高考数学解析几何热点问题
高考数学:解析几何常考题型及解题方法汇总(含详解),
相信很多同学都知道,解析几何其实并不难,解题思路也相对简单,但是它却折磨着大多数的考生们!
为什么?因为它的计算量实在是太大了,想找个简单快捷的方法去做都是很不容易的一件事。
在高考数学中,解析几何属于必考题,而且其所占的分值和函数也相差不大,都是在3 0分左右,但是它并没有像函数压轴题一样,让人看了就想放弃。
但是只要找对方法,你会发现其实解析几何也没有想象中的那么折磨人,而且出乎意料的简单。
今天,学长就为同学们整理了高考数学中解析几何的热点常考题和解题方法的汇总,希望同学们好好把握,在高考中取得一个更好的成绩!
需要电子打印版的同学可以私信发送,解析几何,就可以打印出来了!用起来超方便!!!。
高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)
设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.
①
将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.
2024年高考真题分类专项(解析几何)(学生版)
2024年高考真题分类专项(解析几何)一、单选题1.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2C .3D .2.(2024年天津高考数学真题)双曲线22221()00a x y a b b >-=>,的左、右焦点分别为12.F F P、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=3.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( ) A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)4.(2024年高考全国甲卷数学(文)真题)已知直线20ax by a b +-+=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .65.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为( )A.4 B .3C .2D6.(2024年高考全国甲卷数学(理)真题)已知b 是,a c 的等差中项,直线0ax by c 与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( ) A .1B .2C .4D.二、多选题7.(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A .l 与A 相切B .当P ,A ,B三点共线时,||PQ = C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个8.(2024年新课标全国Ⅱ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =- B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+三、填空题9.(2024年上海夏季高考数学真题)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .10.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为 .11.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .12.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为 .13.(2024年新课标全国Ⅱ卷数学真题)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为 .四、解答题14.(2024年上海夏季高考数学真题(网络回忆版))已知双曲线222Γ:1,(0),y x b b-=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点. (1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.15.(2024年北京高考数学真题)已知椭圆E :()222210x y a b a b +=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D . (1)求椭圆E 的方程及离心率; (2)若直线BD 的斜率为0,求t 的值.16.(2024年天津高考数学真题)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △. (1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.17.(2024年新课标全国Ⅱ卷数学真题)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.18.(2024年高考全国甲卷数学(理)真题)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.。
解析几何大题
解析几何大题(原创版)目录1.解析几何大题的概述2.解析几何大题的解题思路3.解析几何大题的解题技巧4.解析几何大题的例题解析5.总结正文解析几何大题是高中数学中非常重要的一部分,也是高考数学中的热点题型。
这种题型主要考察学生的解析几何知识和解题能力,包括对解析几何概念的理解,对解析几何方法的应用,以及对解析几何题目的解析能力。
一、解析几何大题的概述解析几何大题主要涉及到解析几何中的直线、圆、椭圆、双曲线等几何图形,以及它们之间的关系。
这种题型的难度较大,需要学生有较强的逻辑思维能力和数学运算能力。
二、解析几何大题的解题思路解析几何大题的解题思路主要包括以下几个步骤:1.认真阅读题目,理解题意,确定题目要求的解。
2.分析题目,找出题目中的已知条件和待求解的问题。
3.根据已知条件,运用解析几何的相关知识和方法,进行逻辑推理和数学运算。
4.得出结论,并对结论进行验证。
三、解析几何大题的解题技巧解析几何大题的解题技巧主要包括以下几个方面:1.对解析几何中的基本概念和公式有深入的理解,熟练掌握解析几何的方法和技巧。
2.能够灵活运用解析几何中的几何方法、代数方法和几何与代数的结合方法。
3.在解题过程中,要注意保持思路的清晰和逻辑的严密,避免因为粗心大意而造成错误。
四、解析几何大题的例题解析例如,解析几何中的一道经典题目:已知直线 l:y=2x+1,圆 O:(x-1)+(y-2)=5,求直线 l 与圆 O 的交点。
解:首先,根据题目中的已知条件,我们可以列出直线 l 和圆 O 的方程。
然后,通过解析几何中的方法,我们可以求出直线 l 和圆 O 的交点。
五、总结解析几何大题是高中数学中的重点和难点,对学生的逻辑思维能力和数学运算能力有较高的要求。
2023年高考数学热点专题解析几何模型通关圆锥曲线中的定点问题(解析版)
圆锥曲线中的定点问题思路引导处理圆锥曲线中定点问题的方法:(1)探索直线过定点时,可设出直线方程为,然后利用条件建立,k m 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.母题呈现考法1参数法求证定点【例1】(2022·临沂、枣庄二模联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,其左、右焦点分别为F 1,F 2,点P 为坐标平面内的一点,且|OP →|=32PF 1→·PF 2→=-34,O 为坐标原点.(1)求椭圆C 的方程;(2)设M 为椭圆C 的左顶点,A ,B 是椭圆C 上两个不同的点,直线MA ,MB 的倾斜角分别为α,β,且α+β=π2.证明:直线AB 恒过定点,并求出该定点的坐标.【解题指导】【解析】(1)设P 点坐标为(x 0,y 0),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0).由题意得x 20+y 20=94,x 0+cx 0-c+y 20=-34,解得c 2=3,∴c = 3.又e =c a =32,∴a =2.∴b 2=a 2-c 2=1.∴所求椭圆C 的方程为x 24+y 2=1.(2)设直线AB 方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).y 2=1,kx +m ,消去y 得(4k 2+1)x 2+8kmx +4m 2-4=0.∴x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.又由α+β=π2,∴tan α·tan β=1,设直线MA ,MB 斜率分别为k 1,k 2,则k 1k 2=1,∴y 1x 1+2·y 2x 2+2=1,即(x 1+2)(x 2+2)=y 1y 2.∴(x 1+2)(x 2+2)=(kx 1+m )(kx 2+m ),∴(k 2-1)x 1x 2+(km -2)(x 1+x 2)+m 2-4=0,∴(k 2-1)4m 2-44k 2+1+(km -2)28()41kmk -++m 2-4=0,化简得20k 2-16km +3m 2=0,解得m =2k ,或m =103k .当m =2k 时,y =kx +2k ,过定点(-2,0),不合题意(舍去).当m =103k 时,y =kx +103k 10,0)3-,∴直线AB 恒过定点10(,0)3-【例2】(2022·福建·漳州三模)已知抛物线2:4C y x =的准线为l ,M 为l 上一动点,过点M 作抛物线C 的切线,切点分别为,A B .(1)求证:MAB ∆是直角三角形;(2)x 轴上是否存在一定点P ,使,,A P B 三点共线.【解题指导】【解析】(1)由已知得直线l 的方程为1x =-,设()1,M m -,切线斜率为k ,则切线方程为()1y m k x -=+,(2分)将其与24y x =联立消x 得244()0ky y m k -++=.所以1616()0k m k ∆=-+=,化简得210k mk +-=,(4分)所以121k k =-,所以MA MB ⊥.即MAB ∆是直角三角形.(6分)(2)由(1)知1616()0k m k ∆=-+=时,方程244()0ky y m k -++=的根为2y k=设切点221212,,,44y y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则121222,y y k k ==.因为121k k =-,所以121244y y k k ==-.(10分)设:AB l x ny t =+,【点拨】由M 点出发向抛物线作量条切线,则切点A,B 所在直线与抛物线有两个焦点且其斜率不为零与24y x =联立消x 得2440y ny t --=,则124y y t =-,所以44t -=-,解得1t =,所以直线AB 过定点()1,0P .即x 轴上存在一定点()1,0P ,使,,A P B 三点共线.(12分)【解题技法】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【跟踪训练】(2020·新课标Ⅰ卷理科)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -,(),0B a ,()0,1G ∴(),1AG a = ,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭.同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.考法2先求后证法求证定点【例4】(2022·全国乙T21)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()0,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解题指导】(1)将给定点代入设出的方程求解即可;(2)斜率不存在时探究定点→设出直线方程→与椭圆C 的方程联立→求HN 的方程→是否过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得26(1,)3M ,26(1,3N-,代入AB方程223y x=-,可得263,3T+,由MT TH=得到265,)3H.求得HN方程:(223y x=--,过点(0,2)-.②若过点(1,2)P-的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y--+=.联立22(2)0,134kx y kx y--+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k+-+++=,可得1221226(2)343(4)34k kx xkk kx xk+⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34ky ykk ky yk-+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x yk-+=+联立1,223y yy x=⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2yT y H y x y++-可求得此时1222112:()36y yHN y y x xy x x--=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y+-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k+++---+--=显然成立,综上,可得直线HN过定点(0,2).-【解题技法】(1)定点问题,先猜后证,可先考虑运动图形是否有对称性及特殊(或极端)位置猜想,如直线的水平位置、竖直位置,即k=0或k不存在时.(2)以曲线上的点为参数,设点P(x1,y1),利用点在曲线f(x,y)=0上,即f(x1,y1)=0消参.【跟踪训练】模拟训练(2)方法一:设PQ 方程为x my =()2222234433x my m y my x y =-⎧⇒-+⎨-=⎩以PQ 为直径的圆的方程为(1x x -()(22121212x x x x x x y y y -+++-+由对称性知以PQ 为直径的圆必过()21212120x x x x x x y y -+++=,而()21212212431m x x m y y m +=+-=-()()212121222x x my my m y y =--=22222434931313m x x m m m --∴-++---()()22313510m x m x ⎡⎤⇒-+--=⎣⎦∴以PQ 为直径的圆经过定点(1,0方法二:设PQ 方程为2,x my P =-()22222311233x my m y my x y =-⎧⇒--⎨-=⎩由对称性知以PQ 为直径的圆必过设以PQ 为直径的圆过(),0E t ,()()1210EP EQ x t x t y ∴⋅=⇒--+ 而()()21212122x x my my m y =--=2229122431313m m m m m -=⋅-⋅+=--【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l过定点问题.解法:设动直线方程得y=k(x+m),故动直线过定点(-(2)动曲线C过定点问题.解法:引入参变量建立曲线等于零,得出定点.7.(2023·浙江·模拟预测)已知双曲线为双曲线E的左、右顶点,P为直线(1)求双曲线E的标准方程.(2)直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.理得1112,y y y y +(或1212,x x x x +),代入交点坐标后可得结论,如果是求动直线过定点,则可以引入参数求得动直线方程后,观察直线方程得定点.。
高考解析几何大题题型归纳
高考解析几何大题题型归纳高考解析几何大题题型归纳一、三角形的性质与判定在高中数学中,三角形是一个重要的图形。
学生在高考中常常会遇到与三角形性质与判定相关的大题。
在这一题型中,常见的题目包括用三角形的边长、角度或者特殊性质来判断三角形的形状、大小或者其他性质。
二、直线与线段的相交问题直线和线段是解析几何题目中常见的图形。
学生在高考中常常会遇到关于直线和线段相交问题的大题。
在这一题型中,学生需要根据已知条件求解未知的角度、线段长度或者其他相关问题。
三、圆的性质与判定圆是解析几何题目中一个重要的图形。
学生在高考中经常会遇到与圆的性质与判定相关的大题。
在这一题型中,学生需要利用已知条件来判断圆的位置,或者通过已知条件求解未知物品与圆的关系。
四、平行线与垂直线的判定平行线与垂线也是高考解析几何题目中常见的考点。
在这一题型中,学生需要利用已知条件来判定两条线是否平行或者垂直,或者根据已知条件求解未知的线段长度或者角度。
五、多边形的性质与判定在解析几何题中,多边形也是一个重要的图形。
学生在高考中常常会遇到与多边形的性质与判定相关的大题。
在这一题型中,学生需要利用已知条件来判断多边形的形状、大小或者其他性质,或者求解未知的角度或者线段长度。
六、空间几何问题空间几何问题在高考中也是一个重要的考点。
在这一题型中,学生需要利用已知条件来求解空间中的角度、线段长度或者其他相关问题。
这类题目常常需要学生运用立体几何知识和空间想像力来进行推理和求解。
七、向量的应用在解析几何题目中,向量是一个重要的工具。
学生在高考中常常会遇到与向量的应用相关的大题。
在这一题型中,学生需要利用向量的性质来求解角度、线段长度或者其他相关问题。
总结:解析几何题目涉及到的题型很多,常见的包括三角形的性质与判定、直线与线段相交问题、圆的性质与判定、平行线与垂直线的判定、多边形的性质与判定、空间几何问题以及向量的应用等。
针对这些题型,学生在备考中应该重点复习相关知识,并且多进行一些练习题,以加深对题型的理解和应用能力。
2024高考数学解析几何知识点总结与题型分析
2024高考数学解析几何知识点总结与题型分析随着时间的推移,我们离2024年的高考越来越近。
数学作为高考的一门重要科目,解析几何是其中的一个重点内容。
为了帮助同学们更好地复习解析几何,并在高考中取得好成绩,本文将对2024高考数学解析几何的知识点进行总结与题型分析。
1. 直线与平面1.1 直线的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。
根据直线的特点,我们可以将其方程转化为其他形式,如点斜式、两点式、截距式等,以便于解题。
1.2 平面的方程平面的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。
类似于直线的情况,根据平面的性质,我们可以将其方程转化为点法式、截距式等形式。
2. 空间几何体2.1 球球是解析几何中的一个重要概念。
其方程为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a, b, c)为球心坐标,r为半径长度。
2.2 圆锥曲线圆锥曲线包括圆、椭圆、双曲线和抛物线。
通过对几何体的方程进行适当的变化,可以得到不同类型的圆锥曲线方程。
掌握其特点和方程形式,对于解析几何的学习非常重要。
3. 空间几何关系3.1 直线与直线的位置关系直线与直线的位置关系包括相交、平行、重合等情况。
根据两条直线的方程,我们可以通过求解方程组或直线的斜率等方式,判断它们之间的空间位置关系。
3.2 直线与平面的位置关系直线与平面的位置关系包括相交、平行、重合等情况。
根据直线的方程和平面的方程,我们可以通过代入求解或者检验点的方法,判断它们之间的位置关系。
4. 解析几何的常见题型4.1 直线与平面的交点求解给定直线和平面的方程,我们需要求解它们的交点。
通过将直线方程代入平面方程中,可以得到关于未知变量的方程组,进而求解出交点的具体坐标。
4.2 距离计算在解析几何中,我们常常需要计算点、直线或平面之间的距离。
对于给定的两点,我们可以利用距离公式进行计算;对于直线和平面,我们可以利用点到直线/平面的距离公式进行计算。
高考数学学科二轮备考关键问题指导系列一(解析几何存在问题及应对策略)
福建省2024届高中毕业班数学学科二轮备考关键问题指导系列一解析几何存在问题及应对策略(福建省高三毕业班复习教学指导组余小萍执笔整理)新高考的背景下,解析几何知识板块试题分值高,在全卷中占比高,但整体得分低,得分率最低,对全卷影响重大,新高考解析几何如何提分,值得研究.解析几何高考试题以核心素养为导向,突出了学科素养、关键能力的考查,有以下特点:1.突显解析思想,考查全面解析思想解题主要包含两个方面.其一,在坐标系下,每个几何对象均可被数(坐标、方程等)所完全表达,并通过代数(或向量)方法来解决;其二,特定的代数语言有了几何解释,从而使代数语言有了直观意义,人们能从中得到启发,进而解决问题或提出新的结论.解析几何问题考查模式可以用下图的框架体现:2.突出直观想象,强调算理解析法是通过坐标系实现“点与坐标互化”、“曲线与方程互化”、“几何关系代数化”,从而达到用代数方法解决几何问题,其思维模式可以用下图的框架体现:这是平面解析几何复习教学可以遵循的思维模式,通过它,帮助厘清知识,构建方法体系,回到基础,落实对知识与方法的深刻理解,让解析法升华为一种认识论与方法论.3.突破题型套路,鼓励创新新高考试卷持续推进题型和结构的创新,在解析几何试题的设计上,最大的变化就是突破题型套路,有多选题、多空题和条件开放或结论开放试题,在难度层次上也有所变化,从情境选择、设问方式到解题方法,鼓励创新求解的意识,培养学生探究能力.下面就具体的平面解析几何复习教学的相关问题探讨如下.一、存在的问题及原因分析(一)作图意识薄弱,以形助思待提高规范作图是认识问题、研究问题的基础,将图形特征转化、合理代数化的过程是问题条件的理解与解题思路的探究过程.【例1】过点(0,2)-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=( )A. 1B.4C.4D. 4【解析】圆22410x y x +--=化简,得22(2)5x y -+=,故圆心(2,0)B,记(0,2)A -,设切点为M ,.N AB =BM =,故AM sinsin MAB 24BM ABα=∠==,coscos M B 2A AM ABα=∠==,sin 2sincos22ααα==B. 【评析】本题考查直线与圆的位置关系、二倍角公式,属于基础题.利用切线构造直角三角形,由三角函数定义求出sin2α,cos2α,再利用二倍角正弦公式即可求解.本题中切线的运用很多学生能想到,但学生不易想到角度关系MAB 2α=∠,究其原因在于作图意识薄弱,对题中的几何关系挖掘不够,缺乏对图形中几何特征与数量关系的细致分析,难以借助图形分析思考问题.【例2】已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12,F F ,点A 在C 上,点B 在y轴上,11F A F B ⊥,222=3F A F B -,则C 的离心率为__________.【解析】依题意222=3F A F B -,设22||2,||3(0)F A t F B t t ==>,||5.AB t ∴=由对称性知21|||| 3.F B F B t ==又11F A F B ⊥,故1||4F A t =,4cos .5A = 由双曲线的定义知,12||||2F A F A a -=,故.t a =在12F AF 中,22216444cos 2425a a c A a a +-==⋅⋅,解得:29()5c a =,故C 的离心率为5【评析】本题考查双曲线的定义及性质、余弦定理、向量共线的充要条件等,属于中档题. 根据向量的关系设参数t ,得到||AB ,2||F B ,1||F B 的关系,勾股定理得到1||4F A t =.由双曲线的定义得到t a =,在1Rt F AB △和12F AF △中通过对cos A 算两次得到a 与c 的关系.学生若作图潦草,难以发现关键的几何特征信息,导致对图中几何关系的提取错误或者不完整,思路受阻.本题中222=3F A F B -,不仅有数量特征,还具有位置关系.【建议】课堂教学中教师能使用尺规规范作图,起到示范指导,并要求学生当堂作图练习.布置不给图形的解几练习,要求学生通过审题自己作图.教师对图形中几何特征与数量关系进行细致分析,结合图形从整体角度理解题意、寻找解题思路.(二)概念思维淡漠,核心观点需增强定义是数学问题研究的起点.曲线方程的概念蕴含了丰富的内涵,对我们的问题的理解与思考有深刻的意义.【例3】已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12,过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE △的周长是__________.【解析】由椭圆离心率为12,可得2a c =,则b ==则椭圆C :2222143x y c c +=,)A ,1(,0)F c -,2(,0)F c ,易得ED l :()3y x c =+,由2211||||||2AF AF F F c ===,故过1F 且垂直于2AF 的直线DE 垂直平分2AF ,即2||||EA EF =,2||||DA DF =,又2222143)x y c c y x c =⎧+=⎪⎨+⎪⎪⎪⎩,得22138320x cx c +-=,故28133213D E D Ec x x x c x =⎧+=-⎪⎪⎨-⎪⎪⎩, 213||||6()4278D E D E D E DE x x x x x x c ∴=-=⇒+-=⇒=,所以ADE △的周长2211||||||||||||||4813DA EA DE DF EF DF EF a c ++=+++===.【评析】本题主要考查了直线与椭圆的位置关系的应用、椭圆的定义以及椭圆中的弦长问题,考查了运算求解能力,属于中档题.部分学生不能从离心率、椭圆定义角度去分析几何特征解决问题,而是先求点M 坐标,再求点D 、E 的坐标,利用两点间的距离公式,绕了一大圈才得出周长,没能活用定义轻松得到解题的突破口.究其原因在于没有养成优先站在“定义”的角度探究问题和解决问题意识,未能从圆锥曲线的定义审视几何关系,选择简便的方法实现几何条件代数化.【建议】复习教学中凡涉及圆锥曲线的最值问题,均需先回顾梳理各种方法,结合问题背景比较、优化方法;强调要在大问题(圆锥曲线的定义与几何图形中的位置关系与数量关系)下研究几何性质;加强逻辑严密的课堂推演与条理清晰试题剖析. (三)欠缺条件思辨,代数方法要选择解析几何就是用代数的方法研究几何问题.那么,对题目所给的几何条件如何代数化(坐标化)很值得研究,我们追求的是既要准确转化,又要简便、减少运算量的转化.【例4】写出与圆221x y +=和圆22(3)(4)16x y -+-=都相切的一条直线的方程__________. 【解法一】显然直线的斜率不为0,不妨设直线方程为0x by c ++=,1=化简得221c b =+①,4.=化简得,|34||4|b c c ++=,故344b c c ++=或344b c c ++=-,再结合①解得01b c =⎧⎨=⎩或247257b c ⎧=-⎪⎪⎨⎪=-⎪⎩或4353b c ⎧=⎪⎪⎨⎪=-⎪⎩,所以直线方程有三条,分别为10x +=,724250x y --=,3450.(x y +-=填一条即可) 【解法二】设圆221x y +=的圆心(0,0)O ,半径为11r =, 圆22(3)(4)16x y -+-=的圆心(3,4)C ,半径24r =, 则12||5OC r r ==+,因此两圆外切,由图像可知,共有三条直线符合条件,显然10x +=符合题意; 又由方程22(3)(4)16x y -+-=和221x y +=相减可得方程3450x y +-=,即为过两圆公共切点的切线方程;又易知两圆圆心所在直线OC 的方程为430x y -=,直线OC 与直线10x +=的交点为4(1,)3--,设过该点的直线为4(1)3y k x +=+1=,解得724k =,从而该切线的方程为724250x y --=; 所以直线方程有三条,分别为10x +=,724250x y --=,3450.(x y +-=填一条即可)【评析】本题是一道开放题,代数法设切线方程通过解方程组能解决问题,也可以利用几何特征快速写出公切线10x +=,发现题中两圆的位置关系是快速破题的关键.本题若改为写出所有公切线方程学生失分率将更高,两种方法计算量也相差无几,代数法中方程组的求解是学生的失分点,其中直线方程的设法涉及简便、减少运算量,几何法通过先求直线OC 与直线10x +=的交点,再求过该点且与圆221x y +=相切的直线即可得到公切线724250x y --=也是利用几何特征简便、减少运算量.【例5】已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴y 轴分别相交于M ,N 两点,且||||MA NB =,||MN =l 的方程为__________.【解析】取AB 的中点为E ,因为||||MA NB =,所以||||ME NE =,设11(,)A x y ,22(,)B x y 可得1212121212y y y y x x x x +-⨯=-+-,即1.2OE AB k k =-⋅ 设直线:AB y kx m =+,0k <,0m >,则(0,)M m ,(,0)mN k-, 所以(,)22m m E k -,所以212m k k m k⨯=-=--,k =又||MN =22212m m +=,故2m =,所以直线:22AB y x =-+,即0.x -= 【评析】本题考查椭圆的中点弦问题,属于偏难题.条件 ||||MA NB = 的转化应用是解本题快速与否的关键,取AB 的中点为E ,将中点E 纵横坐标比转化为中点与原点连线的斜率,利用点差法及点坐标就能快速找到一个,k m 的关系式.学生若能依题构图,结合图形联想第三定义推论,就能将条件 ||||MA NB = 转化为简洁的代数形式,从而达到解决问题的目的.【建议】复习教学中重视引导学生依题构图,结合圆锥曲线的性质从题意与图形中抽象出关键的几何特征,并以简洁的代数形式加以呈现,从而转化为待求目标关系式进行变形演算.(四)缺乏算法算理,运算求解须考究解析几何问题常常都有计算量大的特点,如何进行有效运算、简便运算,寻找化简方向是我们必须重视的环节,包括如何设元、如何设方程,回归定义,以简驭繁;设而不求,整体运算;充分运用图形几何性质,简化计算;利用根与系数关系化繁为简;选用方程适当形式,减少运算量等,这些方法一定要结合具体问题进行训练.【例6】已知O 为坐标原点,抛物线2:2(0)C y px p =>的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥.若||6FQ =,则C 的准线方程为 .【解法一】解直角三角形法:如图,依题意得,2p P p ⎛⎫ ⎪⎝⎭且OPF PQF ∠=∠,所以tan tan OPF PQF ∠=∠,所以2,6pOF PF p PF FQ p =∴=,解得3p =,所以C 的准线方程为32x =-.【解法二】射影定理应用法依题意得,2p P p ⎛⎫⎪⎝⎭,所以2,PF OF FQ =⋅262p p ∴=⨯,解得3p =或0p =(舍去),所以C 的准线方程为32x =-.【解法三】由题意,不妨设P 在第一象限,则(2p P ,)p ,所以直线OP 的斜率22OP pk p ==,因为PQ OP ⊥,所以12PQ k =-,所以PQ 的方程为1()22p y p x -=--,即524px y =-+.令0y =时,52p x =,因为||6FQ =,所以5622p p -=,解得3p =,所以C 的准线方程为32x =-. 【解法四】由题意,不妨设P 在第一象限,则(2p P ,)p ,(6,0)2pQ +,所以(6,)PQ p =-, 因为PQ OP ⊥,所以0PQ OP ⋅=,所以602pPQ p p =⨯-⨯=,所以()30p p -=,因为0p >,所以3p =,所以C 的准线方程为32x =-.【评析】破解本题的关键是对PQ OP ⊥进行转化,可以从解直角三角形的角度,也可以从斜率角度,还可以从向量的角度,甚至可以利用射影定理的角度去进行转化,显见不同的思路其解题的长度不一样.因此,需强化的解题训练形成套路化、模式化,就能根据问题特点灵活处理.【例7】在平面直角坐标系xOy中,已知点1(F,2F ,12||||2MF MF -=,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 两条直线分别交C 于A ,B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【解析】(1)因为12122MF MF F F -=<=C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥. (2)设点1,2T t ⎛⎫⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x ⎛⎫-=- ⎪⎝⎭,即1112y k x t k =+-,联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+= ⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >.由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-, 所以,()()()()22122121121122112111111222416t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+=⎪-⎝⎭, 设直线PQ 的斜率为2k ,同理可得()()2222212116tk TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=. 因此,直线AB 与直线PQ 的斜率之和为0.【评析】TA TB ⋅与TP TQ ⋅从弦长公式到韦达定理代入化简是破解本题的关键,从设直线方程到联立消元再到弦长公式的应用,有明晰的解题方向,形成套路化、模式化的解题训练有助于学生根据问题特点灵活处理.【建议】课堂教学时不能只是谈思路方法,应合理利用几何特征设参,分析算式结构,合理消参、降次,通过课堂师生共同演算的体验,增加实践经验,进行算法算理的指导.在涉及求有关过一点的两条斜率不同的直线的交点坐标或弦长问题时,往往只需计算其中的一类交点坐标或弦长,另一类只需等价代换的结果中的参数即可.(五)只求题型模仿,解析思想欠领悟高中解析几何既是一种重要的数学思想,也是一种重要的数学方法,其核心是“数形结合”的思想方法.由于解析几何内容的综合性,在解决问题的过程中,充满着探究性、创新性,对能力有较高的要求.解题中必然要用到思想方法引领,如函数与方程、特殊与一般、分类与整合的思想,以及待定系数法、换元法等等.【例8】已知点和抛物线,过的焦点且斜率为的直线与交于,点.若,则________.【解析】设弦AB 的中点为P ,综合题目的几何特征,直观猜测,PM 平行于x 轴,故由点差法可得124=2k y y =+,快速地给出答案为2. 【评析】本题是典型的直线与抛物线的位置关系问题,常规的解法是设方程、联立方程、用韦达定理求解套路,这势必费力费时且会算错.由于问题的特殊性,焦点弦张角为直角,借助数形结合,动中求不变解析思考,斜率为k 的平行弦的不变性,以及焦点弦张角的不变性,就能抓住问题的本质,既解决了问题,又提升了对抛物线的认识.【例9】已知A 、B 分别为椭圆E :2221x y a+=(a >1)左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 方程;(2)证明:直线CD 过定点.【解析】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G ,∴(),1AG a =,(),1GB a =-, ∴218AG GB a ⋅=-=,∴29a =,∴椭圆方程为:2219x y +=.()11M -,24C y x =:C k C A B 90AMB =︒∠k =的的(2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+,联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+,将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+, 所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭, ∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭, 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭,故直线CD 过定点3,02⎛⎫⎪⎝⎭. 【评析】解决本题的关键是借助数形结合,由椭圆的对称性可知定点应在x 轴上,明晰计算化简的方向.【建议】教学中要让学生意识到变化是理解解析几何问题的切入点,不变是解决解析几何问题的落脚点,对于它的探究过程主要集中在数学观察、联想、类比、猜测、抽象、概括等思维过程.解决解几具体问题时常常需要用到“数形结合”的思想方法.在解决问题的过程中,针对具体问题具体分析,跳出套路,数形结合找到解题方向.二、解决问题的思考与对策(一)回归基础,揭示本质,返璞归真解析几何思想的数学结构是由核心概念、基本方法、数学原理3个层次构成.核心概念是曲线与方程,基本方法是几何问题代数化和代数问题几何化,数学原理是映射原理(或化归原则),其中几何问题代数化的途径是坐标法,是笛卡尔“方法论”的观念表现.【例10】若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为______,_____.【解析】正方形OABC 中,对角线OB 所在直线的斜率为2,建立如图直角坐标系, 设对角线OB 所在直线的倾斜角为θ,则tan 2θ=,由正方形性质可知,直线OA 的倾斜角为45θ-︒,直线OB 的倾斜角为45θ+︒,故()tan tan 45211tan 451tan tan 45123OA k θθθ-︒-=-︒===+︒+,()tan tan 4521tan 4531tan tan 4512OB k θθθ+︒+=+︒===--︒-.故答案为:13;3-.【评析】本题以简单的多空形式呈现,以正方形、直线与直线的位置关系为载体,考查坐标法的基本 应用.考点虽然稍冷,却有着浓浓的解析味.解决问题的关键在于,合理建立坐标系,恰当地表征几何对象,如倾斜角的引进,以及与斜率的互化,体现了基础性、综合性和应用性.【例11】已知曲线22:1C mx ny +=.( ) A. 若m >n >0,则C 是椭圆,其焦点在y 轴上B. 若m =n >0,则CC. 若mn <0,则C 是双曲线,其渐近线方程为y =D. 若m =0,n >0,则C 是两条直线 【解析】ACD【评析】曲线方程的特征及区别是求解的关键,是解析几何的基本工具,一定要熟知.【例12】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F .(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【解析】(1)由题意,椭圆半焦距c =3c e a ==,所以a = 又2221b a c =-=,所以椭圆方程为2213xy +=;(2)由(1)得,曲线为221(0)x y x +=>, 当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=, 由直线MN 与曲线221(0)x y x +=>相切可得1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212,324x x x x +=⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx t kt =+<即0kx y t -+=, 由直线MN 与曲线221(0)x y x +=>相切可得1=,所以221t k =+,联立2213y kx t x y =+⎧⎪⎨+=⎪⎩可得()222136330k x ktx t +++-=, 所以2121222633,1313kt t x x x x k k-+=-⋅=++,所以MN ==213k=+= 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N,F 三点共线的充要条件是||MN =【评析】问题归结——利用椭圆焦距的定义和椭圆离心率的定义;策略突破——利用椭圆焦距的定义和椭圆离心率的定义,构建方程,转化为求2,2a c 的值或齐次方程,从而求椭圆的方程.【建议】教学中要回归基础,即是回到知识的联系、回到思想方法、回到定义和基本性质中去.对于圆锥曲线而言,即是回到定义、方程、性质去,也是解决问题的认知基础.归纳:1.定义是事物本质属性的概括和反映,圆锥曲线许多性质都是由定义派生出来的.对某些圆锥曲线问题,采用“回归定义”的策略,把定量的计算和定性的分析有机地结合起来,则往往能获得题目所固有的本质属性,达到准确判断、合理运算、灵活解题的目的.2.求圆锥曲线方程常用的方法有直接法、定义法、待定系数法、参数法等.用待定系数法求圆锥曲线的标准方程时,要“先定型,后计算”.所谓“定型”,是指确定类型,也就是确定椭圆、双曲线的焦点所在的坐标轴是x 轴还是y 轴,抛物线的焦点是在x 轴的正半轴、负半轴,还是y 轴的正半轴、负半轴,从而设出相应的标准方程的形式;“计算”就是指运用方程思想、利用待定系数法求出方程中的a 2、b 2、p 的值(基本量法),最后代入椭圆、双曲线、抛物线的标准方程.3.求椭圆或双曲线的离心率时,应该寻求三角形中的边角之间的关系,从而建立a 、c 的齐次方程(求值)或者齐次不等式(求范围).4.证明充要条件的问题,不要只证明充分性,或只证明必要性,需注意:既要证明其充分性,又要证明其必要性.(二)弄清几何问题,选择代数方法,合理转化解析几何就是用代数方法来研究几何问题,即:几何问题→代数问题→代数结论→几何结论.所以,它的两大任务是:(1)把几何问题转化为代数问题,(2)研究代数问题,得出代数结论.【例13】设椭圆:C 2212+=x y 的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1) 当l 与x 轴垂直时,求直线AM 的方程; (2) 设O 为坐标原点,证明:OMA OMB ∠=∠.【解析】(1)由已知得(1,0)F ,l 的方程为1x =.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为2y x =-+2y x = (2)本题目标要研究的几何对象为角,这需要在图形中挖掘这两个角的几何特征或这个角的等价几何关系.特例情况当l 与x 轴重合时.①0OMA OMB ∠=∠=︒;②当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,将OMA OMB ∠=∠代数化,即角相等的证明可以有两个思路,即从 数量关系或几何关系来思考.为此,不妨设1221(,),(,)A y x y x B .思路1:从图形中直线的倾斜角直接切入,由位置特征,可以将问题转化为0MA MB k k +=; 思路2:从数量关系角度看,通过向量运算去获取,淡化几何特征,直接采取坐标运算,即证;思路3:从几何角度看,问题可以转化为运用角平分线定理,现坐标化,即证11AF y AM BFy BM==;思路4:从几何角度看,在坐标几何中,构造直角三角形相似来证. 思路5:从几何角度看,视为角平分线,用点到两边的距离进行代数化. 思路6:角平分线具有对称性,故可证明点A 关于x 轴的对称点在直线BM 上. 这么多的思路,如何代数化,要不要求坐标?程序化(算术化):即设直线方程,遵循不断求出的思路进行运算,求出点A ,B 坐标,后再计算; 结构化(关系化):即设直线方程,找出A ,B 坐标关系(这里的策略就是通常所说的“设而不求”, 再对要证的结构关系进行推演.事实上,程序化和结构化的代数思维没有特别的优劣,它都是代数思维的重要特征,它是一个不断螺旋上升的过程,只是大家目前都喜欢用结构化的思维,忽视程序化的思维,这是不对的,对结构化思维的形成与培养也不利.另外,即便用结构化思维进行推演,在设方程上也有此许的差别,如设l 的方程为(1)y k x =-或设x my t =+,还是有讲究的.【评析】解析法的过程,充满着概念与思辩,需要大家细细品味!绝不是机械模仿能达到的. 【建议】课堂中怎样将几何问题转化为代数问题?(1)要主动去理解几何对象的本质特征;(2)善于将几何条件、几何性质用代数的形式表达出来;(3)恰当选择代数化的形式,这点是关键:一要研究具体的几何对象具有什么样的几何特征(如果几何特征不清楚,就不可能准确将其代数化),这就要在审题上下功夫;二是选择最简洁的代数形式(方便后续的代数研究),这需要大局观;(4)注意等价转化.(三)增强几何意识,配合解析工具,巧妙转化解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,结合平面几何知识,这往往能减少计算量.数学试题中很多图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解.【例14】在平面直角坐标系xOy 中,已知圆C :22(3)2x y +-=,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则PQ 的取值范围为.分析:问题归结——定直线上的动点与圆上一点距离问题;策略突破——首先要明确目标PQ 垂径定理,在等腰PCQ △与Rt PCB △中,PC 形,问题溯源,选定较为直观的几何变量AC ,构建PQ 式:2PQ PB PCA ==∠==围,计算求解,又3AC ≥,所以21109AC <≤,因此PQ 的取值范围为. 【建议】直线与圆的三种位置关系:相切,相交,相离.解决直线与圆的问题时,一方面,要运用解析几何的一般方法,即代数化方法,把它转化为代数问题;另一方面,由于直线与圆和平面几何联系非常紧密,因此,准确地作出图形,挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.提高学生等价转化的能力——实现复杂问题简单化,陌生问题熟悉化.例如:①没有图形,不妨画个图形,以便直观思考;②“设—列—验”是求轨迹的通法;③消元转化为一元二次函数(方程),判别式,韦达定理,中点,弦长公式等要把握好;④多感悟“设—列—解”,“设”:设什么?坐标、方程、角、斜率、截距?“列”:列的前提是找等量关系,“解”:解就是转化、化简、变形,向目标靠拢;⑤紧扣题意,联系图形,数形结合;⑥一旦与自己熟悉的问题接轨立即入位.【例15】如图所示,过点(1,0)的直线与抛物线2y x =交于A 、B 线OA 和OB 分别和圆22(2)4x y -+=交于D 、E 两点,若OABODES S λ∆∆=,则λ等于A .12B .13C .14D .15【解析】设11(,)A x y 、22(,)B x y ,由2,(1)y x y k x ⎧=⎨=-⎩得222(21)0k x k x k -++=,即121x x ⋅=.又11222,y x ⎪⎨=⎪⎩所以12120x x y y ⋅+⋅=,即OA OB ⊥.设直线OA :1y k x =,直线OB :2y k x =,则121k k ⋅=-.由21,y x y k x ⎧=⎪⎨=⎪⎩得21111(,)A k k ,同理22211(,)B k k .由221(2)4,x y y k x ⎧-+=⎪⎨=⎪⎩得1221144(,)11k D k k ++,同理2222244(,)11k E k k ++. 所以OA =OB =OD =,OE . x所以221122*********(1)(1)2(1)(1)12116161642OAB ODEk k OA OBS k k k k S OD OE ∆∆++++++====≥.【建议】1.解析几何研究的对象是几何图形,善用巧用几何图形的特征,把几何特征转化为代数表示,从而缩短思维链条,简化运算过程;2.在几何图形中,利用解三角形和三角形相似等知识,转化为边角之间的关系解决解析几何问题.其中,解三角形的画图用图,体现数形结合的思想;利用角或边的关系消角(边),体现了消元的思想;用正弦、余弦定理列方程组求三角函数值,体现了方程思想.(四)重视平面解析几何中代数方法的思维训练代数的思维特征,可以概括为程序化:即有点类似于解应用题的算术思维,遵循不断求出的计算,即便引进参数,也当成假设已知,参与运算;构造性的:即有点类似于解应用题的方程思维,注重寻找关系,“设而不求”,推演求解.复习教学中,要通过恰当的事例,训练学生的代数思维,这使得解析几何的代数方法不是一招一式的技巧,而是有着行动指南的思维模式.【例16】已知抛物线2:2(0)C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.【解析】(1)抛物线C 的焦点为0,2p F ⎛⎫⎪⎝⎭,42p FM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =. (2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=.由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=. 由韦达定理可得1202x x x +=,1204x x y =,所以,AB===点P到直线AB的距离为d=,所以,()3220011422PABS AB d x y=⋅==-△,()()2222000000041441215621x y y y y y y-=-+-=---=-++,由已知可得53y-≤≤-,所以,当5y=-时,PAB△的面积取最大值321202⨯=.【评析】运算繁杂是解析几何最突出的特点.首先,解题中要指导学生克服只重视思路、轻视动手运算的缺点.运算能力差是学生普遍存在的问题,不仅在解析几何问题中要加强训练,在其它板块中也要加强训练,只有把提高学生的运算能力贯彻于教学的过程之中,才能收到较好的效果.其次,要培养学生运算的求简意识,充分发挥圆锥曲线的定义和利用平面几何知识化难为易、化繁为简的作用.【例17】过抛物线24y x=的焦点F的直线交抛物线于A、B两点,分别过A、B两点作准线的垂线,垂足分别为1A,1B两点,以线段1A1B为直径的圆C过点(2,3)-,则圆C的方程为A.22(1)(2)2x y++-=B.22(1)(1)5x y++-=C.22(1)(1)17x y+++=D.22(1)(2)26x y+++=分析一:问题归结——确定圆的方程的基本要素:过焦点的直线AB的方程及与抛物线的交点坐标()()1122,,,A x yB x y;策略突破——圆的两个关键量的代数形式:圆心和半径,确定参变量,引入关联变量——斜率的倒数t,可设直线AB:1x ty=+;;求解过程分析:联立方程组21,4,x tyy x=+⎧⎨=⎩消元得到2440y ty--=;由韦达定理得12124,4y y t y y+==-,则()1,2C t-,直径()()2221112161A B y y t=-=+;求半径()2212-3MC t=+,由22114A B MC=得方程()()()22161412-3t t+=+,则1=2t.回归圆:圆心(1,1)C-,半径的平方25MC=,答案选B.。
文科高考数学重难点04 解析几何(解析版)
重难点04 解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用.【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1,0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算.方法点睛:求解椭圆或双曲线的离心率的方法如下:a c(1)定义法:通过已知条件列出方程组,求得、的值,根据离心率的定义求解离心率e的值;a c e(2)齐次式法:由已知条件得出关于、的齐次方程,然后转化为关于的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题一、单选题1.(2020·贵州贵阳一中高三月考(文))已知圆C :(x +3)2+(y +4)2=4上一动点B ,则点B 到直线l :3x +4y +5=0的距离的最小值为()A .6B .4C .2D.【答案】C【分析】因为圆心到直线的距离,Cl 4d ==所以最小值为,422-=故选:C .2.(2020·河南开封市·高三一模(文))已知双曲线的离心率与椭圆221(0)x y m m -=>的离心率互为倒数,则该双曲线的渐近线方程为( )2213x y m m +=A .B .C .D.y =y x =y x =y =【答案】B【分析】双曲线的离心率为221(0)x y m m -=>e =在椭圆中,由于,则,所以焦点在轴上2213x y m m +=0m >30m m >>y 所以椭圆的离心率为2213x y m m +=e =解得:1=2m =所以双曲线的渐近线方程为:2212x y -=y x =±故选:B3.(2020·四川成都市·高三一模(文))已知平行于轴的一条直线与双曲线x 相交于,两点,,(为坐标原()222210,0x y a b a b -=>>P Q 4PQ a=π3PQO ∠=O点),则该双曲线的离心率为().A BC D【答案】D【分析】如图,由题可知,是等边三角形,POQ △,,4PQ a =()2,P a ∴将点P 代入双曲线可得,可得,22224121a a a b -=224b a =离心率.∴c e a ===故选:D.4.(2020·河南周口市·高三月考(文))已知直线:与圆:l 340x y m -+=C 有公共点,则实数的取值范围为( )226430x y x y +-+-=m A .B .C .D .()3,37[]37,3-[]3,4[]4,4-【答案】B 【分析】因为圆的标准方程为,C ()()223216x y -++=所以,半径,()3,2C -4r =所以点到直线C :340l x y m -+=根据题意可知,解得.1745m+≤373m -≤≤故选:B5.(2020·全国福建省漳州市教师进修学校高三三模(文))已知直线:210l kx y k --+=与椭圆交于A 、B 两点,与圆交于C 、D22122:1(0)x y C a b a b +=>>222:(2)(1)1C x y -+-=两点.若存在,使得,则椭圆的离心率的取值范围是( )[2,1]k ∈--AC DB =1CA .B .C .D .10,2⎛⎤ ⎥⎝⎦1,12⎡⎫⎪⎢⎣⎭⎛ ⎝⎫⎪⎪⎭【答案】C【分析】直线,即为,可得直线恒过定点,:210l kx y k --+=(2)10k x y -+-=(2,1)圆的圆心为,半径为1,且,为直径的端点,222:(2)(1)1C x y -+-=(2,1)C D 由,可得的中点为,AC DB =AB (2,1)设,,,,1(A x 1)y 2(B x 2)y 则,,2211221x y a b +=2222221x y a b +=两式相减可得,1212121222()()()()0x x x x y y y y a b +-+-+=由.,124x x +=122y y +=可得,由,即有,2122122y y b k x x a -==--21k -- (2)2112b a……则椭圆的离心率.(0c e a ==故选:C6.(2020·全国高三其他模拟(文))已知,为的两个顶点,点()1,0A ()3,0B ABC :C在抛物线上,且到焦点的距离为13,则的面积为( )24x y =ABC :A .12B .13C .14D .15【答案】A【分析】解:因为点在抛物线上,设,C 24x y =()00,C x y 抛物线的准线方程为,24x y =1y =-根据抛物线的性质,抛物线上的点到焦点的距离等于到准线的距离.由,得,0113y +=012y =所以.()01131121222ABC S AB y =⨯⋅=⨯-⨯=△故选:A7.(2020·四川成都市·高三一模(文))已知抛物线的焦点为,过的直线24x y =F F l 与抛物线相交于,两点,.若,则( ).A B 70,2P ⎛-⎫ ⎪⎝⎭PB AB ⊥AF =A .B .C .D .322523【答案】D【分析】由题意可知,,设,,()0,1F 211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭则,,2227,42x PB x ⎛⎫=+ ⎪⎝⎭ 222,14x BF x ⎛⎫=-- ⎪⎝⎭ 因为,且,,三点共线,则由可得,PB AB ⊥A B F 0AB PB ⋅= 0BF PB ⋅=所以,即,222222710424x x x ⎛⎫⎛⎫-++-= ⎪⎪⎝⎭⎝⎭422226560x x+-=解得或(舍),所以.222x =2228x =-2x =设直线的方程为,与抛物线方程联立,AB 1y kx =+得,消去得,则,所以.214y kx x y =+⎧⎨=⎩y 2440x kx --=124x x =-1x =±则.21124x y ==所以.12213y F pA =+==+故选:D.8.(2020·四川高三一模(文))已知直线与双曲线:y kx =C ()222210,0x y a b a b -=>>相交于不同的两点,,为双曲线的左焦点,且满足,(A B F C 3AF BF=OA b=为坐标原点),则双曲线的离心率为()O C AB C .2D【答案】B【分析】设是右焦点,则,,即,F 'BF AF '=3AF BF=3AF AF '=又,∴,,而,∴22AF AF AF a''-==AF a'=3AF a=,OA b OF c'==,OA AF '⊥由得,AOF AOF π'∠+∠=cos cos 0AOFAOF '∠+∠=∴,整理得.222902b c a b bc c +-+===ce a 故选:B .9.(2020·河南新乡市·高三一模(文))已知双曲线的左、()2222:10,0x y C a b a b -=>>右焦点分别为、,过原点的右支于点,若1F 2F O C A ,则双曲线的离心率为( )1223F AF π∠=AB 1C D【答案】D 【分析】推导出,可计算出,利用余弦定理求得112F OA F AF :::1F A =2AF =,进而可得出该双曲线的离心率为,即可得解.1212F F e AF AF =-【详解】题可知,,,123F OA π∠=121AF O F AF ∠=∠ 112F OA F AF ∠=∠112F OA F AF ∴:△△,所以,可得.11112F O F AF A F F =1F A =在中,由余弦定理可得,12F AF :22212121222cos3F F AF AF AF AF π=+-⋅即,解得.2220AF c +=2AF=双曲线的离心率为.1212F F e AF AF ===-故选:D.【点睛】10.(2020·全国高三专题练习(文))已知圆,则在轴和轴上22:(2)2C x y ++=x y 的截距相等且与圆相切的直线有几条( )C A .1条B .2条C .3条D .4条【答案】C【分析】若直线不过原点,其斜率为,设其方程为,1-y x m =-+则,解得或,d 0m =4-当时,直线过原点;0m =若过原点,把代入,()0,0()2200242++=>即原点在圆外,所以过原点有2条切线,综上,一共有3条,故选:C .二、解答题11.(2020·四川成都市·高三一模(文))已知椭圆的离心率()2222:10x y C a b a b +=>>,且直线与圆相切.1x ya b +=222x y +=(1)求椭圆的方程;C(2)设直线与椭圆相交于不同的两点﹐,为线段的中点,为坐标原l C A B M AB O 点,射线与椭圆相交于点,且,求的面积.OM C P OP OM=ABO :【答案】(1);(2.22163x y +=【分析】(1,∴(为半焦距).c a=c∵直线与圆.1x ya b +=222x y +==又∵,∴,.222c b a +=26a =23b =∴椭圆的方程为.C 22163x y +=(2)(ⅰ)当直线的斜率不存在时,l 设直线的方程为.l (x nn =<<∵,∴.OP OM==225n =∴.ABOS ==△(ⅱ)当直线的斜率存在时,设直线,l ():0l y kx m m =+≠,.()11,A x y ()22,B x y 由,消去,得.22163y kx mx y =+⎧⎪⎨+=⎪⎩y ()222214260k x kmx m +++-=∴,即.()()()2222221682138630k m k m k m ∆=-+-=-+>22630k m -+>∴,.122421kmx x k +=-+21222621m x x k -=+∴线段的中点.AB 222,2121kmm M k k ⎛⎫- ⎪++⎝⎭当时,∵,∴.0k =OP OM==215m =∴.ABOS =△当时,射线所在的直线方程为.0k ≠OM 12y x k =-由,消去,得,.2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩y 2221221P k x k =+22321Py k =+∴M POMy OPy ===∴.经检验满足成立.22521m k =+0∆>设点到直线的距离为,则.O ld d =∴212ABOS x =-===△综上,.ABO :12.(2020·云南高三其他模拟(文))已知椭圆的左右焦点分2222:1(0)x y C a b a b +=>>别为,离心率为,椭圆上的点到点的距离之和等于4.12,F F 12C 31,2M ⎛⎫ ⎪⎝⎭12,F F (1)求椭圆的标准方程;C(2)是否存在过点的直线与椭圆相交于不同的两点,,满足()2,1P l C A B 若存在,求出直线的方程;若不存在,请说明理由.2PA PB PM ⋅= l 【答案】(1);(2)存在直线满足条件,其方程为.22143x y +=l 12y x =【分析】解:(1)由题意得,所以.2221224c a a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩21a c b ⎧=⎪=⎨⎪=⎩故椭圆的标准方程为.C 22143x y +=(2)若存在满足条件的直线,则直线的斜率存在,设其方程为.l l (2)1y k x =-+代入椭圆的方程得.C 222(34)8(21)161680k x k k x k k +--+--=设,两点的坐标分别为,,A B ()11,x y ()22,x y 所以.所以,222[8(21)]4(34)(16168)32(63)0k k k k k k ∆=---+--=+>12k >-且,.1228(21)34k k x x k -+=+21221616834k k x x k --=+因为,即,2PA PB PM ⋅= 12125(2)(2)(1)(1)4x x y y --+--=所以.2212(2)(2)(1)54x x k PM --+==即.[]2121252()4(1)4x x x x k -+++=所以,222222161688(21)44524(1)3434344k k k k k k k k k ⎡⎤---+-⋅++==⎢⎥+++⎣⎦解得.12k =±又因为,所以.12k >-12k =所以存在直线满足条件,其方程为.l 12y x =13.(2020·广西北海市·高三一模(文))已知抛物线的准线为2:2(0)C x py p =>,焦点为F .1y =-(1)求抛物线C 的方程;(2)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,求的最小值.||||AP BQ ⋅【答案】(1);(2)2.24x y =【分析】(1)因为抛物线的准线为,12py =-=-解得,2p =所以抛物线的方程为.24x y =(2)由已知可判断直线l 的斜率存在,设斜率为k ,由(1)得,则直线l 的方程为.(0,1)F 1y kx =+设,,211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭由消去y ,得,214y kx x y =+⎧⎨=⎩2440x kx --=所以,.124x x k +=124x x =-因为抛物线C 也是函数的图象,且,214y x =12y x '=所以直线PA 的方程为.()2111142x y x x x -=-令,解得,所以,0y =112x x =11,02P x ⎛⎫ ⎪⎝⎭从而||AP =同理得||BQ =所以,||||AP BQ ⋅==,=,==当时,取得最小值2.0k =||||AP BQ ⋅14.(2020·广东东莞市·高三其他模拟(文))在平面直角坐标系中,已知两定点xOy,,动点满足.()2,2A -()0,2B P PAPB=(1)求动点的轨迹的方程;P C (2)轨迹上有两点,,它们关于直线:对称,且满足C E F l 40kx y +-=,求的面积.4OE OF ⋅=OEF ∆【答案】(1)动点的轨迹是圆,其方程为(2)P ()()22228x y -+-=【分析】(1)设动点的坐标为,则.P (),xyPAPB==整理得,故动点的轨迹是圆,且方程为.()()22228x y -+-=P ()()22228x y -+-=(2)由(1)知动点的轨迹是圆心为,半径的圆,圆上两点,关P ()2,2C R =E F 于直线对称,由垂径定理可得圆心在直线:上,代入并求得l ()2,2l 40kx y +-=1k =,故直线的方程为.l 40x y +-=易知垂直于直线,且.OC l OC R=设的中点为,则EF M ()()OE OF OM ME OM MF⋅=+⋅+()()OM ME OM ME=+⋅- ,又,.224OM ME =-= 22222OM OC CM R CM =+=+ 222ME R CM =-∴,,∴,.224CM = CM =ME==2FE ME == 易知,故到的距离等于,∴OC FE :O FE CM 12OEF S ∆=⨯=15.(2020·全国高三专题练习)在平面直角坐标系中,已知椭圆xOy 的长轴长为6,且经过点,为左顶点,为下顶点,椭22221(0)x y a b a b +=>>3(2Q A B 圆上的点在第一象限,交轴于点,交轴于点.P PA y C PB x D (1)求椭圆的标准方程(2)若,求线段的长20OB OC +=PA (3)试问:四边形的面积是否为定值?若是,求出该定值,若不是,请说明理由ABCD 【答案】(1);(2;(3)是定值,6.22194x y +=【分析】(1)解:由题意得,解得.26a =3a =把点的坐标代入椭圆C 的方程,得Q 22221x y a b +=229314ab +=由于,解得3a =2b =所以所求的椭圆的标准方程为.22194x y +=(2)解:因为,则得,即,20OB OC += 1(0,1)2OC OB =-=(0,1)C 又因为,所以直线的方程为.(3,0)A -AP 1(3)3y x =+由解得(舍去)或,即得221(3)3194y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩30x y =-⎧⎨=⎩27152415x y ⎧=⎪⎪⎨⎪=⎪⎩2724,1515P ⎛⎫ ⎪⎝⎭所以||AP ==即线段AP (3)由题意知,直线的斜率存在,可设直线.PB 2:23PB y kx k ⎛⎫=-> ⎪⎝⎭令,得,0y =2,0D k ⎛⎫⎪⎝⎭由得,解得(舍去)或222194y kx x y =-⎧⎪⎨+=⎪⎩()2249360k x kx +-=0x =23649kx k =+所以,即2218849k y k -=+22236188,4949k k P k k ⎛⎫- ⎪++⎝⎭于是直线的方程为,即AP 22218849(3)36314k k y x k k -+=⨯+++2(32)(3)3(32)k y x k -=++令,得,即,0x =2(32)32k y k -=+2(32)0,32k C k -⎛⎫ ⎪+⎝⎭所以四边形的面积等于ABDC 1||||2AD BC ⨯⨯122(32)13212326232232k k k k k k k -+⎛⎫⎛⎫=+⋅+=⋅⋅= ⎪ ⎪++⎝⎭⎝⎭即四边形的面积为定值.ABDC 16.(2020·江西南昌市·南昌二中高三其他模拟(文))已知抛物线的()220y px p =->焦点为,轴上方的点在抛物线上,且,直线与抛物线交于,F x ()2,M m -52MF =l A 两点(点,与不重合),设直线,的斜率分别为,.B A B M MA MB 1k 2k (Ⅰ)求抛物线的方程;(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.122k k +=-l 【答案】(Ⅰ);22y x =-(Ⅱ)见解析.(Ⅰ)由抛物线的定义可以,5(2)22p MF =--=,抛物线的方程为.1p ∴=22y x =-(Ⅱ)由(Ⅰ)可知,点的坐标为M (2,2)-当直线斜率不存在时,此时重合,舍去. l ,A B 当直线斜率存在时,设直线的方程为l l y kx b=+设,将直线与抛物线联立得:()()1122,,,A x y B x y l 2222(22)02y kx bk x kb x b y x=+⎧+++=⎨=-⎩212122222,kb b x x x x k k --+==①又,12121222222y y k k x x --+=+=-++即,()()()()()()1221122222222kx b x kx b x x x +-+++-+=-++,()()()()12121212121222248248kx x k x x b x x x x b x x x x ++++-++-=--+-,()1212(2+2)(2+2)40k x x k b x x b ++++=将①代入得,222(1)0b b k b ---+=即(1)(22)0b b k +--=得或1b =-22b k =+当时,直线为,此时直线恒过;1b =-l 1y kx =-(0,1)-当时,直线为,此时直线恒过(舍去)22b k =+l 22(2)2y kx k k x =++=++(2,2)-所以直线恒过定点.l (0,1)-。
高考数学解析几何难题精讲
高考数学解析几何难题精讲在高考数学中,解析几何一直是让众多考生头疼的难题之一。
它不仅需要我们具备扎实的数学基础知识,还要求我们有较强的逻辑思维能力和运算能力。
今天,咱们就一起来攻克这个难关,把那些让人望而生畏的难题逐个击破。
首先,咱们得明白解析几何到底是研究啥的。
简单来说,解析几何就是用代数的方法来研究几何图形的性质。
它把几何图形中的点、线、面等元素与代数中的方程、函数等联系起来,通过计算和推理来解决问题。
那么,高考中常见的解析几何难题都有哪些类型呢?一类是求曲线的方程。
这就要求我们熟练掌握各种曲线的定义和标准方程,比如椭圆、双曲线、抛物线。
有时候题目不会直接告诉我们曲线的类型,而是给一些条件让我们去判断和推导。
这时候就需要我们细心分析条件,找到关键的等量关系,然后设出合适的方程,再通过代数运算求解。
比如说,给了一个动点到两个定点的距离之和为定值,那我们就要想到这可能是个椭圆,然后根据椭圆的定义和性质来设方程求解。
再一类难题是有关直线与曲线的位置关系。
这可是个重点中的重点!经常会让我们判断直线与曲线有没有交点,有几个交点,或者求交点的坐标等等。
解决这类问题,通常要把直线方程和曲线方程联立起来,得到一个方程组,然后通过判别式来判断。
如果判别式大于零,就有两个交点;等于零,有一个交点;小于零,没有交点。
但要注意,有时候联立方程组后的运算会比较复杂,这就考验我们的运算能力和耐心啦。
还有一类难题是求最值和范围问题。
比如说求某个线段的长度的最值,或者某个角的取值范围。
这时候往往需要我们结合图形的性质,运用函数的思想来解决。
比如,把要求的量表示成某个变量的函数,然后通过求函数的最值或者值域来得到答案。
但这过程中可能会涉及到一些不等式的运用,比如均值不等式、柯西不等式等等。
下面咱们通过几个具体的例子来看看怎么解题。
例1:已知椭圆\(C:\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a > b > 0\))的离心率为\(\frac{\sqrt{3}}{2}\),短轴长为 2。
高考数学压轴大题解析几何
高考数学压轴大题-解析几何1. 设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.I 求双曲线C 的离心率e 的取值范围:II 设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值.解:I 由C 与t 相交于两个不同的点,故知方程组有两个不同的实数解.消去y 并整理得1-a 2x 2+2a 2x -2a 2=0. ① 双曲线的离心率II 设)1,0(),,(),,(2211P y x B y x A由于x 1+x 2都是方程①的根,且1-a 2≠0,2. 已知)0,1(,)0,1(21F F -为椭圆C 的两焦点,P 为C 上任意一点,且向量21PF PF 与向量的夹角余弦的最小值为31.Ⅰ求椭圆C 的方程;Ⅱ过1F 的直线l 与椭圆C 交于M 、N 两点,求OMN ∆O 为原点的面积的最大值及相应的直线l 的方程.解:Ⅰ设椭圆的长轴为2a ,a 2=+22==c =2121221242)(PF PF PF PF PF PF ⋅-⋅-+=1244212-⋅-PF PF a又212PF PF ⋅≥∴221a PF PF ≤⋅即31211244cos 222=-=--≥aa a θ ∴32=a ∴椭圆方程为12322=+y x Ⅱ 由题意可知NM 不可能过原点,则可设直线NM 的方程为:my x =+1 设),(11y x M ),(22y x N()1111212OMN F OM F ON S S S OF y y ∆∆∆=+=+=2121y y -即 044)32(22=--+my y m . 由韦达定理得:∴212212214)(y y y y y y -+=-= 3216)32(162222+++m m m =222)32()1(48++m m 令12+=m t , 则1≥t ∴221y y -=41448)12(482++=+tt t t .又令tt t f 14)(+=, 易知)(t f 在1,+∞上是增函数,所以当1=t ,即0=m 时)(t f 有最小值5.∴221y y -有最大值316∴OMN S ∆ 的面积有最大值332.直线l 的方程为1-=x .3. 椭圆E 的中心在原点O,焦点在x 轴上,离心率e过点C 1,0的直线l 交椭圆于A 、B 两点,且满足:CA =BC λ 2λ≥.Ⅰ若λ为常数,试用直线l 的斜率kk ≠0表示三角形OAB 的面积. Ⅱ若λ为常数,当三角形OAB 的面积取得最大值时,求椭圆E 的方程.Ⅲ若λ变化,且λ= k 2+1,试问:实数λ和直线l 的斜率()k k ∈R 分别为何值时,椭圆E 的短半轴长取得最大值并求出此时的椭圆方程.解:设椭圆方程为22221+=x y a ba >b >0,由e =caa 2=b 2c 2得a 2=3 b 2,故椭圆方程为x 2+3y 2= 3b 2. ① Ⅰ∵直线l :y = kx +1交椭圆于Ax 1,y 1,Bx 2,y 2两点,并且CA =BC λ λ≥2, ∴x 11,y 1 =λ1x 2,y 2, 即12121(1)x x y y λλ+=-+⎧⎨=-⎩ ②把y = kx 1代入椭圆方程,得3k 21x 26k 2x 3k 23b 2= 0, 且 k 2 3b 21b 2>0 ,∴x 1x 2= 22631k k +, ③x 1x 2=2223331k b k -+, ④∴O A B S ∆=12|y 1y 2| =12|λ1|·| y 2| =|1|2λ+·| k |·| x 21|.联立②、③得x 21=22(1)(31)k λ-+,∴O A B S ∆=11λλ+-·2||31k k + k ≠0.ⅡO AB S ∆=11λλ+-·2||31k k + =11λλ+-·113||||k k + ≤11λλ+-λ≥2. 当且仅当3| k | =1||k ,即k=,O AB S ∆取得最大值,此时x 1x 2= 1. 又∵x 11= λ x 21,∴x 1=11λ-,x 2= 1λλ-,代入④得3b 2=221(1)λλ+-.此时3b 2≥5,,k b 的值符合故此时椭圆的方程为x 2+3y 2=221(1)λλ+-λ≥2.Ⅲ由②、③联立得:x 1=22(1)(31)k λλ--+1, x 2=22(1)(31)k λ-+1,将x 1,x 2代入④,得23b =224(1)(31)k λλ-+1.由k 2=λ1得23b =24(1)(32)λλλ-- 1=432212(1)(1)(32)λλλ⎡⎤+⎢⎥---⎣⎦+1.易知,当2λ≥时,3b 2是λ的减函数,故当2λ=时,23b 取得最大值3. 所以,当2λ=,k =±1符合时,椭圆短半轴长取得最大值, 此时椭圆方程为x 2 3y 2 = 3.4. 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. I 求椭圆的离心率;II 设M 为椭圆上任意一点,且(,)OM OA OB λμλμ=+∈R ,证明22μλ+为定值.解:I 设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入.化简得02)(22222222=-+-+b a c a cx a x b a . 令),,(),,(2211y x B y x A则 .,22222222122221b a b a c a x x b a c a x x +-=+=+),,(2121y y x x OB OA ++=+由a OB OA a 与+-=),1,3(共线,得II 证明:由I 知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),(y x M 在椭圆上,即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由I 知.21,23,23222221c b c a c x x ===+又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ 故22μλ+为定值,定值为1.5. 已知椭圆2212x y +=的左焦点为F,O 为坐标原点.I 求过点O 、F,并且与椭圆的左准线l 相切的圆的方程;II 设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G,求点G 横坐标的取值范围.解:I 222,1,1,(1,0),: 2.a b c F l x ==∴=-=-圆过点O 、F,∴圆心M 在直线12x =-上;设1(,),2M t -则圆半径由,OM r =3,2=解得t =∴所求圆的方程为2219()(.24x y ++=II 设直线AB 的方程为(1)(0),y k x k =+≠代入221,2x y +=整理得2222(12)4220.k x k x k +++-=直线AB 过椭圆的左焦点F,∴方程有两个不等实根; 记1122(,),(,),A x y B x y AB 中点00(,),N x y 则21224,21k x x k +=-+AB ∴的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得∴点G 横坐标的取值范围为1(,0).2-6. 已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 满足OA OB OA OB +=-.设圆C 的方程为 I 证明线段AB 是圆C 的直径;II 当圆C 的圆心到直线X-2Y=0的距离的最小值为5时,求p 的值; I 证明1:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅=设Mx,y 是以线段AB 为直径的圆上的任意一点,则0MA MB ⋅= 即1212()()()()0x x x x y y y y --+--= 整理得:221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径 证明2:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅=12120x x y y ∴⋅+⋅= (1)设x,y 是以线段AB 为直径的圆上则 即2112211(,)y y y y x x x x x x x x --⋅=-≠≠-- 去分母得: 1212()()()()0x x x x y y y y --+--=点11122122(,),(,),(,)(,)x y x y x y x y 满足上方程,展开并将1代入得: 故线段AB 是圆C 的直径 证明3:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅= 12120x x y y ∴⋅+⋅= (1)以线段AB 为直径的圆的方程为展开并将1代入得: 221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径 II 解法1:设圆C 的圆心为Cx,y,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅=所以圆心的轨迹方程为222y px p =- 设圆心C 到直线x-2y=0的距离为d,则当y=p 时,d=2p ∴=. 解法2: 设圆C 的圆心为Cx,y,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅=所以圆心的轨迹方程为222y px p =-设直线x-2y+m=0到直线x-2y=0则2m =± 因为x-2y+2=0与222y px p =-无公共点,所以当x-2y-2=0与222y px p =-仅有一个公共点时,该点到直线x-2y=0将2代入3得222220y py p p -+-= 2244(22)0p p p ∴∆=--= 解法3: 设圆C 的圆心为Cx,y,则 圆心C 到直线x-2y=0的距离为d,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅= 当122y y p +=时,d=2p ∴=.11、如图设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.1若6ED DF =,求k 的值; 2求四边形AEBF 面积的最大值. 11.Ⅰ解:依题设得椭圆的方程为2214xy +=, 直线AB EF ,的方程分别为22x y +=,(y kx k => 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中1x < 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+, 化简得2242560k k -+=, 解得23k =或38k =. 6分 Ⅱ解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==,2h ==9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 14(12525(14k k +=+== ≤ 当21k =,即当12k =时,上式取等号.所以S 的最大值为. 12分解法二:由题设,1BO =,2AO =. 设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为 BEF AEF S S S =+△△222x y =+9分===当222x y =时,上式取等号.所以S的最大值为 12分12、已知椭圆(222:13x y E a a +=>的离心率12e =. 直线x t =0t >与曲线E 交于不同的两点,M N ,以线段MN 为直径作圆C ,圆心为C .1 求椭圆E 的方程;2 若圆C 与y 轴相交于不同的两点,A B ,求ABC ∆的面积的最大值.12、1解:∵椭圆()222:133x y E a a+=>的离心率12e =, 12=. …… 2分 解得2a =. ∴ 椭圆E 的方程为22143x y +=. …… 4分 2解法1:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=. ∴ 圆C的半径为2r =. …… 6分 ∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴0t <<,即0t <<.∴弦长||AB ===. …… 8分∴ABC ∆的面积12S =⋅ …… 9分7=. …… 12分=,即7t =时,等号成立. ∴ ABC ∆. …… 14分 解法2:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=.∴ 圆C的半径为2r =. …… 6分 ∴ 圆C 的方程为222123()4t x t y --+=.∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴0t <<,即07t <<.在圆C 的方程222123()4t x t y --+=中,令0x =,得2y =±,∴弦长||AB =. …… 8分 ∴ABC ∆的面积12S =⋅ …… 9分7=. ……12分=,即7t=时,等号成立. ∴ABC∆.15、已知椭圆∑:12222=+byax>>ba的上顶点为)1,0(P,过∑的焦点且垂直长轴的弦长为1.若有一菱形ABCD的顶点A、C在椭圆∑上,该菱形对角线BD所在直线的斜率为1-.⑴求椭圆∑的方程;⑵当直线BD过点)0,1(时,求直线AC的方程;⑶本问只作参考......,.不计入总分.....当3π=∠ABC时,求菱形ABCD面积的最大值.15、解:⑴依题意,1=b……1分,解12222=+byac……2分,得aby2||=……3分,所以122=ab,2=a……4分,椭圆∑的方程为1422=+yx……5分;⑵直线BD:1)1(1+-=-⨯-=xxy……7分,设AC:bxy+=……8分,由方程组⎪⎩⎪⎨⎧=++=1422yxbxy得0)1(24522=-++bbxx……9分,当05)1(454)2(222>-=-⨯⨯-=∆bbb时……10分,),(11yxA、),(22yxC的中点坐标为54221bxx-=+,5222121bbxxyy=++=+……12分,ABCD是菱形,所以AC的中点在BD上,所以1545+=bb……13分,解得35-=b,满足052>-=∆b,所以AC的方程为35-=xy……14分;⑶本小问不计入总分,仅供部分有余力的学生发挥和教学拓广之用因为四边形ABCD为菱形,且3π=∠ABC,所以BCACAB==,所以菱形ABCD的面积223ACS⨯=,由⑵可得2122122122122)(2)(2)()(xxxxyyxxAC+=-=-+-=222212532532)1(548)58(28bbbxx⨯-=-⨯⨯--⨯=-,因为5||<b,所以当且仅当0=b时,菱形ABCD的面积取得最大值,最大值为531653223=⨯;。
专题09 解析几何专题(数学文化)(原卷版)2023年新高考数学创新题型微专题
A.
1 59
B.
1 2
C. 29 56
D.
1 57
7.(2022 秋·福建·高二校联考期中)几何学史上有一个著名的米勒问题:“设点 M , N 是锐角 AQB 的一边 QA
上的两点,试在 QB 边上找一点 P ,使得 MPN 最大.”如图,其结论是:点 P 为过 M , N 两点且和射线 QB
相切的圆与射线 QB 的切点.根据以上结论解决以下问题:在平面直角坐标系 xOy 中,给定两点
我们垂直地缩小一个圆时,我们得到一个椭圆,椭圆的面积等于圆周率 与椭圆的长半轴长与短半轴长的乘
积,已知椭圆 C :
x2 a2
y2 b2
1(a
b
0)
的面积为 6
2 ,两个焦点分别为 F1, F2 ,点 P 为椭圆 C 的上顶点.直
线 y kx 与椭圆 C 交于 A,B 两点,若 PA, PB 的斜率之积为 8 ,则椭圆 C 的长轴长为( ) 9
R 的纵坐标为( )
A. 3
B.2
C. 2 3
D.4
6.(2022 秋·新疆乌鲁木齐·高二乌市八中校考期中)德国天文学家开普勒发现天体运行轨道是椭圆,已知地
球运行的轨道是一个椭圆,太阳在它的一个焦点上,若轨道近日点到太阳中心的距离和远日点到太阳中心
的距离之比为 28 : 29 ,那么地球运行轨道所在椭圆的离心率是( )
A.3
B.6
C. 2 2
D. 4 2
12.(2022 秋·北京·高二北京工业大学附属中学校考期中)著名数学家华罗庚曾说过:“数无形时少直觉,形
少数时难入微.”事实上,有很多代数问题可以转化为几何问题加以解决,如: x a2 y b2 可以转化为
(参考答案)2023高考数学难点突破2(2):解析几何
2023高考数学难点突破专题训练(2)解析几何★应知应会椭圆的基本量1. 如图(1),过椭圆的一个焦点且与长轴垂直的弦AB=________,称为通径.图(1)图(2)2. 如图(2),P为椭圆上的点,F1,F2为椭圆的两个焦点,且∠F1PF2=θ,则△F1PF2的面积为________.3. 椭圆上的点到焦点距离的最大值为________,最小值为________.4. 设P,A,B是椭圆上不同的三点,其中A,B关于原点对称,则直线P A与PB的斜率之积为定值________.1. 2b2a 2. b2·tanθ2 3. a+c a-c 4. -b2a2直线与椭圆1. 直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx +c=0(或ay2+by+c=0).(1) 若a≠0,可考虑一元二次方程的判别式Δ,有:①Δ>0直线与圆锥曲线________;②Δ=0直线与圆锥曲线________;③Δ<0直线与圆锥曲线________.2. 圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=________.1. (1) ①相交②相切③相离2. 1+k2|x2-x1|=1+1k2|y2-y1|双曲线的基本量运算1. 过双曲线的一个焦点且与实轴垂直的弦的长为________.2. 如图,P 为双曲线上的点,F 1,F 2为双曲线的两个焦点,且∠F 1PF 2=θ,则△F 1PF 2的面积为________.3. 焦点到渐近线的距离为________.4. 设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,则直线P A 与PB 的斜率之积为________.1. 2b 2a2. b 2tan θ2 3. b 4. b 2a 2 抛物线设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则:(1) x 1x 2=p 24,y 1y 2=-p 2; (2) AF =p 1-cos α ,BF =p 1+cos α ,弦长AB =x 1+x 2+p =2p sin 2α(α为弦AB 的倾斜角);(3) 1F A +1FB =2p; (4) 以弦AB 为直径的圆与准线相切;(5) 以AF 或BF 为直径的圆与y 轴相切;(6) 过焦点弦的端点的切线互相垂直且交点在准线上.直线与圆锥曲线1. 已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)上任意一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别与x 轴交于P ,Q 两点,O 为椭圆的中心,则OP ·OQ =a 2.2. 已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)上任意一点M (除短轴端点外)与短轴两端点B 1,B 2的连线的斜率分别为k 1,k 2,则k 1k 2=-b 2a 2 . 3. 过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A ,B 两点,且A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2. 4. 过抛物线y 2=2px (p >0)的顶点O 作两条互相垂直的直线交抛物线于A ,B 两点,则直线AB 过定点(2p ,0).。
2023年高考数学热点专题解析几何模型通关圆追曲线中的定值问题(解析版)
圆锥曲线中的定值问题思路引导处理圆锥曲线中定值问题的方法:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.母题呈现考法1证明某些几何量为定值【例2】(2022·湖北省天门中学模拟预测)在平面直角坐标系xOy 中,已知椭圆C :x 4+y 2=1,点P (x 1,y 1),Q (x 2,y 2)是椭圆C 上两个动点,直线OP ,OQ 的斜率分别为k 1,k 2,若m =11(,)2x y ,n =22(,)2x y ,m·n =0.(1)求证:k 1·k 2=-14;(2)试探求△OPQ 的面积S 是否为定值,并说明理由.【解题指导】【解析】(1)证明:∵k 1,k 2均存在,∴x 1x 2≠0.又m·n =0,∴x 1x 24+y 1y 2=0,即x 1x24=-y 1y 2,∴k 1·k 2=y 1y 2x 1x 2=-14.(2)①当直线PQ 的斜率不存在,即x 1=x 2,y 1=-y 2时,由y 1y 2x 1x 2=-14,得x 214-y 21=0.又∵点P (x 1,y 1)在椭圆上,∴x 214+y 21=1,∴|x 1|=2,|y 1|=22.∴S △POQ =12|x 1||y 1-y 2|=1.②当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +b .kx +b ,y 2=1,消去y 并整理得(4k 2+1)x 2+8kbx +4b 2-4=0,其中Δ=(8kb )2-4(4k 2+1)(4b 2-4)=16(1+4k 2-b 2)>0,即b 2<1+4k 2.∴x 1+x 2=-8kb4k 2+1,x 1x 2+1∵x 1x 24+y 1y 2=0,∴x 1x 24+(kx 1+b )(kx 2+b )=0,得2b 2-4k 2=1(满足Δ>0).∴S △POQ =12·|b |1+k 2·|PQ |=12|b |x 1+x 22-4x 1x 2=2|b |4k 2+1-b 24k 2+1=1.综合①②知△POQ 的面积S 为定值1.【解题技法】参数法解决圆锥曲线中最值问题的一般步骤【跟踪训练】(2020·北京卷)已知椭圆C :x 2a 2+y 2b 2=1过点A (-2,-1),且a =2b .(1)求椭圆C 的方程;(2)过点B (-4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =-4于点P ,Q ,求|PB ||BQ |的值.解(1)由椭圆过点A (-2,-1),得4a 2+1b 2=1.又a =2b ,∴44b 2+1b2=1,解得b 2=2,∴a 2=4b 2=8,∴椭圆C 的方程为x 28+y 22=1.(2)当直线l 的斜率不存在时,显然不合题意.设直线l :y =k (x +4),=k (x +4),2+4y 2=8得(4k 2+1)x 2+32k 2x +64k 2-8=0.由Δ>0,得-12<k <12.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-32k 24k 2+1,x 1x 2=64k 2-84k 2+1.又∵直线AM :y +1=y 1+1x 1+2(x +2),令x =-4,得y P =-2(y 1+1)x 1+2-1.将y 1=k (x 1+4)代入,得y P =-(2k +1)(x 1+4)x 1+2.同理y Q =-(2k +1)(x 2+4)x 2+2.∴y P +y Q =-(2k +1)121244(,)22x x x x ++++=-(2k +1)·2x 1x 2+6(x 1+x 2)+16(x 1+2)(x 2+2)=-(2k +1)·2(64k 2-8)4k 2+1+6×(-32k 2)4k 2+1+16(x 1+2)(x 2+2)=-(2k +1)×128k 2-16-192k 2+64k 2+16(4k 2+1)(x 1+2)(x 2+2)=0.∴|PB |=|BQ |,∴|PB ||BQ |=1.考法2证明某些代数式为定值【例3】(2022·山东泰安·三模)已知椭圆2222:1x y E a b +=(a >b >0)的离心率2e =,四个顶点组成的菱形面积为O 为坐标原点.(1)求椭圆E 的方程;(2)过228:3O x y +=上任意点P 做O 的切线l 与椭圆E 交于点M ,N ,求证PM PN ⋅ 为定值.【解题指导】【解析】(1)由题意得2ab =,2c e a ==,222a b c =+可得a =b =2,所以椭圆的标准方程为22184x y +=.(2)当切线l的斜率不存在时,其方程为x =【提醒】求直线方程时忽略直线斜率不存在的情况.当3x =时,将3x =代入椭圆方程22184x y +=得3y =±,∴33M ⎛ ⎝⎭,,33N ⎛⎫- ⎪ ⎪⎝⎭,,03P ⎛⎫⎪ ⎪⎝⎭,,0,PM PN ⎛⎛== ⎝⎭⎝⎭ ∴83PM PN ⋅=-当x =83PM PN ⋅=- ,当切线l 的斜率存在时,设l 的方程为y kx m =+,()11,M x y ,()22,N x y ,因为l 与O3=,所以22388m k =+【技巧】圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.由22184y kx m x y =+⎧⎪⎨+=⎪⎩,得()222124280k x kmx m +++-=,∴122412km x x k +=-+,21222812m x x k -=+∴()()()2PM PN OM OP ON OP OP OP OM OP ON OM ON⋅=-⋅-=-⋅-⋅+⋅()()()22283OPOPOPOM ON OM ON=--+⋅=-+⋅()()12121212OM ON x x y y x x kx m kx m ⋅=+=+++()()2212121k x x km x x m =++++()2222222228438810121212m kmm k k km m k kk ---⎛⎫=++-+== ⎪+++⎝⎭∴8·3PM PN =-综上,PM PN 为定值83-.【解后反思】常见处理技巧:(1)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;(2)巧妙利用变量间的关系,例如点的坐标符号曲线方程等,尽量做到整体代入,简化运算.【例4】(2022·湖南怀化·一模)如图.矩形ABCD 的长AB =12BC =,以A 、B 为左右焦点的椭圆2222:1x y M a b+=恰好过C 、D 两点,点P 为椭圆M 上的动点.(1)求椭圆M 的方程,并求PA PB ⋅的取值范围;(2)若过点B 且斜率为k 的直线交椭圆于M 、N 两点(点C 与M 、N 两点不重合),且直线CM 、CN 的斜率分别为12k k 、,试证明122k k k +-为定值.【解题指导】【解析】(1)由题意得c =又点)12C 在椭圆2222:1x y M a b+=上,所以223114a b +=,且223a b -=,所以2a =,1b =,故椭圆M 的方程为2214x y +=.(3分)设点(,)P x y ,由A ,(B 得222223331244x x PA PB x y x ⋅=-+=-+-=- .又[2,2]x ∈-,所以PA PB ⋅[]2,1∈-.(5分)【技巧】利用隐含的不等关系,即点P 在圆上转化为[2,2]x ∈-,从而确定PA PB ⋅的取值范围(2)设过点B 且斜率为k 的直线方程为(y k x =-,联立椭圆M 方程得2222(14)1240k x x k +-+-=.设两点M 11(,)x y 、N 22(,)x y ,故21228314x x k+=+,212212414k x x k -=+.(7分)因为())()121212121212111222y y y x x y y y x x k k --++-++==,其中()1212121228214k y x x y kx x x x k -+=+=+,12y y +=(9分)故221222228614141421242414143k k k k k k k k k k k k -+++++==---+++所以122k k k +-=(12分)【解题技法】圆锥曲线中的定值问题的常见类型及解题策略(1)证明代数式为定值:依题意设条件,得出与代数式中参数有关的等式,代入代数式并化简,即可得出定值;(2)证明点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、证明。
全国高考数学解析几何大题精选50题(完美编辑、含答案、知识卡片)
20.(2018•江苏)如图,在平面直角坐标系 xOy 中,椭圆 C 过点(
),焦点 F1
试卷第 9 页,总 25 页
(﹣ ,0),F2( ,0),圆 O 的直径为 F1F2. (1)求椭圆 C 及圆 O 的方程; (2)设直线 l 与圆 O 相切于第一象限内的点 P. ①若直线 l 与椭圆 C 有且只有一个公共点,求点 P 的坐标; ②直线 l 与椭圆 C 交于 A,B 两点.若△OAB 的面积为 ,求直线 l 的方程.
试卷第 1 页,总 25 页
线型道路 PB,QA,规划要求:线段 PB,QA 上的所有点到点 O 的距离均不.小.于.圆 O 的半径.已知点 A,B 到直线 l 的距离分别为 AC 和 BD(C,D 为垂足),测得 AB =10,AC=6,BD=12(单位:百米). (1)若道路 PB 与桥 AB 垂直,求道路 PB 的长; (2)在规划要求下,P 和 Q 中能否有一个点选在 D 处?并说明理由; (3)在规划要求下,若道路 PB 和 QA 的长度均为 d(单位:百米),求当 d 最小时, P、Q 两点间的距离.
点的圆. (1)求 C 的轨迹方程; (2)动点 P 在 C 上运动,M 满足
=2 ,求 M 的轨迹方程.
试卷第 8 页,总 25 页
18.(2018•浙江)如图,已知点 P 是 y 轴左侧(不含 y 轴)一点,抛物线 C:y2=4x 上 存在不同的两点 A,B 满足 PA,PB 的中点均在 C 上. (Ⅰ)设 AB 中点为 M,证明:PM 垂直于 y 轴;
22.(2018•上海)设常数 t>2.在平面直角坐标系 xOy 中,已知点 F(2,0),直线 l: x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l 与 x 轴交于点 A、与Γ交于点 B.P、Q 分别是曲线Γ与线段 AB 上的动点. (1)用 t 表示点 B 到点 F 的距离; (2)设 t=3,|FQ|=2,线段 OQ 的中点在直线 FP 上,求△AQP 的面积; (3)设 t=8,是否存在以 FP、FQ 为邻边的矩形 FPEQ,使得点 E 在Γ上?若存在, 求点 P 的坐标;若不存在,说明理由.
高考数学专题六解析几何 微专题43 非对称韦达定理
设A(x1,y1),B(x2,y2). 因为T(1,0),则直线l的方程为y=k(x-1).
y=kx-1, 联立直线 l 与椭圆方程得x82+y42=1, 消去y,得(2k2+1)x2-4k2x+2k2-8=0, 所以 x1+x2=2k42k+2 1,x1x2=22kk22- +81. 因为MN∥l,所以直线MN的方程为y=kx,
设P(x1,y1),Q(x2,y2),直线PQ的方程为x=my+1,代入椭圆方程, 得(4+3m2)y2+6my-9=0, 从而 y1+y2=4-+63mm2,y1y2=4+-39m2,
于是 k2k3=x2y-2 2·x1y-1 2=x2-2y2yx11-2, 因此 k2k3=my2-1y2ym1 y1-1=m2y1y2-my2yy11+y2+1. 将 y1+y2,y1y2 代入,化简得 k2k3=-94,故 k2k3 为定值.
专题六 解析几何
微专题43
非对称韦达定理
Байду номын сангаас
考情分析
圆锥曲线的综合问题是高考考查的重点内容,非对称韦达定理 的应用在高考中经常出现,常以解答题的形式压轴出现,难度 较大.
思维导图
内容索引
典型例题
热点突破
PART ONE
典型例题
考点一 两根之比型
典例1 设椭圆 C:ax22+by22=1(a>b>0)的左焦点为 F,过点 F 的直线 l 与椭 圆 C 相交于 A,B 两点,直线 l 的倾斜角为 60°,A→F=2F→B,求椭圆 C 的离 心率.
因为A→F=2F→B,所以 y1=-2y2,
即
33ba22+c+b22 a=-2·
3b2c-2a 3a2+b2 .
整理得,离心率 e=ac=23.