高三数学上学期期中试题理26
陕西师范大学附属中学2022-2023学年高三上学期期中理科数学试题含解析
A. B. C.2D.
【答案】B
【解析】
【分析】将 代入双曲线方程求出点 的坐标,通过解直角三角形列出三参数 , , 的关系,求出离心率的值.
【详解】由于 轴,且 在第一象限,设
所以将 代入双曲线的方程得 即 ,
7.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第1个正方形的边长是m,侏罗纪蜘蛛网的长度(蜘蛛网中正方形的周长之和)为Sn,则()
A.Sn无限大B.Sn<3(3+ )m
C.Sn=3(3+ )mD.Sn可以取100m
17.已知 中,角A,B,C的对边分别为a,b,c, .
(1)若 ,求 的值;
(2)若 的平分线交AB于点D,且 ,求 的最小值;
【答案】(1) ;(2)4
【解析】
【分析】(1)由 ,利用正弦定理将边转化为角得到 ,再根据 ,有 ,然后利用两角差的正弦公式展开求解.
(2)根据 的平分线交AB于点D,且 ,由 ,可得 ,化简得到 ,则 ,再利用基本不等式求解.
【详解】设 , ,
则 , ,
如图所示,
连接 交 于点 ,连接 、 ,
因为 平面 , 平面 ,
所以 ,而 ,所以四边形 是直角梯形,
则有 ,
, ,
所以有 ,
故 ,
因为 平面 , 平面 ,
所以 ,又因为 为正方形,所以 ,
而 平面 ,
所以 平面 ,即 平面 ,
,
所以 , ,
故答案为:③④.
甘肃省兰州第一中学2022-2023学年高三上学期期中考试数学(理)试题含答案
兰州一中2022-2023-1学期期中考试试题高三数学(理)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 答案写在答题卷(卡)上,交卷时只交答题卷(卡).第Ⅰ卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合{3,1,0,2,4}U =--,{1,0}A =-,{0,2}B =,则()U A B ⋃=( ) A .{3,1}- B .{3,4}- C .{3,1,2,4}--D .{1,0,2}-2.已知a R ∈,()13ai i i +=+,(i 为虚数单位),则=a ( ) A .1-B .1C .3-D .33.已知()f x 是R 上的偶函数,()g x 是R 上的奇函数,它们的部分图像如图,则()()⋅f x g x 的图像大致是( )A .B .C .D .4.已知等差数列{}n a 的前n 项和为n S ,且918S =,71a =,则1a =( ) A .4B .2C .12-D .1-5.已知x 、y 都是实数,那么“x y >”的充分必要条件是( ).A .lg lg x y >B .22x y >C .11x y> D .22x y >6.我国南北朝时期的数学家祖暅提出了一个原理“幂势既同,则积不容异”,即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是半径为2的一个半圆,则该几何体的体积为( ) A 3π B 3πC 3πD 3π 7.设x ,y 满足约束条件23250y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则z x y =-+的最小值为( )A .2B .1-C .2-D .3-8.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()x f x e x =+,则32(2)a f =-,2(log 9)b f =,(5)c f =的大小关系为( )A .a b c >>B .a c b >>C .b c a >>D .b a c >>9.设函数()f x 定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当()1,1x ∈-时,()21f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭ B .()7f x +为奇函数C .()f x 在()6,8上为减函数D .()f x 的一个周期为810.已知函数222,2,()366,2,x ax x f x x a x x ⎧--≤⎪=⎨+->⎪⎩若()f x 的最小值为(2)f ,则实数a的取值范围为( ) A .[2,5]B .[2,)+∞C .[2,6]D .(,5]-∞11.已知双曲线2221x y a-=(0a >)的左、右焦点分别为1F ,2F ,过点2F 作一条渐近线的垂线,垂足为P 若12PF F △的面积为22率为( ) A 23B 32C .3D 1412.已知函数3()5()R f x x x x =+∈,若不等式()22(4)0f m mt f t ++<对任意实数2t ≥恒成立,则实数m 的取值范围为( ) A .(2,2-- B .4,3⎛⎫-∞- ⎪⎝⎭ C .((),22,-∞+∞D .(,2-∞第Ⅱ卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分)13.有甲、乙、丙三项任务,甲、乙各需1人承担,丙需2人承担且至少1人是男生,现有2男2女共4名学生承担这三项任务,不同的安排方法种数是______.(用数字作答)14.已知()1,2a =,()1,1b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围为______.15.已知()f x 是R 上的奇函数,()g x 是在R 上无零点的偶函数,()20f =,当0x >时,()()()()0f x g x f x g x ''-<,则使得()()lg 0lg f x g x <的解集是________16.已知0x >,0y >,且24x y +=,则112x y y ++最小值为________. 三、解答题(本大题共6小题,共70分)(一)必考题:共五小题,每题12分,共60分。
上海市七宝中学2024-2025学年高三上学期期中考试数学试题(含答案)
七宝中学2024-2025学年高三上学期期中考试数学试题一、填空题(第1-6题每题4分,第7-12题每题5分,满分54分)1.函数的定义域为______.2.计算______.3.已知是1与9的等比中项,则正实数______.4.在的展开式中,的系数为______(用数字作答).5.在复平面内,复数对应的点位于第______象限。
6.已知,则______.7.已知集合,其中可以相同,用列举法表示集合中最小的4个元素所构成的集合为______.8.已知是函数的导函数,若函数的图象大致如图所示,则的极大值点为______(从中选择作答).9.已知函数.在中,,且,则______.10.如图,线段相交于,且长度构成集合,则的取值个数为______.11.抛物线的焦点为,准线为是拋物线上的两个动点,且满足.设线段y =(4log =a a =4(x -2x 2ii-π1sin 42θ⎛⎫+= ⎪⎝⎭πcos 4θ⎛⎫-= ⎪⎝⎭{}22,,A a a x y x y ==+∈N ,x y A ()f x '()f x ()f x y e '=()f x ,,,a b c d ()22cos 2xf x x =+ABC △()()f A f B =a b ≠C ∠=,AD BC O ,,,AB AD BC CD {}1,3,5,,90x ABO DCO ∠=∠=︒x 24y x =F ,,l A B π3AFB ∠=AB的中点在准线上的投影为,则的最大值是______.12.平面上到两个定点距离之比为常数的动点的轨迹为圆,且圆心在两定点所确定的直线上,结合以上知识,请尝试解决如下问题:已知满足,则的取值范围为______.二、选择题(本大题共4题,满分20分)13.已知是非零实数,则下列不等式中恒成立的是( )A .B .C .D14.已知直线,动直线,则下列结论正确的为()A .不存在,使得的倾斜角为B .对任意的与都不垂直C .存在,使得与重合D .对任意的与都有公共点15.一组学生站成一排.若任意相邻的3人中都至少有2名男生,且任意相邻的5人中都至多有3名男生,则这组学生人数的最大值是( )A .5B .6C .7D .816.若,有限数列的前项和为,且对一切都成立.给出下列两个命题:①存在,使得是等差数列;②对于任意的,都不是等比数列.则( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题三、解答题(本大题共有5题,满分76分)17.如图,为正方体,动点在对角线上(不包含端点),记.M l N MNAB(0,1)λλλ>≠,,a b c 1,2,1a c b a b ===⋅=1122c a c b ++-a 1a a>2211a a a a+≥+12a a+>-≥-1:10l x y --=()()2:10l k x ky k k +-+=∈R k 2l π21,k l 2l k 1l 2l 1,k l 2l 3n ≥12,,,n a a a k k S 1k k S S +>11k n ≤≤-3n ≥12,,,n a a a 3n ≥12,,,n a a a 1111ABCD A B C D -P 1BD 11D PD Bλ=(1)求证:;(2)若异面直线与所成角为,求的值.18.已知点是坐标原点.(1)若,求的值:(2)若实数满足,求的最大值.19.英语学习中学生喜爱用背单词"神器"提升自己的英文水平,为了解上海中学生和大学生对背单词“神器”的使用情况,随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款背单词“神器”,结果如下:百词斩扇贝单词秒词邦沪江开心词场中学生80604020大学生30202010假设大学生和中学生对背单词“神器”的喜爱互不影响.(1)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最喜爱使用“百词斩”的概率;(2)采用分层抽样的方式先从样本中的大学生中随机抽取8人,再从这8人中随机抽取3人.记X 为这3人中最喜爱使用“扇贝单词”的人数,求X 的分布列和数学期望;(3)记样本中的中学生最喜爱使用这四款背单词“神器”的频率依次为,其方差为;样本中的大学生最喜爱使用这四款背单词“神器”的频率依次为,其方差为的方差为.写出的大小关系.(结论不要求证明)20.在平面直角坐标系中,分别是椭圆的左右焦点,设不经过的直线与椭圆交于两个不同的点,焦点到直线的距离为.(1)求该粗圆的离心率;(2)若直线经过坐标原点,求面积的最大值;(3)如果直线的斜率依次成等差数列,求的取值范围.21.若斜率为的两条平行直线,曲线满足以下两条性质:(Ⅰ)分别与曲线至少有两个切点;(Ⅱ)曲线上的所有点都在之间或两条直线上.则称直线为曲线的一对“双夹线”,把“双夹线”之间的距离称为曲线在“方向上的宽度”,记为.已知曲线1AP B C ⊥AP 11D B π3λ()())1,1,1,1,,A B CO θθ-BC BA -=sin2θ,m n π,0,2mOA nOB OC θ⎛⎫+=∈ ⎪⎝⎭22(3)m n ++1234,,,x x x x 21s 1234,,,y y y y 2212341234;,,,,,,,s x x x x y y y y 23s 222123,,s s s 12,F F 22143x y +=1F l ,A B 2F l d l 2F AB △11,,AF l BF d k 12,l l ():C y f x =12,l l C C 12,l l 12,l l C C k ()d k.(1)判断时,曲线是否存在“双夹线”,并说明理由;(2)若,试问:和是否是函数的一对“双夹线”?若是,求此时的值;若不是,请说明理由.(3)对于任意的正实数,函数是否都存在"双夹线"?若是,求的所有取值构成的集合;若不是,请说明理由.2025届七宝中学高三(上)期中考试参考答案一、填空题1、; 2、; 3、3; 4.18; 5、四;6.;7、; 8、a ; 9、;10、4;11、1; 12、10、【答案】412、【答案】二、选择题13~16、BDBC三、解答题17、(1)证明:如图,连接.由已知可得,平面平面,所以,又是正方形,所以,又平面平面,所以平面,又动点在对角线上,所以平面,所以平面,所以.():sin C f x mx n x =+0,1m n ==C 1,1m n ==-1:1l y x =+2:1l y x =-()y f x =()d k ,m n ()y f x =()d k ()1,+∞3412{}0,1,2,4π311,BC AD AB ⊥111,BCC B B C ⊂11BCC B 1AB B C ⊥11BCC B 11B C BC ⊥1BC ⊂11,ABC D AB ⊂111,ABC D AB BC B = 1B C ⊥11ABC D P 1BD P ∈11ABC D AP ⊂11ABC D 1AP B C ⊥(2)以点为坐标原点,分别以所在的直线为轴,如图建立空间直角坐标系,设,则,则.由已知,可得,设点,则,所以,所以,即,所以,.又异面直线与所成角为,所以,即,解得或0,因为,所以满足条件.18、【答案】(1); (2)16.19、【答案】(1); (2); (3)20.【答案】(1); (2 (3).21、【答案】(1)存在;(2)是,3)是,C 1CD CB CC 、、x y z 、、1CD =()()()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,0,1,0,1,1,1,1,0C D B C D B A ()11111,1,0,D B D B =-=11D PD Bλ=11D P D B λ= ()000,,P x y z ()10001,,1D P x y z =-- 00011x y z λλλ-=-⎧⎪=⎨⎪-=-⎩00011x y z λλλ=-+⎧⎪=⎨⎪=-+⎩()1,,1P λλλ-+-+(),1,1AP λλλ=---+AP ==AP 11D B π311π1cos ,cos 42AP D B 〈==〉 11cos ,2AP D 1λ=01λ<<45λ=12-320[]34E X =222231s s s <<12()d k =()0)d k n =>。
山东省潍坊市2022届高三上学期期中考试理科数学Word版含答案
山东省潍坊市2022届高三上学期期中考试理科数学Word版含答案高三数学试题(理科)注意事项:1.本试卷分4页,本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试用时120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡及答题纸上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.4.第Ⅱ卷写在答题纸对应区域内,严禁在试题卷或草纸上答题.5.考试结束后,将答题卡和答题纸一并交回.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题。
每小题5分,共60分.在每小题给出的四个选项中。
只有一个符合题目要求的选项.)1.设某∈Z,集合A为偶数集,若命题p:某∈Z,2某∈A,则pA.某∈Z,2某AC.某∈Z,2某∈AB.某Z,2某∈AD.某∈Z,2某A2.设集合A={1,2,3},B={4,5},C={某|某=ba,aA,bB},则C中元素的个数是A.3B.4C.5D.63.已知幂函数yf(某)的图像过点(A.21,),则log2f(2)的值为22D.12B.-C.-124.在△ABC中,内角A、B的对边分别是a、b,若A.等腰三角形C.等腰三角形或直角三角形|某|coAb,则△ABC为coBaB.直角三角形D.等腰直角三角形5.若当某∈R时,函数f(某)a(a0且a1)满足f(某)≤1,则函数yloga(某1)的图像大致为6.已知110,给出下列四个结论:①ab②abab③|a||b|ab④abb2其中正确结论的序号是A.①②B.②④C.②③D.③④7.等差数列{an}的前20项和为300,则a4+a6+a8+a13+a15+a17等于A.60B.80C.90D.1202某a,某08.已知函数f(某)(aR),若函数f(某)在R上有两个零点,则a的取值2某1,某0范围是A.(,1)B.(,1]C.[1,0)某D.(0,1]9.已知数列{an}的前n项和为n,且n+an=2n(n∈N),则下列数列中一定是等比数列的是A.{an}B.{an-1}C.{an-2}D.{an+2}10.已知函数f(某)in(某3)(0)的最小正周期为,将函数yf(某)的图像向55D.126右平移m(m>0)个单位长度后,所得到的图像关于原点对称,则m 的最小值为A.62B.3C.11.设函数f(某)某某in某,对任意某1,某2(,),若f(某1)f(某2),则下列式子成立的是A.某1某222B.某1某2C.某1|某2|22D.|某1||某2|12.不等式2某a某yy≤0对于任意某[1,2]及y[1,3]恒成立,则实数a的取值范围是A.a≤22B.a≥22C.a≥113D.a≥92二、填空题(本大题共4小题,每小题4分,共16分)13.23t2dt1,则inco.421某15.已知一元二次不等式f(某)0的解集为{某|某2},则f(2)0的解集为。
河南省南阳市2022-2023学年高三上学期期中考试数学(理科)试题(含答案)
南阳市2022年秋期高中三年级期中质量评估数学试题(理)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效.2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.5.保持卷面清洁,不折叠、不破损.第Ⅰ卷 选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合40,{54}1x A x B x x x -⎧⎫=≤=-<<⎨⎬+⎩⎭∣∣, 则()R A B ⋂=ðA. (,1](4,)-∞-⋃+∞B. (,1)(4,)-∞-⋃+∞C. (-5,-1)D. (-5,-1]2. 若||||2z i z i +=-=, 则||z = A. 1D. 23. 若,x y 满足3020x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩ 则2y -的最小值是A. -1B. -3C. -5D. -74. 已知数列{}n a 的前n 项和211n S n n =-. 若710k a <<, 则k = A. 9B. 10C. 11D. 125.已知sin 12x π⎛⎫-= ⎪⎝⎭, 则cos 26x π⎛⎫-= ⎪⎝⎭A. 58-B. 58C. 4-D.46. 在ABC 中,30,C b c x ︒===. 若满足条件的ABC 有且只有一个, 则x 的可能取值是 A.12B.2C. 17. 若函数()(sin )x f x e x a =+在点(0,(0))A f 处的切线方程为3y x a =+, 则实数a 的值为 A. 1B. 2C. 3D. 48. 在ABC 中, 角,,A B C所对的边分别为,,cos ),a b c c b A a b -==则ABC 的外接圆面积为A. 4πB. 6πC. 8πD. 9π9. 函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图像如图所示, 将该函数图像上各点的横坐标缩短到原来的一半 (纵坐标不变), 再向右平移(0)θθ>个单位长度后, 所得到的图像关于点7,024π⎛⎫⎪⎝⎭对称, 则θ的最小值为A.76π B. 6πC. 8πD. 724π10. 已知定义在R 上的函数()f x 满足:(3)(3),(6)(6)f x f x f x f x +=-+=--, 且当[0,3]x ∈时,()21()x f x a a =⋅-∈R , 则(1)(2)(3)(2023)f f f f ++++=A. 14B. 16C. 18D. 2011. 已知:2221tan log 38,21tan 8a b c ππ-===+, 则 A. a b c << B. a c b << C. c a b << D. c b a <<12. 已知正数,a b 满足221ln(2)ln 1a a b b +≤-+, 则22a b +=A.52C.32第Ⅱ卷 非选择题(共 90 分)二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分) 13. 已知2()lg5lg(10)(lg )f x x x =⋅+, 则(2)f =_____.14. 在ABC 中,3,4,8AB BC CA CB ==⋅=, 则AB 边上中线CD 的长为_____.15. 已知函数sin ,sin cos ,()cos ,sin cos ,x x x f x x x x ≤⎧=⎨>⎩则1()2f x <的解集是_____.16. 若方程2ln 1x x e ax x -=--存在唯一实根,则实数a 的取值范围是_____.三、解答题(本大题共 6 小题,共 70 分. 解答应写出文字说明、证明过程或演算步骤)17. (本题满分 10 分)已知函数22()2cos sin 3f x x x π⎛⎫=-+- ⎪⎝⎭.(1)求函数()y f x =的单调递增区间;(2) 若函数()()02g x f x πϕϕ⎛⎫=+<< ⎪⎝⎭的图像关于点,12π⎛⎫ ⎪⎝⎭中心对称,求()y g x =在,63ππ⎡⎤⎢⎥⎣⎦上的值域.18. (本题满分 12 分)已知数列{}n a 和{}n b 满足:)*121,2,0,n n a a a b n ==>=∈N ,且{}n b 是以 2 为公比的等比数列. (1) 证明: 24n n a a +=;(2) 若2122n n n c a a -=+, 求数列{}n c 的通项公式及其前n 项和n S . 19. (本题满分 12 分)已知函数()ln ,()(1)f x x x g x k x ==-. (1) 求()f x 的极值;(2) 若()()f x g x ≥在[2,)+∞上恒成立, 求实数k 的取值范围. 20. (本题满分 12 分)数列{}n a 中,n S 为{}n a 的前n 项和,()()*24,21n n a S n a n ==+∈N . (1)求证: 数列{}n a 是等差数列,并求出其通项公式;(2) 求数列12n S n ⎧⎫⎨⎬+⎩⎭的前n 项和n T .21. (本题满分 12 分)已知,,a b c 分别是ABC 的内角,,A B C 所对的边, 向量(sin ,sin ),(cos ,cos )A B B A ==m n(1)若234,cos 3a b C ==, 证明: ABC 为锐角三角形; (2)若ABC 为锐角三角形, 且sin 2C ⋅=m n , 求ba的取值范围.22. (本题满分 12 分)已知函数21()12x f x e x ax =---, 若()()()2g x h x f x +=, 其中()g x 为偶函数,()h x 为奇函数.(1)当1a =时,求出函数()g x 的表达式并讨论函数()g x 的单调性;(2) 设()f x '是()f x 的导数. 当[1,1],[1,1]a x ∈-∈-时,记函数|()|f x 的最大值为M , 函数()f x '的最大值为N . 求证:M N <.高三(理)数学参考答案第1页(共6页)2022年秋期高中三年级期中质量评估数学试题(理)参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案DCDBBDBDCABA二、填空题(本大题共4小题,每小题5分,共20分)13.114.215.13(2,2)()36k k k Z ππππ++∈16.(]1,01e ⎧⎫-∞⋃+⎨⎬⎩⎭三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.【解析】(1)211cos 21cos 221cos 21cos 2322()2222x x x x x f x π⎛⎫-++ ⎪++⎝⎭=+=+31sin 2cos 21sin 24423x x x π⎛⎫=++=++ ⎪⎝⎭.………………………………3分令5222,,2321212k x k k k x k πππππππππ-+≤+≤+∈-+≤≤+Z,∴()y f x=的单调递增区间为5,,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ……………………5分(2)()12()12233g x x x ππϕϕ⎡⎤⎛⎫=+++=+++ ⎪⎢⎥⎣⎦⎝⎭.………………6分∵()y g x =关于点,12π⎛⎫⎪⎝⎭中心对称,高三(理)数学参考答案第2页(共6页)∴222,,2332k k k ππππϕπϕ⋅++=∈=-+Z ,……………………………………7分∵02πϕ<<,∴3πϕ=.∴()1)1sin 222g x x x π=++=-………………………………………8分当2,,2,6333x x ππππ⎡⎤⎡⎤∈∈⎢⎢⎥⎣⎦⎣⎦∴sin 2x ⎤∈⎥⎣⎦…………………………………9分所以1()1,24g x ⎡⎤∈-⎢⎥⎣⎦.………………………………………………………10分18.【解析】(1)由n b =得,2211==a a b ,故211222--=⋅=n n n b …………………………………………………………2分则12212)(-+==n n n n b a a ①所以,12212+++=n n n a a ②………………………………………………………4分由①②得,n n a a 42=+.…………………………………………………………6分(2)由(1)知数列}{2n a 和数列}{12-n a 均为公比为4的等比数列,…………8分所以,1212224--=⋅=n n n a a ,22111-224--=⋅=n n n a a 2122n n n c a a -=+=1122245222---⨯=⋅+n n n .…………………………………10分所以,)14(3541455-=-⨯-=nn n S ………………………………………………12分高三(理)数学参考答案第3页(共6页)19.【解析】(1)()f x 的定义域是(0,)+∞,()ln 1f x x '=+,令()0,f x '=则1x e=,……………………………………………………………2分当1(0,)x e∈,()0,f x '<()f x 单调递减,当1(,)x e∈+∞,()0,f x '>()f x 单调递增,所以()f x 在1x e=处取得极小值,………………………………………………4分故()f x 有极小值1e-,无极大值.…………………………………………………5分(2)(法一)由()()f x g x ≥在[)2,+∞上恒成立,即ln 1x x k x ≤-在[)2,+∞上恒成立,只需min ln ()1x xk x ≤-…………………………7分令ln ()1x xh x x =-,则2ln 1()(1)x x h x x --'=-,………………………………………9分令()ln 1x x x ϕ=--,则1()x x xϕ-'=,………………………………………10分易知当(1,)x ∈+∞时,()0x ϕ'>,()x ϕ单调递增,所以()(0)0x ϕϕ≥=,所以ln 10x x -->,即()0h x '>,即()h x 单调递增,故min ()(2)2ln 2h x h ==.…………………………………………………………11分所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分(法二)由题(ln 1)k x x x -≥,即(n 1)l k x x x -≥,令(1)()ln h x x k x x=--………6分则22(11())kx k x x kh x xx x '=--=--,…………………………………………………7分高三(理)数学参考答案第4页(共6页)当2k ≤时,0x k ->,()0f x '>,()f x 递增,所以min ()(2)ln 202kh x h ==-≥,所以2ln 2k ≤;…………………………………9分当2k >时,有x k >时,()0f x '>,()f x 递增,x k <时,()0f x '<,()f x 递减,即min ()()ln (1)h x h k k k ==--,可证ln (1)0k k --<,显然不合题意,舍去.…11分综上,所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分20.【解析】(1)当1n =时,则1121a a =+,所以11a =,因为)1(2+=n n a n S ①所以,当2n ≥时,)1(1-21-1-+=n n a n S )(②…………………………2分①-②得:()()()1211,2n n n a n a n --=--≥,③故,()()()12321,3n n n a n a n ---=--≥,④③-④得:()1223n n n a a a n --=+≥,所以{}n a 为等差数列,…………………………5分又213d a a =-=,所以,()13132n a n n =+-=-;…………………………6分(2)由()()21n n S n a n N *=+∈得2)13(-=n n S n ,故1221211(2(33)3(1)31n S n n n n n n n ==⋅=-++++,.………………………9分故1231111211111...)()...()]246232231n n T S S S S n n n =++++=-+-+++++++212(1313(1)nn n =-=++…………………………………………………………12分21.【解析】高三(理)数学参考答案第5页(共6页)(1)令3412(0)a b k k ==>,由2222222(4)(3)cos ,32243a b c k k c C ab k k +-+-===⨯⋅3c k ∴=.………………………………………………………………………………2分即4,3,3a k b k c k ===,从而a 边最大,…………………………………………3分又222222(3)(3)(4)21cos 02233189b c a k k k A bc k k +-+-====>⋅⋅,即A 为锐角,………5分∴ABC ∆为锐角三角形.……………………………………………………………6分(2)因为sin cos sin cos sin()A B B A A B ⋅=⋅+⋅=+m n ,而在ABC △中,π,0πA B C C +=-<<,所以sin()sin A B C +=,又sin 2C ⋅=m n ,所以sin 2sin ,C C =得1cos 2C =,所以π3C =.……………………………………7分又ABC ∆为锐角三角形,1022π1032A A ππ⎧<<⎪⎪∴⎨⎪<-<⎪⎩,解得,tan 623A A ππ<<>, (8)分1sin sin sin 1322sin sin sin 2A A Ab B a A A A π⎛⎫+ ⎪⎝⎭==== ,………………………10分结合3tan 3A >12+∈1,22⎛⎫⎪⎝⎭.…………………………………………11分所以1,22b a ⎛⎫∈ ⎪⎝⎭.………………………………………………………………………12分22.【解析】(1)当1=a 时,21()12xf x e x x =---,由题()()()2g x h x f x +=,其中)(x g 为偶函数,)(x h 为奇函数,易知()()()g x f x f x =+-,从而得2()2x x g x e e x -=+--.………2分所以'()2x x g x e e x -=--.令()'()x g x ϕ=,则'()2x x x e e ϕ-=+-.因为'()220x x x e e ϕ-=+-≥=,当且仅当0x =时等号成立,高三(理)数学参考答案第6页(共6页)所以'()g x 在R 上单调递增.………………………………………………………………4分注意到()'00g =,当(,0)x ∈-∞时,'()0g x <,(0,)x ∈+∞时,'()0g x >.所以()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.………………………………5分(2)由()f x 的定义域是R .'()x f x e x a =--,设函数()x h x e x a =--,则'()1x h x e =-.令'()0h x =,得0x =.……………………6分因为)'(h x 在R 上单调递增,所以当(,0)x ∈-∞时'()0h x <,当(0,)x ∈+∞时'()0h x >.因此()h x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.于是()()010h x h a ≥=-≥,即'()0f x ≥,所以()f x 在R 上单调递增..………………………………………………………………7分注意到()00f =,所以在(),0-∞上()0f x <,在()0,∞+上()0f x >.所以函数(),0()(),0f x x y f x f x x -<⎧==⎨≥⎩,()y f x =在(),0-∞上单调递减,在()0,∞+上单调递增.故()(){}()-1,1max f x maxf f =,…………………………………………………8分又]1,1[-∈a ()()3313311,12222f e a e a f a a e e=--=---=-+=--|(1)||(1)|f f --=013<--e e ,因此max 3|()||(1)|2f x f e a ==--.……………9分又()max max 3|'()|111|()|2f x f e a e a e a f x '≥=--=-->--=,……………11分所以|()||'()|max max f x f x <,即M N <…………………………………………………12分。
陕西省西安市第一中学2021届高三上学期期中考试数学(理)试题 Word版含答案
市一中高校区2022—2021学年度第一学期期中考试 高三数学(理科)试题命题人:付 功一、选择题:(本大题共12小题,每小题5分,共60分). 1. 已知集合{11}A x x =+<,1{|()20}2x B x =-≥,则=⋂B C A R ( )(A))1,2(-- (B))0,1(- (C))0,1[- (D)]1,2(--2.下列命题正确的个数是 ( )①命题“2000,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+≤”;②函数22()cos sin f x ax ax =-的最小正周期为π”是“1a =”的必要不充分条件; ③22x x ax +≥在[]1,2x ∈上恒成立⇔max min 2)()2(ax x x ≥+在[]1,2x ∈上恒成立; ④“平面对量a 与b 的夹角是钝角”的充分必要条件是“0a b ⋅<”. (A)1 (B)2 (C)3 (D)43.复数z 满足i z i 34)23(+=⋅-,则复平面内表示复数z 的点在( )(A )第一象限 (B )其次象限 (C )第三象限(D )第四象限4.将函数()3cos sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) (A ) 12π (B )6π (C ) 3π(D )56π5. 已知数列{}n a 为等差数列,满足OC a OB a OA 20133+=,其中C B A ,,在一条直线上,O 为直线AB 外一点,记数列{}n a 的前n 项和为n S ,则2015S 的值为( ) (A )22015(B ) 2015 (C )2016 (D )2013 6. 已知函数)91(log 2)(3≤≤+=x x x f ,则[])()(22x f x f y +=的最大值为( )(A )33 (B )22 (C ) 13 (D )67.在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是 ( )A .(0,6π] B .[ 6π,π) C .(0,3π] D .[ 3π,π)8. 在ABC∆中,060=A ,2=AB ,且ABC ∆的面积为23,则BC 的长为( ) (A )2 (B )23 (C )32 (D )39.已知向量(,),(,),与的夹角为060,则直线021sin cos =+-ααy x 与圆()()21sin cos 22=++-ββy x 的位置 关系是( )(A )相交 (B )相离 (C )相切 (D )随的值而定10.设动直线m x =与函数x x g x x f ln )(,)(2==的图象分别交于点N M ,,则MN 的最小值为( )(A )2ln 2121+ (B )2ln 2121- (C ) 2ln 1+ (D )12ln - 11.等比数列{}n a 中,12a =,8a =4,函数()128()()()f x x x a x a x a =---,则()'0f =( ) (A )62 (B )92 (C ) 122 (D )15212.已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( ).(A )f (x 1)>0,f (x 2)>-12 (B )f (x 1)<0,f (x 2)<-12 (C )f (x 1)>0,f (x 2)<-12 (D )f (x 1)<0,f (x 2)>-12二、填空题 :(本大题共4小题,每小题5分,共20分.把答案填在答题卡上). 13. 设向量)2,1(),1,(=+=b x x a ,且b a ⊥,则=x .14.已知函数)(x f =x+sinx.项数为19的等差数列{}n a 满足⎪⎭⎫⎝⎛-∈22ππ,n a ,且公差0≠d .若0)()()()(191821=++⋯++a f a f a f a f ,则当k =______时,0)(=k a f15在△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满足2223()4S a b c =+- 则角C 的大小为。
2024-2025学年山东省菏泽市高三上学期期中数学试题及答案
菏泽市2024—2025学年度第一学期期中考试高三数学试题本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}202,0M x x N x x x =∈<<=-≤Z ∣∣,则M N = ( )A. {}0,1 B. {}1 C. {}1,1- D. ∅2. 已知函数()21f x +的定义域为[]1,2,则函数()1f x -的定义域为( )A. []1,2 B. []4,6 C. []5,9 D. []3,73. 已知2025π1sin sin 22αα⎛⎫-+=⎪⎝⎭,则cos2sin cos ααα=+( )A. 12-B.12C. 0D. 14. “函数()32f x x ax =-在[]2,3-上单调递增”是“3a ≤”的( )A. 充分不必要条件 B. 必要不充分条件C 充要条件D. 既不充分又不必要条件5. 过曲线9log =y x 上一点A 作平行于两坐标轴的直线,分别交曲线3log y x =于点,B C ,若直线BC 过原点,则其斜率为( )A. 1B.3log 22C.ln33D.2log 36.6. 函数()11ln sin 21x f x x x+=--的零点个数为( )A. 1B. 0C. 3D. 27. 自然界中许多流体是牛顿流体,其中水、酒精等大多数纯液体、轻质油、低分子化合物溶液以及低速流动的气体等均为牛顿流体;高分子聚合物的浓溶液和悬浮液等一般为非牛顿流体,非牛顿流体在实际生活和生产中有很多广泛的应用,如工业制造业常利用某些高分子聚合物做成“液体防弹衣”,已知牛顿流体符合牛顿黏性定律,即在一定温度和剪切速率范围内黏度值是保持恒定的:τηγ=,其中τ为剪切应力,η为黏度,γ为剪切速率;而当液体的剪切应力和剪切速率存在非线性关系时液体就称为非牛顿流体.其中宾汉流体(也叫塑性流体),是一种粘塑性材料,是非牛顿流体中比较特殊的一种,其在低应力下表现为刚体,但在高应力下表现为粘性流体(即粘度恒定),以牙膏为例,当我们挤压它的力较小时,它就表现为固体,而当力达到一个临界值,它就会变成流体,从开口流出.如图是测得的某几种液体的流变τγ-曲线,则其中属于牙膏和液体防弹衣所用液体的曲线分别是( )A. ①和④B. ③和④C. ③和②D. ①和②8. 已知函数()()1e xf x x =-,点(),m n 在曲线()y f x =上,则()()f m f n -( )A. 有最大值为1e -,最小值为1 B. 有最大值为0,最小值为1e-C. 有最大值为0,无最小值D. 无最大值,有最小值为1e-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9 已知0c b a <<<,则( )A. ac bc <B. 333b c a +< C.a c ab c b+>+D.<10. 已知函数()21,2,5,2xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则( )A. 1a ≤- B. []1,4c ∈ C. ()20,5ad ∈ D. 222a b +=.11. 把一个三阶魔方看成是棱长为1的正方体,若顶层旋转x 弧度π02x ⎛⎫<<⎪⎝⎭,记表面积增加量为()S f x =,则( )A. π6f ⎛⎫=⎪⎝⎭B. ()f x 的图象关于直线π3x =对称C. S 呈周期变化D. 6S ≤-三、填空题:本题共3小题,每小题5分,共15分.12. 命题:“所有能被4整除的正整数能被2整除”的否定是______.13. 已知函数()sin2cos2f x x a x =+,将()f x 的图象向左平移π6个单位长度,所得图象与曲线()y f x =关于原点对称,则()0f =______.14. 已知22,e x ⎡⎤∈⎣⎦时,2log 2axx x ax ≥⋅,则正数a 的最大值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.15. 记ABC V 内角,,A B C 的对边分别为,,a b c ,已知πsin sin ,63C C b ⎛⎫+== ⎪⎝⎭,ABC V的面积为(1)求C ;(2)求ABC V 的周长.16. 已知函数()π2sin 43⎛⎫=- ⎪⎝⎭f x x .(1)求()f x 的单调递减区间;(2)若ππ,68x ⎡⎤∈-⎢⎥⎣⎦,求()()23-=+f x y f x 的最大值.17. 记锐角ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos 2cos cos c CA b B-=.(1)求B ;的(2)延长AC 到D ,使2,15AC CD CBD =∠= ,求tan A .18. 已知函数()()2e xf x x a =-.(1)求()f x 单调区间;(2)设12,x x 分别为()f x 的极大值点和极小值点,记()()()()1122,,,A x f x B x f x .证明:直线AB 与曲线()y f x =交于另一点C .19. 已知函数()()sin tan sin 2f x x x x =+-,其中01x <<,(1)证明:21cos 12x x >-;(2)探究()f x 否有最小值,如果有,请求出来;如果没有,请说明理由.的是菏泽市2024—2025学年度第一学期期中考试高三数学试题本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ABD 【10题答案】【答案】BCD 【11题答案】【答案】AD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】存在能被4整除的正整数不能被2整除【13题答案】【答案】【14题答案】四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.【15题答案】【答案】(1)π3C =(2)10+【16题答案】【答案】(1)π5ππ11π,224224k k ⎡⎤++⎢⎥⎣⎦,()k ∈Z (2)0【17题答案】【答案】(1)45B =(2)2+【18题答案】【答案】(1)单调增区间为()(),2,,a a ∞∞--+,单调减区间为(2,)a a - (2)证明见解析【19题答案】【答案】(1)证明见解析(2)没有,理由见解析。
高三数学上学期期中考试试题 理
师范大学附属实验中学2021-2021学年度第一学期期中试卷师范大学附属实验中学本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
班级______ 姓名_______ 学号_______ 成绩_______一、选择题:本大题一一共8小题,每一小题5分,一共40分. 在每一小题列出的四个选项里面,选出符合题目要求的一项. 1.集合A={0,1,2},集合B=={A a a x x ∈=,2|},那么B A = 〔A 〕{0} 〔B 〕{1,2} 〔C 〕{0,2} 〔D 〕0,22.函数2)12ln(x x y -+=的导函数的零点为 〔A 〕0.5或者 -1 〔B 〕〔0.5,-1〕 〔C 〕13.函数x x x x x f 42cos 4cos 4cos sin 47)(-+-= )(R x ∈的最大值与最小值的和为 〔A 〕12〔B 〕14〔C 〕36〔D 〕164.等比数列}{n a 中,首项为1a ,公比为q ,前n 项之和为n S .假设}{n S 为递减数列,那么有〔A 〕01<a ,0>q 〔B 〕01>a ,0<q 〔C 〕01>a ,10<<q 〔D 〕01<a ,0<q5.点O 是边长为1的等边ABC ∆的中心,那么=+•+)()(OC OA OB OA 〔A 〕91 〔B 〕-91〔C 〕61 〔D 〕61-6.0>c ,设p :函数x c y =在R 上单调递减;函数)122lg()(2++=x cx x g 的值域为R ,假如“q p ∧〞为假命题,“q p ∨〞为真命题,那么c 的取值范围是 〔A 〕)1,21(〔B 〕),21(+∞〔C 〕),1[]21,0(+∞ 〔D 〕),(+∞-∞7.ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,假设A bccos <,那么ABC ∆为 〔A 〕钝角三角形 〔B 〕直角三角形 〔C 〕锐角三角形 〔D 〕等边三角形8. 函数)(x f 对任意R x ∈都有)2(2)()4(f x f x f =-+,假设)1(-=x f y 的图像关于直线1=x 对称,且2)1(=f ,那么)2011(f = 〔A 〕6〔B 〕4〔C 〕3〔D 〕2第二卷〔非选择题 一共110分〕二、填空题:本大题一一共6小题,每一小题5分,一共30分.9.命题P :“032,2≥-+∈∀x x R x 〞,那么命题P 的否认是 _____________; 10.在数列}{n a 中,311=a ,设n S 为数列}{n a 的前项和,且n n a n n S )12(-=,那么=n S ______; 11.定义集合运算:},),(|{B y A x y x xy z z B A ∈∈+==⊗. 设集合A={0,1},B={2,3}那么集合B A ⊗的所有元素之和为_____________;12.在ABC ∆中,oC 60=,=+++++++CB CB AC A C B A sin sin sin sin sin sin sin sin sin sin ______;13.函数42321)(xx x x x f ++-=的最大值与最小值的积为__________; 14.给出以下命题:C① 假设“0tan sin >-αα〞那么“α是第二或者第四象限角〞;②平面直角坐标系中有三个点A 〔4,5〕,B 〔-2,2〕,C 〔2,0〕,那么ABC ∠tan =34; ③假设1>a ,1>b 且b a b a lg lg )lg(+=+,那么)1lg()1lg(-+-b a 的值是1; ④设][m 表示不大于m 的最大整数,假设R y x ∈,,那么][][][y x y x +≥+;其中所有正确命题的序号是___________ .三、解答题:本大题一一共6小题,一共80分.解容许写出文字说明,演算步骤或者证明过程. 15.〔此题13分〕:向量(2cos,2sin )44x x a = (sin ,)44x xb =,函数()3f x a b =+ 〔1〕求函数()y f x =的最小正周期及最值;〔2〕将函数()y f x =的图象纵坐标不变,横坐标伸长为原来的2倍后,再向左平移23π 得到函数()y g x =,判断函数()y g x =的奇偶性,并说明理由.16.〔此题13分〕:等差数列{}n a 的公差和等比数列{}n b 的公比都是d ,(1)d ≠且11a b =,44,a b = 1010;a b = (1) 求数列{}n a ,{}n b 的通项公式; (2) 设数列{}n b 的前n 和为n T ,求n T ;(3) 16b 是否为数列{}n a 中的项?假如是,是第几项?假如不是,请说明理由.17.〔此题13分〕如图,港口B 在港口O 正120海里处,小岛C 在港口O 北偏060向和港口B 北偏西030方向上,一艘科学考察船从港口O 出发,沿北偏东030的OA 方向以每小时20海里的速度驶离港口O ,一艘快艇从港口B 出发,以每小时60海里的速度驶向小岛C ,在C 岛装运补给物资后给考察船送去,现两船同时出发,补给物资的装船时间是需要1小时,问快艇驶离港口B 后最少要经过多少时间是才能和考察船相遇?18.〔此题14分〕 函数:3()(3)13a f x x a x =+++ . 〔1〕当3a =-时,求过点(1,0)曲线()y f x =的切线方程; 〔2〕求函数()y f x =的单调区间;〔3〕函数是否存在极值?假设有,那么求出极值点;假设没有,那么说明理由.19.〔此题14分〕设奇函数()f x 的定义域为)0()0,(∞+-∞ ,且在(0,)+∞上为增函数 〔1〕假设(1)0,f = 解关于x 的不等式:(1log )0a f x +> (01)a << 〔2〕假设(2)1,f -=-当0,0m n >>时,恒有()()(),f m n f m f n ⋅=+求()11f t +<时,t 的取值范围.20.〔此题13分〕东数列{}k a 满足:112a = 且211k k k a a a n+=+ (1,2,,1)k n =-其中n 是一个给定的正整数 〔1〕证明:数列{}k a 是一个单调数列; 〔2〕证明:对一切1m n <<,m N ∈有:12321m n na n m n m +<<-+-+.本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
甘肃省兰州市西北师范大学附属中学2022-2023学年高三上学期期中考试理科数学试卷
西北师大附中2022—2023学年第一学期期中考试试题高三数学(理) 命题人:张丽娇 审题人:惠银东一、选择题(本题共12小题,每小题5分,共60项是符合题目要求的.)1.已知集合{}3,2,1,2A =---,{B x =2|56x x --≤}0,则A ⋂C R B =( )A .{}3-B .{}3,2,1---C .{}3,2--D .{}1,2- 2.集合{}{}201A x x ax a =++=⊆,则a 为( )A .12-B .()0,4a ∈C .()[),04,a ∈-∞⋃+∞D .()10,42a ⎧⎫∈-⋃⎨⎬⎩⎭ 3.已知m ∈R ,“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( )A.充分不必要条件 B .必要不充分条件C.充要条件 D .既不充分也不必要条件4.已知命题000:,3sin 4cos p x x x ∃∈+=R ;命题 1:,1xq x e ⎛⎫∀∈≤ ⎪⎝⎭R ,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∨⌝D .()p q ⌝∨5.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝⎛⎭⎫1+S N .它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N叫作信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比S N从1000提升到8000,则C 大约增加了(lg 2≈0.301)( )A .10%B .20%C .30%D .50%6.已知,,m n l 是不同的直线,,αβ是不同的平面,以下命题正确的是( )①若m ∥n ,,m n αβ⊂⊂,则α∥β;②若,m n αβ⊂⊂,α∥l m β⊥,,则l n ⊥; ③若,,m n αβα⊥⊥∥β,则m ∥n ;④若αβ⊥,m ∥α,n ∥β,则m n ⊥;A .②③B .③④C .②④D .③7.已知非常数函数f(x)满足f (−x )f (x )=1(x ∈R),则下列函数中,不是奇函数的是( )A .f (x )−1f (x )+1B .f (x )+1f (x )−1C .f (x )−1f (x )D . f (x )+1f (x )8.已知3log 2a =,4log 3b =,23c =,则( ) A .a c b << B .c a b << C .b a c << D .b c a <<9.函数f (x )=3|x |·cos 2x x的部分图象大致是( )10.若()f x 的定义域为R ,对,x y R ∀∈,()()()()(),11f x y f x y f x f y f ++-== 则()221k f k ==∑( )A .-3B .-2C .0D .111.已知正四棱锥的侧棱长为l ,其各顶点都在同一个球面上,若该球的体积为36π, 且3≤l ≤3√3,则该正四棱锥体积的取值范围是( )A.[18,814]B.[274,643]C.[274,814]D.[18,27]12.定义在R 上的函数f(x)的导函数为f′(x),若f′(x)<f(x),则不等式e x f(x +1)<e 4f(2x -3)的解集是( )A .(-∞,2)B .(2,+∞)C .(4,+∞)D .(-∞,4)二、填空题(本题共4小题,每小题5分,共20分)13.若()3,01,0x x f x x x⎧≤⎪=⎨>⎪⎩,则()()2f f -=__________. 14.函数y =lg(c +2x -x 2)的定义域是(m ,m +4),则实数c 的值为__________. 15.∫(3−3sinx +√9−x 2)dx =__________.16.已知定义在R 上的偶函数f (x ),满足f (x +4)=f (x )+f (2),且在区间[0,2]上单调递增,则 ①函数f (x )的一个周期为4;②直线x =-4是函数f (x )图象的一条对称轴;③函数f (x )在[-6,-5)上单调递增,在[-5,-4)上单调递减;④函数f (x )在[0,100]上有25个零点.其中正确命题的序号是________.(注:把你认为正确的命题序号都填上)三、解答题(共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(14分)在以下三个条件中任选一个,补充在下面问题中,并进行解答.“①函数y =√x 2+2x −k 的定义域为R ,②∃x ∈R ,使得|x −1|+|x −2|+k ⩽0, ③方程x 2+k =0有一根在区间[1,+∞)内”问题:已知条件p :______,条件q :函数f(x)=2x 2−kx 在区间(−3,a)上不单调,若p 是q 的必要条件,求实数a 的最大值.18.(14分)已知函数f (x )=ln (m x x+1−1)(其中m ∈R 且m ≠0)是奇函数.(1)求m 的值;(2)若对任意的x ∈[ln2,ln4],都有不等式f (e x )−x +lnk ≥0恒成立, 求实数k 的取值范围.19.(14分)已知函数f (x )=x 2-2x +aln x(a ∈R).(1)若函数在x =1处的切线与直线x -4y -2=0垂直,求实数a 的值;(2)当a >0时,讨论函数f(x)的单调性.20.(14分)已知函数f (x )=2a+1a −1a 2x ,a >0 (1)证明:函数f (x )在(0,+∞)上单调递增;(2)设0<m <n ,若f (x )的定义域和值域都是[m,n ],求n −m 的最大值.21.(14分)已知函数()212x f x e x ax =--有两个极值点12x x ,, (1)求实数a 的取值范围;(2)求证:()()122f x f x +>.。
江苏省徐州市2023-2024学年高三上学期11月期中数学试题含解析
2023~2024学年度第一学期高三年级期中抽测数学试题(答案在最后)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}{}1,2,3,4,5,1,3,1,2,5U A B ===,则()U A B =ð()A.{}1,3,4 B.{}1,3 C.{}1,2,5 D.{}1,2,4,5【答案】A 【解析】【分析】利用并集与补集的概念计算即可.【详解】由题意可知{}3,4U B =ð,所以(){}1,3,4U A B ⋃=ð.故选:A 2.若2i 1iz -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】根据复数的乘法运算求得复数z ,即可得z ,可得其对应的点的坐标,即可得答案.【详解】由题意知2i 1iz -=+,故i(1i)21i z =++=+,故1iz =-则复数z 对应的点为(1,1)-,在第四象限,故选:D3.拋掷一枚质地均匀的骰子,将得到的点数记为a ,则,4,5a 能够构成钝角三角形的概率是()A.23B.12C.13D.16【答案】D 【解析】【分析】先确定a 可能的取值,再结合余弦定理判断三角形为钝角时a 的取值,根据古典概型的概率公式,即可求得答案.【详解】由题意拋掷一枚质地均匀的骰子,将得到的点数记为a ,则a 的取值可能为1,2,3,4,5,6,有6种可能;,4,5a 能够构成三角形时,需满足19a <<,若,4,5a 能够构成钝角三角形,当5所对角为钝角时,有2222450,9a a +-<∴<,此时2a =;当a 所对角为钝角时,需满足2222540,41a a +-<∴>,此时没有符合该条件的a 值,故,4,5a 能够构成钝角三角形的概率是16,故选:D4.已知向量()()0,2,1,a b t =-= ,若向量b 在向量a 上的投影向量为12a - ,则⋅= ab ()A.2-B.52-C.2D.112【答案】A 【解析】【分析】根据投影向量定义及向量的数量积、向量的模计算即可.【详解】因为()()0,2,1,a b t =-=,所以向量b 在向量a上的投影向量为2142||||b a a t a a a a⋅-⋅==-,所以1t =,故2a b ⋅=-故选:A5.已知等比数列{}n a 的首项为3,则“911a a <”是“1114a a <”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B 【解析】【分析】结合等比数列的通项公式,由911a a <可得q 的取值范围,说明1q <-时不能推出1114a a <;继而说明1114a a <成立时推出1q >,即可推得911a a <,由此可判断答案.【详解】由题意知等比数列{}n a 的首项为3,设公比为q ,由911a a <,则81033q q <,即21,1q q >∴>或1q <-,当1q <-时,01114133(1)0q a a q -=->,即1114a a >,即“911a a <”不是“1114a a <”的充分条件;当1114a a <时,即1013,1q q q <∴>,则810q q <,即81033q q <,即911a a <,故“911a a <”是“1114a a <”的必要条件,故“911a a <”是“1114a a <”的必要不充分条件,故选:B 6.已知π4ππsin ,3536θθ⎛⎫+=-<< ⎪⎝⎭,则πtan 26θ⎛⎫+= ⎪⎝⎭()A.2425-B.2425C.724D.724-【答案】C 【解析】【分析】根据角的变换及诱导公式,二倍角的正切公式求解即可.【详解】因为ππ36θ-<<,所以ππ032θ<+<,所以3cos 5π3θ⎛⎫= ⎪⎭+⎝,故4tan 3π3θ⎛⎫= ⎪⎭+⎝,πππsin 2cos 232πππ13tan 2tan 2ππ632ππsin 2tan 2cos 23332θθθθθθθ⎡⎤⎛⎫⎛⎫+-+ ⎪⎢ ⎪⎡⎤⎛⎫⎛⎫⎝⎭⎣⎦⎝⎭+=+-==-=-⎪ ⎪⎢⎡⎤⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎣⎦+++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2π161tan 17394π2422tan 33θθ⎛⎫-+-⎪⎝⎭=-=-=⎛⎫⨯+ ⎪⎝⎭,故选:C7.已知()1y f x =-为偶函数,当1x ≥-时,()()2ln 23f x x x =++.若()()12f x f x >,则()A.()()121220x x x x -+-< B.()()121220x x x x -+->C.()()121220x x x x -++< D.()()121220x x x x -++>【答案】D 【解析】【分析】利用偶函数的性质及复合函数的单调性计算即可.【详解】由()1y f x =-为偶函数可知()f x 的图象关于=1x -轴对称,又1x ≥-时,()222312u x x x =++=++单调递增,ln y u =单调递增,故()()2ln 23f x x x =++在()1,-+∞上单调递增,(),1-∞-上单调递减,即()()()()()()221212121212111120f x f x x x x x x x x x >⇒+>+⇒+-+=-++>.故选:D8.已知抛物线2:4C y x =的焦点为F ,过点()0,3的直线与C 交于,A B 两点,线段AB 的垂直平分线与x 轴交于点D ,若6AF BF +=,则ABD △的面积为()A.2B.C.2D.【答案】C 【解析】【分析】设AB 的中点为H ,A 、B 、H 在准线上的射影分别为A B H '''、、,由题意和抛物线的定义可得3HH '=,即2H x =,设()()1122,,,A x y B x y ,设直线AB 方程,联立抛物线方程,利用韦达定理求出直线AB 的斜率,求得H 的坐标,进而求出其中垂线方程,可得D 的坐标,结合弦长公式和三角形面积公式计算即可求解.【详解】设AB 的中点为H ,抛物线的焦点为(1,0)F ,准线为=1x -,设A 、B 、H 在准线上的射影分别为A B H '''、、,则1()2HH AA BB '''=+,由抛物线的定义可知,,,6AF AA BF BB AF BF ''==+=,所以6AA BB ''+=,得3HH '=,即点H 的横坐标为2,设直线AB :3y kx =+,代入抛物线方程,得22(64)90k x k x +-+=,由22(64)360k k ∆=-->,得13k <且0k ≠.设()()1122,,,A x y B x y ,则122464k x x k -+==,解得2k =-或12(舍去).所以直线AB :23y x =-+,(2,1)H -,所以AB 的中垂线方程为11(2)2y x +=-,令0y =,解得4x =,即(4,0)D ,则DH =又122994x x k==,所以AB =所以1122ABD S AB DH == .故选:C.Q二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.为调研某地空气质量,连续10天测得该地PM 2.5(PM 2.5是衡量空气质量的重要指标,单位:3ug /m )的日均值,依次为36,26,17,23,33,106,42,31,30,33,则()A.前4天的极差大于后4天的极差B.前4天的方差小于后4天的方差C.这组数据的中位数为31或33D.这组数据的第60百分位数与众数相同【答案】AD 【解析】【分析】根据方差和极差判断A ,B 选项,根据中位数判断C 选项,根据百分位数和众数判断D 选项.【详解】前4天的极差361719-=,后4天的极差423012-=,A 正确;前4天的平均数25.5,方差222210.50.58.5 2.547.254+++=,后4天的平均数34,方差2222834122.54+++=,前4天的方差大于后4天的方差,B 选项错误;数据从小大排列17,23,26,30,31,33,33,36,42,106,这组数据的中位数为3133322+=,C 选项错误;这组数据的第60百分位数100.66⨯=是第6个数和第7个数的平均数3333332+=与众数33相同,D 选项正确.故选:AD.10.已知函数()()cos (0,0,0π)f x A x A ωϕωϕ=+>><<在5π12x =处取得极小值2-,与此极小值点相邻的()f x 的一个零点为π6,则()A.()2π2sin 23f x x ⎛⎫=+⎪⎝⎭B.π3y f x ⎛⎫=-⎪⎝⎭是奇函数C.()f x 在ππ,63⎛⎫- ⎪⎝⎭上单调递减D.()f x 在π5π,46⎡⎫⎪⎢⎣⎭上的值域为⎡-⎣【答案】ABD 【解析】【分析】对A ,根据极小值可得A ,再根据极值点与零点关系可得周期,进而可得ω,再代入极小值点求解即可;对B ,根据解析式判断即可;对C ,代入ππ,63⎛⎫- ⎪⎝⎭判断是否为减区间即可;对D ,根据正弦函数在区间上的单调性与最值求解即可.【详解】对A ,由题意2A =-,且周期T 满足5πππ12644T -==,故πT =,即2ππω=,2=ω,故()()2cos 2f x x ϕ=+.因为()f x 在5π12x =处取得极小值2-,故()5π2π2π,Z 12k k ϕ⨯+=+∈,即()π2π,Z 6k k ϕ=+∈,又0πϕ<<,故π6ϕ=,则()π2cos 26f x x ⎛⎫=+ ⎪⎝⎭.由诱导公式()2ππππ2sin 22sin 22cos 23626f x x x x ⎛⎫⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故A 正确;对B ,ππππ2cos 22cos 22sin 23362y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对C ,ππ,63x ⎛⎫∈-⎪⎝⎭则ππ5π2,666x ⎛⎫+∈- ⎪⎝⎭,不为余弦函数的单调递减区间,故C 错误;对D ,π5π,46x ⎡⎫∈⎪⎢⎣⎭则1π22π1π,366x ⎡⎫∈⎪⎢⎣⎭+,故,πc 2os 216x ⎡⎫∈-⎪⎢⎪⎛⎫+ ⎪⎝⎣⎭⎭,则π2cos 26x ⎡∈-⎣⎛⎫+ ⎪⎝⎭,故D 正确.故选:ABD11.在棱长为2的正方体1111ABCD A B C D -中,,E F 分别是棱,BC CD 的中点,则()A.11B D 与EF 是异面直线B.存在点P ,使得12A P PF =,且BC //平面1APBC.1A F 与平面1B EB 所成角的余弦值为3D.点1B 到平面1A EF 的距离为45【答案】BC 【解析】【分析】A 选项,建立空间直角坐标系,根据112B D EF = 得到11B D 与EF 平行;B 选项,先求出242,,333P ⎛⎫⎪⎝⎭,得到平面1APB 的法向量()1,0,1m =- ,根据数量积为0得到BC m ⊥,得到BC //平面1APB ;C 选项,先求出1A F 与平面1B EB 所成角的正弦值,进而求出余弦值;D 选项,求出平面1A EF 的法向量,根据点到平面距离公式求出答案.【详解】A 选项,以A 作坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()()()()1112,0,2,0,2,2,2,1,0,1,2,0,0,0,2,2,0,0,2,2,0B D E F A B C ,则()()112,2,0,1,1,0B D EF =-=- ,由于112B D EF =,故11B D 与EF 平行,A 错误;B 选项,设(),,P x y z ,因为12A P PF =,所以()()2,,21,2,x y z x y z ----=,即224222x xy y z z=-⎧⎪=-⎨⎪-=-⎩,解得242,,333x y z ===,故242,,333P ⎛⎫⎪⎝⎭,设平面1APB 的法向量为(),,m a b c =,则()()()1242242,,,,0333333,,2,0,2220m AP a b c a mAB a b c a c ⎧⎛⎫⋅=⋅=++= ⎪⎪⎝⎭⎨⎪⋅=⋅=+=⎩ ,令1a =,则0,1b c ==-,则()1,0,1m =-,因为()()0,2,01,0,10BC m ⋅=-= ,故BC m ⊥,BC //平面1APB ,故存在点P ,使得12A P PF =,且BC //平面1APB ,B 正确;C 选项,平面1B EB 的法向量为()1,0,0n =r,故1A F 与平面1B EB 所成角的正弦值为1113A F n A F n ⋅=⋅,则1AF 与平面1B EB所成角的余弦值为3=,C 正确;D 选项,设平面1A EF 的法向量为()1111,,n x y z =,则()()()()11111111111111,,2,1,2220,,1,1,00n A E x y z x y z n EF x y z x y ⎧⋅=⋅-=+-=⎪⎨⋅=⋅-=-+=⎪⎩,令11x =,则1131,2y z ==,故131,1,2n ⎛⎫= ⎪⎝⎭ ,则点1B 到平面1A EF的距离为111117A B n n ⋅==,D 错误.故选:BC12.已知函数()()()11ln ,f x a x x x a =-++∈R ,则下列说法正确的是()A.当1ln8a =时,()122f f ⎛⎫= ⎪⎝⎭B.当0a >时,()22f a a a <-C.若()f x 是增函数,则2a >-D.若()f x 和()f x '的零点总数大于2,则这些零点之和大于5【答案】ABD 【解析】【分析】直接代入即可判断A ,令()()()22a g a f a a =--,利用导数说明函数的单调性,即可判断B ,由()0f x '≥在()0,∞+上恒成立,利用导数求出()min f x ',即可求出a 的取值方程,即可判断C ,首先说明2a <-,得到()f x '在()0,1和()1,+∞上各有一个零点1x ,2x ,利用对数均值不等式得到121x x >,即可得到122x x +>,再说明()f x 在()10,x 和()2,x +∞上各有一个零点3x 、4x 且431x x =,最后利用基本不等式证明即可.【详解】对于A :当1ln 8a =时()()()11ln 1ln 8f x x x x =-++,则()12ln3ln23ln 23ln 208f =+=-+=,11111331ln 1ln ln 2ln 202282222f ⎛⎫⎛⎫⎛⎫=-++=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()122f f ⎛⎫=⎪⎝⎭,故A 正确;对于B :()()()()211ln 1ln f a a a a a a a a a =-++=-++,令()()()()()()222221ln 21ln a a a a a a a a a g a f a a a --+--=--+==++,则()112ln ln 21a a a a a a ag a '=+-++=-++,令()()1ln 21a a am a g a -+=+'=,则()2222217211214820a m a a a a a a a '⎛⎫--- ⎪--⎝⎭=--==<,所以()g a '在()0,∞+上单调递减,又()10g '=,所以当01a <<时()0g a '>,当1a >时()0g a '<,所以()g a 在()0,1上单调递增,在()1,+∞上单调递减,所以()()max 110g a g ==-<,所以当0a >时,()22f a a a <-,故B 正确;对于C :()1ln 0x f x a x x+'=++≥在()0,∞+上恒成立,令()()1ln x h x f x a x x +'==++,则()22111x h x x x x-'=-=,所以当01x <<时()0h x '<,当1x >时()0h x '>,所以()f x '在()0,1上单调递减,在()1,+∞上单调递增,所以()()min 120f x f a ''==+≥,解得2a ≥-,故C 错误;对于D :因为()10f =,即1为()f x 的一个零点,当2a =-时()0f x '≥,()0f x '=有且仅有一个根1,此时()f x 在()0,∞+上单调递增,所以()f x 和()f x '都只有1个零点,不符合题意;当2a >-时()0f x ¢>,则()f x '无零点,()f x 只有一个零点,不符合题意;当2a <-时()f x '在()0,1和()1,+∞上各有一个零点1x ,2x ,所以11221ln 101ln 10a x x a x x ⎧+++=⎪⎪⎨⎪+++=⎪⎩,所以211221ln ln x x x x x x -=>-,所以121x x >,所以122x x +>=,且()f x 在()10,x 上单调递增,在()12,x x 上单调递减,在()2,x +∞上单调递增,且()10f =,所以()10f x >,()20f x <,所以()f x 在()10,x 和()2,x +∞上各有一个零点3x 、4x ,又()()()11111111ln 11ln f a a x x x f x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-++=--++=-⎡⎤⎪ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭,所以431x x =,所以()123412*********x x x x x x x x ⎛⎫++++=++++>++= ⎪⎝⎭,故D 正确.ln ln a ba b-<-的证明如下:ln ln a b a b -<-,只需证ln ln ln aa b b -=⇔=1x =>,只需证12ln x x x <-,1x >,设1()2ln n x x x x=-+,1x >,则()22221(1)10x n x x x x-'=--=-<,可得()n x 在(1,)+∞上单调递减,∴1()(1)02ln n x n x x x<=⇒<-,得证.故选:ABD【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.三、填空题:本题共4小题,每小题5分,共20分.13.已知随机变量()25,X N σ~,且(7)0.8P X <=,则(35)P X <<的值为__________.【答案】0.3##310【解析】【分析】根据正态分布的性质求得(7)P X ≥,根据正态分布的对称性求出(3)0.2P X ≤=,继而可求得答案.【详解】由题意知随机变量()25,X N σ~,且(7)0.8P X <=,则(7)10.80.2P X ≥=-=,故(3)0.2P X ≤=,故(35)0.5(3)0.50.20.3P X P X <<=-≤=-=,故答案为:0.314.已知52323a x x ⎛⎫+ ⎪⎝⎭的展开式中所有项的系数之和为32,则展开式中的常数项为__________.【答案】270【解析】【分析】利用二项式定理计算即可.【详解】令()5523211332322a x x a a x ⎛⎫=⇒+=+=⇒=- ⎪⎝⎭,则()552233233a x x x x -⎛⎫+=- ⎪⎝⎭,设()5233x x --的通项为()()()5235102355C 3C 31rrrrrr r r r T x x x -----=-=⋅⋅-⋅,当2r =时,()55C 311027270rrr -⋅⋅-=⨯=,即展开式中的常数项为270.故答案为:27015.已知圆锥的母线长为5,侧面积为15π,则该圆锥的内切球的体积为__________.【答案】9π2【解析】【分析】根据圆锥的侧面积求出圆锥的底面半径,即可求得圆锥的高,继而利用圆锥的母线和高之间的夹角的正弦求得内切球半径,即可求得答案.【详解】设圆锥的底面半径为r ,圆锥内切球的半径为R ,则π515π,3r r ⨯⨯=∴=,则圆锥的高为22534h =-=,设圆锥的母线和高之间的夹角为π,(0,)2θθ∈,则33sin ,452R R R θ==∴=-,故该圆锥的内切球的体积为3439ππ(322⨯=,故答案为:9π216.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点P 在C 上,且2PF x ⊥轴,过点2F 作12F PF ∠的平分线的垂线,与直线1PF 交于点A ,若点A 在圆222:O x y a +=上,则C 的离心率为__________.3【解析】【分析】由题意求出22||b PF a =,结合双曲线定义以及角平线性质推出1||2AF a =,从而推出1222cos 2cPF F b a a ∠+=,在1AOF △中,利用余弦定理可求得4224340a a c c -+=,结合齐次式求解离心率,即可得答案.【详解】由题意知2(,0)F c ,2PF x ⊥轴,故将x c =代入22221x ya b-=中,得22221c y a b -=,则2b y a =±,即22||b PF a=,不妨设P 在双曲线右支上,则12||||2PF PF a -=,故21||2b PF a a=+;设PQ 为12F PF ∠的平分线,由题意知2F A PQ ⊥,则2||||PA PF =,即2||b PA a =,而211||||||2b PF PA AF a a=+=+,故1||2AF a =,由点A 在圆222:O x y a +=上,得||OA a =;又1||OF c =,则1221212c ||os 2||F F PF b c PF F a a∠=+=,在1AOF △中,222111112||||||2||||cos OA OF AF OF AF PF F =+-⋅∠,即222224222ca c a c ab a a=+-⋅⋅⋅+,结合222b c a =-,即得4224340a a c c -+=,即42430e e -+=,解得23e =或21e =(舍),故3e =,即C 33【点睛】关键点睛:求解双曲线的离心率,关键是求出,,a b c 之间的数量关系式,因此解答本题时,要结合题中条件以及双曲线定义推出相关线段长,从而在1AOF △中,利用余弦定理求出,,a b c 的关系,化为齐次式,即可求得答案.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,且过点2⎫⎪⎪⎭.(1)求C 的标准方程;(2)过点()1,0-的直线l 与C 交于,A B 两点,当165AB =时,求直线l 的方程.【答案】(1)22143x y +=(2)y =或y =-【解析】【分析】(1)根据离心率的定义和椭圆经过的点,列出方程组,解之即可求解;(2)易知直线l 的斜率不为0,设:(1)l y k x =+,()()1122,,,A x y B x y ,联立椭圆方程,利用韦达定理表示出1212,x x x x +,根据弦长公式化简可得2212(1)34k AB k +=+,结合165AB =计算求出k 的值即可求解.【小问1详解】由题意,222222212()21c e a a b a b c ⎧==⎪⎪⎪⎨⎪+=⎪⎪=+⎩,解得2243a b ⎧=⎨=⎩,所以椭圆C 的标准方程为22143x y +=.【小问2详解】易知直线l 的斜率不为0,设:(1)l y k x =+,即y kx k =+,()()1122,,,A x y B x y ,22143y kx kx y =+⎧⎪⎨+=⎪⎩,消去y ,得2222(34)84120k x k x k +++-=,22222(8)4(34)(412)990k k k k ∆=-+-=+>,221212228412,3434k k x x x x k k -+=-=++,2212(1)34k AB k+==+,又165AB=,所以2212(1)16534kk+=+,解得k=,所以直线l的方程为yy=-.18.在①()()21212n n nS S a n-+=+≥,②1na=+这两个条件中任选一个,补充在下面问题中,并解答下列问题.已知正项数列{}n a的前n项和为1,1nS a=,且__________,*Nn∈.(1)求{}n a的通项公式;(2)设11,n nn nb Ta a+=为数列{}n b的前n项和,证明:12nT<.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)21na n=-(2)证明见解析【解析】【分析】(1)若选择①,根据n a和n S的关系得到12n na a+-=,确定等差数列得到通项公式;若选择②,根据n a和n S的关系得到12n na a+-=,确定等差数列得到通项公式;(2)确定11122121nbn n⎛⎫=-⎪-+⎝⎭,再根据裂项求和法计算得到答案.【小问1详解】若选择①:()()21212n n nS S a n-+=+≥,则()21121n n nS S a+++=+,相减得到:()()()1112n n n n n na a a a a a++++=+-,0na>,故12n na a+-=,()122221S S a+=+,解得23a=,212a a-=,故数列{}n a为首项是1,公差为2的等差数列,故21na n=-;若选项②:1na=+,则()241n nS a=+,()21141n nS a++=+,相减得到:()()2211411n n n a a a ++=+-+,整理得到()()1120n n n n a a a a +++--=,0n a >,故120n n a a +--=,故数列{}n a 为首项是1,公差为2的等差数列,故21n a n =-;【小问2详解】()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,故()21111111112335212122211n T n n n ⎛⎫=-+-++-=- ⎪-++⎝<⎭ .19.在ABC 中,角,,A B C 的对边分别为,,a b c ,且cos cos 3cos 3b C c B b A c +=-.(1)求cos B ;(2)设角B 的平分线交AC 边于点D,且BD =,若b =ABC 的面积.【答案】(1)13-(2)【解析】【分析】(1)利用正弦定理边化角结合两角和的正弦公式化简已知等式,可得cos B ,即得答案;(2)根据同角三角函数关系求出sin 3B =,设π,(0,)2ABD θθ∠=∈,由二倍角余弦公式求出cos 3θ=,利用等面积法推出()32a c ac +=,结合余弦定理即可求得12ac =,从而利用三角形面积公式求得答案.【小问1详解】由题意cos cos 3cos 3b C c B b A c +=-可得sin cos sin cos 3sin cos 3sin B C C B B A C +=-,即sin()3sin cos 3sin()B C B A A B +=-+,即sin 3sin cos 3(sin cos cos sin )3sin cos A B A A B A B A B =-+=-,而(0,π),sin 0A A ∈∴>,故1cos 3B =-;【小问2详解】由(0,π)B ∈,1cos 3B =-可得sin 3B =,角B 的平分线交AC 边于点D ,设π,(0,)2ABD θθ∠=∈,则213cos 2cos 1cos 33B θθ=-=-∴=,111sin sin sin 2222ABC S c a ac θθθ=⋅+=⋅ ,()32323ac a c ac =⋅∴+=,由b =22212483b a c ac ⎛⎫=+-⋅-= ⎪⎝⎭,即()24483a c ac +-=,则()()224448,129093a c ac ac ac -=∴-+=,则12ac =(负值舍去),故21s in 11232ABC ac B S =⨯⨯== 20.设有甲、乙、丙三个不透明的箱子,每个箱中装有除颜色外都相同的5个球,其中甲箱有3个蓝球和2个黑球,乙箱有4个红球和1个白球,丙箱有2个红球和3个白球.摸球规则如下:先从甲箱中一次摸出2个球,若从甲箱中摸出的2个球颜色相同,则从乙箱中摸出1个球放入丙箱,再从丙箱中一次摸出2个球;若从甲箱中摸出的2个球颜色不同,则从丙箱中摸出1个球放入乙箱,再从乙箱中一次摸出2个球.(1)若最后摸出的2个球颜色不同,求这2个球是从丙箱中摸出的概率;(2)若摸出每个红球记2分,每个白球记1分,用随机变量X 表示最后摸出的2个球的分数之和,求X 的分布列及数学期望.【答案】(1)4495(2)分布列见解析,24475【解析】【分析】(1)求出甲箱中摸出2个球颜色相同的概率,继而求得最后摸出的2个球颜色不同的概率,再求出最后摸出的2个球是从丙箱中摸出的概率,根据条件概率的计算公式即可得答案.(2)确定X 的所有可能取值,求出每个值相应的概率,即可得分布列,根据期望公式即可求得数学期望.【小问1详解】从甲箱中摸出2个球颜色相同的概率为223225C C 2C 5P +==,记事件A 为最后摸出的2个球颜色不同,事件B 为这2个球是从丙箱中摸出的,则()()()|P AB P B A P A =,()111111113342222665661242C C C C C C C C 21433855C 5C 55C 5C 7523P A ⎛⎫⎛⎫=⨯⨯+⨯+⨯+⨯= ⎪⎝⎭⎝⎭,()111143223663C C C C 2148855C 5C 375P AB ⎛⎫=⨯⨯+⨯= ⎪⎝⎭,所以()8844375|389575P B A ==;【小问2详解】X 的所有可能取值为2,3,4,则()222342226662C C C 214333255C 5C 55C 25P X ⎛⎫==⨯⨯+⨯+⨯⨯= ⎪⎝⎭,()38375P X ==,()2222322542226666C C C C 2143228455C 5C 55C 5C 753P X ⎛⎫⎛⎫==⨯⨯+⨯+⨯⨯+= ⎪ ⎪⎝⎭⎝⎭,故X 的分布列如表:X 234P32538752875故()33828181141122442342575757575E X ++=⨯+⨯+⨯==.【点睛】难点点睛:本题解答的难点在于求分布列时,计算每个值相应的概率,要弄清楚每个值对应的情况,分类求解,注意计算量较大,要十分细心.21.如图,在三棱锥-P ABC 中,侧面PAB 是锐角三角形,PA BC ⊥,平面PAB ⊥平面ABC .(1)求证:AB BC ⊥;(2)设2,4PA PB AC ===,点D 在棱BC (异于端点)上,当三棱锥-P ABC 体积最大时,若二面角C PAD --大于30 ,求线段BD 长的取值范围.【答案】(1)证明见解析(2)46(0,9【解析】【分析】(1)过点P 作PE AB ⊥,根据面面垂直的性质定理,证得PE ⊥平面ABC ,进而证得BC ⊥平面PAB ,即可得到BC AB ⊥;(2)设2,2AB a BC b ==,得到22(4)3P ABC V a a -=-,令()22(4)3f a a a =-,利用导数求得函数的单调性,得到233a =时,三棱锥-P ABC 的体积最大,以B 为原点,建立空间直角坐标系,设BD m =,求得平面CPA 与PAD 的法向量分别为12,1)n = 和246(2,1)3n m= ,结合向量的夹角公式和题设条件,列出不等式,求得m 的取值范围即可.【小问1详解】证明:过点P 作PE AB ⊥于点E ,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,且PE ⊂平面PAB ,所以PE ⊥平面ABC ,又因为PA BC ⊥,且PE PA P = ,所以BC ⊥平面PAB ,因为AB ⊂平面PAB ,所以BC AB ⊥.【小问2详解】解:设2,2AB a BC b ==,因为BC AB ⊥,可得222AB BC AC +=,即224416a b +=,所以224a b +=,所以b =,又由PE ==所以2112222(4)3233P ABC V a b a a -=⨯⨯⨯==-,令()22(4)3f a a a =-,可得()22(43)3f a a '=-,令()0f a ¢=,解得233a =,当03a <<时,()0f a '>,()f a 单调递增;当23a <<时,()0f a '<,()f a 单调递减,所以当3a =时,即,33AB BC ==时,三棱锥-P ABC 的体积最大,以B 为原点,,BC BA 所在的直线分别为,x y 轴,以过点B 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,如图所示,设BD m =,可得4643232643(,,0),(0,,(,33333CA PA DA m =-=-=- ,则(,0,0),(,0,0),(0,,(0,,0)3333D m C P A ,设平面CPA 与平面PAD 的法向量分别为11112222(,,),(,,)n x y z n x y z == ,由11114643033033x y y z ⎧-+=⎪⎪⎨⎪-=⎪⎩,令1y =,可得111,1x z ==,所以1n = ,又由2222232603303y z mx y ⎧-=⎪⎪⎨⎪-+=⎪⎩,令1y =,可得22,13x z m ==,所以2()3n m = ,设二面角C PA D --的平面角的大小为θ,所以12123cos cos302n n n n θ⋅===,解得09m <<,所以BD 的长的取值范围为(0,9.22.已知函数()2e 32sin 1,xf x a ax x a =-+-∈R .(1)当01a <<时,求曲线()y f x =在点()()0,0f 处的切线与两坐标轴围成的三角形面积的最大值;(2)当0x =时,函数()f x 取得极值,求a 的值.【答案】(1)38(2)2a =或1a =【解析】【分析】(1)求出曲线()y f x =在点()()0,0f 处的切线方程,然后求出与x 轴,y 轴的交点,表示出切线与两坐标轴围成的三角形面积,然后利用导数求最大值即可;(2)令()00f '=求出a 的值,然后验证a 的值使函数()f x 在0x =处取到极值.【小问1详解】由已知()2e 32cos xf x a a x '=-+,01a <<则()2320f a a '=-+,()201f a =-,曲线()y f x =在点()()0,0f 处的切线方程为()22321y a a x a =-++-,01a <<当0x =时,21y a =-,当0y =时,12a x a +=--,设线()y f x =在点()()0,0f 处的切线与两坐标轴围成的三角形面积为()h a ,则()()221111112222a a a a a a h a ++=-=-⋅--,01a <<()()()()()()()()()23222321211213112222h a a a a a a a a a a a a +---+-∴-+-=⋅=--'-,令()0h a '>,则102a <<,即()h a 在10,2⎛⎫ ⎪⎝⎭上单调递增,令()0h a '<,则112a <<,即()h a 在1,12⎛⎫ ⎪⎝⎭上单调递减,即()max 111132112481222h a h +⎛⎫=-⋅= ⎪⎛⎫= ⎪-⎝⎝⎭⎭,即曲线()y f x =在点()()0,0f 处的切线与两坐标轴围成的三角形面积的最大值为38;【小问2详解】由(1)()2e 32cos x f x a a x '=-+,因为当0x =时,函数()f x 取得极值,得()20032f a a '=-+=,解得2a =或1a =,当2a =时,()4e 62cos x f x x '=-+,设()()4e 62cos xg x f x x '==-+,则()4e 2sin x g x x -'=,令()()4e 2sin xr x g x x =-'=,则()4e 2cos x r x x -'=,明显()4e 2cos x r x x -'=在π0,2⎛⎫ ⎪⎝⎭上单调递增,()()02r x r ''∴>=,即()4e 2sin x g x x -'=在π0,2⎛⎫ ⎪⎝⎭上单调递增,()4g x '∴>,即()4e 62cos x f x x '=-+在π0,2⎛⎫⎪⎝⎭上单调递增,()4620f x '∴>-+=,即函数()f x 在π0,2⎛⎫ ⎪⎝⎭上单调递增又明显()4e 2sin 0x g x x -'=>在π,02⎛⎫- ⎪⎝⎭上恒成立,则()4e 62cos x f x x '=-+在π,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ''∴<=,即函数()f x 在π,02⎛⎫- ⎪⎝⎭上单调递减,所以当0x =时,函数()f x 取得极值,当1a =时,()e 32cos x f x x '=-+,设()()e 2cos 3xt x f x x '=+-=,则()e 2sin xt x x -'=,当π,02x ⎛⎫∈- ⎪⎝⎭时,明显()0t x '>,当π0,2x ⎡⎫∈⎪⎢⎣⎭时,因为e 1,sin x x x x ≥+≥,()()()e 2sin 12sin sin 1sin 0x t x x x x x x x '∴-=≥+=-+-≥-()e 2sin 0x t x x -'∴=≥在ππ,22⎛⎫- ⎪⎝⎭上恒成立,()e 32cos x f x x '∴=-+在ππ,22⎛⎫- ⎪⎝⎭上单调递增,又()00f '=,∴函数()f x 在π,02⎛⎫- ⎪⎝⎭上单调递减,在π0,2⎡⎫⎪⎢⎣⎭上单调递增,所以当0x =时,函数()f x 取得极值,故2a =或1a =.现证明e 1x x ≥+,设()=e 1x m x x --,则()=e 1xm x '-,令()0m x '>,得0x >,()m x 在()0,∞+上单调递增,令()0m x '<,得0x <,()m x 在(),0∞-上单调递减,()()00m x m ∴≥=,即e 1x x ≥+,现证明πsin ,0,2x x x ⎡⎫≥∈⎪⎢⎣⎭,设()sin n x x x =-,则()1cos 0n x x ='-≥在π0,2⎡⎫⎪⎢⎣⎭上恒成立即()n x 在π0,2⎡⎫⎪⎢⎣⎭上单调递增,()()00n x n ∴≥=,即πsin ,0,2x x x ⎡⎫≥∈⎪⎢⎣⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建师大附中2016-2017学年第一学期高三期中考试卷数学 (理科)本试卷共4页. 满分150分,考试时间120分钟.注意事项:试卷分第I 卷和第II 卷两部分,将答案填写在答卷纸上,考试结束后只交答案卷.第I 卷 共60分 一、选择题:本大题有12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求. (1)若集合{}|23M x x =-<<,{}2|1,N y y x x R ==+∈,则集合M N =(A )[)1,3 (B )(-2,3)(C )(-2,+∞)(D )R(2)若复数22i1ia ++(a ∈R )是纯虚数,则复数i a 22+在复平面内对应的点在 (A )第一象限(B )第二象限(C )第三象限(D )第四象限(3)已知向量25||,10),1,2(=+=⋅=b a b a a ,则=||b (A )5 (B )10(C )5(D ) 25(4)已知3cos()63πα+=,则sin(2)6πα-的值为 (A )223(B )13(C )13-(D )223-(5)《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样的一道题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的1份为 (A )56(B )103(C )53(D )116(6) 等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(7) 已知函数()()32,f x x ax bx a b R =-++∈的图象如图所示,它与x 轴相 切于原点,且x 轴与函数图像所围成区域(图中阴影部分)的面积为112, 则a 的值为 (A )0(B )1(C )1-(D )2-(8) 已知函数()f x 是定义域为R 的偶函数,且()()11f x f x +=,若()f x 在[]1,0-上是减函数,记()()()0.50.52log 2,log 4,2a f b f c f ===,则(A )a c b >>(B )a b c >>(C )b c a >> (D )b a c >>(9) 将函数x x f 2cos 2)(=的图象向右平移6π个单位后得到函数)(x g 的图象.若函数)(x g 在区间]3,0[a 和]67,2[πa 上均单调递增,则实数a 的取值范围是 (A )3[,]48ππ(B )[,]32ππ(C )[,]63ππ(D )[,]62ππ(10) 已知数列{}n a 满足:112(2)n n n a a a n -+=+≥,11=a ,且2410a a +=,若n S 为数列{}n a 的 前n 项和,则2183n n S a ++的最小值为(A )4(B )3(C )264(D )133(11) 已知函数121)(--=x e x f x(其中e 为自然对数的底数),则)(x f y =的大致图象大致为(A )(B )(C )(D )(12) 定义在R 上的函数)(x f 满足:)(1)(x f x f ->',6)0(=f ,)(x f '是)(x f 的导函数,则不等式5)(+>xxe xf e (其中e 为自然对数的底数)的解集为(A )),0(+∞ (B )),3(+∞(C )),1()0,(+∞-∞(D )),3()0,(+∞-∞第Ⅱ卷 共90分 二、填空题:本大题有4小题,每小题5分.(13)在△ABC 中,角A ,B ,C 所对的边分别是a b c ,,,326a b A π===,,,则tan B = . (14)已知y x ,满足⎪⎩⎪⎨⎧≥≤-+≤-a x y x y x 020,且y x z -=2的最大值与最小值的比值为2-,则a 的值是 .(15)一艘海轮从A 出发,以每小时40海里的速度沿东偏南50o方向直线航行,30分钟后到达B处,在C 处有一座灯塔,海轮在A 观察灯塔,其方向是东偏南20o,在B 处观察灯塔,其方向 是北偏东65o,则B 、C 两点间的距离是 海里.(16)数列{}n a 满足*11(n n n a a a n +-=+∈N ,2)n ≥,n S 是{}n a 的前n 项和,若51a =,则6S = .三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)如图,在ABC ∆中,点D 在边BC 上,,4π=∠CAD 27=AC ,102cos -=∠ADB .(Ⅰ)求C ∠sin 的值;(Ⅱ)若ABD ∆的面积为7,求AB 的长.(18)(本小题满分12分)已知数列{}n a 的前n 项和为n S ,()()13,21122n n a S n a n ==++≥. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设()()*211n n b n N a =∈+,数列{}n b 的前n 项和为n T ,证明:()*3350nTn N <∈ . (19)(本小题满分12分)在ABC ∆中,内角,,A B C 所对边长分别为,,a b c ,8AB AC ⋅=,,4BAC a θ∠==.(Ⅰ)求bc 的最大值;(Ⅱ)求函数()32cos 21f θθθ=+-的值域. (20)(本小题满分12分)已知数列{}n a 是公差为正数的等差数列,其前n 项和为n S ,且1532=⋅a a ,4S =16. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)数列{}n b 满足11b a =,111n n n n b b a a ++-=⋅.①求数列{}n b 的通项公式;②是否存在正整数n m ,(m ≠n ),使得n m b b b ,,2成等差数列?若存在,求出n m ,的值;若不存在,请说明理由.(21)(本小题满分12分)已知a 为常数,R ∈a ,函数x ax x x f ln )(2-+=,x x g e )(=.(其中e 是自然对数的底数)(Ⅰ)过坐标原点O 作曲线)(x f y =的切线,设切点为),(00y x P ,求证:10=x ; (Ⅱ)令)()()(x g x f x F =,若函数)(x F 在区间]1,0(上是单调函数,求a 的取值范围.请考生在(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分.(22)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,圆C 的极坐标方程为:3)sin (cos 42-+=θθρρ.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.(Ⅰ)求圆C 的参数方程;(Ⅱ)在直角坐标系中,点(,)P x y 是圆C 上动点,试求y x 2+的最大值,并求出此时点P 的直角坐标.(23)(本小题满分10分)选修4-5:不等式选讲已知,m n 都是实数,0m ≠,|2||12|)(-+-=x x x f . (Ⅰ)若()2f x >,求实数x 的取值范围;(Ⅱ)若()m n m n m f x ++-≥对满足条件的所有,m n 都成立,求实数x 的取值范围.福建师大附中2016-2017学年第一学期高三期中考试数学 (理科)试题参考答案一、选择题:(1)-(12) ABCBC BCABD DA 二、填空题: (13)42(14)12(15)102 (16) 4 三、解答题:(17)解:(I) 因为102cos -=∠ADB ,所以1027sin =∠ADB........1分 又因为,4π=∠CAD 所以,4π-∠=∠ADB C ........2分所以4sin cos 4cos sin )4sin(sin πππADB ADB ADB C ∠-∠=-∠=∠7222241021025=⋅+⋅= ........6分(Ⅱ)在ADC ∆中,由正弦定理得ADCACC AD ∠=∠sin sin , 故2210275427sin sin )sin(sin sin sin =⨯=∠∠⋅=∠-∠⋅=∠∠⋅=ADB C AC ADB C AC ADC C AC AD π........8分又,710272221sin 21=⋅⋅⋅=∠⋅⋅⋅=∆BD ADB AB AD S ABD 解得5=BD ........10分 在ADB ∆中,由余弦定理得.37)102(5222258cos 2222=-⨯⨯⨯-+=∠⋅⋅-+=ADB BD AD BD AD AB ........12分 (18)以上两式相减,得()121n n n a n a na -=+-, ∴11nn a n a n -=-,...............4分∴132122132122n n n n n a a a n n a a n a a a n n ----=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅=--,∴3,12,2n n a n n ⎧=⎪=⎨⎪≥⎩...............6................1................2分(2)()()224,125111,21n n n b a n n ⎧=⎪⎪==⎨+⎪≥+⎪⎩...............................7分当1n =时,503325411<==b T ..................................8分当2n ≥时,()()21111111n b n n n n n =<=-+++,.................10分 ∴411111133133252334150150n T n n n ⎛⎫⎛⎫⎛⎫=+-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭...............12分∴()*3350n T n N <∈ (19)解(I)cos 8bc θ⋅= , 2222cos 4b c bc θ+-=即2232b c += ..............2分又222b c bc +≥ 所以16bc ≤ ,即bc 的最大值为16 .................4分当且仅当b=c=4,θ=3π时取得最大值 ................5分 (Ⅱ)结合(I)得,816cos θ≤, 所以 1cos 2θ≥ , 又0<θ<π 所以0<θ3π≤ ...........................7分()32cos 2-1f θθθ=+2sin(2)-16πθ=+ ................8分因0<θ3π≤,所以6π<5266ππθ+≤, .................9分当5266ππθ+= 即3πθ=时,min 1()2-102f θ=⨯= ................10分 当262ππθ+=即6πθ=时,max ()21-11f θ=⨯= ................11分所以,函数()3sin 2cos 2-1f θθθ=+的值域为[0,1] ................12分(20)解:(I)设数列{a n }的公差为d ,则d >0.由a 2·a 3=15,S 4=16,得⎩⎨⎧(a 1+d )(a 1+2d )=15,4a 1+6d =16,解得⎩⎨⎧a 1=1,d =2,或 ⎩⎨⎧a 1=7,d =-2.(舍去) ................2分所以a n =2n -1. …………………… 3分 (Ⅱ)①因为b 1=a 1,b n +1-b n =1a n ·a n +1,所以b 1=a 1=1,b n +1-b n =1a n ·a n +1=1 (2n -1)·(2n +1)=12(12n -1-12n +1), …………………… 5分即 b 2-b 1=12(1-13),b 3-b 2=12(13-15),…,b n -b n -1=12(12n -3-12n -1),(n ≥2)累加得:b n -b 1=12(1-12n -1)=n -12n -1,所以b n =b 1+n -12n -1=1+n -12n -1=3n -22n -1. ……………………7分b 1=1也符合上式.故b n =3n -22n -1,n ∈N*. …………………… 8分②假设存在正整数m 、n (m ≠n ),使得b 2,b m ,b n 成等差数列, 则b 2+b n =2b m .又b 2=43,b n =3n -22n -1=32-14n -2,b m =32-14m -2,所以43+(32-14n -2)=2(32-14m -2),即1 2m -1=16+14n -2,化简得:2m =7n -2n +1=7-9n +1. ……………………11分当n +1=3,即n =2时,m =2,(舍去); 当n +1=9,即n =8时,m =3,符合题意.所以存在正整数m =3,n =8,使得b 2,b m ,b n 成等差数列. …………………… 12分(21)解:(I)xa x x f 12)(-+='(0>x ) …………………… 1分 所以切线的斜率0002000ln 12x x ax x x a x k -+=-+=, …………………… 2分整理得01ln 020=-+x x ,显然,10=x 是这个方程的解, …………………… 3分 又因为1ln 2-+=x x y 在),0(+∞上是增函数,所以方程01ln 2=-+x x 有唯一实数解. ……………………4分 故10=x .(Ⅱ)xe xax x x g x f x F ln )()()(2-+==,xe x x a x a x x F ln 1)2()(2+-+-+-=' ……………5分设x x a x a x x h ln 1)2()(2+-+-+-=,则a x xx x h -+++-='2112)(2. 易知)(x h '在]1,0(上是减函数,从而a h x h -='≥'2)1()( ……………………7分 (1)当02≥-a ,即2≤a 时,0)(≥'x h ,)(x h 在区间)1,0(上是增函数.0)1(=h ,0)(≤∴x h 在]1,0(上恒成立,即0)(≤'x F 在]1,0(上恒成立. )(x F ∴在区间]1,0(上是减函数.所以,2≤a 满足题意. …………………… 9分 (2)当02<-a ,即2>a 时,设函数)(x h '的唯一零点为0x ,则)(x h 在),0(0x 上递增,在)1,(0x 上递减. 又∵0)1(=h ,∴0)(0>x h . 又∵0ln )2()(2<+-+-+-=----a a a a a e e a e a e e h , ∴)(x h 在)1,0(内有唯一一个零点x ',当),0(x x '∈时,0)(<x h ,当)1,(x x '∈时,0)(>x h .从而)(x F 在),0(x '递减,在)1,(x '递增,与在区间]1,0(上是单调函数矛盾. ∴2>a 不合题意. …………………… 12分 综合(1)(2)得,2≤a 法二:xexax x x g x f x F ln )()()(2-+==,xe x x a x a x x F ln 1)2()(2+-+-+-=' ……………5分要使()F x 为单调函数,则()0F x '≥在区间(0,1]恒成立或()0F x '≤在区间(0,1]恒成立即21(2)ln 0x a x a x x -+-+-+≥在区间(0,1]恒成立 或21(2)ln 0x a x a x x-+-+-+≤在区间恒成立而当1x =时, 21(2)ln 0x a x a x x-+-+-+=,故又等价于212ln 1x x x x a x -+-≥-在区间(0,1)恒成立或212ln 1x x x x a x-+-≤-在区间(0,1)恒成立…7分 设212ln ()(01)1x x xx c x x x -+-=<<-,故22211(1)ln ()(1)x x x x c x x ---+-'=- 又令211()ln (01)k x x x x x=-+-<<,而23232112()0x x k x x x x x --'=--=>,故()k x 在区间(0,1)单调递增,故有()(1)0k x k <=,可得()0c x '<,函数()c x 在区间(0,1)单调递减而当0x +→时,11x -→,212ln x x x x-+-→+∞, 当1x -→时,,()2c x →,故函数()c x 在区间(0,1)的值域为(2,)+∞ ………………………………………10分故212ln 1x x x x a x -+-≥-在区间(0,1)恒成立时,a 无解,212ln 1x x x x a x-+-≤-在区间(0,1)恒成立时,2a ≤. ………………………………………12分(22)解:(Ⅰ)因为24(cos sin )3ρρθθ=+-, 所以224430x y x y +--+=,即22(2)(2)5x y -+-=为圆C 的普通方程.…………………………………3分所以所求的圆C的参数方程为22x y θθ⎧=⎪⎨=+⎪⎩(θ为参数) .………………………5分(Ⅱ)由(Ⅰ)可得,设点)sin 52,cos 52(θθ++P266)x y θθθθ+=++=++ 设55sin =α,则552cos =α ,所以265sin()x y θα+=++ 当sin()1θα+=时,max (2)11x y +=,…………………………8分 此时,2,2k k Zπθαπ+=+∈即2,2k k Z πθαπ=-+∈,所以552cos sin ==αθ,55sin cos ==αθ点P 的直角坐标为(3,4)时, ……………………………10分(23)解:(I)方法一:⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤<+≤-=2,33221,121,33)(x x x x x x x f由2)(>x f 得⎪⎩⎪⎨⎧≤>-21233x x 或⎪⎩⎪⎨⎧≤<>+22121x x , 解得31<x 或1>x .故所求实数x 的取值范围为),25()21,(+∞⋃-∞.……5分方法二:⎪⎩⎪⎨⎧>-≤23321x x 或⎪⎩⎪⎨⎧>+≤<21221x x 或⎩⎨⎧>->2332x x解得31<x 或1>x .故所求实数x 的取值范围为1(,)(1,)3-∞⋃+∞.……5分(II )由)(x f m n m n m ≥-++且0m ≠得)(x f mnm n m ≥-++又∵2=-++≥-++mnm n m mnm n m …………………………8分∴2)(≤x f .∵2)(>x f 的解集为1(,)(1,)3-∞⋃+∞,∴2)(≤x f 的解集为1[,1]3, ∴所求实数x 的取值范围为1[,1]3.…………………………10分。