228.甲是第七届国际数学教育大会的会徽,会徽的主体图案是由图乙中的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1.细心观察图形,认真分析下列各式,然后解答问题:(√1)2+1=2,S1=√12;(√2)2+1=3,S2=√22;(√3)2+1=4,S3=√32;….(1)请用含有n(n是正整数)的等式表示上述变化规律,并计算出OA10的长;(2)求出S12+S22+S32+⋯+S102的值.参考答案1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】C6.【答案】C7.【答案】B8.【答案】A9.【答案】B10.【答案】D11.【答案】2√2−√612.【答案】−a √−a .13.【答案】314.【答案】202715.【答案】201616.【答案】±617.【答案】√101−1218.【答案】119.【答案】2.520.【答案】321.【答案】解: [4(√x+√y)(√x−√y)√x+√y √xy(√y−√x)÷√x−√y √xy= [4x−y √x+√y √xy(√y−y ⃗⃗ )]×√xy √x−√y= 4x−y ×√xy √x−√y √x+√y √xy(√x−√y)√xy √x−√y = √xy (√x−√y)(x−y)√x+√y(√x−√y)2= √xy (√x−√y)(x−y)(√x+√y)2(√x−√y)2(√x+√y)= √xy−(√x+√y)2(√x−√y)(x−y)= √x−√y)2(√x−√y)(x−y)= −(√x−√y)x−y= √y−√xx−y;将x=1,y=2代入得:原式= √2−11−2=1−√2.22.【答案】解:x=5+2 √6,y=5-2 √6,xy=1,x+y=10,x-y=4 √6,原式=x+yxy(x−y)=512√623.【答案】(1)解:8- x≥0,∴x≤8(2)解:若a是斜边,则有(√8−x)2=22 +(√6)2,8-x=10,解得x=-2.若a为直角边,则有( √8−x)2+22=( √6)2,∴8-x+4=6,解得x=6.∵x都满足x≤8,∴x的值为-2或6.24.【答案】(1)解:∵22<(√7)2<32,∴2<√7<3,∴3<√7+1<4,∵x的整数部分是a,小数部分是b,∴a=3,b=√7+1−3=√7−2,∴ab=√7−2=√7(√7−2)(√7+2)=√7+2(2)解:∵a−b=√3+√2,b−c=√3−√2,∴a−c=√3+√2+√3−√2=2√3,∴a2+b2+c2−ab−bc−ac=12(2a2+2b2+2c2−2ab−2bc−2ac) =12[(a−c)2+(a−b)2+(b−c)2]=12[(2√3)2+(√3+√2)2+(√3−√2)2]=12×(12+3+2√6+2+3−2√6+2)=12×22=11.25.【答案】(1)√7−√5;√2n+1−√2n−1(n为正整数)(2)√5+1;√3−1;2+√3(3)解:(2√3+1+2√5+√32√7+√52√9+√7+2√11+√9)⋅√12+2√11=(√3−1+√5−√3+√7−√5+√9−√7+√11−√9)(√11+1)=(√11−1)(√11+1)=10 26.【答案】(1)4(2)1≤a≤6(3)解:原式=|a+1|+|a﹣3|,当a<﹣1时,原式=﹣(a+1)+(3﹣a)=2﹣2a=6,解得a=﹣2;当﹣1≤a<3时,原式=(a+1)+(3﹣a)=4,等式不成立;当a≥3时,原式=(a+1)+(a﹣3)=2a﹣2=6,解得a=4;所以,a的值为﹣2或4.27.【答案】(1)√7−√5;√7−√5(2)√13−√11;√15−√13(3)解:√5+√2+√8+√5+√11+√8+…+√32+√29+√35+√32=2(√5−√2)3+2(√8−√5)3+2(√11−√8)3+···+2(√32−√29)3+2(√35−√32)3 =23(√5−√2+√8−√5+√11−√8+···+√32−√29+√35−√32)=23(√35−√2)=2√35−2√2328.【答案】(1)解:∵OA1=1= √1,OA1=A1A2=A2A3=…=A7A8=1,∴OA22= OA12+A1A22=1+1=2,∴OA2= √2,S1=12⋅OA1⋅A1A2=12×√1×1=√12,∵OA32= OA22+A2A32=(√2)2+1=3,∴OA3=√3,S2=12⋅OA2⋅A2A3=12×√2×1=√22,∵OA42= OA32+A3A42=(√3)2+1=4,∴OA4=2,S3=12⋅OA3⋅A3A4=12×√3×1=√32,⋯,∴OA n2=OA n−12+A n−1A n2=(√(n−1))2+1=n,S n=12⋅OA n⋅A n A n+1=12×√n×1=√n2,∴OA102= (√(10−1))2+1=10,∴OA10= √10,∴含有n (n 是正整数)的等式表示上述变化规律为: (√(n −1))2+1=n ,OA 10的长为 √10 ; (2)解:由(1)知: S n =√n 2, ∴S 1=√12 , S 2=√22 , S 3=√32 , ⋯ , S 10=√102 , ∴S 12+S 22+S 32+⋯+S 102 = (√12)2+(√22)2+(√32)2+⋯+(√102)2 = 554 .。
北师大版八年级数学下册 第1章 三角形的证明 单元测试卷(含答案)
北师大版八年级数学下册第1章三角形的证明单元测试卷(时间:120分钟满分:150分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=( )A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是( )A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是( )A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是( )A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是( )A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为( )A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是( )A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为( )A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中( )A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是( )A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是( )A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =( )A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是( )A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为km.18.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.19.如图,已知△ABC的周长是22,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,△ABC的面积是.20.如图,在等腰△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF 折叠后与点O重合,则∠OEC的度数是.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt△ABC中,∠BAC=30°,BC=2.5 cm,BD=13 cm,AD=12 cm,求△ABD的面积.22.(本题8分)在加快城镇建设中,有两条公路OA和OB交会于O点,在∠AOB的内部有蔬菜基地C和D,现要修建一个蔬菜转运站P,使转运站P到两条公路OA,OB的距离相等,且到两个蔬菜基地C,D的距离也相等,用尺规作出蔬菜转运站P的位置.(要求:不写作法,保留作图痕迹.)23.(本题10分)如图,点P为△ABC的BC边上一点,且PC=2PB,∠ABC=45°,∠APC=60°,CD⊥AP,连接BD,求∠ABD的度数.24.(本题12分)如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE∥OA交OB于点E.(1)判断△CED的形状,并说明理由;(2)若OC=3,求CD的长.25.(本题12分)如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于点P,PD⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6 cm,AC=10 cm,求AD的长.26.(本题14分)如图,在△ABC中,MP,NO分别垂直平分AB,AC.(1)若BC=10 cm,试求出△PAO的周长;(2)若AB=AC,∠BAC=110°,试求∠PAO的度数;(3)在(2)中,若无AB=AC的条件,你能求出∠PAO的度数吗?若能,请求出来;若不能,请说明理由.27.(本题16分)如图,△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达点B时,M,N同时停止运动.(1)点M,N运动几秒后,M,N两点重合?(2)点M,N运动几秒后,可得到等边三角形△AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.参考答案一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=(D)A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是(A)A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是(C)A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是(B)A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是(A)A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为(A)A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为(C)A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是(B)A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为(C)A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中(D)A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是(B)A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是(A)A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是(C)A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =(B)A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是(D)A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是68__°.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为1__000km.18.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M19.如图,已知△ABC 的周长是22,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =3,△ABC 的面积是33.20.如图,在等腰△ABC 中,AB =AC ,∠BAC =54°,∠BAC 的平分线与AB 的垂直平分线交于点O ,点C 沿EF 折叠后与点O 重合,则∠OEC 的度数是108__°.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt △ABC 中,∠BAC =30°,BC =2.5 cm ,BD =13 cm ,AD =12 cm ,求△ABD 的面积.解:∵Rt △ABC 中,∠BAC =30°,BC =2.5 cm , ∴AB =2BC =5 cm.∵52+122=132,即AB 2+AD 2=BD 2, ∴△ABD 是直角三角形.∴S △ABD =12AB·AD =12×5×12=30(cm 2).22.(本题8分)在加快城镇建设中,有两条公路OA 和OB 交会于O 点,在图中∠AOB 的内部有蔬菜基地C 和D ,现要修建一个蔬菜转运站P ,使转运站P 到两条公路OA ,OB 的距离相等,且到两个蔬菜基地C ,D 的距离也相等,用尺规作出蔬菜转运站P 的位置.(要求:不写作法,保留作图痕迹.)解:如图所示.23.(本题10分)如图,点P 为△ABC 的BC 边上一点,且PC =2PB ,∠ABC =45°,∠APC =60°,CD ⊥AP ,连接BD ,求∠ABD 的度数.解:∵∠APC =60 °,CD ⊥AP , ∴∠PCD =90 °-∠APC =90 °-60 °=30 °. ∴PC =2PD.∵PC =2PB ,∴PB =PD. ∴∠PBD =∠PDB.又∵∠APC =∠PBD +∠PDB ,∴∠PBD =12∠APC =12×60 °=30 °.∵∠ABC =45 °,∴∠ABD =∠ABC -∠PBD =45 °-30 °=15 °.24.(本题12分)如图,∠AOB =60°,OC 平分∠AOB ,C 为角平分线上一点,过点C 作CD ⊥OC ,垂足为C ,交OB 于点D ,CE ∥OA 交OB 于点E.(1)判断△CED 的形状,并说明理由; (2)若OC =3,求CD 的长.解:(1)△CED 是等边三角形.理由如下: ∵OC 平分∠AOB ,∠AOB =60 °,∴∠AOC =∠COE =30 °. ∵CE ∥OA ,∴∠AOC =∠COE =∠OCE =30 °,∠CED =60 °. ∵CD ⊥OC ,∴∠OCD =90 °. ∴∠EDC =60 °.∴△CED 是等边三角形.(2)∵△CED 是等边三角形,∴CD =CE =ED. 又∵∠COE =∠OCE ,∴OE =EC. ∴CD =ED =OE.设CD =x ,则OD =2x.在Rt △OCD 中,根据勾股定理得:x 2+9=4x 2,解得x = 3. 则CD = 3.25.(本题12分)如图,△ABC 的外角∠DAC 的平分线交BC 边的垂直平分线于点P ,PD ⊥AB 于D ,PE ⊥AC 于E. (1)求证:BD =CE ;(2)若AB =6 cm ,AC =10 cm ,求AD 的长.解:(1)证明:连接BP ,CP.∵点P 在BC 的垂直平分线上,∴BP =CP. ∵AP 是∠DAC 的平分线,∴DP =EP ,在Rt △BDP 和Rt △CEP 中,⎩⎪⎨⎪⎧BP =CP ,DP =EP ,∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE.(2)在Rt △ADP 和Rt △AEP 中,⎩⎪⎨⎪⎧AP =AP ,DP =EP ,∴Rt △ADP ≌Rt △AEP (HL ),∴AD =AE.∵AB =6 cm ,AC =10 cm ,∴6+AD =10-AE , 即6+AD =10-AD.解得AD =2 cm.26.(本题14分)如图,在△ABC 中,MP ,NO 分别垂直平分AB ,AC.(1)若BC =10 cm ,试求出△PAO 的周长; (2)若AB =AC ,∠BAC =110°,试求∠PAO 的度数;(3)在(2)中,若无AB =AC 的条件,你能求出∠PAO 的度数吗?若能,请求出来;若不能,请说明理由.解:(1)∵MP ,NO 分别垂直平分AB ,AC , ∴AP =BP ,AO =CO.∴△PAO 的周长为AP +PO +AO =BO +PO +OC =BC. ∵BC =10 cm ,∴△PAO 的周长为10 cm.(2)∵AB =AC ,∠BAC =110 °,∴∠B =∠C =12×(180 °-110 °)=35 °.由(1)知AP =BP ,AO =CO. ∴∠BAP =∠B =35 °,∠CAO =∠C =35 °. ∴∠PAO =∠BAC -∠BAP -∠CAO =110 °-35 °-35 °=40 °. (3)能.理由如下: ∵∠BAC =110 °,∴∠B +∠C =180 °-110 °=70 °.由(1)知AP =BP ,AO =CO.∴∠BAP =∠B ,∠CAO =∠C.∴∠PAO =∠BAC -∠BAP -∠CAO =∠BAC -(∠B +∠C )=110 °-70 °=40 °.27.(本题16分)如图,△ABC 中,AB =BC =AC =12 cm ,现有两点M ,N 分别从点A ,B 同时出发,沿三角形的边运动,已知点M 的速度为1 cm /s ,点N 的速度为2 cm /s .当点N 第一次到达点B 时,M ,N 同时停止运动.(1)点M ,N 运动几秒后,M ,N 两点重合?(2)点M ,N 运动几秒后,可得到等边三角形△AMN?(3)当点M ,N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN ?如存在,请求出此时M ,N 运动的时间.解:(1)设点M ,N 运动x 秒后,M ,N 两点重合,x ×1+12=2x ,解得x =12.(2)设点M ,N 运动t 秒后,可得到等边三角形△AMN ,如图1,AM =t ×1=t ,AN =AB -BN =12-2t.∵三角形△AMN 是等边三角形,∴t =12-2t ,解得t =4.∴点M ,N 运动4秒后,可得到等边三角形△AMN.(3)当点M ,N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形.由(1)知,12秒时M ,N 两点重合,恰好在C 处.如图2,假设△AMN 是以MN 为底边的等腰三角形,∴AN =AM.∴∠AMN =∠ANM.∴∠AMC =∠ANB.∵AB =BC =AC ,∴△ACB 是等边三角形.∴∠C =∠B.在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,∠AMC =∠ANB ,AC =AB , ∴△ACM ≌△ABN (AAS ).∴CM =BN.设当点M ,N 在BC 边上运动时,M ,N 运动的时间y 秒时,△AMN 是等腰三角形.∴CM =y -12,NB =36-2y ,由CM =NB ,得y -12=36-2y ,解得y =16.故假设成立.∴当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16秒.。
八年级数学下册各单元测试卷
八年级数学下册各单元测试卷第16章二次根式单元综合检测(一)一、选择题(每小题4分,共28分)1.若式子$\sqrt{x-1}-\sqrt{1-x}$在实数范围内有意义,则$x$的取值范围是(。
)。
A。
$x>1$。
B。
$x<1$。
C。
$x\geq 1$。
D。
$x\leq 1$2.计算$\sqrt{2}-\sqrt{8}+\sqrt{32}=$(。
)。
A。
$2$。
B。
$-2$。
C。
$2\sqrt{2}$。
D。
$-2\sqrt{2}$3.下面计算正确的是(。
)。
A。
$\sqrt{3}+\sqrt{3}=2\sqrt{3}$。
B。
$\sqrt{3}\div\sqrt{3}=3$C。
$\sqrt{3}+\sqrt{5}$。
D。
$\sqrt{3}-\sqrt{5}$4.计算:$\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}$的值为(。
)。
A。
$\dfrac{\sqrt{6}+\sqrt{2}}{5}$。
B。
$\dfrac{-\sqrt{6}+\sqrt{2}}{5}$C。
$\dfrac{\sqrt{6}-\sqrt{2}}{5}$。
D。
$\dfrac{-\sqrt{6}-\sqrt{2}}{5}$5.计算:$5-\dfrac{1}{\sqrt{3}-1}$的值为(。
)。
A。
$-2\sqrt{3}+7$。
B。
$2\sqrt{3}+7$C。
$-2\sqrt{3}-7$。
D。
$2\sqrt{3}-7$6.设实数$a,b$在数轴上对应的位置如图所示,化简$\sqrt{a^2+b^2-2ab}+\sqrt{a^2+b^2+2ab}$的结果是(。
)。
A。
$2a+b$。
B。
$-2a+b$C。
$-b$。
D。
$2a+2b$7.已知$a+b=2\sqrt{2}$,$ab=2$,则$(a+1)(b-1)$的值为(。
)。
A。
$-2$。
B。
$3$C。
$3-2\sqrt{2}$。
北师大版八年级数学下册第一章三角形的证明测试题(原题版 )
【北师大版八年级数学(下)单元测试卷】第一章:三角形的证明一.选择题:(每小题3分共30分)1.等腰三角形两边长分别为4和9,则该三角形第三边的长为( )A .4B .9C .4或9D .大于5且小于132.如图,在ABC 中,90ACB ∠=︒,CD 是高,30A ∠=︒,若3BD a =,则AD 的长度为( )A .6aB .9aC .12aD .15a3.如图,在ABC 中,DE 是AC 的垂直平分线,若ABC 的周长为19cm ,ABD △的周长为13cm ,则AE 的长为( )A .2cmB .3cmC .4cmD .6cm4.如图,在Rt ABC △中,90C ∠=︒,30B ∠=︒,点D 是AB 的中点,ED AB ⊥于点D,交BC 于点E,连接AE ,若2DE =,则BC 的值是( )A .3B .4C .5D .65.如图,在△ABC 中,∠C=90°,∠B=15°,AB 的垂直平分线交BC 于D,交AB 于E,若DB=10cm,则CD 的长为( )6.如图,点C 为∠AOB 的角平分线l 上一点,D,E 分别为OA,OB 边上的点,且CD =CE,作CF ⊥OA,垂足为F,若OF =5,则OD+OE 的长为( )A .10B .11C .12D .157.如图,等腰三角形ABC 的底边BC 长为4,面积是18,腰AC 的垂直平分线EF 分别交AC 、AB 边于点E 、F .若点D 为BC 的中点,点M 为线段EF 上一动点,则CDM 周长的最小值为( )A .6B .8C .9D .118.如图,ABC 中,AB BC =,点D 在AC 上,BD BC ⊥.设BDC α∠=,ABD β∠=,则下列关系式正确的是( )A .3180αβ+=︒B .2180αβ+=︒C .3180αβ-=︒D .290αβ-=︒9.如图,已知等边ABC 和等边ADE ,其中点A 、D 、B 在同一条直线上,连接BE 交AC 于点M ,连接DC 交AE 于点N ,BE 和DC 交于点P ,则下列结论中:(1)MN BD ∥;(2)60BPC ∠=︒;(3)DN DE =;(4)BAM CAN ≅△△.正确的个数有( )A .1个B .2个C .3个D .4个侧作等边△ADE 和等边△ADF,分别和AB,AC 交于点G,H,连接GH .若∠BOC=120°,AB=a,AC=b,AD=c .则下列结论中正确的个数有( )①∠BAC=60°;②△AGH 是等边三角形;③AD 与GH 互相垂直平分;④()12ABC S a b c =+△. A .1个 B .2个 C .3个 D .4个 二.填空题:(每小题3分共15分)11.在ABC 中,AB AC =,64BAC ∠=︒,BAC ∠的角平分线与AB 的垂直平分线交于点O ,将C ∠沿EF 折叠,点C 与点O 恰好重合,则CFO ∠的度数为__________.12.如图,已知CD 是△ABC 的角平分线,DE ⊥BC,垂足为E,若AC =4,BC =10,△ABC 的面积是14,则DE =_____.13.如图,1230∠=∠=︒,A B ∠=∠,AE BE =,点D 在边AC 上,AE 与BD 相交于点O,则∠C 的度数为______.14.如图,在等腰△ABC 中,AB=AC=10,BC=16,AD 是BC 边上的中线且AD=6,F 是AD 上的动点,E 是AC 边上的动点,则CF+EF 的最小值等于______.15.如图,已知等腰△ABC,AB=AC,∠BAC=120°,AD ⊥BC 于点D,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP=OC,下面结论:①∠ACO=15°;②∠APO+∠DCO=30°;③△OPC 是等边三角形;④AC=AO+AP ; 其中正确的有 ______(填上所有正确结论的序号).三.解答题:(共55分)16.(5分)如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.BD ,CE 相交于点F .BD ,AC 相交于点M .(1)求证:BD CE =;(2)求BFC ∠的度数.17.(8分)如图,在ABC 中,60ACB ∠=︒,点D 在AC 上,BC CD =,以AB 为边向左侧作等边三角形ABE ,连ED .(1)求证:ABC EBD ≌△△; (2)过点B 作BF ED ⊥于点F ,2DF =,求BD 的长.18.(8分)点C 、D 都在线段AB 上,且AD =BC,AE =BF,∠A =∠B,CE 与DF 相交于点G .(1)求证∠E =∠F ;(2)若CE =10,DG =4,求 EG 的长.19.(8分)在平面直角坐标系中,等腰直角△ABC 顶点A 、C 分别在y 轴、x 轴上,且∠ACB=90°,AC=BC .(1)如图1,当A(0,−2),C(1,0),点B 在第四象限时,求点B 的坐标.(2)如图2,当点C 在x 轴正半轴上运动,点A(0,a)在y 轴正半轴上运动,点B(m,n)在第四象限时,作BD ⊥y 轴于点D,求a,m,n 之间的关系.20.(8分)如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,AD 是BC 的中线,AE BF =.(1)求证:DE DF =(2)DEF 是什么形状的三角形?请说明理由.连接AD,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BDA =115°时,∠EDC =______,∠DEC =_____;(2)当DC 等于多少时,△ABD ≌△DCE,请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.22.(9分)如图,在平面直角坐标系中,直线()140y x m m=-+>分别与x 轴,y 轴交于A,B 两点,把线段(1)当54m 时,求点C的坐标;(2)当m值发生变化时,△BOC的面积是否保持不变?若不变,计算其大小;若变化,请说明理由;(3)当S△AOB=2S△BOC时,在x轴上找一点P,使得△PAB是等腰三角形,求满足条件的所有P点的坐标.。
初二第一单元数学练习题及答案
初二第一单元数学练习题及答案一、选择题1. 下列哪个图形是正方形?A. △ABCB. □DEFGC. ○HIJKD. ∆LMNP答案:B2. 如果一辆车每小时行驶40千米,行驶8小时,共行驶了多少千米?A. 200B. 320C. 280D. 360答案:D3. 化简:2a + 3b + a - 2bA. 2a + bB. 3a + 5bC. 5a + bD. 4a + b答案:3a + b4. 小明购买了一双鞋,原价是180元,现在打7折出售,小明应该支付多少钱?A. 135元B. 140元C. 175元D. 126元答案:126元5. 已知正方形的边长为6cm,求其周长是多少?A. 12cmB. 18cmC. 24cmD. 36cm答案:24cm二、计算题1. 计算:35 + 48 - 26 + 13答案:702. 现有一个圆的半径为6cm,求它的周长和面积分别是多少?答案:周长约为 37.7cm,面积约为 113.1cm²3. 在一个长方形花坛中,长是12m,宽是5m,求花坛的面积是多少?答案:60m²4. 现有一条线段AB,长度为10cm,点C在线段AB上,AC的长度为3cm,求BC的长度。
答案:BC的长度为7cm5. 一块正方形的面积是64cm²,求它的边长是多少?答案:边长为8cm三、应用题1. 小明每周花10元零花钱,他存了20周,一共存了多少元?答案:小明一共存了200元。
2. 书架上有30本书,其中4分之1是数学书,其余是语文书,语文书有多少本?答案:语文书有22本。
3. 钢琴老师把一条长为2.4m的钢琴绳剪成3段,第一段是0.8m,第二段是0.5m,第三段和第二段一样长,求第三段的长度。
答案:第三段的长度是0.5m。
4. 小华和小明一起做作业,小华完成了3/5,小明完成了4/9,两人一共完成了多少?答案:两人一共完成了47/45。
5. 一个正方形花坛的周长是28m,另一个矩形花坛的长是正方形花坛的长的3倍,宽是正方形花坛的宽的2倍,矩形花坛的面积是正方形花坛的几倍?答案:矩形花坛的面积是18倍。
八年级数学下册《平行四边形的判定》单元测试卷(附带答案)
八年级数学下册《平行四边形的判定》单元测试卷(附带答案)一.选择题1.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC3.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD4.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.66.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB =CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD 是平行四边形的有()组.A.4B.5C.6D.78.如图,在平行四边形ABCD中,E,F是对角线BD上不同的两点,连接AE,CE,AF,CF.下列条件中,不能得出四边形AECF一定是平行四边形的为()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF9.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个10.如图,在▱ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以F A、FB为邻边作另一个▱AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①▱AEBF的面积先由小变大,再由大变小②▱AEBF的面积始终不变③线段EF最小值为4A.①B.②C.①③D.②③二.填空题11.如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.12.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.13.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)14.在平面直角坐标系中,A(﹣1,1),B(2,3),C(3m,4m+1),D在x轴上,若以A,B,C,D四点为顶点的四边形是平行四边形,求点D的坐标.15.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.16.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.17.在平面直角坐标系里,A(1,0),B(0,2),C(﹣4,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.18.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.三.解答题19.如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ACFD是平行四边形.20.E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.(1)根据题意,画出图形;(2)求证:①△AFD≌△CEB;②四边形ABCD是平行四边形.21.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.22.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.23.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别与AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.24.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.参考答案一.选择题1.解:∵AD∥BC∴∠A+∠B=180°,∠D+∠C=180°∴A.∠A+∠C=180°,可得∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B.∠A+∠B从题目已知条件即可得出,无法证明四边形为平行四边形,此选项错误;C.同理A,这样的四边形是等腰梯形,故此选项错误;D.∠B=∠D,可得∠A+∠D=180°,则BA∥CD,故四边形ABCD是平行四边形,此选项正确;故选:D.2.解:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形,故选项A不合题意;∵AB=CD,AD=BC∴四边形ABCD是平行四边形,故选项B不合题意;∵AO=CO,BO=DO∴四边形ABCD是平行四边形,故选项C不合题意;∵AB=CD,AD∥BC∴四边形ABCD不一定是平行四边形,故选项D符合题意;故选:D.3.解:A、∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=∠ADC∴∠ADC+∠BAD=180°∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB∴∠ADB=∠CBD∴AD∥CB∵∠ABD=∠BDC∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC又∠AOB=∠COD∴△AOB≌△COD(AAS)∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.4.解:A、∵两组对边分别平行的四边形是平行四边形∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形∴选项D不符合题意;故选:B.5.解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=8,CD=AB=6∴∠F=∠DCF∵CF平分∠BCD∴∠FCB=∠DCF∴∠F=∠FCB∴BF=BC=8同理:DE=CD=6∴AF=BF﹣AB=2,AE=AD﹣DE=2∴AE+AF=4;故选:C.6.解:∵四边形ABCD是平行四边形∴AB∥CD∴∠ACD=∠BAC由折叠的性质得:∠BAC=∠B′AC∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;7.解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.8.解:如图,连接AC与BD相交于O在▱ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、由∠BAE=∠DCF,从而推出△DFC≌△BEA,然后得出∠DFC=∠BEA,∴∠CFE=∠AEF,∴FC∥AE,由全等可知FC=AE,所以四边形AECF是平行四边形;故本选项不符合题意;故选:B.9.解:①正确,理由如下:∵四边形ABCD平行四边形∴AD=BC,AD∥BC又∵BE=DF∴AF=EC.又∵AF∥EC∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形∴∠B=∠D∵∠BAE=∠DCF∴∠AEB=∠CFD.∵AD∥BC∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.10.解:过点C作CG⊥AB于点G则∵AB与CG的值始终不变化∴△ABF的面积始终不变化∵▱AEBF的面积=2×△ABF的面积∴▱AEBF的面积始终不变∴①错误,②正确;连接EF,与AB交于点H∵四边形AEBF是平行四边形∴AH=BH,EH=FH当FH⊥AB时,FH的值最小,EF=2FH的值也最小此时,FH=CG∵∠ABC=45°,CG⊥AB∴BG=CG∵BG2+CG2=BC2=16∴∴FH=∴线段EF最小值为EF=2FH=4.∴③正确故选:D.二.填空题(共8小题)11.解:如图,连接AC交BD于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形∴可增加BE=DF故答案为:BE=DF(答案不唯一).12.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO ∵AC⊥BC∴AC==6cm∴OC=3cm∴BO==5cm∴BD=10cm∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm 故答案为:4.13.解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).14.解:由点C的坐标可以判断出点C在直线y=上已知A、B两点,所以以AB为边和对角线分类讨论当AB为边时,AB∥CD,AB=CD,如图可证得△ABE≌△CDF∴FC=BE=2,AE=DF=3若点D在x轴正半轴时∴点C坐标为(,﹣2)∴点D坐标为(,0)若点D在x轴负半轴时点C坐标为(,2)点D坐标为(﹣,0)当AB为对角线时AB与CD相交于AB的中点(,2)设点D(m,0)可得点C坐标为(1﹣m,4)将点C坐标代入解析式可得m=点D坐标为(,0)故点D的坐标为(,0)或(,0)或(﹣,0).15.解:根据题意有AP=tcm,CQ=2tcm,PD=(12﹣t)cm,BQ=(15﹣2t)cm.①∵AD∥BC∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm∵AD=12cm,BC=15cm∴PD=AD﹣AP=(12﹣t)cm∵AD∥BC∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t解得t=4s∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.16.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形当A1C1为平行四边形的边时∴PQ=A1C1=2∵P点在直线y=2x+5上∴令y=2时,2x+5=2,解得x=﹣1.5令y=﹣2时,2x+5=﹣2,解得x=﹣3.5∴点Q的坐标为(﹣1.5,0),(﹣3.5,0)当A1C1为平行四边形的对角线时∵A1C1的中点坐标为(3,2)∴P的纵坐标为4代入y=2x+5得,4=2x+5解得x=﹣0.5∴P(﹣0.5,4)∵A1C1的中点坐标为:(3,2)∴直线PQ的解析式为:y=﹣x+当y=0时,即0=﹣x+解得:x=6.5故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).17.解:如图有三种情况:①平行四边形AD1CB∵A(1,0),B(0,2),C(﹣4,2)∴AD1=BC=4,OD1=3则D的坐标是(﹣3,0);②平行四边形AD2BC∵A(1,0),B(0,2),C(﹣4,2)∴AD2=BC=4,OD2=1+4=5则D的坐标是(5,0);③平行四边形ACD3B∵A(1,0),B(0,2),C(﹣4,2)∴D3的纵坐标是2+2=4,横坐标是﹣(4+1)=﹣5则D的坐标是(﹣5,4)故答案为:(﹣3,0)或(5,0)或(﹣5,4).18.解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).三.解答题19.证明:(1)∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+CE=CF+CE即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)由(1)得:△ABC≌△DEF∴AC=DF,∠ACB=∠F∴AC∥DF∴四边形ACFD是平行四边形.20.(1)解:如图,即为所画的图形;(2)证明:①如图,∵AD∥BC,DF∥BE∴∠DAF=∠BCE,∠DF A=∠BEC又AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中∴△AFD≌△CEB(ASA);②由①知,△AFD≌△CEB则AD=CB又∵AD∥BC∴四边形ABCD是平行四边形.21.证明:(1)∵AB∥CD∴∠B=∠D.在△ABE和△CDF中∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD ∴180°﹣∠AEB=180°﹣∠CFD即∠AEF=∠CFE.∴AE∥CF.∵AE=CF∴四边形AECF是平行四边形.22.证明:(1)∵∠E=∠F∴AD∥BC∵AD=BC∴四边形ABCD是平行四边形∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC∴∠EAC=∠FCA在△OAE和△OCF中∴△OAE≌△OCF(ASA).∴OE=OF又∵OA=OC∴四边形AFCE是平行四边形.23.证明:(1)∵BH=CG∴BH+HG=CG+HG∴BG=CH在△ABG与△CDH中∴△ABG≌△CDH(SAS)∴AG=DH;(2)∵△ABG≌△CDH∴∠AGB=∠CHD∴AF∥DE∵∠B=∠C∴AB∥CD∴四边形AFDE是平行四边形.24.证明:(1)四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F.∵在△AEM与△CFN中∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又由(1)得AM=CN∴BM=DN,BM∥DN∴四边形BMDN是平行四边形.。
2020-2021学年八年级数学北师大版下册 第一章_三角形的证明 单元综合测试
第一章综合提升卷测试范围:三角形的证明时间:90分钟分值:100分第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.关于等腰三角形,有以下说法:(1)有一个角为46°的等腰三角形一定是锐角三角形;(2)等腰三角形两边的中线一定相等;(3)两个等腰三角形,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等;(4)等腰三角形两底角的平分线的交点到三边距离相等.其中,正确说法的个数为()A.1B.2C.3D.42.用反证法证明命题:“如图1-Z-1,如果AB∥CD,AB∥EF,那么CD∥EF.”证明的第一步是()图1-Z-1A.假设CD∥EFB.假设CD不平行于EFC.已知AB∥EFD.假设AB不平行于EF3.已知下列命题:①若|x|=3,则x=3;②全等三角形的三组对应角相等;③直角三角形中30°角所对的直角边等于斜边的一半;④有理数与数轴上的点一一对应.其中原命题与逆命题均为真命题的个数是()A.1B.2C.3D.44.如图1-Z-2,若BD为等边三角形ABC的一条中线,延长BC至点E,使CE=CD=1,连接DE,则DE的长为()图1-Z-2A.√32B.√3C.√52D.√55.如图1-Z-3,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC,设△ABD,△BCD的面积分别为S1,S2,则S1∶S2等于()图1-Z-3A.2∶1B.√2∶1C.3∶2D.2∶√36.如图1-Z-4,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M,N两点,连接MN,交AB于点H,以点H为圆心,HA的长为半径作的弧恰好经过点C,以点B 为圆心,BC的长为半径作弧交AB于点D,连接CD,若∠A=22°,则∠BDC等于()图1-Z-4A.52°B.55°C.56°D.60°7.如图1-Z-5,△ABC是等边三角形,AD,CE分别是BC,AB边上的高,且AD,CE相交于点O.若CE=1,则OD的长是()图1-Z-5A.13B.12C.√2D.√38.如图1-Z-6,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,DE⊥AB于点E,连接CE交AD 于点H,则图中的等腰三角形有()图1-Z-6A.5个B.4个C.3个D.2个9.如图1-Z-7,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论中,正确的有()图1-Z-7①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN;⑤△AFN≌△AEM.A.2个B.3个C.4个D.5个10.如图1-Z-8,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在其右侧作等边三角形ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()图1-Z-8A.平行B.相交C.垂直D.平行、相交或垂直请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.命题“全等三角形的面积相等”的逆命题是命题.(填“真”或“假”)12.如图1-Z-9,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为°.图1-Z-913.如图1-Z-10,有一张直角三角形纸片,两直角边AC=5 cm,BC=10 cm,将△ABC折叠,使点B 与点A重合,折痕为DE,则CD的长为.图1-Z-10 图1-Z-1114.如图1-Z-11,在△ABC中,AB=AC,∠A=120°,D是BC上任意一点,过点D分别作DE⊥AB 于点E,DF⊥AC于点F.如果BC=20 cm,那么DE+DF=cm.15.如图1-Z-12,△ABC中,AB=AC,AD⊥BC于点D,DE⊥AB于点E,BF⊥AC于点F,DE=3 cm,则BF=cm.图1-Z-12 图1-Z-1316.如图1-Z-13,等边三角形ABC的边AB上有一点P,作PE⊥AC于点E,Q为BC延长线上的一点,当P A=CQ时,连接PQ交AC于点D,则有下列结论:①PD=DQ;②∠Q=30°;③DE=12AC;④AE=12CQ.其中正确的结论有.(把所有正确结论的序号都写在横线上)三、解答题(共52分)17.(5分)如图1-Z-14,已知等腰三角形ABC,顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)求证:△BCD是等腰三角形.图1-Z-1418.(5分)如图1-Z-15,在△ABC中,∠C=90°,AB的垂直平分线分别交AB,AC于点D,E,且∠A=30°,DE=1 cm.求△ABC的面积.(结果保留根号)图1-Z-1519.(6分)如图1-Z-16,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E.若AB=6 cm,请求出△BDE的周长.图1-Z-1620.(6分)如图1-Z-17,点P,M,N分别在等边三角形ABC的各边上,且MP⊥AB于点P,NM⊥BC 于点M,PN⊥AC于点N.(1)求证:△PMN是等边三角形;(2)若AB=12 cm,求MC的长.图1-Z-1721.(7分)如图1-Z-18,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F 是BE的中点,连接CF并延长交AD于点G.(1)求证:CG平分∠BCD;(2)若∠ADE=110°,∠ABC=52°,求∠CGD的度数.图1-Z-1822.(7分)如图1-Z-19,在等腰三角形ABC中,AB=AC=8,∠BAC=100°,AD是△ABC的角平分线,DE∥AC交AB于点E.(1)求∠BAD的度数;(2)求∠B的度数;(3)求线段DE的长.图1-Z-1923.(8分)在△ABC中,∠BAC=120°,AB=AC,PC=√3P A,设∠APB=α,∠BPC=β.(1)如图1-Z-20①,点P在△ABC内.①若β=153°,求α的度数.小明同学通过分析已知条件发现:△ABC是顶角为120°的等腰三角形,且PC=√3P A,从而容易联想到构造一个顶角为120°的等腰三角形.于是,他过点A作∠DAP=120°,且AD=AP,连接DP,DB,发现两个不同的三角形全等:≌,再利用全等三角形及等腰三角形的相关知识可求出α的度数.请利用小明同学分析的思路,通过计算求得α的度数为;②小明在①的基础上进一步进行探索,发现α,β之间存在一种特殊的等量关系,请写出这个等量关系,并加以证明.(2)如图②,点P在△ABC外,那么a,β之间的数量关系是否改变?若改变,请直接写出它们之间的数量关系;若不变,请说明理由.图1-Z-2024.(8分)如图1-Z-21①,已知点B(0,9),点C为x轴上一动点,连接BC,△ODC和△EBC都是等边三角形.(1)求证:DE=BO.(2)如图②,当点D恰好落在BC上时,①求点E的坐标.②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,请说明理由.③如图③,点M是线段BC上的动点(不与点B,C重合),过点M作MG⊥BE于点G,MH⊥CE 于点H,当点M运动时,MH+MG的值是否发生变化?若不发生变化,直接写出MH+MG的值;若发生变化,简要说明理由.图1-Z-21详解1.B[解析] (1)(4)正确.2.B3.A4.B5.A6.C[解析] 如图,连接CH.由题意得,直线MN是线段AB的垂直平分线,∴AH=BH.又∵CH=AH,∴CH=1AB,2∴∠ACB=90°.∵∠A=22°,∴∠ACH=∠A=22°,∴∠BCH=∠B=68°.∵BC=BD,∴∠BDC=∠BCD=1(180°-68°)=56°.27.A8.B9.C[解析] ∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴BE=CF,故②正确,∠BAE=∠CAF,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠1=∠2,故①正确.∵△ABE≌△ACF,∴AB=AC.又∵∠BAC=∠CAB,∠B=∠C,∴△ACN≌△ABM(ASA),故③正确.不能证明CD=DN成立,故④错误.∵∠1=∠2,AF=AE,∠F=∠E,∴△AFN≌△AEM(ASA),故⑤正确.10.A[解析] ∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°.如图①,若点C在线段OB上,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD.在△AOC和△ABD中,∵OA=BA,∠OAC=∠BAD,AC=AD,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°-∠ABO-∠ABD=60°=∠AOB,∴BD∥OA.如图②,若点C在线段OB的延长线上,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD.在△AOC和△ABD中,∵OA=BA,∠OAC=∠BAD,AC=AD,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°-∠ABO-∠ABD=60°=∠AOB,∴BD∥OA.故选A.11.假12.3413.154cm [解析] 设CD=x cm,则BD=AD=(10-x )cm .在Rt △ACD 中,由勾股定理,得(10-x )2=x 2+52,解得x=154.14.10 [解析] 利用含30°角的直角三角形的性质得,DE+DF=12(BD+CD )=12BC. 15.6 [解析] 在Rt △ADB 与Rt △ADC 中,AB=AC ,AD=AD ,∴Rt △ADB ≌Rt △ADC ,∴S △ABC =2S △ABD =2×12AB ·DE=AB ·DE=3AB.∵S △ABC =12AC ·BF ,∴12AC ·BF=3AB.∵AC=AB ,∴12BF=3,∴BF=6(cm).16.①③④ [解析] ①过点P 作PF ∥BQ ,交AC 于点F .∵△ABC 是等边三角形,∴∠ACB=∠A=60°. ∵PF ∥BQ ,∴∠AFP=∠ACB=60°,∠PFD=∠QCD , ∴△AFP 是等边三角形, ∴PF=P A.∵P A=CQ ,∴PF=CQ.在△PFD 和△QCD 中,∵∠FDP=∠CDQ ,∠PFD=∠QCD ,PF=CQ , ∴△PFD ≌△QCD , ∴PD=DQ ,故①正确. ②∵△PFD ≌△QCD , ∴∠DPF=∠Q. ∵△APF 为等边三角形, ∴∠APF=60°.∵QP 与AB 不一定垂直, ∴∠Q 不一定为30°,故②不正确. ③∵△APF 是等边三角形,PE ⊥AC , ∴EF=12AF .∵△PFD ≌△QCD ,∴DF=DC ,∴DF=12FC ,∴DE=EF+DF=12AF+12FC=12AC ,故③正确. ④在Rt △AEP 中,∠A=60°,∴∠APE=30°,∴AE=12AP ,∴AE=12CQ ,故④正确.则本题正确的结论有①③④.17.解:(1)如图,点D 为所作.(2)证明:∵∠A=36°,AB=AC ,∴∠ABC=∠C=12(180°-36°)=72°.∵AD=BD ,∴∠ABD=∠A=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C ,∴BD=BC ,∴△BCD 是等腰三角形.18.解:∵DE 垂直平分AB ,∠A=30°,DE=1 cm, ∴AE=2 cm,∴AD=√22-12=√3(cm),∴AB=2AD=2√3 cm .在Rt △ABC 中,∠A=30°,∴BC=12AB=√3 cm,∴AC=√(2√3)2-(√3)2=3(cm),∴S △ABC =12×√3×3=32 √3(cm 2).19.解:∵AD 平分∠CAB ,∠C=90°,DE ⊥AB , ∴DE=DC.在Rt △ADC 和Rt △ADE 中,∵DC=DE ,AD=AD ,∴Rt △ADC ≌Rt △ADE (HL),∴AC=AE.又∵AC=BC,∴AE=BC,∴△BDE的周长=DE+DB+EB=BC+EB=AE+EB=AB.∵AB=6 cm,∴△BDE的周长为6 cm.20.解:(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠C.∵MP⊥AB,NM⊥BC,PN⊥AC,∴∠MPB=∠NMC=∠PNA=90°,∴∠PMB=∠MNC=∠APN,∴∠NPM=∠PMN=∠MNP,∴△PMN是等边三角形.(2)∵△PMN是等边三角形,∴PN=PM=NM.又∵∠A=∠B=∠C,∠PNA=∠MPB=∠NMC,∴△PBM≌△MCN≌△NAP,∴P A=BM=CN,PB=MC=AN,∴BM+PB=AB=12 cm.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴2PB=BM,∴2PB+PB=12 cm,∴PB=4 cm,∴MC=4 cm.21.解:(1)证明:∵BE平分∠ABC,∴∠ABF=∠CBF=1∠ABC.2∵AB∥CD,∴∠ABF=∠E,∴∠CBF=∠E,∴BC=CE,∴△BCE是等腰三角形.∵F为BE的中点,∴CF平分∠BCD,即CG 平分∠BCD.(2)∵AB ∥CD ,∴∠ABC+∠BCD=180°.∵∠ABC=52°,∴∠BCD=128°.∵CG 平分∠BCD ,∴∠GCD=12∠BCD=64°.∵∠ADE=110°,∠ADE=∠CGD+∠GCD ,∴∠CGD=46°.22.解:(1)∵∠BAC=100°,且AD 平分∠BAC , ∴∠BAD=50°.(2)在等腰三角形ABC 中,∠B=180°-100°2=40°.(3)∵AD 平分∠BAC , ∴∠EAD=∠CAD.∵DE ∥AC ,∴∠ADE=∠CAD ,∴∠EAD=∠ADE ,∴AE=DE.∵DE ∥AC ,∴∠EDB=∠C.∵AB=AC ,∴∠B=∠C ,∴∠EDB=∠B ,∴BE=DE ,∴DE=BE=AE=12AB=12×8=4.23.解:(1)①△ADB △APC 63° ②β-α=90°.证明:如图①,过点A 作AH ⊥DP 于点H.∵∠DAP=∠BAC=120°,∴∠DAB=∠P AC,且AD=AP,AB=AC,∴△ADB≌△APC(SAS),∴BD=PC=√3P A,∠ADB=∠APC.∵∠DAP=120°,AD=AP,AH⊥DP,∴∠ADP=∠APD=30°,DH=PH,∴AP=2AH,HP=√3AH,∴DP=√3AP,∴BD=DP,∴∠DBP=∠DPB=∠APB-∠APD=α-30°,∴∠BDP=180°-2(α-30°)=240°-2α,∴∠ADB=∠BDP+∠ADP=270°-2α=∠APC.∵∠APB+∠APC+∠BPC=360°,∴270°-2α+α+β=360°,∴β-α=90°.(2)α,β之间的数量关系改变了,α+β=90°.理由如下:如图②,作∠P AN=120°,且P A=NA,连接PN,BN.∵∠P AN=∠BAC=120°,∴∠BAN=∠P AC.又∵AB=AC,NA=P A,∴△ABN≌△ACP(SAS),∴∠BNA=∠APC,PC=BN=√3AP.∵∠P AN=120°,P A=NA,∴∠APN=∠ANP=30°,∴PN=√3P A=BN,∴∠BPN=∠PBN=α+30°.∵∠BPN+∠PBN+∠BNP=180°,∴2(α+30°)+β-α+30°=180°,∴α+β=90°.24.解:(1)证明:∵△ODC和△EBC都是等边三角形,∴OC=DC,BC=CE,∠OCD=∠BCE=60°,∴∠BCE+∠BCD=∠OCD+∠BCD,即∠ECD=∠BCO,∴△DEC≌△OBC(SAS),∴DE=BO.(2)①∵△ODC是等边三角形,∴∠OCB=60°.∵∠BOC=90°,∴∠OBC=30°.设OC=x,则BC=2x,∴x2+92=(2x)2,解得x=3√3,∴BC=6√3.∵△EBC是等边三角形,∴BE=BC=6√3,∠CBE=60°,∴∠OBE=∠OBC+∠CBE=90°,BE∥轴,∴E(6√3,9).②存在.当CP=CE=6√3时,△PEC是等腰三角形.∵C(3√3,0),∴点P的坐标为(-3√3,0)或(9√3,0).③MH+MG的值不发生变化.如图,连接EM.由(1)知△DEC≌△OBC,∴DE=BO=9,∠EDC=∠BOC=90°,即ED⊥BC.∵S △EBC =S △EBM +S △ECM ,MG ⊥BE ,MH ⊥EC , ∴12BC ·DE=12BE ·MG+12EC ·MH. ∵BE=BC=EC ,∴MG+MH=DE=9.。
北师大版八年级数学下册《第1章 三角形的证明》单元培优测试卷【附答案】
北师大版八年级数学下册《第1章三角形的证明》单元培优测试卷一、选择题1.下列命题中,是假命题的是( )A.等腰三角形三个内角的和等于180°B.等腰三角形两边的平方和等于第三边的平方C.角平分线上的点到这个角两边的距离相等D.线段垂直平分线上的点到这条线段两个端点的距离相等2.下列几组数中,能作为直角三角形三边长的是( )A.2,4,5B.3,4,5C.4,4,5D.5,4,53.在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是( )A.25°B.25°或40°C.25°或35°D.40°4.如图,在△ABC中,AI平分∠BAC,BI平分∠ABC,点O是AC、BC的垂直平分线的交点,连接AO、BO,若∠AIB=α,则∠AOB的大小为( )A.αB.4α﹣360°C.α+90°D.180°﹣α5.如图,在△ABC中,AC=6,BC=8,∠C=90°,∠ABC与∠BAC的平分线交于点D,过点D作DE∥AC交AB于点E,则DE=( )A.B.2C.D.36.如图,在△ABC中,∠B=74°,边AC的垂直平分线交BC于点D,交AC于点E,若AB+BD=BC,则∠BAC的度数为( )A.74°B.69°C.65°D.60°7.下列命题正确的是( )A.三角形的一个外角大于任何一个内角B.三角形的三条高都在三角形内部C.三角形的一条中线将三角形分成两个三角形面积相等D.两边和其中一边的对角相等的三角形全等8.等腰三角形一边的长为4cm,周长是18cm,则底边的长是( )A.4cm B.10cm C.7或10cm D.4或10cm二、填空题9.如图,BD、CE是等边三角形ABC的中线,则∠EFD=.10.如图,在△ABC中,AB=BC,BE平分∠ABC,AD为BC边上的高,且AD=BD.则∠3=°.11.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形,且△AOP的面积为16,则满足条件的P点个数是.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是°.13.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,△ABC的面积为60,AB=16,BC=14,则DE的长等于.14.如图,在△ABC中,线段AB的垂直平分线交AC于点D,连接BD,若∠C=80°,∠CBD=40°,则∠A的度数为°.15.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=20°,且AE=AD,则∠CDE的度数是.16.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点,且AB=8,BC=6,则△BEC的周长是.17.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于E点,∠B=50°,∠FAE=20°,则∠C=度.18.已知C,D两点在线段AB的垂直平分线上,且∠ACB=50°,∠ADB=86°,则∠CAD的度数是.三、解答题19.如图,△ABC中,∠ABC=25°,∠ACB=55°,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若BC的长为30,求△DAF的周长.20.如图,在△ABC中,AB=AC,DE垂直平分AC,CE⊥AB,AF⊥BC.(1)求证:CF=EF;(2)求∠EFB的度数.21.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连接CD、DE,已知∠EDB=∠ACD,BC=6,(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,EC=8时,求△EDC的面积.22.如图,在Rt△ABC中,∠ACB=90°,△CAP和△CBQ都是等边三角形,BQ和CP 交于点H,求证:BQ⊥CP.23.△ABC中,AB=AC,∠B=30°,点P在BC边上运动(P不与B、C重合),连接AP,作∠APQ=∠B,PQ交AB于点Q.(1)如图1,当PQ∥CA时,判断△APB的形状并说明理由;(2)在点P的运动过程中,△APQ的形状可以是等腰三角形吗?若可以,请直接写出∠BQP的度数;若不可以,请说明理由.24.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.求证:线段BF垂直平分线段AD.25.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE 的中点,BE=AC.(1)求证:AD⊥BC.(2)若∠BAC=75°,求∠B的度数.26.已知△ABC中,D为边BC上一点,AB=AD=CD.(1)试说明∠ABC=2∠C;(2)过点B作AD的平行线交CA的延长线于点E,若AD平分∠BAC,求证:AE=AB.参考答案1.解:A、等腰三角形三个内角的和等于180°,正确,是真命题,不符合题意;B、直角三角形两边的平方和等于第三边的平方,故原命题错误,是假命题,符合题意;C、角平分线上的点到这个角两边的距离相等,正确,是真命题,不符合题意;D、线段垂直平分线上的点到这条线段两个端点的距离相等,正确,是真命题,不符合题意,故选:B.2.解:A、22+42≠52,根据勾股定理的逆定理可知三角形不是直角三角形,故不合题意;B、32+42=52,根据勾股定理的逆定理可知三角形是直角三角形,故符合题意;C、42+42≠52,根据勾股定理的逆定理可知三角形不是直角三角形,故不合题意;D、42+52≠52,根据勾股定理的逆定理可知三角形不是直角三角形,故不合题意;故选:B.3.解:当50°为底角时,∵∠B=∠ACB=50°,∴∠BCD=90°﹣50°=40°;当50°为顶角时,∵∠A=50°,∴∠B=∠ACB=65°,∴∠BCD=90°﹣65°=25°.故选:B.4.解:连接CO并延长至D,∵∠AIB=α,∴∠IAB+∠IBA=180°﹣α,∵AI平分∠BAC,BI平分∠ABC,∴∠IAB=∠CAB,∠IBA=∠CBA,∴∠CAB+∠CBA=2(∠IAB+∠IBA)=360°﹣2α,∴∠ACB=180°﹣(∠CAB+∠CBA)=2α﹣180°,∵点O是AC、BC的垂直平分线的交点,∴OA=OC,OB=OC,∴∠OCA=∠OAC,∠OCB=∠OBC,∵∠AOD是△AOC的一个外角,∴∠AOD=∠OCA+∠OAC=2∠OCA,同理,∠BOD=∠OCB,∴∠AOB=∠AOD+∠BOD=2∠OCA+2∠OCB=4α﹣360°,故选:B.5.解:延长ED交BC于点G,作DF⊥AB于点F,作DH⊥AC于点H,∵DE∥AC,∠C=90°,∴∠BGE=∠C=90°,∴EG⊥BC,∴∠DGC=∠DHC=∠C=90°,∴四边形DGCH为矩形,∵AD平分∠BAC,BD平分∠ABC,DF⊥AB,DH⊥AC,DG⊥BC,∴DF=DM,DG=DF,∴DH=DG,∴四边形DGCH为正方形,在Rt△BDG和Rt△BDF中,,∴Rt△BDG≌Rt△BDF(HL),∴BF=BG,同理可得:Rt△AHD≌Rt△AFD,由勾股定理可得:AB2=AC2+BC2=100,∴AB=10,设CH=CG=x,则AH=6﹣x,BG=8﹣x,∴AF=6﹣x,BF=8﹣x,∴AB=10=AF+BF=6﹣x+8﹣x=14﹣2x,即14﹣2x=10,解得:x=2,∴CH=CG=2,BG=6,∵DE∥AC,∴△BEG∽△BAC,∴,即,∴EG=4.5,∴DE=EG﹣DG=4.5﹣2=2.5,故选:A.6.解:如图,连接AD,∵边AC的垂直平分线交BC于点D,∴AD=CD,∴∠DAC=∠C,∵AB+BD=BC,BD+CD=BC,∴CD=AB,∴AD=AB,∴∠ABD=∠ADB=74°,∴∠C=37°,∴∠BAC=180°﹣74°﹣37°=69°,故选:B.7.解:A、三角形的一个外角大于与它不相邻的任何一个内角,原命题是假命题;B、钝角三角形的三条高不在三角形内部,原命题是假命题;C、三角形的一条中线将三角形分成两个三角形面积相等,是真命题;D、两边和其夹角相等的三角形全等,原命题是假命题;故选:C.8.解:分情况考虑:①当4cm是腰时,则底边长是18﹣8=10(cm),此时4,4,10不能组成三角形,应舍去;②当4cm是底边时,腰长是(18﹣4)×=7(cm),4,7,7能够组成三角形.此时底边的长是4cm.故选:A.9.解:∵BD、CE是等边三角形ABC的中线,∴BD⊥AC,CE⊥AB,∠A=60°,∴∠AEF=∠ADF=90°,∵∠EFD=360°﹣90°﹣90°﹣∠A=180°﹣60°=120°.故答案为120°.10.解:∵AD为BC边上的高,∴∠ADB=90°,∵AD=BD,∴∠ABD=∠BAD=(180°﹣∠ADB)=45°,∵BE平分∠ABC,∴∠1=∠2=∠ABD=22.5°,BE⊥AC,∴∠BEA=90°=∠ADB,∵∠3+∠BEA+∠AHE=180°,∠2+∠ADB+∠BHD=180°,∠AHE=∠BHD,∴∠3=∠2=22.5°.故答案为:22.5°.11.解:∵A(8,0),∴OA=8,设△AOP的边OA上的高是h,则×8×h=16,解得:h=4,在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:①以A为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,②以O为圆心,以8为半径画弧,交直线a和直线b分别有两个点,即共4个点符合,③作AO的垂直平分线分别交直线a、b于一点,即共2个点符合,4+4+1+1=10.故答案为:10.12.解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故答案为:80°或20.13.解:作DF⊥BC于F,∵BD是△ABC的角平分线,DE⊥AB,DF⊥BC,∴DF=DE,∴S△ABC=S△ABD+S△DBC=×AB×DE+×BC×DF==60,∴DF=DE=4.故答案为:4.14.解:∵∠C=80°,∠CBD=40°,∴∠CDB=180°﹣∠C﹣∠CBD=60°,∵线段AB的垂直平分线交AC于点D,∴DA=DB,∴∠A=∠DBA=∠CDB=30°,故答案为:30.15.解:∵AB=AC,D为BC的中点,∴∠CAD=∠BAD=20°,AD⊥BC,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==80°,∴∠CDE=∠ADC﹣∠ADE=90°﹣80°=10°.故答案为:10°.16.解:在Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是边AB的垂直平分线,∴EA=EB,∴△BEC的周长=BC+EC+BE=BC+EC+EA=BC+AC=16,故答案为:16.17.解:∵DE是线段AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∵AF平分∠BAC,∴∠BAF=∠CAF=∠FAE+∠CAE=20°+∠C,由三角形内角和定理得,∠B+∠BAC+∠C=180°,即50°+20°+∠C+20°+∠C+∠C=180°,解得,∠C=30°,故答案为:30.18.解:∵C、D两点在线段AB的中垂线上,∴CA=CB,DA=DB,∵CD⊥AB,∴∠ACD=∠ACB=×50°=25°,∠ADC=∠ADB=×86°=43°,当点C与点D在线段AB两侧时,∠CAD=180°﹣∠ACD﹣∠ADC=180°﹣25°﹣43°=112°,当点C与点D′在线段AB同侧时,∠CAD′=∠AD′C﹣∠ACD′=43°﹣25°=18°,故答案为:18°或112°.19.解:(1)∵∠ABC=25°,∠ACB=55°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°;(2)∵DE,FG分别为AB,AC的垂直平分线,∴DA=DB,FA=FC,∴∠DAB=∠ABC=25°,∠FAC=∠ACB=55°,∴∠DAF=∠BAC﹣∠DAB﹣∠FAC=20°;(3)△DAF的周长=DA+DF+FA=DB+DF+FC=BC=30.20.证明:(1)∵AB=AC,AF⊥BC,∴BF=CF,又∵CE⊥AB,∴CF=EF;(2)∵DE垂直平分AC,∴AE=EC,又∵∠AEC=90°,∴∠ACE=∠EAC=45°,∴∠B=∠ACB=67.5°,∵EF=CF=BF,∴∠BEF=∠FBE=67.5°,∴∠EFB=45°.21.(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴DE=DC,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,如图,过D作DH⊥CE于H,∵△DEC是等腰直角三角形,∴∠EDH=∠E=45°,∴EH=HC=DH=EC=8=4,∴△EDC的面积=EC•DH=8×4=16.22.证明:∵△CAP和△CBQ都是等边三角形,∴∠CAP=∠CBQ=60°,∵∠ACB=90°,∴∠BCP=∠ACB﹣∠ACP=30°,在△BCH中,∠BHC=180°﹣∠BCH﹣∠CBH=180°﹣30°﹣60°=90°,∴BQ⊥CP.23.解:(1)△APB是直角三角形,理由如下:∵AB=AC,∠B=30°,∴∠C=30°=∠B=∠APQ,∵PQ∥AC,∴∠BPQ=∠C,∴∠APB=60°,∴∠BAP=90°,∴△APB是直角三角形;(2)当AQ=QP时,∴∠QAP=∠APQ=30°,∴∠BQP=∠QAP+∠APQ=60°,当AP=PQ时,则∠AQP=∠PAQ=75°,∴∠BQP=105°,当AQ=AP时,则∠AQP=∠APQ=30°,∵P不与B、C重合,∴不存在,综上所述:∠BQP=105°或60°.24.证明:∵∠BAC=90°,∴∠ABC+∠C=90°,∵AM⊥BC,∴∠AMB=90°,∴∠ABC+∠BAM=90°,∴∠C=∠BAM,∵AD平分∠MAC,∴∠MAD=∠CAD,∴∠BAM+∠MAD=∠C+∠CAD,∵∠ADB=∠C+∠CAD,∴∠BAD=∠ADB,∴AB=BD,∵BE平分∠ABC,∴BF⊥AD,AF=FD,即线段BF垂直平分线段AD.25.解:(1)连接AE,∵EF垂直平分AB∴AE=BE∵BE=AC∴AE=AC∵D是EC的中点∴AD⊥BC(2)设∠B=x°∵AE=BE∴∠BAE=∠B=x°∴由三角形的外角的性质,∠AEC=2x°∵AE=AC∴∠C=∠AEC=2x°在三角形ABC中,3x°+75°=180°x°=35°∴∠B=35°26.证明:(1)∵AB=AD,∴∠ABC=∠ADB,∵AD=CD,∴∠DAC=∠C,∵∠ADB=∠DAC+∠C=2∠C,∴∠ABC=2∠C;(2)∵AD平分∠BAC,∴∠DAB=∠CAD,∵BE∥AD,∴∠DAB=∠ABE,∠E=∠CAD,∴∠ABE=∠E,∴AE=AB.。
浙教版八年级下册数学 第1章 二次根式 单元测试卷
浙教版八年级下册数学第1章 二次根式 单元测试卷时间:100分钟 满分:120分一.选择题(每小题3分,共30分)1.下列二次根式中,最简二次根式是( )A .15B .0.5C . 5D .50 2.下列各式一定是二次根式的是( ) A .-7 B .32m C .a 2+b 2 D .a b3.若a <1,化简(a -1)2-1=( )A .a -2B .2-aC .aD .-a4.方程|4x -8|+x -y -m =0,当y =1时,m 的值是( )A .-2B .-1C .1D .25.下面计算正确的是( )A .3+3=3 3B .27÷3=3C .2·3= 5D .(-2)2=-26.如图,一个小球由地面沿着坡比为1∶2的坡面向上前进了10 m ,此时小球距离地面的高度为( )A.5 m B .103m C .4 5 m D .2 5 m 7.若式子m +2(m -1)2有意义,则实数m 的取值范围是( ) A .m >-2 B .m >-2且m≠1 C .m≥-2 D .m≥-2且m≠18.如果x +y =2xy ,那么y x的值为( ) A .-1 B .1 C .2 D .以上答案都不对9.如图,数轴上A ,B 两点对应的实数分别是1和3,若A 点关于B 点的对称点为点C ,则点C 所对应的实数为( )A .23-1B .1+ 3C .2+ 3D .23+110.下列选项错误的是( )A .3-2的倒数是3+ 2B .若x <2,则(x -1)2=1-x;C .x 2-x 一定是非负数D .当x <0时,-2x在实数范围内有意义 二.填空题(每小题4分,共24分)11. 已知矩形的长为2 5 cm ,宽为10 cm ,则面积为____ cm 2.12.18-8=___.13.已知a ,b 为等腰三角形的两条边长,且a ,b 满足b =3-a +2a -6+4,则此三角形的周长为____.14.若|2 021-a|+a -2 022=a ,则a -2 0212=___.15.对于任意不相等的两个数a ,b ,定义一种运算※如下:a※b=a +b a -b ,如3※2=3+23-2=5,那么12※4=____.16.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S =14[a 2b 2-(a 2+b 2-c 22)2].现已知△ABC 的三边长分别为1,2,5,则△ABC 的面积为_____. 三.解答题(共66分)17.(12分)计算:(1) 18m 2n (2) -121 024×5(3) -13225 (4) (-144)×(-169)18.(8分)(1) 先化简,再求值:(1x +1-1)÷x 2-x x +1,其中x =2+1.(2) 解方程:(3+1)(3-1)x =72-18.19.(8分) (8分)如图,港口A 在观测站O 的正东方向,OA =4 km.某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向.求该船航行的距离AB 的长(结果保留根号).20.作图题:如图,是一个边长为1的正方形网格,请在网格中画出一个边长为22,5和3的三角形.(要求三角形的顶点在小格的顶点处).21.(10分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在的直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80 cm,AC=165 cm.求:(1)支架CD的长;(2)真空热水管AB的长(结果保留根号).22.(10分)细心观察图形,认真分析各式,然后解答问题.如图,OA22=(1)2+1=2,S1=12;OA23=12+(2)2=3,S2=22;OA24=12+(3)2=4,S3=32;…(1)请用含有n(n为正整数)的等式表示上述变化规律:OA2n=________;S n=________;(2)若一个三角形的面积是22,计算说明它是第几个三角形?(3)求出S21+S22+S23+…+S29的值.23.(10分)阅读材料:琪琪在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的琪琪进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为整数),则有a+b2=m2+2n2+22mn.∴a=m2+2n2,b=2mn.这样琪琪就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照琪琪的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得:a =________,b=________;(2)若a+63=(m+n3)2,且a,m,n均为正整数,求a的值.。
北师大版数学八年级下册 第一章 单元测试卷
第一章单元测试卷一、选择题(每题3分,共30分)1.由下列线段a,b,c组成的三角形,不是直角三角形的是( )A.a=3,b=4,c=5B.a=1,b=错误!未找到引用源。
,c=错误!未找到引用源。
C.a=9,b=12,c=15D.a=错误!未找到引用源。
,b=2,c=错误!未找到引用源。
2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°3.下列四个命题中,假命题是( )A.“等边对等角”与“等角对等边”是互逆定理B.等边三角形是锐角三角形C.角平分线上的点到角两边的距离相等D.真命题的逆命题是真命题4.下列能判定三角形是等腰三角形的是( )A.有两个角为30°,60°B.有两个角为40°,80°C.有两个角为20°,100°D.有两个角为50°,80°5.已知等腰三角形的两条边长分别是7和3,则第三条边的长是( )A.7或3B.7C.4D.36.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于( )A.65°B.50°C.60°D.57.5°7.下列两个三角形中,一定全等的是( )A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形8.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC 于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN 的长为 ( )A.4 cmB.3 cmC.2 cmD.1 cm9.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为( )A.4错误!未找到引用源。
人教版八年级下册数学全册单元测试卷
第16章 二次根式 单元测试试卷班级: 座号 姓名: 成绩:1. 下列式子一定是二次根式的是【 】A .2--xB .xC .22+xD .22-x 2.若b b -=-3)3(2,则【 】A .b >3B .b <3C .b ≥3D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是【 】A .0=mB .1=mC .2=mD .3=m4.若x <0,则xx x 2-的结果是【 】A .0B .2-C .0或2-D .2 5.下列二次根式中属于最简二次根式的是【 】 A .14 B .48 C .baD .44+a 6.如果)6(6-=-•x x x x ,那么【 】A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数 7.小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a =•=112; ④a a a =-23.做错的题是【 】A .①B .②C .③D .④ 8.化简3121+的结果为【 】 A .630 B .306 C .65 D .569.若最简二次根式a a 241-+与的被开方数相同,则a 的值为【 】 A .43-=a B .34=a C .1=a D .1-=a 10.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是【 】A .9B .10C .24D .172二、耐心填一填,一锤定音!(每小题3分,共18分)11.若12-x 有意义,则x 的取值范围是 ; 12.比较大小:13.=•y xy 82 ,=•2712 ;第10题图B14.已知a 、b为两个连续的整数,且a b <<,则a b += ;15.当=x 时,二次根式1+x 取最小值,其最小值为 ; 16,则这个三角形的 周长为 ;三、用心做一做,马到成功!(共52分)17.(每小题3分,共12分)直接写出使下列各式有意义的字母的取值范围: (1)43-x (2)a 831- (3)42+m (4)x1-; ; ; 18.(每小题3分,共12分)化简: (1))169()144(-⨯- (2)2531- (3)512821⨯- (4)n m 21819.(每小题4分,共16分)计算:(1)2232⎪⎪⎭⎫ ⎝⎛- (4)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-12212713(3)2484554+-+ (4)2332326--20.(本题6分)先化简,再求值:244(2)24x x x x -+⋅+-,其中x =21.(本题8分)观察下列等式: ①12)12)(12(12121-=-+-=+;②23)23)(23(23231-=-+-=+;③34)34)(34(34341-=-+-=+;……回答下列问题:(1)利用你观察到的规律,化简:12322+(2)计算:1111 (12233299100)++++++++勾股定理单元测试题1、如图,在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为( ).A .16πB .12πC .10πD .8π2、已知直角三角形两边的长为3和4,则此三角形的周长为( ).A .12B .7+7C .12或7+7D .以上都不对 3、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ′, 使梯子的底端A ′到墙根O 的距离等于3m .同时梯子的顶端B 下降 至B ′,那么BB ′( ).A .小于1mB .大于1mC .等于1mD .小于或等于1m 4、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取 值范围是( ).A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm 5、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____. 6、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).7、如图,△ABC 中,AC =6,AB =BC =5,则BC 边上的高AD =______.8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元.9、如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去.(1)记正方形ABCD 的边长为a 1=1,按上述方法所作的正方形的边长依次为a 2,a 3,a 4,……,a n ,请求出a 2,a 3,a 4的值;150o20米30米(2)根据以上规律写出a n的表达式.10、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1.4m,BC=30米,请帮助小明计算出树高AB.(3取1.732,结果保留三个有效数字)11、如图,甲船以16海里/时的速度离开港口,向东南航行,乙船在同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙船每小时航行多少海里?12、去年某省将地处A 、B 两地的两所大学合并成了一所综合性大学,为了方便A 、B 两地师生的交往,学校准备在相距2.732km 的A 、 B 两地之间修筑一条笔直公路(即图中的线段AB ),经测量,在A 地 的北偏东60°方向、B 地的西偏北45°方向C 处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)参考答案与提示1、D (提示:在Rt △ABC 中,AB 2=AC 2-BC 2=172-152=82,∴AB =8.∴S 半圆=21πR 2=21π×(28)2=8π.故选D ); 2、C (提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7,故选C );3、A (提示:移动前后梯子的长度不变,即Rt △AOB 和Rt △A ′OB ′的斜边相等.由勾股定理,得32+B ′O 2=22+72,B ′O =44,6<B ′O <7,则O <BB ′<1.故应选A );4、D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm ≤h ≤16cm ,故选D ). 5.a =b ,b =4(提示:设a =3k ,b =2k ,由勾股定理,有(3k )2+(2k )2=(213)2,解得a =b ,b =4.);6.43(提示:做矩形两边的垂线,构造Rt △ABC ,利用勾股定理,AB 2=AC 2+BC 2=192+392=1882,AB ≈43);7.3.6(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC 中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =3.6.故AD =226.36-=4.8); 8、150a .9、解析:利用勾股定理求斜边长.(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC =22BC AB +=2211+=2.同理:AE =2,EH =22,…,即a 2=2,a 3=2,a 4=22.(2)a n =12-n (n 为正整数).10、解析:构造直角三角形,利用勾股定理建立方程可求得.过点D 作DE ⊥AB 于点E ,则ED =BC =30米,EB =DC =1.4米.设AE =x 米,在Rt △ADE 中,∠ADE =30°,则AD =2x .由勾股定理得:AE 2+ED 2=AD 2,即x 2+302=(2x )2,解得x =103≈17.32.∴AB =AE +EB ≈17.32+1.4≈18.7(米). 答:树高AB 约为18.7米.11、解析:本题要注意判断角的大小,根据题意知:∠1=∠2=45°,从而证明△ABC 为直角三角形,这是解题的前提,然后可运用勾股定理求解.B 在O 的东南方向,A 在O 的西南方向,所以∠1=∠2=45°,所以∠AOB =90°,即△AOB 为Rt △.BO =16×23=24(海里),AB =30海里,根据勾股定理,得AO 2=AB 2-BO 2=302-242=182,所以AO =18.所以乙船的速度=18÷23=18×32=12(海里/时).答:乙船每小时航行12海里. 12、解 如图所示,过点C 作CD ⊥AB ,垂足为点D ,由题意可得∠CAB =30°,∠CBA =45°,在Rt △CDB 中,∠BCD =45°,∴∠CBA =∠BCD ,∴BD =CD .在Rt △ACD 中,∠CAB =30°,∴AC =2CD .设CD =DB =x ,∴AC =2x .由勾股定理 得AD =22CD AC -=224x x -=3x .∵AD +DB =2.732,∴3x +x =2.732,∴x ≈1.即CD ≈1>0.7, ∴计划修筑的这条公路不会穿过公园.第十八章《平行四边形》单元考试卷(完卷时间:45分钟,满分100分)班级: 座号姓名: 成绩:一、精心选一选,慧眼识金!(每小题4分,共32分)题号 1 2 3 4 5 6 7 8选项1.已知正方形的边长为4cm,则其对角线长是【】4cmA.8cm B.16cm C.32cm D.22.矩形、菱形、正方形都具有的性质是【】A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角3.关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有【】A.1个B.2个C.3个D.4个4.在等腰梯形中,下列说法:①两腰相等;②两底平行;③对角线相等;④同一底上的两底角相等,其中正确的有【】A.1个B.2个C.3个D.4个5.若顺次连结四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必定是【】A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形6.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是【】A.B.C.D.7.如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且BE=BF ,添加一个条件,仍不能证明四边形BECF 为正方形的是【 】A .BC=ACB .CF ⊥BFC .BD=DFD .AC=BF8.如图,矩形ABCD 中,DE ⊥AC 于E , 且∠ADE :∠EDC=3:2,则∠BDE 的度 数为【 】A .36°B .9°C .27°D .18°二、耐心填一填,一锤定音!(每小题4分,共24分)9.平行四边形ABCD 中,∠A=500,AB=30cm ,则∠B=____ ,DC=___ _ cm 。
八年级下册数学《二次根式》单元测试卷有答案
八年级下册数学《二次根式》单元测试卷一、单选题x的取值范围是()1A.x≠7B.x<7 C.x>7 D.x≥72的相反数是()A.﹣2 B.2 C.﹣4 D.4 3.下列各式属于最简二次根式的有()AB C D4.下列计算正确的是()A=B.3=C2=D=5是同类二次根式的是()A B C D6n的最小值是()A.4 B.6 C.8 D.12 7.估计√13的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.下列各式中计算正确的是()A=⨯2)×(﹣4)=8B=4a(a>0)C3+4=7D 3=9.已知1a a +=1a a-=( )AB C .D .10.若1a b -=,2213a b +=,则ab 的值为( ) A .6 B .7 C .8 D .9二、填空题11_____.12.已知a 、b 满足(a ﹣1)2,则a+b=_____.13_____.14=______. 15.比较大小:58_____√5−12.(填“>”、“<”或“=”)16a =_____.17_____.18=_____.三、解答题19.化简:20.已知a,求293a a ---21.先化简代数式1﹣1x x -÷2212x x x-+,并从﹣1,0,1,3中选取一个合适的代入求值.22.若实数a 、b 满足2(2)0a b +-+=,求2b +a ﹣1的值.23.若x ,y 都是实数,且y +1y 的值.24.阅读理解材料:把分母中的根号去掉叫做分母有理化,例如:;1==等运算都是分母有理化.根据上述材料, (1(210+++(3n +++参考答案1.D【解析】【分析】直接利用二次函数有意义的条件分析得出答案.【详解】在实数范围内有意义,∴x-7≥0,解得:x≥7.故选:D.【点睛】本题考查了二次根式有意义的条件,正确把握二次根式的定义是解题的关键.2.B【解析】【分析】,再求其相反数即可.【详解】故选B.3.B【解析】【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【详解】A=A选项错误;B是最简二次根式,故B选项正确;C=D=D选项错误;故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.4.D【解析】【分析】根据二次根式的运算法则逐项计算即可判断.【详解】解:A不是同类二次根式,不能合并,故错误;B、,故错误;C2÷=,故错误;2D.故选D.【点睛】本题考查了二次根式的四则运算.5.C【解析】【分析】同类二次根式定义为几个二次根式化简成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.【详解】符合定义的只有C项,所以答案选择C项.【点睛】本题考查了同类二次根式的定义,熟练掌握定义是解答本题的关键.6.B【解析】【分析】=则6n是完全平方数,满足条件的最小正整数n为6.【详解】∵=∴6n是完全平方数,∴n的最小正整数值为6.故选B.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.7.C【解析】解:∵√9<√13<√16,∴3<√13<4,故选C.8.D【解析】【分析】根据二次根式的意义、性质逐一判断即可得.【详解】A ,此选项错误;B =(a >0),此选项错误;C =5,此选项错误;D =,此选项正确. 故选D . 【点睛】本题考查了二次根式的性质与化简,解题的关键是熟练掌握二次根式的定义和性质. 9.C 【解析】分析:本题只要根据1a a -=详解:1a a -===C .点睛:本题考查的是完全平方公式的应用,属于中等难度的题型.()()224a b a b ab +=-+,()()224a b a b ab -=+-,a b -= 10.A 【解析】 【分析】将a ﹣b =1两边平方,利用完全平方公式化简,将第一个等式代入计算即可求出ab 的值. 【详解】解:将a ﹣b =1两边平方得:(a ﹣b )2=a 2+b 2﹣2ab =1, 把a 2+b 2=13代入得:13﹣2ab =1, 解得:ab =6. 故选A . 【点睛】本题考查完全平方公式,熟练掌握公式是解题关键. 11.﹣6.【解析】【分析】直接利用立方根以及算术平方根化简得出答案.【详解】解:原式=4﹣10=﹣6.故答案为﹣6.【点睛】本题考查实数运算,正确利用立方根以及算术平方根化简各数是解题关键.12.﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a,b的值,进而得出答案.【详解】∵(a﹣1)2,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.13.4 3【解析】【分析】根据算术平方根的定义求解可得.【详解】解:=4 3故答案为:4 3【点睛】本题考查算术平方根,解题关键是熟练掌握算术平方根的定义.14【解析】 【分析】先进行二次根式的化简,然后合并. 【详解】解:原式3==. 【点睛】本题考查了二次根式的加减法,正确化简二次根式是解题的关键. 15.> 【解析】 【分析】利用作差法即可比较出大小. 【详解】解:∵58−√5−12=5−4√5+48=9−4√58=√81−√808>0,∴58>√5−12.故答案为>. 16.1 【解析】 【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案. 【详解】=a +1=2.解得a=1.故答案是:1.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.17.【解析】【分析】一般二次根式的有理化因式是符合平方差公式的特点的式子.据此作答.【详解】.解.【点睛】本题考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.18.2【解析】【分析】根据二次根式乘法的运算法则进行求解即可得.【详解】=2,故答案为:2.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法的运算法则是解题的关键.19.【解析】【分析】根据二次根式的乘法法则运算.【详解】解:原式=6-=6-7【点睛】本题考查的知识点是二次根式化简,解题的关键是熟练的掌握二次根式.20.7.【解析】【分析】先将a的值分母有理化,从而判断出a﹣2<0,再根据二次根式的混合运算顺序和运算法则化简原式,继而将a的值代入计算可得.【详解】解:∵a2∴a﹣2=220,则原式=3323(2) a a aa a a+-----()()=a+3+1 a=2=7.【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.21.-11x +,-14. 【解析】试题分析:根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x 的值代入即可解答本题.试题解析:原式=1﹣()()()21·11x x x x x x +-+- =1﹣21x x ++ =121x x x +--+=-11x +, 当x=3时,原式=﹣131+ =-14 . 22.43. 【解析】【分析】由于平方和二次根式都具有非负性,根据非负数的性质列出二元一次方程组求出a 、b 的值,再代入代数式求解即可.【详解】解:由题意,得20230a b b a +-=⎧⎨-+=⎩ , 解得5313a b ⎧=⎪⎪⎨⎪=⎪⎩. ∴2b +a ﹣1=2×13+53﹣1=43. 【点睛】本题考查非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.23.5【解析】【分析】首先根据二次根式有意义的条件可得:4040x x -≥⎧⎨-≥⎩,解不等式组可得x=4,然后再代入y=1可得y +3y 的值.【详解】解:由题意得:, 解得:x =4,则y =1,+3y =2+3=5.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.24.(1;(2﹣1;(3﹣1.【解析】【分析】(1,即可得出答案;(2)根据分母有理化,可得实数的减法,根据实数的减法运算,可得答案.【详解】(1)==; (2+⋯1...-1=(3⋯1...+﹣1【点睛】运用了二次根式的分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相等.找出分母的有理化因式是解本题的关键.。
人教版八年级数学第一单元测试卷
人教版八年级数学第一单元测试卷一、选择题(每小题 3 分,共 30 分)1、下列式子中,是分式的是()A \(\frac{x}{3}\)B \(\frac{3}{x}\)C \(\frac{x + 1}{2}\) D \(\frac{x}{2} + 1\)2、若分式\(\frac{x 1}{x + 2}\)有意义,则 x 的取值范围是()A \(x≠ 2\)B \(x≠ 1\)C \(x = 2\)D \(x = 1\)3、下列约分正确的是()A \(\frac{x^6}{x^2} = x^3\)B \(\frac{x + y}{x + y} = 0\)C \(\frac{x + y}{x^2 + xy} =\frac{1}{x}\)D \(\frac{2xy^2}{4x^2y} =\frac{1}{2}\)4、化简\(\frac{m^2 3m}{9 m^2}\)的结果是()A \(\frac{m}{m + 3}\)B \(\frac{m}{m + 3}\)C \(\frac{m}{m 3}\)D \(\frac{m}{3 m}\)5、计算\(\frac{x^2}{x 1} x 1\)的结果是()A \(\frac{1}{x 1}\)B \(\frac{1}{x 1}\)C \(\frac{1}{1 x}\)D \(\frac{1}{1 x}\)6、若\(\frac{1}{x} \frac{1}{y} = 3\),则\(\frac{2x +3xy 2y}{x 2xy y}\)的值为()A \(\frac{3}{5}\)B \(\frac{3}{5}\)C \(\frac{9}{5}\) D \(\frac{9}{5}\)7、若分式方程\(\frac{x}{x 3} 2 =\frac{m}{x 3}\)有增根,则 m 的值为()A 3B 0C 3D 无法确定8、小明和小张两人练习电脑打字,小明每分钟比小张少打6 个字,小明打 120 个字所用的时间和小张打 180 个字所用的时间相等。
北师大版八下数学第一章三角形的证明测试题A卷(含详解)
八年级下册第一单元测试题(A)(满分100分,60分钟)班级________姓名________学号_________一、选择题(每题3分,共30分)1.一个等腰三角形的顶角是40°,则它的底角是()A.40° B.50° C.60° D.70°2. 到三角形三个顶点的距离相等的点是三角形()的交点.A. 三个内角平分线B. 三边垂直平分线C. 三条中线D. 三条高3. 已知△ABC的三边长分别是5cm、12cm、13cm,则△ABC的面积是()A.24cm2B.30cm2C.40cm2D.48cm24.下列命题的逆命题是真命题的是()A.如果a>0,b>0,则a+b>0 B.直角都相等C.两直线平行,同位角相等D.若a=6,则|a|=|b|5.三角形中,若一个角等于其他两个角的差,则这个三角形是( )A 钝角三角形B 直角三角形C 锐角三角形D 等腰三角形6. 等腰三角形的两边长分别为4厘米和9厘米,则这个三角形的周长为()A、22厘米B、17厘米C、13厘米D、17厘米或22厘米7.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰和底边长分别为( )A 24 cm和12 cmB 16 cm和22 cmC 20 cm和16 cmD 22 cm和16 cm第8题第9题第10题8. 如图,在△ABC 中,∠C=90︒,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。
其中正确的有( ) A .2个 B .3个 C .4个 D .1个9. 已知:如图,AB =AC ,FD ⊥BC 于D ,DE ⊥AB 于E ,若∠AFD =145°,则∠EDF 的度数为( ).A .35°B .45°C .55°D .60° 10.如图,在Rt △ABC 中,∠C =90°,∠B =60°,点D 是BC 边上的点,CD =1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则△PEB 的周长的最小值是( ). A .33 B .332 C .3321+ D .31+ 二、填空题(每小题4分,共20分)11.“等边对等角”的逆命题是______________________________. 12.在直角三角形中,如果一个锐角为30°,而斜边与较小直角边的和为12,那么斜边长为 .13.等边三角形两条中线相交所成的锐角的度数为_________. 14.在△ABC 中,AB=AC ,∠A =58°,AB 的垂直平分线交AC 于N ,则∠NBC = .15.如图,已知线段AB ,分别以A 、B 为圆心,大于21AB 长为半径画弧,两弧相交于点C 、Q ,连接CQ 与AB 相交于点D ,连接AC ,BC .那么当线段AB=4,∠ACB=60°时,△ABC 的面积等于_____(面积单位). 三、解答题16.(8分) 如图,∠A=∠D=90°,AC=BD. 求证:OB=OC ;17.(10分)如图,△ABC为等边三角形,AD∥BC,CD⊥AD,若△ABC的周长为36cm,求AD的长.18. (10分)如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD. 求证:D在∠BAC的平分线上.19. (11分) 已知:如图,△ABC中,AB=AC.(1)按照下列要求画出图形:①作∠BAC的平分线交BC于点D(尺规作图,不写作法,保留作图痕迹);②过D作DE⊥AB,垂足为点E;③过D作DF⊥AC,垂足为点F.(2)根据上面所画的图形,求证:EB=FC.20. (11分)如图所示,∠AOP=∠BOP=15°,PC∥OA,若PC=4,求PD的长.B【二级知识点】等腰三角形【三级知识点】等腰三角形的性质【试题评价】较易理解对象特征及由来第7题7.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰和底边长分别为( )A 24 cm和12 cmB 16 cm和22 cmC 20 cm和16 cmD 22 cm和16 cm 拆解【答案】D【解析】如图,∵DE是AB的垂直平分线,∴AD=BD.∴BD+DC=AD+DC = AC.∵△ABC和△DBC的周长分别是60 cm和38 cm,∴AB=AC=60 cm-38 cm=22cm.BC=38 cm-22cm=16cm.【题型】选择题【一级知识点】图形的性质【二级知识点】直线、射线、线段【三级知识点】线段的垂直平分线的性质定理【试题评价】较易理解对象特征及由来第8题8. 如图,在△ABC中,∠C=90 ,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(下)第一单元测试卷
学号 姓名 成绩
一.选择题(每小题3分,共30分)
1.已知b a <,下列不等式中错误的是( )
A .z b z a +<+
B .c b c a ->-
C .b a 22<
D .b a 44->-
2.若0<k ,则下列不等式中不能成立的是( )
A .45-<-k k
B .k k 56>
C .k k ->-13
D .9
6k k ->- 3.不等式53
>-x 的解集是( ) A .35-<x B .3
5->x C .15-<x D .15>-x 4.不等式3312-≥-x x 的正整数解的个数是( )
A .1个
B .2个
C .3个
D .4个
5.若3<a ,则不等式3)3(-<-a a 的解集是( )
A .1>x
B .1<x
C .1->x
D .1-<x
6.下列说法①0=x 是012<-x 的解②3
1=x 不是013>-x 的解③012<+-x 的解集是2>x ④⎩⎨⎧>>2
1x x 的解集是1>x ,其中正确的个数是( )
A .1个
B .2个
C .3个
D .4个
7.如图,用不等式表示数轴上所示的解集,正确的是( )
A .31≥-<x x 或
B .31>-≤x x 或
C .31<≤-x
D .31≤<-x
8.若不等式组⎩⎨⎧<<-a
x x 312的解集是,则的取值范围是( )
A .2<a
B .2≤a
C .2≥a
D .无法确定
9.已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值范围是( )
A .2>x
B .2<x
C .2->x
D . 2-<x 10.小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练
习本4角,那么他最多能买笔记本( )本
A .7
B .6
C .5
D .4
10123
二.填空题
11.用适当的符号表示:m 的2倍与n 的差是非负数: ;
12.不等式538->-x x 的最大整数解是: ;
13.若b a <,则2ac 2bc ;若22bc ac <,则a b (填不等号);
14.已知长度为xcm cm cm 3,5,4的三条线段可围成一个三角形,那么x 的取值范围是: ;
15.已知方程121-=+x kx 的根是正数,则k 的取值范围是: ;
16.某种商品进价150元,标价200元,但销量较小。
为了促销,商场决定打折销售,若为了保证利润率不底于20%,那么至多打几折?如果设商场将该商品打x 折,则可列出不等式为: 。
三.解答题
17.解不等式,并把解集表示在数轴上。
6
5312+-≤+x x
18.解不等式组
⑴⎩⎨⎧-≤+>+145321x x x x ⑵⎪⎩⎪⎨⎧-≥-->+35663
4)1(513x x x x
19.x取何值时,代数式
31
2-
x
的值不小于
21
2 1+
-x
的值?
20.做出函数5
2+
-
=x
y的图象,观察图象回答下列问题。
⑴x取哪些值时,0
>
y;
⑵x取哪些值时,3
1≤
≤y。
21.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。
问刻录这批电脑光盘,该校如何选择,才能使费用较少?
22.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?。