浅谈数学建模与计算机应用的融合

合集下载

数学建模和计算机的重要性

数学建模和计算机的重要性

数学建模与计算机的联系及重要性摘要:在当今科技发达的今天,计算机已经得到了广泛的应用,也为数学建模的计算提供了有力工具。

本文浅谈了数学建模与计算机在人类生产和生活中的重要性。

关键词:数学建模计算机重要性当今社会计算机已经被广泛的应用了,在计算机的协助下许多问题的求解变得简单、方便、快捷。

而数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。

在科技迅猛发展的今天计算机和数学建模在人类的生存和发展中都具有举足轻重的作用。

一、数学建模与计算机息息相关其一、我们在模型求解时,有些计算单纯的用纸和笔是难以完成的,这就需要利用计算机上机计算、编制软件、绘制图形等,当结果通过计算机算出后也必须通过打印机随时进行输出。

其二、数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展方面做出杰出贡献的人,在数学方面也颇有造诣。

我们在遇到一些实际问题时往往需要计算机和数学建模同时应用才能解决问题,否则问题将无法进行。

数学问题与计算机通常采用一些数学软件(lingo,Matlab,MathCAD 等等)的命令来描述算法,既简单又容易操作。

例如下面有这样一道题就是利用数学软件lingo 求解的。

例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大?解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型为:目标函数 12max 200300z x x =+约束条件 1212100,120,160,0,1,2.i x x x x x i ≤⎧⎪≤⎪⎨+≤⎪⎪≥=⎩编写LINGO 程序如下:MODEL:SETS:SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J;ENDSETSDATA:A=1,2 ; B=100,120; C=200,300;ENDDATAMAX=@SUM(SHC:C*X);@FOR(SHC(I):X(I)<B(I)); @SUM(SHC(I):A(I)*X(I))<=160; END程序运行结果如下Global optimal solution found.Objective value: 29000.00Total solver iterations: 0Variable Value Reduced CostA( 1) 1.000000 0.000000A( 2) 2.000000 0.000000B( 1) 100.0000 0.000000B( 2) 120.0000 0.000000C( 1) 200.0000 0.000000C( 2) 300.0000 0.000000X( 1) 100.0000 0.000000X( 2) 30.00000 0.000000J( 1) 0.000000 0.000000J( 2) 0.000000 0.000000J( 3) 0.000000 0.000000Row Slack or Surplus Dual Price1 29000.00 1.0000002 0.000000 50.000003 90.00000 0.0000004 0.000000 150.0000最优解为12100,30,x x ==最优值为29000.00z =.即每天生产100个M 产品30个P 产品,可获得29000元利润.可见数学建模和计算机共同为问题求解提供了有效的手段,对其它课程的辅助学习帮助也是极大的。

计算机应用与数学建模

计算机应用与数学建模

计算机科学与技术
研究计算机系统的基本组 成、工作原理和设计方法 ,包括指令系统、中央处
理器、存储系统等。
计算 机体 系结

研究计算机程序设计语
操 作
言及其编译程序的设计

原理和实现技术。

研究计算机之间的通信 和资源共享技术,包括 局域网、广域网和互联
网等。
编程 语言 与编 译原 理
管理计算机硬件与软件
仿真模拟与预测分析
系统仿真
利用计算机技术对实际系统进行仿真模拟,再现系统 运行过程。
预测分析
基于历史数据和数学模型,对未来发展趋势进行预测 和分析。
结果评估与决策支持
对仿真模拟和预测分析结果进行评估,为决策者提供 科学依据和决策支持。
04
典型案例分析:计算机应 用与数学建模结合
案例分析一:图像处理技术在数学建模中应用
05
挑战与机遇:计算机应用 与数学建模发展趋势
面临挑战及应对策略
技术更新换代迅速
01
需要不断学习新技术和方法,保持敏锐的洞察力和学习能力,
及时适应技术变革。
数据安全与隐私保护
02
加强数据安全管理,采用先进的加密技术和匿名化处理方法,
确保用户数据的安全和隐私。
算法模型的可解释性与可信度
03
研究可解释性强的算法模型,提高模型的可信度和可靠性,以
一款功能强大的数学计算软件,提 供丰富的数学函数库和工具箱,支
持各种数学建模和仿真分析。
Python
一种通用的编程语言,拥有强大 的数据处理和机器学习库,适用 于数据驱动建模和复杂计算。
R语言
一种专注于统计计算和图形展示的 软件,提供丰富的统计模型和可视 化工具,适用于统计分析和预测。

数学建模与计算机的联系及重要性

数学建模与计算机的联系及重要性

数学建模与计算机的联系及重要性崔艳红(吉林省畜牧业学校,吉林白城)摘要:在当今科技发达的今天,计算机已经得到了广泛的应用,也为数学建模的计算提供了有力工具。

本文浅谈了数学建模与计算机在人类生产和生活中的联系及其重要性。

关键词:数学建模计算机重要性当今社会计算机已经被广泛的应用了,在计算机的协助下许多问题的求解变得简单、方便、快捷。

对数学建模复杂的计算机而言,计算机起到了举足轻重的作用,人们对它们关系有着比较统一的观点——将数学方法应用到任何一个实际问题中去, 首先是把这个问题的内在规律用数学、图表或公式、符号表示出来, 然后经过数学处理得到定量的结果, 以供人们作分析、预报、决策或建立控制, 这个过程就是通常所说的建立数学模型, 简称数学建模。

数学建模就是把现实世界的一个实际问题, 为了一个特定目的, 根据特有的内在规律, 做出一些必要的简化假设, 用适当的数学方法归结为数学问题, 建立起描述各相关量之间关系的数学式, 然后运用计算技术、计算机和相应软件在内的计算工具, 快速准确地计算出符合实际问题的解答。

在科技迅猛发展的今天计算机和数学建模在人类的生存和发展中都具有举足轻重的作用。

一、数学建模与计算机息息相关其一、我们在模型求解时,有些计算单纯的用纸和笔是难以完成的,这就需要利用计算机上机计算、编制软件、绘制图形等,当结果通过计算机算出后也必须通过打印机随时进行输出。

其二、数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展方面做出杰出贡献的人,在数学方面也颇有造诣。

我们在遇到一些实际问题时往往需要计算机和数学建模同时应用才能解决问题,否则问题将无法进行。

数学问题与计算机通常采用一些数学软件(lingo,Matlab,MathCAD 等等)的命令来描述算法,既简单又容易操作。

计算机技术与数学建模的有机联系

计算机技术与数学建模的有机联系

计算机技术与数学建模的有机联系计算机技术与数学建模的有机联系摘要本文阐述了计算机技术对数学建模的影响,以及它在数学建模竞赛中的应用,结合2012年全国大学生数学建模竞赛题目重点分析了数学建模的特点,探讨了多种计算机技术在数学建模中不可或缺的作用,为更好地开展数学建模,提出了建设性思路和方法。

关键词数学建模计算机技术计算机模拟一、引言计算机科学技术的迅猛发展,给许多学科带来了巨大的影响。

它不但使问题的求解变得更加方便、快捷和精确,而且使解决实际问题的领域变得更加广泛。

计算机适合于解决那些规模大、难以解析的数学模型。

在历届国际和中国大学生的数学建模(MCM)竞赛中,学生经常用计算机模拟方法求解,然后解释验证以及指导实际问题。

这个过程如果用人工实现,费时费力且短时期内可能得不到很好的解决,如果借助计算机来完成这些过程,就从根本上加快了数学建模全过程的进度,使数学建模的发展如虎添翼[1]。

因此,计算机技术是数学建模过程中不可缺少的工具和手段,数学建模也把大学生学习计算机技术与研究数学科学两者紧密结合在一起。

二、计算机技术在数学建模中的重要性众所周知,计算机是数学建模的产物,同时计算机技术的发展又极大地推动了数学建模活动,计算机高速的运算能力,非常适合数学建模过程中的数值计算;它的大容量贮存能力以及网络通讯功能,使得数学建模过程中资料存贮、检索变得方便有效;它的多媒体化,使得数学建模中一些问题能在计算机上进行更为逼真的模拟;它的智能化,能随时提醒、帮助我们进行数学模型求解[2]。

近年来的数学建模竞赛对学生的计算机技术的要求是越来越高,几乎所有的竞赛题目都涉及大量的数值计算或逻辑运算,因此不掌握计算机技术和相关数学软件的使用很难取得较好成绩的。

因此,计算机技术和数学建模之间具有密不可分的联系,两者只有有机结合,才能有效地提高学生灵活运用理论知识的能力、知识迁移的'能力、实际应用能力以及分析问题和解决问题的能力[3]。

数学专业的数学建模与计算机应用

数学专业的数学建模与计算机应用

数学专业的数学建模与计算机应用数学建模和计算机应用是当今数学专业的重要组成部分。

它们不仅是数学知识的应用和发展,而且也是解决实际问题的有力工具。

本文将介绍数学建模和计算机应用在数学专业中的重要性,以及它们对于现代社会的影响。

一、数学建模数学建模是通过技术手段将现实问题转化为数学问题,并利用数学方法来解决这些问题的过程。

它要求数学专业的学生具备扎实的数学基础知识,并具备将数学知识应用于实际问题的能力。

数学建模的过程包括对问题的分析、建立模型、求解模型和对结果的解释。

数学建模在数学专业中的重要性不言而喻。

通过数学建模,学生不仅可以将抽象的数学概念应用于实际问题,而且可以培养学生的创新意识和动手能力。

同时,数学建模也为数学专业的学生提供了一个实践和锻炼的平台,使他们能够更好地理解和掌握数学知识。

二、计算机应用计算机应用是指利用计算机技术和软件工具来解决实际问题的过程。

在数学专业中,计算机应用主要包括数值计算、数据处理和图像处理等方面。

通过计算机的强大计算和处理能力,数学专业的学生可以更加高效地求解数学问题,并且能够处理大量的数据和图像信息。

计算机应用在数学专业中的重要性不可忽视。

它不仅提高了学生的工作效率,而且也拓展了数学的研究领域。

借助计算机工具,数学专业的学生可以更加深入地研究和探索数学的各个领域,并且可以对数学模型进行仿真和实验。

三、数学建模与计算机应用的结合数学建模和计算机应用是相互关联和相互促进的。

数学建模需要计算机应用来进行数学模型的求解和仿真,而计算机应用也需要数学建模来提供数学基础和方法支持。

二者的结合使学生能够更加全面地理解和应用数学知识,同时也提高了问题的解决效率和准确性。

借助数学建模和计算机应用的结合,数学专业的学生可以解决更加复杂和实际的问题,并且可以开展更加深入和广泛的研究。

他们可以利用数学建模和计算机应用来研究和分析各种现象,探索数学的新理论和应用,为现代社会的发展做出更大的贡献。

高中数学建模教学与计算机教学融合的可行性研究

高中数学建模教学与计算机教学融合的可行性研究
校教 育教学交流 的重要平 台。它一方面大大方便 了学校教 师
间 的信 息 积 累 和 信 息 传 递 及 资源 共 享 , 另 一 方 面 也 为 学 校 对 外 宣 传 提 供 了快 捷 通 道 ,学 校 合 理 使 用 可 以起 到 低 耗 高效 的 宣传 效果。 如 今 , 学 校 在 互 通 外 网 和 发 挥 其 重 要 作 用 上 下 了 大 功
息 技 术 成 了学 校 常 流 动 的 “ 血 液 ” ,为 教 师 的发 展 、学 校 的 发展 起 到 重 要 作 用 。
高 中数学建模教 学 与 计算机教 学融合 的 可行性 研究
◆ 刘 海振
1 数 学建模教 学中融入计算机技术的必要性
1 . 1数学建模教学 的现状调查
E l 前 ,高 中 的 生 源 一 部 分 是 统 招 的 初 中 毕业 生 , 一 部 分
学生在进 行专门课程学习 的同时 ,结合各科 教学和各种活动 训练 ,能熟练 掌握上网搜索 、电脑绘 画、打 字等 各种现代教
育 技 术 使 用 技 能 。 据 不 完 全 统 计 , 目前 学 校 3~ 6年 级 已有
9 8 %以上 的学 生学 会 了制作 电脑 小报 ,学 会 了 E - m a i 1的使
借 还 手 续 , 加 快 了流 通 速 度 , 节 省 了读 者 借 书 所 用 的时 间 。
1 . 2 目前数学建模教学存在 的问题
目前高 中数 学教育受传统数 学教学 的影响较 为深 刻,传
统 数 学 课 程 设 置 、 教 学 内容 、 思 想 和 方 法 手 段 在 高 中 教 师 的 教 学 理 论 中根 深 蒂 固 , 与 数 学 建 模 的 教 学 特 点 和 目标 要 求 相 差较远 。 1 )教 学 内 容 偏 重 于 理 论 , 对 应 用 不 够 重 视 , 喜 欢 传 统 的推 理 和 古典 的方 法 ,对 于 现 代 的前 沿 方 法 却 简 而 代 之 。

以数学建模为例浅谈计算机的应用论文

以数学建模为例浅谈计算机的应用论文

以数学建模为例浅谈计算机的应用论文摘要:随着经济的快速发展,我国的科学技术也得到了长足的进步,在计算机应用方面,从对计算机技术尚存新鲜感到运用成熟,可以说有了质的飞跃。

在日常生活以及技术操作当中,计算机已经融入其中,广泛地应用于各行各业,笔者以数学建模为例,分析了数学建模与计算机应用之间的关系,与此同时,也探寻了计算机应用技术在数学建模的辅助之下发挥的作用,并对数学建模进行概念定义,使得读者能够对数学建模的意义有着更深层次的了解,希望能够起到促进二者之间的良性发展。

关键词:数学建模;计算机技术;计算机应用随着经济的快速发展,我国的科学技术也有了长足的进步,而与之密不可分的数学学科也有着不可小觑的进步,与此同时,数学学科的延伸领域从物理等逐渐扩展到环境、人口、社会、经济范围,使得其作用力逐渐增强。

不仅如此,数学学科由原本的研究事物的性质分析逐渐转变到研究定量性质范围,促进了多方面多层次的发展,由此可见,数学学科的重要性质。

在日常生活中,运用数学学科去解决实际问题时,首要完成的就是从复杂的事物中找到普遍的规律现象存在,并用最为清晰的数字、符号、公式等将潜在的信息表达出来,再运用计算机技术加以呈现,形成人们所要完成的结果。

笔者以数学建模为例,分析了数学建模与计算机应用之间的关系,与此同时,也探寻了计算机应用技术在数学建模的辅助之下发挥的作用,并对数学建模进行概念定义,使得读者能够对数学建模的意义有着更深层次的了解,希望能够起到促进二者之间的良性发展。

1 数学建模的特质从宏观角度上来讲,数学建模是更侧重于实际研究方面,并不仅仅是通过数字演示来完成事物的一般发展规律,与一般的理论研究截然不同。

其研究范围之广,能够深入到各个领域当中,从任何一个相关领域中都能够找到数学学科的发展轨迹,从中不难看出数学学科的实际意义与鲜明特点。

数学为一门注重实际问题研究的学科,这一性质方向决定了其研究的层次,其研究范围大到漫无边际的宇宙,小到对于个体微生物或者单细胞物体,综合性之强形成了研究范围广的特点。

数学建模和计算机仿真技术的应用

数学建模和计算机仿真技术的应用

数学建模和计算机仿真技术的应用一、引言随着科技的发展和数学建模和计算机仿真技术的不断进步,这两者已经成为现代工程设计中不可或缺的工具。

数学建模和计算机仿真技术的应用不仅可以提高生产效率和质量,而且可以降低制造成本和减少人力资源的浪费。

本文将从数学建模和计算机仿真的定义入手,详细介绍两者的应用领域和优点,最后对数学建模和计算机仿真技术的未来发展进行展望。

二、数学建模2.1 定义数学建模是指运用数学方法对实际工程和科学问题进行抽象和分析,获得定量的模型,并对该模型进行定性和定量的分析的过程。

2.2 应用领域数学建模的应用领域非常广泛,包括物理、化学、生物、经济、管理、环境、气象和交通等领域。

在物理学中,数学建模可以用来研究物体的运动和相互作用,预测自然现象的发生;在化学中,可以用来研究物质的组成和结构,探索反应机理;在生物学中,可以用来研究生物体的生长和繁殖规律,探索生命的本质;在经济学和管理学中,可以用来研究市场需求和供给的关系,分析企业的经营决策。

2.3 优点数学建模可以帮助工程师和科学家更好地理解实际问题的本质,找到最终的解决方案。

它不仅可以减少试验过程的数量和时间,而且可以避免因为实验操作的误差导致的数据失真。

通过数学建模,我们可以更好地掌握实际问题的特性和规律,提高解决问题的效率和准确性。

三、计算机仿真技术3.1 定义计算机仿真是指利用计算机技术来模拟实际物理系统或过程的运动学和动力学,以便在计算机上进行分析和预测的过程。

3.2 应用领域计算机仿真技术的应用领域也非常广泛,包括物理、化学、生物、经济、管理、环境、气象、交通和建筑等领域。

在物理学中,计算机仿真可以用来研究物体的运动和相互作用,预测自然现象的发生;在化学中,可以用来研究物质的组成和结构,探索反应机理;在生物学中,可以用来研究生物体的生长和繁殖规律,探索生命的本质;在经济学和管理学中,可以用来研究市场需求和供给的关系,分析企业的经营决策;在工程学中,可以用来研究建筑的结构和性能,优化产品的设计和生产过程。

数学建模中计算机技术的应用

数学建模中计算机技术的应用

数学建模中计算机技术的应用随着计算机技术的不断发展,其在数学建模领域的应用也日益广泛。

数学建模是指通过建立数学模型来描述现实问题,并借助计算机技术进行数据分析、预测和优化。

本文将介绍计算机技术在数学建模中的意义、作用和应用场景,并通过具体案例分析其具体应用。

数学建模中可能涉及的关键词包括算法、数据结构、模拟等等。

其中,算法是数学建模的核心,它用于解决特定问题,并确定如何通过数据结构组织和分析数据。

数据结构则用于存储和操作数据,以便在算法执行期间更高效地解决问题。

模拟则是通过计算机技术对现实问题进行建模和实验,以帮助我们更好地了解问题本质。

计算机技术在数学建模中有着广泛的应用场景。

例如,在优化问题中,计算机技术可以用于求解最优化算法,以获得最佳解决方案。

在随机数生成中,计算机技术可以用于产生高质量的随机数,以满足数学建模的需求。

在实验设计中,计算机技术可以用于模拟实验过程,以便更好地理解实验结果和优化实验方案。

具体来说,计算机技术在数学建模中的应用可以通过以下案例进行说明。

例如,在解决车辆路径问题时,我们可以建立相应的数学模型,然后使用计算机技术搜索最优解。

在车辆路径问题中,我们需要寻找一条最优路线,使得车辆在满足一定限制条件下行驶的总距离最短。

为了解决这个问题,我们可以使用图论中的最短路径算法,如Dijkstra算法或A*算法,来求解最短路径问题。

通过计算机技术的辅助,我们能够更快速、准确地找到最优解。

计算机技术在数学建模中具有重要的作用和使用价值。

计算机技术的运用可以大大提高数学建模的效率和准确性。

传统的数学建模方法往往需要大量的人工计算和分析,而计算机技术可以快速、准确地处理大量数据,并帮助我们获得更精确的结果。

计算机技术的运用可以扩展数学建模的应用范围。

例如,在解决复杂系统中的动态行为和优化问题时,计算机技术可以为我们提供强有力的支持,以应对更为复杂的问题。

然而,使用计算机技术进行数学建模时也需要注意一些问题。

浅谈数学在计算机领域中的应用

浅谈数学在计算机领域中的应用

浅谈数学在计算机领域中的应用1. 引言1.1 数学与计算机的关系数学与计算机的关系是密不可分的。

数学是计算机科学的重要基础,两者之间有着深刻的联系和互相依赖关系。

计算机是利用数学原理和算法来进行运算和处理数据的工具,而数学则为计算机提供了精确的描述和分析方法。

数学的逻辑思维和抽象能力对于计算机科学家来说至关重要,数学不仅是计算机科学的理论基础,也是实际应用中不可或缺的工具。

数学与计算机的关系可以追溯到计算机诞生的初期。

早期的计算机就是由数学家们设计和制造的,计算机的运行原理也是建立在数学的基础上。

随着计算机科学的发展,数学在计算机领域中的地位变得更加重要。

从算法设计到图像处理,从密码学到人工智能,数学都扮演着不可或缺的角色。

数学的严谨性和精确性为计算机科学提供了稳固的基础,也推动了计算机科学的不断发展。

数学与计算机的关系是一种相辅相成的关系,两者相互促进、相互推动。

数学为计算机领域提供了理论基础和工具方法,而计算机则在实践中验证和应用数学的理论。

深入挖掘数学在计算机领域中的应用,将会为科学技术的发展和人类社会的进步带来更多的可能性。

【完成】1.2 数学在计算机领域中的重要性数学在计算机领域中的重要性不言而喻。

作为计算机科学的基础,数学在计算机领域中扮演着至关重要的角色。

数学提供了计算机科学家们所需的工具和方法论,帮助他们解决各种复杂的问题。

从算法设计到数据分析,再到人工智能和机器学习,数学贯穿于整个计算机领域的各个方面。

在算法设计和分析中,数学提供了问题建模和解决方案的数学基础。

通过数学方法,计算机科学家们可以设计出高效的算法,并对其进行分析和优化。

数学在密码学和网络安全中的应用更是不可或缺的。

加密算法和安全协议的设计都建立在数学的基础上,保护了数据的安全和隐私。

在人工智能和机器学习领域,数学更是起着举足轻重的作用。

从神经网络到贝叶斯统计,数学方法被广泛应用于模式识别、数据挖掘和预测分析等方面。

数学建模与计算机应用的融合

数学建模与计算机应用的融合

我们 的数学建模课上 ,通常会介绍 以下软件 。
( )通用数学 软件Mal ,利用它 可完成符号运 1 tb a
1 4
信息系统工程 l 0 1 . 1 .2 2 50
SSRC C 系 实 > > Y P TE 统 践 ≥ > A I
算 、精确计 算和任 意精度 的近似计算 。可以求解数值计 算 、线性代 数 、 ( )微分方 程 、概 率统计 、神 经 网 偏 络 、小波分析 、模糊逻辑 、动态系统模拟 、系统辨识等
( )统计分析软件S S ,可针对社会科学 、 自然 2 PS
科学各个领域 的问题完成基本统计分析 、相关分析 、回 归分析、逻辑线性分析 、聚类和判别分析 、因子分 析、 非参数检验 、时间序列等功能。 ( 数 学规划软件Ln O Ln O,可求解线性规 3) iG / iD 划 、整数规划和二次规划问题 。
动手解决实 际问题 的兴趣和能力 。我们 确定 的课程指导
思想是 :以实验室为基础 、以学生为中心 、以问题为 主
线 、以培养能力为 目标来组织教学工作。
2 堂教学的组织 . 课
Байду номын сангаас
对于数学建模课程来说 ,其 内容繁多 ,但教学课 时 却相对不足 ,为了使课堂讲授和上机实验有机 的结合起 来 ,我们在 教学 中使用计算机 网络教室作为课 堂和实验
我们认为 ,数学建模 的主要 目的不在 于传授数学知 识 ,而是要培养学生 “ 用数学 ”的能力[,要求在数学 3 ]
知识 、建模能力和软件实现的结 合上下 功夫 ,培养学生
页 。对于这些海量数据 的处理 ,以及复杂数学模 型的求 解 ,我们 必须借 助计算机和数学应用软件来完成 。计算 机的高速运算 能力 ,非 常适合数学建模过程 中的数值计 算 ,从而可以代替 复杂而又烦琐的数据处理。计算机 的 多媒体功能 ,使得数学建模过程 中一些问题能在计算机 上进行逼 真的模拟演示。

数学建模和计算机仿真技术的研究和应用

数学建模和计算机仿真技术的研究和应用

数学建模和计算机仿真技术的研究和应用数学建模和计算机仿真技术是科学领域中的两个重要概念,二者有着千丝万缕的联系。

数学建模是指利用数学方法和技术对实际问题进行描述、分析和预测等方面的研究;计算机仿真技术则是指利用计算机对实际问题进行模拟、预测和分析等方面的研究。

本文将从数学建模和计算机仿真技术的基本概念、研究方法、应用前景等方面进行探讨。

一、数学建模概述数学建模是将实际问题用数学语言和符号进行模型化和描述,通过研究模型本身及其解的性质和特征,来研究实际问题的过程。

数学建模的基本流程包括问题描述、变量和参数的选取、建立模型、模型求解、分析和验证等步骤。

模型的建立过程需要根据问题的特点和需求选择不同的数学工具和方法,如微积分、线性代数、概率论、数值计算等。

数学建模不仅有助于科学的研究和实践应用,还可以提高人们的数学素养和科学素养。

二、计算机仿真概述计算机仿真技术是以计算机为工具,通过构建数学模型和运用计算机模拟方法,对实际问题进行数值仿真和模拟。

通过计算机仿真技术,可以对问题进行初步研究和分析,提高问题的理解和预测能力。

计算机模拟涉及数学、物理、计算机科学和工程等领域,可以应用于不同的领域,如航空、汽车、通信等。

三、数学建模与计算机仿真之间的联系数学建模和计算机仿真是两个密不可分的概念,它们之间存在着千丝万缕的联系。

数学建模是建立模型的过程,而计算机仿真是对模型进行计算机模拟的过程。

通过数学建模,可以建立实际情况的数学模型,并通过计算机仿真技术,进行数值分析和模拟,得出有用的结果。

四、数学建模和计算机仿真的应用前景数学建模和计算机仿真在计算机、通信、航空、交通、化工、医学等领域都有广泛应用。

在航空领域,数学建模和计算机仿真技术可以通过模拟飞行条件,提高飞机的安全性和效率;在医学领域,可以通过数学模型和仿真技术,对药物的作用和机理进行研究和预测。

其他领域也可以应用数学建模和计算机仿真技术,如交通、化工等。

数学建模和计算机模拟的应用

数学建模和计算机模拟的应用

数学建模和计算机模拟的应用在当今科技日新月异的时代,数学建模和计算机模拟已成为不可或缺的重要部分。

它们提供了一种新颖的方式来解决各种复杂的实际问题。

在本文中,我们将讨论数学建模和计算机模拟的应用。

数学建模的概述数学建模是一种使用数学方法描述现实世界中实际问题的过程。

它利用数学模型代替实际情况,进行分析和预测。

这种方法广泛应用于天气预报、股市分析、交通流量、自然资源管理、发电效率等许多领域。

数学建模为研究者提供了一种全新的方式来描述各种工业、商业和科学问题,解决这些问题的步骤包括:1. 确定需要解决的问题。

2. 收集数据,确定其可用性和完整性。

3. 运用数学模型建立方程组。

4. 定义变量,建立出问题的数学模型。

5. 分析和解决问题。

6. 对解决方案进行验证。

数学建模的优点是有预测性,迅速实现多个场景下的数据分析,能够为决策者提供全面的决策信息。

计算机模拟的概述计算机模拟是一种以计算机为基础的模拟技术,可以模拟实际现象。

计算机模拟可以通过模拟现实中的事物,进行预测、评估、优化等各种应用。

计算机模拟又叫虚拟仿真技术。

它涉及各种领域,从过程工业的建模和仿真到计算机游戏等。

计算机模拟采用了一些计算机编程语言和计算工具,利用现代计算机技术模拟人工实验必要的条件。

它有很多方面的应用场景,例如,建筑物模拟、汽车碰撞模拟、难以观测的物理实现的模拟、分子动力学的模拟等等。

在计算机模拟中,首先把一些数据和实际情况输入计算机,然后通过一系列算法进行模拟。

计算机模拟的优点是能够克服实验条件差、周期长等问题,提高实验效率,减少资源浪费,并且能够进行多个场景下的数据分析,为决策者提供更多信息。

数学建模和计算机模拟的应用案例1. 地震模拟地震模拟是一项非常重要的应用程序,可以预测发生地震的概率、强度等。

这种模拟能够通过采集数据并运用数学模型来预测发生地震的可能性。

2. 化学反应模拟化学反应模拟可以通过数学运算来模拟不同化学反应的过程,包括反应速率、反应器尺寸、反应物质量等。

数学建模在计算机专业中的应用

数学建模在计算机专业中的应用

数学建模在计算机专业中的应用一、摘要本文重点分析了数学建模的特点,探讨了数学建模与计算机的之间的关系,并重点的阐述了数学建模在计算机专业中的应用。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、做出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型。

数学模型的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。

这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。

二、数学建模的特点1、面向现实生活的应用,有相关的科研背景,综合性强,涉及面广,因素关系复杂,缺乏足够的规范性,难以套用传统成熟的解决手段,数据量庞大,可采取的算法也比较复杂,结果具有一定的弹性空间,需要一定的伴随条件,许多问题得到的只能是近似解。

2、建模问题不同于理论研究,它重在对实际问题的处理,而不是深层次纯粹数学理论或者世界难题。

3、数学建模与数学试验教学的重点是高等数学与现代数学的深层应用和面向问题的设计,而不是经典理论的深入研讨和系统论证。

4、数学建模问题绝大部分来自一些具体科研课题或实际工程问题。

三、数学建模与计算机的关系数学建模与生活实际密切相关,所采集到的数据量多,而且比较复杂,比如长江水质的评价和预测,银行贷款和分期付款等,往往计算量大,需要借助于计算机才能快捷、简便地完成。

数学建模竞赛与以往所说的那种数学竞赛(纯数学竞赛)不同,它要用到计算机,甚至离不开计算机,但却又不是纯粹的计算机竞赛,它涉及到物理、化学、生物、医学、电子、农业、军事、管理等各学科、各领域,但又不受任何一个具体的学科、领域的限制。

数学建模过程需要经过模型假设、模型建立、模型求解、模型分析与检验、模型应用等几个步骤,在这些步骤中都伴随着计算机的使用。

例如,模型求解时,需要上机计算、编制软件、绘制图形等,数学建模竞赛中打印机随时可能使用,同时,数学建模的学习对计算机能力的培养也起着极大推动作用。

中职数学建模教学与计算机教学融合的可行性研究

中职数学建模教学与计算机教学融合的可行性研究

中职数学建模教学与计算机教学融合的可行性研究【摘要】本文通过对中职数学建模教学与计算机教学融合的可行性进行研究,旨在探讨如何有效整合两者,在提高数学教学效果的同时推动教学方法的创新。

首先对中职数学建模教学现状进行分析,然后探讨计算机教学在中职数学教学中的应用,进而讨论融合的方法。

通过实践案例分析和影响因素分析,发现融合教学在提高学生学习效果和兴趣方面具有显著优势。

结论部分总结了融合教学的优势,展望了其未来的可行性,并提出了相应的发展建议,为中职数学教学的发展提供了重要参考。

【关键词】中职数学建模教学、计算机教学、融合教学、实践案例、影响因素、优势总结、可行性、发展建议。

1. 引言1.1 研究背景中职数学建模教学与计算机教学融合的可行性研究是当前教育领域的热点话题之一。

随着信息化时代的到来,计算机技术的发展已经深刻影响了各行各业,教育领域也不例外。

而数学建模是培养学生综合运用数学知识解决实际问题的重要途径,因此将计算机技术引入中职数学建模教学中,不仅可以提高教学效果,还能培养学生的信息化素养和创新能力。

目前中职数学建模教学中仍存在一些问题,包括教学内容单一、学生缺乏实践机会和创新能力等。

计算机教学在中职教育中的应用也还较为局限,缺乏与数学建模教学有机结合的实践案例和方法。

本研究旨在探讨中职数学建模教学与计算机教学的融合,并通过实践案例分析和影响因素分析,探讨融合教学的优势、可行性和发展建议,从而为中职数学建模教学的改革和创新提供理论支持和实践指导。

1.2 研究目的研究目的是探讨中职数学建模教学与计算机教学融合的可行性,旨在提高教学效果和学生学习动力,促进学生数学建模能力和计算机技术水平的综合提升。

通过深入研究中职数学建模教学现状和计算机教学在中职数学教学中的应用情况,探讨如何将二者有效融合,以提高教学质量和教学效果。

通过实践案例分析和影响因素分析,全面评估中职数学建模与计算机教学融合的实际效果和难点,为教育教学改革提供可行性建议和有效路径。

计算机技术在数学建模中的有效运用

计算机技术在数学建模中的有效运用

计算机技术在数学建模中的有效运用计算机技术在数学建模中扮演着重要的角色。

它的运用可以加速计算过程,提高精度,并使得数学模型更易于理解和解释。

本文将探讨计算机技术在数学建模中的有效运用,并举例说明其在实践中的应用。

一、数学建模的定义和意义数学建模是将实际问题转化为数学问题,并通过数学方法进行分析和求解的过程。

它是现实问题与数学之间的桥梁,具有重要的理论和实践意义。

二、计算机技术在数学建模中的角色计算机技术在数学建模中扮演着重要的角色。

首先,计算机可以进行大规模的计算和数据处理,能够在较短的时间内完成复杂的运算并得到准确的结果。

其次,计算机可以通过图像和动画的展示形式,直观地呈现数学模型的过程和结果,使得模型更易于理解和解释。

此外,计算机技术还可以帮助建立和优化数学模型,提高模型的精度和可靠性。

三、数学建模中的计算机技术应用举例1. 求解复杂的方程和方程组通过计算机技术,我们能够快速求解复杂的方程和方程组。

例如,在金融领域的期权定价中,Black-Scholes模型是一种经典的数学模型,它涉及到一个复杂的偏微分方程。

通过数值方法和计算机技术,我们能够快速求解该方程并得到期权的价格。

2. 优化问题的求解优化问题是数学建模中常见的问题之一。

通过计算机技术,我们能够高效地求解各种类型的优化问题。

例如,在物流配送中,我们需要确定最优的路径和运输方案,以最大化运输效益和降低成本。

通过建立数学模型并利用计算机技术,我们可以快速得到最优解。

3. 模拟和仿真计算机技术可以帮助实现对实际问题的模拟和仿真。

例如,在气象预测中,我们可以通过建立数学模型和利用大量的气象数据,利用计算机技术进行模拟,从而预测未来的天气情况。

4. 数据分析和可视化计算机技术可以帮助进行大规模的数据分析和可视化。

例如,在股票市场中,我们可以通过计算机技术分析大量的交易数据,找出市场的潜在规律和趋势,从而进行投资决策。

四、结论计算机技术在数学建模中的有效运用,不仅可以加速计算过程和提高精度,还可以使得数学模型更易于理解和解释。

浅谈数学建模与计算机应用的融合论文

浅谈数学建模与计算机应用的融合论文

浅谈数学建模与计算机应用的融合论文浅谈数学建模与计算机应用的融合论文摘要:所谓数学建模,即借助数学模型,处理所遇到的具体问题的课程,在本文中,分别就教学、模型建立以及相应的信息检索来进行研究,通过将这三面进行相应的糅合从而证明可以将计算机技术引入到相应的建模实践中,从而有效促进数学建模的发展,使得教学质量得以有效提升。

关键词:数学建模;计算机应用;融合1.数学建模与计算机技术概述目前计算机在生活中应用极为广泛,借助于计算机能够使得先前较为复杂繁琐的问题得以简化,有效提升计算速率。

就数学建模来看,计算机在此方面的作用不言而喻。

对于此,人们普遍认为,能够借助于计算机将任何一个数学问题进行简化处理。

而对于生活中所遇到的任意一个实际问题,均能够借助于相应的数学模型来进行表示,在建模过程中,也可以根据实际情况来做出一些相应的简化处理,从而将其归属于完全的数学问题,最终建立起能够用变量所描述的数学模型。

之后,借助于相应的计算机、软件以及编程方面的知识,来对此模型进行相应的求解计算。

2.计算机技术在数学建模中的应用计算机在数学建模中的应用面非常的广泛,限于笔者的水平,本文主要就两个方面展开讨论:第一,确定建模思想;第二,对数学模型进行求解计算。

2.1计算机技术辅助确立数学建模思想对于数学建模,其最为重要的目的便是为了能够提升学生对于数学知识的使用性,借助于相关的数学思想来对实际问题进行解决,同时,还能够促进学生数学思想的发展、建模能力发展以及相关数学知识的`完善,最终提升其对于数学知识的使用能力。

培养数学思维重在将学生所思所想以最快最佳的方式展示出来,计算机技术在数学建模中的应用使得这个设想变得可能。

因为数学模型的计算和设计工作量大,传统的计算办法不能迅速解决某个问题,但是在建模的辅助下一切问题迎刃而解。

2.2计算机技术促进数学建模结果求解对于数学建模,其属于一项系统性工程,整个过程工作量较多。

在前期,对于模型的构想与建立需要不断完善,此后,对于模型的求解也是极为困难的,这主要因为其涉及到非常多的数据处理与计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

106
神州教育
浅谈数学建模与计算机应用的融合
陈育呈
辽宁省调兵山市第一高级中学
摘要:所谓数学建模,即借助数学模型,处理所遇到的具
体问题的课程,在本文中,分别就教学、模型建立以及相应的信息检索来进行研究,通过将这三面进行相应的糅合从而证明可以将计算机技术引入到相应的建模实践中,从而有效促进数学建模的发展,使得教学质量得以有效提升。

关键词:数学建模;计算机应用;融合
1.数学建模与计算机技术概述
目前计算机在生活中应用极为广泛,借助于计算机能够使得先前较为复杂繁琐的问题得以简化,有效提升计算速率。

就数学建模来看,计算机在此方面的作用不言而喻。

对于此,人们普遍认为,能够借助于计算机将任何一个数学问题进行简化处理。

而对于生活中所遇到的任意一个实际问题,均能够借助于相应的数学模型来进行表示,在建模过程中,也可以根据实际情况来做出一些相应的简化处理,从而将其归属于完全的数学问题,最终建立起能够用变量所描述的数学模型。

之后,借助于相应的计算机、软件以及编程方面的知识,来对此模型进行相应的求解计算。

2.计算机技术在数学建模中的应用
计算机在数学建模中的应用面非常的广泛,限于笔者的水平,本文主要就两个方面展开讨论:第一,确定建模思想;第二,对数学模型进行求解计算。

2.1 计算机技术辅助确立数学建模思想
对于数学建模,其最为重要的目的便是为了能够提升学生对于数学知识的使用性,借助于相关的数学思想来对实际问题进行解决,同时,还能够促进学生数学思想的发展、建模能力发展以及相关数学知识的完善,最终提升其对于数学知识的使用能力。

培养数学思维重在将学生所思所想以最快最佳的方式展示出来,计算机技术在数学建模中的应用使得这个设想变得可能。

因为数学模型的计算和设计工作量大,传统的计算办法不能迅速解决某个问题,但是在建模的辅助下一切问题迎刃而解。

2.2 计算机技术促进数学建模结果求解
对于数学建模,其属于一项系统性工程,整个过程工作量较多。

在前期,对于模型的构想与建立需要不断完善,此后,对于模型的求解也是极为困难的,这主要因为其涉及到非常多的数据处理与计算。

在计算数学模型时,不仅速度快,准确度也很高,如表1给出了手动解30维线性方程组和计算机解30维方程组的时间,手动所用时间是计算所用时间的1200倍。

表1.结算和手动解某30位方程组的时间
解决方式手动计算机
耗时(min)600.05
同时,对于一些借助纸和笔而无法实现的计算,通过计算机能够较快实现,其中主要涉及到相关的编程、绘图等操作。

3.数学建模与计算机应用融合的优势
计算机在数学建模领域拥有极为重要的优势与作用。

如计算机的计算速度快、可以辅助作图,甚至可以辅助做立体图形。

同时,借助于计算机也能够使得模型得以进一步完善,也就是说两者彼此之间相辅相成。

3.1计算机使数学建模多样化
数学建模的出现,主要是为了便于处理同工程或者科研相关的问题的,和试题类有着较大区别。

其所处理问题具有一定的特性,即围绕日常具体问题展开,科研背景突出,需要的知识结构复杂,涉及的范围庞大,因素多且难,非常规特征明显,缺乏有效的处理措施,涉及数据多,要选择的算法亦十分繁琐,得出的结果存在波动性,要有限定的前提,通常仅可获取近似解。

而计算机的出现,则在一定程度上使这种情况得到缓解。

是数学建模多样化,令设计领域更加宽泛,如数学建模可以模范人类大脑的记忆功能。

3.2计算机使数学模型求解更为简单
计算机在数学建模中的应用使得数学模型求解更为简单体现在以下几个方面:
(1)计算量问题得到解决。

以前计算量大是制约数学建模发展的主要因素之一,现在在计算机的帮助下,只要模型完善,计算量大已经不是问题。

如德国的神威计算机,计算速度达到了12.5亿亿次/秒。

(2)可视化功能使抽象问题具体化。

现代计算机都有强大的作图功能,会使数学模型中的一些抽象概念、问题解决过程都变得可视化。

图表的制作更是非常简单。

3.3 计算机利用数学建模寻求最优解成为可能
在3.1节中已经提到,在计算机没有应用到数学建模中之前,很多数学模型的解只是近似解,连精确解都谈不上,更不用说是最优解。

其主要原因是模型本身的计算量太大,笔和纸这两样工具更不能在短时间内攻下数学模型计算这块,此外笔和纸根本不可能完成某些图表的制作也是原因之一。

计算机有效的解决了这两个问题,这就会使得数学模型得到精确解。

在求得精确解的基础之上还可以进一步寻求最优解,因为数学模型的解往往是多解的,不是唯一解。

4.总结
数学模型,其主要是通过使用相应的数学语言来对实际问题进行相应的表示,也就是说,模型的实质主要是为了有效解决生活中的实际问题。

通过借助于计算机能够使得复杂问题得以有效简化,对于促进社会发展起到了重要作用。

因而,在未来发展中数学建模也将会像计算机一样得到广泛重视。

目前,对于教育界而言,其主要问题在于理论与实践相脱节。

我们的教学越来越形式、抽象。

在教材中,充斥着大量的定理、理论证明等等,但是并没有将其与实际生活相结合,而对于借助相应的数学教学来实现脑力发展的系统化更是微乎其微。

将计算机与数学建模相结合,这是未来数学领域发展所必须经历的一个过程。

参考文献:
[1]李大潜.数学建模与素质教育[J].中国大学教育,2016 (10):41-43.
[2]姜启源.数学实验与数学建模[J].数学的实践与认识,2015,31(5):613-617.。

相关文档
最新文档