2010年专升本高数试卷

合集下载

2006-2010年专升本高等数学真题

2006-2010年专升本高等数学真题

2006年真题一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。

不选、错选或多选者,该题无分.1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( ) A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-2.函数)1ln(2x x y -+=)(+∞<<-∞x 是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数3. 当0→x 时,x x sin 2-是x 的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小 4.极限=+∞→nnn n sin 32lim( )A. ∞B. 2C. 3D. 55.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax ,在0=x 处连续,则 常数=a ( )A. 0B. 1C. 2D. 36. 设函数)(x f 在点1=x 处可导 ,则=--+→xx f x f x )1()21(lim0 ( )A. )1(f 'B. )1(2f 'C. )1(3f 'D. -)1(f '7. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则点M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2)8.设⎪⎩⎪⎨⎧==⎰202cos sin t y du u x t ,则=dx dy ( )A. 2tB. t 2C.-2t D. t 2-9.设2(ln )2(>=-n x x yn ,为正整数),则=)(n y ( ) A.x n x ln )(+ B. x 1 C.1)!2()1(---n n xn D. 0 10.曲线233222++--=x x x x y ( )A. 有一条水平渐近线,一条垂直渐近线B. 有一条水平渐近线,两条垂直渐近线C. 有两条水平渐近线,一条垂直渐近线,D. 有两条水平渐近线,两条垂直渐近线11.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]2,0[|,1|-=x y B. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y =12. 函数xe y -=在区间),(+∞-∞内 ( )A. 单调递增且图像是凹的曲线B. 单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D. 单调递减且图像是凸的曲线 13.若⎰+=C x F dx x f )()(,则⎰=--dx e f e x x )( ( )A.C e F ex x++--)( B. C e F x +-)( C. C e F ex x+---)( D. C e F x +--)(14. 设)(x f 为可导函数,且xe xf =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C ex ++)1(212 C. C e x ++1221 D. C e x +-)1(212 15. 导数=⎰ba tdt dxd arcsin ( ) A.x arcsin B. 0 C. a b arcsin arcsin - D.211x-16.下列广义积分收敛的是 ( )A.⎰+∞1dx e x B. ⎰+∞11dx x C. ⎰+∞+1241dx xD. ⎰+∞1cos xdx 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为 ( )A.⎰-b adx x g x f )]()([ B. ⎰-badx x g x f )]()([C. ⎰-b adx x f x g )]()([ D. ⎰-badx x g x f |)()(|18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ( )A. 2B. 3C. 4D. 5 19.设yxy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( ) A.2 B.1 C.-1 D.-220. 设方程02=-xyz ez确定了函数),(y x f z = ,则xz∂∂ = ( ) A. )12(-z x z B. )12(+z x z C. )12(-z x y D. )12(+z x y21.设函数xy y x z +=2,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -222.函数2033222+--=y x xy z 在定义域上内 ( )A.有极大值,无极小值B. 无极大值,有极小值C.有极大值,有极小值D. 无极大值,无极小值 23设D 为圆周由012222=+--+y x y x 围成的闭区域 ,则=⎰⎰Ddxdy ( )A. πB. 2πC.4πD. 16π 24.交换二次积分⎰⎰>axa dy y x f dx 00(),(,常数)的积分次序后可化为 ( )A. ⎰⎰ay dx y x f dy 0),( B. ⎰⎰a aydx y x f dy 0),(C.⎰⎰aa dx y x f dy 0),( D. ⎰⎰a yadx y x f dy 0),(25.若二重积分⎰⎰⎰⎰=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D 为( )A. x y x 222≤+B. 222≤+y xC. y y x 222≤+ D. 220y y x -≤≤26.设L 为直线1=+y x 上从点)0,1(A 到)1,0(B 的直线段,则=-+⎰Ldy dx y x )(( )A. 2B.1C. -1D. -227.下列级数中,绝对收敛的是 ( )A .∑∞=1sinn nπB .∑∞=-1sin)1(n n nπC .∑∞=-12sin)1(n nn πD .∑∞=1cos n n π28. 设幂级数n n nna x a(0∑∞=为常数 ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n na( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A. C y x =cos sin B. C y x =sin cos C. C y x =sin sin D. C y x =cos cos 30.微分方程xxe y y y -=-'+''2的特解用特定系数法可设为 ( )A. x eb ax x y -+=*)( B. xeb ax x y -+=*)(2C. xe b ax y -+=*)( D. xaxe y -=*二、填空题(每小题2分,共30分)31.设函数,1||,01||,1)(⎩⎨⎧>≤=x x x f 则=)(sin x f _________.32.=--+→xx x x 231lim22=_____________. 33.设函数x y 2arctan =,则=dy __________.34.设函数bx ax x x f ++=23)(在1-=x 处取得极小值-2,则常数b a 和分别为___________.35.曲线12323-+-=x x x y 的拐点为 __________.36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.37.⎰-=+ππdx x x)sin (32_________.38.设函数⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________.39. 向量}1,1,2{}2,1,1{-==b a与向量的夹角为__________.40.曲线⎩⎨⎧==022z xy L :绕x 轴旋转一周所形成的旋转曲面方程为 _________. 41.设函数y x xy z sin 2+= ,则=∂∂∂yx z 2_________. 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则________)(2⎰⎰=-Ddxdy xy .43. 函数2)(x e x f -=在00=x 处展开的幂级数是________________.44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________. 45.通解为xx e C e C y 321+=-(21C C 、为任意常数)的二阶线性常系数齐次微分方程为_________.三、计算题(每小题5分,共40分) 46.计算 xx ex x x 2sin 1lim3202-→--. 47.求函数xx x y 2sin 2)3(+=的导数dxdy. 48.求不定积分⎰-dx x x 224.49.计算定积分⎰--+102)2()1ln(dx x x . 50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 皆可微,求yzx z ∂∂∂∂,. 51.计算二重积分⎰⎰=Dydxdy xI 2,其中D 由12,===x x y x y 及所围成.52.求幂级数n n nx n∑∞=--+0)1()3(1的收敛区间(不考虑区间端点的情况). 53.求微分方程 0)12(2=+-+dy x xy dy x 通解. 四、应用题(每小题7分,共计14分)54. 某公司的甲、乙两厂生产同一种产品,月产量分别为y x ,千件;甲厂月生产成本是5221+-=x x C (千元),乙厂月生产成本是3222++=y y C (千元).若要求该产品每月总产量为8千件,并使总成本最小,求甲、乙两厂最优产量和相应最小成本.55.由曲线)2)(1(--=x x y 和x 轴所围成一平面图形,求此平面图形绕y 轴旋转一周所成的旋转体的体积.五、证明题(6分)56.设)(x f 在],[a a -(0>a ,为常数)上连续, 证明:⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.并计算⎰--+441cos ππdx e xx .2007年真题一. 单项选择题(每题2分,共计50分)在每小题的备选答案中选出一个正确答案,并将其代码写在题干后面的括号内.不选、错选或多选者,该题无分.1.集合}5,4,3{的所有子集共有 ( ) A. 5 B. 6 C. 7 D. 82.函数x x x f -+-=3)1arcsin()(的定义域为 ( ) A. ]3,0[ B. ]2,0[ C. ]3,2[ D. ]3,1[3. 当0→x 时,与x 不等价的无穷小量是 ( ) A.x 2 B.x sin C.1-xe D.)1ln(x + 4.当0=x 是函数xx f 1arctan)(= 的 ( ) A.连续点 B. 可去间断点 C.跳跃间断点 D. 第二类间断点 5. 设)(x f 在1=x 处可导,且1)1(='f ,则hh f h f h )1()21(lim+--→的值为( )A.-1B. -2C. -3D.-46.若函数)(x f 在区间),(b a 内有0)(,0)(<''>'x f x f ,则在区间),(b a 内,)(x f 图形 ( )A .单调递减且为凸的B .单调递增且为凸的C .单调递减且为凹的D .单调递增且为凹的 7.曲线31x y +=的拐点是 ( ) A. )1,0( B. )0,1( C. )0,0( D. )1,1(8.曲线2232)(x x x f -=的水平渐近线是 ( ) A. 32=y B. 32-=y C. 31=y D. 31-=y9. =⎰→42tan limx tdt x x ( )A. 0B.21C.2D. 1 10.若函数)(x f 是)(x g 的原函数,则下列等式正确的是 ( )A.⎰+=C x g dx x f )()( B. ⎰+=C x f dx x g )()( C.⎰+='C x f dx x g )()( D. ⎰+='C x g dx x f )()( 11.⎰=-dx x )31cos( ( )A.C x +--)31sin(31B. C x +-)31sin(31C. C x +--)31sin(D. C x +-)31sin(312. 设⎰--=xdt t t y 0)3)(1(,则=')0(y ( )A.-3B.-1C.1D.313. 下列广义积分收敛的是 ( ) A.⎰+∞1x dx B. ⎰+∞1x dx C.⎰+∞1xx dxD.⎰10xx dx14. 对不定积分⎰dx x x 22cos sin 1,下列计算结果错误是 ( )A. C x x +-cot tanB. C xx +-tan 1tanC. C x x +-tan cotD. C x +-2cot15. 函数2x y =在区间]3,1[的平均值为 ( )A. 326B. 313 C. 8 D. 416. 过Oz 轴及点)4,2,3(-的平面方程为 ( ) A. 023=+y x B. 02=+z y C. 032=+y x D. 02=+z x17. 双曲线⎪⎩⎪⎨⎧==-014322y z x 绕z 轴旋转所成的曲面方程为 ( ) A.143222=-+z y x B. 143222=+-z y x C.143)(22=-+z y x D. 14)(322=+-z y x 18.=+-→→xy xy y x 93lim 00 ( ) A. 61 B. 61- C.0 D. 极限不存在 19.若yx z =,则=∂∂)1,(e y z ( )A.e1B. 1C. eD. 0 20. 方程 132=-xz y z 所确定的隐函数为),(y x f z =,则=∂∂xz ( )A. xz y z 322-B. y xz z 232-C. xz y z 32-D. yxz z 23-21. 设C 为抛物线2x y =上从)0,0(到)1,1( 的一段弧,则⎰=+Cdy x xydx 22( ) A.-1 B.0 C.1 D.222.下列正项级数收敛的是 ( )A. ∑∞=+2131n n B. ∑∞=2ln 1n n nC. ∑∞=22)(ln 1n n nD. ∑∞=21n nnn 23.幂级数∑∞=++01)1(31n nn x 的收敛区间为 ( ) A.)1,1(- B.)3,3(- C. )4,2(- D.)2,4(- 24. 微分x ey y y xcos 23-=+'+''特解形式应设为=*y ( )A. x Ce xcos B. )sin cos (21x C x C ex+-C. )sin cos (21x C x C xe x +-D. )sin cos (212x C x C ex x+-25.设函数)(x f y =是微分方程xe y y 2='+''的解,且0)(0='xf ,则)(x f 在0x 处( )A.取极小值B. 取极大值C.不取极值D. 取最大值 二、填空题(每题2分,共30分)26.设52)(+=x x f ,则=-]1)([x f f _________.27.=∞→!2lim n nn ____________. 28.若函数⎪⎩⎪⎨⎧≥+<=02203)(4x ax x e x f x ,,在0=x 处连续,则=a ____________. 29.已知曲线22-+=x x y 上点M 处的切线平行于直线15-=x y ,则点M 的坐标为 ________30.设12)(-=x e x f ,则 =)0()2007(f_________ 31.设⎩⎨⎧+-=+=12132t t y t x ,则==1t dx dy__________ 32. 若函数bx ax x f +=2)(在1=x 处取得极值2,则=a ______,=b _____33. ='⎰dx x f x f )()( _________ 34.⎰=-121dx x _________ 35.向量k j i a -+=43的模=||a________36. 已知平面1π:0752=+-+z y x 与平面2π:01334=+++mz y x 垂直,则=m ______37.设22),(y x xy y x f +=+,则=),(y x f ________38.已知=I ⎰⎰-21220),(y ydx y x f dy ,交换积分次序后,则=I _______39.若级数∑∞=11n n u 收敛,则级数∑∞=+⎪⎪⎭⎫ ⎝⎛-1111n n n u u 的和为 _______ 40.微分方程02=+'-''y y y 的通解为________三、判断题(每小题2分,共10分)你认为正确的在题后括号内划“√”,反之划“×”. 41.若数列{}n x 单调,则{}n x 必收敛. ( ) 42.若函数)(x f 在区间[]b a ,上连续,在),(b a 内可导,且)()(b f a f ≠,则一定不存在),(b a ∈ξ,使0)(=ξ'f . ( )43.1sin sin lim cos 1cos 1lim sin sin lim -=-=+-======+-∞→∞→∞→xxx x x x x x x x x 由洛比达法则. ( )44.2ln 23102ln 02≤-≤⎰-dx e x . ( ) 45.函数),(y x f 在点),(y x P 处可微是),(y x f 在),(y x P 处连续的充分条件.( )四、计算题(每小题5分,共40分) 46.求xx xsin 0lim +→.47.求函数3211x x x y +-⋅=的导数dx dy. 48.求不定积分⎰++dx x e x)]1ln([2.49.计算定积分dx x ⎰π+02cos 22 .50.设)3,sin (2y x y e f z x =,且),(v u f 为可微函数,求dz . 51.计算⎰⎰Ddxdy x 2,其中D 为圆环区域:4122≤+≤y x.52.将242xx-展开为x 的幂级数,并写出收敛区间. 53.求微分方程0)2(22=--+dx x xy y dy x 的通解.五、应用题(每题7分,共计14分)54. 某工厂欲建造一个无盖的长方题污水处理池,设计该池容积为V 立方米,底面造价每平方米a 元,侧面造价每平方米b 元,问长、宽、高各为多少米时,才能使污水处理池的造价最低?55. 设平面图形D 由曲线xe y =,直线e y =及y 轴所围成.求: (1)平面图形D 的面积;(2) 平面图形D 绕y 轴旋转一周所成的旋转体的体积. 六、证明题(6分)56.若)(x f '在],[b a 上连续,则存在两个常数m 与M ,对于满足b x x a ≤<≤21的任意两点21,x x ,证明恒有)()()()(121212x x M x f x f x x m -≤-≤-.2008年真题一. 单项选择题(每题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内.不选、错选或多选者,该题不得分. 1. 函数2)1ln()(++-=x x x f 的定义域为 ( ) A. ]1,2[-- B. ]1,2[- C. )1,2[- D. )1,2(-2. =⎪⎭⎫ ⎝⎛π--π→3sin cos 21lim3x xx ( ) A.1 B. 0 C. 2 D.33. 点0=x 是函数131311+-=xxy 的 ( )A.连续点B. 跳跃间断点C.可去间断点D. 第二类间断点 4.下列极限存在的为 ( )A.xx e +∞→lim B. x x x 2sin lim 0→ C.xx 1cos lim 0+→ D.32lim 2-++∞→x x x5. 当0→x 时,)1ln(2x +是比x cos 1-的( )A .低阶无穷小B .高阶无穷小C .等阶无穷小 D.同阶但不等价无穷小6.设函数⎪⎪⎩⎪⎪⎨⎧>≤≤--<+++=0,arctan 01,11,11sin )1(1)(x x x x x x x f ,则)(x f ( )A .在1-=x 处连续,在0=x 处不连续B .在0=x 处连续,在1-=x 处不连续C .在1-=x ,0,处均连续D .在1-=x ,0,处均不连续 7.过曲线xe x y +=arctan 上的点(0,1)处的法线方程为 ( ) A. 012=+-y x B. 022=+-y x C. 012=--y x D. 022=-+y x8.设函数)(x f 在0=x 处可导,)(3)0()(x x f x f α+-=且0)(lim 0=α→xx x ,则=')0(f( )A. -1B.1C. -3D. 39.若函数)1()(ln )(>=x x x f x,则=')(x f ( )A. 1)(ln -x x B. )ln(ln )(ln )(ln 1x x x x x +-C. )ln(ln )(ln x x xD. xx x )(ln10.设函数)(x y y =由参数方程⎪⎩⎪⎨⎧==t y tx 33sin cos 确定,则=π=422x dx y d ( )A.-2B.-1C.234-D. 234 11.下列函数中,在区间[-1,1]上满足罗尔中值定理条件的是 ( )A.xe y = B.||ln x y = C.21x y -= D.21xy =12. 曲线253-+=x x y 的拐点是 ( )A.0=xB.)2,0(-C.无拐点D. 2,0-==y x 13. 曲线|1|1-=x y ( )A. 只有水平渐进线B. 既有水平渐进线又有垂直渐进线C. 只有垂直渐进线D. 既无水平渐进线又无垂直渐进线 14.如果)(x f 的一个原函数是x x ln ,那么=''⎰dx x f x )(2 ( )A. C x +lnB. C x +2C. C x x +ln 3D. x C - 15.=+-⎰342x x dx( ) A .C x x +--13ln 21 B.C x x +--31ln 21 C. C x x +---)1ln()3ln( D. C x x +---)3ln()1ln( 16.设⎰+=1041x dxI ,则I 的取值范围为 ( )A .10≤≤I B.121≤≤I C. 40π≤≤I D.121<<I17. 下列广义积分收敛的是 ( ) A.dx x ⎰+∞13B. ⎰+∞1ln dx xxC.⎰+∞1dx xD. dx e x ⎰+∞-0 18.=-⎰-33|1|dx x ( )A.⎰-30|1|2dx x B.⎰⎰-+--3113)1()1(dx x dx xC.⎰⎰----3113)1()1(dx x dx x D. ⎰⎰-+--3113)1()1(dx x dx x19.若)(x f 可导函数,0)(>x f ,且满足⎰+-=xdt ttt f x f 022cos 1sin )(22ln )(,则=)(x f ( )A. )cos 1ln(x +B. C x ++-)cos 1ln(C. )cos 1ln(x +-D. C x ++)cos 1ln(20. 若函数)(x f 满足⎰--+=11)(211)(dx x f x x f ,则=)(x f ( )A. 31-x B. 21-x C. 21+x D. 31+x21. 若⎰=edx x f x I 023)( 则=I ( )Adx x f )(0⎰2e x B dx xf )(0⎰e xC dx x f )(210⎰2e xD dx x f )(210⎰ex22.直线19452zy x =+=+与平面5734=+-z y x 的位置关系为A. 直线与平面斜交B. 直线与平面垂直C. 直线在平面内D. 直线与平面平行 23.=-+++→→11lim222200y x y x y x ( )A. 2B.3C. 1D.不存在 24.曲面22y x z +=在点(1,2,5)处切平面方程( ) A .542=-+z y x B .524=-+z y x C .542=-+z y x D .542=+-z y x25.设函数33xy y x z -=,则=∂∂∂xy z2 ( ) A. xy 6 B. 2233y x - C. xy 6- D. 2233x y - 26.如果区域D 被分成两个子区域1D 和2D 且5),(1=⎰⎰dxdy y x f D ,1),(2=⎰⎰dxdy y x f D ,则=⎰⎰dxdy y x f D),( ( )A. 5B. 4C. 6D.1 27.如果L 是摆线⎩⎨⎧-=-=ty tt x cos 1sin 从点)0,2(πA 到点)0,0(B 的一段弧,则=-++⎰dy y y x dx xe y x xL)sin 31()3(32 ( ) A.1)21(2-π-πe B. ]1)21([22-π-πeC.]1)21([32-π-πe D. ]1)21([42-π-πe28.以通解为xCe y =(C 为任意常数)的微分方程为 ( )A. 0=+'y yB. 0=-'y yC. 1='y yD. 01=+'-y y 29. 微分方程xxe y y -='+''的特解形式应设为=*y ( )A .xeb ax x -+)( B.b ax + C.xe b ax -+)( D.xeb ax x -+)(230.下列四个级数中,发散的级数是 ( )A. ∑∞=1!1n n B. ∑∞=-1100032n n n C. ∑∞=12n n n D. ∑∞=121n n解:级数∑∞=-1100032n nn 的一般项n n 100032-的极限为05001≠,是发散的,应选B. 二、填空题(每题2分,共30分)31.A x f x x =→)(lim 0的____________条件是A x f x f x x x x ==-+→→)(lim )(lim 0.32. 函数x x y sin -=在区间)2,0(π单调 ,其曲线在区间⎪⎭⎫⎝⎛π2,0内的凹凸性为 的.33.设方程a a z y x (23222=++为常数)所确定的隐函数),(y x f z = ,则=∂∂xz_____. 34.=+⎰xdx 1 .35.⎰ππ⋅-=+33________cos 1dx x x. 36. 在空间直角坐标系中,以)042()131()140(,,,,,,,,----C B A 为顶点的ABC ∆的面积为__ .37. 方程⎪⎩⎪⎨⎧-==+214922x y x 在空间直角坐标下的图形为__________. 38.函数xy y x y x f 3),(33-+=的驻点为 . 39.若x y xy ey x z xtan2312++=-,则=∂∂)0,1(xz .40.⎰⎰ππ=440___________cos x dy yydx41.直角坐标系下的二重积分⎰⎰Ddxdy y x f ),((其中D 为环域9122≤+≤y x )化为极坐标形式为___________________________.42.以x xxe C e C y 3231--+=为通解的二阶常系数线性齐次微分方程为 .43.等比级数)0(0≠∑∞=a aqn n,当_______时级数收敛,当_______时级数发散.44.函数21)(2--=x x x f 展开为x 的幂级数为__________________45.∑∞=⎪⎭⎫ ⎝⎛-12n nn n 的敛散性为________的级数.三、计算题(每小题5分,共40分)46.求2522232lim +∞→⎪⎪⎭⎫⎝⎛-+x x x x .47. 求⎰+→23241limx x dtt t x .48.已知)21sin(ln x y -=,求dxdy. 49. 计算不定积分⎰xdx x arctan . 50.求函数)cos(y x e z x+=的全微分. 51.计算⎰⎰σDd yx2,其中D 是由1,,2===xy x y y 所围成的闭区域. 52.求微分方程xex y y sin cos -=+'满足初始条件1)0(-=y 的特解.53.求级数∑∞=+013n nn x n 的收敛半径及收敛区间(考虑区间端点). 四、应用题(每题7分,共计14分)54. 过曲线2x y =上一点)1,1(M 作切线L ,D 是由曲线2x y =,切线L 及x 轴所围成的平面图形,求(1)平面图形D 的面积;(2)该平面图形D 绕x 轴旋转一周所成的旋转体的体积.55.一块铁皮宽为24厘米,把它的两边折上去,做成一正截面为等腰梯形的槽(如下图),要使梯形的面积A 最大,求腰长x 和它对底边的倾斜角α.五、证明题(6分)56. 证明方程⎰π--=02cos 1ln dx x e x x 在区间),(3e e 内仅有一个实根.2009年真题一、选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,有铅笔把答题卡上对应的题目的标号涂黑。

2010高等数学1

2010高等数学1

2010年成人专升本招生全国统一考试高等数学(一)试卷一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

120lim(1)x x →+=( C )。

A 3 B 2 C 1 D 0 知识点:求极限)(x f 无分母或分母不为0,其极限=函数值2设sin y x x =+,则y '=( D ) A sin x B x C cos x x + D 1cos x +知识点:导数公式,求导规则v u v u '±'='±)(3设2x y e =,则dy =( B ) A 2x e dx B 22x e dx C 212x e dx D 2x e dx知识点:导数公式,复合函数求导规则 ,微分公式解:x x e x e y 222)2.(='=', dx e dx y dy x 22='=41(1)dx x -=⎰( C )。

A 21x c x -+ B 21x c x++ C ln ||x x c -+ D ln ||x x c ++ 知识点:积分公式,积分性质⎰⎰⎰+=+gdx fdx dx g f )(5设5x y =,则y '=( C )。

A 15x - B 5x C 5ln 5x D 15x + 知识点:导数公式 6limxt x e dt x→=⎰( D ) A x e B 2e C e D 1知识点:洛比达法则求型极限,变上限定积分求导 解:limxt x e dt x→=⎰11lim 0=→xx e 7设22zx y xy =+,则z x∂=∂( A )。

A 22xy y + B 22x xy + C 4xy D 22x y + 知识点:计算一阶偏导数8过点(1,0,0),(0,1,0),(0,0,1)的平面方程为( A ) A1x y z ++= B 21x y z ++= C 21x y z ++= D 21x y z ++=知识点:平面方程,三点决定一个平面。

2010“专升本”《高数》试题及答案

2010“专升本”《高数》试题及答案

《高等数学》试卷一、单项选择题(每题2分,共计60分,在每小题的备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。

不选、错选或多选者,该题无分)1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( )A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.)1lg()(2x x x f -+=在),(+∞-∞是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数 解:01lg )1lg()1lg()()(22==+++-+=-+x x x x x f x f A ⇒. 3. 当0→x 时,x x s i n 2-是x的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小 解: 1sin lim20-=-→x x x x , C ⇒. 4.=+∞→nn n n sin 32lim ( )A. ∞B. 2C. 3D. 5 解:B n n n n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim . 5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax 在0=x 处连续,则 =a ( ) A. 0 B. 1 C. 2 D. 3 解:B a a a ae x e x f ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在1=x 可导 ,则=--+→xx f x f x )1()21(lim0 ( ) A. )1(f ' B. )1(2f ' C. )1(3f ' D. -)1(f '解:x x f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim 00--+-+=--+→→ C f x f x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim200 7. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2) 解: A y x x x y ⇒==⇒=⇒='5,5422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t ,则=dx dy ( ) A. 2t B. t 2 C.-2t D. t 2-解: D t tt t dx dy ⇒-=-=2sin sin 222. 9.已知x x x f n ln )()2(=-,则=)()(x f n ( )A.211x+ B. x 1C. x lnD. x x ln 解:B x x f x x f x x x f n n n ⇒=⇒+=⇒=--1)(ln 1)(ln )()()1()2(.10.233222++--=x x x x y 有 ( )A. 一条垂直渐近线,一条水平渐近线B. 两条垂直渐近线,一条水平渐近线C. 一条垂直渐近线,两条水平渐近线D. 两条垂直渐近线,两条水平渐近线解:A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→∞→2122lim ,4lim ,2lim )2)(1()3)(1(2332 . 11.在下列给定的区间满足罗尔中值定理的是 ( )A. ]2,0[|,1|-=x yB. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y = 解: 由罗尔中值定理 条件:连续、可导及端点的函数值相等C ⇒12. 函数x e y -=在区间),(+∞-∞为 ( )A. 单增且凹B. 单增且凸C. 单减且凹D. 单减且凸解: C e y e y x x ⇒>=''<-='--0,0.13.⎰+=C x F dx x f )()(曲线 ,则⎰=--dx e f e xx )( ( ) A.C e F e x x ++--)( B. C e F e x x +---)(C. C e F x +-)(D. C e F x +--)(解:D C e F e d e f dx e f e xx x x x ⇒+-=-=⎰⎰-----)()()()(.14. 设函数x e x f =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C e x +-)1(212 C. C e x ++1221 D. C e x ++)1(212解:D C e x f e x f e x f x x x ⇒+=⇒='⇒=-'++)1(21)1(212)()()12(. 15. =⎰b axdx dx darctan ( )A.x arctanB. 0C. a b arctan arctan -D. a b arctan arctan + 解:⎰b a xdx arctan 是常数,所以 B xdx dx d ba ⇒=⎰0arctan .16.下列广义积分收敛的为 ( ) A. ⎰+∞1dx e x B. ⎰+∞11dx x C. ⎰+∞+1241dx x D. ⎰+∞1cos xdx 解:C x dx x ⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为() A. ⎰-b a dx x g x f )]()([ B. ⎰-b a dx x g x f )]()([ C. ⎰-b adx x f x g )]()([ D. ⎰-b adx x g x f |)()(|解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ()A. 2B. 3C. 4D. 5 解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{.19.设y xy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( ) A.2 B.1 C.-1 D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(. 20. 方程02=-xyz e z 确定函数),(y x f z = ,则x z ∂∂ = ( )A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解: 令⇒-='-='⇒-=xy e F yz F xyz e z y x F z z x z 222,),,( A z x zxy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(222 21.设函数xy y x z +=2,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2 解:222x ydx xdy dy x xydx dz -++= A dy dx dx dy dy dx dz y x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上 ( )A.有极大值,无极小值B. 无极大值,有极小值C.有极大值,有极小值D. 无极大值,无极小值解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂x z y x y x y z x y x z⇒=∂∂∂-=∂∂2,6222y x zy z 是极大值A ⇒. 23由012222=+--+y x y x 围成的闭区域D ,则=⎰⎰Ddxdy ( )A. πB. 2πC.4πD. 16π解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24累次积分⎰⎰>axa dy y x f dx 0)0(),(交换后为( )A. ⎰⎰a x dx y x f dy 0),( B. ⎰⎰a aydx y x f dy 0),(C. ⎰⎰a a dx y x f dy 0),( D. ⎰⎰a yadx y x f dy 0),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ⇒.25.二重积分⎰⎰20sin 20)sin ,cos (πθθθθrdr r r f d 在直角坐标系下积分区域可表示为( )A. ,222y y x ≤+B. ,222≤+y xC. ,222x y x ≤+D. 220y y x -≤≤ 解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y y x 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 坐标从点)0,1(A 到)1,0(B 的有向线段,则⎰-+L dy dx y x )( ( ) A. 2 B.1 C. -1 D. -2解:L :,1⎩⎨⎧-==x y xx x 从1变到0 ,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L . 27.下列级数绝对收敛的是 ( )A .∑∞=1sin n n πB .∑∞=-1sin )1(n n n π C . ∑∞=-12sin )1(n n n π D . ∑∞=0cos n n π解: ⇒<22sin n n ππC n n ⇒∑∞=12sin π. 28. 设幂级数n n n n a x a (0∑∞=为常数 ,2,1,0=n ),在 2-=x 处收敛,则∑∞=-0)1(n n na ( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A.C y x =sin cos B. C y x =cos sin C. C y x =sin sin D. C y x =cos cos 解:dx x x dy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+ C C x y x x d y y d ⇒=+⇒-=⇒ln sin ln sin ln sin sin sin sin . 30.微分方程x xe y y y -=-'+''2,特解用特定系数法可设为 ( ) A.x e b ax x y -+=*)( B. x e b ax x y -+=*)(2 C. x e b ax y -+=*)( D. x axe y -=* 解:-1不是微分方程的特征根,x 为一次多项式,可设x e b ax y -+=*)( C ⇒.二、填空题(每题2分,共30分) 31.设 ,1||,01||,1)(⎩⎨⎧>≤=x x x f ,则=)(sin x f _________ 解:1)(sin 1}sin |=⇒≤x f x .32.若=--+→x x x x 231lim 22=_____________ 解:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim 2222x x x x x x x x x x x x 123341==. 33.已知x y 2arctan =,则=dy __________ 解:dx xdy 2412+= . 34.函数 bx x a x x f ++=23)(,在1-=x 处取得极值-2,则_______,==b a . 解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(2.5,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设)(),(x g x f 是可微函数,且为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f .37.⎰-=+ππ)sin (32x x _________解:3202sin )sin (023232ππππππππ=+=+=+⎰⎰⎰⎰---x xdx dx x x x . 38.设⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________解:⎰⎰⎰⎰--=--=+==-201110012132)()1(e dx e dx x dt t f dx x f x t x .39. 已知 }1,1,2{},2,1,1{-==b a,则向量a 与b 的夹角为=__________解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a.40.空间曲线⎩⎨⎧==022z xy 绕x 轴旋转所得到的曲面方程为 _________.解:把x y 22=中的2y 换成22y z +即得所求曲面方程x y z 222=+.41. 函数y x x z sin 22+=,则 =∂∂∂yx z2_________解: ⇒+=∂∂y x x x z sin 22y x yx z cos 22==∂∂∂ . 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则___)(2⎰⎰=-Ddxdy xy . 解:⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()( .43. 函数2)(x e x f -=在0=x 处的展开成幂级数为________________解: ∑∞=⇒=0!n n xn x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n n n n x x x n n x e x f .44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________ 解:∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21ln()2()1(1)2()1(2)1()1(n n nn n n n n n nx n x n x n x .45.通解为x x e C e C y 321+=-的二阶线性齐次常系数微分方程为_________解:x x e C e C y 321+=-0323,1221=--⇒=-=⇒λλλλ032=-'-''⇒y y y .三、计算题(每小题5分,共40分)46. x x e x xx 2sin 1lim 3202-→-- 解:20300420320161lim 3222lim 81lim 2sin 1lim2222x e x xe x x ex xx e x x x x x x x x x -=+-=--=---→-→-→-→ 161lim 161322lim220000-=-=-=-→-→x x x x e x xe . 47.设x x x y 2sin 2)3(+=, 求dxdy解:取对数得 :)3ln(2sin ln 2x x x y +=,两边对x 求导得:xx x x x x x y y 3322sin )3ln(2cos 2122++++='所以]3322sin )3ln(2cos 2[)3(222sin 2xx x x x x x x x y x +++++=' xx x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求 ⎰-dx x x 224解:⎰⎰⎰⎰-===-=dt t tdt tdt t tdx x x tx )2cos 1(2sin 4cos 2cos 2sin 4422sin 222C x x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 2249.求⎰--+102)2()1ln(dx x x解:⎰⎰⎰+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x⎰=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x ..50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 是可微函数,求 yzx z ∂∂∂∂,解:xv v g x u u g x y x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2( ),(),()2(2xy x g y xy x g y x f v u'+'++'==∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂y vv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v '++'. 51.计算积分⎰⎰=Dydxdy x I 2 ,其中:D 由直线1,2,===x x y x y 所围成的闭区域.解:积分区域如图所示,可表示为:x y x x 2,10≤≤≤≤.所以 ⎰⎰⎰⎰==1222xx Dydy x dx ydxdy x I10310323)2(10510421022====⎰⎰x dx x y dx x xx52.求幂级数nn nx ∑∞=--+0)1()3(11的收敛区间(不考虑端点). 解: 令t x =-1,级数化为 n n nt ∑∞=-+0)3(11,这是不缺项的标准的幂级数. 因为 313)3(11)3(1lim )3(1)3(1lim lim 11=--+-=-+-+==∞→+∞→+∞→nnn n n n n n n a a ρ,故级数nn nt ∑∞=-+0)3(11的收敛半径31==ρR ,即级数收敛区间为(-3,3). 对级数nn nx ∑∞=--+0)1()3(11有313<-<-x ,即42<<-x . 故所求级数的收敛区间为),(42-.53.求微分方程 0)12(2=+-+dy x xy dy x 通解.解:微分方程0)12(2=+-+dx x xy dy x 可化为 212xxy x y -=+',这是一阶线性微分方程,它对应的齐次线性微分方程02=+'y x y 通解为2xCy =.设非齐次线性微分方程的通解为2)(x x C y =,则3)(2)(xx C x C x y -'=',代入方程得C x x x C x x C +-=⇒-='2)(1)(2.故所求方程的通解为2211xCx y +-=.四、应用题(每题7分,共计14分)54.某公司甲乙两厂生产一种产品,甲乙两厂月产量分别为y x ,千件;甲厂月产量成本为5221+-=x x C ,乙厂月产量成本为3222++=y y C ;要使月产量为8千件,且总成本最小,求甲乙两厂最优产量和最低成本?解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x .问题转化为在8=+y x 条件下求总成本C 的最小值 . 由8=+y x 得x y -=8,代入得目标函数为0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯一驻点为5=x ,此时有04>=''C . 故5=x 使C 得到极小唯一极值点,即最小值点.此时有38,3==C y . 所以 甲乙两厂最优产量分别为5千件和3千件,最低成本为38成本单位. 55.求曲线)2)(1(--=x x y 和x 轴所围成图形绕y 轴旋转一周所得的体积. 解:平面图形如下图所示:此立体可看作x 区域绕y利用体积公式⎰=ba y dx x f x V |)(|2π.显然,抛物线与x 两交点分别为(1,0);(2平面图形在x 轴的下方.故⎰⎰---==21)2)(1(2|)(|2x x x dx x f x V ba y ππ2)4(2)23(2212342123πππ=+--=+--=⎰x x x dx x x x .xx五、证明题(6分)56设)(x f 在],[a a -上连续,且>a ,求证⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.并计算⎰--+441cos ππdx e xx .证明:因为⎰⎰⎰--+=aaaadx x f dx x f dx x f 0)()()(,而⎰⎰⎰⎰-=-=--=-=-0)()()()()(aaa tx a dx x f dt t f t d t f dx x f ,故⎰⎰⎰⎰⎰-+=+=--aaa aa adx x f dx x f dx x f dx x f dx x f 0)()()()()( 即有⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.利用上述公式有dx e e e x dx e x e x dx e x x x x x x x ⎰⎰⎰⎥⎦⎤⎢⎣⎡+++=+-++=+---404044111cos ]1)cos(1cos [1cos ππππ 22sin cos 4040===⎰ππx dx x .说明:由于时间紧,个别题目语言叙述与试卷有点不近相同,没有进行认真检查,考生仅作参考.河南省“专升本”考试《高等数学》辅导专家葛云飞提供.。

2010年成人高考专升本高数(二)试题及答案

2010年成人高考专升本高数(二)试题及答案

2010年成人高等学校招生全国统一考试高等数学(二)答案必须答在答题卡上指定的位置,答在试卷上无效。

一、选择题:1-10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,将近选项前的字母填涂在答题卡相应题号的信息点上。

正确答案:A【安通名师解析】根据函数的连续性立即得出结果【安通名师点评】这是计算极限最常见的题型。

在教学中一直被高度重视。

正确答案:C【安通名师解析】使用基本初等函数求导公式【安通名师点评】基本初等函数求导公式是历年必考的内容,我们要求考生必须牢记。

【安通名师解析】根据基本初等函数求导公式和复合函数求导法则【安通名师点评】这样的题目已经练习过多次,属于特别重要内容。

正确答案:D【安通名师解析】如果知道基本初等函数则易知答案;也能根据导数的符号确定【安通名师点评】这是判断函数单调性比较简单的题型。

正确答案:A【安通名师解析】基本积分公式【安通名师点评】这是每年都有的题目。

课堂上讲过练过多次【安通名师点评】用定积分计算平面图形面积在历年考试中,只有一两年未考。

应当也一直是教学的重点正确答案:C【安通名师解析】变上限定积分求导【安通名师点评】这类问题一直是考试的热点,也始终是讲课的重点。

正确答案:D【安通名师解析】把x看成常数,对y求偏导【安通名师点评】本题属于基本题目,是年年考试都有的内容【安通名师点评】古典概型问题的特点是,只要做过一次再做就不难了。

这道题,已经讲过几次。

二、填空题:11-20小题,每小题4分,共40分,把答案写在答题卡相应题号后。

【安通名师解析】直接代公式即可。

【安通名师点评】又一种典型的极限问题,考试的频率很高。

课堂上一直强调公式的重要【安通名师解析】考查等价无穷小的定义【安通名师点评】无穷小量的比较也是重点。

本题是最常见的且比较简单的情况。

【安通名师点评】这道题有点难度,以往试题也少见。

不过在串讲时还是强调了这个内容。

【安通名师解析】求二阶导数并令等于零。

2010年浙江省专升本高等数学一试卷

2010年浙江省专升本高等数学一试卷

2010年浙江省专升本高等数学(一)试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。

一、选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1、如果函数0()x f 的定义域为[1,2],则函数()x f ln 1-的定义域为( ) A 、[2ln 1,1-] B 、[0,1] C 、[1,e ] D 、[1,1e ]2、=⎪⎭⎫ ⎝⎛++∞→cbx x x a x lim( ) (0≠a )A 、eB 、ab eC 、b eD 、c ab e +3、()=+⎰→222001limxxtx ex dt e t ( )A 、1B 、1-C 、0D 、不存在4、将二重积分y x Dd d y x 22⎰⎰代为二次积分,其中D 为d y c b x a ≤≤≤≤,,下列正确的( )A 、dy y x dydcya22⎰⎰ B 、dy y x dyxcba22⎰⎰ C 、dx y x dyyaxc22⎰⎰ D 、dx x dyy badc⎰⎰225、级数∑∞=1cosn nπ的敛散性是( )A 、收敛B 、绝对收敛C 、发散D 、无法确定二、填空题(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)6、计算=→2sin122limxxx7、设函数()x f y =在点0x 可导,则()()=--→hx f h x f n 0002lim8、设函数()x x f sin 2=,则()=dxx df9、曲线c bx ax x y +++=23的拐点是(2,4),且曲线在3=x 处有极值,则=a =b =c 10、()=⎰⎰x df d 11、设()=x f,则()=⎰dx x f 212、=⎰-x d x 22sin ππ13、函数22y y x z +=在点(2,1)处的全微分=dz 14、交换二次积分()dy y x f dxxx⎰⎰210,的积分次序得15、过点M ()2,3,2-及y 轴的平面方程为三、计算题(16~25题,每小题6分,共60分)16、计算:xxx -→12coslim1π17、求不定积分()⎰-x x dx ln 410,≤≤x x 21,2≤≤-x x18、计算广义积分dx xex⎰+∞-019、求极限⎰⎰→xxx tdttdtsin lim20、设()=x f ,求a 的值使()x f 在()+∞∞-,内连续。

2010年河南专升本高数真题+答案解析

2010年河南专升本高数真题+答案解析

2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学一、选择题 (每小题2 分,共60 分)1.设函数()f x 的定义域为区间(1,1]-,则函数(1)f x e -的定义域为( )A .[]2,2-B .(1,1]-C .(2,0]-D .(0,2]【答案】D【解析】由题意得,()f x 的定义域为(1,1]-,则在(1)f x e -中,1(1,1]x -∈-,即02x <≤,故选D .2.若()()f x x R ∈为奇函数,则下列函数为偶函数的是( ) A .[]331(),1,1y x x x -∈- B .3()tan ,(,)y xf x x x ππ=+∈-C .[]3sin (),1,1y x x f x x =-∈-D .[]25()sin ,,x y f x e x x ππ=∈-【答案】D【解析】()f x 为奇函数,对于选项D ,22()55()sin ()()sin x x f x e x f x e x ---=,故选D .3.当0x →时,21x e -是sin3x 的( ) A .低阶无穷小 B .高阶无穷小C .等价无穷小D .同阶非等价无穷小【答案】D【解析】200122lim lim sin333x x x e x x x →→-==,从而21x e -是sin3x 的同阶非等价无穷小,故选D .4.设函数2511sin ,0(),0xx x x f x e x ⎧>⎪=⎨⎪<⎩,则0x =是()f x 的( )A .可去间断点B .跳跃间断点C .连续点D .第二类间断点【解析】2501lim sin 0x x x+→=,10lim 0x x e -→=,00lim ()lim ()x x f x f x +-→→=,从而0x =是()f x 的可去间断点,故选A .5.下列方程在区间(0,1)内至少有一个实根的为( ) A .20x += B .sin 1x π=-C .32520x x +-=D .21arctan 0x x ++=【答案】C【解析】对于选项C ,构造函数32()52f x x x =+-,(0)20f =-<,(1)40f =>,由零点定理得,()0f x =在(0,1)上至少存在一个实根,故选C .6.函数()f x 在点0x x =处可导,且0()1f x '=-,则000()(3)lim2x f x f x h h→-+=( )A .23 B .23-C .32-D .32【答案】D 【解析】0000000()(3)(3)()333limlim ()23222x x f x f x h f x h f x f x h h →→-++-⎛⎫'=⋅-=-= ⎪⎝⎭,故选D .7.曲线ln y x x =平行于直线10x y -+=的切线方程是( ) A .1y x =- B .(1)y x =-+C .1y x =-+D .(ln 1)(1)y x x =+-【答案】A【解析】ln 1y x '=+,又直线10x y -+=的斜率1k =,令1y '=得1x =,0y =,从而与直线平行的切线方程为01y x -=-,即1y x =-,故选A .8.设函数212sin 5y x π=-,则y '=( )A .22cos51x π-- B .21x-C 21x-D .22cos 551x π-【解析】(2212sin 51y x xπ''⎛⎫'=--= ⎪⎝⎭-B .9.若函数()f x 满足2()2sin df x x x dx =-,则()f x =( )A .2cos xB .2cos xC +C .2sin x C +D .2cos x C -+【答案】B【解析】2()2sin df x x x dx =-,则2222()(2sin )sin cos f x x x dx x dx x C =-=-=+⎰⎰,故选B . 10.sin(12)b xa d e x dx dx--=⎰( )A .sin(12)x e x --B .sin(12)x e x dx --C .sin(12)x e x C --+D .0【答案】D【解析】sin(12)bx a e x dx --⎰为一常数,从而sin(12)0b xa d e x dx dx--=⎰,故选D .11.若()()f x f x -=,在区间(0,)+∞内,()0f x '>,()0f x ''>,则()f x 在区间(,0)-∞内( ) A .()0,()0f x f x '''<< B .()0,()0f x f x '''>>C .()0,()0f x f x '''><D .()0,()0f x f x '''<>【答案】D【解析】()()f x f x -=,则()f x 为偶函数,又在(0,)+∞上,()0f x '>,()0f x ''>,所以在(,0)-∞上()0f x '<,()0f x ''>,故选D .12.若函数()f x 在区间(,)a b 内连续,在点0x x =处不可导,0(,)x a b ∈,则( ) A .0x 是()f x 的极大值点 B .0x 是()f x 的极小值点C .0x 不是()f x 的极值点D .0x 可能是()f x 的极值点【答案】D【解析】由判断极值的方法知,0x 可能是()f x 的极值点,故选D .13.曲线x y xe -=的拐点为( )A .1x =B .2x =C .222,e ⎛⎫ ⎪⎝⎭D .11,e ⎛⎫ ⎪⎝⎭【答案】C【解析】(1)x y x e -'=-,(2)x y x e -''=-,令0y ''=,得2x =,22y e=.当2x >时,0y ''>,2x <,0y ''<,所以曲线的拐点为222,e ⎛⎫⎪⎝⎭,故选C .14.曲线2arctan 5xy x=( ) A .仅有水平渐近线 B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线【答案】A 【解析】002arctan 22limlim 555x x x x x x →→==,所以曲线没有垂直渐近线;2arctan lim 05x xx→∞=,所以0y =为曲线的水平渐近线,故选A .15.若cos x 是()f x 的一个原函数,则()df x =⎰( )A .sin x C -+B .sin xC +C .cos x C -+D .cos x C +【答案】A【解析】令()cos F x x =,则()()sin f x F x x '==-,所以()(sin )sin df x d x x C =-=-+⎰⎰,故选A .16.设曲线()y f x =过点(0,1),且在该曲线上任意一点(,)x y 处切线的斜率为x x e +,则()f x =( )A .22x x e -B .22x x e +C .2x x e +D .2x x e -【答案】B【解析】由题意得xy x e '=+,则2()2xx x y x e dx e C =+=++⎰,又因为曲线过点(0,1),有0C =,从而2()2x x y f x e ==+,故选B .17. 24sin 1x xdx x ππ-=+⎰( )A .2B .0C .1D .1-【答案】B【解析】24sin 1x xx +为奇函数,积分区间关于原点对称,从而24sin 01x x dx xππ-=+⎰.18.设()f x 是连续函数,则20()x f t dt ⎰是( )A .()f x 的一个原函数B .()f x 的全体原函数C .22()xf x 的一个原函数D .22()xf x 的全体原函数【答案】C【解析】220()2()x f t dt xf x '⎛⎫= ⎪⎝⎭⎰,由原函数的定义可知,它是22()xf x 的一个原函数,故选C .19.下列广义积分收敛的是( )A .1x+∞⎰B .2ln exdx x+∞⎰C .21ln edx x x+∞⎰D .21exdx x +∞+⎰【答案】C 【解析】22111ln 011ln ln ln eee dx d x x x x x+∞+∞+∞==-=+=⎰⎰,故选C .20.微分方程422()0x y y x y '''+-=的阶数是( )A .1B .2C .3D .4【答案】B【解析】由微分方程的概念知,阶数为方程中的最高阶导数的阶数,故选B .21.已知向量{}5,,2x =-a 和{},6,4y =b 平行,则x 和y 的值分别为( )A .4,5-B .3,10--C .4,10--D .10,3--【答案】B【解析】向量a 与b 平行,所以5264x y -==,得3x =-,10y =-,故选B .22.平面1x y z ++=与平面2x y z +-=的位置关系是( )A .重合B .平行C .垂直D .相交但不垂直【答案】D【解析】两平面的法向量分别为1(1,1,1)=n ,2(1,1,1)=-n ,而111111=≠-,从而两平面不平行,又121⋅=n n ,从而两平面不垂直但相交,故选D .23.下列方程在空间直角坐标系中表示的曲面为柱面的是( )A .221y z +=B .22z x y =+C .222z x y =+D .22z x y =-【答案】A【解析】由柱面方程的特点可知,221y z +=表示圆柱面,故选A .24.关于函数222222,0(,)0,0xyx y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩,下列表述错误的是( )A .(,)f x y 在点(0,0)处连续B .(0,0)0f =C .(0,0)0y f '=D .(,)f x y 在点(0,0)处不可微【答案】A【解析】令y kx =,则222222000lim lim (1)1x x y kx xy kx kx y k x k →→=→==+++.当k 取不同值时,极限值不同,因此2200limx y xyx y →→+不存在,所以在点(0,0)处不连续,故选A .25.设函数ln()x z x y y =-,则zy∂=∂( ) A .()x y x y -B .2ln()x x y y --C .ln()()x y xy y x y -+- D .2ln()()x x y xy y x y ---- 【答案】D 【解析】221ln()ln()(1)()z x x x x y xx y y y y x y y y x y ∂-=--+⋅⋅-=--∂--.26.累次积分222202(,)x x x x dx f x y dy --⎰写成另一种次序的积分是( )A .10(,)yydy f x y dx -⎰⎰B .222202(,)y y y y dy f x y dx ---⎰C .221111(,)y y dy f x y dx ----⎰D .22111111(,)y y dy f x y dx +----⎰⎰【答案】D【解析】由题意知,02x ≤≤,2222x x y x x -≤≤-11y -≤≤,221111y x y -≤-,所以交换积分次序后为22111111(,)y y dy f x y dx +----⎰⎰.27.设{}(,)2,2D x y x y =≤≤,则Ddxdy =⎰⎰( )A .2B .16C .12D .4【答案】B【解析】222216Ddxdy dx dy --==⎰⎰⎰⎰,故选B .28.若幂级数0nn n a x ∞=∑的收敛半径为R ,则幂级数20(2)n n n a x ∞=-∑的收敛区间为( )A .(,)R RB .(2,2)R R -+C .(,)R R -D .(2,2)R R【答案】D【解析】令2(2)t x =-,则0n n n a t ∞=∑的收敛半径为R ,即R t R -<<,则2(2)x R -<,即22R x R <<D .29.下列级数绝对收敛的是( )A .1(1)nn n∞=-∑B .213(1)2nnn n ∞=-∑C .11(1)21nn n n ∞=+--∑D .21(1)21nn n ∞=--∑【答案】B【解析】对选项B ,21133(1)24nn nn n n ∞∞==⎛⎫-= ⎪⎝⎭∑∑,级数收敛,从而原级数绝对收敛,故选B .30.若幂级数0(3)n n n a x ∞=-∑在点1x =处发散,在点5x =收敛,则在点0x =,2x =,4x =,6x =中使该级数发散的点的个数有( )A .0 个B .1个C .2个D .3个【答案】C【解析】由幂级数发散、收敛性质及收敛区间的讨论可得,在这4个点中发散点的个数有两个,即0x =,6x =,故选C .二、填空题 (每空 2分,共 20分)31.设(32)f x -的定义域为(3,4]-,则()f x 的定义域为________. 【答案】[5,9)-【解析】(32)f x -的定义域为(3,4]-,即34x -<≤,所以5329x -≤-<,即()f x 的定义域为[5,9)-.32.极限lim (23)x x x x +-=________.【答案】52【解析】55lim (23)limlim2232311x x x x x x x x x x x+-===++-++-.33.设函数()(1)(2)(3)(4)f x x x x x =++--,则(4)()f x =________. 【答案】24【解析】(4)()4!24f x ==.34.设参数方程22131x t y t =+⎧⎨=-⎩所确定的函数为()y y x =,则22d ydx =________. 【答案】32【解析】632dydy t dt t dx dx dt===,22(3)322d dy d y t dt dx dx dx dt ⎛⎫ ⎪'⎝⎭===.35.(ln 1)x dx +=⎰________. 【答案】ln x x C +【解析】1(ln 1)ln ln ln x dx xdx dx x x x dx x x x C x+=+=-⋅+=+⎰⎰⎰⎰.36.点(3,2,1)-到平面10x y z ++-=的距离是________. 3【解析】321131113d +--===++.37.函数(1)x z y =+在点(1,1)处的全微分dz =________. 【答案】2ln 2dx dy + 【解析】(1)ln(1)x zy y x∂=++∂,1(1)x z x y y -∂=+∂,(1,1)(1,1)2ln 2z z dz dx dy dx dy xy ⎛⎫∂∂=+=+ ⎪∂∂⎝⎭.‘38.设L 为三个顶点分别为(0,0),(1,0)和(0,1)的三角形边界,L 的方向为逆时针方向,则2322()(3)Lxy y dx x y xy dy -+-=⎰________.【答案】0 【解析】223P xy y y ∂=-∂,223Qxy y x∂=-∂,P Q y x ∂∂=∂∂,由格林公式得,该曲线积分为0.39.已知微分方程x y ay e '+=的一个特解为x y xe =,则a =________. 【答案】1-【解析】将x y xe =代入微分方程得x x x x e xe axe e ++=,即1a =-.40.级数03!nn n ∞=∑的和为________.【答案】3e【解析】23012!3!!!n n xn x x x x e x n n ∞==++++++=∑,故303!nn e n ∞==∑.三、计算题 (每小题5 分,共45 分)41.求极限2040sin (1)sin lim 1cos x x x tdt e x x x →⎡⎤-⎢⎥-⎢⎥-⎢⎥⎣⎦⎰. 【答案】32【解析】220044000sin sin (1)sin (1)sin lim lim lim 1cos 1cos x x x x x x x tdt tdt e x e x x x x x →→→⎡⎤--⎢⎥-=-⎢⎥--⎢⎥⎣⎦⎰⎰ 230022sin 13lim lim 214222x x x x x x x x→→⋅=-=-=.42.设由方程22y e xy e -=确定的函数为()y y x =,求0x dy dx=.【答案】24e -【解析】方程两边同时关于x 求导,得220y e y y xy y ''⋅--⋅=,当0x =时,2y =,代入得 204x dy e dx-==.43.求不定积分21x xe +.32(1)213x x e e C ++ 【解析】令1x t e =+21x e t =-,2ln(1)x t =-,则221tdx dt t =-,于是 2222332(1)222(22)2(1)211331xx x x t t dt t dt t t C e e C t t e -=⋅=-=-+=++-+⎰⎰.44.求定积分220(2)x x x dx +-⎰.【答案】22π+【解析】22222000(2)221(1)(1)x x x dx xdx x x dx x d x -=+-=----⎰⎰⎰⎰令1t x =-,则122220111(1)(1)11122x d x t dt t dt ππ-----=-=--=-⋅⋅=-⎰⎰⎰,故220(2)22x x x dx π-=+⎰.45.求过点(1,2,5)-且与直线2133x y z x y -+=⎧⎨-=⎩平行的直线方程.【答案】125315x y z --+==- 【解析】由题意得,两平面的法向量分别为1(2,1,1)=-n ,2(1,3,0)=-n ,所以该直线的方向向量为12211(3,1,5)130=⨯=-=--i j ks n n ,又直线过点(1,2,5)-,故该直线的方程为125315x y z --+==-.46.求函数22(,)328f x y x y xy x =+-+的极值. 【答案】24-【解析】228x f x y =-+,62y f y x =-,令00x y f f =⎧⎪⎨=⎪⎩,得驻点为62x y =-⎧⎨=-⎩,又2xx f =,2xy f =-,6yy f =,对于驻点(6,2)--,280B AC -=-<,20A =>, 故函数在点(6,2)--处取得极小值(6,2)24f --=-.47.将23()21xf x x x =+-展开成x 的幂级数.【答案】011()(1)222n n n n f x x x ∞=⎛⎫⎡⎤=-+-<< ⎪⎣⎦⎝⎭∑ 【解析】2311()21112x f x x x x x ==-+-+-, 其中01(1)(11)1n n n x x x ∞==--<<+∑,00111(2)21222n n nn n x x x x ∞∞==⎛⎫==-<< ⎪-⎝⎭∑∑,故00011()(1)2(1)222nnnnn n n n n n f x x x x x ∞∞∞===⎛⎫⎡⎤=-+=-+-<< ⎪⎣⎦⎝⎭∑∑∑.48.计算二重积分22Dx y d σ+,其中D 是由圆223x y +=所围成的闭区域.【答案】3π【解析】用极坐标计算,{}(,)03,02D r r θθπ=≤≤≤≤,于是232220323Dx y d d rdr d ππσθθπ+=⋅==⎰.49.求微分方程960y y y '''-+=的通解. 【答案】1312()x y C C x e =+(12,C C 是任意常数)【解析】对应的特征方程为29610r r -+=,特征根为1213r r ==,因此所给方程的通解为1312()x y C C x e =+(12,C C 是任意常数).四、应用题 (每小题8 分,共 16 分)50.要做一个容积为V 的圆柱形带盖容器,问它的高与底面半径的比值是多少时用料最省? 【答案】当2hr=时,用料最省 【解析】设该容器的高为h ,底面半径为r ,则该容器的容积2V r h π=,即2Vh r π=, 该带盖容器的用料222222V S r rh r r πππ=+=+,则224V S r rπ'=-, 令0S '=,解得唯一驻点32V r π=,故当32Vr πS 取值最小,此时 323322V h V V V r r r r ππππ===⋅=.51.平面图形D 由曲线2y x =直线2y x =-及x 轴所围成.求: (1)D 的面积;(2)D 绕x 轴旋转形成的旋转体的体积. 【答案】(1)56 (2)815π 【解析】(1)由题意可得,此平面区域D 如图所示,则1312200125(2)2236S y y dy y y y ⎡⎤⎡=-=--=⎢⎥⎣⎣⎦⎰. (2)平面D 绕x 轴旋转形成的旋转体的体积为124251322101118(2)245315x V x dx x dx x x x x πππππ⎛⎫=+-=+-+=⎪⎝⎭⎰⎰.五、证明题 (9 分)52.设函数()f x 在闭区间[]0,1上连续,在开区间(0,1)内可导,且(0)0f =,(1)2f =. 证明:在(0,1)内至少存在一点ξ,使得()21f ξξ'=+.【解析】构造函数2()()F x f x x =-,由题意可知()F x 在[]0,1上满足拉格朗日中值定理的条件,故在(0,1)内至少存在一点ξ,使得(1)(0)()10F F F ξ-'=-,代入得,()()21F f ξξξ''=-=,即()21f ξξ'=+.。

山东高等数学2010年专升本试题答案

山东高等数学2010年专升本试题答案

山东大学成人教育专升本入学考试高等数学(二)模拟题 (1)一、 选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。

1、函数291)(xx f -=的定义域是( A )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,)D 、(0,3)2、x1sin lim x ∞→=( A ) A. 0 B. 1 C.∞ D. 不存在 3、设4)3)(2)1)-x -(x -(x -x(x f(x)=则)2('f =( D )A 、0B 、1C 、2D 、4 4、设函数x f(x)=,则)1(f '等于 ( C )A.1B.-1C.21 D.-21 5、曲线3x y =在点)1,1(M 处的切线方程是 ( C ) A. 023=-+x y B. 03231=-+x y C.023=+-x y D. 043=--x y二、填空题:本大题共15个小题,共15个空,每空3分,共45分。

把答案填在题中横线上。

1、设1)1(2--=+x x x f ,则=)(x f231x x -+2、判断函数的奇偶性:cosx )(3x x f = 是 奇函数3、=-+∞→531002lim 33x xx x 23 4、13+=x y 的反函数是()3log 1y x =-5、已知32)tan(lim 0=→xkx x ,则k = 6 6、=++∞→xx x x )12(lim 1 7、设x x x y -=ln ,则y '=ln x8、曲线22xy =在)2,1(处的切线方程是46y x =-+9、设x x y sin =,则''y =2cos sin y x x x =-10、=-=dy x y 则设,)1(4323312(1)x x dx - 11、不定积分⎰=+dx x 121()1ln 212x C ++ 12、不定积分⎰dx x xe = x x xxe e e +-13、定积分dx x⎰-+11211=π14、定积分=⎰exdx 1ln 115、⎰-+⋅=x dt t t x 0321)(φ设,)('x φ则= 123(1)x x +三、计算题:本大题共10个小题,每小题6分, 共60分。

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本高等数学真题(附答案)2010年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( )A. 1,36a n ==B. 1,33a n ==C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有( )A. 1条B. 2条C. 3条D. 4条 3.设函数22()cos t xx e tdtΦ=⎰,则函数()x Φ的导数()x 'Φ等于( ) A.222cos x xe x B.222cos x xe x - C. 2cos xxex-D. 22cos x e x - 4.下列级数收敛的是( ) A. 11n n n ∞=+∑ B.2121n n n n∞=++∑ C.1n n n ∞=D.212n n n ∞=∑5.二次积分111(,)y dy f x y dx+⎰⎰交换积分次序后得( ) A. 1101(,)x dx f x y dy+⎰⎰B.211(,)x dx f x y dy-⎰⎰C. 2111(,)x dx f x y dy-⎰⎰D.2111(,)x dx f x y dy-⎰⎰6.设3()3f x x x=-,则在区间(0,1)内( )A. 函数()f x 单调增加且其图形是凹的B. 函数()f x 单调增加且其图形是凸的C. 函数()f x 单调减少且其图形是凹的D. 函数()f x 单调减少且其图形是凸的二、填空题(本大题共6小题,每小题4分,满分24分)7. 1lim()1xx x x →∞+=-8. 若(0)1f '=,则0()()lim x f x f x x →--=9. 定积分312111x dxx -++⎰的值为10. 设(1,2,3),(2,5,)a b k ==,若a 与b 垂直,则常数k = 11. 设函数24z x y=+,则10x y dz===12. 幂级数0(1)n nn x n ∞=-∑的收敛域为三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限211lim()tanx x x x→- 14、设函数()y y x =由方程2x yy e x++=所确定,求22,dy d ydx dx15、求不定积分arctan x xdx ⎰ 16、计算定积分4021dx x +⎰17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程。

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本⾼等数学真题(附答案)2010年江苏省普通⾼校“专转本”统⼀考试⾼等数学⼀、单项选择题(本⼤题共6⼩题,每⼩题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()n g x ax =是等价⽆穷⼩,则常数,a n 的值为 ( ) A. 1,36a n = = B. 1,33a n == C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有( )A. 1条B. 2条C. 3条D. 4条 3.设函数22()c o s txx e t d tΦ=?,则函数()x Φ的导数()x 'Φ等于 ( )A. 222cos x xe x B. 222cos x xe x - C. 2cos xxe x - D. 22cos x e x -4.下列级数收敛的是( )A. 11n n n ∞=+∑ B. 2121n n n n ∞=++∑C. 1n n ∞= D. 212n n n ∞=∑5.⼆次积分111(,)y dy f x y dx+??交换积分次序后得( ) A. 1101(,)x dx f x y dy +?? B. 2110(,)x dx f x y dy -?? C. 2111(,)x dx f x y dy -?D. 2111(,)x dx f x y dy -??6.设3()3f x x x=-,则在区间(0,1)( )A. 函数()f x 单调增加且其图形是凹的B. 函数()f x 单调增加且其图形是凸的C. 函数()f x 单调减少且其图形是凹的D. 函数()f x 单调减少且其图形是凸的⼆、填空题(本⼤题共6⼩题,每⼩题4分,满分24分) 7. 1lim( )1xx x x →∞+=- 8. 若(0)1f '=,则0()()limx f x f x x→--=9. 定积分211dx x -+?的值为 10. 设(1,2,3),(2,5,)a b k ==,若a 与b 垂直,则常数k =11.设函数lnz =10x y dz===12. 幂级数0(1)n nn x n ∞=-∑的收敛域为三、计算题(本⼤题共8⼩题,每⼩题8分,满分64分) 13、求极限2011lim()tan x x x x→-14、设函数()y y x =由⽅程2x yy e x ++=所确定,求22,dy d y15、求不定积分arctan x xdx ?16、计算定积分417、求通过点(1,1,1),且与直线23253x t y t z t =+??=+??=+?垂直,⼜与平⾯250x z --=平⾏的直线的⽅程。

江苏省2010年普通高校专转本统一考试高等数学试卷

江苏省2010年普通高校专转本统一考试高等数学试卷

江苏省2010年普通高校专转本统一考试高等数学试卷注意事项:1.考生务必将密封线内的各项目填写清楚。

2.考生须用钢笔或圆珠笔将答案直接写在试卷上,写在草稿纸上无效。

3.本试卷共8页,5大题,24小题,满分150分,考试时间120分钟。

一、选择题(本大题共6小题,每小题4分,满分24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把所选项前的字母填在题后的括号内.)1.设当0x →时,函数()sin f x x x =-与()n g x ax =是等价无穷小,则常数,a n 的值为( )A.16a =,3n = B.13a =,3n = C.a =2.曲线A.1条4条 3.设(Φ A.2x C.2-4 A.11n n ∞=+∑21n n n =+1n =212n n n ∞=∑5.二次积分111d (,)d y y f x y x +⎰⎰交换积分次序后得( )A.1101d (,)d x x f x y y +⎰⎰B.2110d (,)d x x f x y y -⎰⎰C.2111d (,)d x x f x y y -⎰⎰D.2111d (,)d x x f x y y -⎰⎰6.设3()3f x x x =-,则在区间(0,1)内( )A.函数()f x 单调增加且其图形是凹的B.函数()f x 单调增加且其图形是凸的C.函数()f x 单调减少且其图形是凹的D.函数()f x 单调减少且其图形是凸的二、填空题(本大题共6小题,每小题4分,共24分.)7.1lim 1xx x x →∞+⎛⎫= ⎪-⎝⎭. 8.若(0)1f '=,则0()()limx f x f x x→--= .9.定积分31211d 1x x x -++⎰的值为 . 10.设(1,2,3)a =,(2,5,)b k = ,若a 与b 垂直,则常数k = .11.设函数z =10d x y z=== .12.幂级数1(1)n nn x n ∞=-∑的收敛域为 .三、计算题13.求极限0lim x →14.设函数y =15. 求不定积分arctan d x x x ⎰.16.计算定积分40x ⎰.17.求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程.18.设2(,e )xz y f xy =,其中函数f 具有二阶连续偏导数,求2zx y∂∂∂.19.计算二重积分d d Dx x y ⎰⎰,其中D 是由曲线x =y x =及x 轴所围成的闭区域.20.已知函数e x y =和2e x y -=是二阶常系数线性齐次微分方程 0y p y q y '''++=的两个解,试确定常数,p q 的值,并求微分方程e xy py qy '''++=的通解.21.证明:当1x >时,1211e 22x x ->+.22.设()0()1x x f x xx ϕ⎧≠⎪=⎨⎪=⎩,其中函数()x ϕ在0x =处具有二阶连续导数,且(0)0ϕ=,(0)1ϕ'=,证明:函数()f x 在0x =处连续且可导.23.设由抛物线2y x =(0)x ≥,直线2y a =(01)a <<与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2y x =(0)x ≥,直线2y a =(01)a <<与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,令12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值.24.设函数()f x 满足方程()()2e x f x f x '+=,且(0)2f =,记由曲线()()f x y f x '=与直线1y =,(0)x t t =>及y 轴所围平面图形的面积为()A t ,试求lim ()t A t →+∞.2010年试题答案一、单项选择题1.A2.C3.B4.D5.D6.C 二、填空题7.2e 8.2 9.2π10.4- 11.d 2d x y + 12.(1,1]- 三、计算题 13. 13-14.d 2e d 1e x y x y y x ++-=+ 223d 9e d (1e )x yx y y x ++-=+ 15.211arctan arctan 222x x x x C =-++16.28317.1127x y --==-18.2132e x y f y '+19 20.1p =,q =-四、证明题(略) 五、综合题 23.144440()π()d π()d aaV a a x x x a x =-+-⎰⎰54π()55a a =-+(01a <<). 12a =24.()e e xxf x -=+,0e e ()1d ln(e e )ln 2e ex xt t t x x A t t x t ----=⋅-=-+++⎰,lim ()t A t →+∞=ln 2。

浙江专升本2010年高等数学试卷(学研教育)

浙江专升本2010年高等数学试卷(学研教育)

浙江专升本2010年浙江省专升本《高等数学》试卷一、选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1. 下列函数相等的是 ( )A .2,x y y x x== B.y y x == C.2 ,y x y == D.|| ,y x y ==2. 曲线xe y x= ( ) A .仅有水平渐近线 B .既有水平又有垂直渐近线C .仅有垂直渐近线D .既无水平又无垂直渐近线3. 设区域D 由直线,()x a x b b a ==>,曲线()y f x =及曲线()y g x =所围成,则区域D的面积为 ( )A .[()()]b a f x g x dx -⎰B .|[()()]|b af xg x dx -⎰ C .[()()]ba g x f x dx -⎰ D .|()()|ba f x g x dx -⎰ 4. 若方程ln z x y=确定二元隐函数(,)z f x y =,则z x ∂=∂ ( ) A .1 B .x e C .xye D .y5. 下列正项级数收敛的是 ( )A .2131n n ∞=+∑B .21ln n n n ∞=∑C .221(ln )n n n ∞=∑ D.2n ∞=二、填空题(只需在横线上直接写出答案,不必写出计算过程,本题共有10个小题,每小题4分,共40分)1. 当0x →时,2sin x a x +与x 是等价无穷小,则常数a 等于 .2. 设函数2sin 21, 0() 0ax x e x f x x a x ⎧+-≠⎪=⎨⎪=⎩在(,)-∞+∞内连续,则a = . 3. 曲线1y x=在点(1,1)处的切线方程为 .4. 设0()sin xf t dt x x =⎰,则()f x = .5. 设函数22ln()z x y =+,则11|x y dz === .6.定积分22(x --⎰= .7. 过点(1,2,0)-并且与平面23x y z ++=垂直的直线方程为 .8. 二重积分110sin x y dx dy y ⎰⎰= . 9. 幂级数1!n n n n x n ∞=∑的收敛半径R = . 10.微分方程20xy y '-=的通解是 .三、计算题(本题共有10个小题,每小题6分,共60分)1. 求011lim()1x x x e →--. 2. 已知函数lnsin(12)y x =-,求dy dx . 3. 求不定积分arctan x xdx ⎰. 4. 函数2, 0,()2, 0,x x f x x x +≤⎧=⎨->⎩,计算11()f x dx -⎰的值. 5. 设函数(,)z z x y =是由方程22xy z e z e -+-=所确定,求212|x y dz ==-.6. 设D 是由直线0,1x y ==及y x =围成的区域,计算2y D I e dxdy -=⎰⎰.7. 设由参数方程2, 2,t x e y t t ⎧=⎨=+⎩所确定的函数为()y y x =,求212|t d y dx =, 8. 求函数22(,)328f x y x y xy x =+-+的极值.9. 求微分方程223x y y y e '''+-=的通解.10. 将函数21()43f x x x =++展开成(1)x -的幂级数.四、综合题(本题3个小题,共30分,其中第1题12分,第2题12分,第3题6分)1. 设平面图形D 是由曲线x y e =,直线y e =及y 轴所围成的,求:⑴ 平面图形D 的面积;⑵ 平面图形D 绕y 轴旋转一周所成的旋转体的体积.2. 欲围一个面积为1502m 的矩形场地.所用材料的造价其正面是每平方米6元,其余三面是每平方米3元.问场地的长、宽各为多少时,才能使所用的材料费最少.3. 设函数()f x 在闭区间[0,1]上连续,在开区间(0,1)内可导且(0)(1)0f f ==,1()12f =,证明:存在(0,1)ξ∈使()1f ξ'=.——以上由(学研教育专升本)编辑整理。

2010年黑龙江普通专升本高数考试真题

2010年黑龙江普通专升本高数考试真题

2010年黑龙江省普通专升本高等数学考试题一、选择题:110小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。

1.f(x)的定义域为[0 、4],则f(2x)的定义域为()A [0 、 4]B [0 、16]C [-2 、2]D [0 、 2]2.函数f(x)在x处连续是函数f(x)在0x可导的()A 充要条件B 必要非充分条件C 充分非必要条件D 非充分必要条件3.函数f(x)在0x处取得最小值,则0()xf'是A 0B 不存在C 0或是不存在D 由0x的值有关4.函数f(x)=2cos()x t dt⎰,则()f x'为()A 偶函数B 奇函数C 即是奇函数又是偶函数D 非奇非偶函数5.函数f(x)的原函数为cos2x,则f(x)的导数是()A 4cos2xB 4sin2xC -4cos2xD -4sin2x6.极限lim 1bx d a x x +⎛⎫+ ⎪→∞⎝⎭等于( ) A e B b e ab ab d +11≤,则x=1 B C 第二类间断点 D 连续点10.微分方程69y y '''++=0的通解为( )A3312x xc e c xe--+ B 3312x xc e c e--+C3312x xc e c e+ D 3312x xc e c xe+二、解答题:1115题,共计60分。

解答应写出推理和解题步骤。

13. (本题满分11分)求定积分1x+ 4. (本题满分17分)已知抛物线2y x=和直线y=x求:1.它们所围得图形的面积2.该面积绕x轴旋转的体积。

五.(本题满分10分)证明题:当x>1时,x e>ln x+1。

【专升本】2010年高等数学(二)及参考答案

【专升本】2010年高等数学(二)及参考答案

绝密★启用前2010年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上指定的位置,答在试卷上无效。

一、选择题:1-10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,将近选项前的字母填涂在答题卡相应题号的信息点上。

1.A、 B.0 C. D.—2.设函数,则′=A、2B、1C、D、−3.设函数,则′=A.2B.-2C.D.-4.下列在区间(0,+)内单调减少的是A.y=xB.y=C.y=D.y=5.dx=A.-+CB.+CC.+CD.+C6.曲线y=1-与x轴所围成的平面图形的面积S=A.2B.C.1D.7.已知=dt,则′=A. B.+1 C. D.8.设函数z=,则│A.0B.C.1D.29.设函数z=,则=A.-B.C.D.10.袋中有8个乒乓球,其中5个白色球,3个黄色球,从中一次任取2个乒乓球,则取出2个球均为白色球的概率为A. B. C. D.二、填空题:11-20小题,每小题4分,共40分,把答案写在答题卡相应题号后。

11、12、当0时,与是等价无穷小量,则13、设函数在点处的极限存在,则a=14、曲线y=+3+1的拐点坐标为15、设函数y=,则=16、设曲线y=ax在x=0处的切线斜率为2,则a=17、=18、=19、=20、函数z=2的驻点坐标为三、解答题:21-28题,共70分。

解答应写出推理、演算步骤,并将其写在答题卡相应题号后。

21、(本题满分8分)计算 .22、(本题满分8分)设y=,求 .23、(本题满分8分)计算。

24、(本题满分8分)计算。

25、(本题满分8分)(1)求常数a .(2)求X的数学期望EX和方差DX.26、(本题满分10分)在半径为R的半圆内作一内接矩形,其中的一边在直径上,另外两个顶点在圆周上(如图所示).当矩形的长和宽各位多少时,矩形面积最大?最大值是多少?27、(本题满分10分)证明:当x1时,x1.28、(本题满分10分)求二元函数,=++xy,在条件x+2y=4下的极值.绝密★启用前2010年成人高等学校专升本招生全国统一考试高等数学(二)一、选择题:每小题4分,共40分.1. A2. C3. B4. D5. A6. B7. C8.D9.A 10.B二、填空题:每小题4分,共40分.11. 0 12. 113.1 14.15.16. 217.+ C 18. e 119.20.三、解答题:共70分.21.解:=6分= . 8分22.解:y′=′2分= . 6分所以 = y′=8分23.解:=6分=+ C 8分24.解:设 = t,则 =2t . 2分当x=0时,t=0;当x=1时,t=1 . 3分则 =2=2=2t25.解:(1)因为0.2 + 0.1 + 0.3 + a = 1,所以a=0.4 . 3分(2)EX=00.2=1.9 5分 DX=0.2+++0.4=1.29 8分26.解:如图,设x轴通过半圆的直径,y轴垂直且平分直径 .设OA=x,则AB= .矩形面积S=2x . 2分S′=2 -=2 . 6分令S′=0,得x=R (舍去负值). 8分由于只有一个驻点,根据实际问题,x=R必为所求.则AB=R.所以,当矩形的长为R,宽为R时,矩形面积最大,且最大值S= . 8分27.解:设= x-1-,2分则′=1- .当 x1时,′0,则单调上升 .所以当x1时,= 0. 6分即 x-1-0 ,得 x6分28.解:设F,, =,= . 4分令,①,②,③8分由①与②消去得x=0,代入③得y = 2 .所以函数,的极值为4 . 10分。

2010专升本数学答案

2010专升本数学答案

2010专升本数学答案1楼发表于 2010-6-17 08:22 | 只看该作者 | 倒序看帖 | 打印高等数学试卷第 1 页(共 6 页)一、选择题(每小题2 分,共60 分)1.设函数 f (x ) 的定义域为区间(-1 ,1] ,则函数 e f ( x-1 ) 的定义域为A.[- 2, 2] B.(- 1, 1] C.(- 2, 0] D.(0, 2]【答案】D.解: -1< x -1&pound; 1&THORN; 0 < x &pound; 2 ,应选 D.2.若 f (x ) (x&Icirc; R ) 为奇函数,则下列函数为偶函数的是A. y = 3 x3 - 1f (x ) , x&Icirc;[-1, 1]高等数学试卷第 2 页(共 6 页)B. y = xf (x) + tan 3 x , x&Icirc;( - π, π)C. y = x3 sin x - f (x ) , x&Icirc;[- 1, 1]D. y = f (x)ex 2 sin 5 x , x&Icirc;[ - π, π]【答案】D.解:根据偶函数的定义及结论得: y = f (x)ex 2 sin 5 x , x&Icirc;[ - π, π] 为偶函数,应选 D.3.当 x &reg; 0 时, e2 x - 1 是sin 3x的A.低阶无穷小 B.高阶无穷小C.等价无穷小 D.同阶非等价无穷小【答案】D.解:20 0lim e 1 lim 2 2sin 3 3 3xx xx&reg; x &reg; x-= = ,从而是同阶非等价无穷小,应选 D.4.设函数251sin 1 , 0( )ex , 0f x xxë > &iuml;= ì&iuml;&icirc; <,则 x = 0 是 f (x ) 的A.可去间断点 B.跳跃间断点C.连续点 D.第二类间断点【答案】A.解:120 0 5 0 0lim ( ) lim sin 1 0; lim ( ) lim ex 0x x x xf x x f x&reg; + &reg; + x &reg; - &reg; -= = = = ,从而 x = 0 是可去间断点,应选 A.5.下列方程在区间(0, 1) 内至少有一个实根的为A. x 2 + 2 = 0 B.sin x = 1 - πC. x3 + 5x 2 - 2 = 0 D. x2 +1+ arctan x = 0【答案】C.解:构造函数,验证端点函数值异号,应选 C.6.函数 f (x ) 在点 0 x = x 处可导,且 ( ) 1 0 f &cent; x = - ,则 0 0 0lim ( ) ( 3 )h 2f x f x h&reg; h- +=A.23B.23- C.32- D.2高等数学试卷第 3 页(共 6 页)【答案】D.解: 0 00 0lim ( ) ( 3 ) 3 ( ) 3h 2 2 2f x f x h f x&reg; h- + &cent; = - = ,应选 D.7.曲线 y = x ln x 的平行于直线 x - y + 1 = 0 的切线方程是A. y = x - 1 B. y = - ( x + 1)C. y = -x + 1 D. y = (ln x + 1) ( x - 1)【答案】A.解: y = x ln x&THORN; y&cent; =1+ ln x =1&THORN; x =1, y = 0 ,可得切线为 y = x - 1 ,应选A. 也可以根据切线与已知直线平行这个条件,直接得到。

2010年专升本《高等数学》试卷

2010年专升本《高等数学》试卷

2010年福建省高职高专升本科入学考试 高等数学 试卷一、单项选择题(本大题共10小题,每小题3分,共30分)1. 函数2sin(1)()1x f x x ,()x 是( )A. 有界函数B. 奇函数C. 偶函数D. 周期函数 2. 函数2()f x x 与()g x x 表示同一函数,则他们的定义域是( ) A. (,0] B. [0,) C.(,) D. (0,)3. 设函数()g x 在 xa 连续而()()()f x x a g x ,则'()f a =( )A. 0B. '()g a C. ()g a D. ()f a 4. 设163()351f x xxx ,则17(1)f ( )A. 17!B. 16!C. 15!D. 0 5. 0x是函数22()xxf x e 的( )A. 零点B. 驻点C. 极值点D. 非极值点 6. 设2(),x xf x dx e C 则()f x =( ) A. 2x xeB. 2x xeC.22x eD. 22x e7. 2(cos )b ad x dx =( )(其中a ,b 为常数) A. 2sin x dx B. 2cos x dx C. 0 D.22cos x x dx8. 广义积分21xxe dx e ( )A. πB. 2πC. 4π D. 0 9. 直线 211:113x y z L 与平面 :5670x yz 的位置关系是 ( )A. L π在上B. LC. L π与平行D.L π与相交,但不垂直10. 微分方程'23'()30x y y y x 的阶数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共10小题,每小题4分,共40分) 11. 函数2ln(1)y x 的反函数是 12. 320355lim sin 53x x x x x= 13. 曲线cos yx 上点132π(,)处的法线的斜率等于14. 若()f x 在0x x 处可导,且000()(7)lim3hf x f x h h,则'0()f x =15. 函数()arctan [0,1]f x x 在上使拉格朗日中值定理结论成立的ξ是16. 曲线x yxe 的拐点是 17. 设()F x 为可微函数,则()dF x18. 定积分42xdx 19. 微分方程'2(1)yx y 的通解是20. 设向量{1,3,2}a与向量{2,6,},b 则λ=三、计算题(本大题共8小题,每小题7分,共56分) 21. 设函数0()310xke xf x x x在x=0处连续,试求常数k22. 计算极值0ln()limcos xt xte dtx x23. 求由方程ln 2xyey所确定的隐函数()y y x 的一阶导数dydx24. 求由参数方程cos sin xty t 所确定的函数()y y x 的二阶导数2d ydx25. 求不定积分2arctan x xdx ⎰26. 求定积分231(1)dx x x27. 求微分方程'23xy y x ++的通解。

河南省专升本2010-2014年高等数学真题

河南省专升本2010-2014年高等数学真题

2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学题号一二三四五总分分值602045169150注意事项:答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上.本试卷的试题答案必须答在答题卡上,答在试卷上无效.一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.1.设函数()f x 的定义域为区间(-1,1],则函数()1-x f e 的定义域为()A.[2,2]- B.(1,1]- C.(2,0]- D.(0,2]2.若()()R x x f ∈为奇函数,则下列函数为偶函数的是()A.()[]1,1,133-∈-=x x f x y B.()()ππ,,tan 3-∈+=x x x xf y C.()[]1,1,sin 3-∈-=x x f x x y D.()[]ππ,,sin 52-∈=x x e x f y x 3.当0→x 时,21xe -是x 3sin 的()A.低阶无穷小B.高阶无穷小C.等价无穷小D.同阶非等价无穷小4.设函数()⎪⎩⎪⎨⎧<>=.0,,0,1sin 152x e x x x x f x 则0=x 是()x f 的()A.可去间断点B.跳跃间断点C.连续点D.第二类间断点 5.下列方程在区间(0,1)内至少有一个实根的是()A.022=+x B.π-=1sin x C.02523=-+x x D.0arctan 12=++x x 6.函数()x f 在点0x x =处可导,且()10-='x f ,则()()=+-→hh x f x f h 23lim000()A.32 B.32-C.23-D.237.曲线x x y ln =平行于直线01=+-y x 的切线方程是()A.1-=x yB.()1+-=x yC.1+-=x y D.()()11ln -+=x x y 8.设函数5sin 212π--=x y ,则='y ()A.5cos212π---x x B.21x x --C.212x x - D.5cos52122π---x x9.若函数()x f 满足()dx x x x df 2sin 2-=,则()=x f ()A.2cos xB.C x +2cos C.C x +2sin D.C x +-2cos 10.()=-⎰-dx x e dxd b a x21sin ()A.()x e x 21sin --B.()dx x e x 21sin --C.()Cx e x +--21sin D.011.若()()x f x f =-,在区间()+∞,0内,()()0,0>''>'x f x f ,则()x f 在区间()0,∞-内()A.()()0,0<''<'x f x fB.()()0,0>''>'x f x fC.()()0,0<''>'x f x f D.()()0,0>''<'x f x f 12.若函数()x f 在区间()b a ,内连续,在点0x 处不可导,()b a x ,0∈,则()A.0x 是()x f 的极大值点B.0x 是()x f 的极小值点C.0x 不是()x f 的极值点D.0x 可能是()x f 的极值点13.曲线x xe y -=的拐点为()A.1=x B.2=x C.⎪⎭⎫ ⎝⎛22,2e D.⎪⎭⎫ ⎝⎛e 1,114.曲线35arctan 2+=xxy ()A.仅有水平渐近线B.仅有垂直渐近线C.既有水平渐近线,又有垂直渐近线D.既无水平渐近线,又无垂直渐近线15.若x cos 是()x f 的一个原函数,则()=⎰x df ()A.C x +-sinB.C x +sinC.C x +-cosD.Cx +cos 16.设曲线()x f y =过点(0,1),且在该曲线上任意一点()y x ,处切线的斜率为xe x +,则()=xf ()A.22xx e - B.xe x +22C.xe x +2D.xex -217.dx x xx ⎰-+ππ421sin =()A.2B.0C.1D.1-18.设()x f 是连续函数,则()dt t f x ⎰2是()A.()x f 的一个原函数B.()x f 的全体原函数C.()22x xf 的一个原函数D.()22x xf 的全体原函数19.下列广义积分收敛的是()A.dxx⎰+∞11 B.dx x xe ⎰∞+2ln C.dx xx e⎰+∞2ln 1D.dx x x e⎰+∞+2120.微分方程422('')'0x y y x y +-=的阶数是()A.1B.2C.3D.421.已知向量}{5,,2a x =- 和}{,6,4b y =平行,则x 和y 的值分别为()A.5,4- B.10,3-- C.10,4-- D.3,10--22.平面1=++z y x 与平面2=-+z y x 的位置关系是()A.重合B.平行C.垂直D.相交但不垂直23.下列方程在空间直角坐标系中表示的曲面为柱面的是()A.122=+z yB.22y x z +=C.222y x z += D.22y x z -=24.关于函数()⎪⎩⎪⎨⎧=+≠++=.0,0,0,,222222y x y x y x xy y x f 下列表述错误的是()A.()y x f ,在点(0,0)处连续B.()00,0=f C.()00,0='y f D.()y x f ,在点(0,0)处不可微25.设函数()y x y x z -=ln ,则=∂∂yz()A.()y x y x- B.()2ln y y x x --C.()()y x y xy y x -+-ln D.()()y x y xy y x x ----2ln 26.累次积分()dy y x f dx x x x x ⎰⎰---22222,写成另一种次序的积分是()A.()dx y x f dy yy⎰⎰-1, B.()dx y x f dy y y y y ⎰⎰---202222,C.()dxy x f dy y y ⎰⎰----111122, D.()dxy x f dy y y ⎰⎰--+--11111122,27.设(){}2,2|,≤≤=y x y x D ,则⎰⎰=Ddxdy ()A.2B.16C.12D.428.若幂级数∑∞=0n nnx a的收敛半径为R ,则幂级数()∑∞=-022n nn x a 的收敛区间为()A.()RR - B.()R R +-2,2C.()R R ,- D.()RR +-2229.下列级数绝对收敛的是()A.()∑∞=-111n nn B.()∑∞=-12231n nnnC.()∑∞=-+-11211n nn n D.()∑∞=--12121n nn n 30.若幂级数()∑∞=-03n nn x a 在点1=x 处发散,在点5=x 收敛,则在点0=x ,2=x ,4=x ,6=x 中使该级数发散的点的个数有()A.0个B.1个C.2个D.3个二、填空题(每小题2分,共20分)31.设()x f 23-的定义域为(3,4]-,则()x f 的定义域为________32.极限()=--++∞→32limx x xx ________33.设函数()()()()()4321--++=x x x x x f ,则()()=x f 4________34.设参数方程⎩⎨⎧-=+=.13,122t y t x 所确定的函数为()x y y =,则=22dx yd _______35.()⎰=+dx x 1ln ________.36.点(3,2,1)-到平面01=-++z y x 的距离是________37.函数()xy z +=1在点(1,1)处的全微分=dz ________38.设L 为三个顶点分别为(0,0),(1,0)和(0,1)的三角形边界,L 的方向为逆时针方向,则()()=-+-⎰dy xy y x dx y xyL22323________39.已知微分方程x e ay y =+'的一个特解为x xe y =,则=a ________40.级数∑∞=0!3n nn 的和为________三、计算题(每小题5分,共45分)41.求极限()⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎰→4002sin cos 1sin 1lim xtdt x x e x x x42.设由方程22e xy e y =-确定的函数为()x y y =,求.|0=x dx dy 43.求不定积分dxe e xx ⎰+1244.求定积分().222dx x x x ⎰-+45.求过点(1,2,-5)且与直线⎩⎨⎧=-=+-,33,12y x z y x 平行的直线方程.46.求函数()x xy y x y x f 823,22+-+=的极值47.将()1232-+=x x xx f 展开成x 的幂级数.48.计算二重积分σd y x D⎰⎰+22,其中D 是由圆322=+y x 所围成的闭区域.49.求微分方程069=+'-''y y y 的通解.四、应用题(每小题8分,共16分)50.要做一个容积为V 的圆柱形带盖容器,问它的高与底面半径的比值是多少时用料最省?51.平面图形D 由曲线2x y =直线x y -=2及x 轴所围成.求:(1)D 的面积;(2)D 绕x 轴旋转形成的旋转体的体积.五、证明题(9分)52.设函数()x f 在闭区间[0,1]上连续,在开区间(0,1)内可导,且()().21,00==f f 证明:在(0,1)内至少存在一点ξ,使得()21f ξξ'=+成立.2011年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学题号一二三四五总分分值602050128150注意事项:答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上.本试卷的试题答案必须答在答题卡上,答在试卷上无效.一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.1.函数()()22ln ++-=x x x x f 的定义域是()A.()2,∞- B.()+∞-,2 C.()2,2- D.(0,2)2.设()2212++=+x x x f ,则()=x f ()A.2xB.12+x C.652+-x x D.232+-x x 3.设函数()()+∞∞-∈,,x x f 为奇函数,()()+∞∞-∈,,x x g 为偶函数,则下列函数必为奇函数的是()A.()()f x g x ⋅B.()[]x g fC.()[]x f gD.()()x g x f +4.=→xx x 1sinlim 0()A.1- B.1C.0D.不存在5.设()1='x f ,则()()=--+→hh x f h x f h 32lim()A.4B.5C.2D.16.当0→x 时,下列无穷小量与x 不等价的是()A.22x x -B.123--x e xC.xx )1ln(2+ D.)sin sin(x x +7.设函数()⎪⎩⎪⎨⎧=≠+=000111x x e x f x,则0x =是()x f 的()A.可去间断点B.跳跃间断点C.连续点D.第二类间断点8.x y sin =的三阶导数是()A.xsin B.xsin - C.xcos D.xcos -9.设[]1,1-∈x ,则=+x x arccos arcsin ()A.2π B.4π C.0D.110.若()()0,000>''='x f x f ,则下述表述正确的是()A.0x 是()x f 的极大值点B.0x 是()x f 的极小值点C.0x 不是()x f 的极值点D.无法确定0x 是否为()x f 的极值点11.方程xy 1arcsin =所表示的曲线()A.仅有水平渐近线B.仅有垂直渐近线C.既有水平渐近线,又有垂直渐近线D.既无水平渐近线,又无垂直渐近线12.dx x ⎰-1121=()A.0B.2C.2- D.以上都不对13.方程01sin =-+x x 在区间()1,0内根的个数是()A.0B.1C.2D.314.设()x f 是x cos 的一个原函数,则()=⎰x df ()A.C x +sinB.C x +-sinC.C x +-cosD.Cx +cos 15.设()tdt e x F x xt sin 2cos ⎰+=π,则()x F ()A.为正常数B.为负常数C.恒为零D.不为常数16.设=⎰dt te dxd b x t()A.xxe- B.xxeC.xbee - D.xb xebe -17.由曲线()π≤≤=x x y 0sin 与x 轴所围成的区域的面积为()A.0B.2C.2D.π18.关于二阶常微分方程的通解,下列说法正确的是()A.一定含有两个任意常数B.通解包含所有解C.一个方程只有一个通解D.以上说法都不对19.微分方程x y y =+'3的通解是()A.122++=x Ce x yB.1-+=Cx xe y xC.913++=xCe x y D.91313-+=-xCe x y 20.已知向量a i j k =++ ,则垂直于a且垂直于y 轴的向量是()A.i j k-+ B.i j k -- C.i k+D.i k- 21.对任意两个向量a ,b,下列等式不恒成立的是()A.a b b a+=+ B.a b b a⋅=⋅ C.a b b a⨯=⨯ D.()()2222a b a ba b⋅+⨯=⋅ 22.直线011z y x =-=与平面2=-+z y x 的位置关系是()A.平行B.直线在平面内C.垂直D.相交但不垂直23.xy yy x sin lim2→→的值为()A.0B.1C.21D.不存在24.函数()y x f ,在点()00,y x 处的两个偏导数()00,y x f x ',()00,y x f y '都存在是()y x f ,在该点连续的()A.充要条件B.必要非充分条件C.充分非必要条件D.既非充分亦非必要条件25.函数⎪⎪⎭⎫⎝⎛+=y x z 1ln 在点()1,1处的全微分()=|1,1dz ()A.0B.()dy dx -21C.dy dx -D.dy ydx y x 11-+26.设1220I dy x y dx =⎰,则交换积分次序后()A.dyy x dx I x⎰⎰-=1010223 B.dyy x dx I y⎰⎰-=1010223C.dyy x dx I x ⎰⎰-=21022103 D.dyy x dx I x ⎰⎰+=210221327.设L 为三个顶点分别为(1,0),O(0,0)A -和(0,1)B 的三角形区域的边界,L 的方向为顺时针方向,则()=-+-⎰dy y x dx y x L )2(3()A.0B.1C.2D.1-28.设()⎭⎬⎫⎩⎨⎧≤≤-≤≤=11,40|,y x y x D π,则=⎰⎰dxdy y x y D)2cos(()A.21-B.0C.41 D.2129.若级数∑∞=1n na与∑∞=1n nb都发散,则下列表述必正确的是()A.()∑∞=+1n n nb a发散 B.∑∞=1n nn ba 发散C.()∑∞=+1n n nb a发散D.()∑∞=+122n n nb a发散30.若级数()nn n x a 21-∑∞=在2-=x 处收敛,则此级数在4=x 处()A.发散B.条件收敛C.绝对收敛D.敛散性不能确定二、填空题(每小题2分,共20分)31.()=-→xx x 11lim ________.32.设()x f 为奇函数,则()30='x f 时,()=-'0x f ________.33.曲线x y ln =上点)0,1(处的切线方程为________.34.()=-⎰dx x x 11_______.35.以x x xe C e C 2221--+为通解的二阶常系数齐次线性微分方程为________.36.点(1,2,3)关于y 轴的对称点是________.37.函数yx ez +=在点(0,0)处的全微分=|)0,0(dz________.38.由1=++xy y x 所确定的隐函数()x y y =在1=x 处导数为________.39.函数22y x z +=在点(1,2)处沿从点1(1,2)P到2(2,2P +的方向的方向导数等于________.40.幂级数1nn x n ∞=∑的收敛区间为________.三、计算题(每小题5分,共50分)41.用夹逼准则求极限.21lim 222⎪⎭⎫⎝⎛++++++∞→n n n n n n nn 42.讨论函数()⎪⎩⎪⎨⎧=≠=.0,0,0,1sin 23x x xx x f 在0=x 处的可导性.43.求不定积分dxe e x x⎰+1244.求定积分.1dx xex⎰45.求微分方程x e y y y =+'+''23的通解.46.设()2,x y x z +=ϕ,且ϕ具有二阶连续偏导数,求yx z∂∂∂2.47.求曲面::3z e z xy ∑-+=在点0(2,1,0)M 处的切平面方程.48.计算二重积分σd e Dy x ⎰⎰+,其中D 是由直线1=+y x 和两条坐标轴所围成的闭区域.49.计算()dz y x ydy xdx L⎰-+++1.L 是从点()1,1,1A )到点)4,1,1(B 的直线段.50.将21()f x x =展开为(1)x +的幂级数.四、应用题(每小题6分,共12分)51.求点()1,0P 到抛物线2x y =上点的距离的平方的最小值.52.求几何体44422≤++z y x 的体积.五、证明题(8分)53.设函数()()x g x f ,均在区间[]b a ,上连续,()()()()a g b f b g a f ==,,且()().b f a f ≠证明:存在一点()b a ,∈ξ,使()().ξξg f =2012年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学题号一二三四五总分分值602050128150注意事项:答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上.本试卷的试题答案必须答在答题卡上,答在试卷上无效.一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.1.函数xx y 1arctan4++=的定义域是()A.[4,)-+∞B.(4,)-+∞C.[4,0)- (0,)+∞D.(4,0)- (0,)+∞2.下列函数为偶函数的是()A.()x x y -+=1log 32B.x x y sin =C.()xx ++1ln D.xey =3.当0→x 时,下列无穷小量中与)21ln(x +等价的是()A.xB.x 21 C.2xD.x24.设函数()xx f 1sin 2=,则0=x 是()x f 的()A.连续点B.可去间断点C.跳跃间断点D.第二类间断点5.函数3x y =在0=x 处()A.极限不存在B.间断C.连续但不可导D.连续且可导6.设函数()()x x x f ϕ=其中()x ϕ在0=x 处连续且的()00≠ϕ则()0f '()A.不存在B.等于()0ϕ'C.存在且等于0D.存在且等于()0ϕ7.若函数()u f y =可导,xe u =,则=dy ()A.()dxe f x' B.()()xxed e f 'C.()xf x e dx¢× D.()[]()xxe d ef '8.曲线()x f y 1=有水平渐近线的充分条件是()A.()0lim =∞→x f x B.()∞=∞→x f x lim C.()0lim 0=→x f x D.()∞=→x f x 0lim 9.设函数x x y sin 21-=,则=dydx ()A.y cos 211-B.x cos 211-C.ycos 22- D.xcos 22-10.曲线()⎩⎨⎧<+≥+=,0,sin 1,0,1x x x x x f 在点()0,1处的切线斜率是()A.0B.1C.2D.311.方程033=++c x x (其中c 为任意实数)在区间()0,1内实根最多有()A.4个B.3个C.2个D.1个12.若()x f '连续,则下列等式正确的是()A.()[]()x f dx x f ='⎰ B.()()x f dx x f ='⎰C.()()x f x df =⎰ D.()[]()x f dx x f d=⎰13.如果()x f 的一个原函数为x x arcsin -,则()=⎰dx x f ()A.C x +++2111 B.Cx +--2111C.Cx x +-arcsin D.Cx +-+211114.设()1='x f ,且()10=f ,则()=⎰dx x f ()A.Cx + B.C x x ++221C.Cx x ++2D.C x +22115.=-⎰dt t dx d x2012sin 2)cos (()A.2cos x - B.()xx cos sin cos 2C.2cos x x D.()2sin cos x16.=-⎰dx e x x 2132()A.1B.0C.121--eD.11--e17.下列广义积分收敛的是()A.⎰10ln 1xdxxB.⎰1031dxxx C.⎰+∞1ln 1xdx xD.dxe x ⎰+∞--3518.微分方程122=+dx dyy dxy d 是()A.二阶非线性微分方程B.二阶线性微分方程C.一阶非线性微分方程D.一阶线性微分方程19.微分方程yxx dx dy cos sin =的通解为()A.C x y +=22cos B.C x y +=22sin C.Cx y +=2sin D.Cx y +=2cos 20.在空间直角坐标系中,若向量a 与ox 轴和oz 轴正向的夹角分别为045和060,则向量a 与oy 轴正向的夹角为()A.030B.060C.045D.060或012021.直线32211:+=-=-z y x L 与平面02:=+y x π的位置关系是()A.直线L 在平面π内B.平行C.垂直D.相交但不垂直22.下列方程在空间直角坐标系中表示的图形为旋转曲面的是()A.12322=+z x B.22yx z -=C.22z x y -= D.2222yx z =-23.()()=--→11lim1,1,xy xy y x ()A.0B.21 C.31 D.224.函数()y x f z ,=在点()00,y x 处可微是()y x f ,在该点处两个偏导数x z ∂∂和yz ∂∂存在的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件25.已知()xy y x z sin ++=,则=∂∂∂yx z2()A.()xy sinB.()()xy xy +1sinC.()()xy xy xy sin cos - D.()xy xy cos -26.幂级数02(1)!n nnn x n ∞=-∑的和函数()x s 为()A.xe- B.xe2- C.2xe- D.xe22-27.下列级数发散的是()A.)2)(1(43)1(21++--∑∞=n n nn nB.11)1(1+-∑∞=n n nC.n n n 31)1(11∑∞=-- D.()∑∞=+123121n n 28.若级数∑∞=-0)2(n n n x a 在点0=x 处条件收敛,则在1-=x ,2=x ,3=x ,4=x ,5=x 中使该级数收敛的点有()A.0个B.1个C.2个D.3个29.若L 是曲线3x y =上从点()1,1A 到点()1,1--B 的一条连续曲线段,则曲线积分()()dy y x xe dx y ey Ly32-++-+⎰的值为()A.41-+-e eB.41----e e C.41+---e e D.030.设()dy y x f dx I x ⎰⎰=1002,221(,)xdx f x y dy -+⎰⎰,则交换积分次序后,I 可化为()A.()dxy x f dy yy⎰⎰-102, B.()dxy x f dy x x ⎰⎰-2022,C.()dxy x f dy ⎰⎰12, D.()dxy x f dy x x ⎰⎰-122,二、填空题(每小题2分,共20分)31.已知()x x x f -=-21,则()=x f32.设函数2()lim 1(0)tt x f x x t →+∞⎛⎫=+≠ ⎪⎝⎭,则(ln 2)f =33.如果函数()x f 在点a 处可导,且()a f 为()x f 的极大值,则()='a f 34.曲线xxe y -=的拐点是35.不定积分()=-⎰dx xx 11236.微分方程22x e xy dxdy-=+满足()00=y 的特解为37.向量{}2,1,1-=a 在{}4,3,0=b 上的投影为38.设方程0=++yz xz xy 所确定的隐函数是()y x z z ,=,则=∂∂==|10y x x z39.设积分区域D 为y y x 422≤+,则⎰⎰=Ddxdy 40.若)0(lim >=∞→k k nu n n ,则正项级数∑∞=1n nu的敛散性为三、计算题(每小题5分,共50分)41.1sin tan lim3--→x x ex x 42.已知参数方程()()⎩⎨⎧-=-=,cos 1,sin 1t a y t a x (t 为参数),求22dx yd .43.求不定积分dxex ⎰+144.求⎰-→xt xx dte e x 0221lim45.求微分方程222dxy d 430dyy dx ++=的通解.46.求函数()10126,23+-+-=y x x y y x z 的极值.47.求过点()1,3,2--A 且与直线⎩⎨⎧=+=-+,12,532:z x z y x L 平行的直线方程.48.求函数22ln arctany x yxz ++=的全微分.49.计算dxdy y x D⎰⎰+22sin,其中D 为圆环:22224ππ≤+≤y x .50.求幂级数()∑∞=+-012n nn x 的收敛域.四、应用题(每小题6分,共12分)51.求函数()xx x f 1=在0>x 时的最大值,并从数列1,2,33, ,nn).52.求过点()0,3M 作曲线)3ln(-=x y 的切线,该切线与此曲线及x 轴围成一平面图形D .试求平面图形绕x 轴旋转一周所得旋转体的体积.五、证明题(8分)53.证明不等式:nnm n m m n m -<<-ln ,其中m n <为正整数.2013年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学题号一二三四五总分分值602050128150注意事项:答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上.本试卷的试题答案必须答在答题卡上,答在试卷上无效.一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.1.函数1)1arcsin(--=x x y 的定义域是()A.]20[,B.),1(+∞ C.]2,1( D.]2,1[2.设xx f -=11)(,那么=)]}([{x f f f ()A.x1 B.11-x C.211x - D.x3.函数()()01ln 12≠-+=x xx y 是()A.偶函数B.奇函数C.非奇非偶函数D.既奇又偶函数4.设xxx f 2sin )(=,则0=x 是)(x f 的()A.连续点B.可去间断点C.跳跃间断点D.无穷间断点5.当0→x 时,下列无穷小量中与x x --+11等价的是()A.xB.x2 C.2xD.22x6.已知=--=='='→xx g x f g f b g a f x )()(lim ),0()0(,)0(,)0(0则且()A.b a -B.ba +2 C.ba + D.ab -7.曲线),0,0(sin cos >>⎩⎨⎧==b a tb y ta x 则4π=t 对应点处的法线斜率为()A.a b B.ba C.ab - D.ba -8.设)()(x g x f =',则=)(sin d 2x f ()A.xdx x g sin )(2B.xdx x g 2sin )(C.dxx g )2(sin D.xdxx g 2sin )(sin 29.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ()A.)1()]([!+n x f n B.)1()]([+n x f n C.)1()]()[1(++n x f n D.)1()]([)!1(++n x f n 10.由方程yx exy +=确定的隐函数)(y x 的导数=dy dx ()A.)1()1(x y y x -- B.)1()1(y x x y --C.)1()1(-+y x x y D.)1()1(-+x y y x 11.若)(a x x f <<>''00)(,且0)0(=f ,则下面成立的是()A.0)(>'x fB.)(x f '在],0[a 上单调增加C.0)(>x f D.)(x f 在],0[a 上单调增加12.点)1,0(是曲线c bx x y ++=23的拐点,则()A.1,0==c bB.0,1=-=c bC.1,1==c bD.1,1=-=c b 13.曲线6212--++=x x x y 的垂直渐近线共有()A.1条B.2条C.3条D.4条14.函数xxe e xf --=)(的一个原函数是()A.xxe e x F --=)( B.xxee x F -+=)(C.x x e ex F -=-)( D.xx ee x F ---=)(15.若)(xf '连续,则下列等式正确的是()A.)()(x f x df =⎰ B.)()(x f dx x f d =⎰C.)()(x f dx x f ='⎰ D.dxx f dx xf d)()(22=⎰16.2sin =x xdx ππ-⎰()A.π B.π- C.1 D.017.设x xxe dt t f ++=⎰221)(,则=')(x f ()A.xxeB.xex )1(- C.xex )2(+ D.2+x xe18.下列广义积分收敛的是()A.⎰+∞1xdxB.⎰+∞1xdx C.⎰+∞12x dx D.⎰∞+13ln xxdx 19.微分方程0)()(22=+''+'y y y y 的阶数是()A.1B.2C.3D.420.微分方程022=-dx xy dy 满足条件1)1(-=y 的特解是()A.21x y =B.21x y -=C.2x y = D.2xy -=21.下列各组角中,可以作为向量的方向角的是()A.344πππ,, B.346πππ,,C.433πππ,, D.234πππ,,22.直线143221:-=-+=-z y x L 与平面0432:=-+-z y x π的位置关系是()A.L 在π上B.L 与π垂直相交C.L 与π平行D.L 与π相交,但不垂直23.下列方程在空间直角坐标系中所表示的图形为柱面的是()A.22237y z x =+ B.44122y x z -=-C.91614222z y x --= D.0222=-+x y x24.00x y →→=()A.0B.1C.41-D.不存在25.设)32,(22y x y x f z +-=,则=∂∂yz()A.2132f f y '+'B.2132f f y '+'-C.2122f f x '+'D.2122f f x '-'26.设dy y x f dx dy y x f dx I xx ⎰⎰⎰⎰-+=22802222020),(),(,则交换积分次序后,I 可以化为()A.dx y x f dy y y⎰⎰-2822),( B.dxy x f dy y x ⎰⎰-22822),(C.dxy x f dy y x ⎰⎰-2282220),( D.dxy x f dy ⎰⎰2222),(27.积分=⎰⎰1212ydy x dx ()A.2B.31 C.21 D.028.设L 是抛物线2y x =上从)0,0(到)1,1(A 的一段弧,则曲线积分=+⎰dy x xydx L22()A.0B.2C.4D.129.幂级数nn xn ∑∞=+1)1(的收敛区间为()A.)1,0( B.),(+∞-∞ C.)1,1(- D.)0,1(-30.下列级数收敛的是()A.()∑∞=+-1111n n n B.∑∞=+111ln(n n C.∑∞=11sinn n D.∑∞=1!n nn n 二、填空题(每小题2分,共20分)31.函数)(x f 在点0x 有定义是极限)(lim 0x f x x →存在的条件.32.已知231lim -∞→=⎪⎭⎫⎝⎛-e x pxx ,则=p .33.函数⎩⎨⎧>+≤-=0,2cos 0,)(x x x a x a e x f ax 是连续函数,则=a .34.设函数421x x f =⎪⎭⎫⎝⎛,则=')(x f .35.不定积分=++⎰dx x x x sin 2cos 2.36.向量}{1,0,1a = 与向量}{1,1,0b =-的夹角是.37.微分方程0=-+'x y y 的通解是.38.设方程022=-++xyz z y x 所确定的隐函数为),(y x z z =,则=∂∂==10y x xz .39.曲面22y x z +=在点)5,2,1(处的切平面方程是.40.将xx f 1)(=展开成)4(-x 的幂级数是.三、计算题(每小题5分,共50分)41.求极限011lim ln(1)x x x →⎡⎤-⎢+⎣⎦42.已知函数)(y x x =由方程22ln arctany x x y +=所确定,求.dydx43.求不定积分.arctandx x ⎰44.设,0,0,1)(2⎩⎨⎧>≤+=x e x x x f x求.)2(31dx x f ⎰-45.求微分方程xe y y y 32=-'+''的通解.46.设xye y x u ++=2sin 2,求全微分du .47.一平面过点)1,0,1(-且平行于向量{}1,1,2-=a 和{}2,1,1-=b ,求此平面的方程.48.计算dxdy eDyx ⎰⎰,其中D 是由0,2,,1====x y x y y 所围成的闭区域.49.计算积分dy y xy x dx y xy x L)152()102(2222+--++-+⎰,其中L 为曲线x y cos =上从⎪⎭⎫ ⎝⎛0,2πA 到点⎪⎭⎫⎝⎛-0,2πB 的一段弧.50.求幂级数∑∞=+-0)1(2)1(n n nn x 的收敛域.四、应用题(每小题6分,共12分)51.某房地产公司有50套公寓要出租,当月租金定为2000元时,公寓会全部租出去,当月租金每增加100元时,就会多一套公寓租不出去,而租出去的公寓每月花费200元的维修费,试问租金定为多少可获得最大收入?最大收入是多少?52.曲线)0(3≥=x x y ,直线2=+y x 以及y 轴围成一平面图形D ,试求平面图形D 绕y 轴旋转一周所得旋转体的体积.五、证明题(8分)53.设)(x f 在区间]1,0[上连续,且1)(<x f ,证明:方程1)(20=-⎰dt t f x x在区间)1,0(内有且仅有一个实根.2014年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学题号一二三四五总分分值602050128150注意事项:答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上.本试卷的试题答案必须答在答题卡上,答在试卷上无效.一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.1.函数2()sin 9ln(1)f x x x =-+-的定义域是()A.(1,3]B.(1,)+∞ C.()3,+∞ D.[3,1)-2.已知2(2)2f x x x =-,则()f x =()A.2114x + B.2114x - C.214x x - D.114x +3.设()f x 的定义域为R ,则()()()g x f x f x =--()A.是偶函数B.是奇函数C.不是奇函数也不是偶函数D.是奇函数也是偶函数4.已知224lim 42x ax x →+=--,则()A.1a =- B.0a = C.1a = D.2a =5.1x =-是函数2212x y x x -=--的()A.跳跃间断点B.可去间断点C.连续点D.第二类间断点6.当0x →时,比1cos x -高阶的无穷小是()A.211x +- B.2ln(1)x + C.sin xD.3arctan x7.已知()ln f x x =,则220()()lim 2h f x h f x h→+-=()A.2ln xx -B.ln x xC.-21x D.1x8.曲线sin 2cos y t x t=⎧⎨=⎩(t 为参数),在2t π=对应点处切线的方程为()A.1x = B.1y = C.1y x =+ D.1y x =-9.函数()(1)(2)(3)(4)f x x x x x x =----,则方程'()0f x =实根的个数为()A.2B.3C.4D.510.设()y y x =是由方程xy xy e =+确定的隐函数,则dy dx=()A.11x y x+-- B.21y xy x-- C.11y x+- D.12x x xy---11.已知函数()f x 在区间[]0,a ()0a >上连续,()00f>且在()0,a 上恒有()0>'x f ,设10()aS f x dx =⎰,2(0)S af =,1S 与2S 的关系是()A.12S S < B.12S S = C.12S S > D.不确定12.曲线31y x =+()A.无拐点 B.有一个拐点C.有两个拐点D.有三个拐点13.曲线y =12x -的渐近线的方程为()A.0,1x y ==B.1,0x y ==C.2,1x y == D.2,0x y ==14.设()F x 是()f x 的一个原函数,则()xx ef e dx --⎰=()A.()xF e c-+ B.()xF e c--+ C.()xF e c+ D.()xF e c-+15.设()f x 在[,]a b 上连续,则由曲线()y f x =与直线,,0x a x b y ===所围成平面图形的面积为()A.()baf x dx⎰B.()baf x dx⎰ C.()baf x dx⎰D.()()()f b f a b a --16.设()f x 是连续函数,满足()f x =21sin 1x x++()11f x dx --⎰则lim ()x f x →∞=()A.0B.6π-C.3π D.6π17.设()f x =(1)sin ,xt tdt -⎰则'()f x =()A.sin cos x x x +B.(1)cos x x- C.sin cos x x x- D.(1)sin x x-18.下列广义积分收敛的是()A.2ln x dx x+∞⎰B.1+∞⎰C.21⎰D.1cos xdx+∞⎰19.微方程0dx dyy x+=的通解是()A.2225x y += B.34x y c+= C.22x y c+= D.227y x -=20.解常微方程''2'xy y y xe -+=的过程中,特解一般应设为()A.*2=)xy Ax Bx e +( B.*=xy AxeC.*=xy AeD.*2=()xy x e Ax B +21.已知,,a b c 为非零向量,且0a b ⋅= ,0b c ⨯=则()A.a b b c ⊥ 且B.a b b c ⊥ 且C.a c b c⊥ 且 D.a c b c⊥ 且22.直线L:==3-25x y z与平面π:641010x y z -+-=的位置关系是()A.L 在π上B.L 与π平行但无公共点C.L 与π相交但不垂直D.L 与π垂直23.在空间直角坐标系内,方程2221x y -=表示的二次曲面是()A.球面B.双曲抛物面C.圆锥面D.双曲柱面24.极限0y 0x →→=()A.0B.4C.14D.14-25.点(0,0)是函数z xy =的()A.驻点B.极值点C.最大值点D.间断点26.设{}(,)21D x y x y =≤≤,则()+Dxy y dxdy⎰⎰=()A.0B.1- C.2D.127.设(),f x y 为连续函数,()()122-01,+,xxdx f x y dy dx f x y dy ⎰⎰⎰⎰交换积分次序后得到()A.()212,yy dy f x y dx⎰⎰ B.()2,ydy f x y dx⎰⎰C.()12-0,y ydy f x y dx⎰⎰D.()2022,yy dy f x y dx⎰⎰28.L 为从(0,0)经点(0,1)到点(1,1)的折线,则2+Lx dy ydx ⎰=()A.1B.2C.0D.1-29.下列级数条件中收敛的是()A.2n=12n-1n +1∞∑ B.nnn=11-3∞∑(1)C.22n=1n +n+1n -n+1∞∑D.nn=1-∞∑(30.级数2n=114n -1∞∑的和是()A.1B.2C.12D.14二、填空题(每小题2分,共20分)31.设-1=-1x x f x x x ⎛⎫≠ ⎪⎝⎭(0,1),则()f x =__________.32.设连续函数()f x 满足22()()f x x f x dx =-⎰,则2()f x dx ⎰=__________.33.已知,1()ln ,1x a x f x x x -<⎧=⎨≥⎩,若函数()f x 在1x =连续,a =______.34.设33'(1)12f x x +=+且()01f =-,则()f x =__________.35.不定积分cos 2xdx ⎰=__________.36.若向量{}{}{}0,1,1;1,0,1;1,1,0a b c ===,则()a b c ⨯= __________.37.微分方程"4'40y y y -+=的通解()y x =__________.38.设arctan222(,)ln()cos y xf x y ex y xy =+,则'(1,0)x f =__________.39.函数()222,,f x y z x y z =++在点()1,1,1处方向导数的最大值为__________.40.函数()112f x x=-的幂级数展开式是__________.三、计算题(每小题5分,共50分)41.求极限2x x →42.设n a 为曲线n y x =与1(1,2,3,4...)n y x n +==所围的面积,判定级数1n n ∞=的敛散性43.求不定积分.44.计算定积分42x dx -⎰.45.解微分方程3xy y x '-=.46.已知函数(,)z f x y =由方程20xyz ez e --+=所确定,求dz .47.已知点(4,1,2),(1,2,2),(2,0,1)A B C --求ΔABC 的面积.48.计算二重积分ln D⎰⎰,其中22{(,)14}D x y x y =≤+≤.49.计算曲线积分()()2211Ly x dx x y dy ++-⎰ 其中L 是圆221x y +=(逆时针方向).50.试确定幂级数01nn x n ∞=+∑的收敛域并求出和函数.四、应用题(每小题7分,共14分)51.欲围一个面积150平方米的矩形场地,所用材料的造价其正面每平方米6元,其余三面是每平方3元,问场地的长,宽各为多少时,才能使造价最低?52.已知D 是抛物线L:22y x =和直线12x =所围成的平面区域,试求:(1)区域D 的面积(2)区域D 绕ox 轴旋转所形成空间旋转体体积.五、证明题(6分)53.设2e a b e <<<,证明2224ln ln ()b a b a e ->-.。

2010成人高考专升本高数一真题及答案解析

2010成人高考专升本高数一真题及答案解析

2010成人高考专升本高数一真题及答案解析2010成人高考专升本高数一真题及答案解析——2010年成人高等学校招生全国统一考试高等数学(一)答案必须答在答题卡上指定的位置,答在试卷上无效。

一、选择题:1-10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,将近选项前的字母填涂在答题卡相应题号的信息点上。

A、3B、2C、1D、0正确答案:C【安通名师解析】根据函数的连续性立即得出结果【安通名师点评】这是计算极限最常见的重要题型。

在教学中一直被高度重视。

在上课时多次强调的重点,必须记住。

正确答案:B【安通名师解析】根据基本初等函数求导公式复合函数求导法则或直接用微分计算【安通名师点评】这样的题目已经在安通学校保过班讲义中练习过多次,属于特别重要内容。

【安通名师解析】基本积分公式,直接积分法。

【安通名师点评】这是每年都有的题目。

考的就是公式是否记住了。

课堂上讲过练过多次,要求学生对基本积分公式背熟。

正确答案:C【安通名师解析】使用基本初等函数求导公式【安通名师点评】这是本试卷中第二个直接使用基本初等函数求导公式的计算题。

考的就是公式是否掌握了。

我们在平时教学中一再要求学生对基本公式背熟。

否则寸步难行。

正确答案:D【安通名师解析】用洛必达法则求解【安通名师点评】这类问题在以往的考试中经常出现,重要但并不难。

是一种典型的题目。

也始终是讲课的重点。

正确答案:A【安通名师解析】把y看作常数,对x求导。

【安通名师点评】本题仍然属于基本题目,是年年考试都有的内容正确答案:A【安通名师解析】因为是选择题,只要验证点的坐标满足方程就可以了。

【安通名师点评】本题如果是填空或解答题,难度将大为增加。

现在是选择题,理解概念就行。

正确答案:B【安通名师解析】直接使用公式【安通名师点评】这是计算收敛半径最常见的题型。

比较简单比较重要。

在教学中一直被高度重视。

二、11-20小题,每小题4分,共40分,把答案写在答题卡相应题号后。

2010年成考专升本高等数学(二)试题

2010年成考专升本高等数学(二)试题

2010年成人高考专升本考试高等数学(二)试题一、选择题:1-10小题,每小题4分,共40分。

正确答案:A【名师解析】根据函数的连续性立即得出结果【名师点评】这是计算极限最常见的题型。

在教学中一直被高度重视。

正确答案:C【名师解析】使用基本初等函数求导公式【名师点评】基本初等函数求导公式是历年必考的内容,我们要求考生必须牢记。

正确答案:B【名师解析】根据基本初等函数求导公式和复合函数求导法则正确答案:D【名师解析】如果知道基本初等函数则易知答案;也能根据导数的符号确定【名师点评】这是判断函数单调性比较简单的题型。

正确答案:A【名师解析】基本积分公式【名师点评】这是每年都有的题目。

【名师解析】求出积分区间,确定被积函数,计算定积分即可。

【名师点评】用定积分计算平面图形面积在历年考试中,只有一两年未考。

应当也一直是教学的重点正确答案:C【名师解析】变上限定积分求导【名师点评】这类问题一直是考试的热点,也始终是讲课的重点。

正确答案:D【名师解析】把x看成常数,对y求偏导【名师点评】本题属于基本题目,是年年考试都有的内容正确答案:A10、袋中有8个乒乓球,其中5个白色球,3个黄色球,从中一次任取2个乒乓球,则取出的2个球均为白色球的概率为【名师点评】古典概型问题的特点是,只要做过一次再做就不难了。

二、填空题:11-20小题,每小题4分,共40分。

正确答案:0【名师解析】直接代公式即可。

【名师点评】又一种典型的极限问题,考试的频率很高。

正确答案:1【名师解析】考查等价无穷小的定义【名师点评】无穷小量的比较也是重点。

本题是最常见的且比较简单的情况。

【名师解析】性),分别求出左右极限并比较。

【名师点评】这道题有点难度,以往试题也少见。

正确答案:(-1,3)【名师解析】求二阶导数并令等于零。

解方程。

题目已经说明是拐点,就无需再判断【名师点评】本题是一般的常见题型,难度不大。

【名师解析】先求一阶导数,再求二阶【名师点评】基本题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年专升本《高等数学》考试
一、填空题(本大题共10小题,每小题2分,满分20分)
1. 设)(x f y =的定义域为[]2,1,则)ln 1(x f -的定义域是 .
2.数列{}n x 有界是数列{}n x 收敛的 条件;数列{}n x 收敛是数列{}
n x 有界的 条件.
3.若⎪⎩⎪⎨⎧=≠-+=.0,,0,12sin )(2x a x x e x x f ax 在(-),+∞∞上连续,则=a ;
4.设21
11lim 2=⎪⎪⎭
⎫ ⎝⎛--++∞→b ax x x x ,则=a , =b ; 5.
2
)2()(1
1--=
-x e x x f x 的间断点是 .
6.抛物线22x y =在点()2,1处的法线方程为
7.()x e x f 2=的n 阶麦克劳林公式的拉格朗日型余项=n R
8.)1ln(2+=x y 的单调增加区间是 ;凸区间是
9. 1
14 lim +∞
→⎪⎭
⎫ ⎝⎛++x x x x =
10. x x x sin 2
1
x
lim 2
++∞
→= 二、 单项选择题(本大题共10小题,每小题2分,满分20分) 1. 当0→x 时,x x sin 1-是2x 的 【 】
A .高阶无穷小
B .同阶不等价无穷小
C .低阶的无穷小
D . 以上都不是.
2.)(x f 在0x 处可导,则=∆-∆-→∆
x
x f x x f x )
()2(0
00lim 【 】
A .)(0x f '
B .)(20x f '-
C .)(0x f -'
D .)(0x f '-
3. 曲线sin ()(1)ln =
-x
f x x x
( ).
〔A 〕仅有水平渐近线 〔B 〕无水平渐近线 〔C 〕仅有垂直渐近线 〔D 〕有水平也有垂直渐近线 4. 函数f(x)在x=x 。

处取到极值,则( ).
〔A 〕''0()0<f x 〔B 〕''0()0>f x 〔C 〕'0()0=f x 或''0()f x 不存在 〔D 〕'0()f x 不存在
5.若a x f x
x =→)(lim 0
(0>a ),则存在0x 的某一去心邻域使【 】 A .0)(<x f B .a x f ≥)( C .0)(>x f D .0)(≤x f 6.设)1()(+=x x x f ,则)(x f 在0=x 处 【 】
A .连续且可导
B .不连续但可导
C .不连续
D .左、右导数都存在但不相等. 7. =-++∞
→)1(lim 2x x x x ( ).
A .0.5
B .-0.5
C .0
D .不存在 .
8.设2
x a f (x)f (a)
lim
1(x a)→-=--。

则x=a 处( )
(A) f (x)'存在 (B)f(x)取极大值 (C) f(x)取极小值 (D) f (x)'不存在 9.. 设2
6ax b -+3
f(x)=ax 在[-1,2]上的最大值3,最小值-29,已知a>0,则( ) (A)a=2,b=-29 (B)a=3,b=2 (C)a=2,b=3 (D)以上都不对 10.. 下列命题正确的是( )
(A)有界数列必定收敛 (B)无界数列必定发散 (C)发散数列必定无界 (D)单调数列必有极限
三、计算题(本大题共6小题,每小题6分,满分36分) 1. )1(sin lim
20
--→x x e x x x . 2.设)1ln(2
-+=x x y ,dx
dy 求
.
3. x
x
x
x b
a 1
)2
(lim +→. 4.已知21
3)
sin )
(1ln(lim
0=-+
→x x x x f ,求20)(lim x x f x →.
5. 设x
xe y =,求()
n y 6. 求n n n n n 6
565 lim 1
1++++∞→
四.设在],[b a 上0)(>''x f ,证明函数a
x a f x f x --=)
()()(ϕ在],(b a 上是单调增加的(8分).
五.对数曲线x y ln =上哪一点处的曲率半径最小?求出该点处的曲率半径(8分).
六.设)( x f ''存在,证明:)()
(2)()(lim 2
x f h
x f h x f h x f h ''=--++→.(8分)。

相关文档
最新文档