5.3简单的轴对称图形3(练习)

合集下载

北师大版数学七年级下册5.3.2《简单的轴对称图形》教案

北师大版数学七年级下册5.3.2《简单的轴对称图形》教案

北师大版数学七年级下册5.3.2《简单的轴对称图形》教案一. 教材分析《简单的轴对称图形》是北师大版数学七年级下册第五章第三节的内容。

本节主要让学生了解轴对称图形的概念,学会判断一个图形是否为轴对称图形,以及如何找出轴对称图形的对称轴。

通过本节的学习,学生能更好地理解轴对称现象,提高他们的空间想象能力。

二. 学情分析学生在之前的学习中已经掌握了平面图形的知识,对图形的性质有一定的了解。

但是,对于轴对称图形的概念和判断方法,他们可能还比较陌生。

因此,在教学过程中,需要引导学生从实际例子中发现轴对称现象,逐步引入并讲解轴对称图形的概念和判断方法。

三. 教学目标1.让学生了解轴对称图形的概念,学会判断一个图形是否为轴对称图形。

2.让学生能够找出轴对称图形的对称轴,并理解对称轴的意义。

3.培养学生的空间想象能力,提高他们解决实际问题的能力。

四. 教学重难点1.轴对称图形的概念及其判断方法。

2.找出轴对称图形的对称轴。

五. 教学方法采用问题驱动法、案例分析法和小组合作法进行教学。

通过实际例子引导学生发现轴对称现象,讲解轴对称图形的概念和判断方法,然后让学生分组讨论,找出具体图形的对称轴,最后进行总结和拓展。

六. 教学准备1.准备一些轴对称图形的实例,如剪纸、图片等。

2.准备多媒体教学设备,用于展示实例和动画。

七. 教学过程1.导入(5分钟)通过展示一些轴对称图形的实例,如剪纸、图片等,引导学生发现轴对称现象,激发学生的兴趣。

让学生尝试解释这些实例中的对称现象,从而引入轴对称图形的概念。

2.呈现(10分钟)讲解轴对称图形的概念,让学生明白什么是轴对称图形。

通过展示一些动画和实例,让学生更好地理解轴对称图形的性质。

同时,讲解如何判断一个图形是否为轴对称图形,以及如何找出轴对称图形的对称轴。

3.操练(10分钟)将学生分成若干小组,每组提供一个轴对称图形,让学生找出该图形的对称轴。

通过小组合作,让学生加深对轴对称图形和对称轴的理解。

2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题

2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题

2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题A组(基础题)一、填空题1.(1)已知等腰△ABC中,AB=AC,∠B=60°,则∠A=______.(2)在△ABC中,∠A=∠B=60°,且AB=5 cm,则BC=______cm.2.(1)如图,在等边△ABC中,D,E分别是AB,AC上的点,且AD=CE,则∠BCD+∠CBE=______.(2)如图,在△ABC中,∠B=60°,AB=AC, BC=5,则△ABC的周长为______.3.(1)如图,将边长为6 cm的等边△ABC沿BC方向向右平移后得△DEF,DE,AC相交于点G.若线段CF=4.5 cm,则△GEC的周长是______cm.(2)如图,在△ABC中,BC=16,BO和CO分别是∠ABC和∠ACB的平分线,OD∥AB,OE∥AC,则△ODE的周长为______.4.如图,已知直线l∥l2,将等边三角形如图放置.若∠α=30°,则∠β=______.二、选择题5.如图,l1∥l2,等边△ABC的顶点A,B分别在直线l1,l2上,则∠1+∠2=( ) A.30° B.40°C.50° D.60°6.如图所示,在等边△ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是( )A.7 B.6 C.5 D.47.如图,AD是等边△ABC的中线,AE=AD,则∠EDC的度数为( )A.30° B.20° C.25° D.15°8.下列条件中,不能得到等边三角形的是( )A.有两个内角是60°的三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个外角相等的等腰三角形三、解答题9.如图,已知在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为E,F,且DE=DF.求证:△ABC是等边三角形.10.(1)如图,△ABC为等边三角形,AB=AC,P为BC上一点,△APQ为等边三角形.求证:AB∥CQ.(2)如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.①求证:AD=BE;②求AD的长.B组(中档题)一、填空题11.如图,在△ABC中,AB=AC,D,E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6 cm, DE=2 cm,则BC的长为______.12.如图,点P是∠AOB内任意一点,OP=5 cm,点M和点N分别是射线OA和射线OB上的动点,∠AOB=30°,则△PMN周长的最小值为______.13.如图,已知△ABC和△BDE都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等边三角形;⑥FG∥AD. 其中正确的有______个.二、解答题14.如图,过边长为2的等边三角形的边上一点P作PE⊥AC于点E,Q是BC延长线上一点,当PA=CQ时,连接PQ交AC于点D,求DE的长.C组(综合题)15.如图,△ABC是等边三角形,E是BC边上任意一点,∠AEF=60°,EF交△ABC的外角∠ACD的平分线于点F.求证:AE=EF.参考答案2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题A组(基础题)一、填空题1.(1)已知等腰△ABC中,AB=AC,∠B=60°,则∠A=60°.(2)在△ABC中,∠A=∠B=60°,且AB=5 cm,则BC=5cm.2.(1)如图,在等边△ABC中,D,E分别是AB,AC上的点,且AD=CE,则∠BCD+∠CBE=60°.(2)如图,在△ABC中,∠B=60°,AB=AC, BC=5,则△ABC的周长为15.3.(1)如图,将边长为6 cm的等边△ABC沿BC方向向右平移后得△DEF,DE,AC相交于点G.若线段CF=4.5 cm,则△GEC的周长是4.5cm.(2)如图,在△ABC中,BC=16,BO和CO分别是∠ABC和∠ACB的平分线,OD∥AB,OE∥AC,则△ODE的周长为16.4.如图,已知直线l∥l2,将等边三角形如图放置.若∠α=30°,则∠β=30°.二、选择题5.如图,l1∥l2,等边△ABC的顶点A,B分别在直线l1,l2上,则∠1+∠2=(D) A.30° B.40°C.50° D.60°6.如图所示,在等边△ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是(A)A.7 B.6 C.5 D.47.如图,AD 是等边△ABC 的中线,AE =AD ,则∠EDC 的度数为(D) A .30° B .20° C .25° D .15°8.下列条件中,不能得到等边三角形的是(D) A .有两个内角是60°的三角形 B .三边都相等的三角形C .有一个角是60°的等腰三角形D .有两个外角相等的等腰三角形 三、解答题9.如图,已知在△ABC 中,AB =AC ,D 为AC 的中点,DE ⊥AB ,DF ⊥BC ,垂足分别为E ,F ,且DE =DF.求证:△ABC 是等边三角形.证明:∵DE ⊥AB ,DF ⊥BC , ∴∠AED =∠CFD =90°. ∵D 为AC 的中点,∴AD =DC. 在Rt △ADE 和Rt △CDF 中,⎩⎪⎨⎪⎧AD =DC ,DE =DF , ∴Rt △ADE ≌=Rt △CDF(HL). ∴∠A =∠C.∴BA =BC.∵AB =AC ,∴AB =BC =AC. ∴△ABC 是等边三角形.10.(1)如图,△ABC 为等边三角形,AB =AC ,P 为BC 上一点,△APQ 为等边三角形.求证:AB ∥CQ.证明:∵△ABC 和△APQ 都是等边三角形, ∴AB =AC ,AP =AQ ,∠BAC =∠PAQ =60°. ∴∠BAC -∠PAC =∠PAQ -∠PAC , 即∠BAP =∠CAQ.在△ABP 和△ACQ 中,⎩⎪⎨⎪⎧AB =AC ,∠BAP =∠CAC ,AP =AQ ,∴△ABP ≌△ACQ(SAS). ∴∠ACQ =∠B =∠BAC =60°. ∴AB ∥CQ.(2)如图,△ABC 为等边三角形,AE =CD ,AD ,BE 相交于点P ,BQ ⊥AD 于点Q ,PQ =3,PE =1.①求证:AD =BE ; ②求AD 的长.解:①证明:∵△ABC 为等边三角形, ∴AB =AC ,∠BAC =∠C =60°. 在△BAE 和△ACD 中,⎩⎪⎨⎪⎧BA =AC ,∠BAE =∠C ,AE =CD ,∴△BAE ≌△ACD(SAS). ∴AD =BE.②由ΔBAE ≌ACD ,可知∠ABE =∠PAE.∵∠BPQ =∠BAP +∠ABE =∠BAP +∠PAE =∠BAC =60°,BQ ⊥PQ , ∴∠PBQ =30°,∴PB =2PQ =6. ∴BE =PB +PE =7,∴AD =BE =7.B 组(中档题)一、填空题11.如图,在△ABC 中,AB =AC ,D ,E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°.若BE =6 cm, DE =2 cm ,则BC 的长为8_cm .12.如图,点P 是∠AOB 内任意一点,OP =5 cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,∠AOB =30°,则△PMN 周长的最小值为5_cm .13.如图,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE =CD ;②BF =BG ;③BH 平分∠AHD ;④∠AHC =60°;⑤△BFG 是等边三角形;⑥FG ∥AD. 其中正确的有6个.二、解答题14.如图,过边长为2的等边三角形的边上一点P 作PE ⊥AC 于点E ,Q 是BC 延长线上一点,当PA =CQ 时,连接PQ 交AC 于点D ,求DE 的长.解:过点P 作PF ∥BC 交AC 于点F , ∵△ABC 为等边三角形, ∴△APF 为等边三角形. ∴PF =AP.又∵PE ⊥AF ,∴AE =EF. 又∵AP =CQ ,∴PF =CQ. ∵PF ∥BC ,∴∠FPD =∠CQD.在△PFD 和△QCD 中,⎩⎪⎨⎪⎧∠FPD =∠CQD ,∠PDF =∠QDC ,PF =QC ,∴△PFD ≌△QCD(AAS).∴FD =CD.∴DE =EF +FD =12AF +12CF =12AC.∵AC =2,∴DE =1.C 组(综合题)15.如图,△ABC 是等边三角形,E 是BC 边上任意一点,∠AEF =60°,EF 交△ABC 的外角∠ACD 的平分线于点F.求证:AE =EF.证明:在AB 上截取AG =CE ,连接EG. ∵△ABC 是等边三角形,∴AB =BC ,∠B =∠ACB =60° 又∵AG =CE ,∴BG =BE.∴△BEG 是等边三角形.∴∠BGE =60°.∴∠AGE =120°. ∵CF 平分∠ACD ,∴∠ACF =12(180°-∠ACB)=60°. ∴∠ECF =120°.∴∠AGE =∠ECF.∵∠AEC =∠B +∠GAE =∠AEF +∠CEF , 且∠AEF =∠B =60°,∴∠GAE =∠CEF.又∵AG =EC ,∴△AGE ≌△ECF(ASA). ∴AE =EF.。

北师大版数学七年级下册5.3 《简单的轴对称图形第3课时》教学课件%28共30张PPT%29

北师大版数学七年级下册5.3 《简单的轴对称图形第3课时》教学课件%28共30张PPT%29

DC相等吗?还有其他相等的线段吗?
解:∵在Rt△ABC中,∠C=90°,AD是∠BAC的
平分线,DE⊥AB,
∴DE=DC,
∵∠ADE=180°-∠EAD-∠AED,
∠ADC=180°-∠C-∠CAD,
∴∠ADE=∠ADC,
B
∴△ADE≌△ADC,
∴AE=AC.
∴图中相等的线段:DE=DC,AE=AC.
∴ DB = DC,(在角的平分线上的点到这个角的两边的距离相等. )

B
A D
C
典型例题
例2.如图,CD⊥OA,CE⊥OB,D、E为垂足. (1)若∠1=∠2,则有___C_D_=__C_E___; (2)若CD=CE,则有__∠__1_=_∠__2___.
典型例题
例3.有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A 点放角的顶点,AB和AD沿AC画一条射线AE,AE就是∠BAD的平 分线,为什么?
随堂练习
3.如图,求作一点P,使PC=PD,并且使点P到∠AOB的两边的距
离相等,并说明你的理由.
A
D
C
O
B
解:作线段CD的垂直平分线和∠AOB的角平分线,两线交 点即为所求点.
随堂练习
4.如图,在△ABC中, ∠ABC=90°,AB的垂直平分线交AC与D,垂 足为E,若∠A=30°,DE=2,求∠DBC的度数和CD的长.
1 AB•OE+
2
1BC•OD+
2
1
2 AC•OF
=
1 2
×4×(AB+BC+AC)=34
随堂练习
1.(1)如图:OC是∠AOB的平分线, 点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm, 则PE=______4____cm.

5.3 简单的轴对称图形

5.3 简单的轴对称图形

简单的轴对称图形知识点1 等腰三角形的相关概念---分类讨论求边角的值1.等腰三角形的两个腰相等,两个底角也相等.2.直角三角形30°的角所对的直角边等于斜边的一半.【典例】1.若等腰三角形一腰上的高等于腰长的一半,求此三角形的底角.【方法总结】本题考查了等腰三角形的性质,以及含特殊角的直角三角形,熟记三角形的高相对于三角形的三种位置关系(三角形内部,三角形的外部,三角形的边上),解题时注意需要分类讨论.2.如果一等腰三角形的周长为27,且两边的差为12,求这个等腰三角形的腰长.【方法总结】已知等腰三角形的周长和两边之差来求等腰三角形的底或腰时,我们需要分类讨论,分为两种情况:一种是“腰-底=某个值”,第二种是“底-腰=某个值”,可将底或腰设为未知数,再根据等腰三角形的周长列出方程,求出三边以后根据三角形的三边关系进行验证,选择合理的数值.【随堂练习】1.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为______.2.已知等腰三角形周长为12,一边长为5,则它另外两边差的绝对值是______.3.如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.当点Q的运动速度为_____厘米/秒时,能够在某一时刻使△BPD与△CQP全等.4.已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为____.5.等腰三角形的一腰上的高与另一腰所在直线的夹角为40°,则这个三角形的底角为______.知识点2 等腰三角形的性质---边角关系等腰三角形的两底角相等(简称“等边对等角”),即在△ABC,AB=AC,可得∠B=∠C.【典例】1.如图,在△ABC中,∠ACB=90°,AD=AC,BE=BC,求∠DCE的大小.【方法总结】本题考查了等腰三角形的性质,解答此题的关键是建立起各角之间的关系,结合图形列出方程进行解答.2.如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC 与△EBC的周长分别是40,24,求AB的长.【方法总结】本题考查了等腰三角形的性质和垂直平分线上的性质,根据垂直平分线上的点到线段两端点的距离相等,得出相等的线段,把三角形的周长表示出来,再利用相等的线段进行转化求解. 【随堂练习】一.填空题(共1小题)1.如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度数.2.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.知识点3 等腰三角形的性质---三线合一等腰三角形底边上的高线、中线及顶角平分线重合.例:已知△ABC是等腰三角形,AB=AC,①AD⊥BC ②BD=CD ③AD平分∠BAC,上述三个条件,任意满足一个,可得到另外两个.即①⇒②,③;②⇒①,③;③⇒①,②.【典例】1.如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC 边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.【方法总结】本题主要是利用等腰三角形的三线合一,根据三线合一的性质可知,等腰三角形底边上的中线也是底边的高线.注:等腰三角形常作的辅助线是,过顶角的顶点向底边作垂线,再利用三线合一得到一些相等的关系式,当题目中给出等腰三角形底边上的中点时,常常将等腰三角形的顶角顶点和它直接相连.【随堂练习】1.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC.(1)求∠APO+∠DCO的度数;(2)求证:点P在OC的垂直平分线上.2.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=____(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=____(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:_________(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.知识点4 等腰三角形的判定与性质1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(简称“等角对等边”).2.等腰三角形的两个底角相等(简称“等边对等角”).3. 等腰三角形底边上的高线、中线及顶角平分线重合.【典例】1.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有_______ 个.【方法总结】本题考查的等腰三角形的判定,利用的是数形结合思想,当已知两个格点找寻第三个格点时,需要分类讨论,将这条边作为底和作为腰时可以构建的等腰三角形的个数之和,即为所求的点的个数.2.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____________s时,△POQ是等腰三角形.【方法总结】本题主要考查了等腰三角形的性质,由等腰三角形的两个腰相等得出方程是解决问题的关键,注意本题分类讨论时,由于∠POQ=60°,可得出△POQ是等边三角形,再根据PO=QO进行求解.3.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A的度数.知识点5线段的垂直平分线1.定义:垂直且平分一条线段的直线,叫做这条线段的垂直平分线.2.性质:线段垂直平分线上的点到线段两端的距离相等.3.判定:到线段两端距离相等的点在线段的垂直平分线上.【典例】1.关于线段的垂直平分线有以下说法:①一条线段的垂直平分线的垂足,也是这条线段的中点;②线段的垂直平分线是一条直线;③一条线段的垂直平分线是这条线段的唯一对称轴;④线段垂直平分线上的点到线段两个端点的距离相等;⑤到线段两个端点距离相等的点在线段的垂直平分线上.其中,正确的说法有()A.3个B. 4个C. 5个D. 2个【方法总结】1.本题考查了垂直平分线的定义,该直线需要满足两个条件:条件1,直线和线段垂直;条件2,直线经过线段的中点.2.本题还需要熟练掌握线段垂直平分线的性质和判定.2.如图,直线CD是线段AB的垂直平分线,P为直线CD上一点,若△PAB的周长为14,PA=4,则线段AB的长为______.【方法总结】本题考查了垂直平分线的性质,利用线段垂直平分线上的点到线段两个端点的距离相等得出相等的线段,再将题中给出的三角形周长表示出来,建立线段之间的关系,进而求解出待求的线段长.【随堂练习】1.如图,△ABC中,D是AB的中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,则AF=___.2.如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,求∠C的度数.3.如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线;(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.。

北师版七年级数学下册练习课件:5.3 简单的轴对称图形

北师版七年级数学下册练习课件:5.3 简单的轴对称图形

◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练(
◎第一阶
◎第二阶

【小学】人教版五年级数学下册《 图形的运动三 5.3 运用平移、对称和旋转设计图案》同步测试题含解析

【小学】人教版五年级数学下册《 图形的运动三 5.3 运用平移、对称和旋转设计图案》同步测试题含解析

人教版五年级数学下册《第5章图形的运动(三)运用平移、对称和旋转设计图案》同步测试题一.选择题(共6小题)1.下列图案每一幅都是由一个基本图形变化得到的.其中没有运用旋转规律得到的图案是()A.B.C.2.小玲应用图形的运动设计了一副漂亮的图案(图案的变换过程如下图所示).上面图案经历的变换过程是()A.轴对称→旋转→放大B.旋转→放大→旋转C.旋转→放大→放大D.平移→旋转→放大3.把下面的图A绕中心点顺时针旋转90度后再向下平移四个格得到图形是()A.A B.B C.C D.D4.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转5.如图的图案是运用()的变化形式设计出来的.A.平移B.旋转C.轴对称6.左图是由经过()变换得到的.A.平移B.旋转C.对称D.折叠二.填空题(共6小题)7.图形的变换方式有平移、、.8.本学期我们学习了利用、和可以设计美丽的图案,像打开的电风扇属于现象.9.如图用了原理。

10.旋转左边的图可以得到,平移左边的图可以得到.(填序号)11.钟面上指针从“12”开始,顺时针旋转90°到“”;指针从“12”开始,顺时针旋转到“5”.12.如图中图形2先绕点O按方向旋转°,再向平移格,得到图形1.三.判断题(共3小题)13.如图的花边是用平移对称的方法设计的.(判断对错)14.要设计一个美丽的图案,可以用平移、旋转和作轴对称图形.(判断对错)15.图中是由经过旋转得到的..(判断对错)四.操作题(共1小题)16.请你在下面的方格图中设计一个具有对称美的图形.五.解答题(共7小题)17.利用旋转的知识,争当小小设计师.18.利用旋转画一朵小花.19.2021图的七巧板,通过平移,旋转或轴对称的方法设计你喜欢的图形.21.下面右边哪个图形能由左边图形平移和旋转得到?在序号上“√”.22.试一试.利用旋转画一朵小花.23.你能用这个图形,通过对称、平移或旋转设计出美丽的图案吗?请把你设计的美丽图案画出来.参考答案与试题解析一.选择题(共6小题)1.【分析】寻找基本图形,旋转中心,旋转角,旋转次数,逐一判断.【解答】解:图形1可由一个基本“花瓣”绕其中心经过4次旋转,每次旋转90°得到;图形2可由一个基本“不规则5边形”绕其中心经过4次旋转,每次旋转90°得到;图形3可由一个基本图形三角形经过平移得到;其中没有运用旋转规律得到的图案是C;故选:C.【点评】本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.2.【分析】根据旋转的特征,图形1正方形绕两对角线的交点顺时针或逆时针方向旋转90°即可得到图形2;再用一边长等于图形1对角线长的两正方形,用同样的旋转方法得到一幅图,与图2叠放即可得到图形3;再用边长等于图3中最大正方形的对角线长的正方形,用同样的旋转方法得到一幅图,与图3叠放即可得到图形4.上述整个经过的过程实际上就是旋转、放大、再放大.【解答】解:如图,小玲应用图形的运动设计了一副漂亮的图案,这个图案经历的变换过程是简单地概括为:旋转→放大→放大.故选:C.【点评】此题主要是考查了旋转的特征.经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等.)3.【分析】观察图形,图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,据此即可选择.【解答】解:图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,故选:C。

(完整版)七年级数学简单的轴对称图形练习题

(完整版)七年级数学简单的轴对称图形练习题

1.1.简单的轴对称图形一、判断题1.角的平分线是角的对称轴.()2.等腰直角三角形不是轴对称图形.()3.等腰三角形底边上的高所在直线是它的对称轴.()4.射线是轴对称图形.()5.线段的垂直平分线是线段的一条对称轴.()二、填空题1.角的平分线上的点到这个角的两边的_________相等.2.线段_________(填是或不是)轴对称图形,它的一条对称轴垂直并_________它,这样的直线叫做这条线段的_________,简称_________.3.线段垂直平分线上的点到这条线段_________的距离_________.4.线段有_________条对称轴.5.角有_________条对称轴. 其对称轴是_______________.三、选择题1.下列图形不一定是轴对称图形的是()A.等边三角形B.长方形C.等腰三角形D.直角三角形2.等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边的垂直平分线所在直线3.下面选项对于等边三角形不成立的是()A.三边相等B.三角相等C.是等腰三角形D.有一条对称轴4.等边三角形对称轴的条数是()A.1条B.2条C.3条D.4条1.2 简单的轴对称图形(一、二课时)1. 如下图,l1,l2交于A,P,Q的位置如图所示,试确定M点,使它到l1、l2的距离相等,且到P、Q两点的距离也相等.Al12PQ2. 在△ABC中,AD是∠BAC的平分线,过C作CE∥AD交BA的延长线于点E,则线段AE与AC是否相等,为什么?AB3. 在△PMN中,PM=PN,AB是线段PM的对称轴,分别交PM于A,PN于B,若△PMN的周长为60厘米,△BMN的周为36厘米,则MA的长为()A.6厘米B.12厘米C.24厘米D.36厘米4. 在线段、角、等腰三角形、正三角形中,是轴对称图形有()A.1个B.2个C.3个D.4个5. 下列图形是轴对称图形的是()A.任意三角形B.有一个角等于60°的三角形 C.等腰三角形 D.直角三角形6. 圆是轴对称图形,它的对称轴是_______,所以它有________条对称轴.7. 在△ABC中,DE是AC的垂直平分线,AE=5,△ABC周长是30,则△ABD周长是______.8. 如图,两条公路相交,在A,B两处是两个居民区,邮政局要在居民区旁边修建一个邮筒,为了使邮寄和取送方便,要使邮筒到两条路的距离相等,并且到两个居民区的距离也相等,请你找到一个这样的点.9.△ABC中,AB、BC的中垂线交于M点,则下列结论正确的是()A.点M在AC上 B.点M在△ABC外 C.点M在△ABC内 D.AM=BM=CM10. 到三角形三边距离相等的是()A.三条边中线的交点 B.三个内角平分线的交点C.三条边垂直平分线的交点 D.三条边上高所在直线上的交点11. 如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处 B.两处 C.三处 D.四处12. 在△ABC中,AB=AC,D是AB的中点,且DE⊥AB.已知△BCE的周长为8,且AC-BC=2,求AB、BC的长.l1l3 l2C B13. 下列说法中正确的是( )A .角是轴对称图形,它的平分线就是对称轴B .等腰三角形内角平分线,中线和高三线合一C .直角三角形不是轴对称图形D .等边三角形有三条对称轴 14. 到三角形三个顶点距离相等的点是( ).A .三角形三条角平分线的交点B .三角形三条中线的交点C .三角形三边中垂线的交点D .三角形三条高的交点15. 在△ABC 中,AB =AC ,BC=5cm ,作AB 的中垂线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则腰长为( ) A .12cmB .6cmC .7cmD .5cm16. 下列图形中,不一定是轴对称图形的是( ) A .线段 B .角 C .三角形 D .等腰直角三角形 17. 在△ABC 中, ∠C =90°,AD 是∠CAB 的平分线,DE ⊥AB 于E ,且DE =5.6厘米,BC =13.8厘米,则BD =________厘米.18. 下列图形:①角;②线段;③等边三角形;④有一个角为30°的直角三角形,其中是轴对称图形的有(填序号)_____________.19. 如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,DE 是斜边AB 的垂直平分线,请你在图中找出至少两对相等的线段,并说明它们为什么相等.如果ED =2cm ,DB =3cm ,则AC 长为多少?1.2 简单的轴对称图形(三、四课时)1、下列说法中正确的是( )(A )角是轴对称图形,它的平分线就是对称轴 (B )等腰三角形的内角的平分线,中线和高三线合一(C )直角三角形不是轴对称图形(D )等边三角形有三条对称轴 2、等腰三角形的一个内角是50°,那么其它两个内角分别是( )A CB E D A D EC B O PQ M ND B AE C P QM N FAD C BE A Q CP B (A )50°和80° (B )65°和65° (C )50°和80°或65°和65° (D )无法确定3、等腰三角形顶角是84°,则一腰上的高与底边所成的角的度数是( ). (A)42° (B)60° (C)36° (D)46°4、如右图,∠ABC 中,AD ⊥BC,AB=AC, ∠BAD=30°,且AD=AE,则∠EDC 等于( ).(A)10° (B)12.5° (C)15° (D)20°5、如右图,PM=PN,MQ 为△PMN 的角平分线,若∠MQN=72°,则∠P 的度数是( ).(A)18° (B)36° (C)48° (D)60° 6、已知△ABC 中,AB=AC,AD ⊥BC 于D,△ABC 的周长为36厘米,△ADC 的周长为30厘米,那么AD 等于( ). (A)6cm (B)8cm (C)12cm (D)20cm7、如右图,PQ 为Rt △MPN 斜边上的高, ∠M=45°,则图中等腰三角形的个数是(A)1个 (B)2个 (C)3个 (D)4个8、在线段、角、等腰三角形、正三角形中,是轴对称图形有( )个(A )1个 (B )2个 (C )3个 (D )4个9、如右图,在△ABC 中,AB=AC,∠A=36°,BD 、CE 分别是∠ABC 、∠ACB 的平分线,则图中等腰三角形的个数为( ).(A)12 (B)10 (C)9 (D)810、如果三角形一边的中线和这边上的高重合,那么这个三角形是( ).(A)等边三角形 (B)等腰三角形 (C)锐角三角形 (D)钝角三角形 11、在△ABC 中, ∠B=∠C=40°,D 、E 是BC 上的两点,且∠ADE=∠AED=80°,则图中共有( )个等腰三角形.(A)6个 (B)5个 (C)4个 (D)3个12、在△ABC 中, ∠ABC=∠ACB,∠ABC 与∠ACB 的平分线交于点D,过D 作EF ∥BC,交AB 于E,交AC 于F,则图中的等腰三角形有____个,分别有______.(第9题) (第10题) (第12题) (第13题)13、如图,在△ABC 中,AB=AC=16cm ,AB 的垂直平分线交AC 于D ,如果BC=10cm ,那么△BCD 的周长是_______cm.14、已知:如下图,P,Q 是△ABC 边上BC 上的两点,且BP=PQ=QC=AP=AQ,求∠BAC 的度数.。

简单的轴对称图形(第3课时)教学课件北师大版中学数学七年级(下)

简单的轴对称图形(第3课时)教学课件北师大版中学数学七年级(下)

BC DB AD DB
A
C
AB 14
=
课堂小结
尺规 作图
角平 分线
性质 定理
辅助线 添加
属于基本作图,必须熟练掌握
一个点:角平分线上的点; 二距离:点到角两边的距离; 两相等:两条垂线段相等
过角平分线上一点向两边作 垂线段
当堂检测
1. 如图,DE⊥AB,DF⊥BG,垂足
分别是E,F, DE =DF, ∠EDB=
应用所具备的条件:
(1)角的平分线;
(2)点在该平分线上;
(3)垂直距离.
O
A D
PC
定理的作用:证明线段相等.
E
B
应用格式: ∵OP 是∠AOB的平分线, PD⊥OA,PE⊥OB, ∴PD = PE
推理的理由有三个, 必须写完全,不能
少了任何一个.
随堂训练
(1)∵ 如下左图,AD平分∠BAC(已知),
知识讲授
已知:∠AOB. 求作:∠AOB的平分线. 仔细视察步骤 作法:
A
M C
(1)以点O为圆心,适当
长为半径画弧,交OA于 点M,交OB于点N.
B
N
O
(2)分别以点MN为圆心,大于 1 MN的长为半径画弧,两弧在
2
∠AOB的内部相交于点C.
(3)画射线OC.射线OC即为所求.
知识讲授
已知:平角∠AOB. 求作:平角∠AOB的角平分线.
做一做:请大家找到用尺规作角的平分线的方法, 并说明作图方法与仪器的关系.
ห้องสมุดไป่ตู้
提示:
A
(1)已知什么?求作什么?
(2)把平分角的仪器放在角的两边,仪器的顶
点与角的顶点重合,且仪器的两边相等,怎

北师大数学七年级下《5.3简单的轴对称图形》课时练习含答案解析初中数学教学反思设

北师大数学七年级下《5.3简单的轴对称图形》课时练习含答案解析初中数学教学反思设

北师大版数学七年级下册第五单元5.3简单的轴对称图形课时练习一、选择题(共15小题)1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线答案:C解析:解答:对称轴是直线,故B错;须过底边中点,故A错,D错,综上,选C.分析:解决本题关键是首先确定对称轴是直线,其次确定过什么特殊点.2.下面四个图形中,不是轴对称图形的是()A.有一个内角为45度的直角三角形B.有一个内角为60度的等腰三角形C.有一个内角为30度的直角三角形D.两个内角分别为36度和72度的三角形答案:C解析:解答:对于选项A,有一个内角为45度的直角三角形,三个内角分别是45°、90°、45°,是等腰三角形,是轴对称图形;选项B,有一个内角为60°的等腰三角形,三个角度数分别为60°、60°、60°,是等边三角形,是轴对称图形;对于C,有一个内角为30度的直角三角形,三个角度数分别为30°、90°、60°,不是等腰三角形,不是轴对称图形;对于D,两个内角分别为36度和72度的三角形,三个角度数分别为36°、72°、72°,是等腰三角形,是轴对称图形;综上,选C.分析:解决本题关键是判断是不是等腰三角形,是的就是轴对称图形,否则就不是.3.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段答案:B解析:解答:对于选项A,有2个内角相等的三角形,是等腰三角形,是轴对称图形;选项B,有1个内角为30°的直角三角形,三个角度数分别为30°、90°、60°,不是等腰三角形,故不是轴对称图形,故选B;对于C,有2个内角分别为30°和120°的三角形,三个角度数分别为30°、120°、30°,是等腰三角形,是轴对称图形;对于D,线段是以其垂直平分线为对称轴,另一条对称轴是其所在的直线.分析:解决本题关键是找出各图形的对称轴,找不出来的就是答案.4.下列图形中,不一定是轴对称图形的是()A.三角形B.射线C.角D.相交的两条直线答案:A解析:解答:题中给出的四个选项中,射线以其所在直线为对称轴,角以其角平分线所在直线为对称轴,相交的两条直线以其夹角的平分线所在直线为对称轴;故选A分析:解决本题关键是找出各图形的对称轴,找不出来的就是答案.5.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形答案:C解析:解答:题中给出的四个选项中,有三项是等腰三角形,而等腰三角形一定是轴对称图形,剩下的C就是答案,故选C.分析:判断三角形是否是轴对称图形,关键就是看这个三角形是不是等腰三角形.6.角、线段、三角形、圆、长方形和正方形中,一定是轴对称图形的有()A.4个B.5个C.6个D.3个答案:B解析:解答:通过分析可知,角、线段、圆、长方形和正方形都是轴对称图形,故选B.分析:本题关键是对于每一种图形,找到一条对称轴,找不到的就不是轴对称图形.7.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个答案:A解析:解答:通过分析可以得到等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,故选A.分析:本题关键看是不是等腰三角形,在所有三角形中,只要是等腰三角形,就一定是轴对称图形.8.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5B.4C.6D.7答案:D解析:解答:从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形,故选D.分析:本题关键是找到一条对称轴,解决方法是针对每一字母逐一研究,涉及到的知识点较为单一.9.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形答案:D解析:解答:从A 选项开始研究,有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B 有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C 有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;故选D .分析:本题关键是判断三角形是不是等腰三角形,解决方法逐一研究,涉及到的知识点较为单一.10.有两条或两条以上对称轴的轴对称图形是( )A .等腰三角形B .角C .等边三角形D .锐角三角形答案:C解析:解答:从A 选项开始研究,等腰三角形只有一条对称轴;角也只有一条对称轴,是角平分线所在的直线;等边三角形有三条对称轴;D 锐角三角形的对称轴数量不确定. ∴选C分析:本题关键是看能否找到该图形的对称轴,解决方法逐一研究,涉及到的知识点较为单一11.如图,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若AD =5cm ,CD =3cm ,则点D 到AB 的距离DE 是( )A . 5cmB . 4cmC . 3cmD . 2cm答案:C解析:解答:∵点D 到AB 的距离是DE∴DE ⊥AB∵BD 平分∠ABC ,∠C =90°∴把Rt △BDC 沿BD 翻折后,点C 在线段AB 上的点E 处∴DE =CD∵CD =3cm∴DE =3cm选C .分析:本题关键是运用翻折,实现DE 与DC 重合,从而判断DE =DC =3cm .12. △ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )DBA .30°B .45°C .36°D .72°答案:C解析:解答:∵有很多等腰三角形,∴得到很多对称的图形∴根据题意将上图构造出来后如下图所示∴∠A =36°故选C分析:本题关键根据题干把图构造出来,然后进行计算就可以了.13.一个等腰三角形的顶角为钝角,则底角a 的范围是( )A .0°<a <9B .30°<a <90°C .0°<a <45°D .45°<a <90°答案:C解析:解答:∵等腰三角形顶角为钝角∴顶角大于90°小于180°∴两个底角之和大于0°小于90°∴每个底角大于0°小于45°故选C分析:本题关键先将两个底角的和的范围算出来,然后再将每个底角范围出来,注意是大于小于,不包含等于号.14.如图,△ABC 中,AB =AC ,∠A =36°,∠ABC 和∠ACB 的平分线BE 、CD 交于点F ,则图中共有等腰三角形( )A .7个B .8个C .9个D .10个答案:B解析:解答:∵等腰三角形有两个角相等 D A B C AB C E DF∴只要能判断出有两个角相等就行了将原图各角标上后显示如左下:因此,所有三角形都是等腰三角形只要判断出有哪几个三角形就可以了.如右上图,三角形有如下几个:①,②,③;①+②,③+②,①+④,③+④;①+②+③+④;共计8个.故选B分析:本题关键先将每一个三角形的内角算出来,然后再将三角形的个数数出来,注意不重不漏.15.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是( )A .25°B .40°C .25°或40°D .50°答案:C解析:解答:∵等腰三角形有一个是50°∴有两种可能①是三个角为50°、50°、80°;②是三个角为50°、65°、65°分情况说明如下:①当三个角为50°、50°、80°时,根据图①,可得其一条腰上的高与底边的夹角∠DAB =40°; ②当三个角为50°、65°、65°,根据图②,可得其一条腰上的高与底边的夹角∠DAB =25°故选C① ②分析:本题关键根据题意确定有两种不同的情况.A B B二、填空题(共5小题)16.等腰三角形的对称轴是.答案:底边的垂直平分线解析:解答:∵对称轴是直线∴等腰三角形的对称轴也是直线∵等腰三角形有两条边相等∴这两条边是轴对称后能够重合的两条线段∴这两边的非公共点是轴对称点∴等腰三角形的对称轴是其底边的垂直平分线分析:本题关键是把求等腰三角形的对称轴转化成求线段的对称轴.17.等边三角形有条对称轴,矩形有条对称轴.答案:3|2解析:解答:∵等腰三角形有一条对称轴∴等边三角形可以看成以各个点为顶点的等腰三角形而每一种情况下都分别有一条对称轴∴等边三角形有三条对称轴分析:本题关键是把等边三角形向等腰三角形转化,由此得到有三条对称轴18.不重合的两点的对称轴是.答案:连结这两点所成线段的垂直平分线解析:解答:∵两点之间线段最短∴连结已知不重合两点,得一线段∴原题变成求一条线段的对称轴而线段的对称轴是它的垂直平分线∴不重合的两点的对称轴是连结这两点所成线段的垂直平分线.分析:本题关键是由点想到线段,把原题转化成求线段的对称轴.19.在△ABC中,AB =AC,∠A=80°,则∠B=.答案:50°解析:解答:∵AB=AC∴根据轴对称的性质,将线段BC对折重合后,点A在折痕上∴线段AB、AC关于折痕轴对称设折痕与BC交点为D则△ABD、△ACD关于直线AD轴对称∴∠B=∠C =(180°-∠A)÷2=(180°-80°)÷2=50°分析:本题关键是利用轴对称性质,得到∠B =∠C,再利用三角形内角各可以求得.20.已知M 、N 是线段AB 的垂直平分线上任意两点,则∠MAN 和∠MBN 之间关系是 . 答案:∠MAN=∠MBN解析:解答:∵原题当中没有说明点M 、N 在线段AB 的位置,∴可能有以下四种情况:①如图①,点M 、N 在线段AB 两侧时∵M 、N 是线段AB 的垂直平分线上任意两点∴点A 、B 两点关于直线MN 轴对称∴线段MA 、MB 两点关于直线MN 轴对称同理线段NA 、NB 两点关于直线MN 轴对称∴△MAN 与△MBN 关于直线MN 轴对称∴∠MAN =∠MBN②如图①,当点M 、N 在线段AB 同侧时,按照①中逻辑推理,同样可以得到∠MAN =∠MBN ;③如图③,当点N 在线段AB 上时,同理可得∠MAN =∠MBN ;④如图④,当点M 在线段AB 上时,同理可得∠MAN =∠MBN .综上,一定有∠MAN =∠MBN分析:本题关键是考虑到不论点M 、N 与线段AB 的位置如何,求得∠MAN =∠MBN 原理相同,这是关键点.三、解答题(共5小题)21.如图1,在一条河同一岸边有A 和B 两个村庄,要在河边修建码头M ,使M 到A 和B 的距离之和最短,试确定M 的位置;答案:所求点如下图所示 ①AB ②A ③A ④A B lAB解答:∵两点之间线段最短∴需要能将AM 、BM 两边转化到一条直线上∴用轴对称可以办到求点M 的位置的具体步骤如下:①作点A 关于直线BC 的轴对称点A ’②连结A ’B 交BC 于点M③连结AM则点M 就是所求作的点,能够使M 到A 和B 的距离之和最短.解析:分析:本题关键是要分析出如何求点M 的方法,这是关键点.22.如图所示,P 和Q 为△ABC 边AB 与AC 上两点,在BC 上求作一点M ,使△PQM 的周长最小.答案:所求点如下图所示解答:∵△PQM 的三条边中PQ 已经确定∴只需要另外两边之和最短∵两点之间线段最短BB∴需要能将其它两边转化到一条直线上∴用轴对称可以办到求点M的位置的具体步骤如下:①作点P关于直线BC的轴对称点P’②连结P’Q交BC于点M③连结PM则点M就是所求作的点,能够使PQM的周长最小.解析:分析:本题关键是要分析出如何求点M的方法,这是关键点.23.圆、长方形、正方形都是轴对称图形,说出他们分别有几条对称轴.答案:无数条|2条|4条解答:∵对于圆来说,过圆心的任意一条直线,都能够将这个圆分成能够互相重合的两部分∴过圆心的直线,都是圆的对称轴∴圆有无数条对称轴∵对于长方形来说,过其中心平行于边的直线,都能够把它分成能够互相重合的两部分∴长方形有2条对称轴∵对于正方形来说,属于长方形的对称轴,对其也成立;∴正方形首先有2条对称轴又∵正方形的每一条对角线所在的直线,也能够把这个正方形分成能够互相重合的两部分∴正方形另外还有2条对称轴综上,正方形有4条对称轴解析:分析:本题关键是要分析出每一种图形对称轴的由来,这是关键点.24.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.答案:22解答:∵等腰三角形的一边长等于4,一边长等于9,∴等腰三角形的三边长为4,4,9或4,9,9;当三边长为4,4,9时,4+4<9不能构成三角形,舍去;当三边长为4,9,9时,能够构成三角形,此时,周长为4+9+9 =22答:它的周长是22.解析:分析:本题关键是要考虑到是否能够构成三角形,这是易错点.25.如图,长方形ABCD中,AB=2,点E在BC上并且AE=EC,若将矩形纸片沿AE折叠,使点B恰好落在AC上,则AC的长为多少?答案:4解答:如图,设点B 落在AC 上后,为点F .则有△AFE ≌△ABE∴∠AFE =∠B =90° AF =AB =2∴FE ⊥AC∵AE =EC∴CF =AF =2∴AC =CF +AF =4答:AC 的长为4.解析:分析:本题考察轴对称的性质,关键是把握住对称一定全等,全等三角形的对应线段相等.AB。

北师大版数学七年级下册5.3《简单的轴对称图形》精选练习(含答案)

北师大版数学七年级下册5.3《简单的轴对称图形》精选练习(含答案)

北师大版数学七年级下册5.3《简单的轴对称图形》精选练习一、选择题1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线2.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形3.有两条或两条以上对称轴的轴对称图形是()A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形4.等腰三角形的周长为80cm,若以它的底边为边的等边三角形周长为30cm,则该等腰三角形的腰长为()A.35cmB.25cmC.30cmD.40cm5.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.50°6.△ABC中,AB =AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.45°C.36°D.72°7.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形8.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个9.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段11.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线12.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是()A.30°B.60°C.150°D.30°或150°二、填空题13.等腰三角形顶角的平分线、底边上的中线、底边上的高________(也称“_____________”),它们所在的直线都是等腰三角形的_______________;14.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是______________;15.在△ABC中,AB =AC,∠A=80°,则∠B= .16.等边三角形有条对称轴,矩形有条对称轴.17.如图,∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE,则∠B= .18.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题19.已知等腰三角形的一边长等于5cm,另一边长等于9cm,求它的周长;20.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F.求证:DE=DF;21.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.22.如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,探索α与∠B的关系。

【数学】新北师大版七年级数学下册课课练53简单的轴对称图形习题

【数学】新北师大版七年级数学下册课课练53简单的轴对称图形习题

【关键字】数学新北师大版七年级数学下册课课练《5.3 简单的轴对称图形》习题部分预览《5.3 简单的轴对称图形》习题1、价平分线是角的一条对称轴,它的性质是.2、线段笔直平分线上的点到线段两个端点的距离.3、在△ABC中,AB=AC,△A=80°,则△B= .4、在△ABC中,AB=AC,若△B=45°,则此三角形是.5、等边三角形有条对称轴,矩形有条对称轴.6、如图,在Rt△ABC中,△C=90°,AD平分△BAC交BC于D.(1)若BC=8,BD=5,则点D到AB的距离是.7、若BD:DC=3:2,点D到AB的距离为6,则BC的长是.7、已知M,N是线段AB的笔直平分线上任意两点,则△MAN和△MBN之间关系是.8、下列说法错误的是()A.等边三角形有3条对称轴B.正方形有4条对称轴C.角的对称轴有2条D.圆有无数条对称轴9、下列图形中,不是轴对称图形的是()A.有一个内角为45°的直角三角形B.有两个内角相等的三角形C.非等腰三角形D.直角三角形10、如图,在△ABC中,△A=36°,BD平分△ABC交AC于D,则图中的等腰三角形有()个A.4B.3C.2D.1第10题图第11题图11、如图,△ABC中,BC=10,BD=8,DE BC于E,且E为BC 的中点,则△BCD的周长为()A.20B.18C.26D.2812、已知在Rt△ABC中,△C=90°C,AD平分△BAC交BC 于D,若BC=32,且BD:CD=9:7,则D到AB的距离为()A.18B.16C.14D.1213、如图,是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,请移动其中一个三角形,使它与另一个三角形一起组成轴对称图形,怎样移动,才能使所构成的图形具有尽可能多的对称轴?14、用折纸的方法一个锐角三角形纸片是三边笔直平分线,你发现了什么?根据线段笔直平分线的性质,你能得到什么结论?15、(1)已知等腰三角形的一边长等于4,一边长等于9,求它的周长;(2)已知等腰三角形一边长等于5,一边长等于6,求它的周长.部分预览《5.3 简单的轴对称图形》习题1、价平分线是角的一条对称轴,它的性质是.2、线段笔直平分线上的点到线段两个端点的距离.3、在△ABC中,AB=AC,△A=80°,则△B= .4、在△ABC中,AB=AC,若△B=45°,则此三角形是.5、等边三角形有条对称轴,矩形有条对称轴.6、如图,在Rt△ABC中,△C=90°,AD平分△BAC交BC于D.(1)若BC=8,BD=5,则点D到AB的距离是.7、若BD:DC=3:2,点D到AB的距离为6,则BC的长是.7、已知M,N是线段AB的笔直平分线上任意两点,则△MAN和△MBN之间关系是.8、下列说法错误的是()A.等边三角形有3条对称轴B.正方形有4条对称轴C.角的对称轴有2条D.圆有无数条对称轴9、下列图形中,不是轴对称图形的是()A.有一个内角为45°的直角三角形B.有两个内角相等的三角形C.非等腰三角形D.直角三角形10、如图,在△ABC中,△A=36°,BD平分△ABC交AC于D,则图中的等腰三角形有()个A.4B.3C.2D.1第10题图第11题图11、如图,△ABC中,BC=10,BD=8,DE BC于E,且E为BC 的中点,则△BCD的周长为()A.20B.18C.26D.2812、已知在Rt△ABC中,△C=90°C,AD平分△BAC交BC 于D,若BC=32,且BD:CD=9:7,则D到AB的距离为()A.18B.16C.14D.1213、如图,是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,请移动其中一个三角形,使它与另一个三角形一起组成轴对称图形,怎样移动,才能使所构成的图形具有尽可能多的对称轴?14、用折纸的方法一个锐角三角形纸片是三边笔直平分线,你发现了什么?根据线段笔直平分线的性质,你能得到什么结论?15、(1)已知等腰三角形的一边长等于4,一边长等于9,求它的周长;(2)已知等腰三角形一边长等于5,一边长等于6,求它的周长.部分预览《5.3 简单的轴对称图形》习题1、价平分线是角的一条对称轴,它的性质是.2、线段笔直平分线上的点到线段两个端点的距离.3、在△ABC中,AB=AC,△A=80°,则△B= .4、在△ABC中,AB=AC,若△B=45°,则此三角形是.5、等边三角形有条对称轴,矩形有条对称轴.6、如图,在Rt△ABC中,△C=90°,AD平分△BAC交BC于D.(1)若BC=8,BD=5,则点D到AB的距离是.7、若BD:DC=3:2,点D到AB的距离为6,则BC的长是.7、已知M,N是线段AB的笔直平分线上任意两点,则△MAN和△MBN之间关系是.8、下列说法错误的是()A.等边三角形有3条对称轴B.正方形有4条对称轴C.角的对称轴有2条D.圆有无数条对称轴9、下列图形中,不是轴对称图形的是()A.有一个内角为45°的直角三角形B.有两个内角相等的三角形C.非等腰三角形D.直角三角形10、如图,在△ABC中,△A=36°,BD平分△ABC交AC于D,则图中的等腰三角形有()个A.4B.3C.2D.1第10题图第11题图11、如图,△ABC中,BC=10,BD=8,DE BC于E,且E为BC 的中点,则△BCD的周长为()A.20B.18C.26D.2812、已知在Rt△ABC中,△C=90°C,AD平分△BAC交BC 于D,若BC=32,且BD:CD=9:7,则D到AB的距离为()A.18B.16C.14D.1213、如图,是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,请移动其中一个三角形,使它与另一个三角形一起组成轴对称图形,怎样移动,才能使所构成的图形具有尽可能多的对称轴?14、用折纸的方法一个锐角三角形纸片是三边笔直平分线,你发现了什么?根据线段笔直平分线的性质,你能得到什么结论?15、(1)已知等腰三角形的一边长等于4,一边长等于9,求它的周长;(2)已知等腰三角形一边长等于5,一边长等于6,求它的周长.此文档是由网络收集并进行重新排版整理.word可编辑版本!。

七年级数学下册53简单的轴对称图形习题

七年级数学下册53简单的轴对称图形习题

5.3简单的轴对称图形习题七年级数学下册《简单的轴对称图形》一、选择题1.△ABC中,边AB、AC的中垂线交于点O,则有( )A.O在△ABC内部B.O在△ABC的外部C.O在BC边上D.OA=OB=OC2.如图在△ABC中,AB<AC,BC边的垂直平分线DE交BC于D,交AC于E,AB=6cm,AC=8cm,则△ABE的周长为( )A.20cmB.12cmC.8cmD.14cm3.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于( )A.28°B.25°C.22.5°D.20°4.若△ABC的边BC的垂直平分线经过顶点A,与BC相交于点D,且AB=2AD,则△ABC中必有一个内角的度数为( )A.45°B.60°C.90°D.120°5.下列说法错误的是( )A.D,E是线段AB的垂直平分线上的两点,则AD=BD,AE=BEB.若PA=PB,则点P在线段AB的垂直平分线上C.若AD=BD,AE=BE,则直线DE是线段AB的垂直平分线D.若PA=PB,则过P点的直线是线段AB的垂直平分线cmcm,则点P一定,PB=3( ) PA=3P6.三角形纸片上有一点,量得A.是边AB的中点9/ 1七年级数学下册5.3简单的轴对称图形习题在边的中线上ABB. 的高上C.在边AB D.在边AB的垂直平分线上,则△BCD7.如图,△ABC中,CDDAB于,连接ACAB=AC=4cm,BC=3cm,的垂直平分线交( )的周长为A.4cmB.7cmC.10cmD.11cm二、填空题的的中垂线,ACAE=3cm,△ABD得周长为13cm,则△ABC中,8.如图所示,在△ABCDE 是周长是._____cm的垂直平分线,中,9.如右图,在△ABCDC是AB交AB于若∠B=41°,,则外角∠ACE=_____.Dt,于点DABE,交于点BCDEABR10.在△ABC中,∠C=90°,∠B=15°,的垂直平分线交则∠EAC=_____. 11.如图,的垂直平分线上.在D,则点上,且BC的边D在△ABCBC=BD+AD_____三、解答题9/ 2七年级数学下册5.3简单的轴对称图形习题cmcm AC12.,如图,已知求AD 是线段的垂直平分线,BC且20BD=3,△ABC的周长为的长.ABAC13.如图,在△ABC中,∠ABC=2∠C.的垂直平分线分别交BC,E,.线段DAC于点相等吗?试说明理由.CD与E 的中垂线分别交的角平分线,是△ABCADAB、BCF、的延长线于点AD14.如图,求证:(1)∠EAD=∠EDA;(2)DF∥AC;两边.如图,已知△ABC.试找出一点15P两点的距离相等,并且到C、到,使PBACBC、要求用尺规作图,并保留作图痕迹(的距离相等.)9/ 3简单的轴对称图形习题七年级数学下册5.3参考答案一、选择题D1.答案: O,AB、AC的中垂线交于点解析:【解答】∵△ABC中,边 OA=OC,∴OA=OB, OA=OB=OC ∴. D.故选分别根据线段垂直平分线上的点到线段两边的距离相等解答即可得到【分析】从已知开始,答案.D2.答案:BC DE垂直平分解析:【解答】∵BE=CE∴cmcm AB=6AC=8,∵cm的周长为ABEAB+AE+BE=AB+AC=14.∴△D故选cm即可,结合线段的垂直平分线的AB=6AE+BE,只要求出【分析】要求△ABE的周长,现有性质可知BE=EC,也就是只要求出AC即可,而已知中早已给出AC的大小.3.答案:Axx.,则∠解析:【解答】设∠CAE=EAB=3∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.x. C=∠CAE=∴∠根据三角形的内角和定理,得∠C+∠BAC=180°-∠B,xx=140°,+4即x=28°.则∠C=28°.故选A.xx.根据线段的垂直平分线的性质,得AE=CEAE=,则∠EAB=3,再根据等边【分析】设∠C x,然后根据三角形的内角和定理列方程求解.对等角,得∠C=∠CAE=9/ 45.3简单的轴对称图形习题七年级数学下册D4.答案: A,解析:【解答】如图,∵边BC的垂直平分线经过顶点,∴AB=AC ,∴∠B=∠C ,∵AB=2AD ∴∠B=30°, 30°×2=120°,∴∠C=30°,∠BAC=180°- 符合.观察各选项,只有D .故选D,根据等边对等角【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AB=AC30°角所对的直角边等于斜边的一半可得∠B=30°,然后求出另外的可得∠B=∠C,再根据两个内角的度数,即可得解.D5.答案:,故本选项AE=BEABE是线段的垂直平分线上的两点,∴AD=BD,解析:【解答】A、∵D,正确;的垂直平分线上,故本选项正确;,∴点P在线段ABB、∵PA=PB DE是线段AB的垂直平分线,故本选项正确;C、∵AD=BD,AE=BE,∴直线 AB的垂直平分线上,故本选项错误.PD、∵PA=PB,∴点在线段 D.故选【分析】根据线段垂直平分线的性质对各选项进行逐一判断.D .答案:6cmcm PB=3PA=3,解析:【解答】∵p一定在边AB∴点的垂直平分线上.(垂直平分线的性质).D故选利用线段垂直平分线上的点到线段两端的距离相等的逆定已知条件知道线段相等,【分析】p AB的垂直平分线上.理可知点一定在边B7.答案:9/ 5简单的轴对称图形习题七年级数学下册5.3的垂直平分线,是ACDE解析:【解答】∵,∴AD=CD BC=3cm,∵△ABC中,AB=AC=4cm, cm).BCD的周长为:BD+CD+BC=BD+AD+BC=AB+BC=4+3=7(∴△.故选B,又由的垂直平分线,根据线段垂直平分线的性质即可得【分析】由ACDEAD=CD是 BCD的周长.AB=AC=4cm,BC=3cm,即可求得△二、填空题 19 8.答案:的中垂线,解析:【解答】:∵△ABC中,DE是ACcm AD=CD,AE=CE=,AC=3∴①∴△ABD得周长=AB+AD+BD=AB+BC=13--- AB+BC+AC=AB+BC+6----②则△ABC的周长为把②代入①得cm L△ABC=13+6=19.cm的周长为19.ABC△.19故填进行线段的等量代换后可得到根据垂直平分线的性质得到线段相等,【分析】由已知条件,答案.9.答案:82°解析:【解答】∵DC是AB的垂直平分线,∴AC=BC,∴∠A=∠B=41°,∴∠ACE=41°+41°=82°,故答案为:82°.【分析】根据线段垂直平分线的性质可得AC=BC,进而得到∠A=∠B,再根据三角形的外角性质可得答案.10.答案:60°解析:【解答】如图,9/ 6七年级数学下册5.3简单的轴对称图形习题∵AB的垂直平分线为DE,∴,EA=EB ∠B=15°,∴∠EAD= EAD+∠B=30°,AEC=∵∠∠ -30°=60°.∴∠EAC=90° 60°故答∠EAD=【分析】根据线段垂直平分线的性质得到EA=EB,则利用等腰三角形的性质得到∠然后根据三角形内角和定理可计算∠B=30°,根据三角形外角性质有∠B=15°,AEC=∠EAD+ EAC.∠AC 11.答案:,,解析:【解答】∵BC=BD+ADBC=BD+CD ,∴AD=DC 的垂直平分线上,∴D在AC .AC 故答案为:,根据线段垂直平分线定理得出.【分析】根据已知得出AD=DC三、解答题cm.答案:AC=7.12 是线段BC的垂直平分线,AD解析:【解答】∵,BD=CD,∴AB=AC cm,又∵BD=3cm ∴BC=6,cm的周长=AB+BC+AC=20,又∵△ABC 2AC=14,∴cm AC=7.AB=AC,BD=CD,然后根据等量代换,解答出即【分析】根据线段垂直平分线的性质,可得可.9/ 7七年级数学下册5.3简单的轴对称图形习题.答案:AB=CD.13 解析:【解答】.AB=CDAD连接AC 垂直平分∵DEAD=CD ∴C∠∴∠DAC=C ∴∠ADB=∠DAC+∠∠C=2C 又∵∠B=2∠B ∠∴∠ADB=AB=AD ∴.AB=CD∴,然后依题意可解出AB=CD.【分析】作辅助线.求出∠DAC=∠C 14.答案:见解答过程.的中垂线,EF是AD解析:【解答】证明:(1)∵.∴DE=AE .EAD=∠EDA∴∠为中垂线,)∵EF (2 .∴FD=FA FAD.∠∴∠FDA=,BAC ∵AD平分∠∴∠FAD=∠DAC,所以∠FDA=∠DAC.∴DF∥AC.【分析】(1)由中垂线的性质知,DE=AE,由等边对等角知,∠EAD=∠EDA2)由中垂线的性质知,FD=FA?∠FDA=∠FAD,由AD平分∠BAC?∠FAD=∠DAC,∠FDA=∠DAC?DF∥AC9/ 85.3简单的轴对称图形习题七年级数学下册 15.答案:见解答过程.C的平分线CE,两线相交于点MN的中垂线,画∠P,解析:【解答】画BC则P为所求【分析】把两矩形简化为两线段,根据轴对称的性质,可把两尺子重合.9/ 9。

北师大版七年级下册《5.3 简单的轴对称图形》同步练习( 无答案)

北师大版七年级下册《5.3 简单的轴对称图形》同步练习( 无答案)

北师大七下《5.3 简单的轴对称图形》同步练习一.选择题(共6 小题)1.如图,AD 是△ABC 中∠BAC 的平分线,DE⊥AB 于点E,DF⊥AC 于点F.若S△ABC=28,DE=4,AB=8,则AC 长是()A.8 B.7 C.6 D.52.在Rt△ABC 中,∠C=90°,∠BAC 的角平分线AD 交BC 于点D,BC=7,BD=4,则点D 到AB 的距离是()A.2 B.3 C.4 D.53.如图,BD 平分∠ABC,BC⊥DE 于点E,AB=7,DE=4,则S△ABD=()A.28 B.21 C.14 D.74.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是()A.PQ≤5 B.PQ<5 C.PQ≥5 D.PQ>55.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC、AC 于D、E 两点,∠B=60°,∠BAD=70°,则∠BAC 的度数为()A.130°B.95°C.90°D.85°6.如图,在等边三角形ABC 中,在AC 边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n 为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n 的值而定二.填空题(共7 小题)7.如图,三条公路两两相交,现计划修建一个油库,如果要求油库到这三条公路的距离都相等,则油库的位置有个.8.如图,△ABC 中,AB=6,∠BAC 的平分线交BC 于点D,DE⊥AC 于点E,DE=4,则△ABD 面积是.9.如图,在四边形ABCD 中,E为AB 的中点,DE⊥AB 于点E,∠A=66°,∠ABC=90°,BC=AD,则∠C 的大小为.10.如图,在△ABC 中,∠B=40°,∠C=45°,AB 的垂直平分线交BC 于点D,AC 的垂直平分线交BC 于点E,则∠DAE=.11.如图,在△ABC 中,AB=AC,D、E 是△ABC 内的两点,AE 平分∠BAC,∠D=∠DBC =60°,若BD=5cm,DE=3cm,则BC 的长是cm.12.如图所示,P 是等边三角形ABC 内一点,将△ABP 绕点B 顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′=.13.如图,在△ABC 中,BC=8cm,∠BPC=118°,BP、CP 分别是∠ABC 和∠ACB 的平分线,且PD∥AB,PE∥AC,则△PDE 的周长是cm,∠DPE=°.三.解答题(共23 小题)14.如图,Rt△ABC 中,∠ACB=90°,D 是AB 上一点,BD=BC,过点D 作AB 的垂线交AC 于点E,求证:BE 垂直平分CD.15.如图,在△ABC 中,∠ABC =45°,CD ⊥AB 于点 D ,AC 的垂直平分线 BE 与 CD 交于点 F ,与 AC 交于点 E .(1)判断△DBC 的形状并证明你的结论.(2)求证:BF =AC .(3)试说明 CE = 1BF . 2 16.如图,在 Rt △ABC 中,∠ACB =90°,∠A =22.5°,斜边 AB 的垂直平分线交 AC 于点 D ,点 F 在 AC 上,点 E 在 BC 的延长线上,CE =CF ,连接 BF ,DE .线段 DE 和 BF 在数量和位置上有什么关系?并说明理由.17.如图,已知等腰△ABC 中,AB =AC ,∠BAC =120°,AD ⊥BC 于点 D ,点 P 是 BA 延长线上一点,点 O 是线段 AD 上一点,OP =OC .(1)求∠APO +∠DCO 的度数;(2)求证:点 P 在 OC 的垂直平分线上.18.如图,在等腰三角形△ABC 中,AB =AC ,BD 平分∠ABC ,在 BC 的延长线上取一点 E , 使 CE =CD ,连接 DE ,求证:BD =DE .19.如图,在ABC 中,AB=AC,点E 在CA 的延长线上,EP⊥BC,垂足为P,EP 交AB 于点F,FD∥AC 交BC 于点D.求证:△AEF 是等腰三角形.20.如图,△ABC 中,BD 平分∠ABC,CD 平分∠ACB,过点D 作EF∥BC,与AB、AC 分别相交于E、F,若已知AB=9,AC=7,求△AEF 的周长.21.如图,△ABC 中,D 是AB 边上一点,在AC 的延长线上取CE=BD,连接DE 交BC 于F,若DF=EF.求证:△ABC 为等腰三角形.22.如图,在△ABC 中,∠BAC=90°,BE 平分∠ABC,AM⊥BC 于点M,AD 平分∠MAC,交BC 于点D,AM 交BE 于点G.(1)求证:∠BAM=∠C;(2)判断直线BE 与线段AD 之间的关系,并说明理由.23.如图,在等边△ABC 中,点D,E 分别在边BC,AC 上,且DE∥AB,过点E 作EF⊥DE,交BC 的延长线于点F,(1)求∠F 的度数;(2)若CD=3,求DF 的长.24.如图,过等边△ABC 的边AB 上一点P,作PE⊥AC 于E,Q 为BC 延长线上一点,且PA=CQ,连PQ 交AC 边于D.(1)求证:PD=DQ;(2)若△ABC 的边长为1,求DE 的长.25.如图所示,已知等边△ABC 的边长为a,P 是△ABC 内一点,PD∥AB,PE∥BC,PF ∥AC,点D、E、F 分别在BC、AC、AB 上,猜想:PD+PE+PF=,并证明你的猜想.26.如图,在等边△ABC 的三边上分别取点D、E、F,使AD=BE=CF.(1)试说明△DEF 是等边三角形;(2)连接AE、BF、CD,两两相交于点P、Q、R,则△PQR 为何种三角形?试说明理由.27.如图,在△ABC 中,AB=AC,D 为BC 的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.28.如图,四边形ABDC 中,∠D=∠ABD=90°,点O 为BD 的中点,且OA 平分∠BAC.(1)求证:OC 平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.29.在△ABC 中,DE 垂直平分AB,分别交AB、BC 于点D、E,MN 垂直平分AC,分别交AC、BC 于点M、N,连接AE,AN.(1)如图1,若∠BAC=100°,求∠EAN 的度数;(2)如图2,若∠BAC=70°,求∠EAN 的度数;(3)若∠BAC=α(α≠90°),请直接写出∠EAN 的度数.(用含α的代数式表示)30.在△ABC 中,AD 平分∠BAC,E 是BC 上一点,BE=CD,EF∥AD 交AB 于F 点,交CA 的延长线于P,CH∥AB 交AD 的延长线于点H,①求证:△APF 是等腰三角形;②猜想AB 与PC 的大小有什么关系?证明你的猜想.31.如图,△ABC 中,∠ACB=90°,以AC 为边在△ABC 外作等边三角形ACD,过点D 作AC 的垂线,垂足为F,与AB 相交于点E,连接CE.(1)说明:AE=CE=BE;(2)若AB=15cm,P 是直线DE 上的一点.则当P 在何处时,PB+PC 最小,并求出此时PB+PC 的值.32.如图,△ABC 是等边三角形,分别延长AB 至F,BC 至D,CA 至E,使AF=3AB,BD =3BC,CE=3CA,求证,△DEF 是等边三角形.33.如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α.以OC 为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD 的形状,并说明理由;(2)探究:当α 为多少度时,△AOD 是等腰三角形?34.如图,△ABC 中,AB=BC=AC=12cm,现有两点M、N 分别从点A、点B 同时出发,沿三角形的边运动,已知点M 的速度为1cm/s,点N 的速度为2cm/s.当点N 第一次到达B 点时,M、N 同时停止运动.(1)点M、N 运动几秒后,M、N 两点重合?(2)点M、N 运动几秒后,可得到等边三角形△AMN?(3)当点M、N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN?如存在,请求出此时M、N 运动的时间.35.已知:如图,△ABC 是边长3cm 的等边三角形,动点P、Q 同时从A、B 两点出发,分别沿AB、BC 方向匀速移动,它们的速度都是1cm/s,当点P 到达点B 时,P、Q 两点停止运动.设点P 的运动时间为t(s),解答问题:当t 为何值时,△PBQ 是直角三角形?36.如图,△ABC 中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P 从点C 开始,按C→A →B→C 的路径运动,且速度为每秒1cm,设出发的时间为t 秒.(1)出发2 秒后,求△ABP 的周长.(2)问t 为何值时,△BCP 为等腰三角形?(3)另有一点Q,从点C 开始,按C→B→A→C 的路径运动,且速度为每秒2cm,若P、Q 两点同时出发,当P、Q 中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ 把△ABC 的周长分成相等的两部分?第10 页(共10 页)。

北师大版七下数学5.3简单的轴对称图形(3)说课稿

北师大版七下数学5.3简单的轴对称图形(3)说课稿

北师大版七下数学5.3简单的轴对称图形(3)说课稿一. 教材分析北师大版七下数学 5.3简单的轴对称图形(3)是本册书的第三章第五节内容,本节课的内容是在学生已经掌握了轴对称图形的概念以及对称轴的定义的基础上进行学习的,本节课的内容主要是让学生进一步理解轴对称图形的性质,并且能够运用轴对称图形的性质解决一些实际问题。

在教材的安排上,首先是通过一些实际的问题引出轴对称图形的性质,然后通过一些例题让学生进一步理解轴对称图形的性质,最后通过一些练习让学生巩固所学的知识。

二. 学情分析在教学之前,我首先会对学生进行学情分析。

根据对学生已经掌握的知识的掌握程度,我发现学生已经掌握了轴对称图形的概念以及对称轴的定义,但是学生对于如何运用轴对称图形的性质解决实际问题还不是很清楚。

因此,在教学过程中,我需要引导学生运用所学的知识解决实际问题,提高他们的解决问题的能力。

三. 说教学目标根据教材内容和学情分析,我制定了以下教学目标:1.让学生理解轴对称图形的性质,并能够运用性质解决一些实际问题。

2.培养学生的观察能力、思考能力和解决问题的能力。

3.激发学生对数学的兴趣,培养他们的数学思维。

四. 说教学重难点根据教材内容和学情分析,我确定了以下教学重难点:1.轴对称图形的性质的理解和运用。

2.如何引导学生运用轴对称图形的性质解决实际问题。

五. 说教学方法与手段为了实现教学目标,突破重难点,我采用了以下教学方法和手段:1.采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握轴对称图形的性质。

2.使用多媒体教学手段,通过展示一些实际的例子,让学生更直观地理解轴对称图形的性质。

六. 说教学过程在教学过程中,我会按照以下步骤进行:1.导入:通过一些实际的问题,引出轴对称图形的性质。

2.讲解:通过一些例题,讲解轴对称图形的性质,并引导学生运用性质解决实际问题。

3.练习:让学生做一些练习题,巩固所学的知识。

4.总结:对本节课的内容进行总结,强调轴对称图形的性质及其运用。

2017-2018学年七年级数学下册第五章生活中的轴对称5.3简单的轴对称图形同步测试

2017-2018学年七年级数学下册第五章生活中的轴对称5.3简单的轴对称图形同步测试

5。

3简单的轴对称图形一、单选题(共9题;共18分)1.已知一个等腰三角形的两边长是3cm和7cm,则它的周长为()A。

13cm B。

17cm C 。

13或17cm D。

10cm2。

如图,在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为()A.3B.4C。

5D。

63。

如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是( )A。

3 B. 4C. 5 D。

64。

如图,已知OP平分∠AOB,∠AOB=60°,PC⊥OA于点C,PD⊥OB于点D,EP∥OA,交OB于点E,且EP=6.若点F是OP 的中点,则CF的长是()A。

6 B. 3C. 2 D。

35。

在等腰△ABC中,AB=AC,其周长为16cm,则AB边的取值范围是( )A. 1cm<AB<4cm B。

3cm<AB<6cm C. 4cm <AB<8cm D. 5cm<AB<10cm6.如图,在一个正方体的两个面上画两条对角线AB,AC,那么这两条对角线的夹角等于()A. 60° B。

75°C. 90°D. 135°7.如图,在△ABC中,∠A=90°,BE平分∠ABC,DE⊥BC,垂足为D,若DE=3cm,则AE=()cm。

A。

3 B。

3。

5 C. 4 D 。

68。

如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为( )A。

70° B。

80°C. 40° D。

30°9。

如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P 沿直线AB从右向左移动,当出现点P与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB上会发出警报的点P有()A. 3个 B。

简单的轴对称现象(第3课时)课件

简单的轴对称现象(第3课时)课件

中正确的是( A )
A.①②③
B.②③
C.①③
D.①
巩固练习
9. 如图所示,D是∠ACG的平分线上的一点.DE⊥AC ,DF⊥CG,垂足分别为E,F.试说明:CE=CF.
解:因为CD是∠ACG的平分线, DE⊥AC,DF⊥CG,
所以DE=DF, ∠DCE= ∠DCF, ∠DEC= ∠DFC.
所以△CDE≌△CDF(AAS), 所以CE=CF.
解:∵ CD⊥OA,CE⊥OB,
∴ ∠CDO= ∠CEO=90 °. 在△CDO和△CEO中,
∠CDO= ∠CEO,
∠AOC= ∠BOC,
OP= OP,
∴ △CDO ≌△CEO(AAS). ∴CD=CE.
归纳总结
角平分线性质:
角的平分线上的点到角的两边的距离相等
几何语言:
∵ ∠1= ∠2
PD ⊥OA ,PE ⊥OB
交OA于点M,交OB于点N.
(2)分别以点MN为圆心,大于
1 2
MN的
A
M C
长为半径画弧,两弧在∠AOB的内部相交
于点C.
B
N
O
(3)画射线OC.射线OC即为所求.
新知探究
这样做的道理?如何证明?
证明:连接MC,NC由作法知: 在△OMC和△ONC中
OM=ON MC=NC OC=OC ∵△OMC≌△ONC(SSS) ∴∠AOC=∠BOC 即:OC 是∠AOB的角平分线
A 要求:先独立完成,后小组交流。
E
F
BDC
例题讲授
例1 已知:如图,在△ABC中,AD是它的角平分线,且∠ B= ∠ C,DE⊥AB, DF⊥AC.垂足分别为E,F.求证:EB=FC.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.3 简单的轴对称图形(3)小练习
一、选择题
1、如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()
A.5cm B.4cm C.3cm D.2cm
2、到三角形三条边的距离都相等的点是这个三角形的()
A.三条中线的交点B.三条高的交点
C.三条边的垂直平分线的交点D.三条角平分线的交点
3、如图,在△ABC中,AD是△ABC中∠BAC的平分线,且BD>DC,则下列说法中正确的是()
A.点D到AB边的距离大于点D到AC边的距离
B.点D到AB边的距离小于点D到AC边的距离
C.点D到AB边的距离等于点D到AC边的距离
D.点D到AB边的距离与点D到AC边的距离大小关系不确定
二、填空题
4、如图,长方形ABCD中,AB=2,点E在BC上并且AE=EC,若将矩形纸片沿AE折叠,使点B恰好落在AC上,则AC的长为。

三、解答题
5、把两个同样大小的含30°角的三角尺像如图所示那样置放,其中M是AD与BC的交点,这时MC的长度就等于M到AB的距离。

你知道这是为什么吗?
6、如图,OE平分∠AOB,在OA、OB上取OC=OD,PM⊥CE于E,PN⊥DE于N.线段PM与PN 有什么关系?证明你的结论.
7、如图,直线MN分别交直线AB,CD于点E,F,EG平分∠BEF,若∠1=50°,∠2=65°,
(1)求证:AB∥CD;
(2)在(1)的条件下,求∠AEM的度数.
8、已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB相交于点D、E.
(1)如图1,当CD⊥OA于D,CE⊥OB于E,求证:CD=CE.
(2)当三角板绕点C旋转到CD与OA不垂直时,在图2这种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.。

相关文档
最新文档