初三数学:应用型问题专题

合集下载

中考数学专题实际应用题(解析版)

中考数学专题实际应用题(解析版)
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)

初三数学中考专题:实际应用题压轴题大全

初三数学中考专题:实际应用题压轴题大全

类型一购买、分配问题典例精讲例(2020大理市统考)某中学为打造书香校园,购进甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元①,乙型号书柜共花了18000元②,乙型号书柜比甲型号书柜单价便宜300元③,购买乙型号书柜的数量是甲型号书柜数量的2倍④,求甲、乙型号书柜各购进多少个?【分层分析】设购进甲型号书柜x个,由题干④得购进乙型号书柜________个,由题干①得购进甲型号书柜单价为________元,由题干②得购进乙型号书柜单价为________元,由题干③可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020百色)某玩具生产厂家,A车间原来有30名工人,B车间原来有20名工人,现新增25名工人分配到两车间,使得A车间工人总数是B车间工人总数的2倍.(1)请问新分配到A、B车间各多少人?(2) A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人增加生产线后比原来提前几天完成任务?类型二工程、行程问题典例精讲例(2020常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍①,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒②,求该地4G与5G的下载速度分别是每秒多少兆?【分层分析】设4G的下载速度是x兆/秒,由题干①可得5G的下载速度是______兆/秒,则下载一部600兆公益片用5G所用时间为______,用4G所用时间为________,结合题干②可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020云师大实验模拟)某无人机公司使用无人机(植保机)进行药水喷洒,若甲型无人机工作2 h,乙型无人机工作4 h,一共可以喷洒700亩;若甲型无人机工作3 h,乙型无人机工作2 h,一共可以喷洒650亩.(1)求甲、乙两型无人机每小时各可以喷洒多大面积;(2)近期,该公司无人机喷洒84消毒液进行特定区域消毒的业务量猛增,要让甲、乙两型无人机每天喷洒的面积总量不低于2250亩,它们每天至少要一起工作多少小时?类型三阶梯费用问题典例精讲例(2019潜江)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克①,若一次购买超过5千克,则超过5千克部分的种子价格打8折②.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?【分层分析】(1)一次购买量为x千克,由题干①可得,若x≤5,则付款金额为________,由题干②可得若x>5,则付款金额为____________;(2)把x=30代入(1)中函数解析式,即可计算.【自主作答】针对训练(2020徐州)本地某快递公司规定:寄件不超过1千克的部分按起步价计费;寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准实际收费求a、b的值.类型四方案问题典例精讲例(2020荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨①,乙厂的生产量是甲厂的2倍少100吨②,这批防疫物资将运往A地240吨③,B地260吨④,运费如下表(单位:元/吨).(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200 元,求m的最小值.【分层分析】(1)设这批防疫物资甲厂生产了a吨,乙厂生产了b吨,由题干①可得等量关系式为______,由题干②可得等量关系式为________;(2)由(1)知甲厂生产了200吨,乙厂生产了300吨,∵乙厂运往A地x吨,则运往B地________吨,则由题干③可知甲厂运往A地________吨,由题干④可知甲厂运往B地________吨.再结合总费用=每吨的费用×吨数,即可求得y与x之间的函数关系式;(3)每吨运费降m元,则500吨一共降________元.由题意和(2)中的结果列不等式求解.【自主作答】针对训练褚橙也叫励志橙,是云南有名的特产,以味甜皮薄著称.我省某褚橙产地计划组织40辆货车装运A、B、C三种褚橙共200吨到外地销售,按计划40辆货车都要装满,且每辆货车只能装运同一品种的褚橙,已知装运A、B品种褚橙的车辆数均不少于2辆.下表是A、B、C三种褚橙的货车运载量和利润信息:设装运A品种褚橙的车辆数为x辆,装运B品种褚橙的车辆数为y辆,解答以下问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)设销售利润为W元,求出获利最大的运输方案,并确定W的最大值.类型五销售、利润(含最值)问题典例精讲例云南某地的特产天山雪莲果营养价值丰富.某网店销售盒装天山雪莲果,已知天山雪莲果的成本价为每盒30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,在销售过程中发现:每月的销售量y(盒)与销售单价x(元)之间满足一次函数关系①,当销售单价为55元时,每月的销售量为60盒;当销售单价为40元时,每月的销售量为120盒②.(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)当盒装天山雪莲果的销售单价定为多少元时,月销售利润最大?最大利润是多少元?【分层分析】(1)由题干①可知y与x为一次函数关系,结合题干②,可得一次函数经过两点,分别为__________,利用待定系数法求出一次函数解析式;(2)设网店的月销售利润为w元,由单价×数量=总费用,利润=总费用-成本,可列出月销售利润w=__________,再结合二次函数图象性质求解.【自主作答】针对训练(2020东营改编)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:设甲种型号口罩的产量是y 万只,销售完这些口罩所获利润为w 万元.(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)求w 与y 的函数解析式,并直接写出y 的取值范围;(3)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.参考答案类型一 购买、分配问题典例精讲例 【分层分析】2x ,15000x ,180002x ,15000x -180002x =300解:设购进甲型号书柜x 个,则购进乙型号书柜2x 个, 根据题意得15000x -180002x =300,解得x =20,经检验,x =20是原分式方程的解且符合实际, ∴2x =40.答:购进甲型号书柜20个,购进乙型号书柜40个.针对训练解:(1)设新分配到A 车间x 人,则新分配到B 车间(25-x )人,根据题意得 30+x =2(20+25-x ), 解得x =20, ∴25-x =5(人).答:新分配到A 车间20人,新分配到B 车间5人; (2)∵每条生产线配置5名工人,∴A 车间原来可配置30÷5=6条生产线,新增工人后可配置(30+20)÷5=10条生产线, ∵A 车间用一条生产线单独完成任务要30天, ∴A 车间原来完成任务需要的时间为30÷6=5(天), 新增工人后完成任务需要的时间为30÷10=3(天), ∴A 车间新增工人增加生产线后比原来提前5-3=2(天). 答:A 车间新增工人增加生产线后比原来提前2天完成任务 .类型二 工程、 行程问题典例精讲例 【分层分析】15x ,60015x ,600x ,600x -60015x=140解:设4G 的下载速度是x 兆/秒,则5G 的下载速度是15x 兆/秒, 由题意,得600x -60015x=140,解得x =4,经检验,x =4是原分式方程的解且符合实际, 则15x =60,∴该地4G 的下载速度是4兆/秒,5G 的下载速度是60兆/秒.针对训练解:(1)设甲型无人机每小时喷洒的面积为x 亩,乙型无人机每小时喷洒的面积为y 亩,根据题意,得⎩⎪⎨⎪⎧2x +4y =7003x +2y =650,解得⎩⎪⎨⎪⎧x =150y =100,∴甲型无人机每小时喷洒的面积为150亩,乙型无人机每小时喷洒的面积为100亩; (2)设它们每天要一起工作a 小时, 根据题意,得(150+100)a ≥2250, 解得a ≥9,∴它们每天至少要一起工作9小时.类型三 阶梯费用问题典例精讲例 【分层分析】20x ,100+(x -5)×20×0.8 解:(1)根据题意,得 当0≤x ≤5时,y =20x ;当x >5时,y =20×0.8(x -5)+20×5=16x +20, 则y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧20x ,0≤x ≤516x +20,x >5; (2)∵30>5,∴将x =30代入y =16x +20, 得y =16×30+20=500.答:一次购买玉米种子30千克,需付款500元.针对训练解:由题意可得,⎩⎪⎨⎪⎧a +(2-1)b =9a +3+(3-1)(b +4)=22, 解得⎩⎪⎨⎪⎧a =7b =2,∴a =7,b =2.类型四 方案问题典例精讲例 【分层分析】(1)a +b =500,2a -b =100;(2)300-x ,240-x ,260-(300-x );(3)500m 解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,则⎩⎪⎨⎪⎧a +b =5002a -b =100, 解得⎩⎪⎨⎪⎧a =200b =300,答:这批防疫物资甲厂生产了200吨,乙厂生产了300吨; (2)如下表,甲、乙两厂调往A ,B 两地的数量如下:∴y =20(240-x )+25(x -40)+15x +24(300-x ) =-4x +11000, ∵⎩⎪⎨⎪⎧x ≥0240-x ≥0300-x ≥0x -40≥0,∴40≤x ≤240. 又∵-4<0,∴y 随x 的增大而减小. ∴当x =240时总运费最小,∴使总运费最少的调运方案是:甲厂的200吨全部运往B 地;乙厂运往A 地240吨,运往B 地60吨;(3)由题意和(2)中的解答得:y =-4x +11000-500m ,当x =240时,y 最小=-4×240+11000-500m =10040-500m , ∴10040-500m ≤5200, 解得m ≥9.68,∵0<m ≤15且m 为整数,∴m 的最小值为10.针对训练解:(1)根据题意,装运A 品种褚橙的车辆数为x 辆,装运B 品种褚橙的车辆数为y 辆,则装运C 品种褚橙的车辆数为(40-x -y )辆,依题意得6x +5y +4(40-x -y )=200,即y =-2x +40(2≤x ≤19,且x 为整数);【解法提示】由⎩⎪⎨⎪⎧x ≥2-2x +40≥2,解得2≤x ≤19,且x 为整数. (2)由(1)知,40-x -y =40-x -(-2x +40)=x ,∴W =6x ·1800+5(-2x +40)×2400+4x ·1500=-7200x +480000.∵-7200<0,∴W 的值随x 的增大而减小.∵2≤x ≤19,且x 为整数,∴当x =2时,利润W 最大,最大利润为W =-7200×2+480000=465600(元).此时运输方案为装运A 品种褚橙的车辆数为2辆,装运B 品种褚橙的车辆数为36辆,装运C 品种褚橙的车辆数为2辆.答:当装运A 品种褚橙的车辆数为2辆,B 品种褚橙的车辆数为36辆,C 品种褚橙的车辆数为2辆时,获利最大,最大利润为465600元.类型五 销售、利润(含最值)问题典例精讲例 【分层分析】(1)(55,60),(40,120);(2)-4(x -50)2+1600解:(1)设y 与x 的函数解析式为y =kx +b (k ≠0),将(55,60)和(40,120)代入,得⎩⎪⎨⎪⎧55k +b =6040k +b =120,解得⎩⎪⎨⎪⎧k =-4b =280, ∴y =-4x +280;∵销售单价不低于成本价且不高于成本价的2倍,∴30≤x ≤60.∴y 与x 的函数关系式为y =-4x +280(30≤x ≤60);(2)设该网店的月销售利润为w 元,由题意得w =(x -30)·y =(x -30)(-4x +280)=-4x 2+400x -8400=-4(x -50)2+1600, ∵-4<0,30≤x ≤60,∴当x =50时,月销售利润w 有最大值,最大值为1600元.答:当盒装天山雪莲果的销售单价定为50元时,月销售利润最大,最大利润是1600元. 针对训练解:(1)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只. 根据题意得:18y +6(20-y )=300,解得y =15,则20-y =20-15=5,答:生产甲种型号的防疫口罩15万只,生产乙种型号的防疫口罩5万只;(2)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只,∴w =(18-12)y +(6-4)(20-y )=4y +40(0≤y ≤20);(3)根据题意得:12y +4(20-y )≤216,解得:y ≤17.又∵w =4y +40中,4>0,∴w 随y 的增大而增大,即当y =17时,w 最大,此时w =4×17+40=108.答:安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,该月获得最大利润﹐最大利润为108万元.。

中考数学专题五函数应用问题综合题(解析版全国适用)

中考数学专题五函数应用问题综合题(解析版全国适用)

函数实际问题综合题一、一次函数+二次函数应用问题例题(2020·湖北随州·中考真题)2020年新冠肺炎疫情期间.部分药店趁机将口罩涨价.经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系如下表:第x 天1 2 3 4 5 销售价格p (元/只)2 3 4 5 6 销量q (只)7075808590店从第6天起将该型号口罩的价格调整为1元/只.据统计.该药店从第6天起销量q (只)与第x 天的关系为2280200q x x =-+-(630x ≤≤.且x 为整数).已知该型号口罩的进货价格为0.5元/只.(1)直接写出....该药店该月前5天的销售价格p 与x 和销量q 与x 之间的函数关系式. (2)求该药店该月销售该型号口罩获得的利润W (元)与x 的函数关系式.并判断第几天的利润最大.(3)物价部门为了进一步加强市场整顿.对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m 倍的罚款.若罚款金额不低于2000元.则m 的取值范围为______.【答案】(1)1p x =+.15x ≤≤且x 为整数.565q x =+.15x ≤≤且x 为整数.(2)22135655,152240100,630x x x x W x x x x ⎧++⎪=⎨⎪-+-⎩且为整数且为整数.第5天时利润最大.(3)85m . 【解析】 【分析】(1)根据表格数据.p 是x 的一次函数.q 是x 的一次函数.分别求出解析式即可. (2)根据题意.求出利润w 与x 的关系式.再结合二次函数的性质.即可求出利润的最大值.(3)先求出前5天多赚的利润.然后列出不等式.即可求出m 的取值范围. 【详解】(1)观察表格发现p 是x 的一次函数.q 是x 的一次函数. 设p=k 1x+b 1.将x=1.p=2.x=2.p=3分别代入得:1111232k b k b =+⎧⎨=+⎩. 解得:1111k b =⎧⎨=⎩. 所以1p x =+.经验证p=x+1符合题意. 所以1p x =+.15x ≤≤且x 为整数. 设q=k 2x+b 2.将x=1.q=70.x=2.q=75分别代入得:222270752k b k b =+⎧⎨=+⎩. 解得:22565k b =⎧⎨=⎩. 所以565q x =+.经验证565q x =+符合题意. 所以565q x =+.15x ≤≤且x 为整数. (2)当15x ≤≤且x 为整数时.(10.5)(565)W x x =+-+213565522x x =++. 当630x ≤≤且x 为整数时.()2(10.5)280200W x x =--+-240100x x =-+-.即有22135655,152240100,630x x x x W x x x x ⎧++⎪=⎨⎪-+-⎩且为整数且为整数. 当15x ≤≤且x 为整数时.售价.销量均随x 的增大而增大. 故当5x =时.495W =最大(元)当630x ≤≤且x 为整数时.2240100(20)300W x x x =-+-=--+ 故当20x时.300W =最大(元).由495300>.可知第5天时利润最大. (3)根据题意.前5天的销售数量为:7075808590400q =++++=(只). ∴前5天多赚的利润为:(270375480585690)140016504001250W =⨯+⨯+⨯+⨯+⨯-⨯=-=(元).∴12502000m ≥. ∴85m. ∴m 的取值范围为85m . 【点睛】此题考查二次函数的性质及其应用.一次函数的应用.不等式的应用.也考查了二次函数的基本性质.另外将实际问题转化为求函数最值问题.从而来解决实际问题. 练习题1.(2021·山东青岛·中考真题)科研人员为了研究弹射器的某项性能.利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升.此时.在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力).在1秒时.它们距离地面都是35米.在6秒时.它们距离地面的高度也相同.其中无人机离地面高度1y (米)与小钢球运动时间x (秒)之间的函数关系如图所示.小钢球离地面高度2y (米)与它的运动时间x (秒)之间的函数关系如图中抛物线所示.(1)直接写出1y 与x 之间的函数关系式. (2)求出2y 与x 之间的函数关系式.(3)小钢球弹射1秒后直至落地时.小钢球和无人机的高度差最大是多少米?【答案】(1)1530y x =+.(2)22540y x x =-+.(3)70米【解析】 【分析】(1)先设出一次函数的解析式.再用待定系数法求函数解析式即可. (2)用待定系数法求函数解析式即可.(3)当1<x ≤6时小钢球在无人机上方.因此求y 2-y 1.当6<x ≤8时.无人机在小钢球的上方.因此求y 1-y 2.然后进行比较判断即可. 【详解】解:(1)设y 1与x 之间的函数关系式为y 1=kx +b'. ∵函数图象过点(0.30)和(1.35).则'35'30k b b +=⎧⎨=⎩. 解得5'30k b =⎧⎨=⎩. ∴y 1与x 之间的函数关系式为1530y x =+. (2)∵6x =时.1563060y =⨯+=. ∵2y 的图象是过原点的抛物线.∴设22y ax bx =+.∴点()1,35.()6,60在抛物线22y ax bx =+上.∴3536660a b a b +=⎧⎨+=⎩.即35610a b a b +=⎧⎨+=⎩. 解得540a b =-⎧⎨=⎩. ∴22540y x x =-+.答:2y 与x 的函数关系式为22540y x x =-+.(3)设小钢球和无人机的高度差为y 米. 由25400x x -+=得10x =或28x =. ①16x <≤时.21y y y =-2540530x x x =-+-- 253530x x =-+-27125524x ⎛⎫=--+⎪⎝⎭. ∵50a =-<.∴抛物线开口向下. 又∵16x <≤. ∴当72x =时.y 的最大值为1254. ②68x <≤时.12y y y =-2530540x x x =++- 253530x x =-+27125524x ⎛⎫=--⎪⎝⎭. ∵50a =>.∴拋物线开口向上. 又∵对称轴是直线72x =. ∴当72x >时.y 随x 的增大而增大. ∵68x <≤.∴当8x =时.y 的最大值为70. ∵125704<. ∴高度差的最大值为70米. 答:高度差的最大值为70米. 【点睛】本题考查了二次函数以及一次函数的应用.关键是根据根据实际情况判断无人机和小钢球的高度差.2.(2021·辽宁盘锦·中考真题)某工厂生产并销售A .B 两种型号车床共14台.生产并销售1台A 型车床可以获利10万元.如果生产并销售不超过4台B 型车床.则每台B 型车床可以获利17万元.如果超出4台B 型车床.则每超出1台.每台B 型车床获利将均减少1万元.设生产并销售B 型车床x 台. (1)当4x >时.完成以下两个问题: ①请补全下面的表格:A 型B 型车床数量/台 ________ x每台车床获利/万元10________70万元.问:生产并销售B 型车床多少台?(2)当0<x ≤14时.设生产并销售A .B 两种型号车床获得的总利润为W 万元.如何分配生产并销售A .B 两种车床的数量.使获得的总利润W 最大?并求出最大利润. 【答案】(1)①14x -.21x -.②10台.(2)分配产销A 型车床9台、B 型车床5台.或产销A 型车床8台、B 型车床6台.此时可获得总利润最大值170万元 【解析】 【分析】(1)①由题意可知.生产并销售B 型车床x 台时.生产A 型车床(14-x )台.当4x >时.每台就要比17万元少(4x -)万元.所以每台获利17(4)x --.也就是(21x -)万元. ②根据题意可得根据题意:(21)10(14)70x x x ---=然后解方程即可. (2)当0≤x ≤4时.W =10(14)x -+17x =7140x +.当4<x ≤14时. W =2( 5.5)170.25x --+.分别求出两个范围内的最大值即可得到答案. 【详解】解:(1)当4x >时.每台就要比17万元少(4x -)万元 所以每台获利17(4)x --.也就是(21x -)万元 ①补全表格如下面:A 型B 型车床数量/台 14x -x每台车床获利/万元1021x -由B 型可获得利润为(21)x x -万元.根据题意:(21)10(14)70x x x ---=. 2312100x x -+=.(21)(10)0x x --=.∵0≤x ≤14. ∴10x =.即应产销B 型车床10台. (2)当0≤x ≤4时. 当0≤x ≤4 A 型 B 型车床数量/台 14x -x每台车床获利/万元 1017 利润10(14)x -17x该函数值随着x 的增大而增大.当x 取最大值4时.W 最大1=168(万元). 当4<x ≤14时. 当4<x ≤14 A 型 B 型车床数量/台 14x -x每台车床获利/万元1021x -利润10(14)x - (21)x x -则=+=211140x x -++=( 5.5)170.25x --+.当5x =或6x =时(均满足条件4<x ≤14).W 达最大值W 最大2=170(万元). ∵W 最大2> W 最大1.∴应分配产销A 型车床9台、B 型车床5台.或产销A 型车床8台、B 型车床6台.此时可获得总利润最大值170万元. 【点睛】本题主要考查了一元二次方程的实际应用.一次函数和二次函数的实际应用.解题的关键在于能够根据题意列出合适的方程或函数关系式求解.3.(2021·辽宁锦州·中考真题)某公司计划购进一批原料加工销售.已知该原料的进价为6.2万元/t .加工过程中原料的质量有20%的损耗.加工费m (万元)与原料的质量x (t )之间的关系为m =50+0.2x .销售价y (万元/t )与原料的质量x (t )之间的关系如图所示.(1)求y 与x 之间的函数关系式.(2)设销售收入为P (万元).求P 与x 之间的函数关系式.(3)原料的质量x 为多少吨时.所获销售利润最大.最大销售利润是多少万元?(销售利润=销售收入﹣总支出).【答案】(1)1y 204x =-+.(2)21165P x x =-+.(3)原料的质量为24吨时.所获销售利润最大.最大销售利润是3265万元 【解析】 【分析】(1)利用待定系数法求函数关系式.(2)根据销售收入=销售价×销售量列出函数关系式.(3)设销售总利润为W .根据销售利润=销售收入﹣原料成本﹣加工费列出函数关系式.然后根据二次函数的性质分析其最值. 【详解】解:(1)设y 与x 之间的函数关系式为y kx b +=. 将(20.15).(30.12.5)代入. 可得:20153012.5k b k b +=⎧⎨+=⎩. 解得:1420k b ⎧=-⎪⎨⎪=⎩. ∴y 与x 之间的函数关系式为1y 204x =-+.(2)设销售收入为P (万元).∴()2411120%2016545P xy x x x x ⎛⎫=-=⨯-+=-+ ⎪⎝⎭.∴P 与x 之间的函数关系式为21165P x x =-+.(3)设销售总利润为W .∴()216.216 6.2500.25W P x m x x x x =--=-+--+.整理.可得:()22148132650245555W x x x =-+-=--+. ∵﹣15<0.∴当24x =时.W 有最大值为3265. ∴原料的质量为24吨时.所获销售利润最大.最大销售利润是3265万元. 【点睛】本题考查了二次函数的实际应用.涉及了数形结合的数学思想.熟练掌握待定系数法求解析式是解决本题的关键.4.(2021·湖北荆门·中考真题)某公司电商平台.在2021年五一长假期间.举行了商品打折促销活动.经市场调查发现.某种商品的周销售量y (件)是关于售价x (元/件)的一次函数.下表仅列出了该商品的售价x .周销售量y .周销售利润W (元)的三组对应值数据. x 40 70 90 y1809030W 3600 4500 2100.(2)若该商品进价a (元/件).售价x 为多少时.周销售利润W 最大?并求出此时的最大利润.(3)因疫情期间.该商品进价提高了m (元/件)(0m >).公司为回馈消费者.规定该商品售价x 不得超过55(元/件).且该商品在今后的销售中.周销售量与售价仍满足(1)中的函数关系.若周销售最大利润是4050元.求m 的值.【答案】(1)3300y x =-+.(2)售价60元时.周销售利润最大为4800元.(3)5m = 【解析】 【分析】(1)①依题意设y=kx+b.解方程组即可得到结论.(2)根据题意得(3300)()W x x a =-+-.再由表格数据求出20a =.得到2(3300)(20)3(60)4800W x x x =-+-=--+.根据二次函数的顶点式.求出最值即可.(3)根据题意得3(100)(20)(55)W x x m x =----.由于对称轴是直线60602mx =+>.根据二次函数的性质即可得到结论. 【详解】解:(1)设y kx b =+.由题意有401807090k b k b +=⎧⎨+=⎩.解得3300k b =-⎧⎨=⎩. 所以y 关于x 的函数解析式为3300y x =-+. (2)由(1)(3300)()W x x a =-+-.又由表可得: 3600(340300)(40)a =-⨯+-.20a ∴=.22(3300)(20)336060003(60)4800W x x x x x ∴=-+-=-+-=--+.所以售价60x =时.周销售利润W 最大.最大利润为4800. (3)由题意3(100)(20)(55)W x x m x =----. 其对称轴60602mx =+>.055x ∴<时上述函数单调递增. 所以只有55x =时周销售利润最大.40503(55100)(5520)m ∴=----. 5m ∴=.【点睛】本题考查了二次函数在实际生活中的应用.重点是掌握求最值的问题.注意:数学应用题来源于实践.用于实践.在当今社会市场经济的环境下.应掌握一些有关商品价格和利润的知识.总利润等于总收入减去总成本.然后再利用二次函数求最值.5.(2021·辽宁营口·中考真题)某商家正在热销一种商品.其成本为30元/件.在销售过程中发现随着售价增加.销售量在减少.商家决定当售价为60元/件时.改变销售策略.此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y (件)与售价x (元/件)满足如图所示的函数关系.(其中4070x ≤≤.且x 为整数)(1)直接写出y 与x 的函数关系式.(2)当售价为多少时.商家所获利润最大.最大利润是多少?【答案】(1)10700406052006070x x y x x -+≤≤⎧=⎨-<≤⎩.(2)当售价为70元时.商家所获利润最大.最大利润是4500元 【解析】 【分析】(1)利用待定系数法分段求解函数解析式即可.(2)分别求出当4060x ≤≤时与当6070x <≤时的销售利润解析式.利用二次函数的性质即可求解. 【详解】解:(1)当4060x ≤≤时.设11y k x b =+. 将()40,300和()60,100代入.可得11113004010060k b k b =+⎧⎨=+⎩.解得1110700k b =-⎧⎨=⎩.即10700y x =-+. 当6070x <≤时.设22y k x b =+. 将()70,150和()60,100代入.可得22221507010060k b k b =+⎧⎨=+⎩.解得225200k b =⎧⎨=-⎩.即5200y x =-. ∴10700406052006070x x y x x -+≤≤⎧=⎨-<≤⎩. (2)当4060x ≤≤时.销售利润()()22301010002100010504000w y x x x x =⋅-=-+-=--+.当50x =时.销售利润有最大值.为4000元. 当6070x <≤时.销售利润()()()2230150605500150005502500w y x x x x x =⋅---=-+=-+.该二次函数开口向上.对称轴为50x =.当6070x <≤时位于对称轴右侧. 当70x =时.销售利润有最大值.为4500元. ∵45004000>.∴当售价为70元时.商家所获利润最大.最大利润是4500元. 【点睛】本题考查一次函数的应用、二次函数的性质.根据图象列出解析式是解题的关键. 6.(2021·湖南郴州·中考真题)某商店从厂家以每件2元的价格购进一批商品.在市场试销中发现.此商品的月销售量y (单位:万件)与销售单价x (单位:元)之间有如下表所示关系:x… 4.0 5.0 5.5 6.5 7.5 … y…8.06.05.03.01.0…(1)根据表中的数据.在图中描出实数对(,)x y 所对应的点.并画出y 关于x 的函数图象. (2)根据画出的函数图象.求出y 关于x 的函数表达式. (3)设经营此商品的月销售利润为P (单位:万元). ①写出P 关于x 的函数表达式.②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本).若物价局限定商品的销售单价不得超过....进价的200%.则此时的销售单价应定为多少元? 【答案】(1)图象见详解.(2)216y x =-+.(3)①222032P x x =-+-.②销售单价应定为3元. 【解析】 【分析】(1)由题意可直接进行作图.(2)由图象可得y 与x 满足一次函数的关系.所以设其关系式为y kx b =+.然后任意代入表格中的两组数据进行求解即可.(3)①由题意易得()2P x y =-.然后由(2)可进行求解.②由①及题意可得22203210x x -+-=.然后求解.进而根据销售单价不得超过进价的200%可求解.【详解】解:(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+.则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩.解得:216k b =-⎧⎨=⎩. ∴y 与x 的函数关系式为216y x =-+. (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-.∴P 关于x 的函数表达式为222032P x x =-+-. ②由题意得:2200x ≤⨯%.即4x ≤. ∴22203210x x -+-=. 解得:123,7x x ==.∴3x=.答:此时的销售单价应定为3元.【点睛】本题主要考查二次函数与一次函数的应用.熟练掌握二次函数与一次函数的应用是解题的关键.7.(2021·四川南充·中考真题)超市购进某种苹果.如果进价增加2元/千克要用300元.如果进价减少2元/千克.同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克.就按原价购进.如果购进苹果超过100千克.超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.(3)超市一天购进苹果数量不超过300千克.且购进苹果当天全部销售完.据统计.销售单价z(元/千克)与一天销售数量x(千克)的关系为112100z x=-+.在(2)的条件下.要使超市销售苹果利润w(元)最大.求一天购进苹果数量.(利润=销售收入-购进支出)【答案】(1)苹果的进价为10元/千克.(2)10(100)8200(100)x xyx x≤⎧=⎨+>⎩.(3)要使超市销售苹果利润w最大.一天购进苹果数量为200千克.【解析】【分析】(1)设苹果的进价为x元/千克.根据等量关系.列出分式方程.即可求解.(2)分两种情况:当x≤100时. 当x>100时.分别列出函数解析式.即可.(3)分两种情况:若x≤100时.若x>100时.分别求出w关于x的函数解析式.根据二次函数的性质.即可求解.【详解】解:(1)设苹果的进价为x元/千克.由题意得:30020022x x=+-.解得:x=10.经检验:x=10是方程的解.且符合题意.答:苹果的进价为10元/千克.(2)当x≤100时.y=10x.当x>100时.y=10×100+(10-2)×(x-100)=8x+200.∴10(100)8200(100)x x y x x ≤⎧=⎨+>⎩. (3)若x ≤100时.w =zx -y =21112102100100x x x x x ⎛⎫-+-=-+ ⎪⎝⎭=()21100100100x --+. ∴当x =100时.w 最大=100. 若x >100时.w =zx -y =()2111282004200100100x x x x x ⎛⎫-+-+=-+- ⎪⎝⎭=()21200200100x --+. ∴当x =200时.w 最大=200.综上所述:当x =200时.超市销售苹果利润w 最大.答:要使超市销售苹果利润w 最大.一天购进苹果数量为200千克. 【点睛】本题主要考查分式方程、一次函数、二次函数的实际应用.根据数量关系.列出函数解析式和分式方程.是解题的关键.8.(2021·湖北十堰·中考真题)某商贸公司购进某种商品的成本为20元/kg .经过市场调研发现.这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数.且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系.如下表: 时间x (天) 1 3 6 10 …日销量()kg m 142 138 132 124 …(1)m 与x 的函数关系为___________.(2)哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中.公司决定每销售1kg 商品就捐赠n 元利润(4n <)给当地福利院.后发现:在前20天中.每天扣除捐赠后的日销售利润随时间x 的增大而增大.求n 的取值范围.【答案】(1)2144m x =-+.(2)第16天销售利润最大.最大为1568元.(3)1.75<n <4 【解析】 【分析】(1)设m kx b =+.将()1142,.()3138,代入.利用待定系数法即可求解. (2)分别写出当120x ≤≤时与当2040x <≤时的销售利润表达式.利用二次函数和一次函数的性质即可求解.(3)写出在前20天中.每天扣除捐赠后的日销售利润表达式.根据二次函数的性质可得对称轴16220n +≤.求解即可. 【详解】解:(1)设m kx b =+.将()1142,.()3138,代入可得: 1421383k b k b =+⎧⎨=+⎩.解得2144k b =-⎧⎨=⎩. ∴2144m x =-+. (2)当120x ≤≤时.销售利润()()()212021440.2530201615682W my m x x x =-=-++-=--+. 当16x =时.销售利润最大为1568元. 当2040x <≤时.销售利润20302160W my m x =-=-+. 当21x =时.销售利润最大为1530元.综上所述.第16天销售利润最大.最大为1568元. (3)在前20天中.每天扣除捐赠后的日销售利润为:()()()21'200.2510214416214401442W my m nm x n x x n x n =--=+--+=-+++-.对称轴为直线x ═16+2n .∵在前20天中.每天扣除捐赠后的日销售利润随时间x 的增大而增大.且x 只能取整数.故只要第20天的利润高于第19天. 即对称轴要大于19.5 ∴16+2n >19.5. 求得n >1.75.又∵n <4. ∴n 的取值范围是:1.75<n <4. 答:n 的取值范围是1.75<n <4. 【点睛】本题考查二次函数与一次函数的实际应用.掌握二次函数与一次函数的性质是解题的关键.9.(2021·江苏扬州·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租.下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元.那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元.那么将少租出1辆汽车.另外.公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元.无论是否租出汽车.公司均需一次性支付月维护费共计1850元. ..②月利润=月租车费-月维护费.③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润. 在两公司租出的汽车数量相等的条件下.根据上述信息.解决下列问题:(1)当每个公司租出的汽车为10辆时.甲公司的月利润是_______元.当每个公司租出的汽车为_______辆时.两公司的月利润相等. (2)求两公司月利润差的最大值.(3)甲公司热心公益事业.每租出1辆汽车捐出a 元()0a >给慈善机构.如果捐款后甲公司剩余的月利润仍高于乙公司月利润.且当两公司租出的汽车均为17辆时.甲公司剩余的月利润与乙公司月利润之差最大.求a 的取值范围. 【答案】(1)48000.37.(2)33150元.(3)50150a << 【解析】 【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金.再乘以10.减去维护费用可得甲公司的月利润.设每个公司租出的汽车为x 辆.根据月利润相等得到方程.解之即可得到结果. (2)设两公司的月利润分别为y 甲.y 乙.月利润差为y .同(1)可得y 甲和y 乙的表达式.再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况.列出y 关于x 的表达式.根据二次函数的性质.结合x 的范围求出最值.再比较即可.(3)根据题意得到利润差为()25018001850y x a x =-+-+.得到对称轴.再根据两公司租出的汽车均为17辆.结合x 为整数可得关于a 的不等式180016.517.5100a-<<.即可求出a 的范围. 【详解】解:(1)()50105030001020010-⨯+⨯-⨯⎡⎤⎣⎦=48000元.当每个公司租出的汽车为10辆时.甲公司的月利润是48000元. 设每个公司租出的汽车为x 辆.由题意可得:()5050300020035001850x x x x -⨯+-=-⎡⎤⎣⎦. 解得:x =37或x =-1(舍).∴当每个公司租出的汽车为37辆时.两公司的月利润相等.(2)设两公司的月利润分别为y 甲.y 乙.月利润差为y . 则y 甲=()50503000200x x x -⨯+-⎡⎤⎣⎦. y 乙=35001850x -.当甲公司的利润大于乙公司时.0<x <37. y =y 甲-y 乙=()()5050300020035001850x x x x -⨯+---⎡⎤⎣⎦ =25018001850x x -++. 当x =1800502--⨯=18时.利润差最大.且为18050元. 当乙公司的利润大于甲公司时.37<x ≤50. y =y 乙-y 甲=()3500185050503000200x x x x ---⨯++⎡⎤⎣⎦ =25018001850x x --. ∵对称轴为直线x =1800502--⨯=18. 当x =50时.利润差最大.且为33150元. 综上:两公司月利润差的最大值为33150元.(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润.则利润差为25018001850y x x ax =-++-=()25018001850x a x -+-+.对称轴为直线x =1800100a-. ∵x 只能取整数.且当两公司租出的汽车均为17辆时.月利润之差最大. ∴180016.517.5100a-<<. 解得:50150a <<. 【点睛】本题考查了二次函数的实际应用.二次函数的图像和性质.解题时要读懂题意.列出二次函数关系式.尤其(3)中要根据x 为整数得到a 的不等式.10.(2018·湖北荆门·中考真题)随着龙虾节的火热举办.某龙虾养殖大户为了发挥技术优势.一次性收购了10000kg 小龙虾.计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同.放养10天的总成本为166000.放养30天的总成本为178000元.设这批小龙虾放养t 天后的质量为akg.销售单价为y 元/kg.根据往年的行情预测.a 与t 的函数关系为a=()()1000002010080002050t t t ⎧≤≤⎪⎨+<≤⎪⎩.y 与t 的函数关系如图所示. (1)设每天的养殖成本为m 元.收购成本为n 元.求m 与n 的值. (2)求y 与t 的函数关系式.(3)如果将这批小龙虾放养t 天后一次性出售所得利润为W 元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少? (总成本=放养总费用+收购成本.利润=销售总额﹣总成本)【答案】(1)m=600.n=160000.(2)()()316020513220505t t y t t ⎧+≤≤⎪⎪=⎨⎪-+<≤⎪⎩.(3)该龙虾养殖大户将这批小龙虾放养25天后一次性出售所得利润最大.最大利润是108500元. 【解析】 【详解】【分析】(1)根据题意列出方程组.求出方程组的解得到m 与n 的值即可. (2)根据图象.分类讨论利用待定系数法求出y 与P 的解析式即可.(3)根据W=ya ﹣mt ﹣n.表示出W 与t 的函数解析式.利用一次函数与二次函数的性质求出所求即可.【详解】(1)依题意得1016600030178000m n m n +=⎧⎨+=⎩ . 解得:600160000m n =⎧⎨=⎩. (2)当0≤t≤20时.设y=k 1t+b 1.由图象得:111162028b k b =⎧⎨+=⎩. 解得:113516k b ⎧=⎪⎨⎪=⎩ ∴y=35t+16.当20<t≤50时.设y=k 2t+b 2.由图象得:222220285022k b k b +=⎧⎨+=⎩.解得:221532k b ⎧=-⎪⎨⎪=⎩. ∴y=﹣15t+32.综上.()()3160t 205y 13220t 505t t ⎧+≤≤⎪⎪=⎨⎪-+<≤⎪⎩. (3)W=ya ﹣mt ﹣n.当0≤t≤20时.W=10000(35t+16)﹣600t ﹣160000=5400t.∵5400>0.∴当t=20时.W 最大=5400×20=108000.当20<t≤50时.W=(﹣15t+32)(100t+8000)﹣600t ﹣160000=﹣20t 2+1000t+96000=﹣20(t ﹣25)2+108500. ∵﹣20<0.抛物线开口向下. ∴当t=25.W 最大=108500. ∵108500>108000.∴当t=25时.W 取得最大值.该最大值为108500元.【点睛】本题考查了二次函数的应用.具体考查了待定系数法确定函数解析式.利用二次函数的性质确定最值.熟练掌握二次函数的性质是解本题的关键.二、一次函数+反比例函数应用问题例题(2021·广东深圳·中考真题)探究:是否存在一个新矩形.使其周长和面积为原矩形的2倍、12倍、k 倍.(1)若该矩形为正方形.是否存在一个正方形.使其周长和面积都为边长为2的正方形的2倍?_______(填“存在”或“不存在”).(2)继续探究.是否存在一个矩形.使其周长和面积都为长为3.宽为2的矩形的2倍? 同学们有以下思路:设新矩形长和宽为x 、y .则依题意10x y +=.12xy =.联立1012x y xy +=⎧⎨=⎩得210120x x -+=.再探究根的情况:根据此方法.请你探究是否存在一个矩形.使其周长和面积都为原矩形的12倍.如图也可用反比例函数与一次函数证明1l :10y x =-+.2l :12y x=.那么.①是否存在一个新矩形为原矩形周长和面积的2倍?_______. ②请探究是否有一新矩形周长和面积为原矩形的12.若存在.用图像表达. ③请直接写出当结论成立时k 的取值范围:.【答案】(1)不存在.(2)①存在.②不存在.见解析.③2425k 【解析】 【分析】(1)直接求出边长为2的正方形周长与面积.再求出周长扩大2倍即边长扩大2倍时正方形的面积.比较是否也为2倍即可.(2)①依题意根据一元二次方程根的情况判断即可.②设新矩形长和宽为x 、y .则依题意52x y +=.3xy =.联立.求出关于x 、y 的一元二次方程.判断根的情况.③设新矩形长和宽为x 和y .则由题意5x y k +=.6xy k =.同样列出一元二次方程.利用根的判别式进行求解即可. 【详解】(1)边长为2的正方形.周长为8.面积为4.当周长为其2倍时.边长即为4.面积为16.即为原来的4倍.故不存在. (2)①存在.∵210120x x -+=的判别式0∆>.方程有两组正数解.故存在. 从图像来看.1l :10y x =-+.2l :12y x=在第一象限有两个交点.故存在. ②设新矩形长和宽为x 、y .则依题意52x y +=.3xy =.联立523x y xy ⎧+=⎪⎨⎪=⎩得25302x x -+=. 因为∆<0.此方程无解.故这样的新矩形不存在.从图像来看.1l :52y x =-+.2l :3y x =在第一象限无交点.故不存在.③2425k. 设新矩形长和宽为x 和y .则由题意5x y k +=.6xy k =. 联立56x y k xy k +=⎧⎨=⎩得2560x kx k -+=.225240k k ∆=-.故2425k .【点睛】本题考查了一元二次方程的应用.根的判别式.需要认真阅读理解题意.根据题干过程模仿解题. 练习题1.(2021·浙江台州·中考真题)电子体重科读数直观又便于携带.为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R 1. R 1与踏板上人的质量m 之间的函数关系式为R 1=km +b (其中k .b 为常数.0≤m ≤120).其图象如图1所示.图2的电路中.电源电压恒为8伏.定值电阻R 0的阻值为30欧.接通开关.人站上踏板.电压表显示的读数为U 0 .该读数可以换算为人的质量m . 温馨提示:①导体两端的电压U .导体的电阻R .通过导体的电流I .满足关系式I =UR. ②串联电路中电流处处相等.各电阻两端的电压之和等于总电压.(1)求k .b 的值.(2)求R 1关于U 0的函数解析式. (3)用含U 0的代数式表示m .(4)若电压表量程为0~6伏.为保护电压表.请确定该电子体重秤可称的最大质量.【答案】(1)2402b k =⎧⎨=-⎩.(2)1024030R U =-.I (3)0120135m U =-.(4)该电子体重秤可称的最大质量为115千克. 【解析】 【分析】(1)根据待定系数法.即可求解.(2)根据“串联电路中电流处处相等.各电阻两端的电压之和等于总电压”.列出等式.进而即可求解.(3)由R 1=12-m +240.1024030R U =-.即可得到答案. (4)把06U =时.代入0480540m U =-.进而即可得到答案. 【详解】解:(1)把(0.240).(120.0)代入R 1=km +b .得2400120bk b =⎧⎨=+⎩.解得:2402b k =⎧⎨=-⎩. (2)∵001830U U R -=. ∴1024030R U =-. (3)由(1)可知:2402b k =⎧⎨=-⎩. ∴R 1=2-m +240. 又∵1024030R U =-. ∴024030U -=2-m +240.即:0120135m U =-. (4)∵电压表量程为0~6伏. ∴当06U =时.1201351156m =-= 答:该电子体重秤可称的最大质量为115千克. 【点睛】本题主要考查一次函数与反比例函数的实际应用.熟练掌握待定系数法.是解题的关键. 2.(2021·安徽·中考真题)已知正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (m .2). (1)求k .m 的值.(2)在图中画出正比例函数y kx =的图象.并根据图象.写出正比例函数值大于反比例函数值时x 的取值范围.【答案】(1),k m 的值分别是23和3.(2)30x -<<或3x > 【解析】 【分析】(1)把点A (m .2)代入6y x=求得m 的值.从而得点A 的坐标.再代入(0)y kx k =≠求得k 值即可.(2)在坐标系中画出y kx =的图象.根据正比例函数(0)y kx k =≠的图象与反比例函数6y x=图象的两个交点坐标关于原点对称.求得另一个交点的坐标.观察图象即可解答. 【详解】(1)将(,2)A m 代入6y x=得62m =.3m ∴=.(3,2)A ∴.将(3,2)A 代入y kx =得23k =.23k ∴=. ,k m ∴的值分别是23和3.(2)正比例函数23y x =的图象如图所示.∵正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (3.2). ∴正比例函数(0)y kx k =≠与反比例函数6y x=的图象的另一个交点坐标为(-3.-2). 由图可知:正比例函数值大于反比例函数值时x 的取值范围为30x -<<或3x >. 【点睛】本题是正比例函数与反比例函数的综合题.利用数形结合思想是解决问题的关键. 3.(2020·广西柳州·中考真题)如图.平行于y 轴的直尺(部分)与反比例函数my x=(x >0)的图象交于A 、C 两点.与x 轴交于B 、D 两点.连接AC .点A 、B 对应直尺上的刻度分别为5、2.直尺的宽度BD =2.OB =2.设直线AC 的解析式为y =kx +b . (1)请结合图象.直接写出: ①点A 的坐标是 . ②不等式mkx b x+>的解集是 . (2)求直线AC 的解析式.。

初三数学专题(应用类)

初三数学专题(应用类)

初三数学专题(应用类)—— 仙下中学 初三2008年一、填空。

1、市场调查表明:某种商品的销售率y (销售率=进货数量售出数量)与价格倍数x (价格倍数=进货价格售出价格)的关系满足函数关系151761+-=x y (0.8≤x ≤6.8).根据有关规定,该商品售价不得超过进货价格的2倍.某商场希望通过该商品获取50%的利润,那么该商品的价格倍数应定为 .2、某银行设立大学生助学贷款,6年期的贷款年利率为6%,贷款利息的50%由国家财政贴补。

某大学生预计6年后能一次性偿还2万元,则他现在可以贷款的数额是____万元。

3、请根据所给方程1566=++x x ,联系生活实际,编写一道应用题。

(要求题目完整,题意清楚,不要求解方程)。

4、商品的进价是1000元.售价为1500元.由于销售情况不好,商店决定降价出售.但又要保证利润率不低于5%.那么,商店最多降 元出售此商品.(利润=销售价-进货价,利润率=利润÷进货价×100%)5、红帮助母亲预算家庭4月份电费开支情况,下表是小红家4月初连续8份(按30天计)的电费是元。

(注:电表计数器上先后两次显示读数之差就是这段时间内消耗电能的度数)6、某校学生给“希望小学”邮寄每册a元的图书240册,若每册图书的邮费为书价的5%,则共需邮费元.7、我国政府为解决老百姓看病难的问题,决定下调药品价格。

某种药品在1999年涨价到30%后,2001年降价70%至a元,则这种药品在1999年涨价前的价格为元。

8、某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在租出的第n天(n是大于2的自然数)应收租金。

二、选择。

1、有一旅客携带了30公斤行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费推带20公斤行李,超重部分每公斤按飞机票价格的( )A 、1000元B 、800元C 、600元D 、400元2、李老师骑自行车上班,最初以某一速度行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校,在课堂上,李老师让学生画出自行车行进路程S (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的示意图如下,你认为正确的是( )(A )① (B )② (C )③ (D ))④3、如图,某产品的生产流水线每小时可生产100件产品.生产前没有产品积压.生产3小时后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y )是时间(t )的函数,那么,这个函数的大致图象只能是( ).A BC D万元,如果平均每月增长率为x ,则由题意列方程应为( )A. 200110002()+=xB. 20020021000+⋅⋅=xC. 20020031000+⋅⋅=xD. 20011110002[()()]++++=x x5、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量与行驶时间t (时)的函数关系用图象表示应为( )Q (升)40 O 8 t (时)A Q (升) 40O 8 t (时) CQ (升)40 O 8 t (时)B Q (升) 40O 8 t (时) D6、某种品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价应为 ( )(A )0.7a 元, (B )0.3a 元 (C )3.0a 元。

九年级数学 专题25题一次函数应用典型例题

九年级数学 专题25题一次函数应用典型例题

25题一次函数应用专题 一、近五年某某中考一次函数应用题 例1(09某某)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一X 标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)裁法一 裁法二 裁法三 A 型板材块数1 2 0 B 型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁x X 、按裁法二裁yX 、按裁法三裁z X ,且所裁出的A 、B 两种型号的板材刚好够用.(1)上表中,m =,n =;(2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的X 数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少X ?解:(1)0 ,3.(2)由题意,得x+2y=240,∴y=120–12 x .2x+3z=180,∴z=60–23x .(3)由题意,得Q =x+y+z=x+120–12 x+60–23x .整理,得 .Q=180–16x由题意,得⎩⎪⎨⎪⎧120–12x ≥060–23≥0 解得 x ≤90.【注:事实上,0≤x ≤90 且x 是6的整数倍】由一次函数的性质可知,当x =90时,Q 最小.此时按三种裁法分别裁90X 、75X 、0X .例2(07某某)一手机经销商计划购进某品牌的A 型、B 型、C 型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A 型手机x 部,B 型手机y 部.三款手机的进价和预售价如下表:手机型号 A型 B 型 C 型(1)用含x ,y (2)求出y 与x 之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P (元)与x (部)的函数关系式;(注:预估利润P =预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.25.解:(1)60-x-y ; …………………………………………………………………(2分)(2)由题意,得 900x+1200y+1100(60-x-y )= 61000,整理得 y=2x-50. ………………………………………………………(5分)(3)①由题意,得 P= 1200x+1600y+1300(60-x-y )- 61000-1500,整理得 P=500x+500. …………………………………………………(7分)②购进C 型手机部数为:60-x-y =110-3x .根据题意列不等式组,得⎩⎪⎨⎪⎧x ≥82x-50≥8110–3x ≥8解得 29≤x ≤34.∴ xX 围为29≤x ≤34,且x 为整数.(注:不指出x 为整数不扣分) …(10分)∵P 是x 的一次函数,k=500>0,∴P 随x 的增大而增大.∴当x 取最大值34时,P 有最大值,最大值为17500元. ………(11分)此时购进A 型手机34部,B 型手机18部,C 型手机8部. ………(12分)例3(06某某)有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题: (1)乙队开挖到30米时,用了_____小时.开挖6小时时,甲队比乙队多挖了______米; (2)请你求出: ①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式;②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式;③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?解:(1)2;10; ……………………………………………………………………(2分)(2)①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点(6,60),∴6 k 1=60,解得k 1=10,∴y =10x . …………………………………………………………………(4分)②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点(2,30)、(6,50),时)∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩ ∴y =5x +20. …………………………………………………………(7分)③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队. ………………(9分)(说明:通过观察图象并用方程来解决问题,正确的也给分)(3)由图可知,甲队速度是:60÷6=10(米/时).设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=…………………………………………………(11分) 解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米. ……………………(12分)例4(05某某)在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y (厘米)与燃烧时间x(小时)之间的关系如图10所示. 请根据图象提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是______________________,从点燃到燃烧尽所用的时间分别是_______________________.;(2)分别求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式;(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?二、一次函数应用——方案设计例5(某某市2009年)某公司为了开发新产品,用A 、B 两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据: x 的取值X 围;(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y 元,写出成本总额y (元)与甲种产品件数x (件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.1.解:(1)依题意列不等式组得94(50)360310(50)290x x x x +-⎧⎨+-⎩≤≤ ······································· 3分 由不等式①得32x ≤ ························································································· 4分由不等式②得30x ≥ ························································································· 5分 x ∴的取值X 围为3032x ≤≤ ············································································ 6分(2)7090(50)y x x =+- ·············································································· 8分 化简得204500y x =-+200y -<∴,随x 的增大而减小. ··································································· 9分 而3032x ≤≤∴当32x =,5018x -=时,203245003860y =-⨯+=最小值(元) ··················· 11分 答:当甲种产品生产32件,乙种18件时,甲、乙两种产品的成本总额最少,最少的成本总额为3860元. ····························································································· 12分 迁移点拨:本题是一道表格信息题,既考查不等式,又考查一次函数解析式及一次函数最值问题,通常一次函数的最值问题首先油不等式找到x 的取值X 围,进而利用一次函数的增减性在前面X 围的前提下求出最值。

初三数学应用型问题专题

初三数学应用型问题专题

初三数学:应用型问题专题题型1方程是描述丰富多彩的现实世界数量关系的最重要的语言,也是中考命题所要考察的重点热点之一.我们必须广泛了解现代社会中日常生活、生产实践、经济活动的有关常识.并学会用数学中方程的思想去分析和解决一些实际问题.解此类问题的方法是:(1)审题,明确未知量和已知量;(2)设未知数,务必写明意义和单位;(3)依题意,找出等量关系,列出等量方程;(4)解方程,必要时验根.题型2现实世界中不等关系是普遍存在的,许多现实问题很难确定(有时也不需要确定)具体的数值.但可以求出或确定这一问题中某个量的变化范围(趋势),从而对所有研究问题的面貌有一个比较清楚的认识.本节中,我们所要讨论的问题大多是要求出某个量的取值范围或极端可能性,它们涉及我们日常生活中的方方面面.列不等式时要从题意出发,设好未知量之后,用心体会题目所规定的实际情境,从中找出不等关系.题型3函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带.它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的应用性问题也是命题热点之一,多数省市作压轴题.因此,在中考复习中,关注这一热点显得十分重要.解这类题的方法是对问题的审读和理解,掌握用一个变量的代数式表示另一个变量,建立两个变量间的等量关系,同时从题中确定自变量的取值范围.题型4统计的内容有着非常丰富的实际背景,其实际应用性特别强.中考试题的热点之一,就是考查统计思想方法,同时考查学生应用数学的意识和处理数据解决实际问题的能力.题型5几何应用题常常以现实生活情景为背景,考查学生识别图形的能力、动手操作图形的能力、运用几何知识解决实际问题的能力以及探索、发现问题的能力和观察、想像、分析、综合、比较、演绎、归纳、抽象、概括、类比、分类讨论、数形结合等数学思想方法.知识运用举例:(一)方程(组)型应用题1.某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨.受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕,为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为哪种方案获利最多,为什么?解:方案一,总利润为4×2000+(9-4)×500=10500(元)方案二,设加工奶片x吨,则解得,x=1.5总利润为(元)10500<12000所以方案二获利较多.2.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.甲乙二人同时从张庄出发,步行15千米到李庄,甲比乙每小时多走1千米,结果比乙早到半小时.问二人每小时各走几千米?(1)设乙每小时走x千米,根据题意,利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)(2)列出方程(组),并求出问题的解.解:(1)(2)根据题意,列方程得整理得解这个方程得经检验,都是原方程的根.但速度为负数不合题意所以只取,此时答:甲每小时走6千米,乙每小时走5千米.(二)、不等式(组)型应用题3.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球. 已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元 . 现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球 . 若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.解:(1)由题意,去A超市购买n副球拍和kn个乒乓球的费用为0.9(20n+kn)元,去B超市购买n副球拍和kn个乒乓球的费用为[20n+n(k-3)]元,由0.9(20n+kn)< 20n+ n (k-3),解得k>10;由0.9(20n+kn)= 20n+n (k-3),解得k=10;由0.9(20n+kn)> 20n+n (k-3),解得k<10.∴当k>10时,去A超市购买更合算;当k=10时,去A、B两家超市购买都一样;当3≤k<10时,去B超市购买更合算.(2)当k=12时,购买n副球拍应配12n个乒乓球.若只在A超市购买,则费用为0.9(20n+12n)=28.8n(元);若只在B超市购买,则费用为20n+(12n-3n)=29n(元);若在B超市购买n副球拍,然后再在A超市购买不足的乒乓球,则费用为20n+0.9×(12-3)n=28.1n(元).显然,28.1n<28.8n<29n.∴最省钱的购买方案为:在B超市购买n副球拍同时获得送的3n个乒乓球,然后在A超市按九折购买9n个乒乓球.(三)、函数型应用题4.元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的纸环数(个) 1彩纸链长度(cm)19(1)把上表中的各组对应值作为点的坐标,在如图的平面直角坐标系中描出相应的点,猜想与的函数关系,并求出函数关系式;(2)教室天花板对角线长10m,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?解:(1)在所给的坐标系中准确描点.由图象猜想到与之间满足一次函数关系.设经过,两点的直线为,则可得解得,.即.当时,;当时,.即点都在一次函数的图象上.所以彩纸链的长度(cm)与纸环数(个)之间满足一次函数关系.(2),根据题意,得.解得.答:每根彩纸链至少要用59个纸环.(四)、统计型应用题5.根据北京市水务局公布的20XX年、20XX年北京市水资源和用水情况的相关数据,绘制如下统计图表:20XX年北京市水资源分布图(单位:亿) 20XX年北京市用水量统计图用水量(单位:亿)(1)北京市水资源全部由永定河水系、潮白河水系、北运河水系、蓟运河水系、大清河水系提供.请你根据以上信息补全20XX年北京市水资源统计图,并计算20XX年全市的水资源总量(单位:亿);(2)在20XX年北京市用水情况统计表中,若工业用水量比环境用水量的6倍多0.2亿,请你先计算环境用水量(单位:亿),再计算20XX年北京市用水总量(单位:亿);(3)根据以上数据,请你计算20XX年北京市的缺水量(单位:亿);(4)结合20XX年及20XX年北京市的用水情况,谈谈你的看法.解:(1)初全20XX年北京市水资源统计图见下图;水资源总量为亿.(2)设20XX年环境用水量为亿.依题意得.解得.所以20XX年环境用水量为亿.因为,所以20XX年北京市用水总量为亿.(3)因为,所以20XX年北京市缺水量为亿.(4)说明:通过对比20XX年及20XX年北京市的用水情况,能提出积极看法的给分.(五)、几何型应用题6.台球是一项高雅的体育运动.其中包含了许多物理学、几何学知识.图①是一个台球桌,目标球F与本球E之间有一个G球阻挡(1)击球者想通过击打E球先撞击球台的AB边.经过一次反弹后再撞击F球.他应将E球打到AB边上的哪一点?请在图①中用尺规作出这一点H.并作出E球的运行路线;(不写画法.保留作图痕迹) (2)如图②以D为原点,建立直角坐标系,记A(O,4).C(8,0).E(4,3),F(7,1),求E球接刚才方式运行到F球的路线长度.(忽略球的大小)图①解:(1)画出正确的图形(可作点E关于直线AB的对称点E1,连结E1F,E1F与AB交于点H,球E的运动路线就是EH→HF)有正确的尺规作图痕迹过点F作AB的平行线,交E1E的延长线于点N由题意可知,E1N=4,FN=3在Rt△AFNE1中,E1F=∵点E1是点E关于直线AB的对称点∴EH=E1H.∴EH+HF=E1F=5∴E球运行到F球的路线长度为5.。

初三数学复习应用型综合问题

初三数学复习应用型综合问题

统计图表与数据分析的结合
统计图表在数据分析中的应用
01
统计图表是数据分析的重要工具,通过绘制图表可以直观地展
示数据的分布、趋势和异常值。
数据分析方法的选择
02
针对不同类型的数据和问题,需要选择合适的数据分析方法,
如描述性统计、方差分析、回归分析等。
数据处理的技巧
03
在数据分析过程中,需要掌握一些数据处理技巧,如缺失值处
01
02
03
04
仔细审题
认真阅读题目,理解问题背景 和要求,避免理解错误。
寻找关键信息
从题目中提取关键信息,找出 解决问题的突破口。
运用所学知识
运用所学的数学知识,建立数 学模型,解决问题。
检查答案
对答案进行验证和检查,确保 答案的正确性和合理性。
感谢观看
THANKS
几何图形可以直观地解释代数方程的性质,例如抛物线的开口方向和大小可以由二 次项系数决定,一次函数的斜率可以表示直线倾斜角的大小等。
代数方程与几何图形结合的问题通常涉及到方程的根、极值、交点等概念,需要学 生掌握代数和几何的知识,并能够灵活运用。
函数与几何图形的结合
函数可以描述几何图形的动态变化,例 如正弦函数可以描述三角形的振动,指 数函数可以描述放射性物质的衰变等。
跨学科性
这类问题常常涉及多个学科领域,如物理 、化学、生物等。
数学建模
需要将实际问题转化为数学模型,以便用 数学方法求解。
实际背景
问题通常具有实际应用背景,如工程、经 济、生活等方面。
常见类型与解题思路
类型一:几何问题 1. 建立模型:根据题意,将实际问题转化为几何图形或几何问题。
常见类型与解题思路

中考数学专题复习 之 函数实际应用型问题

中考数学专题复习 之 函数实际应用型问题

(2)若调价后每月支出的燃气费为y(元),每月的用气量x(m3),y 与x之间的关系如图所示,求a的值及y与x之间的函数关系式;
每月用气量
单价(元/m3)
不超出75 m3的部分
2.5
超出75 m3不超出125 m3的部分
a
超出125 m中折线分为哪几段?
②折线图中线段OA,线段AB,射线BC,它们的自变量分别对应
【例题分层分析】
设乙用户2月份用气x m3,则3月份用气(175-x) m3, 问: ①2月份的用气量可以分布在哪几个区间? ②如果2月份的用气量在第3区间,那么3月份的用气量可以在 @ 哪几个区间? ③如果2月份的用气量在第2区间,那么3月份的用气量可以在 @ 哪几个区间?
解: (3)设乙用户2月份用气x m3,则3月份用气(175-x) m3 当x>125,175-x ≤ 75时 3x-50+2.5(175-x)=455 解得x=135,175-135=40,符合题意; 当75<x ≤ 125,175-x ≤ 75时 2.75x-18.75+2.5(175-x)=455 解得x=145,不符合题意,舍去; 当75<x≤125 ,75<175-x≤125时 2.75x-18.75+2.75(175-x)-18.75=455,此方程无解. ∴乙用户2、3月份的用气量分别是135 m3,40 m3.
设线段AB的解析式为y2 = k2x+b1,由图象得
187.5=75 k2 +b1 325=125k2 +b1

k2 = 2.75 b1= - 18.75
∴线段AB的解析式为y2 = 2.75x-18.75(75<x≤125)
(385-325)÷3 = 20,故C(145,385)
设射线BC的解析式为y3 = k3x+b2,由图象得

中考数学总复习情境应用型问题

中考数学总复习情境应用型问题

专题四 情境应用型问题情境应用问题是以现实生活为背景,取材新颖,立意巧妙,重在考查阅读理解能力和数学建模能力,让学生在阅读理解的基础上,将实际问题转化为数学问题.其主要类型有代数型(包括方程型、不等式型、函数型、统计型)和几何型两大类.解决代数型应用问题:关键是审题,弄清关键词句的含义;重点是分析,找出问题中的数量关系,并将其转化为数学式子,进行整理、运算、解答.解决几何型应用问题:一般是先将实际问题转化为几何问题,再运用相关的几何知识进行解答,要注重数形结合,充分利用“图形”的直观性和“数”的细微性.三个解题方法(1)方程(组)、不等式、函数型情境应用题:解决这类问题的关键是针对背景材料,设定合适的未知数,找出相等关系,建立方程(组)、不等式、函数型模型来解决;(2)统计概率型应用题:解决这类问题:①要能从多个方面去收集数据信息,特别注意统计图表之间的相互补充和利用;②通过对数据的整理,能从统计学角度出发去描述、分析,并作出合理的推断和预测;(3)几何型情境应用题:解决这类问题的关键是在理解题意的基础上,对问题进行恰当地抽象与概括,建立恰当的几何模型,从而确定某种几何关系,利用相关几何知识来解决.几何求值问题,当未知量不能直接求出时,一般需设出未知数,继而建立方程(组),用解方程(组)的方法去求结果,这是解题中常见的具有导向作用的一种思想.方程型情境应用题【例1】 (2013·温州)某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲、乙、丙三位同学得分情况(单位:分):(1)按10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙、丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?解:(1)由题意,得甲的总分为:66×10%+89×40%+86×20%+68×30%=79.8; (2)设趣题巧解所占的百分比为x ,数学运用所占的百分比为y ,由题意得⎩⎨⎧20+60x +80y =70,20+80x +90y =80,解得⎩⎨⎧x =0.3,y =0.4,∴甲的总分为:20+89×0.3+86×0.4=81.1>80,∴甲能获一等奖.【点评】本题考查了列二元一次方程组解实际问题的运用、加权平均数的运用,在解答时建立方程组求出趣题巧解和数学运用的百分比是解答本题的关键.1.(2014·山西)某新建火车站站前广场需要绿化的面积为46000平方米,施工队在绿化了22000平方米后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少平方米?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56平方米,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?解:(1)设该项绿化工程原计划每天完成x 米2,根据题意得:46000-22000x-46000-220001.5x=4解得:x =2000,经检验,x =2000是原方程的解,答:该绿化项目原计划每天完成2000平方米(2)设人行道的宽度为x 米,根据题意得,(20-3x)(8-2x)=56,解得:x =2或x =263(不合题意,舍去).答:人行道的宽为2米.不等式型情境应用题【例2】 (2014·河北)某景区内的环形路是边长为800米的正方形ABCD ,如图①和图②.现有1号、2号两游览车分别从出口A 和景点C 同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶时间为t 分.(1)当0≤t ≤8时,分别写出1号车、2号车在左半环线离出口A 的路程y 1,y 2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时,t 的值;(2)t 为何值时,1号车第三次恰好经过景点C ?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图②,游客甲在BC 上的一点K(不与点B ,C 重合)处候车,准备乘车到出口A ,设CK =x 米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:已知游客乙在DA 上从D 向出口A 走去.步行的速度是50米/分.当行进到DA 上一点P(不与点D ,A 重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A 用时少,请你简要说明理由;(2)设PA =s(0<s <800)米.若他想尽快到达出口A ,根据s 的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?解:探究:(1)由题意,得y 1=200t ,y 2=-200t +1600,当相遇前相距400米时,-200t +1600-200t =400,t =3,当相遇后相距400米时,200t -(-200t +1600)=400,t =5.答:当两车相距的路程是400米时t 的值为3分钟或5分钟(2)由题意,得1号车第三次恰好经过景点C 行驶的路程为:800×2+800×4×2=8000,∴1号车第三次经过景点C 需要的时间为:8000÷200=40分钟,两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次需要的时间为:800×4÷400=8,∴两车相遇的次数为:(40-4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次.发现:由题意,得情况一需要时间为:800×4-x 200=16-x 200,情况二需要的时间为:800×4+x 200=16+x 200,∵16-x 200<16+x 200,∴情况二用时较多.决策:(1)∵游客乙在AD 边上与2号车相遇,∴此时1号车在CD 边上,∴乘1号车到达A 的路程小于2个边长,乘2号车的路程大于3个边长,∴乘1号车的用时比2号车少.(2)若步行比乘1号车的用时少,s 50<800×2-s 200,∴s <320.∴当0<s <320时,选择步行.同理可得当320<s <800时,选择乘1号车,当s =320时,选择步行或乘1号车一样.【点评】现实世界中的不等关系是普遍存在的.许多问题有时并不需要研究他们之间的相等关系,而只需确定某个量的变化范围即可对所研究的问题有比较清楚的认识.本题主要考查了一元一次不等式的应用,根据已知得出不等式,求出所有方案是解题关键.2.(2012·宁波)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:(说明:①费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a ,b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?解:(1)由题意,得⎩⎨⎧17(a +0.8)+3(b +0.8)=66,①17(a +0.8)+8(b +0.8)=91,②②-①,得5(b +0.8)=25,b =4.2,把b =4.2代入①,得17(a +0.8)+3×5=66,解得a =2.2,∴⎩⎪⎨⎪⎧a =2.2,b =4.2. (2)当用水量为30吨时,水费为:17×3+13×5=116元,∵9200×2%=184元,116<184,∴小王家六月份的用水量可以超过30吨.设小王家六月份用水量为x 吨,由题意,得17×3+13×5+6.8(x -30)≤184,6.8(x -30)≤68,解得x ≤40.答:小王家六月份最多能用水40吨.统计与概率型情境应用题【例3】 (2013·潍坊)随着我国汽车产业的发展,城市道路拥堵问题日益严峻.某部门对15个城市的交通状况进行了调查,得到的数据如下表所示:(2)求15个城市的平均上班堵车时间;(计算结果保留一位小数)(3)规定:城市的堵车率=上班堵车时间上班花费时间-上班堵车时间×100%,比如:北京的堵车率=1452-14×100%=36.8%;沈阳的堵车率=1234-12×100%=54.5%.某人欲从北京、沈阳、上海、温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.解:(1)补全的统计图如图所示:(2)平均上班堵车时间=(14+12×4+11×2+7×2+6×2+5×3+0)÷15≈8.3(分钟)(3)上海的堵车率=11÷(47-11)=30.6%,温州的堵车率=5÷(25-5)=25%,堵车率超过30%的城市有北京、沈阳和上海.从四个城市中选两个的方法共有6种(北京,沈阳),(北京,上海),(北京,温州),(沈阳,上海),(沈阳,温州),(上海,温州).其中两个城市堵车率均超过30%的情况有3种:(北京,沈阳),(北京,上海),(沈阳,上海)所以选取的两个城市堵车率都超过30%的概率P=36=12.【点评】此题主要考查了概率公式的应用以及加权平均数的应用和条形图的应用,根据图表得出正确的数据关系是解题关键.第三问先确定堵车率超过30%的城市,再根据概率的意义,用列表或树形图表示出所有可能出现的结果,找出关注的结果,从而求出它的概率.3.(2014·宁夏)如图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大.(只写结论)解:(1)此人到达当天空气质量优良的有:第1天、第2天、第3天、第7天、第12天,共5天(2)此人在银川停留两天的空气质量指数是:(86,25),(25,57),(57,143),(143,220),(220,158),(158,40),(40,217),(217,160),(160,128),(128,167),(167,75),(75,106),(106,180),(180,175),共14个停留时间段,期间只有一天空气质量重度污染的有:第4天到、第5天到、第7天到及第8天到.因此,P(在银川停留期间只有一天空气质量重度污染)=414=2 7(3)根据折线图可得从第5天开始的第5天、第6天、第7天连续三天的空气质量指数方差最大.几何型情境应用题【例4】(2013·铜仁)为了测量旗杆AB的高度.甲同学画出了示意图①,并把测量结果记录如下,BA⊥EA于A,DC⊥EA于C,CD=a,CA=b,CE=c;乙同学画出了示意图②,并把测量结果记录如下,DE⊥AE于E,BA⊥AE于A,BA⊥CD于C,DE=m,AE =n,∠BDC=α.(1)请你帮助甲同学计算旗杆AB 的高度(用含a ,b ,c 的式子表示);(2)请你帮助乙同学计算旗杆AB 的高度(用含m ,n ,α的式子表示).解:解:(1)∵DC ⊥AE ,BA ⊥AE ,∴△ECD ∽△EAB ,∴CD AB =CE AE ,即:a AB =c c +b,∴AB =a (c +b )c =a +ab c(2)∵AE ⊥AB ,DC ⊥AB ,DE ⊥AE ,∴DC =AE =n ,AC =DE =m ,在Rt △DBC 中,BC CD=tan α,∴BC =n·tan α,∴AB =BC +AC =n ·tan α+m【点评】 本题考查了相似三角形的应用及解直角三角形的应用,解决本题的关键是根据题目的条件判定相似三角形.4.(2014·德州)问题背景:如图①:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段BE ,EF ,FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G.使DG =BE.连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是__EF =BE +DF__;探索延伸:如图②,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由; 实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.解:问题背景:EF =BE +DF ;探索延伸:EF =BE +DF 仍然成立.证明如下:如图,延长FD 到G ,使DG =BE ,连接AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG ,在△ABE 和△ADG 中,⎩⎪⎨⎪⎧DG =BE ∠B =∠ADG AB =AD,∴△ABE ≌△ADG(SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△AGF 中,⎩⎪⎨⎪⎧AE =AG ∠EAF =∠GAF AF =AF,∴△AEF ≌△AGF(SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;实际应用:如图,连接EF ,延长AE 、BF 相交于点C ,∵∠AOB =30°+90°+(90°-70°)=140°,∠EOF =70°,∴∠EAF =12∠AOB ,又∵OA =OB ,∠OAC +∠OBC =(90°-30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF =AE +BF 成立,即EF =1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里试题 为了鼓励居民节约用水,我市某地水费按下表规定收取:(1)式是:y =⎩⎪⎨⎪⎧ (0≤x ≤10), (x >10); (2)若小华家4月份付水费17元,问他家4月份用水多少吨?(3)已知该住宅小区100户居民5月份交水费1682元,且该月每户用水量不超过15吨(含15吨),求该月用水量不超过10吨的居民最多可能有多少户?错解 (1)1.3x ;13+2(x -10)(2)设小华家4月份用水量为x 吨,∵17>1.3×10,∴小华家4月份用水量超过10吨,由题意,得1.3×10+(x -10)×2=17,2x =24,x =12,即小华家4月份用水12吨.(3)由题意,要求这个月用水量不超过10吨的居民最多的户数,则假设每户用水量均用了10吨,即1.3×1000=1300,那么1682-1300=382(元).表明当每户用10吨水时,还有一部分用户又用了382元的水,则按15吨的用水量去计算用户数,那么余下的表示不超过10吨的用户数,此时不超过10吨的用户数将达到最多,即382÷[(15-10)×2]=38.2(户),四舍五入取38户.故不超过10吨的用户数为100-38=62(户).剖析 此题在第(3)问的分析中,没有按题意建立不等式去求解,则容易造成与实际情况脱轨.若不超过10吨用水量的居民有62户,则即使这62户都用了10吨水,总水费为13×62=806(元);还有38户即使都用了15吨水,其总水费仅为:38×[13+(15-10)×2]=874(元).那么这100户居民的总水费仅为806+874=1680(元)<1682(元).问题出在每户用水超过10吨时不能用四舍五入的方式取整数解,而应该取大于38.2的整数解,即39户.故这个月用水量不超过10吨的居民最多为100-39=61(户).正解(1)1.3x;13+2(x-10)(2)设小华家4月份用水量为x吨.∵17>1.30×10,∴小华家4月份用水量超过10吨.由题意得1.3×10+(x-10)×2=17,∴2x=24,∴x=12(吨).即小华家4月份的用水量为12吨.(3)设该月用水量不超过10吨的用户有a户,则超过10吨不超过15吨的用户为(100-a)户,由题意得13a+[13+(15-10)×2](100-a)≥1682,化简得10a≤618,∴a≤61.8.故正整数a的最大值为61.即这个月用水量不超过10吨的居民最多可能有61户.。

新课标九年级数学中考复习强效提升分数精华版复习专题——应用型问题

新课标九年级数学中考复习强效提升分数精华版复习专题——应用型问题

中考复习专题——应用型问题一、试题特点应用性问题,是指有实际背景或现实意义的数学问题.近年来,在新课程理念指导下,涌现了一批贴近实际、与时俱进、贵在创新的应用性试题.主要呈现以下特点:1、 创设新情境,赋予新内涵,令人耳目一新.2、 取材于学生熟悉的生活实际,具有时代气息和教育价值.3、 重视考查学生从简单的实际问题中抽象出数学模型的能力与应用数学的意识.4、 新型应用题—课题学习类试题消然出现,立意深、情境新、思维价值高.5、 考查的知识点综合性较强,解法较灵活. 二、分类解析与点评 1、建立方程(组)模型方程(组)模型是研究现实世界数量关系的最基本的数学模型,它可以帮助人们从数量关系上更准确、清晰地认识、描述和把握现实世界.例1 为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套? 解析:设生产奥运会标志x 套,生产奥运会吉祥物y 套.根据题意,得 ⎩⎨⎧=+=+②00300103①0020054.y x ,y x ⎩⎨⎧==24002000y x感悟:奥运会是中国人的梦想,奥运冠军是青少年的偶像,能观看北京奥运会更是同学们的期望.本题以奥运会的吉祥物为题材,构筑二元一次方程组的应用,旨在考查分析问题和解决和问题的能力,融知识性、趣味性于一体.例2 某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?解析:提供两种思路:解法一:设矩形温室的宽为m x ,则长为2m x .根据题意,得(2)(24)288x x --= .解这个方程,得110x =-(不合题意,舍去),214x =.所以14x =,221428x =⨯=.答:当矩形温室的长为28m ,宽为14m 时,蔬菜种植区域的面积是2288m . 解法二:设矩形温室的长为m x ,则宽为1m 2x .根据题意,得 12(4)2882x x ⎛⎫--= ⎪⎝⎭. 解这个方程,得120x =-(不合题意,舍去),228x =.所以28x =,11281422x =⨯=. 答:当矩形温室的长为28m ,宽为14m 时,蔬菜种植区域的面积是2288m .点评:像本题这样有两个未知量的应用问题,解题的关键是如何巧妙在选用一个未知数表示两个未知量,上面两种解法分别采取了设长为x ,再表示宽,或先设宽为x 再表示长.这种设元技巧值同学们认真体会和学习.例3 5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A 地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时. (1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A 地到宁波港的运输成本是每千米 1.8元,时间成本是每时28元,那么该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是多少元? (3)A 地准备开辟宁波方向的外运路线,即货物从A 地经杭州湾跨海大桥到宁波港,再从宁波港运到B 地.若有一批货物(不超过10车)从A 地按外运路线运到B 地的运费需8320元,其中从A 地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B 地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?解析:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x 千米, 由题意得1201023x x+=, 解得180x =.A ∴地经杭州湾跨海大桥到宁波港的路程为180千米.(2)1.8180282380⨯+⨯=(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用为380元.(3)设这批货物有y 车,由题意得[80020(1)]3808320y y y -⨯-+=, 整理得2604160y y -+=,解得18y =,252y =(不合题意,舍去),∴这批货物有8车.点评:这个情境问题设置得非常好,一是以“杭州湾跨海大桥”为问题情境,体现了数学的时代特色,引导学生关注时事;第二,有效考查了构建一元一次方程、一元二次方程模型求解应用问题的能力;第三,所设置的三个问题由易到难、层层递进,也符合新课标中“不同的人在数学上有不同的发展”的理念追求.2、建立不等式(组)模型现实世界中不等关系是普遍存在的,如日常生活中的决策、市场营销和社会生活中有关统筹安排等问题,都可以转化为相应的不等式(组),从而使得问题得到解决.例4 某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m . (1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500)x -套,由题意得0.50.7(500)30223(500)1250x x x x +⨯-⎧⎨+⨯-⎩≤≥ 解得240250x ≤≤因为x 是整数,所以有11种生产方案.(2)(1002)(1204)(500)2262000y x x x =+++⨯-=-+220-< ,y 随x 的增大而减少.∴当250x =时,y 有最小值.∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少.此时min 222506200056500y =-⨯+=(元)(3)有剩余木料,最多还可以解决8名同学的桌椅问题.3、建立函数模型函数是表示数量之间关系变化规律的数学模型,从实际应用背景中构建函数模型的思维水平的考查已成为中考的一个重点.例4 为迎接2008年北京奥运会,某学校组织了一次野外长跑活动.参加长跑的同学出发后,另一些同学从同地骑自行车前去加油助威.如图,线段12L L ,分别表示长跑的同学和骑自行车的同学行进的路程y (千米)随时间x (分钟)变化的函数图象.根据图象,解答下列问题:(1)分别求出长跑的同学和骑自行车的同学的行进路程y 与时间x 的函数表达式; (2)求长跑的同学出发多少时间后,骑自行车的同学就追上了长跑的同学?x (分钟)解析:(1)由图象上信息(点的坐标)可求得解析式,长跑:16y x =,骑车:1102y x =-; (2)我们要思考的是“追上了”是什么意思,反映在图上就是两个一次函数的图象(两条直线)有了交点,想到这点,联立以上两个得方程组:161102y x y x ⎧=⎪⎪⎨⎪=-⎪⎩解得:x=30,y=5,即长跑的同学出发了30分钟后,骑自行车的同学就追上了长跑的同学. (江苏省海安县李堡镇初级中学 刘东升)点评:第(1)问主要是利用图像读出图象上点的坐标,用待定系数法确定相应的解析式;第(2)问是要理解“追上了”的涵义,即函数图像的交点坐标就是把函数的解析式联立,构成方程组,解出方程组的解也就是是图像的交点坐标,反映在实际问题中,该交点就是骑自行车的同学就追上了长跑同学的那一时刻.例5 红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)与时间t (天)的关系如下表:未来40天内,前20天每天的价格y 1(元/件)与时间t (天)的函数关系式为25t 41y 1+=(20t 1≤≤且t 为整数),后20天每天的价格y 2(元/件)与时间t (天)的函数关系式为40t 21y 2+-=(40t 21≤≤且t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围.解析:(1)将⎩⎨⎧==941m t 和⎩⎨⎧==903m t 代入一次函数m=kx+b 中,有⎩⎨⎧+=+=bk bk 39094,∴⎩⎨⎧=-=962b k ,∴m=-2x+96.经检验,其它点的坐标均适合以上解析式,故所求函数解析式为m=-2x+96.(2)设前20日销售利润为P 1元,后20日销售利润为P 2元, 由P 1=(-2x+96)(41t+5)=-21t 2+14t+480=-21(t -14)2+578. ∵1≤t≤20且t 为整数 ∴当t=14时,P 1有最大值578元. 由P 2=(-2x+96)(-21t+20)=t 2-88t+1920= (t -44)2-16 . ∵21≤t≤40且对称轴为t=44,∴函数P 2在21≤t≤40上随t 的增大而减小, ∴t=21时,P 2有最大值为(21-44)2-16=513元. ∵578>513,故第14天时,销售利润最大为578元.(3) P 1=(-2x+96)(41t+5-a )= -21t 2+(14+2a )t+480-96 a 对称轴为t=)21(2)214(-⨯+-a =14+2a .∵1≤t≤20, ∴当t=14+2a ≥20即a ≥3时,P 1随t 的增大而增大.又∵a <4,∴3≤a <4.点评:这个问题有效考查了一次函数、二次函数的知识.第(1)问题如果不能直觉的发现是一次函数关系,也没有关系,逐个验证,选取相应的有序数对即可迅速确定函数关系;而后两问则对二次函数最值问题进行了深度的探究,其中第(2)问题涉及两个二次函数最值的比较,这两个最值一个是利用最值公式求出,另一个却是分析图象特点,在“21≤t≤40”这一分支上获取的,这里就有一定的难度了.到了第(3)问,二次函数解析式中含有待定系数a ,求出抛物线的对称轴“t=14+2a ”成为问题突破的关键,因为在对称轴的左侧,函数是递增的,这样就成功构造不等式“14+2a ≥20”,再结合“a <4”问题获解. 4、统计、概率型应用问题统计型应用题,主要考查统计思想与方法,通过对数据的收集、描述、分析,作出合理的决策,同时考查学生应用数学的意识和处理数据、解决实际问题的能力.例6 八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A B C D E ,,,,五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图. 学生帮父母做家务活动时间频数分布表B AE DC 40%学生帮父母做家务活动评价等级分布扇形统计图(1)求a b ,的值;(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.解析:(1)504020a =⨯=%,5021020315b =----=. (2)0.753 1.2515 1.7520 2.2510 2.7521.6850x ⨯+⨯+⨯+⨯+⨯==(小时); 答:该班学生这一周帮助父母做家务时间的平均数约为1.68小时.(3)符合实际.设中位数为m ,根据题意,m 的取值范围是1.52m <≤,因为小明帮父母做家务的时间大于中位数.所以他帮父母做家务的时间比班级中一半以上的同学多.点评:前两个小问涉及统计图表栏目补全及加权平均数的求解,属于基础题.第(3)问在解答时注意结合适当的统计量进行说明,这个要求就稍微高些了,有些同学们可能不能很准确地选用“中位数”来帮助说明,怎么发现呢?抓住题中“比班级里一半以上的同学多”这个关键语句,有助于让我们在几个统计量中选择“中位数”了.再说,容易混淆的是想选用众数来说明,但本题所给的信息中,不能求出众数,这条方向基本堵塞.例7 一只不透明的袋子中装有4个小球,分别标有数字2,3,4,x ,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和.记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为7”的概率将稳定在它的频率附近,试估计出现“和为7”的概率;(2)根据(1),若x 是不等于2,3,4的自然数,试求x 的值.解析:(1)认真分析上表实验数据发现,当摸球总次数不断增大时,“和为7”的频率渐趋稳定于0.33,于是我们可以利用频率估计概率的方法估计为0.33.(2)结合(1)中估计出来的“和为7”的概率为0.33,这可看作13的近似值,而所给的四个小球随机摸出2个小球的可能性列表如下:很明显,由于此时6种情形中和为7的只有一种,是达不到13的概率的,必然还有一种情形和为7,而由于x 是不等于2,3,4的自然数,那只有第3种情形可能和为7了,即x =5.点评:本题给出一个实验情境,第(1)问只要认真观察实验数据并结合频率与概率的关系可以获解.而第(2)问则要将可能的摸球组合列表后结合推理才能分析出x 的可能数字. 5、几何型应用题这类题在工程选点定位、测量及优化设计方面应用较广,要求学生能从实际问题中抽象出几何模型并进行解答.例8 如图11,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台.解析:要求在圆形边缘上安装监视器的个数,怎样分析这个问题呢?还是从监控角度出发来思考,如果只安装两个监视器,是不能监控整个展厅的,这可以从圆中同弧所求的圆周角等于圆心角的一半来思考,整个圆周所对的两个圆周角(把两个监视器看成圆周角的顶点)是最多只能涵盖652130︒⨯=︒,而整个圆周所对的不同圆周角度数之和为180度,显然装有三个监视器(可以安装在圆内角三角形的三个顶点处)可以监控整个展厅了.点评:这个以安装监控器为问题背景,设计新颖而独特.从求解思路看,其实应用了圆周角、圆心角图11相关知识,考查了学生运动数学知识解决实际问题的能力.本题也体现了渗过现象看本质的求解思路,发现问题的深层知识点,才能顺利解题.例9 某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .试判断图(2)中四边形EFGH 是何形状,并简要说明理由.解析:四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形.因此四边形EFGH 是正方形.点评:本题考查了正方形的识别问题,从所给的图形可以直观的感觉到这是一个正方形,这种印象在解题中往往起到很大的方向性作用,我们大胆地猜想到这个结论后,再结合题中的信息向这个方向细心的前进.正所谓“大胆的想象,小心的求证”.例10 某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站.由供水站直接铺设管道到另外两处. 如图,甲,乙两村坐落在夹角为30的两条公路的AB 段和CD 段(村子和公路的宽均不计),点M 表示这所中学.点B 在点M 的北偏西30的3km 处,点A 在点M的正西方向,点D 在点M 的南偏西60的处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:东北例9图(2)(1)方案一:供水站建在点M 处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值; 方案二:供水站建在乙村(线段CD 某处),甲村要求管道建设到A 处,请你在图①中,画出铺设到点A 和点M 处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB 某处),请你在图②中,画出铺设到乙村某处和点M 处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?解析:方案一:由于供应站M 位置固定,只需点M 到线段AB 、CD 的距离最短即可,由题意可得:MB ⊥OB,所以甲村的最短距离为MB .点M 到乙村的最短距离为MD .所以将供水站建在点M 处时,管道沿MD,MB 铁路建设的长度之和最小.此时最小值为3MB MD +=+方案二:供水站建在乙村, 铺设到点A 和点M 处的管道长度之和最小,其实质是在直线CD 上取一点P ,使PA+PM 最小,这一问题类似于“将军饮马”问题,只要作出点M 关于直线CD 的对称点M /,连接A M /交直线CD 于点P(如图①),也可作出点A 关于直线CD 的对称点A /,连接A /M 交直线CD 于点P.此时最小值为43. .方案三:这一问题看起来比方案二更复杂,仔细分析可以发现其与方案二相似,供水站建在甲村,铺设到乙村某处和点M 处的管道长度之和最小,即在射线OF 上找一点G ,使DG+GM 最短即可.作点M 关于射线OF 的对称点M /,过点M /作M N OE '⊥于点N ,交OF 于点G ,交AM 于点H ,连接GM ,则GM /=GM .所以M /N 为点M /到OE 的最短距离,不难证明点N 与点D 两点重合,即M N '过D 点.所以把供水站建在甲村的G 处,MAEC DBF30P ' 甲村 图①M '图②PO管道沿GM GD ,线路铺设的长度之和最小.最小值为GM GD M D '+==综上,3+< ,∴供水站建在M 处,所需铺设的管道长度最短.点评:本题富有实际意义,把“将军饮马”问题融入到“设计管道路线”的问题之中,使人感到巧妙而又贴合实际.问题设置由易到难,使不同程度的学生都能获取解决问题的乐趣,以实现“不同的人在数学上得到不同的发展”. 问题的解决具有挑战性,让学生经历三种方案的分析与比较以及实际问题的解决过程,使他们真正体验到学习数学的乐趣和数学知识的价值,从而增强他们学习数学的信心.三、命题趋势及复习建议纵观各地的应用性试题发现,方程类试题常与函数图象融为一体,更贴近学生的生活实际,从研究函数的数学性质转移到函数知识的实际应用,特别是利用函数解应用题的问题明显增多.同时,新的课题学习应引起每一个教师的重视.因此在教学中应要求学生熟悉社会热点中一些基本生活情境,善于用数学的眼光去观察、分析日常生活中的问题.让学生经历将实际问题抽象成数学模型,并进行解释与应用的过程,培养学生主动观察、实验、猜想、探究、交流的能力.教师和学生平时应收集一些数学应用的实例,对于课题学习,设法给学生提供动手操作、亲自实践的机会,从而帮助学生树立应用数学的意识.。

9应用型问题

9应用型问题

初三数学讲义中考专题讲座(九)——应用型问题一、方程(组)应用型问题1、为了改善城乡人民生产、生活环境,我市投入大量资金,治理竹皮河污染,在城郊建立了一个综合性污水处理厂,设库池中存有待处理的污水a吨,又从城区流入库池的污水按每小时b吨的固定流量增加.如果同时开动2台机组需30小时处理完污水,同时开动 4台机组需10小时处理完污水.若要求5小时内将污水处理完毕,那么至少要同时开动多少台机组?2、某工程计划在相同时间内由甲公司修10千米,乙公司修16千米共长26千米的专用公路.实际施工时,甲、乙两公司都精心安排,在不影响本公司施工进展速度的前提下适当调配力量支援对方,结果都提前一年完工;已知甲支援乙的力量其施工进度等于甲的 8/15.问乙公司支援甲公司的力量其施工进度是乙公司施工进度的多少?3、一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、a次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.问:(1)乙车每次所运货物量是甲车每次所运货物量的几倍?(2)现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元(按每运1吨付运费20元计算).4、我们在运动场上踢的足球大多是由许多小黑白块的皮缝合而成的.初一年级的李强和王凯两位同学,在踢足球的休息之余研究起足球上的黑白块的个数,结果发现黑块均呈五边形, 白块呈六边形(如图),由于黑白相间在球体上,李强好不容易才数清了黑块共12 块,王凯数白块不是重复,就是遗漏,无法点清白块的个数,你能帮助他们解决这一问题吗?5、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润 定价,乙服装按40﹪的利润定价.在实际出售时,应顾客要求,两件服装均按9折出 售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?6、某商场购进一批服装,期望售完后能盈利50%,起先按比进货价贵50%的定价出售了 60%的服装,商场为了加快资金流动,决定打折出售余下的,这样全部的盈利比原先 期望的减少了18%,余下的付账出售时打了多少折?7、由于电力紧张,某地决定对工厂实行鼓励错峰用电.规定:在每天的7:00至24:00为 用电高峰期,电价为a 元/度;每天0:00至7:00为用电平稳期,电价为b 元/度.下表 为某厂4、5月份的用电量和电费的情况统计表: 月份用电量(万度) 电费(万元) 412 6.4 5 16 8.8(1)若4月份在平稳期的用电量占当月用电量的31,5月份在平稳期的用电量占当月用电 量的41,求a 、b 的值. (2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10 万元和10.6万元),那么该厂6月份在平稳期的用电量占当月用电量的比例应在什么 范围?8、某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元.为了减少环境污染,市场推出一种叫“CNG ”的改烧汽油为天然气的装置,每辆车的改装价格为4000 元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的203,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的 燃料费占剩下未改装车辆每天燃料费用的52.问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性将全部出租车改装,多少天后就可以从节约的燃料费中收回成本?二、函数应用型问题9、某化工厂材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元,也不得低于30元. 市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克. 在销售过程中,每天还要支出其他费用500 元(天数不足一天时,按整天计算),设销售单价为x元,日均获利为y元.(1)求y关于x的二次函数关系式,并注明x的取值范围;(2)写出(1)中所求出的二次函数的顶点坐标,在坐标系中画出草图,观察图象指出单价定为多少元时日均获利最多,是多少元?(3)若将这种化工原料全部售出,比较日均获利最多和销售单价最高这两种销售方式,哪一种获总利较多,多多少元?10、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后,将进油管和出油管同时打开16分钟,油罐内的油从24 吨增至40吨,随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.(1)试分别写出这三段时间内油罐的储油量Q(吨)与进出油的时间t(分)的函数关系式;(2)在同一坐标系中,画出这三个函数的图像.11、已知:如图,有一条双向公路隧道,其横断面由抛物线和矩形ABCO的三边组成,隧道的最大高度为4.9米,AB=10米,BC=2.4米,现把隧道的横断面放在平面直角坐标系中,若有一辆高为4米,宽为2米装有集装箱的汽车要通过隧道,问:如果不考虑其它因素,汽车的右侧离开隧道右壁多少米才不至于碰隧道顶部?(抛物线部分为隧道的顶部,AO、BC为壁).yACOBx12、某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2).根据图像提供的信息解答下面问题:(1)一件商品在3月份出售时的利润是多少元?(2)求图2中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出三月份至七月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算一下该公司在一个月内最少获利多少元?13、某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y (万元)与修建天数x (天)之间在30≤x ≤120,具有一次函数的关系,如 下表所示.(1)求y 关于x 的函数解析式;(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力 量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.14、有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现 有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元, 据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为 400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克 20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式;(2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式;(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额).x 50 60 90 120 y 40 38 32 26。

中考数学专题:实际应用题带答案

中考数学专题:实际应用题带答案

1.2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.2.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?3.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.4.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x 支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B 型画笔?5.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.甲、乙两种书柜每个的价格分别是多少元?若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.6.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2016年利润为2亿元,2018年利润为2.88亿元.(1)求该企业从2016年到2018年利润的年平均增长率;(2)若2019年保持前两年利润的年平均增长率不变,该企业2019年的利润能否超过3.4亿元?7.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?8.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?9.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.10.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元.答案和解析1.【答案】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由题意可得:12a+4(20-a)≤216,∴a≤17,∵w=(18-12)a+(6-4)(20-a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.【解析】(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由“某医药公司每月生产甲、乙两种型号的防疫口罩共20万只和该公司三月份的销售收入为300万元”列出方程组,可求解;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20-a)万只,利润为w万元,由“四月份投入成本不超过216万元”列出不等式,可求a的取值范围,找出w与a的函数关系式,由一次函数的性质可求解.本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,弄清题中的等量关系是解本题的关键.2.【答案】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,依题意,得:(x-100)[300+5(200-x)]=32000,整理,得:x2-360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.设降价后的销售单价为x元,则降价后每天可售出[300+5(200-x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.3.【答案】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x 天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)设甲工程队做a天,乙工程队做b天根据题意得a/15+b/30=1整理得b+2a=30,即b=30-2a所需费用w=4.5a+2.5b=4.5a+2.5(30-2a)=75-0.5a根据一次函数的性质可得,a 越大,所需费用越小,即a=15时,费用最小,最小费用为75-0.5×15=67.5(万元)所以选择甲工程队,既能按时完工,又能使工程费用最少.答:选择甲工程队,既能按时完工,又能使工程费用最少.【解析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.4.【答案】解:(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据题意得,=,解得a=5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x-20)=4x+10.所以,y关于x的函数关系式为y=(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.【解析】(1)设超市B型画笔单价为a元,则A型画笔单价为(a-2)元.根据等量关系:第一次花60元买A型画笔的支数=第二次花100元买B型画笔的支数列出方程,求解即可;(2)根据超市给出的优惠方案,分x≤20与x>20两种情况进行讨论,利用售价=单价×数量分别列出y关于x的函数关系式;(3)将y=270分别代入(2)中所求的函数解析式,根据x的范围确定答案.本题考查了一次函数的应用,分式方程的应用等知识,解题的关键是:(1)理解题意找到等量关系列出方程;(2)理解超市给出的优惠方案,进行分类讨论,得出函数关系式;(3)根据函数关系式中自变量的取值范围对答案进行取舍.5.【答案】(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:,解之得:,答:甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m个,则乙种书柜购买(20-m)个;由题意得:,解之得:8≤m≤10,因为m取整数,所以m可以取的值为:8,9,10,即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【解析】本题主要考查二元一次方程组、一元一次不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.(1)设甲种书柜单价为x元,乙种书柜的单价为y元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程组求解即可;(2)设甲种书柜购买m个,则乙种书柜购买(20-m)个.根据:购买的乙种书柜的数量≥甲种书柜数量且所需资金≤4320列出不等式组,解不等式组即可得不等式组的解集,从而确定方案.6.【答案】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1 =0.2=20%,x2 =-2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2019年仍保持相同的年平均增长率,那么2019年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2019年的利润能超过3.4亿元.【解析】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解方程即可;(2)根据该企业从2016年到2018年利润的年平均增长率来解答.7.【答案】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10-a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【解析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.本题考查了一元一次不等式组的应用,二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.8.【答案】解:(1)当售价为55元/千克时,每月销售水果=500-10×(55-50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x-40)[500-10(x-50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m-40)[500-10(m-50)]=-10(m-70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【解析】本题主要考查二次函数的应用,一元二次方程的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.(1)由月销售量=500-(销售单价-50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,由二次函数的性质可求解.9.【答案】解:(1)设这一批树苗平均每棵的价格是x元,根据题意列,得:,解这个方程,得x=20,经检验,x=20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),设购进A种树苗t棵,这批树苗的费用为w元,则:w=18t+24(5500-t)=-6t+132000,∵w是t的一次函数,k=-6<0,∴w随t的增大而减小,又∵t≤3500,∴当t=3500棵时,w最小,此时,B种树苗每棵有:5500-3500=2000(棵),w=-6×3500+132000=111000,答:购进A种树苗3500棵,BA种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.【解析】【试题解析】(1)设这一批树苗平均每棵的价格是x元,根据题意列方程解答即可;(2)分别求出A种树苗每棵的价格与B种树苗每棵的价格,设购进A种树苗t棵,这批树苗的费用为w元,根据题意求出w与t的函数关系式,再根据一次函数的性质解答即可.本题考查了分式方程的应用,一次函数的应用以及一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.10.【答案】解:(1)y=300-10(x-44),即y=-10x+740(44≤x≤52);(2)根据题意得(x-40)(-10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x-40)(-10x+740)=-10x2+1140x-29600=-10(x-57)2+2890,而a=-10<0,且对称轴为直线x=57,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为-10(52-57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】(1)销售单价每上涨1元,每天销售量减少10本,则销售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x-40)(-10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.。

初三数学《应用题复习专题》训练题

初三数学《应用题复习专题》训练题

初三数学《应用题复习专题》训练题(满分100分,时间90分钟)班级_______姓名_______分数_______第1~13题,每题7分,第14题9分,共100分1、由于节约用水,小明发现他家同样是用10m3的水,本月比上月能多用5天。

已知本月小明家每天的平均用水量比上月少20%,求小明家上月每天的平均用水量。

2、一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是多少?3、甲、乙两种商品原来的单价和为100元。

因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%。

求甲、乙两种商品原来的单价分别是多少?4、某车间加工1000个零件,由于采用了新工艺,效率提高了一倍,这样加工同样多的零件就少用5小时。

求该车间采用新工艺前、后每小时分别加工多少个零件?5、今年以来,CPI(居民消费价格总水平)的不断上涨已成热门话题。

已知某种食品在9月份的售价为8.1元/kg,11月份的售价为10元/kg。

求这种食品平均每月上涨的百分率是多少?6、“佳佳商场”在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,“佳佳商场”应将这种商品的售价定为多少?(2)物价局规定该商品的售价不能超过40元/件,“佳佳商场”为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?7、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

若商场平均每天要盈利1200元,每件衬衫应降价多少元?8、为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容环境提升行动。

历年浙教版初三数学中考实际应用性问题及答案

历年浙教版初三数学中考实际应用性问题及答案

专题一 实际应用性问题实际应用性问题是指有实际背景或实际意义的数学问题。

这些问题充分体现了贴近学生生活、关注社会热点、形式多样等特点,注重考查学生思维的灵活性和深刻性,要求解题者具有较丰富的生活常识和较强的阅读能力以及数学建模能力。

实际应用性问题涉及的背景有商品买卖、存款和贷款,最优方案、行程问题、交通运输、图案设计、农业生产和生物繁殖等。

实际应用性问题在各地的试卷中成为必考内容,体现了素质教育的要求和新课程标准的理念,由于它们来自生活和生产实践,所以参考条件较多,思维也有一定的深度,解答方法灵活多样。

【典型例题】例1. 某饮料厂为了开发新的产品,用A 、B 两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是实验的相关数据:(1)假设甲种饮料需配制x 千克。

请你写出满足题意的不等式组,并求出其解。

(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元。

这两种饮料的成本总额为y 元,请写出y 与x 的函数表达式。

并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种的成本总额最低。

分析:根据表格的信息和其他已知条件知甲种原料用量不大于19千克,乙种原料用量不大于17.2千克,可得出(1)的不等式组。

(2)由“成本总额=甲种饮料成本+乙种饮料成本”这个关系式,可列出函数表达式。

再运用函数的性质,可确定最低总成本。

解:(1)由条件得05025019030450172..()..().x x x x +-≤+-≤⎧⎨⎩ 解得2830≤≤x (2)依题意得y x x x x =+-=+≤≤43501502830()()由一次函数性质知:k =1>0,y 随x 的增大而增大。

∴当x =28时,甲、乙两种饮料的成本总额最少。

即y =28+150=178(元)。

例2. 高为12.6米的教学楼ED 前有一棵大树AB (如图甲)。

(1)某一时刻测得大树AB,教学楼ED在阳光下的投影长分别是BC=2.4米,DF=7.2米,求大树AB的高度。

初三数学新题型解析––应用性问题人教版知识精讲

初三数学新题型解析––应用性问题人教版知识精讲

初三数学新题型解析––应用性问题人教版【本讲教育信息】一. 教学内容:新题型解析——应用性问题数学的应用是数学价值和功能的一种体现,它能培养数学意识,以解决实际问题为目标的应用性问题,是整个初中数学的重点和难点,也是近年来中考的热点。

近年来应用性问题已不限于列方程(组)解应用题,而是在不断变化、发展。

应用题的题意不断拓展,涉及的知识更加广泛,如列代数式、方程、不等式、函数、统计、几何、三角或是他们的综合。

应用题的题型多样化,有选择题、填空题、作图题、解答题等。

应用题突出考查运用数学知识分析和解决简单实际问题的能力,下面举例分析。

1. 数与式应用题例1. 某原料供应商对购买其原料的顾客实行如下优惠办法: (1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,给九折优惠;(3)一次购买超过3万元的,其中3万元九折优惠,超过3万元的部分八折优惠。

某厂因库容原因,第一次在该供应商处购买原料付款7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为( ) A. 1460元 B. 1540元 C. 1560元 D. 2000元分析:第一次在该供应商处购买7800元原料,没有优惠;第二次购买付款26100元实际上是九折优惠,所以两次购买的原料若没有优惠,则应付款7800+26100÷90%=36800(元)。

若一次购买同样重量的原料,按优惠办法(3),应付款30000×90%+6800×80%=27000+5440=32440(元),可少付金额(7800+26100)-32440=1460(元)。

所以选A 。

例2. 随着通讯市场竞争日益激烈。

某通讯公司的手机市话收费标准按原标准每分钟降低了a 元后,再次下调了25%,现在的收费标准是每分钟b 元,则原收费标准每分钟为( )A. ()54b a -元B. ()54b a +元C. ()34b a +元D. ()43b a +元分析:原收费标准每分钟为b a b a ÷-+=+(()125%)43元,所以选D 。

中考数学冲刺专题5 应用型问题

中考数学冲刺专题5 应用型问题

应用型问题【备考点睛】数学的高度抽象性决定了数学应用的广泛性,因而应用性问题成为中考必考、频考考点之一。

因应用性问题的非数学背景是多种多样的,解决这类问题往往需要在陌生的情景中去理解、分析给出的有关问题,并舍弃与数学无关的非本质因素,通过抽象转化相应的数学问题,因此应用性问题成为每位学生的一道难题。

根据应用的数学模型不同,应用性问题可分为方程的应用问题、不等式的应用问题、函数的应用问题、三角函数的应用问题、几何知识的应用问题……,解决这类问题的能力要求较高:能阅读、理解对问题进行陈述的材料,能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述。

应用性问题思考与解答的过程,最主要的特点就是:①由现实情意(非数学),抽象概括出数学问题,②进而解决数学问题,使原问题获解。

其中的“由非数学到数学”是最为关键的一步。

【经典例题】类型一、化归到方程模型解决问题例题1 (2010浙江绍兴)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元? 解答:(1)∵ 30 000÷5 000=6, ∴ 能租出24间. (2)设每间商铺的年租金增加x 万元,则 (30-5.0x )×(10+x )-(30-5.0x )×1-5.0x×0.5=275, 2 x 2-11x +5=0, ∴ x =5或0.5, ∴ 每间商铺的年租金定为10.5万元或15万元.例题2 (2010江苏盐城)某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程. 解答:解法一:求两个班人均捐款各多少元?设1班人均捐款x 元,则2班人均捐款(x +4)元,根据题意得1800x ·90%=1800x +4解得x =36 经检验x =36是原方程的根 ∴x +4=40答:1班人均捐36元,2班人均捐40元解法二:求两个班人数各多少人? 设1班有x 人,则根据题意得 1800x +4=180090x %解得x =50 ,经检验x =50是原方程的根 ∴90x % =45 答:1班有50人,2班有45人例题3(2010山东烟台)去冬今春,我国西南地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井大的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井? 解答::设原计划每天打x 口井, 由题意可列方程30/x-30/(x+3)=5, 去分母得,30(x+3)-30x=5x(x+3), 整理得,x 2+3x-18=0解得x 1=3,x 2=-6(不合题意舍去) 经检验,x 2=3是方程的根, 答:原计划每天打3口井例题4 近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.解答:从对话内容中找出量与量之间的相等关系(即:同样的钱加的油量不同),是列方程解应用题的关键.解:设今年5月份汽油价格为x 元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得15015018.751.8x x-=-整理,得 x 2- l.8x - 14.4 = 0 解这个方程,得x 1=4.8,x 2=-3分经检验两根都为原方程的根,但x 2=-3 不符合实际意义,故舍去.分 答:今年5月份的汽油价格为4.8元/升.列分式方程解应用题应注意两点,一是要验根;二是要看结果是否符合题意.例题5 某高速公路收费站,有)0(>m m 辆汽车等候收费通过,假设通过收费站的车流量(每分钟通过的汽车量数)保持不变,每个收费窗口的收费速度也是不变的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学:应用型问题专题
题型1方程(组)型应用题
方程是描述丰富多彩的现实世界数量关系的最重要的语言,也是中考命题所要考察的重点热点之一.我们必须广泛了解现代社会中日常生活、生产实践、经济活动的有关常识.并学会用数学中方程的思想去分析和解决一些实际问题.解此类问题的方法是:(1)审题,明确未知量和已知量;(2)设未知数,务必写明意义和单位;(3)依题意,找出等量关系,列出等量方程;(4)解方程,必要时验根.
题型2不等式(组)型应用题
现实世界中不等关系是普遍存在的,许多现实问题很难确定(有时也不需要确定)具体的数值.但可以求出或确定这一问题中某个量的变化范围(趋势),从而对所有研究问题的面貌有一个比较清楚的认识.本节中,我们所要讨论的问题大多是要求出某个量的取值范围或极端可能性,它们涉及我们日常生活中的方方面面.列不等式时要从题意出发,设好未知量之后,用心体会题目所规定的实际情境,从中找出不等关系.
题型3函数型应用问题
函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带.它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的应用性问题也是命题热点之一,多数省市作压轴题.因此,在中考复习中,关注这一热点显得十分重要.解这类题的方法是对问题的审读和理解,掌握用一个变量的代数式表示另一个变量,建立两个变量间的等量关系,同时从题中确定自变量的取值范围.
题型4统计型应用问题
统计的内容有着非常丰富的实际背景,其实际应用性特别强.中考试题的热点之一,就是考查统计思想方法,同时考查学生应用数学的意识和处理数据解决实际问题的能力.
题型5几何型应用问题
几何应用题常常以现实生活情景为背景,考查学生识别图形的能力、动手操作图形的能力、运用几何知识解决实际问题的能力以及探索、发现问题的能力和观察、想像、分析、综合、比较、演绎、归纳、抽象、概括、类比、分类讨论、数形结合等数学思想方法.
知识运用举例:
(一)方程(组)型应用题
1.某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨.受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕,为此,该厂设计了两种可行方案:
方案一:尽可能多的制成奶片,其余直接销售牛奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.
你认为哪种方案获利最多,为什么?
解:方案一,总利润为4×2000+(9-4)×500=10500(元)
方案二,设加工奶片x吨,则
解得,x=1.5
总利润为(元)
10500<12000
所以方案二获利较多.
2.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.
甲乙二人同时从张庄出发,步行15千米到李庄,甲比乙每小时多走1千米,结果比乙早到半小时.问二人每小时各走几千米?
(1)设乙每小时走x千米,根据题意,利用速度、时间、路程之间的关系填写下表.
(要求:填上适当的代数式,完成表格)
(2)列出方程(组),并求出问题的解.
解:(1)
(2)根据题意,列方程得
整理得
解这个方程得
经检验,都是原方程的根.但速度为负数不合题意
所以只取,此时
答:甲每小时走6千米,乙每小时走5千米.
(二)、不等式(组)型应用题
3.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球. 已知A、B两家超
市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元 . 现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球 . 若仅考虑购买球拍和乒乓球的费用,请解答下列问题:
(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?
(2)当k=12时,请设计最省钱的购买方案.
解:(1)由题意,去A超市购买n副球拍和kn个乒乓球的费用为0.9(20n+kn)元,
去B超市购买n副球拍和kn个乒乓球的费用为[20n+n(k-3)]元,
由0.9(20n+kn)< 20n+ n (k-3),解得k>10;
由0.9(20n+kn)= 20n+n (k-3),解得k=10;
由0.9(20n+kn)> 20n+n (k-3),解得k<10.
∴当k>10时,去A超市购买更合算;当k=10时,去A、B两家超市购买都一样;
当3≤k<10时,去B超市购买更合算.
(2)当k=12时,购买n副球拍应配12n个乒乓球.
若只在A超市购买,则费用为0.9(20n+12n)=28.8n(元);
若只在B超市购买,则费用为20n+(12n-3n)=29n(元);
若在B超市购买n副球拍,然后再在A超市购买不足的乒乓球,
则费用为20n+0.9×(12-3)n=28.1n(元).
显然,28.1n<28.8n<29n.
∴最省钱的购买方案为:在B超市购买n副球拍同时获得送的3n个乒乓球,
然后在A超市按九折购买9n个乒乓球.
(三)、函数型应用题
4.元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的纸环数(个) 1
彩纸链长度(cm)19
(1)把上表中的各组对应值作为点的坐标,在如图的平面直角坐标系中描出相应的点,猜想与的
函数关系,并求出函数关系式;
(2)教室天花板对角线长10m,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?
解:(1)在所给的坐标系中准确描点.
由图象猜想到与之间满足一次函数关系.
设经过,两点的直线为,则可得
解得,.即.
当时,;当时,.
即点都在一次函数的图象上.
所以彩纸链的长度(cm)与纸环数(个)之间满足一次函数关系.(2),根据题意,得.
解得.
答:每根彩纸链至少要用59个纸环.
(四)、统计型应用题
5.根据北京市水务局公布的2004年、2005年北京市水资源和用水情况的相关数据,绘制如下统计图表:2005年北京市水资源分布图(单位:亿) 2004年北京市用水量统计图
用水量
(单位:亿)
(1)北京市水资源全部由永定河水系、潮白河水系、北运河水系、蓟运河水系、大清河水系提供.请你根据以上信息补全2005年北京市水资源统计图,并计算2005年全市的水资源总量(单位:亿);
(2)在2005年北京市用水情况统计表中,若工业用水量比环境用水量的6倍多0.2亿,请你先计算环境用水量(单位:亿),再计算2005年北京市用水总量(单位:亿);
(3)根据以上数据,请你计算2005年北京市的缺水量(单位:亿);
(4)结合2004年及2005年北京市的用水情况,谈谈你的看法.
解:(1)初全2005年北京市水资源统计图见下图;
水资源总量为亿.
(2)设2005年环境用水量为亿.
依题意得.
解得.
所以2005年环境用水量为亿.
因为,
所以2005年北京市用水总量为亿.
(3)因为,所以2005年北京市缺水量为亿.
(4)说明:通过对比2004年及2005年北京市的用水情况,能提出积极看法的给分.
(五)、几何型应用题
6.台球是一项高雅的体育运动.其中包含了许多物理学、几何学知识.图①是一个台球桌,目标球F与本球E之间有一个G球阻挡
(1)击球者想通过击打E球先撞击球台的AB边.经过一次反弹后再撞击F球.他应将E球打到AB边上的哪一点?请在图①中用尺规作出这一点H.并作出E球的运行路线;(不写画法.保留作图痕迹) (2)如图②以D为原点,建立直角坐标系,记A(O,4).C(8,0).E(4,3),F(7,1),求E球接刚才方式运行到F球的路线长度.(忽略球的大小)
图①
解:(1)画出正确的图形(可作点E关于直线AB的对称点E1,连结E1F,E1F与AB交于点H,球E的运动路线就是EH→HF)有正确的尺规作图痕迹
过点F作AB的平行线,交E1E的延长线于点N
由题意可知,E1N=4,FN=3
在Rt△AFNE1中,E1F=
∵点E1是点E关于直线AB的对称点
∴EH=E1H.∴EH+HF=E1F=5
∴E球运行到F球的路线长度为5.。

相关文档
最新文档