七(下)培优训练(二)实数(提高版)
部编数学七年级下册实数与数轴大题提升训练(重难点培优30题)【拔尖特训】2023培优(解析版)
【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【人教版】专题6.10实数与数轴大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022秋•郓城县期中)如图,数轴的正半轴上有A、B、C三点,点A、B表示数1和.点B到点A 的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你求出数x的值.(2)若m为x﹣2的相反数,n为x﹣2的绝对值,求m+n.【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为x的值;(2)根据题意及x的值求出m和n的值,再把m,n代入所求代数式进行计算即可.【解答】解:(1)∵点A,B表示的数分别是1和,∴,∴,∴点C表示的数;(2)由(1)知,∴,∴m=3﹣,,∴m+n=6﹣2.2.(2022秋•三元区期中)如图,数轴的正半轴上有A,B两点,表示1和的对应点分别为A,B,点C,D在数轴上,点B到点A的距离与点C到点D的距离相等,设点C所表示的数为x.(1)当D所表示的数为0且C在D的右边时,求出x的值;(2)当D所表示的数为﹣2时,求出x的值.【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为x的值;(2)分C在D的左边和右边两种情况确定x的值.【解答】解:(1)∵点A.B分别表示1,,∴AB=﹣1,即x=﹣1;(2)当C在D的左边时:∵D所表示的数为﹣2,AB=﹣1,∴x=﹣2﹣(﹣1)=﹣3+1;当C在D的右边时:∵D所表示的数为﹣2,AB=﹣1,∴x=﹣2+﹣1=﹣﹣1.综上所述,x的值为﹣3+1或﹣﹣1.3.(2022秋•北仑区期中)如图,一只蚂蚁从A点沿数轴向右直爬2个单位长度到达点B,点A表示﹣,设点B所表示的数为m,(1)求m的值.(2)求|m﹣3|+m+2的值.【分析】(1)根据数轴上的点运动规律:右加左减的规律可求出m的值;(2)主要将m的值代入到代数式中即可,只要注意运算的顺序和绝对值的计算方法即可.【解答】解:(1)∵蚂蚁从点A沿数轴向右直爬2个单位到达点B,∴点B所表示的数比点A表示的数大2,∵点A表示,点B所表示的数为m,∴m=﹣+2;(2)|m﹣3|+m+2=|﹣+2+3|﹣+2+2=5﹣﹣+4=9﹣2.4.(2022秋•鄞州区期中)“数形结合”是重要的数学思想.如:|3﹣(﹣2)|表示3与﹣2差的绝对值,实际上也可以理解为3与﹣2在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A,B所对应的数分别用a,b表示,那么A,B两点之间的距离表示为AB=|a﹣b|.利用此结论,回答以下问题:(1)数轴上﹣2和5这两点之间的距离为 7 .(2)若x表示一个实数,|x+2|+|x﹣4|的最小值为 6 .(3)直接写出所有符合条件的x,使得|x﹣2|+|x+5|=9,则x的值为 3或﹣6 .【分析】(1)利用数轴直观得出答案.(2)x在﹣2到4之间值最小,两点之间线段最短.(3)2到﹣5之间是7,与9相差2,分到两段中,每段加1,得出结果.【解答】解:(1)|(﹣2)﹣5|=7.(2)当x<﹣2时,|x+2|+|x﹣4|=﹣2x+2>6;当﹣2≤x≤4时,|x+2|+|x﹣4|=6;当x>4时,|x+2|+|x﹣4|=2x﹣2>6,故|x+2|+|x﹣4|最小值为6.(3)当x<﹣5时,|x﹣2|+|x+5|=﹣(x﹣2)﹣(x+5)=﹣2x﹣3=9,解方程得:x=﹣6;当﹣5≤x≤2时,|x﹣2|+|x+5|=7,无解;当x>2时,|x﹣2|+|x+5|=2x+3=9,解方程得:x=3.故x的值为﹣6或3.5.(2022秋•义乌市校级期中)如图,有一只蚂蚁从点B沿数轴向左爬了2个单位长度到达点A,若点B表示数,设点A所表示的数为m.(1)实数m的值是 ﹣2 ;(2)求(m+2)2+|m+1|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+4|与互为相反数,求2c+3d+8的平方根.【分析】(1)m比小2;(2)结合(1),把m的值代入计算即可;(3)求出c,d,代入2c+3d+8,可得到答案.【解答】解:(1)根据题意:m=﹣2,故答案为:﹣2;(2)当m=﹣2时,(m+2)2+|m+1|=(﹣2+2)2+|﹣2+1|=5+﹣1=4+;(3)∵|2c+4|与互为相反数,∴|2c+4|+=0,∴2c+4=0,d﹣4=0,解得c=﹣2,d=4,∴2c+3d+8=2×(﹣2)+3×4+8=16,∴2c+3d+8的平方根,即16的平方根为±4.6.(2022秋•拱墅区期中)已知实数a,b,c在数轴上的位置如图所示,且满足|a|=|b|=2|﹣c|=4.(1)求a,b,c的值;(2)求|a﹣2b|+|﹣b+c|+|c﹣3a|的值.【分析】(1)根据数轴上点的位置及绝对值求解;(2)把(1)中求得的数值代入求解.【解答】解:(1)∵a<0,b>0,c>0,且满足|a|=|b|=2|﹣c|=4,∴a=﹣4,b=4,c=2;(2)|a﹣2b|+|﹣b+c|+|c﹣3a|=|﹣4﹣8|+|﹣4+2|+|2+12|=12+2+14=28.7.(2022春•巴东县期末)如图,数轴的正半轴上有A、B、C三点,表示1和的对应点分别为A、B,点B到点A的距离与点C到原点的距离相等.设点C对应的数为x.(1)求AC的长;(2)求()2的平方根.【分析】(1)根据点B到点A的距离与点C到原点的距离相等求出x的值,根据AC=AO﹣CO即可得出答案;(2)把x的值代入代数式求值,再求平方根即可.【解答】解:(1)根据题意得:﹣1=x﹣0,∴x=﹣1,∴AC=1﹣(﹣1)=2﹣;(2)∵x=﹣1,∴(x﹣)2=(﹣1﹣)2=(﹣1)2=1,∴()2的平方根为±1.8.(2022春•巨野县期末)在数轴上点A,B分别对应数1,,点B关于点A的对称点为C,设点C所对应的数为x,则x的值是多少?并求x(x﹣1)的值.【分析】求出AB的长,表示出AC的长,根据对称可得AB=AC,进而得到方程,求方程的解即可求出x,再代入代数式求值即可.【解答】解:由题意得:AB=﹣1,AC=1﹣x,∵点B关于点A的对称点为C.∴AB=AC,即:﹣1=1﹣x,解得x=2﹣,当x=2﹣时,x(x﹣1)=(2﹣)(2﹣﹣1)=4﹣3,答:x(x﹣1)的值为4﹣3.9.(2022春•望城区期末)如图:已知在数轴上点A表示﹣,点B表示;(1)求出A、B两点间的距离;(2)点C在数轴上满足AC=2AB,写出点C所表示的数.【分析】(1)利用两点间的距离公式计算即可;(2)利用两点间的距离公式计算即可;【解答】解:(1)=;(2)设点C表示的数是x,∵AC=2AB,∴|x﹣(﹣)|=2(),∴x+=,∴x1=2,x2=﹣3.所以点C表示的数是2或﹣3.10.(2021秋•封丘县期末)如图,数轴上点B,C关于点A成中心对称,若点A表示的数是1,点B表示的数是﹣.(1)填空:线段AB的长是 +1 ,点C表示的数为 +2 ;(2)点C表示的数为a,a的小数部分为b,求ab的值.【分析】(1)根据两点间的距离公式可得AB的长,根据对称可得AC=AB,可知点C表示的数;(2)由题意可得a=+2,b=﹣2,再代入可得ab的值.【解答】解:(1)∵点A表示的数是1,点B表示的数是﹣,∴AB=1﹣(﹣)=+1.∵点B,C关于点A成中心对称,∴AC=AB=+1,∴点C表示的数是1++1=+2.故答案为:,;(2)由(1)得,点C表示的数是+2,∴,,∴.11.(2021秋•垦利区期末)如图,一只蚂蚁从A点沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.(1)求m的值;(2)求|m﹣1|+1的值.【分析】(1)根据数轴表示数的意义即可求出答案;(2)将m的值代入,再根据绝对值的意义进行计算即可.【解答】解:(1)∵点A表示,∴点B所表示的数为,即:m=;(2)∵m=∴原式====.12.(2021秋•诸暨市期末)定义:有A、B两只电子跳蚤在同一条数轴上跳动,它们在数轴上对应的实数分别为a、b.若实数a、b满足b=3a+2时,则称A、B处于“和谐位置”,A、B之间的距离为“和谐距离”.(1)当A在原点位置,且A、B处于“和谐位置”时,“和谐距离”为 2 .(2)当A、B之间的“和谐距离”为2022时,求a、b的值.【分析】(1)将a=0代入b=3a+2中得到b=2,所以和谐距离为2;(2)根据A,B的和谐距离为2022列出方程即可求解.【解答】解:(1)将a=0代入b=3a+2中得到b=2,所以和谐距离为2;故答案为:2;(2)∵A,B处于和谐位置,∴b=3a+2,∴|AB|=|b﹣a|=|2a+2|=2022,∴2a+2=±2022,∴a=1010,b=3032或a=﹣1012,b=﹣3034.13.(2022春•越秀区校级期末)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示﹣,设点B所表示的数为m.(1)求|m+1|+|m﹣1|的值;(2)在数轴上还有C、D两点分别表示实数c和d,且有|2c+d|与互为相反数,求2c﹣3d的平方根.【分析】(1)先化简每一个绝对值,然后再进行计算即可;(2)根据互为相反数的两个数相加和为0,求出c,d即可.【解答】解:(1)由题意得:m=,∴m+1>0,m﹣1<0,∴|m+1|+|m﹣1|=m+1+1﹣m=2;(2)由题意得:|2c+d|+=0,∴2c+d=0,d+4=0,∴d=﹣4,c=2,∴2c﹣3d=16,∵16的平方根是±4,∴2c﹣3d的平方根是±4.14.(2021秋•唐山期末)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)实数m的值是 2﹣ .(2)求|m+1|+|m﹣1|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+4|与互为相反数,求2c+3d的平方根.【分析】(1)通过A,B在数轴上表示的数进行运算.(2)化简绝对值进行运算.(3)根据非负数的意义进行解答.【解答】解:∵点B在点A右侧2个单位处,∴点B所表示的数m为:﹣+2,即2﹣.故答案为:2﹣.,则m+1>0,m﹣1<0,∴|m+1|+|m﹣1|=m+1+1﹣m=2;答:|m+1|+|m﹣1|的值为2.(3)∵|2c+4|与互为相反数,∴,∴|2c+4|=0,且,解得:c=﹣2,d=4,∴2c+3d=8,∴2c+3d的平方根为±2.答:2c+3d的平方根为±2.15.(2022春•前郭县期末)如图,数轴的正半轴上有A、B、C三点,表示1和的对应点分别为A,B,点B到点A的距离与点C到原点的距离相等,设点C所表示的数为x.(1)请你直接写出x的值;(2)求(x﹣)2的平方根.【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为x的值;(2)把x的值代入所求代数式进行计算即可.【解答】解:(1)∵点A.B分别表示1,,∴AB=,即x=;(2)∵x=,∴原式===1,∴1的平方根为±1.16.(2021秋•兰州期末)如图,已知点A、B是数轴上两点,O为原点,AB=12,点B表示的数为4,点P、Q分别从O、B同时出发,沿数轴向不同的方向运动,点P速度为每秒1个单位,点Q速度为每秒2个单位,设运动时间为t,当PQ的长为5时,求t的值及AP的长.【分析】根据题意可以分两种情况,然后根据题意和数轴即可解答本题.【解答】解:∵AB=12,0B=4,∴OA=8,当P向左,Q向右时,t+2t=5﹣4,得t=,此时,OP=,AP=8﹣=;当P向右,Q向左时,t+2t=5+4,得t=3,此时,OP=3,AP=8+3=11.17.(2021秋•藤县期末)如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP= 5﹣t ,AQ= 10﹣2t ;(2)当t=2时,求PQ的值;(3)当PQ=AB时,求t的值.【分析】(1)先求出当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,再根据两点间的距离公式即可求出BP,AQ的长;(2)先求出当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,再根据两点间的距离公式即可求出PQ的长;(3)由于t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,根据两点间的距离公式得出PQ=|2t﹣(10+t)|=|t﹣10|,根据PQ=AB列出方程,解方程即可.【解答】解:(1)∵当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,∴BP=15﹣(10+t)=5﹣t,AQ=10﹣2t.(2)当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,所以PQ=12﹣4=8;(3)∵t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,∴PQ=|2t﹣(10+t)|=|t﹣10|,∵PQ=AB,∴|t﹣10|=5,解得t=15或5.故t的值是15或5.故答案为:5﹣t,10﹣2t.18.(2021秋•绥宁县期末)如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为 ﹣1﹣2 .【分析】(1)根据正方体的体积公式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D在数轴上表示的数.【解答】解:(1).答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:×2×2×4=8,边长为:=2.答:阴影部分的面积是8,边长是2.(3)D在数轴上表示的数为﹣1﹣2.故答案为:﹣1﹣2.19.(2022春•宁明县期末)如图所示,数轴的正半轴上有A、B、C三点,表示1和的对应点分别为A、B,点B到点A的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你写出数x的值;(2)求(x﹣)2的立方根.【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为x的值;(2)把x的值代入所求代数式进行计算即可.【解答】解:(1)∵点A、B分别表示1,,∴AB=﹣1,即x=﹣1;(2)∵x=﹣1,∴原式==,∴1的立方根为1.20.(2021春•南通期末)如图,a,b,c是数轴上三个点A、B、C所对应的实数.试化简:+|a+b|+﹣|b﹣c|.【分析】直接利用数轴得出c>0,a+b<0,b﹣c<0,再化简求解.【解答】解:由数轴可得:c>0,a+b<0,b﹣c<0,原式=c﹣a﹣b+(a+b)+(b﹣c)=b.21.(2020秋•福山区期末)如图,一只蚂蚁从点A沿数轴向右爬2个单位长度后到达点B,点A表示的数是﹣,设点B所表示的数为m.(1)求m的值;(2)求|m﹣2|+|2m﹣|的值.【分析】(1)根据数轴上右边的数总比左边的数大,求出﹣与的和即可;(2)把(1)中求出的m值代入计算即可.【解答】解:(1)由题意得:m=﹣+=,∴m的值为;(2)|m﹣2|+|2m﹣|=|﹣2|+|2﹣|=|﹣|+||==.22.(2020秋•滨江区期末)如图,顺次连结4×4方格四条边的中点,得到一个正方形ABCD.设每一个小方格的边长为1个单位.(1)正方形ABCD的边长介于哪两个相邻的整数之间,请说明理由.(2)如果把正方形ABCD放到数轴上,使得边AB与数轴重合,且点A与数轴的原点重合,数轴的单位长度就是小方格的边长.请写出点B在数轴上所表示的数.【分析】(1)利用大正方形的面积减去四个直角三角形的面积,求出正方形ABCD的面积,然后再求出边长即可;(2)点B在数轴上的位置有两种情况,点B在原点左侧,点B在原点右侧.【解答】解:(1)正方形ABCD的边长介于两个相邻的整数2和3之间,理由是:∵正方形ABCD的面积=4×4﹣4××2×2=8,∴AB==,∵22=4,32=9,∴4<8<9,∴,∴2<<3,正方形ABCD的边长介于两个相邻的整数2和3之间;(2)分两种情况:当点B在原点左侧,点B在数轴上所表示的数是:,当点B在原点右侧,点B在数轴上所表示的数是:,∴点B在数轴上所表示的数是:±.23.(2021春•绥中县期末)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.(1)求m的值;(2)求|m﹣1|+(m﹣6)的值.【分析】(1)根据正负数的意义计算即可;(2)根据去绝对值的法则和有理数加减法则即可得到答案.【解答】解:(1)由题意,A和B的距离为2,点A表示﹣,∴B表示的数比A表示的数大2,∴m=﹣+2;(2)把m=﹣+2代入得:|m﹣1|+(m﹣6)=|﹣+2﹣1|+(﹣+2﹣6)=|1﹣|﹣﹣4=﹣1﹣﹣4=﹣5.24.(2021春•二道区期末)如图①,点O为数轴原点,OA=3,正方形ABCD的边长为6,点P从点O出发,沿射线OA方向运动,速度为每秒2个单位长度,设运动时间为t秒,回答下列问题.(1)点A表示的数为 3 ,点D表示的数为 9 .(2)t秒后点P对应的数为 2t (用含t的式子表示).(3)当PD=2时,求t的值.(4)如图②,在点P运动过程中,作线段PE=3,点E在点P右侧,以PE为边向上作正方形PEFG,当正方形PEFG与正方形ABCD重叠面积为6时,直接写出t的值.【分析】(1)根据线段OA的长和正方形的边长可以求解.(2)根据P点的运动速度与运动时间得出运动路程,对应数数轴得出结论.(3)根据运动过程P点处于不同位置进行分类讨论.(4)根据P点运动确定正方形的位置再去讨论重合面积为6时的t值.【解答】解:(1)∵OA=3,且O为数轴原点,在O的右侧,∴A表示的数为3,∵正方形的边长为6,∴OD=6+3=9,∴D表示的数为9.故答案是3,9;(2)∵P点从O点开始运动且速度为每秒2个单位长度∴OP=2t,故答案是2t.(3)∵OP=2t,OD=9,∴①当P点在D点左侧时,9﹣2t=2,解得t=3.5;②当P点在D点右侧时,2t﹣9=2,解得t=5.5.答:当PD=2时,t的值是3.5或5.5.(4)由题意得:①当E点在D点左侧时,AE=2t,∴2t×3=6,解得t=1;②当E点在D点右侧时,(9﹣2t)×3=6,解得:t=3.5.答:当正方形PEFG与正方形ABCD重叠面积为6时,t的值是1或3.5.25.(2020秋•北碚区校级期末)众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.【提示:b3﹣a3=(b﹣a)(b2+ab+a2).】(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.【解答】解:(1)12不是复合数,∵找不到两个整数a,b,使a3﹣b3=12,故12不是复合数;设“正点”P所表示的数为x(x为正整数),则a=x﹣1,b=x+1,∴(x+1)3﹣(x﹣1)3=(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)=2(3x2+1)=6x2+2,∴6x2+2﹣2=6x2一定能被6整除.(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),∵两个“复合数”的差是42,∴(6m2+2)﹣(6n2+2)=42,∴m2﹣n2=7,∵m,n都是正整数,∴,∴,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.26.(2021秋•绥宁县期末)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B 两点中有一点为原点时,不妨设A点在原点.如图1所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:(1)如图2所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|.(2)如图3所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|.(3)如图4所示,点A、B分别在原点的两边,不妨设点A在原点的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|.回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB= |a﹣b| ;(2)数轴上表示3和﹣5的两点A和B之间的距离AB= 8 ;(3)数轴上表示x和﹣5的两点A和B之间的距离AB= |x+5| ,如果AB=3,则x的值为 ﹣8或﹣2 ;(4)若代数式|x+5|+|x﹣2|有最小值,则最小值为 7 .【分析】根据题目条件可得,两点间的距离用绝对值可以表示成|a﹣b|,利用此几何意义解决距离问题即可.【解答】解:(1)AB=|a﹣b|(也可以填|b﹣a|)(2)AB=|3﹣(﹣5)|=8(3)AB=|x﹣(﹣5)|=|x+5|,即|x+5|=3.∴x+5=3或者﹣3,解得x=﹣2或﹣8.(4)若代数式|x+5|+|x﹣2|有最小值,|x+5|+|x﹣2|的最小值即为数轴上表示﹣5与2两点间的距离,此时最小值为|﹣5﹣2|=7.27.(2022秋•济南期末)已知数轴上两点A,B,其中A表示的数为﹣2,B表示的数为2,AB表示A,B两点之间的距离.若在数轴上存在一点C,使得AC+BC=n,则称点C为点A,B的“n节点”.例如图1所示,若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A,B的“4节点”(1)若点C为点A,B的“n节点”,且点C在数轴上表示的数为﹣3,则n= 6 ;(2)若点D为点A,B的“节点”,请直接写出点D在数轴上表示的数为 ±2 ;(3)若点E在数轴上(不与A,B重合),满足A,E两点之间的距离是B,E两点之间的距离的倍,且点E为点A,B的“n节点”,求n的值.【分析】(1)根据新定义求解;(2)设未知数,根据新定义列方程求解;(3)先求点E表示的数,再计算n的值.【解答】解:(1)AC+BC=(﹣2+3)+(2+3)=6,故答案为:6;(2)设D表示的数为x,则|x+2|+|x﹣2|=4,解得:x=±2,故答案为:±2;(3)设E点表示的数是y,则:|﹣2﹣y|=|2﹣y|,解得:y=6,当y=6+4时,n=AE+BE=8+4+4+4=12+8,当y=6﹣4时,n=AE+BE=8﹣4+4﹣4=4.28.(2021秋•成都期末)如图,数轴上点M,N对应的实数分别为﹣6和8,数轴上一条线段AB从点M出发(刚开始点A与点M重合),以每秒1个单位的速度沿数轴在M,N之间往返运动(点B到达点N立刻返回),线段AB=2,设线段AB的运动时间为t秒.(1)如图1,当t=2时,求出点A对应的有理数和点B与点N之间的距离;(2)如图2,当线段AB从点M出发时,在数轴上的线段CD从点N出发(D在C点的右侧,刚开始点D与点N重合),以每秒2个单位的速度沿数轴在N,M之间往返运动(点C到达点M立刻返回),CD=4,点P为线段AB的中点,点Q为线段CD的中点.①当P点第一次到达原点O之前,若点P、点Q到数轴原点的距离恰好相等,求t的值;②我们把数轴上的整数对应的点称为“整点”,当P,Q两点第一次在整点处重合时,请求出此时点C 对应的数.【分析】(1)根据起始点求出点A和点B对应的数,进而可得答案;(2)①分别用含t的代数式表示出点P和点Q,再分情况列方程即可;②当0<t≤5时,点P与点Q重合时不在整点处;当5<t≤10时,由题意得﹣5+t=﹣4+2(t﹣5),解方程可得答案.【解答】解:(1)点A起始点在﹣6处,当t=2时,∵﹣6+1×2=﹣4,∴点A对应的有理数为﹣4,点B起始点在﹣4处,当t=2时,∵﹣4+1×2=﹣2,∴点B对应的有理数为﹣2,∴点B与点N之间的距离为10;(2)①点P起始点在﹣5处,当运动时间为t秒时,∵0<t≤5,∴此时点P一直往右运动,∴点P对应的有理数为﹣5+t,点Q起始点在6处,当运动时间为t秒时,∵0<t≤5,∴此时点Q一直往左运动,∴点Q对应的有理数为6﹣2t,∵点P、点Q到数轴原点的距离相等,∴当原点是PQ中点时,﹣5+t+6﹣2t=0,解得t=1,当P、Q重合时,﹣5+t=6﹣2t,解得t=.综上,t的值是1或;②当0<t≤5时,由①可得点P与点Q重合时不在整点处;当5<t≤10时,由题意得﹣5+t=﹣4+2(t﹣5),解得t=9,此时,点Q对应是有理数为4,故点C对应是有理数为2.29.(2021秋•南充期末)如图,O为原点,长方形OABC与ODEF的面积都为12,且能够完全重合,边OA在数轴上,OA=3.长方形ODEF可以沿数轴水平移动,移动后的长方形O′D′E′F′与OABC重叠部分的面积记为S.(1)如图1,求出数轴上点F表示的数.(2)当S恰好等于长方形OABC面积的一半时,求出数轴上点O′表示的数.(3)在移动过程中,设P为线段O′A的中点,点F′,P所表示的数能否互为相反数?若能,求点O 移动的距离;若不能,请说明理由.【分析】(1)利用面积÷OA可得OC长,即可得出OF的长,进而可得答案;(2)首先计算出S的值,再根据矩形的面积表示出O′A的长度,再分两种情况:当点O′在OA上时,当点O′在点A右侧时,分别求出O′表示的数;(3)设OO′=x,分两种情况:当原长方形ODEF向左移动时,点O′所表示的数为﹣x,则点P所表示的数为:﹣x,点F′所表示的数为﹣4﹣x;若互为相反数则有﹣x+(﹣4﹣x)=0,求解即可;当原长方形ODEF向右移动时,点O′所表示的数为x,则点P所表示的数为:+x,点F′所表示的数为﹣4+x;若互为相反数则有+x+(﹣4+x)=0,求解即可.【解答】解:(1)∵长方形OABC的面积为12,OA边长为3,∴OC=12÷3=4,∵长方形OABC与ODEF的面积都为12,∴OF=OC=4,DE=OA=3,∴数轴上点F表示的数为﹣4,(2)∵S恰好等于原长方形OABC面积的一半,∴S=6,①当点O′在OA上时,O′O=6÷3=2,∴O′表示的数为2,②当点O′在点A右侧时,如图,∴AF′=6÷3=2,∴OF′=3﹣2=1,∴OO′=O′F′+OF′=5,综上,O′表示的数为2或5.(3)能,理由如下:设OO′=x,分两种情况:①当原长方形ODEF向左移动时,点O′所表示的数为﹣x,点F′所表示的数为﹣4﹣x,∵点P是O′A的中点,∴点P所表示的数为:﹣x;∴﹣x+(﹣4﹣x)=0,∴x=﹣;②当原长方形ODEF向右移动时,点O′所表示的数为x,点F′所表示的数为﹣4+x;∵点P是O′A的中点,∴点P所表示的数为:+x,∴+x+(﹣4+x)=0,∴x=.∴点O移动的距离为:.30.(2021秋•北仑区期末)数轴是一个非常重要的数学工具,它使实数和数轴上的点建立起一一对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读理解】|3﹣1|表示3与1的差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;同理|x﹣1|可以理解为x与1两数在数轴上所对应的两点之间的距离,|x+1|=|x﹣(﹣1)|就表示x在数轴上对应的点到﹣1的距离.(1)【尝试应用】①数轴上表示﹣4和2的两点之间的距离是 6 (写出最后结果);②若|x﹣(﹣2)|=3,则x= 1或﹣5 ;(2)【动手探究】小明在草稿纸上画了一条数轴,并折叠纸面,若表示2的点与表示﹣4的点重合.①则表示10的点与表示 ﹣12 的点重合;②这时如果A,B(A在B的左侧)两点之间的距离为2022,且A,B两点经过折叠后重合,则A表示的数是 ﹣1012 ,B表示的数是 1010 ;③若点A表示的数为a,点B表示的数为b(A在B的左侧),且A,B两点经折叠后刚好重合,那么a与b之间的数量关系是 a+b=﹣2 ;(3)【拓展延伸】①当x= 1 时,|x+2|+|x﹣1|+|x﹣3|有最小值,最小值是 5 ;②|x+1|﹣|x﹣4|有最大值,最大值是 5 ,|x+1|﹣|x﹣4|有最小值,最小值是 ﹣5 .【分析】(1)①根据两点间距离公式可得答案;②根据绝对值的定义可以解答;(2)①首先求出折叠点是﹣1,列式为﹣1﹣(10+1)可得答案;②根据折叠点为﹣1可列式解答;③由题意得,(a+b)=﹣1,整理可得答案;(3)根据绝对值的定义和分类讨论的数学思想可以解答本题.【解答】解:(1)①﹣4和2的两点之间的距离是:2﹣(﹣4)=6,故答案为:6;②∵|x﹣(﹣2)|=3,∴x=1或﹣5,故答案为:1或﹣5;(2)∵表示2的点与表示﹣4的点重合,∴折叠点是﹣1,①﹣1﹣(10+1)=﹣12,故答案为:﹣12;②2022÷2=1011,﹣1﹣1011=﹣1012,﹣1+1011=1010,∴则A表示的数是﹣1012,B表示的数是1010,故答案为:﹣1012,1010;③由题意得,(a+b)=﹣1,∴a+b=﹣2,故答案为:a+b=﹣2;(3)①当x≤﹣2时,|x+2|+|x﹣1|+|x﹣3|=﹣x﹣2﹣x+1﹣x+3=﹣3x+2≥8,当﹣2<x≤1时,|x+2|+|x﹣1|+|x﹣3|=x+2﹣x+1﹣x+3=﹣x+6,5≤﹣x+6<8,当1<x≤3时,|x+2|+|x﹣1|+|x﹣3|=x+2+x﹣1﹣x+3=x+4,5<x+4≤7,当x>3时,|x+2|+|x﹣1|+|x﹣3|=x+2+x﹣1+x﹣3=3x﹣2>7,∴当x=1时,最小值是5,故答案为:1,5;②当x<﹣1时,|x+1|﹣|x﹣4|=﹣x﹣1+x﹣4=﹣5,当﹣1≤x≤4时,|x+1|﹣|x﹣4|=x+1+x﹣4=2x﹣3,﹣5≤2x﹣3≤5,当x>4时,|x+1|﹣|x﹣4|=x+1﹣x+4=5,∴最大值是5,最小值是﹣5,故答案为:5,﹣5.。
七年级数学下册第六单元《实数》经典练习(课后培优)
一、选择题1.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .4C 解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;②2=;③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C .【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.2.有下列说法:①在1和2②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②D解析:D【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得.【详解】①在1和2之间的无理数有无限个,此说法错误;②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②,故选:D .【点睛】 本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键.3.下列各数中,无理数有( )3.14125127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个D解析:D【分析】 直接根据无理数的定义直接判断得出即可.【详解】π,2.32232223共3个.故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.4.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4; )A .1B .2C .3D .4A 解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;⑤正错误.故选:A .【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.5.若a =b =-,c =,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> D解析:D【分析】 根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案.【详解】解:∵3a ==-,b =,()22c ==--=,∴c b a >>,故选:D .【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简.6.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a b b ;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .①B .②C .①②D .①②③A 解析:A【分析】 ①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时, a a bb ★, b a a b ★, ∴=a b b a ★★;a b <时, a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b a a a a b b b b a b ====★★★★, ∴()()a b b a ★★不一定等于1,当a b <时,∴()()()()22a b b a a b bb b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立,∴②不符合题意.③当a b ≥时,0a >,0b >, ∴1a b≥, ∴()1122a b ab a a b ab ab ab ab a b a b b b a b a ab ab a b+⨯+=+=+=+=≥≥★★, 当a b <时,∴()1122a b ab b b a ab ab ab ab a b a b a a b a b ab ab b a+⨯+=+=+=+=≥≥★★, ∴12a b a b +<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.7.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C D解析:B【分析】首先确定A,B对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A点对应的数是1,B点对应的数是3,A.-2<<-1,不符合题意;B.2<3,符合题意;C、34,不符合题意;D. 34,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.8.8)A.4 B.5 C.6 D.7B解析:B【分析】<<,进而得出答案.直接利用估算无理数的大小的方法得出23【详解】<<,解:459<<,<<23∴-<<-,83882586∴<,∴5.8故选:B.【点睛】9)A.8B.8-C.D.± D 解析:D【分析】=,再根据平方根的定义,即可解答.8【详解】=,8的平方根是±8故选:D.【点睛】=.本题考查了平方根,解决本题的关键是先化简64810.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A.2-B.7C.11D.无法确定B解析:B【分析】首先利用估算的方法分别得到2-,7,11前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【详解】∵221,273<<,3114<<而墨迹覆盖的范围是1-3∴能被墨迹覆盖的数是7故选B.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.二、填空题11.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长然后由正方形的面积公式进行解答【详解】解析:(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长,然后由正方形的面积公式进行解答.【详解】解:(1=18(cm ),答:正方形纸板的边长为18厘米;(2=7(cm ),则剪切纸板的面积=7×7×6=294(cm 2),剩余纸板的面积=324﹣294=30(cm 2)答:剩余的正方形纸板的面积为30平方厘米.【点睛】本题考查了立方根,算术平方根,解题的关键是熟悉正方形的面积公式和立方体的体积公式,属于基础题.12.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9(1)x =;(2)x =或x =【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解【详解】(1)解:;(2)解:或或【点睛】本题考查解方程熟练掌握立方根平方根的定义是关键解析:(1)x =23-;(2)x =43或x =23- 【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:3827x =, 23x =; (2)解:313x -=±,34x =或32x =-,43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键.13.求满足条件的x 值:(1)()23112x -=(2)235x -=(1);(2)【分析】(1)方程两边同除以3再运用直接开平方法求解即可;(2)方程移项后再运用直接开平方法求解即可【详解】解:(1)解得;(2)∴∴【点睛】本题考查了平方根的应用解决本题的关键是熟记解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.14.计算:(1)225--(2)1+(1)-4;(2)1【分析】(1)根据乘方开方绝对值的意义化简再计算即可;(2)先根据绝对值的意义脱去绝对值再计算即可求解【详解】解:(1)=-4+6-1-5=-4;(2)=-1+2=1【点睛】本题解析:(1)-4;(2)1.【分析】(1)根据乘方、开方、绝对值的意义化简,再计算即可;(2)先根据绝对值的意义脱去绝对值,再计算即可求解.【详解】解:(1)225--=-4+6-1-5=-4;(2)1)1=++1=+1=-+=-1+2=1.【点睛】本题考查了实数的性质与运算,熟知实数的运算法则和性质是解题关键.15.1=,31a b +-的平方根是±2,C 的整数部分,求-+b a c 的平方根.±3【分析】结合平方根的定义以及估算无理数大小的方法得出abc 的值进而得出答案【详解】解::由题意得:2a−1=1解得:a=13a+b−1=4解得:b=2因为<<所以c=8所以b ﹣a +c =2﹣1+8解析:±3【分析】结合平方根的定义以及估算无理数大小的方法得出a ,b ,c 的值,进而得出答案.【详解】解::由题意,得: 2a−1=1,解得:a=1,3a+b−1=4,解得:b=2,c=8,所以b ﹣a +c =2﹣1+8=9∴9的平方根是±3故答案为:±3【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.16.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______(1)20200;(2)14;(3)130********…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可【详解】解:=-2(1)整数:20200(2)分数:14(3)无理数解析:(1)2020,02)1.4,32-,0.31;(3),π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可.【详解】,(1)整数:2020,0(2)分数:1.4,32-,0.31(3)无理数:π-,1.3030030003…(每相邻两个3之间0的个数依次加1)故答案为:2020,0,38-;1.4,32-,0.31;2-,π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【点睛】 本题考查了实数的分类,掌握实数的分类是解题的关键.17.将1、2、3、6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.【分析】所给的一系列数是4个数一循环(157)表示第15排从左往右数的第7个数根据奇数排最中间数的规律可得出最终结果【详解】(157)表示第15排从左往右数的第7个数由图可得:1四个数一循环并且每个6【分析】所给的一系列数是4个数一循环,(15,7)表示第15排从左往右数的第7个数,根据奇数排最中间数的规律可得出最终结果.【详解】(15,7)表示第15排从左往右数的第7个数, 由图可得:1236四个数一循环,并且每个奇数排最中间的一个数为1, 15为奇数排,最中间的数为这一排的第8个数,故可知,第76,则(15,76.6.【点睛】本题主要考查规律探索的数字变化类,还有实数,弄清题中的规律是解题的关键. 18.3331.5115.10.1510.5325===31510的值是______________________.【分析】根据立方根的性质即可求解【详解】已知故答案为:【点睛】此题主要考查立方根的求解解题的关键是熟知实数的性质变形求解解析:11.47【分析】根据立方根的性质即可求解.【详解】1.147=,1.1471011.47===⨯=故答案为: 11.47.【点睛】此题主要考查立方根的求解,解题的关键是熟知实数的性质变形求解.19.(12; (2)求 (x -1)2-36=0中x 的值.(1);(2)x 的值为7或﹣5【分析】(1)分别进行算术平方根运算立方根运算算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可【详解】解:(1)=4﹣﹣3=1﹣=;(2)(x -1)2-3解析:(1)12;(2)x 的值为7或﹣5 【分析】(1)分别进行算术平方根运算、立方根运算、算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可.【详解】解:(12 =4﹣12﹣3 =1﹣12 =12; (2)(x -1)2-36=0,移项得:(x -1)2=36,开平方得:x -1=±6,解得:x 1=7,x 2=﹣5,即(x -1)2-36=0中的x 值为7或﹣5.【点睛】本题考查算术平方根、立方根、利用平方根解方程,熟练掌握运算法则,会运用平方根解方程是解答的关键.20.10b +=,则20132014a b +=___________.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键. 三、解答题21.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.解析:(1)5x =-5y =2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.22.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程. 23.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.解析:(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长,然后由正方形的面积公式进行解答.【详解】解:(11622⨯=18(cm ),答:正方形纸板的边长为18厘米;(23343=7(cm ),则剪切纸板的面积=7×7×6=294(cm 2),剩余纸板的面积=324﹣294=30(cm 2)答:剩余的正方形纸板的面积为30平方厘米.【点睛】本题考查了立方根,算术平方根,解题的关键是熟悉正方形的面积公式和立方体的体积公式,属于基础题.24.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”.(1)试举一个例子来判断上述结论的猜测是否成立?(21-的值.解析:(1)见解析;(2)13=-【分析】(10=,则2与﹣2互为相反数进行说明.(2)利用(1)的结论,列出方程(3﹣2x )+(x +5)=0,从而解出x 的值,代入可得出答案.【详解】解:(10=,则2与﹣2互为相反数;(2)由已知,得(3﹣2x )+(x +5)=0,解得x =8,∴1=1=1﹣4=﹣3.【点睛】本题考查立方根的知识,难度一般,注意一个数的立方根有一个,它和这个数正负一致,本题的结论同学们可以记住,以后可直接运用.25.求下列各式中x 的值(1)()328x -=(2)21(3)753x -=解析:(1)4x =;(2)18x =或12x =-.【分析】(1)利用立方根的定义得到22x -=,然后解一次方程即可;(2)先变形为()23225x -=,然后利用平方根的定义得到x 的值.【详解】(1)∵()328x -=,∴22x -=,∴4x =;(2)21(3)753x -=,整理得:()23225x -=,∴315x -=或315x -=-,∴18x =或12x =-.【点睛】本题考查了解一元一次方程,平方根和立方根,熟练掌握各自的定义是解本题的关键.26.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-解析:画图见解析,()239201272>-->>-->->- 【分析】先把各数化简,在数轴上表示出各数,再根据“在数轴上,右边的数总比左边的数大”把这些数按从大到小的顺序用“>”连接起来.【详解】 解:3273-=-,()22--=,11--=-,93=,224-=-,在数轴上表示为:按从大到小的顺序用>()239201272>-->>-->->-. 【点睛】本题主要考查了实数的大小比较,解题的关键是准确在数轴上表示实数,并利用数轴对实数的大小进行比较.27.211a -=,31a b +-的平方根是±2,C 70的整数部分,求-+b a c 的平方根.解析:±3【分析】结合平方根的定义以及估算无理数大小的方法得出a ,b ,c 的值,进而得出答案.【详解】解::由题意,得: 2a−1=1,解得:a=1,3a+b−1=4,解得:b=2,647081c=8,所以b ﹣a +c =2﹣1+8=9∴9的平方根是±3故答案为:±3【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.28.已知52a +的立方根是3,31a b +-的算术平方根是4,c 11的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.解析:(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =; ∵34<<,c 的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。
人教版七年级下册 数学实数培优卷含答案
A.15第六章实数一.填空题(共5小题)1.若x2=9,则x=;若x3=-27,则x=.2.已知2x-1的平方根是±3,则5x+2的立方根是.3.用“<”连接2的平方根和2的立方根:.4.对于正实数a,b作新定义:a⊙b=2a b,若25x2=4,则x的值为.5.13的整数部分为a,则a2-3=.二.选择题(共12小题)6.16的值是()A.4B.2C.±4D.±27.下列说法不正确的是()125的平方根是±B.-9是81的平方根C.0.4的算术平方根是0.2D.327=-38.如果一个实数的平方根与它的立方根相等,则这个数是()A.0B.正实数C.0和1D.19.如果-b是a的立方根,则下列结论正确的是()A.b3=a B.-b=a3C.b=a3D.b3=a10.将一块体积为1000cm3的正方体锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为(A.5cm B.6cm C.7cm D.8cm11.小明在作业本上做了4道题①3125=-5;②±16=4;③381=9;④(6)2=-6,他做对的题有(A.1道B.2道C.3道D.4道12.已知3a=0.1738,5.28=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.00052813.在3.14159,,0,π,这5个数中,无理数的个数有()A.1个B.2个C.3个D.4个14.下列选项中的数,小于4且为有理数的为()A.πB.C.D.15.在如图所示的数轴上,表示无理数m的点在A、B两个点之间,则数m不可能是()))则2A .10B .7C .6D .516.若一个数的平方根与它的立方根完全相同.则这个数是( )A .0B .-1C .1D .±1,017.规定新运算““:对于任意实数 a 、b 都有 ab=a-3b,例如:2 4=2-3×4=-10, x?1+2?x=1的解是( )A .-1B .1C .5D .-5三.解答题(共 7 小题)18.计算: 4 125|3 64 | ( 3) 3 9 2719.解方程:(1)(x-3)-27=0;(2)(1-x)=16.20.求下列代数式的值(1)如果 a 2 =4,b 的算术平方根为 3,求 a+b 的值.(2)已知 x 是 25 的平方根,y 是 16 的算术平方根,且 x<y ,求 x-y 的值.21.小明想用一块长宽之比为4:且面积为444cm2的长方形纸片,沿着边的方向剪成面积为441cm2正方形纸片.你3认为小明的想法能实现吗?请说明理由.22.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c的平方根..答案:1. ± ,-32.33.4.±65.66-10 ACAAA11-15 ACADA16-17 AA18. 解:原式= -4+3- =-2. 19. 解:(1)(x-3)3-27=0(x-3)3=27x-3=3∴x=6;(2)(1-x )2=161-x=±4当 1-x=4时,x=-3;当 1-x=-4时,x=5,∴x=-3或 5.20. 解:(1)∵a 2=4,∴a=±2,∵b 的算术平方根为 3,∴b=9,∴a+b=-2+9=7或 a+b=2+9=11.(2)∵x 是 25 的平方根,∴x=±5,∵y 是 16 的算术平方根,∴y=4,∵x <y ,∴x=-5,∴x-y=-5-4=-921. 解:小明的想法不能实现.理由如下:设长方形纸片的长为4xcm,则宽为3xcm,根据题意,得4x3x=444,解得x=±(负值舍去),所以长方形纸片的长为4∵36<37<49,cm,宽为3cm.∴6<而4<7,>21,3<21,即长方形纸片的长大于21cm,宽小于21cm.因为=21,即正方形纸片的边长等于21cm,这样长方形的宽小于正方形的边长,所以小明的想法不能实现.22.解:∵a+1的算术平方根是1,∴a+1=1,a=0;∵-27的立方根是b-12,∴b-12=-3,b=9;∵c-3的平方根是±2,∴c-3=4,c=7;∴a+b+c=0+9+7=16,∴a+b+c的平方根是±4.。
部编数学七年级下册实数的运算大题提升训练(重难点培优30题)【拔尖特训】2023培优(解析版)
【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【人教版】专题6.5实数的运算大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022春•右玉县期末)计算:(1)−12+×(2)【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)−12+×=﹣1+(﹣3)﹣6=﹣4﹣6=﹣10;(2)=2﹣2+(﹣4)=2﹣2++4=2.(2021秋•兰考县期末)(1+(2.【分析】(1)首先计算开方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算开方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1=5﹣2+2=5.(2=2+(−32)﹣(2=12−2+=−323.(2021秋•安宁市校级期末)计算:(1)−12018+(2+.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简绝对值,然后再进行计算即可解答.【解答】解:(1)−12018++=﹣1+51﹣2﹣3=(2+=+2=2.4.(2021秋•大丰区校级月考)计算:(1)(−1)2021+(2【分析】(1)直接利用有理数的乘方运算法则、二次根式的性质化简,进而得出答案;(2)直接利用有理数的乘方运算法则、二次根式的性质化简,进而得出答案.【解答】解:(1)(−1)2021+=﹣1+5=4;(2=2﹣(﹣2)=4.5.(2021秋•道里区期末)计算:(1(2.【分析】(1)先化简各数,然后再进行计算即可;(2)先化简各式,然后再进行计算即可.【解答】解:(1+=5+(﹣2)﹣6=﹣3;(2=3+3=6.6.(2022春•仁怀市校级月考)计算:−43÷+.【分析】直接利用有理数的乘方运算法则、立方根的性质、绝对值的性质、算术平方根分别化简,进而合并得出答案.【解答】解:原式=﹣64÷(﹣32)+2﹣(1﹣3)+1=2+2+2+1=57.(2022秋•铜山区期中)计算:(1(2)|﹣3|+(﹣1)0【分析】(1)首先计算开平方和开立方,然后计算除法,最后计算减法,求出算式的值即可.(2)首先计算零指数幂、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1÷=9÷(﹣3)﹣5=﹣3﹣5=﹣8.(2)|﹣3|+(﹣1)0=3+1﹣3+2=3.8.(2022秋•永康市期中)计算:(1(﹣1)2023(22|【分析】(1)根据算术平方根,立方根和有理数的乘方运算可解答;(2)根据绝对值,算术平方根,立方根运算可解答.【解答】解:(1(﹣1)2023=5﹣4+1=2;(22|=23+3=29.(2022秋•镇平县期中)计算:(1|1(2)+(3(﹣3)(﹣2)2.【分析】(1)先算开方,再去绝对值符号,再进行计算即可;(2)先开方,再算加减即可;(3)先算乘方,开方,再算乘法,最后算加减即可.【解答】解:(1)原式=2﹣|1﹣4|=2﹣3=﹣1;(2)原式=−54+5=15 4;(3)原式=﹣6+(﹣3)×10﹣4=﹣6﹣30﹣4=﹣40.10.(2022秋•南岗区校级期中)计算:(2)+3+;(3+【分析】(1)先去括号,再合并同类二次根式;(2)先计算绝对值、去括号,再合并同类二次根式;(3)先计算平方根和立方根,再计算加减.【解答】解:(1)==(2)+3+=1+3+1=+1;(3+=2﹣2−1 2=−1 2.11.求下列各式的值.(1(2×+×【分析】(1)原式利用平方根的定义化简,计算即可得到结果;(2)原式利用平方根定义及二次根式的性质化简,计算即可得到结果.【解答】解:(1)原式=5﹣4+2=3;(2)原式=0.01×100+6×0.2=1+1.2=2.2.12.计算:(2×|﹣(3×1|0.001)(4(5+【分析】原式各项利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=+(2)原式=×=4(3)原式=×1)=3≈0.150;(4)原式=2=2﹣(5)原式=+9﹣2+7.13.计算.(1(2+【分析】(1)原式利用平方根定义化简,计算即可得到结果;(2)原式利用平方根及立方根定义化简,计算即可得到结果.【解答】解:(1)原式=0.6+35=1.2;(2)原式=12−52×(−15)﹣7+3=﹣4.14.计算(12;(2+0;(3+−2;(4.【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式利用平方根,立方根,绝对值,以及零指数幂法则计算即可得到结果;(3)原式利用平方根,立方根,绝对值,以及负指数幂法则计算即可得到结果;(4)原式利用立方根,平方根,以及绝对值的定义化简即可得到结果.【解答】解:(1)原式=﹣2+2﹣3=﹣3;(2)原式=5﹣2+3+1=7(3)原式=2﹣4+3+13=43+(4)原式=﹣1﹣2+2+1=15.计算:(1(2)+(3×(−12)2(41|﹣|3【分析】(1)原式利用平方根及立方根定义化简即可得到结果;(2)原式利用平方根及立方根定义化简即可得到结果;(3)原式利用平方根及立方根定义化简即可得到结果;(4)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式﹣0.5﹣(﹣3)=0.5+3=3.5;(2)原式=﹣8+8=0;(3)原式=4﹣4×14−(﹣3)=4﹣1+3=6;(4)原式=2+11﹣37.16.计算:(1)2)(2)|1【分析】(1)原式去括号合并即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=2=2;(2)原式=1++21.17.(2021春•柳南区校级期中)计算(1(2)﹣22×(12)2+|﹣2|.【分析】(1)首先根据二次根式的性质、立方根计算,再算加减即可;(2)首先计算有理数的乘方,开立方,根据绝对值的性质计算绝对值,然后再算乘除,后算加减即可.【解答】解:(1)原式=5﹣3−13=123;(2)原式=﹣4×14−4÷2=﹣1﹣2=﹣3.18.(2021春•青川县期末)计算:(1)(﹣3)2+2×1)﹣|﹣(2+|2+【分析】(1)先算乘方,化简绝对值,去括号,然后再算加减;(2)先化简立方根,算术平方根,绝对值,然后再计算.【解答】解:(1)原式=2﹣=7;(2)原式=﹣2+2+4=﹣2−35+2+4=−35.19.(2021春•柳南区校级期末)计算:(1)﹣12+(﹣2)×(21)2|【分析】(1)原式利用乘方的意义,立方根定义,以及乘法法则计算即可求出值;(2)原式利用二次根式乘法法则,绝对值的代数意义计算即可求出值.【解答】解:(1)原式=﹣1+(﹣3)+2×3=﹣1﹣3+6=2;(2)原式=3+2=5.20.(2020秋•江都区期末)计算:(1+(2)|1(﹣2)2【分析】(1)直接利用立方根以及算术平方根分别化简得出答案;(2)直接利用绝对值的性质分别化简得出答案.【解答】解:(1)原式=1﹣2+4 3=1 3;(2)原式=1+4=3.21.(2022春•连山区期末)计算.(1(2)+(−5)2【分析】(1)实数的混合运算,先分别化简算术平方根,立方根,然后再计算;(2)实数的混合运算,先化简绝对值,有理数的乘方,然后再计算.【解答】解:(1)原式=7﹣3+3=7;(2)原式=1+25=24.22.(2020秋•松北区期末)计算:(1|2(2)【分析】(1)首先计算开方、绝对值,然后从左向右依次计算即可.(2)首先计算绝对值,然后从左向右依次计算即可.【解答】解:(1|2=﹣42)﹣=﹣42﹣=5.(2)=+=23.(2021春•福州期末)计算:(1)|﹣2|+(﹣1)2019;(2)6+2.【分析】(1)直接利用实数的混合运算法则计算得出答案;(2)直接利用实数的混合运算法则计算得出答案.【解答】解:(1)|﹣2|+(﹣1)2019,=2﹣2﹣(﹣1),=1,(2)6+2,=6×13−3+2,=2﹣3+2,=1.24.(2020秋•道里区期末)计算:(1(2+【分析】(1)直接利用立方根以及算术平方根的性质化简得出答案;(2)直接利用绝对值的性质和算术平方根分别化简得出答案.【解答】解:(1)原式=4+3+7=14;(2)原式=+5=525.计算(1(2)+(﹣1)3【分析】(1)原式各项化简后,合并即可得到结果;(2)原式利用算术平方根、立方根定义,以及乘方的意义计算即可得到结果.【解答】解:(1)原式=0.8−32+1.2=0.5;(2)原式=14−1−32=−94.26.(2021春•安定区校级期中)计算下列各题(1+|1(2【分析】(1)原式利用平方根、立方根定义,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用平方根、立方根的定义计算即可得到结果.【解答】解:(1)原式=2﹣2﹣3+14;(2)原式=5+3+12=812.27.(2018春•遵义期中)计算下列各题:(1++(2)|7|【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7π+7=﹣π.28.计算:(1(2)﹣【分析】(1)先进行开方运算,再合并同类项即可;(2)先开方运算,再合并即可得到答案.【解答】解:(1)原式=0.4+0.7﹣0.9=0.2;(2)原式=﹣16×0.5﹣=﹣8﹣4×(﹣4)=﹣8+16=8.29.计算下列各题:(1+(2)(3+2.【分析】(1)先计算算术平方根、立方根,再计算有理数的加减即可;(2)先化简绝对值、计算平方根,再计算实数的加减即可;(3)先计算算术平方根、化简绝对值、立方根、实数的平方,再计算实数的加减即可.【解答】解:(1+=4+(﹣3)−12+0.5+18=11 8;(2)=(7π7=7π7=﹣π;(3+2=6+1)﹣2+5=830.(2022春•罗定市期中)计算:(﹣2)2+2|.【分析】运用负数的平方、二次根式、三次根式,绝对值的定义及性质进行计算.【解答】解:原式=4+2=4+3﹣3+2=6。
(完整版)七年级数学下册实数试卷及答案培优试题
一、选择题1.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,依此类推,则第⑦个图形中五角星的个数是( )A .98B .94C .90D .86 2.若29x =,|y |=7,且0x y ->,则x +y 的值为( )A .﹣4或10B .﹣4或﹣10C .4或10D .4或﹣103.数轴上表示1,2的对应点分別为A ,B ,点B 关于点A 的对称点为C ,则点C 所表示的数是( )A 21B .12C .22D 224.若225a =,3b =,则a b +所有可能的值为( ) A .8B .8或2C .8或2-D .8±或2±5.下列说法中,错误的有( ) ①符号相反的数与为相反数; ②当0a ≠时,0a >; ③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远; ⑤数轴上的点不都表示有理数. A .0个B .1个C .2个D .3个 6.15a ,小数部分为b ,则a-b 的值为() A .615B 156C .815D 1587.有下列说法:①在1和22,3②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④ B .①②④ C .②④ D .② 8.设n 为正整数,且n 65n+1,则n 的值为( )A .5B .6C .7D .89.规定:f (x )=|x ﹣2|,g (y )=|y +3|,例如f (﹣4)=|﹣4﹣2|=6,g (﹣4)=|﹣4+3|=1.下列结论正确的个数是( ) ①若x =2,y =3,则f (x )+g (y )=6;②若f (x )+g (x )=0,则2x ﹣3y =13; ③若x <﹣3,则f (x )+g (x )=﹣1﹣2x ; ④能使f (x )=g (x )成立的x 的值不存在. A .1个B .2个C .3个D .4个10.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间二、填空题11.对于正数x 规定1()1f x x=+,例如:11115(3),()11345615f f ====++,则f (2020)+f(2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 12.请先在草稿纸上计算下列四个式子的值:313312+333123++33331234+++333312326++++=__________.13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.15.对于有理数a ,b ,规定一种新运算:a ※b=ab+b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 16.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.17.对于正整数n ,定义2,10()(),10n n F n f n n ⎧<=⎨≥⎩其中()f n 表示n 的首位数字、末位数字的平方和.例如:2(6)636F ==,2(123)(123)1F f ==2310+=.规定1()()F n F n =,()1()()k k F n F F n +=.例如:1(123)(123)10F F ==,()21(123)(123)F F F =(10)1F ==.按此定义2021(4)F =_____.18.若我们规定[)x 表示不小于x 的最小整数,例如[)33=,[)1.21-=-,则以下结论:①[)0.21-=-;②[)001-=;③[)x x -的最小值是0;④存在实数x 使[)0.5x x -=成立.其中正确的是______.(填写所有正确结论的序号)19.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.20.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,3=2,[﹣2.56]=﹣3,[3=﹣2.按这个规定,[131]=_____.三、解答题21.[阅读材料] ∵459253<,∴1512<<,∴51的整数部分为1,∴51的小52 [解决问题](17__________;(2)已知a 10b 10(1b 10a -的平方根为______.22.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫⎪⎝⎭都是“白马有理数对”.(1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________;(2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)23.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法:设22019202012222s =+++++ ①则22020202122222s =++++ ②②-①得,2021221s s s -==- 请仿照小明的方法解决以下问题: (1)291222++++=________;(2)220333+++=_________;(3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).24.规律探究,观察下列等式: 第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭ 第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭ 第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++25.新定义:对非负数x“四舍五入”到个位的值记为<x>, 即当n 为非负数时,若1122n x n -≤<+,则<x>=n . 例如<0>=<0.49>=0,<0.5>=<(1)49>=1,<2>=2,<(3)5>=<(4)23>=4,… 试回答下列问题:(1)填空:<9.6>=_________;如果<x>=2,实数x 的取值范围是________________.(2)若关于x 的不等式组24130x x m x -⎧≤-⎪⎨⎪->⎩的整数解恰有4个,求<m>的值; (3)求满足65x x =的所有非负实数x 的值. 26.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N . (I )解方程:log x 4=2; (Ⅱ)log 28=(Ⅲ)计算:(lg 2)2+lg 2•1g 5+1g 5﹣2018= (直接写答案)27.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<______位数;(2)由32768的个位上的数是8________,划去32768后面的三位数768得到32,因为333=27,4=64_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:________=28.已知,在计算:()()12++++N N N 的过程中,如果存在正整数N ,使得各个数位均不产生进位,那么称这样的正整数N 为“本位数”.例如:2和30都是“本位数”,因为2349++=没有进位,30313293++=没有进位;15和91都不是“本位数”,因为15161748++=,个位产生进位,919293276++=,十位产生进位.则根据上面给出的材料:(1)下列数中,如果是“本位数”请在后面的括号内打“√”,如果不是“本位数”请在后面的括号内画“×”.106( );111( );400( );2015( ).(2)在所有的四位数中,最大的“本位数”是 ,最小的“本位数”是 . (3)在所有三位数中,“本位数”一共有多少个? 29.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 30.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ . (2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ; ( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】学会寻找规律,第①个图2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,那么第n 个图呢,能求出这个即可解得本题。
(完整版)初一数学下册名校课堂训练:实数测试(二)培优试卷
一、选择题1.求1+2+22+23+…+22020的值,可令S =1+2+22+23+…+22020,则2S =2+22+23+24+…+22021,因此2S -S =22021-1.仿照以上推理,计算出1+2020+20202+20203+…+20202020的值为( ) A .2020202012020-B .2021202012020-C .2021202012019-D .2020202012019-2.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是( )A .pB .qC .mD .n3.若225a =,3b =,则a b +所有可能的值为( ) A .8B .8或2C .8或2-D .8±或2±4.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B .194+C .2194+D .192+5.若1a >,则a ,a -,1a的大小关系正确的是( ) A .1a a a>->B .1a a a>-> C .1a a a>>- D .1a a a->>6.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②7.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±98.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .10 9.设n 为正整数,且n <65<n+1,则n 的值为( )A .5B .6C .7D .810.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x二、填空题11.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |. (1)若数轴上的点M ,N 分别对应的数为2﹣2和﹣2,则M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.12.请先在草稿纸上计算下列四个式子的值:①31;②3312+;③333123++;④33331234+++,观察你计算的结果,用你发现的规律直接写出下面式子的值333312326++++=__________.13.已知57+的小数部分是a ,57-的小数部分是b ,则2019()a b +=________.14.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____. 15.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.16.若我们规定[)x 表示不小于x 的最小整数,例如[)33=,[)1.21-=-,则以下结论:①[)0.21-=-;②[)001-=;③[)x x -的最小值是0;④存在实数x 使[)0.5x x -=成立.其中正确的是______.(填写所有正确结论的序号)17.若[x ]表示不超过x 的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论: ①[﹣x ]=﹣[x ];②若[x ]=n ,则x 的取值范围是n ≤x <n +1; ③x =﹣2.75是方程4x ﹣[x ]+5=0的一个解; ④当﹣1<x <1时,[1+x ]+[1﹣x ]的值为1或2. 其中正确的结论有 ___(写出所有正确结论的序号).18.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.19.已知M 是满足不等式27a <N 52M N +的平方根为__________.20.在平面直角坐标系xOy 中,对于点P(x ,y),如果点Q(x ,'y )的纵坐标满足()()x y x y y y x x y -≥⎧=⎨-<'⎩当时当时,那么称点Q 为点P 的“关联点”.请写出点(3,5)的“关联点”的坐标_______;如果点P(x ,y)的关联点Q 坐标为(-2,3),则点P 的坐标为________.三、解答题21.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法:设22019202012222s =+++++ ①则22020202122222s =++++ ②②-①得,2021221s s s -==- 请仿照小明的方法解决以下问题: (1)291222++++=________;(2)220333+++=_________;(3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).22.阅读理解:一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a 代表这个整数分出来的左边数,b 代表的这个整数分出来的中间数,c 代表这个整数分出来的右边数,其中a ,b ,c 数位相同,若b ﹣a =c ﹣b ,我们称这个多位数为等差数. 例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5; 413223分成三个数41,32,23,并且满足:32﹣41=23﹣32; 所以:357和413223都是等差数.(1)判断:148 等差数,514335 等差数;(用“是”或“不是”填空) (2)若一个三位数是等差数,试说明它一定能被3整除; (3)若一个三位数T 是等差数,且T 是24的倍数,求该等差数T .23.对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K (n ),例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以()1236K =. (1)计算:()342K 和()658K ;(2)若x 是“梦幻数”,说明:()K x 等于x 的各数位上的数字之和;(3)若x ,y 都是“梦幻数”,且1000x y +=,猜想:()()K x K y +=________,并说明你猜想的正确性.24.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<______位数;(2)由32768的个位上的数是8________,划去32768后面的三位数768得到32,因为333=27,4=64_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:________=25.规定两数a ,b 之间的一种运算,记作(a ,b ):如果c a b =,那么(a ,b )=c . 例如:因为23=8,所以(2,8)=3. (1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2, 14)=_______.(2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n 所以3x =4,即(3,4)=x , 所以(3n ,4n )=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30) 26.阅读材料:求2320192020122222++++++的值.解:设2320192020122222S =++++++①,将等式①的两边同乘以2, 得234202020212222222S =++++++②,用②-①得,2021221S S -=-即202121S =-. 即2320192020202112222221++++++=-.请仿照此法计算:(1)请直接填写231222+++的值为______; (2)求231015555+++++值;(3)请直接写出20212345201920201011010101010101011-+-+-+-+-的值. 27.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences ).这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q = ;如果a n (n 为正整数)表示这个等比数列的第n 项,那么a 18= ,a n = ; (2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行: 令S =1+2+4+8+16+…+230…①等式两边同时乘以2,得2S =2+4+8+16++32+…+231…② 由② ﹣ ①式,得2S ﹣S =231﹣1 即(2﹣1)S =231﹣1 所以 3131212121S -==--请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a 1,a 2,a 3,…,a n ,从第二项开始每一项与前一项之比的常数为q ,请用含a 1,q ,n 的代数式表示a n ;如果这个常数q ≠1,请用含a 1,q ,n 的代数式表示a 1+a 2+a 3+…+a n .28.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =.例如:因为328=,所以()3(8)23g g ==,因为1021024=, 所以()10(1024)210g g ==.(1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭.根据运算性质解答下列各题:①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值;②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值.29.阅读材料:求1+2+22+23+24+…+22017的值. 解:设S=1+2+22+23+24+…+22017, 将等式两边同时乘以2得: 2S=2+22+23+24+…+22017+22018将下式减去上式得2S-S=22018-1即S=22018-1 即1+2+22+23+24+…+22017=22018-1 请你仿照此法计算: (1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n (其中n 为正整数); (3)1+2×2+3×22+4×23+…+9×28+10×29.30.规定两数a ,b 之间的一种运算,记作(a ,b ):如果c a b =,那么(a ,b )=c . 例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2, 14)=_______.(2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n 所以3x =4,即(3,4)=x , 所以(3n ,4n )=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知S = 1+2020+20202+20203+…+20202020①,可得到2020S =2020+20202+20203+…+20202020+20202021②,然后由②-①,就可求出S 的值. 【详解】解:设S = 1+2020+20202+20203+…+20202020① 则2020S =2020+20202+20203+…+20202020+20202021② 由②-①得: 2019S =20202021-1 ∴2021202012019S -=.故答案为:C . 【点晴】本题主要考查探索数与式的规律,有理数的加减混合运算.2.C解析:C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解. 【详解】解:∵0p q m n +++= 结合数轴可得:()-=p q m n ++, 即原点在q 和m 之间,且离m 点最近, ∴绝对值最小的数是m ,故选:C . 【点睛】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.3.D解析:D 【分析】先求出a 、b 的值,再计算即可. 【详解】 解:∵225a =, ∴a =±5, ∵3b =, ∴b =±3,当a =5,b =3时,8a b +=; 当a =5,b =-3时,2a b +=; 当a =-5,b =3时,2a b +=-; 当a =-5,b =-3时,8a b +=-; 故选:D . 【点睛】本题考查了绝对值、平方根和有理数加法运算,解题关键是分类讨论,准确计算.4.C解析:C 【分析】设木块的长为x ,结合图形知阴影部分的边长为x-2,根据其面积为19得出(x-2)2=19,利用平方根的定义求出符合题意的x 的值,由AD=2x 可得答案. 【详解】解:设木块的长为x , 根据题意,知:(x-2)2=19,则2x -=∴2x =22x =(舍去)则24BC x ==, 故选:C . 【点睛】本题主要考查算术平方根,解题的关键是结合图形得出木块长、宽与阴影部分面积间的关系.5.C解析:C 【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a,再比较即可求得它们的关系. 【详解】 解:设a=2, 则|a|=2,-a=-2,112a =, ∵2>12>-2,∴|a|>1a>-a ;故选:C . 【点睛】此类问题运用取特殊值的方法做比较简单.6.D解析:D 【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得. 【详解】①在1和2之间的无理数有无限个,此说法错误; ②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②, 故选:D . 【点睛】本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键.7.C解析:C 【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解. 【详解】由题意得:23522x -=, ∴29x =, ∵2(39)±=, ∴3x =±, 故选:C. 【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.8.D解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D.【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.9.D解析:D【分析】n的值.【详解】解:∵∴89,∵n n+1,∴n=8,故选;D.【点睛】10.C解析:C【分析】根据点E,F,M,N表示的实数的位置,计算个代数式即可得到结论.【详解】解:∵﹣2<0<x<2<y,∴x+y>0,2+y>0,x﹣2<0,2+x>0,故选:C.【点睛】本题考查了实数,以及实数与数轴,弄清题意是解本题的关键.二、填空题11.2【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可. 【详解】解:(1)由题意,M ,N 间的距离为()2222222---=-+=; ∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧, ∴MN 的中点表示的数为21-+; (2)∵1a c b c -=-=且ab ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1, ∴点C 为AB 的中点,2AB =, ∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下:1>若点A 位于点B 左边: ①若点D 在点A 左边,如图所示:此时,37222BD AD AB =+=+=; ②若点D 在点A 右边,如图所示:此时,31222BD AB AD =-=-=; 2>若点A 位于点B 右边: ①若点D 在点A 左边,如图所示:此时,31222 BD AB AD=-=-=;②若点D在点A右边,如图所示:此时,37222 BD AD AB=+=+=;综上,线段BD的长度为12或72,故答案为:2;21;12或72.【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.12.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】313312+333123++33331234+++3333123n++++=1+2+3+n+∴326++=1+2+326+=351故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.13.1【分析】根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.【详解】解析:1【分析】根据4<7<9可得,2<3,从而有7<<8,由此可得出7,小数部分a用b的值,再将a,b的值代入所求式子即可得出结果.【详解】解:∵4<7<9,∴23,∴-3<<-2,∴7<<8,2<3,∴7,2,∴,∴2019()a b+=12019=1.故答案为:1.【点睛】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.14.20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣208000= 401401.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+= 归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 15.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.16.③④【分析】根据的定义逐个判断即可得.【详解】①表示不小于的最小整数,则,结论错误②,则,结论错误③表示不小于x 的最小整数,则,因此的最小值是0,结论正确④若,则此时,因此,存在实解析:③④【分析】根据[)x 的定义逐个判断即可得.【详解】①[)0.2-表示不小于0.2-的最小整数,则[)0.20-=,结论错误②[)00=,则[)000-=,结论错误③[)x 表示不小于x 的最小整数,则[)0x x -≥,因此[)x x -的最小值是0,结论正确 ④若 1.5x =,则[)1.52=此时,[)1.5 1.52 1.50.5-=-=因此,存在实数x 使[)0.5x x -=成立,结论正确综上,正确的是③④故答案为:③④.【点睛】本题考查了新定义下的实数运算,理解新定义是解题关键.17.②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x =2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④【分析】根据若[]x 表示不超过x 的最大整数,①取 2.5x 验证;②根据定义分析;③直接将 2.75-代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x =2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2,∴此时[﹣x ]与﹣[x ]两者不相等,故①不符合题意;②若[x ]=n ,∵[x ]表示不超过x 的最大整数,∴x 的取值范围是n ≤x <n +1,故②符合题意;③将x =﹣2.75代入4x ﹣[x ]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意;④当﹣1<x<1时,若﹣1<x<0,[1+x]+[1﹣x]=0+1=1,若x=0,[1+x]+[1﹣x]=1+1=2,若0<x<1,[1+x]+[1﹣x]=1+0=1;故④符合题意;故答案为:②④.【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解.18.﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π,故答案为:﹣8π.【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键.19.±3【分析】先通过估算确定M、N的值,再求M+N的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.20.(3,2); (-2,1)或(-2,-5).【分析】根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(解析:(3,2); (-2,1)或(-2,-5).【分析】根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(3,2);∵点P (x ,y )的关联点Q 坐标为(-2,3),∴y′=y -x=3或x-y=3,即y-(-2)=3或(-2)-y=3,解得:y=1或y=-5,∴点P 的坐标为(-2,1)或(-2,-5).故答案为:(3,2);(-2,1)或(-2,-5).【点睛】本题主要考查了点的坐标,理清“关联点”的定义是解答本题的关键.三、解答题21.(1)1021-;(2)21332-;(3)111n a a +-- 【分析】(1)设式子等于s ,将方程两边都乘以2后进行计算即可;(2)设式子等于s ,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s ,将方程两边都乘以a 后进行计算即可.【详解】(1)设s=291222++++①, ∴2s=29102222++++②, ②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++①, ∴3s=22021333+++②,②-①得:2s=2133-, ∴21332s -=, 故答案为: 21332-; (3)设s=231n a a a a ++++①, ∴as=231n n a a a a a +++++②, ②-①得:(a-1)s=11n a +-,∴s=111n a a +--. 【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.22.(1)不是,是;(2)见解析;(3)432或456或840或864或888【分析】(1)根据等差数的定义判定即可;(2)设这个三位数是M ,10010M a b c =++,根据等差数的定义可知2a cb +=,进而得出()3352M a c =+即可. (3)根据等差数的定义以及24的倍数的数的特征可先求出a 的值,再根据是8的倍数可确定c 的值,又因为2a cb +=,所以可确定a 、c 为偶数时b 才可取整数有意义,排除不符合条件的a 、c 值,再将符合条件的a 、c 代入2a c b +=求出b 的值,即可求解. 【详解】解:(1)∵4184-≠- ,∴148不是等差数,∵435135438-=-=- ,∴514335是等差数;(2)设这个三位数是M ,10010M a b c =++,∵b a c b -=- , ∴2a cb += , ∵()10010105633522a c M a c a c a c +=+⨯+=+=+ , ∴这个等差数是3的倍数;(3)由(2)知()3352,2a c T a c b +=+=, ∵T 是24的倍数,∴352a c + 是8的倍数,∵2c 是偶数,∴只有当35a 也是偶数时352a c +才有可能是8的倍数,∴2a =或4或6或8,当2a =时,3570a = ,此时若1c =,则35272a c += ,若5c = ,则35+280a c = ,若9c = ,则35+288a c =,大于70又是8的倍数的最小数是72,之后是80,88当35+296a c =时10c > 不符合题意;当4a =时,35140a =,此时若2c =,则352144a c +=,若6c =,则352152a c +=,(144、152是8的倍数),当6a =时,35210a =,此时若3c =,则352216a c +=,若7c =,则352224a c +=, (216、244是8的倍数),当8a =时,35280a =,此时若0c ,则352280a c +=,若4c =,则352288a c +=,若8c =,则352296a c +=,(280,288,296是8的倍数), ∵2a cb +=, ∴若a 是偶数,则c 也是偶数时b 才有意义,∴2a =和6a =是c 是奇数均不符合题意,当4,2a c ==时,423,4322b T +=== , 当4,6a c ==时,465,4562b T +===, 当8,0a c ==时,804,8402b T +===, 当8,4a c ==时,846,8642b T +===, 当8,8a c ==时,888,8882b T +===, 综上,T 为432或456或840或864或888.【点睛】本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键.23.(1)(342)9,(658)19K K ==;(2)见解析;(3)28【分析】(1)根据K 的定义,可以直接计算得出;(2)设x abc =,得到新的三个数分别是:acb cba bac ,,,这三个新三位数的和为100()10()()111()a b c a b c a b c a b c ++++++++=++,可以得到:()K x a b c =++; (3)根据(2)中的结论,猜想:()()28K x K y +=.【详解】解:(1)已知342n =,所以新的三个数分别是:324,243,432,这三个新三位数的和为324243342999++=,(342)9K ∴=;同样658n =,所以新的三个数分别是:685,568,856,这三个新三位数的和为6855688562109++=,(658)19K ∴=.(2)设x abc =,得到新的三个数分别是:acb cba bac ,,,这三个新三位数的和为100()10()()111()a b c a b c a b c a b c ++++++++=++,可得到:()K x a b c =++,即()K x 等于x 的各数位上的数字之和.(3)设,x abc y mnp ==,由(2)的结论可以得到:()()()()K x K y a b c m n P +=+++++,1000x y +=,100()10()()1000a m b n c p ∴+++++=,根据三位数的特点,可知必然有:10,9,9+=+=+=,c p b n a m∴+=+++++=,()()()()28K x K y a b c m n p故答案是:28.【点睛】此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多为数的不同.24.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10100,∴故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,∴2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3040.∴3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100,∴∵只有个位数是4的立方数是个位数是4,∴4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.∴;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∴∵只有个位数是8的立方数是个位数是2,∴8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.∴;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.25.(1)3,0,-2 (2) (4,30)【解析】分析:(1)根据阅读材料,应用规定的运算方式计算即可;(2)应用规定和同底数幂相乘的性质逆用变形计算即可.详解:(1)∵33=27∴(3,27)=3∵50=1∴(5,1)=1∵2-2=14∴(2,14)=-2(2)设(4,5)=x,(4,6)=y则x45=,y4=6∴x y x y44430+=⋅=∴(4,30)=x+y∴(4,5)+(4,6)=(4,30)点睛:此题是一个规定计算的应用型的题目,关键是灵活应用规定的关系式计算,熟练记忆幂的相关性质.26.(1)15;(2)11514-;(3)111.【分析】(1)先计算乘方,即可求出答案;(2)根据题目中的运算法则进行计算,即可求出答案;(3)根据题目中的运算法则进行计算,即可求出答案;【详解】解:(1)231248125122=++++=++;故答案为:15;(2)设231015555T =+++++①,把等式①两边同时乘以5,得 112310555555T =+++++②,由②-①,得:11451T =-, ∴11514T -=, ∴31121015551455++=+++-; (3)设234520192020110101010101010M =-+-+-+-+①, 把等式①乘以10,得:3456222019020202110101010101010101010M =-+-+-+-++②,把①+②,得:202111110M =+, ∴202110111M +=, ∴232452019200022111010101010110010111-+-+-+-++=, ∴20212345201920201011010101010101011-+-+-+-+- 20212021101101111+=- 111=. 【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键.27.(1)12 ,1712 ,n-112 ;(2)24332-;(3)()11111n a a a -- 【分析】(1)12÷1即可求出q ,根据已知数的特点求出a 18和a n 即可; (2)根据已知先求出3S ,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)12÷1=12, a 18=1×(12)17=1712,a n =1×(12)n ﹣1=112n -, 故答案为:12,1712,112n -;(2)设S =3+32+33+ (323)则3S =32+33+…+323+324,∴2S =324﹣3,∴S =24332- (3)a n =a 1•qn ﹣1,a 1+a 2+a 3+…+a n =()11111n a a a --.【点睛】 本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.28.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解;②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+;3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.29.(1)210-1;(2)n1514+-;(3)9×210+1.【分析】(1)根据题目中材料可以得到用类比的方法得到1+2+22+23+…+29的值;(2)根据题目中材料可以得到用类比的方法得到1+5+52+53+54+…+5n的值.(3)根据题目中的信息,运用类比的数学思想可以解答本题.【详解】解:(1)设S=1+2+22+23+ (29)将等式两边同时乘以2得:2S=2+22+23+24+…+29+210,将下式减去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案为210-1;(2)设S=1+5+52+53+54+…+5n,将等式两边同时乘以5得:5S=5+52+53+54+55+…+5n+5n+1,将下式减去上式得5S-S=5n+1-1,即S=n1514+-,即1+5+52+53+54+…+5n=n1514+-;(3)设S=1+2×2+3×22+4×23+…+9×28+10×29,将等式两边同时乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,将上式减去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【点睛】本题考查有理数的混合运算、数字的变化类,解题的关键是明确题意,发现数字的变化规律.30.(1)3,0,-2 (2) (4,30)【解析】分析:(1)根据阅读材料,应用规定的运算方式计算即可;(2)应用规定和同底数幂相乘的性质逆用变形计算即可.详解:(1)∵33=27∴(3,27)=3∵50=1∴(5,1)=1∵2-2=14∴(2,1)=-24(2)设(4,5)=x,(4,6)=y则x45=,y4=6∴x y x y+=⋅=44430∴(4,30)=x+y∴(4,5)+(4,6)=(4,30)点睛:此题是一个规定计算的应用型的题目,关键是灵活应用规定的关系式计算,熟练记忆幂的相关性质.。
七(下)培优训练(二)实数(提高版)
培优训练二:实数(提高篇)(一)【内容解析】(1)概念:平方根、算术平方根、立方根、无理数、实数;要准确、深刻理解概念。
如平方根的概念:①文字概念:若一个数x 的平方是a ,那么x 是a 的平方根;②符号概念:若a x =2,那么a x ±=;③逆向理解:若x 是a 的平方根,那么a x =2。
(2)性质:①在平方根、算术平方根中,被开方数a ≥0⇔式子有意义;②在算术平方根中,其结果a 是非负数,即a ≥0; ③计算中的性质1:a a =2)((a ≥0);④计算中的性质2:⎩⎨⎧≤-≥==)0()0(2a a a a a a ;⑤在立方根中,33a a -=-(符号法则)⑥计算中的性质3:a a =33)(;a a =33(3)实数的分类:(二)【典例分析】1、利用概念解题:例1. 已知:18-+=b a M 是a +8的算术数平方根,423+--=b a b N 是b -3立方根,求N M +的平方根。
练习:1. 已知234323-=-=+y x y x ,,求x y +的算术平方根与立方根。
2.若2a +1的平方根为±3,a -b +5的平方根为±2,求a+3b 的算术平方根。
例2、已知x 、y 互为倒数,c 、d 互为相反数,a 的绝对值为3,z 的算术平方根是5,求22c d xy a -++的值。
2、利用性质解题:例1 已知一个数的平方根是2a -1和a -11,求这个数.变式:①已知2a -1和a -11是一个数的平方根,则这个数是 ;②若2m -4与3m -1是同一个数两个平方根,则m 为 。
例2.若y =x -3+3-x +1,求(x +y )x的值例3.x 取何值时,下列各式在实数范围内有意义。
⑴⑵⑶ ⑷例4.已知321x -与323-y 互为相反数,求yx21+的值. 练习: 1.若一个正数a 的两个平方根分别为x +1和x +3,求a2005的值。
初一下册 实数 单元 综合提高训练(含详细解答与分析)
1.阅读理解:一般地,在数轴上点A,B表示的实数分别为a,b(a<b),则A,B两点的距离AB=x B ﹣x A=b﹣a.如图,在数轴上点A,B表示的实数分别为﹣3,4,则记x A=﹣3,x B=4,因为﹣3<4,显然A,B两点的距离AB=x B﹣x A=4﹣(﹣3)=7.若点C为线段AB的中点,则AC=CB,所以x C﹣x A=x B﹣x C,即x C=.解决问题:(1)直接写出线段AB的中点C表示的实数x C=;(2)在点B右侧的数轴上有点P,且AP+BP=9,求点P表示的实数x P;(3)在(2)的条件下,点M是AP的中点,点N是BP的中点,若A,B两点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,AP的中点M和BP的中点N也随之运动,3秒后,MN=2,则点B的速度为每秒个单位长度.2.如图1,在数轴上A、B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D 点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴正半轴向右平移t(0<t<3)个单位,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α,β满足|α﹣β|=45°,请用t 的式子表示α、β并直接写出t的值.3.阅读下面的文字,解答问题,例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是,小数部分是.(2)已知:9﹣小数部分是m,9+小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值4.为了比较+1与的大小,小伍和小陆两名同学对这个问题分别进行了研究.(1)小伍同学利用计算器得到了≈2.236,≈3.162,所以确定+1(填“>”或“<”或“=”)(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D在BC上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对+1和的大小做出准确的判断.5.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:若|x|=2,|y|=3求x+y的值.情况①若x=2,y=3时,x+y=5情况 ②若x=2,y=﹣3时,x+y=﹣1情况③若x=﹣2,y=3时,x+y=1情况④若x=﹣2,y=﹣3时,x+y=﹣5所以,x+y的值为1,﹣1,5,﹣5.几何的学习过程中也有类似的情况:问题(1):已知点A,B,C在一条直线上,若AB=8,BC=3,则AC长为多少?通过分析我们发现,满足题意的情况有两种情况①当点C在点B的右侧时,如图1,此时,AC=情况 ②当点C在点B的左侧时,如图2,此时,AC=通过以上问题,我们发现,借助画图可以帮助我们更好的进行分类.问题(2):如图3,数轴上点A和点B表示的数分别是﹣1和2,点C是数轴上一点,且BC=2AB,则点C表示的数是多少?仿照问题1,画出图形,结合图形写出分类方法和结果.问题(3):点O是直线AB上一点,以O为端点作射线OC、OD,使∠AOC=60°,OC⊥OD,求∠BOD的度数.画出图形,直接写出结果.6.已知3x+1的算术平方根是4,x+2y的立方根是﹣1,(1)求x、y的值;(2)求2x﹣5y的平方根.7.解方程:(1)9x2﹣16=0(3)(x+1)3+27=0.8.已知一个正数的两个平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?9.根据所学知识,我们通过证明可以得到一个定理:一个非零有理数与一个无理数的积仍为一个无理数,根据这个定理得到一个结论:若x+y=0,其中x、y为有理数,是无理数,则x=0,y=0.证:∵x+y=0,x为有理数∴y是有理数∵y为有理数,是无理数∴y=0∴x+0=0∴x=0(1)若x+y=(1﹣),其中x、y为有理数,则x=,y=;(2)若x+y=a+b,其中x、y、a、b为有理数,是无理数,求证:x=a,y=b;(3)已知的整数部分为a,小数部分为b,x、y为有理数,a、b、x、y满足17y+ y+(y﹣2x)=2a+b,求x、y的值.10.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E 在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒;当x=秒时,原点O恰为线段MN的三等分点.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,设长方形ABCD运动的时间为t(t>0)秒,两个长方形重叠部分的面积为S,求S与t 的关系式.参考答案1.阅读理解:一般地,在数轴上点A,B表示的实数分别为a,b(a<b),则A,B两点的距离AB=x B ﹣x A=b﹣a.如图,在数轴上点A,B表示的实数分别为﹣3,4,则记x A=﹣3,x B=4,因为﹣3<4,显然A,B两点的距离AB=x B﹣x A=4﹣(﹣3)=7.若点C为线段AB的中点,则AC=CB,所以x C﹣x A=x B﹣x C,即x C=.解决问题:(1)直接写出线段AB的中点C表示的实数x C=;(2)在点B右侧的数轴上有点P,且AP+BP=9,求点P表示的实数x P;(3)在(2)的条件下,点M是AP的中点,点N是BP的中点,若A,B两点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,AP的中点M和BP的中点N也随之运动,3秒后,MN=2,则点B的速度为每秒1或个单位长度.【解答】解:(1)根据阅读材料可知:x C==故答案为;(2)∵AP+BP=9,∴x P﹣(﹣3)+x P﹣4=9解得x P=5答:点P表示的实数x P=5;(3)如图,∵点M是AP的中点,点N是BP的中点,∴AP=2AM=2MPBP=2BN=2PN∴MN=MP﹣NP=(AP﹣BP)=AB∴AB=2MNA,B两点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,AP的中点M和BP的中点N也随之运动,3秒后,MN=2,则AB=4设点B的速度为每秒x个单位长度,则点A的速度为每秒2x个单位长度,根据题意可知:3秒后,点A表示的数为﹣3+6x,点B表示的数为4+3x,当点A在点B左侧时,4+3x﹣(﹣3+6x)=4,解得x=1;当点A在点B右侧时,﹣3+6x﹣(4+3x)=4解得x=.答:B点速度为每秒1或个单位长度.【点评】本题考查了实数与数轴、一元一次方程的应用,解决本题的关键是理解阅读材料并运用.2.如图1,在数轴上A、B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D 点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=45°;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=30°;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴正半轴向右平移t(0<t<3)个单位,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α,β满足|α﹣β|=45°,请用t 的式子表示α、β并直接写出t的值.【解答】(1)∵CF平分∠ACE,∴∠AOF=∠AOE=45°,故答案为:45°;(2)①∵t=1,∴∠ACD=30t=30°,∵∠DCE=90°,∴∠ACE=120°,∵CF平分∠ACE,∴∠ACF=60°,∵∠DCF=α,∴α=∠ACF﹣∠ACD=30°,故答案为:30°;②∠BCE=2α,证明:∠BCE=180°﹣(90°+30t)=90°﹣30t由平分知:90°﹣α=α+30t30t=90°﹣2α∴∠BCE=90°﹣(90°﹣2α)=2α;(3)α=∠FCA﹣∠DCA=(90°+30t)﹣30t=45°﹣15t,β=∠AC1D1+∠AC1F1=30t+(90°﹣30t)=45°+15t,∵|α﹣β|=45°,∴|30t|=45°,∴t=±,∵0<t<3,∴t=.【点评】本题考查角的计算、角平分线的定义、数轴、平移、旋转变换等知识,解题的关键是熟练掌握角的和差定义,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.3.阅读下面的文字,解答问题,例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是4,小数部分是﹣4.(2)已知:9﹣小数部分是m,9+小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值【解答】解:(1)∵4<<5,∴的整数部分是4,小数部分是﹣4.(2)∵9﹣小数部分是m,9+小数部分是n,∴m=9﹣﹣4=5﹣,n=9+﹣13=﹣4,∵(x+1)2=m+n=5﹣+﹣4=1,∴x+1=±1,解得x1=﹣2,x2=0.故答案为:4,﹣4.【点评】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.4.为了比较+1与的大小,小伍和小陆两名同学对这个问题分别进行了研究.(1)小伍同学利用计算器得到了≈2.236,≈3.162,所以确定+1>(填“>”或“<”或“=”)(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D在BC上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对+1和的大小做出准确的判断.【解答】解:(1)∵≈2.236,≈3.162,∴+1≈3.236,∵3.236>3.162,∴+1>.故答案为:>;(2)∵∠C=90°,BC=3,BD=AC=1,∴CD=2,AD==,AB==,∴BD+AD=+1,又∵△ABD中,AD+BD>AB,∴+1>.【点评】本题主要考查了三角形三边关系以及勾股定理的运用,解题时注意:三角形两边之和大于第三边.5.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:若|x|=2,|y|=3求x+y的值.情况①若x=2,y=3时,x+y=5情况 ②若x=2,y=﹣3时,x+y=﹣1情况③若x=﹣2,y=3时,x+y=1情况④若x=﹣2,y=﹣3时,x+y=﹣5所以,x+y的值为1,﹣1,5,﹣5.几何的学习过程中也有类似的情况:问题(1):已知点A,B,C在一条直线上,若AB=8,BC=3,则AC长为多少?通过分析我们发现,满足题意的情况有两种情况①当点C在点B的右侧时,如图1,此时,AC=11情况 ②当点C在点B的左侧时,如图2,此时,AC=5通过以上问题,我们发现,借助画图可以帮助我们更好的进行分类.问题(2):如图3,数轴上点A和点B表示的数分别是﹣1和2,点C是数轴上一点,且BC=2AB,则点C表示的数是多少?仿照问题1,画出图形,结合图形写出分类方法和结果.问题(3):点O是直线AB上一点,以O为端点作射线OC、OD,使∠AOC=60°,OC ⊥OD,求∠BOD的度数.画出图形,直接写出结果.【解答】解:(1)满足题意的情况有两种:①当点C在点B的右侧时,如图1,此时,AC=AB+BC=8+3=11;②当点C在点B的左侧时,如图2,此时,AC=AB﹣BC=8﹣3=5;故答案为:11,5;(2)满足题意的情况有两种:①当点C在点B的左侧时,如图,此时,BC=2AB=2(2+1)=6,∴点C表示的数为2﹣6=﹣4;②当点C在点B的右侧时,如图,BC=2AB=2(2+1)=6,∴点C表示的数为2+6=8;综上所述,点C表示的数为﹣4或8;(3)满足题意的情况有两种:①当OC,OD在AB的同侧时,如图,∠BOD=180°﹣∠AOC﹣∠COD=30°;②当OC,OD在AB的异侧时,如图,∠BOD=180°﹣(∠COD﹣∠AOC)=150°;【点评】本题主要考查了实数与数轴,垂线的定义以及角的计算,解决问题的关键是根据题意画出图形,解题时注意分类讨论思想的运用.6.已知3x+1的算术平方根是4,x+2y的立方根是﹣1,(1)求x、y的值;(2)求2x﹣5y的平方根.【解答】解:(1)根据题意知3x+1=16、x+2y=﹣1,则x=5、y=﹣3;(2)∵2x﹣5y=10+15=25,则2x﹣5y的平方根为±5.【点评】本题主要考查平方根、立方根,解题的关键是熟练掌握平方根和立方根的定义.7.解方程:(1)9x2﹣16=0(2)(x+1)3+27=0.【解答】解:(1)方程整理得:x2=,开方得:x=±;(2)方程整理得:(x+1)3=﹣27,开立方得:x+1=﹣3,解得:x=﹣4.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.8.已知一个正数的两个平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?【解答】解:(1)∵m+3和2m﹣15是同一个正数的平方根,则这两个数互为相反数.即:(m+3)+(2m﹣15)=0解得m=4.则这个正数是(m+3)2=49.(2)=3,则它的平方根是±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.9.根据所学知识,我们通过证明可以得到一个定理:一个非零有理数与一个无理数的积仍为一个无理数,根据这个定理得到一个结论:若x+y=0,其中x、y为有理数,是无理数,则x=0,y=0.证:∵x+y=0,x为有理数∴y是有理数∵y为有理数,是无理数∴y=0∴x+0=0∴x=0(1)若x+y=(1﹣),其中x、y为有理数,则x=﹣2,y=1;(2)若x+y=a+b,其中x、y、a、b为有理数,是无理数,求证:x=a,y=b;(3)已知的整数部分为a,小数部分为b,x、y为有理数,a、b、x、y满足17y+ y+(y﹣2x)=2a+b,求x、y的值.【解答】(1)解:∵x+y=(1﹣),其中x、y为有理数,∴x+y=﹣2+,∴x=﹣2,y=1,故答案为:﹣2,1;(2)证明:∵x+y=a+b,∴x﹣a+(y﹣b)=0,∵x、y、a、b为有理数,∴x﹣a,y﹣b都是有理数,∴x﹣a=0,y﹣b=0,∴x=a,y=b;(3)解:∵4<<5,又知的整数部分为a,小数部分为b,∴a=4,b=﹣4,∵17y+y+(y﹣2x)=2a+b,∴17y+y+y﹣34x=8+(﹣4),17y﹣34x+2y=17+4,∵x、y为有理数,∴,解得:.【点评】本题考查了有理数、无理数、实数的运算,读懂阅读材料内容,是正确解题的关键.10.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E 在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是13,点A在数轴上表示的数是﹣11.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒;当x= 2.2或2.5秒时,原点O恰为线段MN的三等分点.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,设长方形ABCD运动的时间为t(t>0)秒,两个长方形重叠部分的面积为S,求S与t 的关系式.【解答】解:(1)∵长方形EFGH的长EH是8个单位长度,且点E在数轴上表示∴点H在数轴上表示的数是5+8=13∵E、D两点之间的距离为12点D表示的数为5﹣12=﹣7∵长方形ABCD的长AD是4个单位长∴点A在数轴上表示的数是﹣7﹣4=﹣11故答案为:13,﹣11(2)由题意知,线段AD的中点为M,则M表示的数为﹣9,线段EH上一点N且EN =EH,则N表示的数为7;由M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,则经过x秒后,M点表示的数为4x﹣9,N点表示的数为7﹣3x;①当OM=2ON时,则有|4x﹣9|=2|7﹣3x|,解得:x=2.3(经验证,不符合题意,舍去)或x=2.5②当ON=2OM时,则有|7﹣3x|=2|4x﹣9|,解得:x=2.2或x=5(经验证,不符合题意,舍去)综上所述,当x=2.2或x=2.5时,原点O恰为线段MN的三等分点.故答案为:x=2.2或x=2.5.(3)由题意知,当0<t<6时,长方形ABCD和EFGH无重叠,些时S=0当6≤t≤12时,两个长方形重叠部分的面积为S=,即S =.当t>12时,长方形ABCD和EFGH无重叠,S=0.【点评】本题为图象与函数的综合题,考查了实数与数轴上的点的对应关系、一次函数关系以及分类讨论的思想.解题的关键是分清楚在一个运动变化中各个量的变化情况!。
2021年七年级数学下册第六单元《实数》经典题(提高培优)(2)
一、选择题1.若a =b =-,c =,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> D解析:D【分析】 根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案.【详解】解:∵3a ==-,b =,()22c ==--=,∴c b a >>,故选:D .【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简.2.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是1A 解析:A【分析】根据算术平方根、实数与数轴上的点是一一对应关系、实数、平方根,即可解答.【详解】A 、正数的算术平方根一定是正数,故选项正确;B 、如果a 表示一个实数,那么-a 不一定是负数,例如a=0,故选项错误;C 、和数轴上的点一一对应的数是实数,故选项错误;D 、1的平方根是±1,故选项错误;故选:A .【点睛】本题主要考查了实数,实数与数轴,解决本题的关键是熟记实数的有关性质. 3.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12-B .12C .2-D .2C 解析:C 【分析】 根据新定义的运算得到关于a 的方程,求解即可.【详解】解:因为211a =-※, 所以132112a a ⨯-=-, 解得 2a =-.故选:C【点睛】本题考查了新定义的运算与一元一次方程,根据新定义运算得到一元一次方程是解题关键.4.1的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C解析:C【分析】利用36<48<49得到6<7−1进行估算.【详解】解:∵36<48<49,∴6<7,∴5-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.5.下列实数31,7π-,3.14,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( )A .5个B .4个C .3个D .2个C 解析:C【分析】根据无理数的定义、算术平方根与立方根逐个判断即可得.【详解】31 4.4285717=小数点后的428571是无限循环的,属于有理数,3=-属于有理数,=则无理数为π-⋯,共有3个,故选:C .【点睛】本题考查了无理数、算术平方根与立方根,熟记各定义是解题关键.6.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行.A .4B .3C .2D .1D 解析:D【分析】根据无理数、平行公理、邻补角、算术平方根、实数与数轴、平行线的判定逐个判断即可得.【详解】①无理数包括正无理数和负无理数,此命题是假命题;②经过直线外一点有且只有一条直线与已知直线平行,此命题是真命题;③和为180︒的两个角不一定互为邻补角,此命题是假命题;7=,此命题是假命题;⑤实数和数轴上的点一一对应,此命题是假命题;⑥在同一平面内,垂直于同一条直线的两条直线互相平行,此命题是假命题; 综上,真命题的个数是1个,故选:D .【点睛】本题考查了无理数、平行公理、邻补角、实数与数轴等知识点,熟练掌握各定义与公理是解题关键.7.设,A B 均为实数,且A B ==,A B 的大小关系是( ) A .A B >B .A B =C .A B <D .A B ≥ D 解析:D【分析】根据算术平方根的定义得出A 是一个非负数,且m-3≥0,推出3-m≤0,得出B≤0,即可得出答案,【详解】解:∵A =∴A 是一个非负数,且m-3≥0,∴m≥3, ∵B =∵3-m≤0,即B≤0,∴A≥B ,故选:D .【点睛】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.8.在223.14,, 5.12112111227π+--……中,无理数的个数为 ( ) A .5B .2C .3D .4D 解析:D【分析】根据无理数的概念逐一判断即可,其中无限不循环小数是无理数.【详解】3.14是有理数,2π是无理数,===是无理数,0.1=-是有理数,2+227-是有理数, 5.121121112-……是无理数;故选D .【点睛】本题考查了无理数的概念,熟记无限不循环小数为无理数是本题的关键.9.已知:m 、n 为两个连续的整数,且m n <<,以下判断正确的是( )A 4B .3m =C 0.236D .9m n += A解析:A【分析】根据无理数的估算、实数的运算即可得.【详解】 459<<,<<23<<,22,则选项C 错误;∴)224-=A 正确;又m 、n 为两个连续的整数,且m n <<,2,3m n ==∴,则选项B 错误;235m n ∴+=+=,则选项D 错误;故选:A .【点睛】本题考查了无理数的估算、实数的运算,熟练掌握无理数的估算方法是解题关键.10. )A .5和6B .6和7C .7和8D .8和9A 解析:A【分析】【详解】解:∵∴56,∴在两个相邻整数5和6之间.故选:A .【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.二、填空题11.已知一个正数的平方根是3a +和215a -.(1)求这个正数.(2的平方根和立方根.(1)441或49;(2)或【分析】(1)分情况讨论这两个平方根相等或互为相反数求出a 的值在算出这个正数;(2)由(1)的结果分情况讨论根据平方根和立方根的定义算出结果【详解】解:(1)若这两个平方解析:(1)441或49;(2)2± 【分析】(1)分情况讨论,这两个平方根相等或互为相反数,求出a 的值,在算出这个正数; (2)由(1)的结果分情况讨论,根据平方根和立方根的定义算出结果.【详解】解:(1)若这两个平方根相等,则3215a a +=-,解得18a =,这个正数是:()2218321441+==;若这两个平方根互为相反数,则32150a a ++-=,解得4a =,这个正数是:()2243749+==;(2)若18a ==若4a =4==,4的平方根是2±.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的定义以及计算方法. 12.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯-(4)13248243⎛⎫-⨯-+- ⎪⎝⎭(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算(2)先进行平方和开方在进行乘法和减法的运算(3)先进行开方和平方在由左至右进行除法和乘法的运算(4)首先去括号内的绝对值 解析:(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算.(2)先进行平方和开方,在进行乘法和减法的运算.(3)先进行开方和平方,在由左至右进行除法和乘法的运算.(4)首先去括号内的绝对值,在进行括号内的分式加减,最后相乘.【详解】(1)12(7)6(22)-+----=127622---+=3-(2)2122⨯ 1=432⨯- =1-(33(2)(4)-⨯-=4(8)(4)÷-⨯-1=(-)(4)2⨯- =2(4)13248()243-⨯-+- 1248()43=-⨯-+ 54812=-⨯ 20=-考察有理数的混合运算,掌握运算法则的顺序是解答本题的关键.13.计算:(12(2)22(2)8x -=(1)1;(2)【分析】(1)实数的混合运算利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解【详解】解:(1)===1(2)∴【点睛】本题考查实数的混合运算及利用平方根解方 解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.14.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.15.实数2-,227,π-中属于无理数的是________.【分析】根据无理数的三种形式:①开方开不尽的数②无限不循环小数③含有π的数找出无理数的个数【详解】解:在这5个数中属于无理数的有这2个数故答案是:【点睛】本题考查了无理数的知识解答本题的关键是掌握无,π- 【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】3=-,在2-,227,π-5, π-,这2个数,π-. 【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.16.1【分析】先根据开方的意义绝对值的意义进行化简最后计算即可求解【详解】解:原式【点睛】本题考查了实数的混合运算理解开方的意义能正确去绝对值是解题关键解析:1先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键.17.定义一种新运算;观察下列各式; 131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:a b = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.(1)4a+b ;(2);(3)6a-3b-12【分析】(1)观察得到新运算等于第一个数乘以4加上第二个数据此列式即可;(2)根据新运算分别计算出与即可得到答案;(3)根据新运算分别化简再将ab 的值代解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】(1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算. 【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b )=4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解18.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.(1)a=2b=3;(2)±4【分析】(1)首先根据4a+1的平方根是±3可得:4a+1=9据此求出a 的值是多少;然后根据3a+b ﹣1的立方根为2可得:3a+b ﹣1=8据此求出b 的值是多少即可(2) 解析:(1)a=2,b=3;(2)±4.【分析】(1)首先根据4a+1的平方根是±3,可得:4a+1=9,据此求出a 的值是多少;然后根据3a +b ﹣1的立方根为2,可得:3a +b ﹣1=8,据此求出b 的值是多少即可.(2)把(1)中求出的a 与b 的值代入2a +4b ,求出它的值,然后根据平方根的定义即可得出答案.【详解】解:(1)∵4a+1的平方根是±3,∴4a+1=9,解得a=2,∵3a +b ﹣1的立方根为2,∴3a +b ﹣1=8,解得:b=3;(2)由(1)得a=2,b=3,∴24224316a b +=⨯+⨯=.它的平方根为:±4.【点睛】本题考查了平方根,立方根,列式求出a 、b 的值是解题的关键.19.观察下列二次根式的规律求值:1S =2S =3S =… 则20202020S =_______.【分析】通过前三个式子找出其中的规律即可【详解】=故答案为:【点晴】本题考查了数字的规律总结准确算出前三个式子的值总结出规律是解题的关键 解析:20222021【分析】通过前三个式子找出其中的规律即可.【详解】11112=+-=32,1171236=+-=,111313412=+-=, 111112122S ∴=+-=-, 2111113133S =++-=-, 31111114144S =+++-=-, 21n S n n n +∴=+, 2020202220202021S ∴=. 故答案为:20222021. 【点晴】本题考查了数字的规律总结,准确算出前三个式子的值,总结出规律是解题的关键. 20.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).515【分析】由已知条件可得:①中各数都符合2n 的形式②中各数比①中对应数字大3按此规律即可求得①②中第8个数的值再求和即可【详解】根据题意可知①中第8个数为28=256;②第8个数为28+3=25解析:515【分析】由已知条件可得:①中各数都符合2n 的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.三、解答题21.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<-<,∵01y <<,x 是整数,∴x=2,∴y=3032305--=-,∴()2305307x y -=--=-+, ∴x y -的相反数是307-.【点睛】 本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.22.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------解析:(1)1117878=-⨯;(2)514;(3)()()11111=m m m m -++;(4)0 【分析】(1)因为56=7×8,所以根据题中规律1115678=-; (2)根据题意把每个单位分数变成两个单位分数的差,再对其进行加减运算;(3)根据上面规律可以写出拆分一个单位分数的规律:()11111m m m m =-++; (4)根据(3)中的规律把每个分数单位拆分成两个分数单位的差再计算即可得到解答 .【详解】解:(1)1111567878==-⨯ (2)11111612203040++++ 11111111112334455667++++=----- 1127514==- (3)()()11111=m m m m -++ (4)()()()()()()121231312x x x x x x -+------ =()()()()()()111111323121x x x x x x --++-------=0【点睛】本题考查与实数运算相关的规律题,通过观察与归纳总结出运算规律是解题关键. 23.1.414≈,于是我们说:的整数部分为1,小数部分则可记为1”.则:(11的整数部分是__________,小数部分可以表示为__________;(22的小数部分是a,7-b ,那么a b +=__________; (3x的小数部分为y,求1(x y --的平方根. 解析:(1)21;(2)1;(3)3±.【分析】(11的整数部分和小数部分;(22和7-a 与b 的值,最后代入代数式计算即可;(3的取值范围,再确定x 、y 的值,最后代入代数式计算即可.【详解】解:(1)∵1<2<4∴1<2∴1,∴1的整数部分为212+-1故答案为21;(2)∵1<3<4∴12 ∴1,∴2的整数部分为3,小数部分为21-;7-的整数部分为5,小数部分为b=75--=2∴1+2=1故答案为1;(3)∵9<11<16∴3<4 ∴x=3,小数部分为-3∴()3211(3==3=9x y --- ∵3±.故答案为3±.【点睛】本题主要考查了估算无理数的大小,掌握运用逼近法比较无理数的大小成为解答本题的关键.24.已知21a -的平方根是31a b +-的算术平方根是6,求4a b +的平方根. 解析:7±【分析】根据算术平方根和平方根的定义列式求出a 、b 的值,然后代入代数式求出4a b +的值,再根据平方根的定义解答即可.【详解】解:根据题意,得2117a -=,2316a b +-=,解得9a =,10b =,所以,4941094049a b +=+⨯=+=,∵()2749±=, ∴4a b +的平方根是7±.【点睛】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a 、b 的值是解题的关键.25.若()220b -+=,求()2020a b +的值.解析:1【分析】根据平方的非负性、开平方的非负性求出a 、b 的值,代入计算即可.【详解】解:∵()220b -+=,∴20b -+=,210a b +-=,解得:2b =,3a =-,∴()()20202020321a b +=-+=.【点睛】此题考查平方的非负性、开平方的非负性,有理数的混合运算,正确理解平方的非负性、开平方的非负性是解题的关键.26.计算: (1)36 1.754⎛⎫--+ ⎪⎝⎭; (2)()()232524-⨯--÷;(3)()225--.解析:(1)182;(2)22;(3-1 【分析】(1)先去括号,同时将小数化为分数,再计算加减法;(2)先计算乘方,再计算乘除法,最后计算加减法;(3)先计算乘方和绝对值,再计算加减法.【详解】 (1)36 1.754⎛⎫--+ ⎪⎝⎭=336144++ =182; (2)()()232524-⨯--÷=()4584⨯--÷=20+2=22;(3)()225--=4-()=【点睛】此题考查运算能力,掌握有理数的加减法计算法则,乘方的计算法则,实数的绝对值化简,有理数的混合运算法则是解题的关键.27.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 解析:10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭ 11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键.28.已知a 是b 的小数部分,求代数式(1b a --的平方根. 解析:3±.【分析】根据223104<<可得34<<的整数部分是3,小数部分是3,即可求解.【详解】解:∵223104<<, ∴34<<,∴3,则3a =3,则3b =,∴(()1312339a b ---=-=-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键.。
七年级数学下册第六章【实数】经典练习卷(培优提高)
一、选择题1.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( ) A .2B .4C .6D .82.在0、3、0.536、39、227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是( )A .3B .4C .5D .63.下列各数中比3-小的数是( ) A .2-B .1-C .12-D .04.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n5.64的平方根为( ) A .8B .8-C .22D .22±6.下列各数中,属于无理数的是( ) A .227B .3.1415926C .2.010010001D .π3-7.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B 7C 11D .无法确定8.已知下列结论:①2;②无理数是无限小数;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ) A .① ③B .②③C .③④D .②④9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n10.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1B .-5或5C .11或7D .-11或﹣711.估计511-的值在( ) A .5~6之间B .6~7之间C .7~8之间D .8~9之间二、填空题12.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N . (1)解方程:log x 4=2; (2)求值:log 48;(3)计算:(lg 2)2+lg 2•1g 5+1g 5﹣201813.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________; (2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.14.计算:(1)(23)(41)----; (2)1111115()13()3()555-⨯-+⨯--⨯-; (3)23(2)|21|27-+;(4)311()()(2)424-⨯-÷-.15.3<x 6的所有整数x 的和是_____.16________,2的相反数是________. 17.若2x =,29y =,且0xy <,则x y -等于______.18.已知5的整数部分为a ,5-b ,则2ab b +=_________. 19.(1)求x 的值:2490x -=;(220.计算:(1)(1)|2|3-⨯-+ (2)2111(3)2⎛⎫-+--- ⎪⎝⎭21.比较3、4 _______________.(用“<”连接)三、解答题22.计算:(1)7|2|--(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭23.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-0,4-24.计算:(12)-+(225.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.一、选择题1.若2x -+|y+1|=0,则x+y 的值为( ) A .-3B .3C .-1D .12.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40B .﹣32C .18D .103.64的算术平方根是( ) A .8B .±8C .22D .22±4.下列各数中比3-小的数是( ) A .2-B .1-C .12-D .05.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>6.如果32.37≈1.333,323.7≈2.872,那么32370约等于( ) A .287.2 B .28.72C .13.33D .133.37.下列实数31,7π-,3.14,38,27,0.2-,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( ) A .5个B .4个C .3个D .2个8.和数轴上的点一一对应的数是( ) A .自然数B .有理数C .无理数D .实数9.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n -10.若将2-711 )A .2-B .7C .11D .无法确定11.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题12.已知31a +的算数平方根是4,421c b +-的立方根是3,c 是13的整数部分.求22a b c +-的平方根.13.(1)计算:①231698(2)-+-; ②3121125|63|6+-+--.(2)求下列各式中x 的值: ③22536x =; ④3(1)64x --=.14.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14.(1)请根据以上式子填空:①189⨯= ,②1(1)n n ⨯+= (n 是正整数)(2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯15.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.16.比较大小:221(填“>”、“=”或“<”). 17.比较大小:3-_______-2.(填“>”“=”或“<”)18.设a ,b 是两个连续的整数,已知8是一个无理数,若8a b <<,是,则a b =____.19.观察下面一列数:-1,2,-3,4,-5,6,-7……,将这列数排成下图形式.按照此规律排下去,那么第_________行从坐标数第_________个数是-2019.20.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.212(2)-的平方根是 _______ ;38a 的立方根是 __________.三、解答题22.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.23.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)24.计算下列各题(1)38-163﹣2; (2)35﹣0.04(结果保留2位有效数字). 25.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简a b ;②当a b a c =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.一、选择题1.在00.536227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是( )A .3B .4C .5D .62) A .3B .﹣3C .±3D .63.下列各式中,正确的是( )A B .C 3=-D 4=-4.8 ) A .4B .5C .6D .75.下列说法中,错误的有( ) ①符号相反的数与为相反数; ②当0a ≠时,0a >; ③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远; ⑤数轴上的点不都表示有理数. A .0个 B .1个C .2个D .3个6.若3a =,则a 在( )A .3-和2-之间B .2-和1-之间C .1-和0之间D .0和1之间7.已知无理数m 5π-的整数部分相同,则m 为( )A BC 1D .π-8.下列实数是无理数的是( ) A . 5.1-B .0C .1D .π9.0.31,3π,27-12- 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .410.设,A B 均为实数,且33,3A m B m =-=-,则,A B 的大小关系是( )A .AB >B .A B =C .A B <D .A B ≥11.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题12.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-,38,0,13-,4-13.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.14.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9. 问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证. 15.计算:(1)(23)(41)----; (2)1111115()13()3()555-⨯-+⨯--⨯-;(3)2(2)|1|-+;(4)311()()(2)424-⨯-÷-. 16.观察下列各式:322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯;…回答下面的问题:(1)猜想:33333123(1)n n ++++-+=_________;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+......+93+103的值是_________; (3)计算:213+223+233+......+293+303的值. 17.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π等,而常用“……”或者“≈”1的小数部分,你同意小刚的表示方法吗?事实上,小刚的表示方法是有道理的,的整数部分是1,将这个数减去其整数部分,差就是小数部分.<<,即23<<,22也就是说,任何一个无理数,都可以夹在两个相邻的整数之间. 根据上述信息,请回答下列问题:(1______,小数部分是_______;(2)10+10a b <+<,则a b +=_____;(34x y =+,其中x 是整数,且01y <<.求:x y -的相反数. 18.(1)计算:|3|-.(2)求下列各式中x 的值:③22536x =;④3(1)64x --=.19.已知mn 、是两个连续的整数,且m n <,则m n +=_______________________. 20.|2|π-=________.21_____;16的平方根为_____;()34-的立方根是_____. 三、解答题22.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.23)10152-⎛⎫-+︒ ⎪⎝⎭24.求下列各式中的x 的值.(1)4x 2=9; (2)(2x ﹣1)3=﹣27.25.“*”是规定的一种运算法则:a*b=a 2-3b .(1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;。
部编数学七年级下册实数的应用大题提升训练(重难点培优30题)【拔尖特训】2023培优(解析版)
【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【人教版】专题6.8实数的应用大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022秋•李沧区期中)某新建学校计划在一块面积为256m2的正方形空地上建一个面积为150m2的长方形花园(长方形花园的边与正方形空地的边平行),要求长方形花园的长是宽的2倍.请你通过计算说明该学校能否实现这个计划.【分析】分别求出长方形的长,正方形的边长比较即可判断.【解答】解:长方形花坛的宽为xm,长为2xm.∵建一个面积为150m2的长方形花园,∴2x•x=150,∴x2=75,∵x>0,∴x=2x=∵正方形的面积为256m2,∴正方形的边长为16m,∵16,∴当长方形的边与正方形的边平行时,学校不能实现这个愿望.2.(2022秋•太原期中)从理论上讲,人眼能看清楚无限远处的物体,但受光线等外在条件和人的眼球本身的健康程度等影响,实际上无法做到.天气晴朗时,一个人能看到大海的最远距离s可用经验公式s2=17h来估计,其中h是眼睛离海平面的高度(公式中s的单位是千米,h的单位是米).某游客站在海边一处观景台上,眼睛距离海平面的高度约为34米,他能看到大海的最远距离约是多少千米?(结果保留1.4)【分析】根据题意列出关于s的式子,求出s的值即可.【解答】解:∵眼睛距离海平面的高度约为34米,∴s2=17h=17×34=578,∴s=24(千米).答:他能看到大海的最远距离约是24千米.3.(2022秋•南岗区校级期中)小李同学想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为2:3,他不知道能否裁得出来,正在发愁,这时小于同学见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”(1)长方形纸片的长和宽是分别多少cm?(2)你是否同意小于同学的说法?说明理由.【分析】(1)设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为2:3;(2)根据(1)中的长方形纸片的长和宽即可得出结论.【解答】解:(1)解:设长方形纸片的长为3x(x>0)cm,则宽为2x cm,依题意得,3x•2x=300,6x2=300,x2=50,∵x>0,∴x∴长方形纸片的长为cm,答:长方形纸片的长是,宽是;(2)不同意小于同学的说法.理由:∵50>49,∴5 7,∴21.∴长方形纸片的长大于20cm,由正方形纸片的面积为400cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长,∴不能用这块纸片裁出符合要求的长方形纸片.4.(2022秋•萧县期中)电流通过导线时会产生热量,且满足Q=I2Rt,其中Q为产生的热量(单位:J),I为电流(单位:A),R为导线电阻(单位:Ω),t为通电时间(单位:s),若导线电阻为5Ω,2s时间导线产生90J的热量,求电流的值.【分析】通过分析题目列出正确的方程式,结合实际情况求出正确的解.【解答】解:由题意可得R =5Ω,t =2s ,Q =90J ,∴90=I 2×5×2,∴I 2=9,∴I =±3(负值不符合实际情况,舍去)∴电流的值是3A .5.(2022秋•兰考县月考)2022年5月10日,庆祝中国共产主义青年团成立100周年大会在北京人民大会堂隆重举行.习近平总书记指出,青春孕育无限希望,青年创造美好明天.一个民族只有寄望青春、永葆青春,才能兴旺发达.为了全面贯彻总书记的讲话精神,某市决定在一块面积为1100m 2的正方形空地上建一个足球场以供全民健身.已知足球场的面积为540m 2,其中长是宽的53倍,足球场的四周必须留出1m 宽的空地,这块空地能否成功建一个符合规定的足球场?【分析】求出足球场的长、宽,再求出正方形的边长,比较长方形的长加1,即(长+2)与正方形边长的大小关系即可.【解答】解:设足球场的宽为xm ,则长为53x m ,由题意得,53x 2=540,解得x =18(取正值),53x =30,即足球场的长为30m ,宽为18m ,又∵正方形空地的面积为1100m 2,,∵332=1089,342=1156,∴3334,又∵30+2<33,∴可以建一个符合规定的足球场.6.(2022春•如皋市期中)小丽手中有块周长为120cm 的长方形硬纸片,其长比宽多10cm .(1)求长方形的面积;(2)现小丽想用这块长方形的硬纸片,沿着边的方向裁出一块长与宽的比为7:5,面积为805cm 2的长方形纸片,试判断小丽能否成功,并说明理由.【分析】(1)根据题意求出长方形的长和宽即可求解;(2)根据题意可设长与宽分别为7acm,5acm,再根据长方形面积为805cm2可列出方程7a×5a=805,解出方程即可求解.【解答】解:(1)设长为xcm,宽为ycm,则2(x+y)=120 x−y=10,解得:x=35 y=25,所以长方形的面积为:35×25=875(cm2);(2)根据题意可设长与宽分别为7acm,5acm,则7a×5a=805,35a2=805,a2=23,a=∵a>0,∴a∴裁出的长方形长为,宽为,∵45,∴28<35,20<25,∴小丽能成功裁出这样的长方形.7.(2022秋•市北区校级月考)在一次活动课中,虹烨同学用一根绳子围成一个长宽之比为3:1,面积为75 cm2的长方形.(1)求长方形的长和宽;(2)她用另一根绳子围成一个正方形,且正方形的面积等于原来围成的长方形面积,她说:“围成的正方形的边长与原来长方形的宽之差大于3cm”,请你判断她的说法是否正确,并说明理由.【分析】(1)根据题意设长方形的长为3xcm,宽为xcm,则3x⋅x=75,再利用平方根的含义解方程即可;(2)设正方形的边长为y,根据题意可得,y2=75,利用平方根的含义先解方程,再比较与3的大小即可.【解答】解:(1)根据题意设长方形的长为3xcm,宽为xcm,则3x•x=75,即x2=25,∵x>0,∴x=5,∴3x=15,答:长方形的长为15cm,宽为5cm.(2)设正方形的边长为ycm,根据题意可得,y2=75,∵y>0,∴y∵原来长方形的宽为5cm,,即89,∴3<4,所以她的说法正确.8.(2022春•武邑县校级期末)某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来400m2的正方形场地改建成315m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【解答】解:(1=20(m),4×20=80(m),答:原来正方形场地的周长为80m.(2)设这个长方形场地宽为3am,则长为5am.由题意有:3a×5a=315,解得:a=±∵3a表示长度,∴a>0,∴a∴这个长方形场地的周长为2(3a+5a)=16a=m),∵80=16×5=16∴这些铁栅栏够用.答:这些铁栅栏够用.9.物体自由下落时,下落距离h(米)可用公式h=5t2来估计,其中t(秒)表示物体下落所经过的时间.(1)把这个公式变形成用h表示t的公式.(2)一个物体从54.5米高的塔顶自由下落,落到地面需几秒(精确到0.1秒)?【分析】(1)先将t2的系数化为1,再根据算术平方根的定义可得;(2)将h=54.5代入计算可得.【解答】解:(1)∵h=5t2,∴t2=ℎ5,∴t=(2)当h=54.5时,t= 3.3(秒),答:落到地面约需3.3秒.10.(2021春•饶平县校级期末)某同学想用一块面积为400cm2的正方形纸片,(如图所示)沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为6:5,请你用所学过的知识来说明能否用这块纸片裁出符合要求的纸片.【分析】先设长方形纸片的长为6x(x>0)cm,则宽为5x cm,根据长方形的面积公式有6x⋅5x=300,解得x=,易求长方形纸片的长是【解答】解:设长方形纸片的长为6x(x>0)cm,则宽为5x cm,依题意得6x⋅5x=300,30x2=300,x2=10,∵x>0,∴x∴长方形纸片的长为,由正方形纸片的面积为400 cm2,可知其边长为20cm,∵≈18.974,即长方形纸片的长小于20cm,∴长方形纸片的长小于正方形纸片的边长.答:能用这块纸片裁出符合要求的纸片.11.(2020春•崆峒区期末)如图用两个面积为5cm2的小正方形按如图所示的方式拼成一个大正方形.(1)求大正方形的边长;(2)想在这个大正方形的四周粘上彩纸,请问12cm长的彩纸够吗?请说明理由.【分析】(1)求出大正方形的面积,利用算术平方根性质求出边长即可;(2)不够,由彩纸确定出分到每条边的长,比较即可.【解答】解:(1)因为大正方形的面积为10cm2,;(2)不够,理由如下:因为分到每条边的彩纸长为12÷4=3cm,且3cm,所以12cm长的彩纸不够.12.(2021春•天河区期末)数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.【解答】解:(1)设长为3x,宽为2x,则:3x•2x=30,∴x,∴3x=2x=答:这个长方形纸片的长为(2)正确.理由如下:根据题意得:2[(a+b)+a]=50 4b+2(a−b)=30,解得:a=10 b=5,∴大正方形的面积为102=100.13.(2022春•思明区校级期末)如图,计划围一个长方形场地ABCD(AB<BC),面积为50米2,一边靠墙(墙长为10米),另外三边用篱笆围成,并且它的长与宽之比为5:2.请判断这样的计划能实现吗,为什么?【分析】先根据计划列方程求解,再根据计算结果不符合实际得此题结论.【解答】解:这样的计划不能实现.设它的长与宽各为5x米和2x米,得5x×2x=50,∴10x2=50,两边都除以10得,x2=5,解得x=x=,∵5x=10,∴这样的计划不能实现.14.(2022秋•禅城区校级期中)如图,把图(1)中两个小正方形纸片分别沿对角线剪开,拼成一个面积为16cm2的大正方形纸片如图(2).(1)原小正方形的边长为;(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形的长宽之比为2:1,且面积为12cm2?若能,试求出剪出的长方形纸片的长宽;若不能,试说明理由.(3)如图(3)是由5个边长为1的小正方形组成的纸片,能否把它剪开并拼成一个大正方形?若能,请画出示意图,并写出边的长度,若不能,请说明理由.【分析】(1)根据大正方形纸片的面积求出小正方形纸片的面积,再进一步求出小正方形纸片的边长;(2)根据剪出的长方形面积为12cm2,列方程求出长方形的长,然后与大正方形纸片的边长比较进行判断即可;(3)根据大正方形的面积等于5个小正方形的面积确定大正方形的边长,然后根据图(3)的纸片确定大正方形即可.【解答】解:(1)∴小正方形的面积是大正方形面积的一半,∴小正方形的面积为16÷2=8(cm2),设小正方形的边长为a,则a2=8,∴a=±,∴a=∴小正方形的边长为,故答案为:(2)不能剪出符合要求的长方形纸片,理由如下:设剪出来的长方形长为2xcm,宽为xcm,依题意得2x•x=12,∴x x=,∴长为4,∴不能剪出符合要求的长方形纸片;(3)∵一共有5个小正方形,那么组成的大正方形的面积为5画出示意图如图,15.(2020秋•萍乡月考)如图,小丽想用一张长为30cm,宽为25cm的长方形纸片,沿着边的方向裁出一张面积为650cm2的正方形纸片,小丽能用这张纸片裁出符合要求的纸片吗?请通过比较纸片边长的大小进行说明.【分析】根据正方形的面积以及算术平方根的定义表示出面积650cm2的正方形的边长,再与长方形的宽进行比较即可.【解答】解:不能,25=25所以小丽不能裁出符合要求的纸片.16.(2022•的小正方形剪拼成一个大的正方形,(1)则大正方形的边长是 4 cm;(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为3:2且面积为12cm2,若能,试求出剪出的长方形纸片的长宽;若不能,试说明理由.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先求出长方形的边长,利用长与正方形边长比较大小再判断即可.【解答】解:(14(cm);故答案为:4;(2)设长方形纸片的长为3xcm,宽为2xcm,则2x•3x=12,解得:x=3x=4,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为3:2,且面积为12cm2.17.(2020秋•遵化市期中)某农场有一块用铁栅栏围墙围成面积为700平方米的长方形空地,长方形长宽之比为7:4.(1)求该长方形的长宽各为多少?(2)农场打算把长方形空地沿边的方向改造出两块不相连的正方形试验田,两个小正方形的边长比为4:3,面积之和为600平方米,并把原来长方形空地的铁栅栏围墙全部用来围两个小正方形试验田,请问能改造出这样的两块不相连的正方形试验田吗,如果能,原来的铁栅栏围墙够用吗?【分析】(1)按照设计的花坛长宽之比为7:4设长为7x米,宽为4x米,以面积为700平方米作等量关系列方程.用求算术平方根方法解得x的值.(2)设大正方形的边长为4y米,则小正方形的边长为3y米,根据面积之和为600m2,列出方程求出y,得到大正方形的边长和小正方形的边长,即可求解.【解答】解:(1)设该长方形花坛长为7x米,宽为4x米,依题意得:7x×4x=700,x2=25,∴x=5(﹣5不合题意舍去)∴7x=35,4x=20,答:该长方形的长35米,宽20米;(2)设大正方形的边长为4y米,则小正方形的边长为3y米,依题意有(4y)2+(3y)2=600,25y2=600,y2=24,y=4y=3y=∵=35,20,∴能改造出这样的两块不相连的正方形试验田;×4=(35+20)×2=110,∵110,∴原来的铁栅栏围墙不够用.18.(2021秋•江干区校级期中)如图,长方形内两个相邻正方形的面积分别为6和9.(1)小正方形的边长在哪两个连续的整数之间?并说明理由.(2)求阴影部分的面积.【分析】(12和3之间;(2)利用长×宽可得结论.【解答】解:(1)∵小正方形的面积为6,∵4<6<9,∴23,∴小正方形的边长在2和3之间;(2)阴影部分的面积×(36.19.(2020春•顺义区期末)公园里有一个边长为8米的正方形花坛,如图所示,现在想扩大花坛的面积.要使花坛的面积增加80平方米后仍然是正方形,求边长应该延长多少米?【分析】设边长应该延长x米,根据题意得到改造后花坛的边长长为(x+8)米,则其面积为(64+80)平方米,然后根据正方形的面积为(x+8)2=(64+80)平方米可得到答案.【解答】解:设边长应该延长x米,根据题意,得(x+8)2=64+80,(x+8)2=144,∴x+8==12(负值舍去),∴x=4,答:边长应该延长4米.20.(2022春•罗庄区期末)如图,用两个面积为200cm2的小正方形拼成一个大的正方形.(1)则大正方形的边长是 20cm ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为360cm2?【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先求出长方形的边长,再判断即可.【解答】解:(1==20(cm);故答案为:20cm;(2)设长方形纸片的长为4xcm,宽为3xcm,则4x•3x=360,解得:x=4x=20,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为360cm2.21.(2019春•江岸区校级期中)如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为2dm2,则此正方形的边长BC,对角线AC的长为 2 dm.(2)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由.(3)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,试比较C圆与C正的大小.【分析】(1)按照正方形的面积与边长的关系、正方形的面积与对角线的关系可得答案.(2)设裁出的长方形的长为3a(cm),宽为2a(cm),由题意得关于a的方程,解得a的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案.(3)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案.【解答】解:(1)∵正方形纸片的面积为2dm2,而正方形的面积等于边长的平方,∴BC=,∵正方形的面积也等于对角线×对角线÷2,AC=BD,∴12AC•BD=12AC2=2,∴AC2=4,∴AC =2.2.(2)不能裁出长和宽之比为3:2的长方形,理由如下:设裁出的长方形的长为3a (cm ),宽为2a (cm ),由题意得:3a ×2a =12,解得a =a =,∴长为,宽为,∵正方形的面积为16cm 2,∴正方形的边长为4cm ,∵4,∴不能裁出长和宽之比为3:2的长方形.(3)∵圆的面积与正方形的面积都是2πcm 2,cm )cm ),∴C 圆==cm ),C 正==cm ),∵32π=8π×4>8π×π,∴C 圆<C 正.22.(2021春•梁子湖区校级期末)某工厂要新建一个800平方米的长方形场地,且其长、宽的比为5:2.(1)求这个长方形场地的长和宽为多少米?(2)某个正方形场地的周围有一圈金属栅栏围墙,如果把原来面积为900平方米的正方形场地的栅栏围墙全部利用,来作为新场地的长方形围墙,栅栏围墙是否够用?为什么?(提示:80)【分析】(1)根据长宽的比例设长为5x 米,宽为2x 米,由长方形的面积得5x •2x =800,利用算术平方根的定义求出x 的值,从而得出答案;(2)先根据正方形的面积求出正方形的边长,继而得出其周长,即栅栏的长度,再求出长方形的周长,比较大小即可得出答案.【解答】解:(1)设长方形场地的长为5x 米,宽为2x 米,根据题意知,5x •2x =800,解得x=x=﹣,∴这个长方形场地的长为(2)栅栏围墙不够用,因为正方形场地的面积为900平方米,所以正方形场地的边长为30米,则正方形的周长,即栅栏的长度为120米,长方形场地的周长为2×(,∵120,∴栅栏围墙不够用.23.(2019秋•金水区校级月考)某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=d3900,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为6km,那么这场雷雨大约能持续多长时间?(结果如有根号,请保留根号)(2)如果一场雷雨持续了0.9h,那么这场雷雨区域的直径大约是多少?【分析】(1)根据:t2=d3900,其中d=6(km)是雷雨区域的直径,开平方的意义,可得答案;(2)根据:t2=d3900,其中t=0.9h是雷雨区域的直径,开平方的意义,可得答案.【解答】解:(1)根据:t2=d3900,其中d=6(km),t=h),;(2)根据:t2=d3900,其中t=0.9h,d=9(km),答:这场雷雨区域的直径大约是9km.24.(2019春•黄陂区期中)有一块面积为100cm2的正方形纸片.(1)该正方形纸片的边长为 10 cm(直接写出结果);(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗?【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.【解答】解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm;故答案为:10;(2)∵长方形纸片的长宽之比为4:3,∴设长方形纸片的长为4xcm,则宽为3xcm,则4x•3x=90,∴12x2=90,∴x2=30 4,解得:x=x,∴长方形纸片的长为,∵56,∴10<∴小丽不能用这块纸片裁出符合要求的纸片.25.(2022春•丹凤县期末)小丽想用一块面积为36cm2的正方形纸片,如图所示,沿着边的方向裁出一块面积为20cm2的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?【分析】先求得正方形的边长,然后设长方形的宽为xcm,则长为2xcm,然后依据矩形的面积为20cm2列方程求得x的值,从而得到矩形的边长,从而可作出判断.【解答】解:不同意,因为正方形的面积为36cm2,故边长为6cm,设长方形的宽为xcm,则长为2xcm,长方形面积=x⋅2x=2x2=20,解得x=长为>6cm,即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片.26.(2022春•鼓楼区校级期中)某小区为了促进全民健身活动的开展,决定在一块面积为1100m2的正方形空地上建一个篮球场.已知篮球场的面积为540m 2,其中长是宽的53倍,篮球场的四周必须留出1m 宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?【分析】直接用同一未知数表示出篮球场的宽,进而利用x 的值得出答案.【解答】解:设篮球场的宽为x m ,那么长为53x m ,根据题意,得53x •x =540,所以 x 2=324,因为x 为正数,所以:x =18,又因为((53x +2)2=(53×18+2)2=1024<1100,所以能按规定在这块空地上建一个篮球场.27.(2019秋•城固县期中)王师傅有一根长40m 的钢材,他想将这段钢材锯断后焊成三个面积分别为3m 2,12m 2,48m 2的正方形铁框,问王师傅的钢材够用吗?请通过计算说明理由.【分析】根据正方形的面积公式求出各边的长,再根据每个正方形有4条边,从而求出每个正方形所耗费的钢材,再把三个耗费的钢材加起来,和40m 进行比较即可.【解答】解:∵正方形的面积是3m 2,∴所耗费的钢材是4×m ),∵正方形的面积是12m 2,∴它的边长是∴所耗费的钢材是4×=m ),∵正方形的面积是48m 2,∴它的边长是∴所耗费的钢材是4×=m ),∴所耗费的钢材的总长度是+m ),∵≈48.5,48.5>40,∴王师傅的钢材不够用.28.一块长方形纸片的面积是300cm 2,长、宽之比为3:2.(1)求这块长方形纸片的长与宽;(结果保留根号)(2)小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁出这个长方形,她能完成吗?【分析】(1)设面积为300平方厘米的长方形的长,宽分别为3xcm,2xcm,根据面积公式得到方程3x•2x=300(x>0),解方程得到x的值,从而得到长方形的长和宽;(2)设面积为400cm2的正方形纸片的边长为xcm,根据面积公式得到方程x2=400(x>0),解方程,得到x的值,从而得到正方形的边长;最后根据长方形的长与正方形的边长进行比较即可得解.【解答】解:(1)设面积为300cm2的长方形的长,宽分别为3xcm,2xcm(x>0),则3x•2x=300,∴6x2=300,即x2=50,解得x=,∴2x=2×3x=3×=∴面积为300cm2的长方形的长,宽分别为,.(2)设面积为400cm2的正方形的边长为xcm(x>0),则x2=400,解得x=20(负值舍去),∴面积为400cm2的正方形的边长为20cm.∵202=400<(2=450,∴20<∴长方形纸片的长大于正方形纸片的边长,∴小丽不能用这块正方形纸片裁出符合要求的长方形纸片.29.(2019秋•榆次区期中)为庆祝祖国70华诞,某小区计划在一块面积为196m2的正方形空地上建一个面积为100m2的长方形花坛(长方形的边与正方形空地的边平行),要求长方形的长是宽的2倍.请你通过计算说明该小区能否实现这个愿望?【分析】分别求出长方形的长,正方形的边长比较即可判断.【解答】解:长方形花坛的宽为xm,长为2xm.2x•x=100,∴x2=50,∵x>0,∴x2x=∵正方形的面积=196m2,∴正方形的边长为14m,∵14,∴当长方形的边与正方形的边平行时,开发商不能实现这个愿望.30.(2022•南京模拟)列方程解答下面问题.小丽手中有块长方形的硬纸片,其中长BC比宽AB多10cm,长方形的周长是100cm.(1)求长方形的长和宽;(2)现小丽想用这块长方形的硬纸片,沿着边的方向裁出一块长与宽的比为5:4,面积为520cm2的新纸片作为他用.试判断小丽能否成功,并说明理由.【分析】(1)设长方形的宽AB为xcm,长BC为(10+x)cm,根据长方形的周长是100cm,即可得出关于x的一元一次方程,解之即可得出得出x的值即可解决问题;(2)设新长方形纸片的长为5a(a>0)cm,则宽为4acm,根据新纸片的面积,即可得出关于a的一元二次方程,解之即可得知a值,再由4a=20,即可得出小丽不能成功.【解答】解:(1)设AB=xcm,则BC=(10+x)cm,依题意有:2[x+(10+x)]=100,∴x=20,答:长方形的长为30cm,宽为20cm.(2)设新长方形的长为5acm,宽为4acm,则5a×4a=520,∴a即新长方形的长为,宽为,∵26>25,5即20,故小丽不能成功.答:小丽不能用这块正方形纸片裁出符合要求的长方形纸片.。
(人教版)长春七年级数学下册第六单元《实数》提高卷(答案解析)
一、选择题1.给出下列各数①0.32,②227,③π,⑤0.2060060006(每两个6之间依次多个0), ) A .②④⑤ B .①③⑥ C .④⑤⑥ D .③④⑤2.下列各数中,无理数有( )3.14125127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个3.在实数,-3.14,0,π中,无理数有( )A .1个B .2个C .3个D .4个 4.下列说法正确的是( ) A .2-是4-的平方根B .2是()22-的算术平方根C .()22-的平方根是2D .8的平方根是45.0215中,是无理数的是( )A B .0 C D .2156.下列各数中无理数共有( )①–0.21211211121111,②3π,③227, A .1个 B .2个C .3个D .4个 7.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4078.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015 B .2014 C .20152014 D .2015×20149.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .1010. )A .287.2B .28.72C .13.33D .133.311 )A .8B .8-C .22D .22± 12.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A .21n -B .22n -C .23n -D .24n - 13.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n14.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π2;C 26,π;D .0.1010101……101,π315.511的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间二、填空题16.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.17.计算:(1)2323615--- (2)122334+ 18.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.19.27-的立方根是___________81___________;| 3.14|π-的绝对值是___________.20.请你写出一个比3大且比4小的无理数,该无理数可以是:____.2181________,25的相反数是________.22.已知21a -的平方根是1731a b +-的算术平方根是6,求4a b +的平方根. 23.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______24.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是________________.25.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).26.已知实数,x y 满足()2380x y -+=,求xy -的平方根.三、解答题27.2 1.414≈,于是我们说:2的整数部分为1,小数部分则可记为21”.则:(121的整数部分是__________,小数部分可以表示为__________;(232的小数部分是a ,73-b ,那么a b +=__________; (311x 11的小数部分为y ,求1(11)x y --的平方根. 28.计算:(13168-.(2)()23540.255(4)8⨯--⨯⨯-.29.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.30.计算(1)22234x +=;(2)38130125x += (3)21|12|(2)16---;(4)(x+2)2=25.。
人教版七年级下实数提高练习
实数提高【知识框图】实数(1)概念:________和________统称为实数。
(2)分类①按定义分类______________________________ ___ 有限小数或________小数_______实数________________________________ 无限不循环小数_________②按大小分类正实数实数零负实数【课前小测】1、判断题(1)带根号的数一定是无理数()(2)无理数都是无限小数()(3)无理数包含正无理数、0、负无理数()(4)4的平方根是2 ()(5)无理数一定不能化成分数()(6)5是5的平方根()(7)一个正数一定有两个平方根()±()(8)±25的平方根是5(9)互为相反数的两数的立方根也互为相反数()(10)负数的平方根、立方根都是负数()(11)①无理数是无限小数();②无限小数是无理数();③开方开不尽的数是无理数();④两个无理数的和是无理数();2、把下列各数填入相应的集合中(只填序号):①25.0 ②π- ③16- ④39- ⑤0 ⑥1010010001.0 ⑦3 ⑧213- 有理数集合:{ }无理数集合:{ } 正实数集合:{ }负实数集合:{ }4、36的算术平方根是 ,1.44的平方根是 ,11的平方根是 , 的平方根是23±,2)3.4(-的算术平方根是 , 410是 的平方。
5、 满足32<<-x 的整数x 是 . 6、一个正数的平方等于144, 则这个正数是 ______, 一个负数的立方等于27, 则这个负数 是 , 一个数的平方等于5, 则这个数是 .7、如果13是M 的一个平方根,那么M 的另一个平方根是8、比较大小: 23 5; 323- 32)3(--.(填“>”或“<”)9、9的算术平方根是________,3的平方根是________, 0的平方根是_______,-2的平方根是_________.【知识精讲】1、a 2的算术平方根的性质①当a≥0时,2a =( ) ② 当a<0时,2a =( )一般的,当a<0时,2a =-a.我们还知道,当a≥0时,│a│=a ;当a<0时,│a│=a. 综上所述,有 a (a≥0)2a =│a│=-a (a<0)从算术平方根的定义可得:2)(a =a (a≥0)2、立方根(1) 定义:______________________________.(2) 数a 的立方根的表示方法:_________(3) 互为相反数的两个数的立方根之间的关:_________(4) 两个重要的公式为任何数)为任何数)a a a a a (()3(3333==3、实数的比较大小(估算)比较大小:(1)7 50(2)323-____7-(填“>”、“=”、或“<”=) 1) 37的整数是 ;2) 若5+11的小数部分为a, 整数部分为b,则a+2b=__________________ 3) 已知m 是13的整数部分,n 是13的小数部分,计算m-n=_______________【提高训练】一、 选择题1. 在下列各数中是无理数的有( )-0.333…, 4, 5, π-, 3π, 3.1415, 2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成).A.3个B.4个C. 5个D. 6个 2. 下列说法正确的是( )A. 有理数只是有限小数B. 无理数是无限小数C. 无限小数是无理数D.3π是分数 3. 下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C. 2是2的平方根D. –3是2)3(-的平方根4. 若规定误差小于1, 那么60的估算值为( )A. 3B. 7C. 8D. 7或85. 在实数范围内,下列说法中正确的是( )b a b a D ba b a C b a b a B ba b a A >>======则若则若则若则若,.,.,..,.223322 6.81的平方根是( ) A. 9 B. ±9 C. 3 D. ±37. 立方根等于本身的数是( )A. –1B. 0C. ±1D. ±1或08. ππ--14.3的值是( )A. 3.14-π2B. 3.14C. –3.14D. 无法确定9. a 为大于1的正数, 则有( )A. a a =B. a a >C. a a <D. 无法确定10. 下面说法错误的是( )A. 两个无理数的和还是无理数B. 有限小数和无限小数统称为实数C. 两个无理数的积还是无理数D. 数轴上的点表示实数11. 下列说法中不正确的是( )A.42的算术平方根是4B.24的算术平方根是 C.332的算术平方根是 D. 981的算术平方根是12. 121的平方根是±11的数学表达式是( )A. 11121=B.11121±=C. ±11121=D.±11121±=13. 如果,162=x 则x=( )A.16B.16C.±16D.±1614. 364的平方根是( )A.±8B.±2C.2D.±4二、填空题15. –1的立方根是 ,271的立方根是 , 9的立方根是 . 16.2的相反数是 , 倒数是 , -36的绝对值是 . 17. =-2)4( . =-33)6( , 2)196(= .18. 一个数的平方根与立方根相等,这个数是______;立方根等于本身的数是_________. 平方根等于本身的数是________;算术平方根等于本身的数是_____________.19. 大于0小于π的整数是_________;3-满足<x <8的整数x 是__________. 20. ._______a ,2)2(2的取值范围是则若a a -=-21. _____2x x 则在实数范围内有意义,.22. 使________x 11的值是在实数范围内有意义的-+-x x23.已知._______19191=-+-xxx有意义,则24..____)(,)6(._________)3(1,31)5(._________,01)a)4(.________,0)2(1)3(.________1)1()2(.________b)-a,032)1(2232222222=--=-+-<<=+=+-++++==-+-=++-==++-abbbaxxxcbacabbanmnmbababa如图所示,化简在数轴上对应点的位置已知实数则若则已知(则已知互为相反数,则与若则(已知三、解答题1.如果一个数的平方根是3+a和152-a,求这个数。
(完整版)七年级数学下册名校课堂训练:实数测试(二)培优试卷
一、选择题1.已知: []x 表示不超过x 的最大整数,例: ][3.93, 1.82⎡⎤=-=-⎣⎦,令关于k 的函数()][1k 44k k f +⎡⎤=-⎢⎥⎣⎦ (k 是正整数),例:()][313344f +⎡⎤=-⎢⎥⎣⎦=1,则下列结论错误..的是( ) A .()10f = B .()()4f k f k += C .()()1f k f k +≥D .()0f k =或12.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为( ) A .12B .24C .27D .30 3.若9﹣13的整数部分为a ,小数部分为b ,则2a +b 等于( ) A .12﹣13B .13﹣13C .14﹣13D .15﹣134.如图,A 、B 、C 、D 是数轴上的四个点,其中最适合表示10的点是( )A .点AB .点BC .点CD .点D5.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;164±,其中正确的个数有( ) A .0个B .1个C .2个D .3个6.下列命题中,①81的平方根是9;16±2;③−0.003没有立方根;④−64的立方根为±4;5 ) A .1B .2C .3D .47.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40 B .﹣32 C .18 D .10 8.设n 为正整数,且n 65n+1,则n 的值为( )A .5B .6C .7D .89.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个B .2个C .3个D .4个10.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间二、填空题11.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |. (1)若数轴上的点M ,N 分别对应的数为2﹣2和﹣2,则M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.12.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是_____.14.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 15.如图所示,数轴上点A 表示的数是-1,0是原点以AO 为边作正方形AOBC ,以A 为圆心、AB 线段长为半径画半圆交数轴于12P P 、两点,则点1P 表示的数是___________,点2P 表示的数是___________.16.若()2210a b -+=.则a b =______.17.313312+333123++33331234+++…,则3333123100++++=_______.18.将1236按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.19.定义运算“@”的运算法则为:xy 4+2@6 =____.20.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先52)⊕3=___.三、解答题21.规定:求若千个相同的有理数(均不等于0)的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等,类比有理数的乘方,我们把222÷÷记作()32,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()()43-,读作“3-的圈4次方”,一般地,把n aa a a a↑÷÷÷⋯⋯÷记作()n a ,读作“a ”的圈n 次方.(初步探究)(1)直接写出计算结果:()()32=- ;()()42=- ; (2)关于除方,下列说法错误的是( )A .任何非零数的圈2次方都等于1B .对于任何正整数(),1=1n nC .()()433=4D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数 (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (3)试一试:()()()2446113=5=35⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,依照前面的算式,将()93,()1012⎛⎫- ⎪⎝⎭的运算结果直接写成幂的形式是()93= ,()101=2⎛⎫- ⎪⎝⎭;(4)想一想:将一个非零有理数a 的圆n 次方写成幂的形式是:()n a = ;(5)算一算:()()()()4652311122333⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭.22.阅读材料:求2320192020122222++++++的值.解:设2320192020122222S =++++++①,将等式①的两边同乘以2, 得234202020212222222S =++++++②,用②-①得,2021221S S -=-即202121S =-. 即2320192020202112222221++++++=-.请仿照此法计算:(1)请直接填写231222+++的值为______; (2)求231015555+++++值;(3)请直接写出20212345201920201011010101010101011-+-+-+-+-的值. 23.观察下面的变形规律:;;;….解答下面的问题: (1)仿照上面的格式请写出= ; (2)若n 为正整数,请你猜想= ;(3)基础应用:计算:.(4)拓展应用1:解方程: =2016 (5)拓展应用2:计算:.24.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试: (1310001031000000100,那么,请你猜想:59319的立方根是_______位数(2)在自然数1到9这九个数字中,33311,327,5===________,37=________,39=________.猜想:59319的个位数字是9,则59319的立方根的个位数字是________.(3)如果划去59319后面的三位“319”得到数59,而3327=,3464=,由此可确定59319的立方根的十位数字是________,因此59319的立方根是________. (4)现在换一个数103823,你能按这种方法得出它的立方根吗? 25.阅读下面文字:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭114=-上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,计算: (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭26.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,… (1)求a 2,a 3,a 4的值;(2)根据(1)的计算结果,请猜想并写出a 2016•a 2017•a 2018的值; (3)计算:a 33+a 66+a 99+…+a 9999的值.27.若一个四位数t 的前两位数字相同且各位数字均不为0,则称这个数为“前介数”;若把这个数的个位数字放到前三位数字组成的数的前面组成一个新的四位数,则称这个新的四位数为“中介数”;记一个“前介数”t 与它的“中介数”的差为P (t ).例如,5536前两位数字相同,所以5536为“前介数”;则6553就为它的“中介数”,P (5536)=5536﹣6553=-1017.(1)P (2215)= ,P (6655)= .(2)求证:任意一个“前介数”t ,P (t )一定能被9整除.(3)若一个千位数字为2的“前介数”t 能被6整除,它的“中介数”能被2整除,请求出满足条件的P (t )的最大值.28.对于有理数a 、b ,定义了一种新运算“※”为:()()223a b a b a b a b a b ⎧-≥⎪=⎨-<⎪⎩※如:532537=⨯-=※,2131313=-⨯=-※. (1)计算:①()21-=※______;②()()43--=※______;(2)若313m x =-+※是关于x 的一元一次方程,且方程的解为2x =,求m 的值; (3)若3241A x x x =-+-+,3262B x x x =-+-+,且3A B =-※,求322x x +的值. 29.数学中有很多的可逆的推理.如果10b n =,那么利用可逆推理,已知n 可求b 的运算,记为()b f n =,如210100=, 则42(100);1010000f ==,则4(10000)f =.①根据定义,填空:(10)f =_________,()310f =__________.②若有如下运算性质:()()(),()()n f mn f m f n f f n f m m⎛⎫=+=- ⎪⎝⎭. 根据运算性质填空,填空:若(2)0.3010f =,则(4)f =__________;(5)f =___________; ③下表中与数x 对应的()f x 有且只有两个是错误的,请直接找出错误并改正.30.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ . (2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ; ( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】A. ()f 1=][11144+⎡⎤-⎢⎥⎣⎦=0-0=0,故A 选项正确,不符合题意; B. ()f k 4+=][k 41k 444+++⎡⎤-⎢⎥⎣⎦=][k 1k 1144+⎡⎤+-+⎢⎥⎣⎦=][k 1k 44+⎡⎤-⎢⎥⎣⎦,()f k =][k 1k 44+⎡⎤-⎢⎥⎣⎦, 所以()()f k 4f k +=,故B 选项正确,不符合题意;C. ()f k 1+=k 11k 1k 2k 14444+++++⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,()f k = ][k 1k 44+⎡⎤-⎢⎥⎣⎦, 当k=3时,()f 31+=323144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=0,()f 3= ][31344+⎡⎤-⎢⎥⎣⎦=1, 此时()()f k 1f k +<,故C 选项错误,符合题意; D.设n 为正整数,当k=4n 时,()f k =4n 14n 44+⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+1时,()f k =4n 24n 144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+2时,()f k =4n 34n 244++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+3时,()f k =4n 44n 344++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n+1-n=1, 所以()f k 0=或1,故D 选项正确,不符合题意, 故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.C解析:C 【分析】根据新定义的公式代入计算即可. 【详解】∵()*23m n m n =+⨯-, ∴()6*3-=()623(3)27+⨯--=, 故选C . 【点睛】本题考查了新定义下的实数计算,准确理解新定义公式是解题的关键.3.C解析:C 【分析】9a 、b 的值,最后代入计算即可. 【详解】解:∵34, ∴﹣43,∴5<96,又∵9a ,小数部分为b , ∴a =5,b =95=4∴2a +b =10+(414故选:C . 【点睛】本题考查估算无理数,掌握无理数估算的方法是解决问题的前提,理解无理数的整数部分和小数部分的表示方法是得出正确答案的关键.4.D解析:D【分析】根据<4即可得到答案.【详解】∵9<10<16,∴<4,∴的点是点D,故选:D.【点睛】此题考查利用数轴表示实数,实数的大小比较,正确比较实数是解题的关键.5.C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2 ,故④说法错误;故其中正确的个数有:2个.故选:C.【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.6.A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;⑤正错误.故选:A.【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.7.D解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D.【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.8.D解析:D【分析】n的值.【详解】解:∵∴89,∵n n+1,∴n=8,故选;D.【点睛】9.B解析:B【分析】将2,24,27,n分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可.【详解】解:∵2=1×2,∴F(2)=1,故①正确;2∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小∴F(24)= 42=,故②是错误的;63∵27=1×27=3×9,且3和9的绝对值差最小∴F(27)=31=,故③错误;93∵n是一个完全平方数,∴n能分解成两个相等的数的积,则F(n)=1,故④是正确的.正确的共有2个. 故答案为B . 【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义.10.B解析:B 【分析】借助O 、A 、B 、C 的位置以及绝对值的定义解答即可. 【详解】解:-5<c<0,b=5,|d ﹣5|=|d ﹣c | ∴BD=CD ,∴D 点介于O 、B 之间. 故答案为B . 【点睛】本题考查了实数、绝对值和数轴等相关知识,掌握实数和数轴上的点一一对应是解答本题的关键.二、填空题 11.2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可. 【详解】解:(1)由题意,M ,N 间的距离为(222==; ∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧, ∴MN 的中点表示的数为1;(2)∵1a c b c -=-=且a b ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1, ∴点C 为AB 的中点,2AB =, ∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下:1>若点A 位于点B 左边: ①若点D 在点A 左边,如图所示:此时,37222BD AD AB =+=+=; ②若点D 在点A 右边,如图所示:此时,31222BD AB AD =-=-=; 2>若点A 位于点B 右边: ①若点D 在点A 左边,如图所示:此时,31222BD AB AD =-=-=; ②若点D 在点A 右边,如图所示:此时,37222BD AD AB =+=+=; 综上,线段BD 的长度为12或72,故答案为:2;21;12或72.【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.12.-1. 【分析】根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1, ∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1. 【分析】根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】解:(x +1)5=x 5+5x 4+10x 3+10x 2+5x +1, ∵(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5, ∴a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1,把a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1代入﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5中, 可得:﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5=﹣32+80﹣80+40﹣10+1=﹣1, 故答案为:﹣1 【点睛】本题考查了代数式求值,解题的关键是根据题意求得a 0,a 1,a 2,a 3,a 4,a 5的值.13.﹣2b 【详解】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b . 故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b 【详解】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b . 故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换.14.8 【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:8 【解析】解:当a >b 时,a ☆b =2a b a b++- =a ,a 最大为8;当a <b 时,a ☆b =2a b a b++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.. . 【分析】首先利用勾股定理计算出的长,再根据题意可得,然后根据数轴上个点的位置计算出表示的数即可. 【详解】解:点表示的数是,是原点, , ,以为圆心、长为半径画弧, ,解析:1-1- 【分析】首先利用勾股定理计算出AB 的长,再根据题意可得12AP AB AP ==上个点的位置计算出表示的数即可. 【详解】解:点A 表示的数是1-,O 是原点,1,1AO BO ∴==,AB ∴=以A 为圆心、AB 长为半径画弧,12AP AB AP ∴==∴点1P 表示的数是1(1-+=-点2P 表示的数是1-故答案为:1-1- 【点睛】本题考查了数轴的性质,以及应用数形结合的方法来解决问题.16.1 【分析】根据平方数和算术平方根的非负性即可求得a 、b 的值,再带入求值即可. 【详解】 ∵, ∴,∴a-2=0, b+1=0, ∴a=2,b =-1,∴=,故答案为:1【点睛】本题主要考解析:1【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入a b求值即可.【详解】∵()2a-,20∴()2a-==,20∴a-2=0, b+1=0,∴a=2,b=-1,∴a b=2-=,(1)1故答案为:1【点睛】本题主要考查非负数的性质,解题的关键是掌握偶次乘方的非负性和算数平方根的非负性. 17.5050【分析】通过对被开方数的计算和分析,发现数字间的规律,然后利用二次根式的性质进行化简计算求解.【详解】解:第1个算式:,第2个算式:,第3个算式:,第4个算式:,...,第解析:5050【分析】通过对被开方数的计算和分析,发现数字间的规律,然后利用二次根式的性质进行化简计算求解.【详解】解:第11==,第2123===+=,第31236=++=,第4123410==+++=,...,第n12 3...n===+++,∴当n=100()1001100 123 (1005050)2+=++++==,故答案为:5050.【点睛】本题考查了有理数的运算,二次根式的化简,通过探索发现数字间的规律是解题关键.18.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,1+2+3+4+5+6+3=24,24÷4=6,则(7,3,.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.19.4【分析】把x=2,y=6代入x@y=中计算即可.【详解】解:∵x@y=,∴2@6==4,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.解析:4【分析】把x=2,y=6代入【详解】解:∵∴,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.20.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.三、解答题21.(1)12-,14;(2)C;(3)71()3,82;(4)21na-⎛⎫⎪⎝⎭;(5)-5.【分析】概念学习:(1)分别按公式进行计算即可;(2)根据定义依次判定即可;深入思考:(3)由幂的乘方和除方的定义进行变形,即可得到答案;(4)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,结果第一个数不变为a ,第二个数及后面的数变为1a,则()(1)(2)11()()n n n aa a a--=⨯=;(5)将第二问的规律代入计算,注意运算顺序. 【详解】解:(1)()()312=(2)(2)(2)2--÷-÷-=-; ()()412=(2)(2)(2)(2)=4--÷-÷-÷-; 故答案为:12-,14;(2)A 、任何非零数的圈2次方都等于1;所以选项A 正确;B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项B 正确;C 、()413=3333=9÷÷÷,()3144444=÷÷=,则()()4334≠;故选项C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,故D 正确; 故选:C ; (3)根据题意,()977113=333333333=()33÷÷÷÷÷÷÷÷=, 由上述可知:()1010281=(2)22-⎛⎫--= ⎪⎝⎭;(4)根据题意, 由(3)可知,()21n n aa -⎛⎫= ⎪⎝⎭;故答案为:21n a -⎛⎫⎪⎝⎭(5)()()()()4652311122333⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭234311443()332=÷⨯--÷116()38=⨯--5=-.【点睛】本题考查了有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.22.(1)15;(2)11514-;(3)111.【分析】(1)先计算乘方,即可求出答案;(2)根据题目中的运算法则进行计算,即可求出答案; (3)根据题目中的运算法则进行计算,即可求出答案; 【详解】解:(1)231248125122=++++=++; 故答案为:15; (2)设231015555T =+++++①,把等式①两边同时乘以5,得112310555555T =+++++②,由②-①,得:11451T =-, ∴11514T -=,∴31121015551455++=+++-;(3)设234520192020110101010101010M =-+-+-+-+①, 把等式①乘以10,得:3456222019020202110101010101010101010M =-+-+-+-++②,把①+②,得:202111110M =+, ∴202110111M +=,∴23245201920002211101010101011001111-+-+-+-++=, ∴20212345201920201011010101010101011-+-+-+-+- 20212021101101111+=-111=. 【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键. 23.(1) ;(2);(3);(4)x=2017;(5)【分析】(1)类比题目中方法解答即可;(2)根据题目中所给的算式总结出规律,解答即可;(3)利用总结的规律把每个式子拆分后合并即可解答;(4)方程左边提取x 后利用(3)的方法计算后,再解方程即可;(5)类比(3)的方法,拆项计算即可. 【详解】 (1)故答案为:;(2)=故答案为:;(3)计算:==1﹣=;(4)=2016=2016, x=2017; (5).=+()+()+…+().=(1﹣).=. 【点睛】本题是数字规律探究题,解决问题基本思路是正确找出规律,根据所得的规律解决问题. 24.(1)两;(2)125,343,729,9;(3)3,39;(4)47 【分析】(1)根据夹逼法和立方根的定义进行解答;(2)先分别求得1至9中奇数的立方,然后根据末位数字是几进行判断即可; (3)先利用(2)中的方法判断出个数数字,然后再利用夹逼法判断出十位数字即可; (4)利用(3)中的方法确定出个位数字和十位数字即可. 【详解】(1)∵1000<59319<1000000, ∴59319的立方根是两位数;(2)∵3311,327,==35=125,37=343,39=729,∴59319的个位数字是9,则59319的立方根的个位数字是9;(3)∵3327=59<<3464=,且59319的立方根是两位数, ∴59319的立方根的十位数字是3, 又∵59319的立方根的个位数字是9, ∴59319的立方根是39; (4)∵1000<103823<1000000, ∴103823的立方根是两位数;∵3311,327,==35=125,37=343,39=729,∴103823的个位数字是3,则103823的立方根的个位数字是7; ∵3464=3195552<<=,且103823的立方根是两位数, ∴103823的立方根的十位数字是4, 又∵103823的立方根的个位数字是7, ∴103823的立方根是47. 【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数. 25.(1)14-(2)124-【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答; (2)根据例子将每项的整数部分相加,分数部分相加即可解答. 【详解】(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭104⎛⎫=+- ⎪⎝⎭14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭124⎛⎫=-+- ⎪⎝⎭124=-【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算. 26.(1)a 2=2,a 3=-1,a 4=12(2)a 2016•a 2017•a 2018= -1(3)a 33+a 66+a 99+…+a 9999=-1【分析】(1)将a 1=12代入11a -中即可求出a 2,再将a 2代入求出a 3,同样求出a 4即可. (2)从(1)的计算结果可以看出,从a 1开始,每三个数一循环,而2016÷3=672,则a 2016=-1,a 2017=12,a 2018=2然后计算a 2016•a 2017•a 2018的值; (3)观察可得a 3、a 6、a 9、…a 99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a 1=12,代入11a -,得21=211-2a = ; 将a 2=2,代入11a -,得31=-11-2a =; 将a 3=-1,代入11a -,得411=1--12a =(). (2)根据(1)的计算结果,从a 1开始,每三个数一循环, 而2016÷3=672,则a 2016=-1,a 2017=12 ,a 2018=2 所以,a 2016•a 2017•a 2018=(-1)×12×2= -1 (3)观察可得a 3、a 6、a 9、…a 99,都等于-1,将-1代入,a 33+a 66+a 99+…+a 9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.27.(1)-3006,990;(2)见解析;(3)P (t )的最大值是P (2262)=36.【分析】(1)根据“前介数”t 与它的“中介数”的差为P (t )的定义求解即可;(2)设“前介数”为t aabc =且a 、b 、c 均不为0的整数,即1≤a 、b 、c 9≤,根据定义得到P (t )=()9110111aabc caab a b c -=+-,则P (t )一定能被9整除;(3)设“前介数”为22220010t ab a b ==++,根据题意得到4a b ++能被3整除,且b 只能取2,4,6,8中的其中一个数;t 对应的“中介数”是221000220b a b a =++,得到a 只能取2,4,6,8中的其中一个数,计算P (t )19809999a b =+-,推出要求P (t )的最大值,即a 要尽量的大,b 要尽量的小,再分类讨论即可求解.【详解】(1)解:2215是“前介数”,其对应的“中介数”是5221,∴P (2215)=2215-5221=-3006;6655是“前介数”,其对应的“中介数”是5665,∴P (6655)=6655-5665=990;故答案为:-3006,990;(2)证明:设“前介数”为t aabc =且a 、b 、c 均为不为0的整数,即1≤a 、b 、c 9≤, ∴100010010110010t a a b c a b c =+++=++,又t 对应的“中介数”是1000100101000110caab c a a b c a b =+++=++,∴P (t )=()1100101000110aabc caab a b c c a b -=++-++1100101000110a b c c a b =++---9909999a b c =+-()9110111a b c =+-,∵a 、b 、c 均不为0的整数,∴110111a b c +-为整数,∴P (t )一定能被9整除;(3)证明:设“前介数”为22t ab =且即1≤a 、b 9≤,a 、b 均为不为0的整数, ∴200020010220010t a b a b =+++=++,∵t 能被6整除,∴t 能被2整除,也能被3整除,∴b 为偶数,且224a b a b +++=++能被3整除,又19b ≤≤,∴b 只能取2,4,6,8中的其中一个数,又t 对应的“中介数”是221000200201000220b a b a b a =+++=++,且该“中介数”能被2整除,∴a 为偶数,又19a ≤≤,∴a 只能取2,4,6,8中的其中一个数,∴P (t )=()22222200101000220ab b a a b b a -=++-++2200101000220a b b a =++---19809999a b =+-,要求P (t )的最大值,即a 要尽量的大,b 要尽量的小,①a 的最大值为8,b 的最小值为2,但此时414a b ++=,且14不能被3整除,不符合题意,舍去;②a 的最大值为6,b 的最小值仍为2,但此时412a b ++=,能被3整除,且P (t )=2262-2226=36;③a 的最大值仍为8,b 的最小值为4,但此时416a b ++=,且16不能被3整除,不符合题意,舍去;其他情况,a 减少,b 增大,则P (t )减少,∴满足条件的P (t )的最大值是P (2262)=36.【点睛】本题考查用新定义解题,根据新定义,表示出“前介数”,与其对应的“中介数”是求解本题的关键.本题中运用到的分类讨论思想是重要一种数学解题思想方法.28.(1)①5;②2-;(2)1;(3)16.【分析】(1)根据题中定义代入即可得出;(2)根据2x =,讨论3和 m 的两种大小关系,进行计算;(3)先判定A 、B 的大小关系,再进行求解.【详解】(1)根据题意:∵21>-,∴()()212215-=⨯--=※,∵43-<-,∴()()()243434223--=--⨯-=-+=-※. (2)∵2x =,∴31325m =-+⨯=※,① 若3m >,则235m ⨯-=,解得1m =,②若3m <, 则2353m -⨯=,解得3m =-(不符合题意), ∴1m =.(3)∵()()323224162210A B x x x x x x x -=-+-+--+-+=--<,∴A B <, ∴()3232224162333A B A B x x x x x x =-=-+-+--+-+=-※, 得380x x +-=,∴3222816x x +=⨯=.【点睛】本题考查了一种新运算,读懂题意掌握新运算并能正确化简是解题的关键.29.①1,3;②0.6020;0.6990;③f (1.5),f (12);f (1.5)=3a -b +c -1,f (12)=2-b -2c .【分析】①根据定义可得:f (10b )=b ,即可求得结论;②根据运算性质:f (mn )=f (m )+f (n ),f (n m)=f (n )-f (m )进行计算; ③通过9=32,27=33,可以判断f (3)是否正确,同样依据5=102,假设f (5)正确,可以求得f (2)的值,即可通过f (8),f (12)作出判断.【详解】解:①根据定义知:f (10b )=b ,∴f (10)=1,f (103)=3.故答案为:1,3.②根据运算性质,得:f (4)=f (2×2)=f (2)+f (2)=2f (2)=0.3010×2=0.6020, f (5)=f (102)=f (10)-f (2)=1-0.3010=0.6990. 故答案为:0.6020;0.6990.③若f (3)≠2a -b ,则f (9)=2f (3)≠4a -2b ,f (27)=3f (3)≠6a -3b ,从而表中有三个对应的f (x )是错误的,与题设矛盾,∴f (3)=2a -b ;若f (5)≠a +c ,则f (2)=1-f (5)≠1-a -c ,∴f (8)=3f (2)≠3-3a -3c ,f (6)=f (3)+f (2)≠1+a -b -c ,表中也有三个对应的f (x )是错误的,与题设矛盾,∴f (5)=a +c ,∴表中只有f (1.5)和f (12)的对应值是错误的,应改正为:f (1.5)=f (32)=f (3)-f (2)=(2a -b )-(1-a -c )=3a -b +c -1, f (12)=f (663⨯)=2f (6)-f (3)=2(1+a -b -c )-(2a -b )=2-b -2c . ∵9=32,27=33,∴f (9)=2f (3)=2(2a -b )=4a -2b ,f (27)=3f (3)=3(2a -b )=6a -3b .【点睛】本题考查了幂的应用,新定义运算等,解题的关键是深刻理解所给出的定义或规则,将它们转化为我们所熟悉的运算.30.(1)111n n -+;1n n +;(2)①1341-;②112424+;( 3 )14. 【分析】(1)利用材料中的“拆项法”解答即可;(2)①先变形为111234=⨯,再利用(1)中的规律解题;②先变形为121224=,再逆用分数的加法法则即可分解;(3)按照定义“⊗”法则表示出193⊗,再利用(1)中的规律解题即可. 【详解】解:(1)观察发现:()11n n =+111n n -+, 1111122334(1)n n ++++⨯⨯⨯+=11111111223341n n -+-+-+⋯+-+ =111n -+ =1n n +; 故答案是:111n n -+;1n n +. (2)初步应用: ①111234=⨯=1134-; ②121112242424==+; 故答案是:1134-;112424+. ( 3 )由定义可知:193⊗=11111111112203042567290110132++++++++ =455111111611311412-+-+-+⋯+- =13211- =14. 故193⊗的值为14. 【点睛】考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。
湘潭市七年级数学下册第六单元《实数》提高卷(培优提高)(1)
一、选择题1.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上 2.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;④16的平方根是4±,其中正确的个数有( )A .0个B .1个C .2个D .3个3.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④ B .①②④ C .②④ D .②4.下列各数中,无理数有( ) 3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个 5.-18的平方的立方根是( ) A .4 B .14 C .18 D .1646.实数a ,b 在数轴上的位置如图所示,那么化简33a b a b ++-+的结果为( )A .2a -B .22b a -C .0D .2b7.下列实数中,是无理数的为( )A .3.14B .13C 5D 98.下列各数中无理数共有( )①–0.21211211121111,②3π,③227,839 A .1个 B .2个C .3个D .4个 9.在0.010010001,3.14,π10,1.51,27中无理数的个数是( ).A .5个B .4个C .3D .2个 10.下列说法正确的是( )A .2B .(﹣4)2的算术平方根是4C .近似数35万精确到个位D 511.在 1.4144-,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .412.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10 13.81的平方根是( )A .9B .-9C .9和9-D .81 14.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .15.0.31,3π,27-12-,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1 B .2C .3D .4 二、填空题16.3=,31a b -+的平方根是4±,c 3a b c ++的平方根.17.已知一个正数m 的平方根为2n +1和4﹣3n .(1)求m 的值;(2)|a ﹣3|(c ﹣n )2=0,a +b +c 的立方根是多少?18.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=919.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.20.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.21.﹣8_____.22.(1)求x 的值:2490x -=;(223.124.(12; (2)求 (x -1)2-36=0中x 的值. 25.计算:(1()23-.(2)()21183⎤⎛⎫-⨯-⎥ ⎪⎝⎭⎥⎦. 26.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).三、解答题27.计算:(1)7|2|--(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭28.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.29.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …},无理数集合{ …}.30.计算:(1)2019(1)|2|-(2)[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
培优训练二:实数(提高篇)(一)【内容解析】(1)概念:平方根、算术平方根、立方根、无理数、实数;要准确、深刻理解概念。
如平方根的概念:①文字概念:若一个数x 的平方是a ,那么x 是a 的平方根;②符号概念:若a x =2,那么a x ±=;③逆向理解:若x 是a 的平方根,那么a x =2。
(2)性质:①在平方根、算术平方根中,被开方数a ≥0⇔式子有意义;②在算术平方根中,其结果a 是非负数,即a ≥0; ③计算中的性质1:a a =2)((a ≥0);④计算中的性质2:⎩⎨⎧≤-≥==)0()0(2a a a a a a ;⑤在立方根中,33a a -=-(符号法则)⑥计算中的性质3:a a =33)(;a a =33(3)实数的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负无理数零正有理数有理数实数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数零正无理数正有理数正实数实数(二)【典例分析】1、利用概念解题:例1. 已知:18-+=b a M 是a +8的算术数平方根,423+--=b a b N 是b -3立方根,求N M +的平方根。
练习:1. 已知234323-=-=+y x y x ,,求x y +的算术平方根与立方根。
2.若2a +1的平方根为±3,a -b +5的平方根为±2,求a+3b 的算术平方根。
例2、已知x 、y 互为倒数,c 、d 互为相反数,a 的绝对值为3,z 的算术平方根是5,求22c d xy a-++的值。
2、利用性质解题:例1 已知一个数的平方根是2a -1和a -11,求这个数.变式:①已知2a -1和a -11是一个数的平方根,则这个数是 ;②若2m -4与3m -1是同一个数两个平方根,则m 为 。
例2.若y =x -3+3-x +1,求(x +y )x的值例3.x 取何值时,下列各式在实数范围内有意义。
⑴ ⑵⑶ ⑷例4.已知321x -与323-y 互为相反数,求yx21+的值.练习: 1.若一个正数a 的两个平方根分别为x +1和x +3,求a2005的值。
2. 若(x -3)2+1-y =0,求x +y 的平方根;3. 已知,22421+-+-=x x y 求yx 的值.4. 当x 满足下列条件时,求x 的范围。
① 2)2(x -=x -2 ② x -3=3-x ③x =x5. 若3387=-a ,则a 的值是6. ①y =x 的取值范围是________;②y =x 的取值范围是________;③y =x 的取值范围是________;④y =x 的取值范围是________;7. 若x =5________3=-,则x -1=________.3、利用取值范围解题:例1. 已知有理数a 满足a a a =-+-20052004,求a -20042的值。
例2. 已知实数x ,y 满足()21310x x y -++-=,的值是 .例3.已知x yy +=则= 。
例4.a 、x 、y 是两两不相等的实数,则22223x xy y x xy y +--+的值是 。
4、利用估算比较大小、计算: 比较大小的常用方法还有: ①差值比较法:如:比较1-2与1-3的大小。
解 ∵(1-2)-(1-3)=3-2>0 , ∴1-2>1-3。
②商值比较法(适用于两个正数) 如:比较51-3与51的大小。
解:∵51-3÷51=3-1<1 ∴51-3<51③倒数法:倒数法的基本思路是:对任意两个正实数a ,b ,先分别求出a 与b 的倒数,再根据当a1>b 1时,a <b 。
来比较a 与b 的大小。
(以后介绍)④取特值验证法:比较两个实数的大小,有时取特殊值会更简单。
如:当0<x <1时,2x ,x ,x 1的大小顺序是____________。
解:(特殊值法)取x =21,则:2x =41,x 1=2。
∵41<21<2,∴2x <x <x1。
⑤估算法的基本是思路是设a ,b 为任意两个正实数,先估算出a ,b 两数或两数中某部分的取值范围,再进行比较。
例1.比较83-13与71的大小例2.若53+的小数部分是a , 5-3的小数部分是b ,求a+b 的值。
例3.设A B ==则A 、B 中数值较小的是 。
练习:1.估计10+1的值是( )(A )在2和3之间 (B )在3和4之间 (C )在4和5之间(D )在5和6之间2.比较大小:① 21-5 1;②3(填“>”、“<”)5、利用数形结合解题:例1 实数a 、b 在数轴上的位置如图所示,那么化简|a +b |+2)(a b -的结果是( )A 、2bB 、2aC 、-2aD 、-2b例2 如图,数轴上表示1、2的对应点为A 、B ,点B 关于点A 的对称点为C ,则点C 所表示的数是( )A 、2-1B 、1-2C 、 2-2D 、2-2例3 若实数a ,b ,c 在数轴上的位置如图,化简:a b c a b c a ---+--.练习:1.如果有理数a 、b 、c a b b c+++可以化简为( ) A .2c -aB .2a -2bC .-aD .a2.如图,数轴上的A 、B 、C 三点所表示的数分别是a 、b 、c ,其中AB =BC ,如果a b c>>,那么该数轴的原点O 的位置应该在( ) A .点A 的左边 B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间或点C 的右边C A6、实数的计算 例1.计算:①6(61-6) ②1-2-2-32-3+练习:(1;(2)3π-例2、解方程(x+1)2=36.1 2练习:(1)9)1(2=-x (2)251513=+)(x(3)8x 3-27=0;(4)(x -1)2-121=0.(三)【常见错误诊断】1、混淆平方根和算术平方根:①由-3是9的平方根得:9=-3。
②由81的平方根是±9得81=±9 ③5-是5的平方根的相反数 2、混淆文字表示和符号表示:①16的算术平方根是4; ②64的立方根是4 3、概念理解不透彻:(1)平方根、算术平方根的概念不清:①6是6的平方根;②6的平方根是6;③6与6-互为相反数;④a________;________; ③25的算数平方根是________; ④5的算数平方根是________; ⑤9的平方根是________;⑥(-1)2的算数平方根是________;的算数平方根是________;⑧-8的立方根是________.(2)无理数的概念不清:①开方开不尽的数是无理数; ②无理数就是开方开不尽的数;③无理数是无限小数;④无限小数是无理数;⑤无理数包括正无理数、零、负无理数;⑦两个无理数的和还是无理数;⑧两个无理数的积还是无理数;填空:在-1.414,2,π, 3.41,2+3,3.212212221…,722,23,0.303003.这些数中,无理数的个数有 个;4、计算错误: ①2)13(-=13-;②1251144251=③2095141251161=+=+④若x 2=16,则x=16=4. 5、确定取值范围错误(漏解或考虑不全面) ①若代数式21--x x 有意义,则x 的取值范围是21≠>x x 且 ②若代数式21--x x 有意义,则x 的取值范围是2≥x6、公式用错:①66-2-=)(;②2-14.3)(∏=3.14-π;②若c 满足)3(32+-=+c c )(,则c =-3(四)【巩固练习】1.的平方根( )364.8.±A B. 8 C. 2± D.22.如果25.0=y ,那么y 的值是( )A. 0.0625B. —0.5C. 0.5 D .±0.5 3.下列说法中正确的是( )A.81的平方根是±3B.1的立方根是±1C.1=±1D.5-是5的平方根的相反数 4a =-,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧 5.若a =3.136,则100a=( ) A 、0.03136 B 、0.3136 C 、±0.03136 D、±0.31366.数a 、b 在数轴上的位置如图,那么化简2a a b --的结果是( )A .b a -2B .bC .b -D .b a +-2 7.下列说法正确的是( )A. 0.25是0.5 的一个平方根 B .正数有两个平方根,且这两个平方根之和等于0C . 7 2的平方根是7 D. 负数有一个平方根8.若a a =-2)3(-3,则a 的取值范围是( ).A. a >3B. a ≥3C. a <3D. a ≤39.若a 、b 为实数,且满足│a-2│+2b -=0,则b -a 的值为( )A .2B .0C .-2D .以上都不对 10. 在227,3.14159260.1 这6个数中,无理数有( ) A .1个 B .2个 C .3个 D .4个11.若一个数的立方根等于它的算术平方根,则这个数是 。
12.若2b +5的立方根,则334b a += .13.观察下列各式:=,……,根据你发现的规律,若式子a 、b= . 14.由下列等式:33722722=,3326332633=,3363446344=……所揭示的规律,可得出一般的结论是 (用字母n 表示,n 是正整数且n >1)。
15②215- 0.5; 16.一个正方形的面积变为原来的m 倍,则边长变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍。
17.计算:①41|2-13+--18.已知一个2a -1的立方根是3,3a +b +5的平方根是±7,c 是13的整数部分,求22c b a -+的平方根。
19.已知a 、b 满足0382=-++b a ,解关于x 的方程()122-=++a b x a20.若5=a ,72=b ,a b b a -=-,求a+b 的值21. 设x 、y ,求(x -1)2+(6-y +8)2的平方根。
22.已知点A 、B 在数轴上对应的数分别是a 、b ,且a 、b 满足52221+---=a a b ,点C 是数轴上不同于A 、B 的一动点,其对应的数为c 。
(1)若C 运动到使AB=BC 时,求点C 所对应的数;(2)若c 满足)3(32+-=+c c )(,试化简:33222)()(c c b c a c ++--+(3)当C 运动某一位置时,实数c 满足c c c =-+5-3,试求线段BC 的长.。