1优化模型与LINDOLINGO软件

合集下载

lindo 与Lingo入门

lindo 与Lingo入门

优化建模
在LINGO中使用LINDO模型
LINGO的界面
• LINGO软件的主窗口(用 户界面),所有其他窗口 都在这个窗口之内。
• 当前光标 的位置 • 模型窗口(Model Window),用于输入 LINGO优化模型(即 LINGO程序)。
• 状态行(最左边显 示“Ready”,表示 “准备就绪”)
即证券A,C,E分别投资2.182百万元,7.364 百万元,0.454百万元,最大税后收益为0.298 百万元. (2)由(1)的结果中影子价格可知,若资金增加 100万元,收益可增加0.0298百万元.大于 2.75%的利率借到100万元资金的利息,所以 应借贷.投资方案需将上面模型第2个约束右 端改为11,求解得到:证券A,C,E分别投资2.40 百万元,8.10百万元,0.50百万元,最大税后收 益为0.3007百万元.
除“LG4”文件外, 另外几种格式的文件 都是普通的文本文件, 可以用任何文本编辑 器打开和编辑。
•.MPS:示MPS(数学规划系统)格式的模型文件。
优化建模
在LINGO中使用LINDO模型
在LINGO中可以直接使用LINDO语法编写的优化模型(即优化程序)。 作为一个最简单的例子,在名为EXAM0201.LTX的模型文件中保存了一个 LINDO模型,我们现在看看如何用LINGO把它打开。
选择菜单命令 “File|Open(F3)”, 可以看到 “打开文 件”对话框。 (如 图)

优化建模
在LINGO中使用LINDO模型

打开“EXAM0201.LTX”文件 (如下图)
选择“LINGO|Solve (Ctrl+S)”来运行这 个程序(运行状态窗口 如右图)

优化模型与LINDOLINGO优化软件

优化模型与LINDOLINGO优化软件

前面是两个循环语句的用法,函数以 “@”开头,里面是循环变量以及界定循环 变量的变化范围,后面是循环体。还有另 外的两个循环函数:@min和@max,其用 法相类似。
从一维数组派生二维数组在数学上是常 用的,比如运输问题,由顶点集可以派生 边,大家可以使用本方法产生标准的运输 问题的Lingo程序。可以参考例子。
• Preprocess:预处理(生成割平面); • Preferred Branch:优先的分枝方式:
“Default”(缺省方式)、 “Up”(向上取整优先)、 “Down”(向下取整优先);
• IP Optimality Tol:IP最优值允许的误 差上限(一个百分数,如5%即0.05); • IP Objective Hurdle:IP目标函数的篱 笆值,即只寻找比这个值更优最优解
2,Lingo程序的结构和语法
一个规划问题,包括下面的一些内容:变量、常量、目标、约束。还是以 前面的例子,说明最基本的程序构成。 model: linear programming sets:
cargo/1..n/:c,x; rhs/1..m/:b; mat(rhs,cargo):a; endsets data c=2,3; b=2,1/2; A=1,1,1,-2; enddata max=@sum(cargo(i):c(i)*x(i)); @for(rhs(j):@sum(cargo(i):a(j,i)*x(i))<b(j));
1 )现 有 2料 场 , 位 于 A (5 ,1 ),B (2 ,7 ), 记 (x j,y j),j= 1 ,2 , 日 储 量 e j各 有 2 0吨 。
目标:制定每天的供应计划,即从 A, B 两料场分别向
各工地运送多少吨水泥,使总的吨公里数最小。

优化软件LINDO在运筹学中的应用

优化软件LINDO在运筹学中的应用

案例分析
案例分析
以下是一个应用案例,通过使用软件,学生对某物流公司的运输网络进行了 优化。
1、问题描述:该物流公司拥有多个仓库和配送中心,货物的运输和配送由多 个车辆完成。由于公司业务量的增长,原有的运输网络已经不能满足需求,因此 需要优化车辆路径以提高运输效率。
案例分析
2、软件应用:学生使用MATLAB和Simulation Builder来建立并求解该优化 问题。首先,使用MATLAB建立一个车辆路径优化模型;然后,使用Simulation Builder对该模型进行模拟和测试;最后,通过MATLAB进行结果分析和可视化。
软件应用
软件应用
1、建模:在物流运筹学教学中,软件可以帮助学生轻松建立各种数学模型, 如线性规划模型、整数规划模型等。这些模型可以准确地描述物流系统的实际情 况,为进一步的分析和优化奠定基础。
软件应用
2、分析:软件集成了大量的数据分析工具和算法,可以帮助学生深入分析物 流系统中的各种数据,如成本数据、时间数据等。通过这些分析,学生可以更好 地理解物流系统的性能瓶颈和优化潜力。
应用实践
1、需求分析
1、需求分析
在物流工程运筹学中,需求分析是解决问题的第一步。教师可引导学生使用 LINGO软件进行问题定义和场景模拟,以便更好地理解问题背景和需求。例如, 在解决车辆路径问题(VRP)时,可以通过LINGO软件对客户需求、车辆容量等进 行分析,为后续建模优化做好准备。
案例分析
3、结果分析:经过优化,车辆路径长度减少了20%,运输时间减少了15%,从 而大幅提高了运输效率。但是,由于仓库和配送中心的布局以及货物的特性限制, 部分优化目标的改善幅度较小。
案例分析
4、不足与挑战:在这个案例中,虽然软件的应用取得了显著的效果,但仍存 在一些不足之处。例如,模型假设较为简化,忽略了一些现实中的影响因素,如 交通状况、天气等。此外,优化过程中只考虑了运输成本和时间,而未考虑到其 他潜在的成本和利益相关者需求。未来,学生需要对模型进行进一步的改进和完 善,以更好地应对现实中的复杂问题。

优化模型与LINDOLINGO软件

优化模型与LINDOLINGO软件

结果解释
最优解下“资源”增加 最优解下“资源” 1单位时“效益”的增 单位时“ 单位时 效益” 量
VARIABLE X1 X2
ROW SLACK OR SURPLUS DUAL PRICES 2) 3) 4) 0.000000 0.000000 40.000000 2 48.000000 2.000000 0.000000
利润 材料 工时 人力
4
运输问题
网络图
S3 S2
1200 690 170 720
0
290
30
S7
20
S4
320 690 160 70
160 70 30 20
S6
110 88 462 62 420 500
A15 A14
202 1100 20 195 306 1150 600 450 80 2 3 104 301 750 606 10 194 5 10 31 680 201
S5
220
10
S1
12
70 42 10 210
A13 A12
480
A9
A10
300
A11
A8
A6
205
A7
S1~S7 钢管厂 铁路 火车站 公路 管道 450 里程(km)
5
A5
A4
A3
目标:运费达到最小
A2
A1
运输问题
某种原材料有M个产地,现在需要将原材料从 产地运往N个工地,假定M个产地的产量为ai和N个 工地的需求量为bj,单位产品的运费cij已知,那么如 状 何安排运输方案可以使总运费最低?
NO. ITERATIONS=
20桶牛奶生产 1, 30桶生产 2,利润 桶牛奶生产A 桶生产A 利润3360元。 桶牛奶生产 桶生产 元

LINGO软件在优化模型中的应用

LINGO软件在优化模型中的应用
羊羽lingo是linearinteractivegeneraloptimizer的缩写即交互式的线性和通用优化求解器由美国lindo系统公司推出的可以用于求解非线性规划也可以用于一些线性和非线性方程组的求解等功能十分强大是求解优化模型的最佳选择
LINGO软件 ——在优化模型中的应用
腾讯微博:羊羽
LINGO软件在优化模型中的应用
LINGO软件在优化模型中的应用
解:设每天用x1 桶牛奶在甲车间生产,用x2 桶牛 奶在乙车间生产,可获利z 元。
则该问题的数学模型为: max z=72x1+64x2 s.t x1+x2≤50 12x1+8x2≤480 3x1≤100 x1,x2≥0
LINGO软件在优化模型中的应用
结果:
这个线性规划的最优解为x1=20,x2=30,最优值 为z=3360,即用20 桶牛奶在甲车间生产,30 桶 牛奶在乙车间生产,可获最大利润3360 元。
优点
3)强大的求解器 LINGO拥有一整套快速的,内建的求 解器用来求解线性、非线性、二次约束和 整数优化问题。
LINGO软件在优化模型中的应用
优点
4)交互式模型 在LINGO内可以直接创建和求解模型, 也可以从自己编写的应用程序中直接调用 LINGO。对于开发交互式模型,LINGO提 供了一整套建模环境,用来求解和分析构 建的模型。
从该问题的求解我们可以看到用LINGO 软件求 解线性规划是非常方便、快捷的,比单纯形法人 工计算效率高很多。
LINGO软ห้องสมุดไป่ตู้在优化模型中的应用
附加问题:
1) 若用35元可以买到1桶牛奶,应否作这项投资? 若投资,每天最多购买多少桶牛奶? 2) 若可以聘用临时工人以增加劳动时间,付给临 时工人的工资最多是每小时几元? 3) 由于市场需求变化,甲车间奶制品的获利增加 到30元,应否改变生产计划?

数学建模软件LinDoLinGo的简介(修改版)

数学建模软件LinDoLinGo的简介(修改版)

优化模型的基本类型
若x的一个或多个分量只取离散数值,则优 化模型称为离散优化,或称为组合优化。 如果x的一个或多个分量只取整数数值,称 为整数规划,并可以进一步明确地分为纯 整数规划(x的所有分量只取整数数值)和 混合整数规划(x的部分分量只取整数数 值)。特别地,若x的分量中取整数数值的 范围还限定为只取0或1,则称0-1规划。 此外,整数规划也可以分成整数线性规划 和整数非线性规划。
LINDO/LINGO软件 使用简介
LinDo/LinGo简介
LINDO(Linear Interactive and Discrete Optimizer),即“交互式的线性和离散优化求解 器”,可以用来求解线性规划(LP)和二次规划 (QP);
LINGO(Linear Interactive and General Optimizer),即“交互式的线性和通用优化求解 器”,除了用来求解线性规划(LP)、二次规划 (QP)和非线性规划,还可用于线性和非线性方程 组的求解。
最大的特色:允许决策变量是整数(即整数规划,包 括0-1规划)。
优化建模的一般形式
优化模型是一种特殊的数学模型,优化建 模方法是一种特殊的数学建模方法。
优化模型一般有以下三个要素: 1)决策变量 2)目标函数 3)约束条件
优化建模的一般形式
优化模型从数学上可表述成如下一般形式:
opt z f (x)
连续优化
优化
整数规划
线性规划
二次规划
非线性规划
问题求解的难度增加
优化模型的简单分类和求解难度
简单例子
max
z 2x 3y;
s.t.
4x 3y 10; 3x 5y 12; x, y 0.

数学建模优化模型与Lingo Lindo软件

数学建模优化模型与Lingo Lindo软件


表二 :5名队员4中泳姿百米平均成绩
队员





蝶泳 66.8 57.2
78
70
67.4
仰泳 75.6
66
67.8
74.2
71
蛙泳
87
66.4 84.6
69.6
83.8
自由泳 58.6
53
59.4
57.2
62.4
线 性 规
·划
模 型
决策变量:引入0-1变量xij 若选择队员 i 参加泳姿 j
例-1 某服务部门一周中每天需要不同数目的
雇员:周一到周四每天至少需要50人,周五
需要80人,周六和周日需要90人。现规定应
聘者需连续工作5天,试确定聘用方案,即周
线
一到周日每天聘用多少人,是5在满足需要的 前况下聘用总人数最少?

优化模型

决策变量:记周一到周日每天聘用的人数分别为X1,

X2,X3,X4,X5,X6 ,X7,这就是问题的决策变量。
的比赛,记 xij=1,否则记 xij=0.这就是问题的决策变量, 共20个。
目标函数:当队员队员 i 入选泳姿 j 的比赛时,
cij xij表示他的成绩,否则cij xij=0。于是接力队的成绩
可以表示为:
45
f
cij xij
j1 i1
约束条件:根据组成接力队的要求, xij 应该满足下面
方案。显然这不是解决问题的最好方法,随着问题
线
规模的变大,穷举法的计算量是无法接受的。

可以用0-1变量表示一个队员是否入选接力队, 从而建立这个问题的0-1规划模型.

Lindo、Lingo首选的最佳化建模软件

Lindo、Lingo首选的最佳化建模软件

Lindo/Lingo首选的最佳化建模软件速度快和容易使用让LINDO Systems, Inc. 公司成为求解最佳化模型软件的领导供货商。

LINDO Systems线性、非线性和整数规划的求解程序已经被全世界数千万的公司用来做最大化利润和最小化成本的分析。

应用的范围包含生产线规划、运输、财务金融、投资分配、资本预算、混合排程、库存管理、资源配置等领域。

1.lindo软件LINDO是一种专门用于求解数学规划问题的软件包。

由于LINDO执行速度很快、易于方便输入、求解和分析数学规划问题。

因此在数学、科研和工业界得到广泛应用。

LINDO主要用于解线性规划、非线性规划、二次规划和整数规划等问题。

也可以用于一些非线性和线性方程组的求解以及代数方程求根等。

LINDO中包含了一种建模语言和许多常用的数学函数(包括大量概论函数),可供使用者建立规划问题时调用。

LINDO 6.1是求解线性、整数和二个规划问题的多功能工具。

LINDO 6.1互动的环境可以让你容易得建立和求解最佳化问题,或者你可以将LINDO 的最佳化引擎挂在您己开发的程序内。

而另一方面,LINDO也可以用来解决一些复杂的二次线性整数规划方面的实际问题。

如在大型的机器上,LINDO 被用来解决一些拥有超过50,000各约束条件和200,000万个变量的大规模复杂问题。

■友善的使用者界面LINDO 6.1提供直觉化的建立模型环境,即使是初学者很很容易上手。

想要求解的问题可以用简单的等式来表示。

LINDO 6.1对所有指令提供清楚有用的在线说明,当然书面的使用者手册对LIDO 6.1 的功能和指令也有详尽的说明。

■专家的强大工具如果你已经是一个最佳化领域的专家,你会对 LINDO 6.1 功能的强大感到不可思议。

LINDO 6.1 求解引擎的求解速度和求解容量可以帮您求解大型的线性和整数模型。

LINDO 6.1 在建立模型、求解模型、结果显示、数据查询’档案处理和敏感度分析都有进阶的指令和功能。

数学建模Lingo软件简介

数学建模Lingo软件简介

版本类型 总变量数 整数变量数 非线性变量数 约束数
演示版 求解包 高级版 超级版 工业版 扩展版
300 500 2000 8000 32000 无限
30 50 200 800 3200 无限
30 50 200 800 3200 无限
150 250 1000 4000 16000 无限
Lingo(Linear Interactive and General Optimizer),即交互 式的线性和通用优化求解器,可求解线性规划,也可以求解非 线性规划,还可以用于一些线性和非线性方程组的求解等。 Lingo软件的最大特),而且执行速度很快。Lingo实际上还是最 优化问题的一种建模语言,包括许多常用的数学函数共建立优 化模型时调用,并可以接受其它数据文件。
2. 建立LINDO/LINGO优化模型需要注意的几个基本问题
1. 尽量使用实数优化模型,尽量减少证书约束和整数变 量的个数;
2. 尽量使用光滑优化模型,尽量避免使用非光滑函数; 3. 尽量使用线性优化模型,尽量减少非线性约束和非线 性变量的个数; 4. 合理设定变量的上下界,尽可能给出变量的初始值; 5. 模型中使用的单位的数量级要适当。
演示版和正式版的基本功能是类似的,只是试用版能够
求解问题的规模受到严格限制,对于规模稍微大些的问题就不 能求解。即使对于正式版,通常也被分成求解包(solver suite)、 高级版(super)、超级版(hyper)、工业版(industrial)、扩展版 (extended)等不同档次的版本,不同档次的版本的区别也在于 能够求解的问题的规模大小不同,下表给出了不同版本 LINGO程序对求解规模的限制:
LINDO,LINGO,LINDO API 和 What’s Best! 在最优化软件的市场上占有很大的份额,尤其在供微机上使用 的最优化软件的市场上,上述软件产品具有绝对的优势。根据 LINDO公司主页()上提供的信息,位列 全球《财富》杂志500强的企业中一半以上使用上述产品,其 中位列全球《财富》杂志25强企业中有23家使用上述产品。读 者可以从上述主页下载上面4种软件的演示版和大量应用例子。

优化建模与LINGO简介

优化建模与LINGO简介
x 1, x 2 0
线性 规划 模型 (LP)
模型求解
x x 50 1 2
优化建模
图解法
约 12 x 8 x 480 x 8 x 480 l 2: 1 2 1 2 束 12 l4 条 3 l3 :3 x 100 x 1 1 100 件 c l : x 0 , l : x 0 x , x 0 4 1 5 2 1 2 目标 函数
优化建模
局部最优解与整体最优解
f (x)
x1
* o x2
x
• 局部最优解 (Local Optimal Solution, 如 x1 ) • 整体最优解 (Global Optimal Solution, 如 x2 )
优化建模
优化模型的 简单分类
数学规划 连 续 优 化 离 散 优 化
min s.t .
产量 x1 x2
成本 价格 q1 p1 q2 p2
p随x (两种牌号)增加而减小,呈线性关系
p b a x a x , b , a , a 0 , a a 1 1 11 1 12 2 1 11 12 11 12
p b a x a x , b , a , a 0 , a a 2 2 21 1 22 2 2 21 22 22 2
f ( x) hi ( x ) 0 , i 1,..., m g j ( x ) 0 , j 1,...,l x D
n
• 线性规划(LP) 目标和约束均为线性函数 • 非线性规划(NLP) 目标或约束中存在非线性函数 二次规划(QP) 目标为二次函数、约束为线性 • 整数规划(IP) 决策变量(全部或部分)为整数 整数线性规划(ILP),整数非线性规划(INLP) 纯整数规划(PIP), 混合整数规划(MIP) 一般整数规划,0-1(整数)规划

lingo-lindo简介

lingo-lindo简介

Lingo、lindo简介一、软件概述 (1)二、快速入门 (4)三、Mathematica函数大全--运算符及特殊符号 (11)参见网址: /一、软件概述(一)简介LINGO软件是由美国LINDO系统公司研发的主要产品。

LINGO是Linear Interactive and General Optimizer的缩写,即交互式的线性和通用优化求解器。

LINGO可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。

其特色在于内置建模语言,提供十几个内部函数,可以允许决策变量是整数(即整数规划,包括 0-1 整数规划),方便灵活,而且执行速度非常快。

能方便与EXCEL,数据库等其他软件交换数据。

LINGO实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其他数据文件(如文本文件、Excel 电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。

(二)LINGO的主要特点:Lingo 是使建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。

Lingo 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。

1 简单的模型表示LINGO 可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修改。

LINGO的建模语言允许您使用汇总和下标变量以一种易懂的直观的方式来表达模型,非常类似您在使用纸和笔。

模型更加容易构建,更容易理解,因此也更容易维护。

2 方便的数据输入和输出选择LINGO 建立的模型可以直接从数据库或工作表获取资料。

同样地,LINGO 可以将求解结果直接输出到数据库或工作表。

使得您能够在您选择的应用程序中生成报告。

3 强大的求解器LINGO拥有一整套快速的,内建的求解器用来求解线性的,非线性的(球面&非球面的),二次的,二次约束的,和整数优化问题。

Lingo的基本使用方法解读

Lingo的基本使用方法解读

第二步:在模型窗口中输入模型
model: max = 2*x1+3*x2; 4*x1+3*x2<10; 3*x1+5*x2<12; end
Max 2x1+3x2 St. 4x1+3x2<=10 3x1+5x2<=12
x1≥0 x2≥0
第三步:求解模型
1)选择菜单 LINGO|Solve 或者按工具栏的
常用优化软件
1.LINDO/LINGO软件 2.MATLAB优化工具箱 /mathematica优化程序包 3.EXCEL软件的优化功能 4.SAS(统计分析)软件的优化功能
建模时需要注意的几个基本问题
1、尽量使用实数优化,减少整数约束和整数变量 2、尽量使用光滑优化,减少非光滑约束的个数 如:尽量少使用绝对值、符号函数、多个变量求最大/最小 值、四舍五入、取整函数等
3、尽量使用线性模型,减少非线性约束和非线性变量的个数 (如x/y <5 改为x<5y)
4、合理设定变量上下界,尽可能给出变量初始值
5、模型中使用的参数数量级要适当
(如小于103)
二. LINGO软件的基本使用方法
LINGO软件的求解过程
1. 确定常数
2. 识别类型
LINGO预处理程序
LP QP NLP IP 全局优化(选) 分枝定界管理程序
求解 器 (求 解程 序 )状 态框
解的目标函数值
目前为止的 迭代次数
运行状态窗口
使用的特殊求解程序 : B-and-B (分枝定界算法) Global (全局最优求解程序) Multistart(用多个初始点求解的程序 )
目前为止找到的可行 解的最佳目标函数值 扩展 的求 解器( 求解 程序) 状态 框 目标函数值的界 特殊求解程序当前运行步数: 分枝数(对B-and-B程序); 子问题数(对Global程序); 初始点数(对Multistart程序) 有效步数

优化建模与LINDO,LINGO优化软件

优化建模与LINDO,LINGO优化软件

ROW SLACK OR SURPLUS DUAL PRICES

原料无剩余
2)
0.000000

时间无剩余
3)
0.000000
资 源
加工能力剩余40
4)
40.000000
48.000000 2.000000 0.000000
“资源” 剩余为零的约束为紧约束(有效约束)
结果解释
OBJECTIVE FUNCTION VALUE
1. 优化模型与优化软件简介
优化模型和优化软件的重要意义
(最)优化:在一定条件下,寻求使目标最大(小)的决策
最优化是工程技术、经济管理、科学研究、 社会生活中经常遇到的问题, 如: 结构设计 资源分配 生产计划 运输方案 解决优化问题的手段 • 经验积累,主观判断 • 作试验,比优劣 • 建立数学模型(优化模型),求最优策略(决策) CUMCM赛题:约一半以上与优化有关,需用软件求解
2)
0.000000
48.000000
3)
0.000000
2.000000
4) 40.000000
0.000000
NO. ITERATIONS= 2
reduced cost值表 示当该非基变量 增加一个单位时 (其他非基变量 保持不变)目标 函数减少的量(对 max型问题)
也可理解为:
为了使该非基变 量变成基变量, 目标函数中对应 系数应增加的量
2
50.000000 10.000000
6.666667 90,在允许范
3 480.000000 53.333332
80.000000 围内
4 100.000000 INFINITY 40.000000

优化模型与Lingo Lindo软件

优化模型与Lingo Lindo软件

Lingo/Lindo软件介绍
---Lingo
对前面的线性规划模型,编写Lingo程序如下:
点击图标
运行,屏幕上显示运行状态窗口如下:
对于Lingo运行状态窗口, 我们给于以下解释:
变量数目:变量总数 (Total)、非线型变量 数(Nonlinear)、整数 变量数(Integer) 约束变量:约束总数 ( Total )、非线性约束 个数(Nonlinear) 非线性系数数量:总数 ( Total )、非线性项的 系数个数(Nonlinear) 内存使用量:单位为千字节
① 除具备Lindo的全部功能外,还可以用于求解非线性规划问题;
② Lingo包含了内置的建模语言,允许以简练、直观的方式描述较大规 模的优化问题,模型中所需的数据可以以一定的格式保存在独立的 文件中。
事实上,Lindo公司目前已经将Lindo软件从其产品目 录中删除,而将Lindo软件的所有功能都在Lingo中得到了 支持,所以在不久的将来总有一天人们会废弃Lindo软件不 再使用,但Lingo的生命力应该还是很顽强的!
Infeasibility 约束不满足的量;0表示这个解是可行的 Objective 显示当前解的目标函数值 Best IP 显示整数规划当前解的最佳标函数值:N/A 表示无答案或无意义 显示分支定界算法已经计算的分支数: N/A 表示无答案或无意义
IP Bound 显示整数规划的界 Branches
Lingo/Lindo软件介绍
这套软件包由美国芝加哥大学的Linus Scharge教
授于1980年前后开发,专门用于求解最优化问题,后 经不断完善和扩充,并成立LINDO公司进行商业化运 作,取得了巨大的成功。全球《财富》杂志500强的企 业中,一半以上使用该公司产品,其中前25强企业中 有23家使用该产品。 该软件包功能强大,版本也很多,而我们 使用的只 是演示版(试用版),演示版与正式版功能基本上是 类似的,只是能够求解问题的规模受到限制,总变量数 不超过30个,这在我们目前的使用过程中,基本上是 足够。

LINDO、LINGO软件的使用方法汇总

LINDO、LINGO软件的使用方法汇总
LINDO/LINGOl软件简介
第1节 LINDO 第2节 LINGO
第1节 LINDO软件
一、LINDO软件的使用格式 二、LINDO输出结果分析
一、LINDO软件的使用格式
LINDO软件是一种专门用于求解线性 规划问题的软件包,由于LINDO执行速度很 快且输入方便,易于求解和分析规划问题, 因此在科研和工业界得到广泛应用。
设备
每吨产品的加工台时 可供台


时数
A
3
4
36
B
5
4
40
C
9
利润(元/吨)
32
8
76
30
设备
A B C 利润(元/吨)
每吨产品的加工台时


3
4
5
4
9
8
32
30
可供台 时数
36 40 76
试问如何安排生产,可使该厂所获的利润达到最大?
解:设在计划期内安排生产甲、乙两种产品分别为
x1, x2吨.
则目标函数为: max Z 32 x1 30 x2
Decrease 4.000000 1.333333 4.000000
资源的 允许增 允许减 当前值 加的值 少的值
在影子价格有意义的情况下,约束条件右端
资源的允许变化范围。 例1的LINGO程序
一、LINGO软件的一些规定
1、目标函数以“max=”或“min=”开头,其后面 是目标函数的表达式。
可供台 时数
36 40 76
则该问题的 数学模型为:
max Z 32 x1 30 x2
3x1 4x2 36 5x1 4x2 40 9x1 8x2 76 x1, x2 0

lindo和lingo简介

lindo和lingo简介

LINDO和LINGO是美国LINDO系统公司开发的一套专门用于求解最优化问题的软件包。

LINDO 用于求解线性规划和二次规划,LINGO除了具有LINDO的全部功能外,还可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解以及代数方程求根等。

LINDO和LINGO软件的最大特色在于可以允许优化模型中的决策变量是整数(即整数规划),而且执行速度很快。

LINGO实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其它数据文件(如文本文件、EXCEL电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。

由于这些特点,LINDO和LINGO软件在教学、科研和工业、商业、服务等领域得到广泛应用。

1)目标函数及各约束条件之间一定要有“Subject to (ST) ”分开。

2)变量名不能超过8个字符。

3)变量与其系数间可以有空格,单不能有任何运算符号(如乘号“*”等)。

4)要输入<=或>=约束,相应以<或>代替即可。

5)一般LINDO中不能接受括号“()“和逗号“,“,例:400(X1+X2) 需写成400X1+400X2;10,000需写成10000。

6)表达式应当已经过简化。

不能出现 2 X1+3 X2-4 X1,而应写成-2X1+3 X2。

用LINDO求解施工中的线性规划(LP)问题1 引言线性规划是现代化管理的常用工具与方法,在施工过程中,很多实际问题,如配(下)料,运输(土石方调配),施工机具车辆调度,施工场地的合理设点,成品、半成品、原材料的合适库存量规划问题等等,都需要运用线性规划方法求得最优方案。

线性规划一般需要先确定要求的未知变量和目标函数,然后找出所有的约束条件,表示为线性方程或不等式,建立问题的数学模型,对于变量数目和约束条件较少的情况可用手工计算,较多的情况则需运用计算机来求解。

2 LINDO介绍LINDO是Linear INteractive and Discrete Optimizer字首的缩写形式,是由Linus Schrage 于1986年开发的优化计算软件包。

优化建模与LINGOa

优化建模与LINGOa

• filename为存放数据的文件名(可以包含完整的 路径名,或表示在当前目录下寻找这个文件)
• 数据文件中记录之间必须用“~”分开
优化建模
例:
数据文件myfile.ldt的内容: Seattle,Detroit,Chicago,Denver~
COST,NEED,SUPPLY,ORDERED~
Lingo程序exam0402.LG4 : MODEL: SETS: MYSET / @FILE(myfile.ldt) / : @FILE(myfile.ldt); ENDSETS MIN = @SUM( MYSET( I): ORDERED( I) * COST( I)); @FOR( MYSET( I): ORDERED( I) > NEED( I); ORDERED( I) < SUPPLY( I)); DATA: COST = @FILE( myfile.ldt); NEED = @FILE( myfile.ldt); SUPPLY = @FILE( myfile.ldt); ENDDATA END
• LINGO中可以使用函数@ODBC,格式为 :
@ODBC(['data_source'[, 'table_name'[, 'col_1'[, 'col_2' ...]]]]) 其中data_source是数据库名, table_name是数据表名, col_1, col_2,...是数据列名(数据域名)。
优化建模
优化建模与LINDO/LINGO软件
第 4 章 LINGO软件与外部文件的接口
优化建模
通过文件输入输出数据
• 通过文件输入输出数据可以将LINGO程序和程 序处理的数据分离开来。 • “程序和数据的分离”是结构化程序设计、面 向对象编程的基本要求。 • 实际问题通常需要处理大规模的实际数据,而 这些数据通常都是在其它应用系统中生成的, 或者已经存放在其它应用系统中的某个文件或 数据库中。 • LINGO计算的结果需要以文件方式提供给其它 应用系统使用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利润 材料 工时 人力
归纳:
min cTx s.t. Ax≤b x≥0
cT [4, 3, 2], x T [ x1 , x2 , x3 ] 2 3 1 34 A 3 2 1.5 , b 36 3 2 5 40
10
数学规划中的几个概念
制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
1桶 牛奶 或
12小时
3公斤A1
4公斤A2
获利24元/公斤
获利16元/公斤
8小时 每天 50桶牛奶 时间480小时 至多加工100公斤A1 决策变量 x1桶牛奶生产A1 x2桶牛奶生产A2
利润 材料
工时 人力
4
运输问题
网络图
S3 S2
1200 690 170 720
520
290
30
S7
20
S4
320 690
160
160
70
70 30
20
S6
110 88 462
A15
500
62
420
202 1100 20 195 306 1150 600 450 80 2 3 750 606 10 194 5 10 31 680 201
返 回
13
常用优化软件
1.LINDO/LINGO软件 2.MATLAB优化工具箱 3.EXCELL软件的优化功能 4.SAS(统计分析)软件的优化功能
14
常用优化软件
1.LINDO/LINGO软件 2.MATLAB优化工具箱 3.EXCELL软件的优化功能 4.SAS(统计分析)软件的优化功能
15
最优解不变时目标函 RANGES IN WHICH THE BASIS IS UNCHANGED: 数系数允许变化范围 Yes
OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 X2 ROW 72.000000 24.000000 8.000000
(目标函数不变)
64.000000 8.000000 16.000000 RIGHTHAND SIDE RANGES CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE
2
3 4
50.000000
480.000000 100.000000
10.000000
0.000000
0.000000 40.000000
48.000000
2.000000 0.000000
原料增加1单位, 利润增长48
时间增加1单位, 利润增长2 加工能力增长不影响利润
NO. ITERATIONS=
2
• 35元可买到1桶牛奶,要买吗?
35 <48, 应该买!
• 聘用临时工人付出的工资最多每小时几元? 2元!
53.333332 INFINITY
6.666667
80.000000 40.000000
原料最多增加10
时间最多增加53
• 35元可买到1桶牛奶,每天最多买多少? 最多买10桶!
例2 奶制品的生产销售计划 在例1基础上深加工
1桶 牛奶 或 3千克A1 12小时 1千克 获利24元/公斤
2小时,3元 获利16元/公斤 8小时 4公斤A2 1千克 获利32元/千克 0.75千克B2 50桶牛奶, 480小时 2小时,3元
2
3 4
50.000000
480.000000 100.000000
10.000000
53.333332 INFINITY
6.666667
80.000000 40.000000
在允许范围内
• A1获利增加到 30元/千克,应否改变生产计划
不变!
结果解释 影子价格有意义时约束右端的允许变化范围
RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 X2 ROW 72.000000 24.000000 8.000000
3
生产计划问题 单耗
材料 工时 工人 利润(元/件) 数据表 甲 乙 x1 x2 2 3 3 4 3 2 2 3
丙 x3 限额
1 1.5 5 2
34 36 40
在一定的条件下,问生产数量xi =?使利润达到最大?
规划模型
max Z 4 x1 3x2 2 x3 2 x1 3x2 x3 34 3x 2 x 1.5 x 36 1 2 3 s.t. 3x1 2 x2 5 x3 40 x1 , x2 , x3 0
结果解释
max 72x1+64x2
st 2)x1+x2<50
OBJECTIVE FUNCTION VALUE 1) 3360.000
VARIABLE
X1 X2
VALUE
20.000000 30.000000
REDUCED COST
0.000000 0.000000
3)12x1+8x2<480
4)3x1<100 end 三 种 资 源 原料无剩余
DO RANGE(SENSITIVITY) ANALYSIS?
(约束条件不变) x1系数范围(64,96)
64.000000 8.000000 16.000000 x2系数范围(48,72) RIGHTHAND SIDE RANGES x1系数由24 3=72 CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 增加为303=90,
1) 3360.000 VALUE 20.000000 30.000000 REDUCED COST 0.000000 0.000000 DUAL PRICES
结果解释
最优解下“资源”增加 1单位时“效益”的增 量
VARIABLE X1 X2
ROW SLACK OR SURPLUS
影子价格
2)
3) 4)
优化模型
1
主要内容
最优化问题简介
引例: 生产计划问题
常用优化软件
Lindo软件应用范例 ——加工奶制品的生产计划
Lingo软件应用范例 ——原油采购与加工
2
最优化问题简介
1、生产计划问题;
2、运输问题; 特点:从若干可能的计划(方案)中寻求某种意
义下的最优方案,数学上将这种问题称为最优化问 题(optimization). 静态问题(没有考虑时间t的变化)
图解法
约 l2 : 12x1 8x2 480 束 12x1 8x2 480 l4 条 3x1 100 l3 : 3x1 100 件 c l4 : x1 0, l5 : x2 0 x1 , x2 0 目标 函数
l1 : x1 x2 50
x2 A
l1 B l2 C Z=3600 l3
建立最优化的数学模型应具备三个基本要素
1、决策变量(decision variables);
2、约束条件(constraints);
3、目标函数(objective function) 最优化问题分类: ① 线性、非线性 ② 静态、动态 ③ 整数、非整数 ④ 随机、非随机等
返 回
7
优化,规划的类型
状 数学模型: 态 变 量 cij — 1
M
N
ij x ij
xij —运输量;
ai —第i 地产量;
s.t.
x
j 1 M i 1
N
ij
ai , bj
i 1,2,..., M j 1,2,..., N
返 回 6
bj —第j 地需要量;
x
ij
目标函数
获利 24×3x1 获利 16×4 x2 每天获利 Max z 72x1 64x2 原料供应
x1 x2 50
12x1 8x2 480
约束条件
劳动时间 加工能力 非负约束
3x1 100 x1 , x2 0
线性 规划 模型 (LP)
模型求解
x1 x2 50
线性规划(LP)
生 产 率 比 较
整数规划(IP)
运 输 问 题
配 料 问 题
投 资 计 划
综 合 生 产
中 转 调 用
投 资 选 择
生 产 计 划
指 派 问 题
下 料 问 题
50个决策变量以上的优化问题称为大规模的.
返 回 9
生产计划问题 规划模型
max Z 4 x1 3x2 2 x3 2 x1 3x2 x3 34 3x 2 x 1.5 x 36 1 2 3 s.t. 3x1 2 x2 5 x3 40 x1 , x2 , x3 0
• 无约束优化
• 线性规划(LP) 目标和约束均为线性函数 • 非线性规划(NLP) 目标和约束均为非线性函数 • 整数规划(IP) 决策变量为整数 • 组合优化 • 不确定规划 • 多目标规划 目标函数至少两个以上 • 网络优化 • 动态规划 研究随时间变化的决策问题
返 回 8
典型的工程应用问题
LINDO 6.1
OBJECTIVE FUNCTION VALUE 3360.000
2)x1+x2<50
相关文档
最新文档