高中数学函数复习主要知识点
高中数学函数知识点总结
高中数学函数知识点总结高中数学中函数是重要的一部分内容,以下是对高中数学函数知识点的总结:一、函数的定义及性质1.函数的定义:函数是一个特殊的关系,它把一个集合的元素(自变量)对应到另一个集合的元素(因变量)上,且对于每一个自变量,都存在唯一一个因变量与之对应。
2.定义域和值域:函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。
3.奇偶性:如果对于定义域内任意的x,有f(-x)=f(x),则称函数f(x)是偶函数;如果对于定义域内任意的x,有f(-x)=-f(x),则称函数f(x)是奇函数。
4.前置性:如果对于定义域内的x1和x2,如果x1<x2,则有f(x1)<f(x2),则称函数f(x)具有递增性。
5.有界性:如果存在一个常数M,对于定义域内的所有x,有,f(x),≤M,则称函数f(x)具有界。
二、函数的图像及性质1.基本函数图像:包括线性函数、二次函数、指数函数、对数函数、幂函数等。
这些函数的图像呈现线性、抛物线、指数曲线、对数曲线等不同形状。
2.函数的平移:函数f(x-a)表示函数f(x)向右移动a个单位;函数f(x)+b表示函数f(x)上移b个单位。
3.函数的对称:关于x轴对称或者y轴对称。
4.函数的周期性:如果存在一个正数T,对于任意的x,有f(x+T)=f(x),则称函数f(x)是周期函数。
三、函数的运算1.函数的和、差、积、商:对于定义域相同的两个函数f(x)和g(x),可以定义它们的和、差、积、商。
2.复合函数:如果函数g(x)的值域是函数f(x)的定义域,那么可以定义复合函数h(x)=f(g(x))。
3.函数的反函数:如果f(x)是定义域上的一一对应函数,那么可以定义它的反函数f^(-1)(x),反函数和原函数的图像关于y=x对称。
四、常见函数的性质1. 线性函数:y = kx + b(k和b为常数),图像是一条直线,斜率k描述了函数的变化速率。
2. 二次函数:y = ax^2 + bx + c(a、b和c为常数),图像是一个抛物线,开口方向和开口程度由a的正负和大小决定。
高中数学函数知识点(详细)
第二章 函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则(3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值范围。
(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。
(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。
③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。
例2. 求函数()02112++-=x x y 的定义域。
④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域 已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。
(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。
高中数学必修一函数知识点总结
高中数学必修一函数知识点总结一、函数的概念。
函数是一种特殊的关系,它是一种对应关系,即对于集合A中的每一个元素x,都有唯一确定的集合B中的元素与之对应。
函数通常记作y=f(x),其中x是自变量,y是因变量,f表示函数关系。
二、函数的性质。
1. 定义域和值域,函数的定义域是自变量可能取值的集合,值域是因变量可能取值的集合。
2. 奇偶性,若对任意x∈D,有f(-x)=f(x),则称函数为偶函数;若对任意x∈D,有f(-x)=-f(x),则称函数为奇函数。
3. 单调性,若对任意x1<x2,有f(x1)≤f(x2),则称函数在区间内是单调递增的;若对任意x1<x2,有f(x1)≥f(x2),则称函数在区间内是单调递减的。
三、常见函数。
1. 一次函数,y=kx+b,其中k为斜率,b为截距。
2. 二次函数,y=ax^2+bx+c,其中a≠0,称为抛物线的标准方程。
3. 指数函数,y=a^x,其中a为底数,x为指数。
4. 对数函数,y=loga(x),其中a为底数,x为真数。
四、函数的图像和性质。
1. 一次函数的图像是一条直线,斜率决定了直线的倾斜程度,截距决定了直线与y轴的交点位置。
2. 二次函数的图像是一条抛物线,开口方向由二次项系数a的正负决定,a>0时开口向上,a<0时开口向下。
3. 指数函数的图像是一条递增曲线,底数大于1时,曲线在x轴右侧递增;底数在0和1之间时,曲线在x轴右侧递减。
4. 对数函数的图像是一条递增曲线,底数大于1时,曲线在x轴右侧递增;底数在0和1之间时,曲线在x轴右侧递减。
五、函数的运算。
1. 函数的加减法,(f±g)(x)=f(x)±g(x),即两个函数对应元素相加或相减。
2. 函数的乘法,(f×g)(x)=f(x)×g(x),即两个函数对应元素相乘。
3. 函数的复合,(f∘g)(x)=f(g(x)),即先对自变量进行g函数的运算,再对结果进行f函数的运算。
高中数学函数知识点总结
高中数学函数知识点总结一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法四、函数的最值的常用求法:1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法五、函数单调性的常用结论:1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数2、若f(x)为增(减)函数,则-f(x)为减(增)函数3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。
六、函数奇偶性的常用结论:1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。
3、一个奇函数与一个偶函数的积(商)为奇函数。
4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。
5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。
高中数学函数知识点梳理
高中數學函數知識點梳理1. .函數的單調性(1)設[]2121,,x x b a x x ≠∈⋅那麼[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函數; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是減函數. (2)設函數)(x f y =在某個區間內可導,如果0)(>'x f ,則)(x f 為增函數;如果0)(<'x f ,則)(x f 為減函數.注:如果函數)(x f 和)(x g 都是減函數,則在公共定義域內,和函數)()(x g x f +也是減函數;如果函數)(u f y =和)(x g u =在其對應的定義域上都是減函數,則複合函數)]([x g f y =是增函數. 2. 奇偶函數的圖象特徵奇函數的圖象關於原點對稱,偶函數的圖象關於y 軸對稱;反過來,如果一個函數的圖象關於原點對稱,那麼這個函數是奇函數;如果一個函數的圖象關於y 軸對稱,那麼這個函數是偶函數.注:若函數)(x f y =是偶函數,則)()(a x f a x f --=+;若函數)(a x f y +=是偶函數,則)()(a x f a x f +-=+.注:對於函數)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,則函數)(x f 的對稱軸是函數2b a x +=;兩個函數)(a x f y +=與)(x b f y -= 的圖象關於直線2b a x +=對稱. 注:若)()(a x f x f +--=,則函數)(x f y =的圖象關於點)0,2(a 對稱;若)()(a x f x f +-=,則函數)(x f y =為週期為a 2的週期函數.3. 多項式函數110()n n n n P x a x a x a --=+++的奇偶性多項式函數()P x 是奇函數⇔()P x 的偶次項(即奇數項)的係數全為零.多項式函數()P x 是偶函數⇔()P x 的奇次項(即偶數項)的係數全為零.23.函數()y f x =的圖象的對稱性(1)函數()y f x =的圖象關於直線x a =對稱()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函數()y f x =的圖象關於直線2a b x +=對稱()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.4. 兩個函數圖象的對稱性(1)函數()y f x =與函數()y f x =-的圖象關於直線0x =(即y 軸)對稱. (2)函數()y f mx a =-與函數()y f b mx =-的圖象關於直線2a b x m +=對稱. (3)函數)(x f y =和)(1x f y -=的圖象關於直線y=x 對稱.25.若將函數)(x f y =的圖象右移a 、上移b 個單位,得到函數b a x f y +-=)(的圖象;若將曲線0),(=y x f 的圖象右移a 、上移b 個單位,得到曲線0),(=--b y a x f 的圖象.5. 互為反函數的兩個函數的關係a b f b a f =⇔=-)()(1.27.若函數)(b kx f y +=存在反函數,則其反函數為])([11b x f k y -=-,並不是)([1b kx f y +=-,而函數)([1b kx f y +=-是])([1b x f ky -=的反函數. 6. 幾個常見的函數方程 (1)正比例函數()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指數函數()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)對數函數()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)冪函數()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函數()cos f x x =,正弦函數()sin g x x =,()()()()()f x y f x f y g x g y -=+, 0()(0)1,lim 1x g x f x→==. 7. 幾個函數方程的週期(約定a>0)(1))()(a x f x f +=,則)(x f 的週期T=a ;(2)0)()(=+=a x f x f , 或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,則)(x f 的週期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,則)(x f 的週期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,則)(x f 的週期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,則)(x f 的週期T=5a ;(6))()()(a x f x f a x f +-=+,則)(x f 的週期T=6a. 8. 分數指數冪(1)m n a=(0,,a m n N *>∈,且1n >). (2)1mn mn a a-=(0,,a m n N *>∈,且1n >).(2)當n a =;當n,0||,0a a a a a ≥⎧==⎨-<⎩. 10. 有理指數冪的運算性質(1)(0,,)r s r s a a a a r s Q +⋅=>∈.(2)()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注:若a >0,p 是一個無理數,則a p 表示一個確定的實數.上述有理指數冪的運算性質,對於無理數指數冪都適用.33.指數式與對數式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.對數的換底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推論 log log m n a a n b b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 11. 對數的四則運算法則若a >0,a ≠1,M >0,N >0,則(1)log ()log log a a a MN M N =+; (2)log log log aa a M M N N=-; (3)log log ()n a a M n M n R =∈. 注:設函數)0)((log )(2≠++=a c bx ax x f m ,記ac b 42-=∆.若)(x f 的定義域為R ,則0>a ,且0<∆;若)(x f 的值域為R ,則0>a ,且0≥∆.對於0=a 的情形,需要單獨檢驗.12. 對數換底不等式及其推論若0a >,0b >,0x >,1x a≠,則函數log ()ax y bx = (1)當a b >時,在1(0,)a 和1(,)a+∞上log ()ax y bx =為增函數. (2)(2)當a b <時,在1(0,)a 和1(,)a +∞上log ()ax y bx =為減函數. 推論:設1n m >>,0p >,0a >,且1a ≠,則(1)log ()log m p m n p n ++<.(2)2log log log 2a a am n m n +<.。
高中数学:函数的基本知识点
高中数学:函数的基本知识点函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种*质来解决具体的问题。
小编为大家收集了“高中数学讲解:函数的基本知识点”,供大家参考,希望对大家有所帮助!1.函数的定义定义:设x和y是两个变量,d是实数集r的某个子集.如果对任何的x∈d,按照某种对应法则,变量y总有确定的值与之对应,则称变量y是定义在d上变量x的函数,记作y=f(x).称d为该函数的定义域,称x为自变,.y为因变量.当自变量x取数值xo∈d时,与xo对应的因变量y的值称为函数y=f(x),当x取遍d的所有数值时,对应的变量y取值的全体组成的数集称为函数y二f(x)的值域.如果自变量在定义域内任取一个值时,对应的函数值只有一个,这种函数称为单值函数,否则称为多值函数.例如,y=3x+l是单值函数,而由方程x2+y2=1确定的函数y=士√1-x2就是多值函数.以后凡没有特别说明,本书所讨论的函数都是指单值函数.函数的表示法通常有三种,即表格法、图示法和公式法。
2.函数的两个基本要素由函数的定义知,确定函数的两个基本要素是定义域和对应法则.也就是说,两个函数只有当它们的定义域和对应法则完全相同时,两个函数才是相同的.3.函数的几种特*(1)有界*设函数y=f(x)的定义域为d,数集x∈d,如果存在正数m,使得对于任意的x∈x,都有不等式f(x)?≤m成立,则称了(x)在x上有界,如果这样的m不存在,则称函数在x上无界.(2)单调*.设函数y=f(x)在区向x上有定义.如果对于任意的x1,x2∈x,当x1<x2时,均有f(x1)(3)奇偶*设函数y=f(x)的定义域d是关于原点对称的,如果对于任意的x∈d,均有f(x)=f(一x),则称.f(x)为偶函数;如果对于任意的x∈d,均有f(x)=-f(x),则称了(x)为奇函数.(4)周期*设函数y.=f(x),如果存在不为零的常数t,.使得对于任意x∈d均有x+t∈d,且f(x)=f(x+t)成立,则称函数y=f(x)为周期函数,称t为f(x)的一个周期。
高中数学必修一函数知识点总结
函数的知识点总结及拓展函数的概念一.函数的概念:1.概念:一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
2.函数三要素:①定义域:x的取值范围的集合;②值域:y的取值范围的集合;③对应关系:y与x的对应关系。
二.区间:设a,b∈R,且a<b,规定如下:三.函数的定义域和值域:1.函数定义域:①分母不为0;②被开方数大于等于0,a(a≥0);③a0=1(a≠0);④a-n=na⎪⎭⎫⎝⎛1(a≠0)。
2.复合函数的定义域:(1)若已知f (x)的定义域为[a,b],其复合函数f [g(x)]的定义域由不等式a≤g(x)≤b解出即可。
(2)若已知f [g(x)]的定义域为[a,b],求f (x)的定义域,相当于当x∈[a,b]时,求g(x)的值域(即f (x)的定义域)。
3.求值域的基本方法:(1)配方法:涉及到二次函数的相关问题可用配方法;(2)换元法:通过换元把一个复杂的函数变为简单易求值域的函数;(3)分离常数法:适用与分子分母次数为一次分式函数;(4)单调性法:利用函数单调性求最大值或最小值;(5)数形结合法:结合函数图像求值域;(6)判别式法:分子和分母有一个是二次的分式函数都可通用;(7)不等式法:利用基本不等式求函数的值域;(8)导数法:适用与高次多项式函数。
函数的性质一.函数的单调性:1.单调性的定义:①f (x)在区间M上是增函数⇔∀x1,x2∈M,x1<x2时有f (x1)< f (x2);②f (x)在区间M上是增函数⇔∀x1,x2∈M,x1<x2时有f (x1)> f (x2)。
2.单调性的判定:(1)定义法:一般要将式子f (x1)-f (x2)化为几个因式作积或商的形式,然后判断正负;(2)图像法:结合函数图像判断单调性;(3)复合函数单调性判定:①首先将原函数y =f [g(x)]分解为基本函数,内函数μ=g(x)与外函数y =f [μ];②分别判定内、外函数在各自定义域内的单调性;③根据“同增异减”来判定原函数在其定义域内的单调性。
高中数学函数知识点总结(精华版)知识分享
高中数学函数知识点总结(精华版)知识分
享
高中数学函数知识点总结(精华版)知识分享
1. 函数的定义和性质
- 定义:函数是一个将各个元素从一个集合映射到另一个集合的规则。
- 函数的性质:单调性、奇偶性、周期性等。
2. 基本函数
- 幂函数:y = x^n,n为常数,图像为直线或曲线。
- 三角函数:包括正弦函数、余弦函数、正切函数等,图像具有周期性。
- 指数函数:y = a^x,a为正常数,图像单调递增或递减。
- 对数函数:y = log_a(x),a为正常数,图像单调递增或递减。
3. 函数的运算与变换
- 四则运算:加法、减法、乘法、除法。
- 复合运算:由两个或多个函数构成一个新的函数。
- 反函数:原函数与定义域互为值域的函数。
- 平移、压缩、翻折等函数的变换。
4. 函数的图像与性质
- 函数图像的绘制和分析方法。
- 函数的最值、零点、极值等特性。
5. 函数的应用
- 函数在物理、经济等领域的应用。
- 函数在数学建模中的应用。
6. 解函数方程
- 求函数方程的解法与步骤。
以上是高中数学函数知识点的精华总结和知识分享。
掌握这些知识能够帮助学生更好地理解和应用函数概念,提升数学能力。
注:本文档内容仅为总结分享,并不保证所有内容的正确性,请酌情参考。
高中数学函数知识点梳理
高中数学函数知识点梳理 1. .函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.注:如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数;如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.2. 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 注:若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.注:对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称. 注:若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a 对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.3. 多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.4. 两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m +=对称. (3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.5. 互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 6. 几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+, 0()(0)1,lim 1x g x f x→==. 7. 几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f , 或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠, 或[]21()()(),(()0,1)2f x f x f x a f x +-=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.8. 分数指数幂(1)1mn n ma a =(0,,a m n N *>∈,且1n >). (2)1m n mn a a-=(0,,a m n N *>∈,且1n >). 9. 根式的性质(1)()n n a a =.(2)当n 为奇数时,n n a a =;当n 为偶数时,,0||,0n na a a a a a ≥⎧==⎨-<⎩. 10. 有理指数幂的运算性质(1)(0,,)r s r s a a aa r s Q +⋅=>∈. (2)()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r rab a b a b r Q =>>∈.注:若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式 log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式 log log log m a m N N a= (0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a n b b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 11. 对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+;(2)log log log a a a M M N N =-;(3)log log ()n a a M n M n R =∈.注:设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。
高中数学函数知识点总结
高中数学函数知识点总结高中数学函数知识点总结篇一一、增函数和减函数一般地,设函数f(x)的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么就是f(x)在这个区间上是减函数。
二、单调区间单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。
如果函数y=f(x)在某个区间是增函数或减函数。
那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。
一、指数函数的定义指数函数的一般形式为y=a^x(a0且≠1) (x∈R)。
二、指数函数的性质1、曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)2、曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)一、对数与对数函数定义1、对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
2、对数函数:一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。
二、方法点拨在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果,这也是分类与整合思想的一个重要方面。
一、幂函数定义形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
二、性质幂函数不经过第三象限,如果该函数的指数的分子n是偶数,而分母m是任意整数,则y0,图像在第一;二象限。
这时(-1)^p的指数p的奇偶性无关。
高中数学知识点函数(最全)
高中数学第二章-函数考试内容:映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.§02. 函数 知识要点一、本章知识网络结构:F:A B对数函数指数函数二、知识回顾: (一) 映射与函数 1. 映射与一一映射 2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数反函数的定义 设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=(二)函数的性质 ⒈函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2,⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.2.函数的奇偶性正确理解奇、偶函数的定义。
高中数学函数的性质知识点整理
一、函数(一)、函数的单调性1、定义:一般地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1 ,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是增函数; 当x 1<x 2时,都有f(x 1)>f(x 2),那么就说函数f(x)在区间D 上是减函数。
单调性定义的等价形式:设x 1,x 2∈[a,b],x 1≠x 2.(1)若有(x 1-x 2)[f(x 1)-f(x 2)]>0或>0,则f(x)在闭区间[a,b]上是增函数;(2)若有(x 1-x 2)[f(x 1)-f(x 2)]<0或<0,则f(x)在闭区间[a,b]上是减函数.2、常用结论(1)若f(x),g(x)均为区间A 上的增(减)函数,则f(x)+g(x)也是区间A 上的增(减)函数. (2)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反.(3)函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=的单调性相反.(4)函数y=f(x)(f(x)≥0)在公共定义域内与y=的单调性相同.(5)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.简称“同增异减”. (二)、函数的奇偶性1.函数奇偶性的定义:函数()f x 的定义域必须关于原点对称,对定义域内的任意一个x 都满足 ①()()f x f x -=⇔函数()f x 为偶函数;②()()()()0f x f x f x f x -=-⇔-+=⇔函数()f x 为奇函数.2.奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;反过来如果一个函数的图像关于原点对称,则该函数为奇函数,若该函数的图像关于y 轴对称,该函数为偶函数. 3.函数奇偶性的性质①既是奇函数又是偶函数的函数只有一种类型,即()0f x =,x D ∈,其中定义域D 是关于原点对称的非空数集.②奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.即奇函数()f x 在区间[,](0)a b a b ≤<上单调递增(减),则()f x 在区间[,]b a --上也是单调递增(减); ③偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.即偶函数()f x 在区间[,](0)a b a b ≤<上单调递增(减),则()f x 在区间[,]b a --上也是单调递减(增); ④任意定义在R 上的函数()f x 都可以唯一地表示成一个奇函数与一个偶函数的和.即()()()()()22f x f x f x f x f x +---=+(三)、函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)特别的(2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称; (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称.本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称. 3、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 中心对称(当0a =时,恰好就是奇函数); (2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫⎪⎝⎭中心对称;(3)()f x a +是奇函数,则()()f x a f x a +=--+,进而可得到:()f x 关于(),0a 中心对称。
(完整版)高中数学函数知识点总结
函数一、函数的定义:1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。
4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。
(3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数y=f(x) 关于X轴对称得函数y=-f(x)4)函数y=f(x) 关于Y轴对称得函数y=f(-x)5)函数y=f(x) 关于原点对称得函数y=-f(-x)6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=| f(x)|7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)二、函数的基本性质1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
高中数学函数知识点
高中数学函数知识点高中数学函数学问1一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特殊地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的改变值与对应的x的改变值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满意等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k0时,直线必通过一、三象限,y随x的增大而增大;当k0时,直线必通过二、四象限,y随x的增大而减小。
当b0时,直线必通过一、二象限;当b=0时,直线通过原点当b0时,直线必通过三、四象限。
特殊地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)由于在一次函数上的任意一点P(x,y),都满意等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最终得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t肯定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f肯定,水池中水量g是抽水时间t的一次函数。
高中数学必修一函数知识点总结
高中数学必修一函数知识点总结函数作为高中数学的重要内容,是数学思维的重要工具之一。
在学习函数时,不仅需要掌握函数的定义和性质,还需要理解函数与实际问题的应用。
本文将对高中数学必修一中的函数知识点进行总结。
一、函数的定义和性质1. 函数的定义:函数是一个自然数集合和一个对应关系的二元组,其中每一个自然数对应唯一的一个实数。
2. 定义域和值域:函数的定义域是自然数集合,值域是实数集合。
函数的定义域和值域可以是实数集合的一个子集。
3. 要素和表达式:函数由其对应关系和函数表达式两部分构成。
函数的对应关系是函数的要素,函数表达式是将自变量和因变量联系在一起的表达式。
4. 定义关系的表示:可以通过图像、函数表、显式表达式和隐式表达式等方式表示函数的定义关系。
5. 函数的性质:包括奇偶性、单调性、周期性和双射性等。
二、函数的基本类型1. 一次函数:函数表达式为y = kx + b,是一种线性函数,图像为直线。
其中k为斜率,b为截距。
2. 二次函数:函数表达式为y = ax^2 + bx + c,是一种抛物线函数,图像为开口向上或开口向下的U型曲线。
其中a为二次项系数,b为一次项系数,c为常数项。
3. 幂函数:函数表达式为y = x^a,是一种以底数为自变量的幂函数,其中a为指数。
4. 指数函数:函数表达式为y = a^x,是一种以指数为自变量的函数,其中a为底数。
5. 对数函数:函数表达式为y = logax,是一种以对数为自变量的函数,其中a为底数。
6. 三角函数:包括正弦函数、余弦函数和正切函数等,是以角度为自变量的函数。
三、函数的图像与性质1. 函数的图像:函数的图像反映了自变量和因变量之间的对应关系。
可以根据函数表达式找出函数的图像特点,如函数的开口方向、对称轴、零点等。
2. 函数的奇偶性:若对于定义域内的任意自变量x,函数满足f(-x) = f(x),则函数为偶函数;若对于定义域内的任意自变量x,函数满足f(-x) = -f(x),则函数为奇函数;若既不满足偶函数的性质,也不满足奇函数的性质,则函数既不是偶函数也不是奇函数。
高中数学函数知识点总结
高中数学函数知识点总结高中数学中的函数是一个重要的知识点,它是解决问题的一个重要工具。
下面是高中数学函数知识点的总结,包括函数的概念、性质、图像、特殊函数以及常见的函数类型。
一、函数的概念与性质1.函数的定义:函数是一个变量间的关系,是一种映射关系,每个自变量只对应一个因变量。
2.函数的表示:函数可以用关系式、函数表、图像、符号表示等方式进行表达。
3.定义域和值域:定义域是自变量的取值范围,值域是因变量的取值范围。
4.奇偶性:函数的奇偶性可以根据函数的表达式进行判断,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
5.单调性:单调性分为单调递增和单调递减,可以根据函数的导数进行判断。
6.周期性:周期函数指的是满足f(x+T)=f(x)的函数,其中T是函数的周期。
7.奇偶函数的性质:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
8.复合函数:复合函数指的是将一个函数的输出作为另一个函数的输入。
二、函数的图像与性质1.直线函数:直线函数的图像为一条直线,可以通过给定的两个点来确定直线的斜率和截距。
2.平方函数:平方函数的图像为一个抛物线,开口方向由函数的二次项系数决定。
3.绝对值函数:绝对值函数的图像为一条V型曲线,开口方向由函数的系数决定。
4.指数函数:指数函数的图像为一条递增的曲线,底数大于1时递增速度较快。
5.对数函数:对数函数的图像为一条递减的曲线,底数大于1时递减速度较慢。
6.三角函数:三角函数包括正弦函数、余弦函数和正切函数,它们的图像具有周期性。
7.反比例函数:反比例函数的图像为一条经过原点的反比例曲线,即y=k/x,其中k为常数。
三、特殊函数1.分段函数:分段函数指的是在满足不同条件下,函数的表达式可以有所不同。
2.取整函数:取整函数指的是将一个实数x映射为最接近x的整数值。
3.符号函数:符号函数指的是将一个实数x映射为其符号,大于0的数映射为1,小于0的数映射为-1,等于0的数映射为0。
高中数学函数知识点(详细)
第二章 函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B的一个函数.记作:y =)(x f ,x ∈A.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则 (3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值范围。
(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。
(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。
③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。
例2. 求函数()02112++-=x x y 的定义域。
④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域 已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。
(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。
高中数学函数基础知识点
高中数学函数基础知识点1. 函数的基本概念-函数的定义:设在一个非空数集D上,如果存在一个法则f,使得对每一个x∈D,都有唯一确定的y与之对应,记作y=f(x),那么就称y是x的函数,记作y=f(x),其中D称为函数的定义域。
-单调性:函数在某个区间上若满足随着自变量增大,函数值也增大,则称函数在这个区间上单调递增;反之,若函数值随自变量增大而减小,则称函数在这个区间上单调递减。
-奇偶性:若对于所有定义域内的x,都有f(-x) = f(x),则称f(x)为偶函数;若f(-x) = -f(x),则称f(x)为奇函数。
2. 基本初等函数-常数函数、幂函数、指数函数、对数函数、三角函数(正弦函数、余弦函数、正切函数等)、反三角函数及其性质。
3. 函数图像与性质-函数图像的画法:列表、描点、连线。
-函数图像的平移、翻折、伸缩变换规律。
-函数零点的定义及求解方法。
4. 函数的运算-函数的四则运算:两个函数的和、差、积、商仍然是函数。
-复合函数:由两个或多个简单函数经过嵌套组合而成的函数。
5. 函数的最值问题-利用函数单调性寻找函数在指定区间上的最大值和最小值。
-利用导数工具求解闭区间上的函数最值。
6. 函数方程与函数不等式-解决函数方程,即求解满足给定条件的函数表达式。
-解函数不等式,求解满足不等式的自变量范围。
7. 分段函数-定义和表示方法,以及其连续性和单调性等问题。
以上都是高中数学函数部分的基础知识点,也是后续学习诸如导数、积分、微积分等高级数学知识的基础。
在学习过程中,需结合实例,多做题型练习,以便理解和熟练掌握函数的各种性质和运算法则。
高中数学函数知识点总结(学霸笔记)
高中数学 函数总结一、本章知识网络结构:F:A →B对数函数指数函数二次函数二、知识回顾: (一) 映射与函数 1. 映射与一一映射2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数反函数的定义设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=(二)函数的性质 ⒈函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性正确理解奇、偶函数的定义。
必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数)(x f 为奇函数或偶函数的必要不充分条件;(2))()(x f x f =-或)()(x f x f -=-是定义域上的恒等式。
2.奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形。
反之亦真,因此,也可以利用函数图象的对称性去判断函数的奇偶性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学函数复习主要知识点一、函数的概念与表示1、映射(1)映射:设A 、B 是两个集合,如果按照某种映射法则f ,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射,记作f :A →B 。
注意点:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射2、函数: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域.构成函数概念的三要素 ①定义域②对应法则③值域二、函数的解析式与定义域1、求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;2求函数定义域的两个难点问题(1) ()x 已知f 的定义域是[-2,5],求f(2x+3)的定义域。
(2) (21)x x 已知f -的定义域是[-1,3],求f()的定义域三、函数的值域1求函数值域的方法①直接法:从自变量x 的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式; ④分离常数:适合分子分母皆为一次式(x 有范围限制时要画图); ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数四.函数的奇偶性1.定义: 设y=f(x),x ∈A ,如果对于任意x ∈A ,都有()()f x f x -=,则称y=f(x)为偶函数。
如果对于任意x ∈A ,都有()()f x f x -=-,则称y=f(x)为奇函数。
2.性质:①y=f(x)是偶函数⇔y=f(x)的图象关于y 轴对称, y=f(x)是奇函数⇔y=f(x)的图象关于原点对称, ②若函数f(x)的定义域关于原点对称,则f(0)=0 ③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称] 3.奇偶性的判断①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系五、函数的单调性一般地,设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),则f(x)在区间D 上是增函数; 当x 1<x 2时,都有f(x 1) >f(x 2),则f(x)在区间D 上是减函数。
2 设()[]x g f y =是定义在M 上的函数,若f(x)与g(x)的单调性相反,则()[]x g f y =在M 上是减函数;若f(x)与g(x)的单调性相同,则()[]x g f y =在M 上是增函数。
六、对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展?答案是肯定的探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称(2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
得证。
若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(cb a + 对称(3)函数)(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。
但在曲线c(x,y)=0,则有可能会出现关于b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。
七.函数的周期性:1.(定义)若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期。
说明:nT 也是)(x f 的周期2.(推广)若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期 (1)函数)(x f y =满足如下关系系,则T x f 2)(的周期为 A 、)()(x f T x f -=+ B 、)(1)()(1)(x f T x f x f T x f -=+=+或 C 、)(1)(1)2(x f x f T x f -+=+或)(1)(1)2(x f x f T x f +-=+(等式右边加负号亦成立) D 、其他情形(2)函数)(x f y =满足)()(x a f x a f -=+且)()(x b f x b f -=+,则可推出)](2[)]2([)]2([)2()(a b x f b x a b f b x a b f x a f x f -+=---=--+=-=即可以得到)(x f y =的周期为2(b-a),即可以得到“如果函数在定义域内关于垂直于x 轴两条直线对称,则函数一定是周期函数”(3)如果奇函数满足)()(x f T x f -=+则可以推出其周期是2T ,且可以推出对称轴为kT Tx 22+=)(z k ∈,根据)2()(T x f x f +=可以找出其对称中心为)0(kT ,)(z k ∈(以上0≠T )如果偶函数满足)()(x f T x f -=+则亦可以推出周期是2T ,且可以推出对称中心为)0,22(kT T+)(z k ∈,根据)2()(T x f x f +=可以推出对称轴为kT T x 2+=)(z k ∈ (以上0≠T )(4)如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以4T 为周期的周期性函数。
如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以2T 为周期的周期性函数。
⑶计算:八、反函数1.只有单调的函数才有反函数;反函数的定义域和值域分别为原函数的值域和定义域;2、求反函数的步骤(1)解(2)换(3)写定义域。
3、关于反函数的性质(1)y=f(x)和y=f-1(x)的图象关于直线y=x对称;(2)y=f(x)和y=f-1(x)具有相同的单调性;(3)已知y=f(x),求f-1(a),可利用f(x)=a,从中求出x,即是f-1(a);(4)f-1[f(x)]=x;(5)若点(a,b)在y=f(x)的图象上,则(b,a)在y=f--1(x)的图象上;(--1九.二次函数(涉及二次函数问题必画图分析)1.二次函数f(x)=ax 2+bx+c(a ≠0)的图象是一条抛物线,对称轴a b x 2-=,顶点坐标)44,2(2ab ac a b --2.二次函数与一元二次方程关系一元二次方程)0(02≠=++a c bx ax 的根为二次函数f(x)=ax 2+bx+c(a ≠0)0=y 的x 的取值。
一元二次不等式)0(02<>++c bx ax 的解集(a>0)十.指数式与对数式1.幂的有关概念(1)零指数幂)0(10≠=a a (2)负整数指数幂()10,n naa n N a-*=≠∈ (3)正分数指数幂)0,,,1m na a m n N n *=>∈>;(5)负分数指数幂)10,,,1m nm naa m n N n a-*==>∈>(6)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质()()10,,rsr sa aaa r s Q +=>∈ ()()()20,,sr rs a a a r s Q =>∈ ()()()30,0,rr r ab a b a b r Q =>>∈3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa a a a n n4.对数(1)对数的概念:如果)1,0(≠>=a a N a b,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a(2)对数的性质:①零与负数没有对数 ②01log =a ③1log =a a (3)对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且对数的降幂公式:)10,0(log log ≠>>=a a N NnN a na m 且x2. 比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理) 记住下列特殊值为底数的函数图象:3、 研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、 指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函(1) 平移变换:(左+ 右- ,上+ 下- )即kx f y x f y h x f y x f y k k h h +=−−−−−→−=+=−−−−−→−=><><)()()()(,0;,0,0;,0上移下移左移右移(2) 两个函数的图象对称性1、 )(x f y =与)(x f y -=关于X 轴对称。