高一数学必修1总复习课件
合集下载
高中数学必修一必修1全章节ppt课件幻灯片
22
(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;
(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;
高一数学必修一全套课件 PPT课件 人教课标版15
1.3.2 奇偶性 第一课时 函数的奇偶性
问题提出
1.研究函数的基本性质不仅是解决实际问题的 需要,也是数学自身发展的必然结果. 例如事物 的变化趋势,利润最大、效率最高等,这些特性 反映在函数上,就是要研究函数的单调性及最值.
2.我们从函数图象的升降变化引发了函数的单
调性,从函数图象的最高点最低点引发了函数的
最值,如果从函数图象的对称性出发又能得到什
么性质?
函数的奇偶性
知识探究(一)
考察下列两个函数:
(1) f (x) x2 ;
yo
x
(2) f (x) | x |.
y
o
x
图(1)
图(2)
思考1:这两个函数的图象分别是什么?二者
有何共同特征?
思考2:对于上述两个函数,f(1)与f(-1), f(2)与f(-2),f(3)与f(-3)有什么关系?
•
52、思想如钻子,必须集中在一点钻下去才有力量。
•
53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。
•
54、最伟大的思想和行动往往需要最微不足道的开始。
•
55、不积小流无以成江海,不积跬步无以至千里。
•
56、远大抱负始于高中,辉煌人生起于今日。
•
57、理想的路总是为有信心的人预备着。
•
58、抱最大的希望,为最大的努力,做最坏的打算。
•
59、世上除了生死,都是小事。从今天开始,每天微笑吧。
•
60、一勤天下无难事,一懒天下皆难事。
•
61、在清醒中孤独,总好过于在喧嚣人群中寂寞。
问题提出
1.研究函数的基本性质不仅是解决实际问题的 需要,也是数学自身发展的必然结果. 例如事物 的变化趋势,利润最大、效率最高等,这些特性 反映在函数上,就是要研究函数的单调性及最值.
2.我们从函数图象的升降变化引发了函数的单
调性,从函数图象的最高点最低点引发了函数的
最值,如果从函数图象的对称性出发又能得到什
么性质?
函数的奇偶性
知识探究(一)
考察下列两个函数:
(1) f (x) x2 ;
yo
x
(2) f (x) | x |.
y
o
x
图(1)
图(2)
思考1:这两个函数的图象分别是什么?二者
有何共同特征?
思考2:对于上述两个函数,f(1)与f(-1), f(2)与f(-2),f(3)与f(-3)有什么关系?
•
52、思想如钻子,必须集中在一点钻下去才有力量。
•
53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。
•
54、最伟大的思想和行动往往需要最微不足道的开始。
•
55、不积小流无以成江海,不积跬步无以至千里。
•
56、远大抱负始于高中,辉煌人生起于今日。
•
57、理想的路总是为有信心的人预备着。
•
58、抱最大的希望,为最大的努力,做最坏的打算。
•
59、世上除了生死,都是小事。从今天开始,每天微笑吧。
•
60、一勤天下无难事,一懒天下皆难事。
•
61、在清醒中孤独,总好过于在喧嚣人群中寂寞。
湘教版高一数学必修第一册全册完整课件
湘教版高一数学必修第一册全册 完整课件目录
0002页 0058页 0060页 0091页 0093页 0151页 0204页 0235页 0259页 0289页 0350页 0352页 0354页 0356页 0358页 0382页 0406页
第1章 集合与函数 1.1.2 集合的包含关系 1.2 函数的概念和性质 阅读与思考 数学实验 1.2.4 从解析式看函数的性质 1.2.6 分段函数 1.2.8 二次函数的图像和性质——对称性 小结与复习 问题探索 2.1 指数函数 阅读与思考 2.2.3 对数函数的图像和性质 2.4 函数与方程 2.4.2 计算函数零点的二分法 2.5 函数模型及其应用 2.5.2 形形色色的函数模型
第1章 集合与函数
湘教版高一数学必修第一册全册完 整课件
1.1.1 集合的含义和表示
湘教版高一数学必修第一册全册完 整课件
1.1.2 集合的包含关系
湘教版高一数学必修第一册册完 整课件
北师大版高一数学必修1经典PPT课件
4.1二次函数的图像
北师大版高一数学必修1经典PPT课 件
4.2二次函数的性质
北师大版高一数学必修1经典PPT课 件
习题2—4
2.3映射
北师大版高一数学必修1经典PPT课 件
习题2—2
北师大版高一数学必修1经典PPT课 件
阅读材料 生活中的映射
§2 对函数的进一步认识
北师大念
北师大版高一数学必修1经典PPT课 件
2.2函数的表示法
北师大版高一数学必修1经典PPT课 件
北师大版高一数学必修1经典PPT课 件
3.1交集与全集
北师大版高一数学必修1经典PPT课 件
3.2全集与补集
北师大版高一数学必修1经典PPT课 件
习题1—3
北师大版高一数学必修1经典PPT课 件
北师大版高一数学必修1经典PPT课 件
§3 函数的单调性
北师大版高一数学必修1经典PPT课 件
习题2—3
北师大版高一数学必修1经典PPT课 件
§4 二次函数的再研究
北师大版高一数学必修1经典PPT课 件
北师大版高一数学必修1经典PPT课 件
§5 简单的幂函数
北师大版高一数学必修1经典PPT课 件
习题2—5
北师大版高一数学必修1经典PPT课 件
阅读材料 函数概念的发展—— 从解析式到对应关系
北师大版高一数学必修1经典PPT课 件
阅读材料
北师大版高一数学必修1经典PPT课 件
本章小结
北师大版高一数学必修1经典PPT课 件
复习题一
北师大版高一数学必修1经典PPT课 件
北师大版高一数学必修1经典PPT课 件
习题1—2
北师大版高一数学必修1经典PPT课 件
高一数学必修一全套课件 PPT课件 人教课标版1
思考2:对于一个给定的集合A,那么某元素a与集合A 有哪几种可能关系?
思考3:如果元素a是集合A中的元素,我们如何用数 学化的语言表达? a属于集合A,记作 a A
思考4:如果元素a不是集合A中的元素,我们如何用 数学化的语言表达?
a不属于集合A,记作 a A
知识探究(四)
思考1:所有的自然数,正整数,整数,有理数,实 数能否分别构成集合?
题型1: 集合的概念 题型2: 元素与集合的关系 题型3: 集合中元素的特征
作业:
1、 P11 习题1.1 A组:1
2、 已 知 集 合 P 的 元 素 为 1, m ,m 23m3,
若 3P且 -1P,求 实 数 m 的 值 。
3、 预习集合的表示方法。
•
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。
把研究的对象称为元素,通常用小写拉丁字母a,b, c,…表示;把一些元素组成的总体叫做集合,简称集, 通常用大写拉丁字母A,B,C,…表示.
思考3:组成集合的元素所属对象是否有限制?集合中 的元素个数的多少是否有限制?
知识探究(二)
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
思考1:某单位所有的“帅哥”能否构成一个集合?由 此说明什么?
集合中的元素必须是确定的
思考2:在一个给定的集合中能否有相同的元素?由此 说明什么?
集合中的元素是不重复出现的
思考3:咱班的全体同学组成一个集合,调整座位后这 个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
知识探究(三)
思考1:设集合A表示“1~20以内的所有质数”,那 么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A 中?
思考3:如果元素a是集合A中的元素,我们如何用数 学化的语言表达? a属于集合A,记作 a A
思考4:如果元素a不是集合A中的元素,我们如何用 数学化的语言表达?
a不属于集合A,记作 a A
知识探究(四)
思考1:所有的自然数,正整数,整数,有理数,实 数能否分别构成集合?
题型1: 集合的概念 题型2: 元素与集合的关系 题型3: 集合中元素的特征
作业:
1、 P11 习题1.1 A组:1
2、 已 知 集 合 P 的 元 素 为 1, m ,m 23m3,
若 3P且 -1P,求 实 数 m 的 值 。
3、 预习集合的表示方法。
•
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。
把研究的对象称为元素,通常用小写拉丁字母a,b, c,…表示;把一些元素组成的总体叫做集合,简称集, 通常用大写拉丁字母A,B,C,…表示.
思考3:组成集合的元素所属对象是否有限制?集合中 的元素个数的多少是否有限制?
知识探究(二)
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
思考1:某单位所有的“帅哥”能否构成一个集合?由 此说明什么?
集合中的元素必须是确定的
思考2:在一个给定的集合中能否有相同的元素?由此 说明什么?
集合中的元素是不重复出现的
思考3:咱班的全体同学组成一个集合,调整座位后这 个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
知识探究(三)
思考1:设集合A表示“1~20以内的所有质数”,那 么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A 中?
高一数学必修1课件ppt
详细描述
数列的通项公式是表示数列中每一项的数学表达式。如果 一个数列的第$n$项为$a_n$,则该数列的通项公式可以 表示为$a_n = f(n)$。
等差数列的定义及通项公式
总结词
等差数列的概念
总结词
等差数列的通项公式
详细描述
等差数列是一种常见的数列,它的特点是任意两 个相邻的项之间的差是一个常数。如果一个数列 从第二项起,后一项与前一项的差都等于同一个 常数,则称该数列为等差数列。
表示一个数重复相乘的次数的数学表 达方式。例如,2的3次方表示2乘以 自身两次,结果为8。
对数
表示一个数在以10为底或以e为底的情 况下,需要被除多少次才能得到另一 个数的数学表达方式。例如,以10为 底,32的对数是5,因为10的5次方等 于320。
指数函数
定义
y=a^x (a>0且a≠1)
性质
诱导公式的应用
在求解三角函数的值、化简三角函数 式等方面具有广泛应用。
04
CATALOGUE
不等式
不等式的性质
01
02
03
04
传递性
如果a>b且b>c,那么a>c。
加法性质
如果a>b,那么a+c>b+c。
乘法性质
如果a>b且c>0,那么ac>bc ;如果a>b且c<0,那么 ac<bc。
除法性质
03 总结词
等比数列的通项公式
04 详细描述
等比数列的通项公式是$a_n = a_1 times r^{(n-1)}$,其中 $a_1$是首项,$r$是公比,$n$ 是项数。
数列的求和
总结词
数列的通项公式是表示数列中每一项的数学表达式。如果 一个数列的第$n$项为$a_n$,则该数列的通项公式可以 表示为$a_n = f(n)$。
等差数列的定义及通项公式
总结词
等差数列的概念
总结词
等差数列的通项公式
详细描述
等差数列是一种常见的数列,它的特点是任意两 个相邻的项之间的差是一个常数。如果一个数列 从第二项起,后一项与前一项的差都等于同一个 常数,则称该数列为等差数列。
表示一个数重复相乘的次数的数学表 达方式。例如,2的3次方表示2乘以 自身两次,结果为8。
对数
表示一个数在以10为底或以e为底的情 况下,需要被除多少次才能得到另一 个数的数学表达方式。例如,以10为 底,32的对数是5,因为10的5次方等 于320。
指数函数
定义
y=a^x (a>0且a≠1)
性质
诱导公式的应用
在求解三角函数的值、化简三角函数 式等方面具有广泛应用。
04
CATALOGUE
不等式
不等式的性质
01
02
03
04
传递性
如果a>b且b>c,那么a>c。
加法性质
如果a>b,那么a+c>b+c。
乘法性质
如果a>b且c>0,那么ac>bc ;如果a>b且c<0,那么 ac<bc。
除法性质
03 总结词
等比数列的通项公式
04 详细描述
等比数列的通项公式是$a_n = a_1 times r^{(n-1)}$,其中 $a_1$是首项,$r$是公比,$n$ 是项数。
数列的求和
总结词
人教高中数学必修一A版《集合间的基本关系》集合与常用逻辑用语说课教学复习课件
C.v≤120 km/h
D.d≥10 m
A [v 的最大值为 120 km/h,即 v≤120 km/h,车间距 d 不得小
于 10 m,即 d≥10 m,故选 A.]
栏目导航
3.雷电的温度大约是 28 000 ℃,比太阳表面温度的 4.5 倍还要 课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
一、知识讲解
2.真子集与空集的含义
例如 在(1)中,A⊆B,但 4∈B ,且
如果集合 A⊆B,但存在元素 4∈A,所以集合 A 是集合 B 的真子
x∈B,且 x∈A,就称集合 A 是集合 集.
B 的真子集(proper subset),记作
A⫋B(或 B≠⊃ A).
例如 方程 x2+1=0 没有实数根,所以 方程 x2+1=0 的实数根组成的集合中没
课件 课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
1.用一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长 18 m,要求菜园的面积不小于216 m2,靠墙的一边长为x m.试用不 等式(组)表示其中的不等关系.
栏目导航
[解] 由于矩形菜园靠墙的一边长为x m,而墙长为18 m,所以
0<x≤18,课件 课件 课件
栏目导航
[解] 设该单位职工有 n 人(n∈N*),全票价为 x 元,坐甲车需花
y1 元,坐乙车需花 课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
高一数学必修一全套课件 PPT课件 人教课标版27
•
74、先知三日,富贵十年。付诸行动,你就会得到力量。
•
75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。
•
76、好习惯成就一生,坏习惯毁人前程。
•
77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。
•
78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。
•
79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。
•
42、自信人生二百年,会当水击三千里。
•
43、要纠正别人之前,先反省自己有没有犯错。
•
44、仁慈是一种聋子能听到、哑巴能了解的语言。
•
45、不可能!只存在于蠢人的字典里。
•
46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。
•
47、小事成就大事,细节成就完美。
•
48、凡真心尝试助人者,没有不帮到自己的。
•
54、最伟大的思想和行动往往需要最微不足道的开始。
•
55、不积小流无以成江海,不积跬步无以至千里。
•
56、远大抱负始于高中,辉煌人生起于今日。
•
57、理想的路总是为有信心的人预备着。
•
58、抱最大的希望,为最大的努力,做最坏的打算。
•
59、世上除了生死,都是小事。从今天开始,每天微笑吧。
•
60、一勤天下无难事,一懒天下皆难事。
•
80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
7.6级地震的最大振幅是5级地震的最大振幅 的多少倍(精确到1).
例3 生物机体内碳14的“半衰期”为 5730年,湖南长沙马王堆汉墓女尸出 土时碳14的残余量约占原始含量的 76.7%,试推算马王堆古墓的年代.
高一数学必修一 第一章综合 教学课件PPT
(3)无序性是指任意改变集合中元素的排列次序,它们仍
然表示同一个集合.
工具
必修1 第一章 集合与函数概念
栏目导引
2.解读集合表示的三种方法 集合常用的表示方法有三种,即列举法、描述法和 图示法,其中图示法包括 Venn 图法和数轴法两种. (1)列举法是把集合的元素Байду номын сангаас一列举出来,并用花括 号“{ }”括起来表示集合的方法. 使用列举法要注意:元素间用分隔号“,”且元素 不能重复. (2)描述法是用集合所含元素的共同特征表示集合 的方法. 使用描述法要注意:写清楚该集合中元素的代号(字 母或用字母表示的元素符号),准确说明该集合中元 素的特征.
工具
必修1 第一章 集合与函数概念
栏目导引
6.求函数定义域的注意点 (1)不对解析式化简变形,以免定义域变化. (2)求定义域的相关准则:①分式中分母不为零; ②偶次根式中被开方式非负;③x0 中 x≠0;④解 析式由几个式子构成时,定义域是使各式子有意 义的自变量的取值集合的交集.
(3)由实际问题建立的函数解析式,定义域要符合 实际.
课题导入
回顾所学知识
工具
必修1 第一章 集合与函数概念
栏目导引
第一章 综合复习课
工具
必修1 第一章 集合与函数概念
栏目导引
独立自学
1.第一章中我们主要学习了哪两块知识? 2.集合的性质有哪些?我们研究了函数
的哪些性质?
工具
必修1 第一章 集合与函数概念
栏目导引
引导探究一 知识点梳理
1.集合中元素特征的认识 确定性、互异性、无序性是集合中元素的三个特征. (1)确定性是指一个对象 a 和一个集合 A,a∈A 和 a∉A 必 居其一.它是确定一组对象能否构成集合的依据. (2)互异性是指同一个集合中的元素是互不相同的.相同 的对象归入同一集合时只能算作集合的一个元素.在解答 含参集合问题时,互异性是一个不可或缺的检验工具.
然表示同一个集合.
工具
必修1 第一章 集合与函数概念
栏目导引
2.解读集合表示的三种方法 集合常用的表示方法有三种,即列举法、描述法和 图示法,其中图示法包括 Venn 图法和数轴法两种. (1)列举法是把集合的元素Байду номын сангаас一列举出来,并用花括 号“{ }”括起来表示集合的方法. 使用列举法要注意:元素间用分隔号“,”且元素 不能重复. (2)描述法是用集合所含元素的共同特征表示集合 的方法. 使用描述法要注意:写清楚该集合中元素的代号(字 母或用字母表示的元素符号),准确说明该集合中元 素的特征.
工具
必修1 第一章 集合与函数概念
栏目导引
6.求函数定义域的注意点 (1)不对解析式化简变形,以免定义域变化. (2)求定义域的相关准则:①分式中分母不为零; ②偶次根式中被开方式非负;③x0 中 x≠0;④解 析式由几个式子构成时,定义域是使各式子有意 义的自变量的取值集合的交集.
(3)由实际问题建立的函数解析式,定义域要符合 实际.
课题导入
回顾所学知识
工具
必修1 第一章 集合与函数概念
栏目导引
第一章 综合复习课
工具
必修1 第一章 集合与函数概念
栏目导引
独立自学
1.第一章中我们主要学习了哪两块知识? 2.集合的性质有哪些?我们研究了函数
的哪些性质?
工具
必修1 第一章 集合与函数概念
栏目导引
引导探究一 知识点梳理
1.集合中元素特征的认识 确定性、互异性、无序性是集合中元素的三个特征. (1)确定性是指一个对象 a 和一个集合 A,a∈A 和 a∉A 必 居其一.它是确定一组对象能否构成集合的依据. (2)互异性是指同一个集合中的元素是互不相同的.相同 的对象归入同一集合时只能算作集合的一个元素.在解答 含参集合问题时,互异性是一个不可或缺的检验工具.
人教版(新教材)高中数学第一册(必修1)精品课件:第一章集合与常用逻辑用语章末复习课
【例1】 (1)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中元
素的个数是( )
A.4
B.5
C.6
D.7
(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )
A.1
B.3
ቤተ መጻሕፍቲ ባይዱ
C.5
D.9
解析 (1)∵a∈A,b∈A,x=a+b,所以x=2,3,4,5,6,8,∴B中有6个元素, 故选C. (2)当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y =-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x -y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时, x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个. 答案 (1)C (2)C
【训练4】 (1)若p:x2+x-6=0是q:ax+1=0的必要不充分条件,则实数a的值为 ________. (2) 若 - a<x< - 1 成 立 的 一 个 充 分 不 必 要 条 件 是 - 2<x< - 1 , 则 a 的 取 值 范 围 是 ________.
解析 (1)p:x2+x-6=0,即x=2或x=-3. q:ax+1=0,当 a=0 时,方程无解;当 a≠0 时,x=-1a. 由题意知p q,q p,故a=0舍去;
当 a≠0 时,应有-1a=2 或-1a=-3,解得 a=-12或 a=13. 综上可知,a=-12或 a=13. (2)根据充分条件、必要条件与集合间的包含关系,应有{x|-2<x<-1} {x|-a<x< -1},故有a>2. 答案 (1)-12或13 (2)a>2
高中数学必修1复习 PPT课件 图文
x4 x0
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba
[高一数学]必修一数学复习课件
x 2
1 x
x0 x0
求f [g(x)]与g[ f (x)]
(3)1
(4)
f
(
g
(
x))
( x (2
1)2 x)2
1, 1,
x 0, x 0.
g
(
f
(
x))
x2 2,
3
x2
,
1 x 1, x 1或x 1.
4.映射的概念
函数。记作y f(x),x A 其中,x叫做自变量,x的取值范围A叫做函数的 定义域;与x的值相对应的y值叫做函数值,函
数值的集合f (x) x A叫做函数的值域。
(一)函数的定义域 定义域练习 1、具体函数的定义域
例7 求下列函数的定义域
1) f (x) 3 4 x (x 4)0 x 1 log 2 (x 1)
考查集合的运算
例5 设U 1, 2,3, 4,5,若A I B 2, (CU A) I B 4, (CU A) I (CU B) 1,5,求A.
U
1
3
3 24
5A B
例6 已知集合A {x | 1 x 2}, B {x | x k 0}, (1)若A I B ,求k的取值范围 (2)若A I B A,求k的取值范围
例14 f x是定义在1,1上的减函数, 若f 2 a f 3 a 0,求a的取值范围
例15 已知f x是定义在区间1,1上的
奇函数,在区间0,1 上是减函数,且
f 1 a f 1 2a 0,
求实数a的取值范围.
数学必修1复 习
3、元素的特性:确定性、互异性、无序性
人教A版高一数学必修一第一章综合复习 PPT课件 图文
必修1 第一章 集合与函数的概念
栏目导引
2.函数及其表示
(1)本节是函数部分的起始部分,以考查函数的概念 、三要素及表示法为主,同时考查实际问题中的建 模能力.
(2)以多种题型出现在高考试题中,要求相对较低, 但很重要.特别是函数的表达式,对以后函数应用 起非常重要的作用.
必修1 第一章 集合与函数的概念
必修1 第一章 集合与函数的概念
栏目导引
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的 子集.
②在具体情境中,了解全集与空集的含义.
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集 合的并集与交集.
②理解在给定集合中一个子集的补集的含义,会求给定 子集的补集.
B.{x|x≥0}
C.{x|x≥1 或 x≤0} D.{x|0≤x≤1}
解析:
1-x≥0, x≥0
⇔0≤x≤1.故选 D.
答案: D
必修1 第一章 集合与函数的概念
栏目导引
3.若定义在R上的函数f(x)满足:对任意x1,x2∈R 有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确 的是( )
当 x<0 时,函数 f(x)=(x+1)2-2 的最小值为-2,
最大值为 f(-3)=2.故函数 f(x)的值域为[-2,2].
必修1 第一章 集合与函数的概念
栏目导引
1.已知集合A={x|x<a},B={x|1<x<2},且
A∪(∁RB)=R,则实数a的取值范围是( )
A.a≥2
B.a<1
C.a≤2
解析: 假设存在x,使得B∪(∁AB)=A, 即B A.
①若x+2=3,则x=1,此时A={1,3,-1},B= {1,3},符合题意.
2020人教版高一数学必修1(全套)精品课件
1.3 函数的基本性质
2020人教版高一数学必修1(全套)精 品课件
信息技术应用 用计算机绘制 品课件
1.2 函数及其表示
2020人教版高一数学必修1(全套)精 品课件
阅读与思考 函数概念的发展 历程
2020人教版高一数学必修1(全套)精 品课件
第一章 集合与函数概念
2020人教版高一数学必修1(全套)精 品课件
1.1 集合
2020人教版高一数学必修1(全套)精 品课件
阅读与思考 集合中元素的个 数
2020人教版高一数学必修1(全套)精 品课件
2020人教版高一数学必修1(全套) 精品课件目录
0002页 0067页 0148页 0224页 0242页 0264页 0286页 0330页 0365页 0417页 0475页 0505页 0551页 0624页
第一章 集合与函数概念 阅读与思考 集合中元素的个数 阅读与思考 函数概念的发展历程 信息技术应用 用计算机绘制函数图象 小结 2.1 指数函数 2.2 对数函数 探究也发现 互为反函数的两个函数图象之间的关系 小结 第三章 函数的应用 阅读与思考 中外历史上的方程求解 3.2 函数模型及其应用 实习作业 复习参考题
高一上数学(必修一)知识点总结 PPT课件 图文
y=f(x)的每一组有序实数对x、y为坐标的点(x,
y),均在C上 .
(2) 画法
a.描点法:
b.图象变换法
D.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭 区间 (2)无穷区间 (3)区间的数轴表示.
E.映射
一般地,设A、B是两个非空的集合,如果按某 一个确定的对应法则f,使对于集合A中的任意 一个元素x,在集合B中都有唯一确定的元素y与 之对应,那么就称对应f:A B为从集合A到集 合B的一个映射。记作f:A→B
注意:函数的单调区间只能是其定义域的子区间 ,不 能把单调性相同的区间和在一起写成其并集.
2、函数的奇偶性(整体性质)
定义:
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一
个x,都有
f(-x)=f(x),那么f(x)就叫做偶
函数.
(2)奇函数
一般地,对于函数f(x)的定义域内的任意一 个x,都有f(-x)=—f(x),那么f(x)就叫做奇函 数.
函数的概念
B
A
C
x1 x2
A.B是两个非空的集合,如果
y1 y2
按照某种对应法则f,对于
x3
集合A中的每一个元素x,
y3
x4
在集合B中都有唯一的元素
y4
x5
y和它对应,这样的对应叫
y5
做从A到B的一个函数。
函数的三要素:定义域,值域,对应法则 y6
a.定义域
定义:使函数式 有意义的实数x的 集合称为函数的 定义域。
正确得有31人,两实验都做错得有4人,则
这两种实验都做对的有 人。
6. 用描述法表示图中阴影部分的点(含边界
上的点)组成的集合M=
y),均在C上 .
(2) 画法
a.描点法:
b.图象变换法
D.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭 区间 (2)无穷区间 (3)区间的数轴表示.
E.映射
一般地,设A、B是两个非空的集合,如果按某 一个确定的对应法则f,使对于集合A中的任意 一个元素x,在集合B中都有唯一确定的元素y与 之对应,那么就称对应f:A B为从集合A到集 合B的一个映射。记作f:A→B
注意:函数的单调区间只能是其定义域的子区间 ,不 能把单调性相同的区间和在一起写成其并集.
2、函数的奇偶性(整体性质)
定义:
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一
个x,都有
f(-x)=f(x),那么f(x)就叫做偶
函数.
(2)奇函数
一般地,对于函数f(x)的定义域内的任意一 个x,都有f(-x)=—f(x),那么f(x)就叫做奇函 数.
函数的概念
B
A
C
x1 x2
A.B是两个非空的集合,如果
y1 y2
按照某种对应法则f,对于
x3
集合A中的每一个元素x,
y3
x4
在集合B中都有唯一的元素
y4
x5
y和它对应,这样的对应叫
y5
做从A到B的一个函数。
函数的三要素:定义域,值域,对应法则 y6
a.定义域
定义:使函数式 有意义的实数x的 集合称为函数的 定义域。
正确得有31人,两实验都做错得有4人,则
这两种实验都做对的有 人。
6. 用描述法表示图中阴影部分的点(含边界
上的点)组成的集合M=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 2
其中 x R ,如果 A B B,求实数a的取值范围
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
函数部分知识结构
解:由题意知: 1
x5
3 2 x 1 9
f ( x)的定义域为 3, 9
题型(三):已知复合求复合
已知f (2x 1)的定义域 1, 5, 求f (2 5x)的定义域
解:由题意知:
1 x 5
3 2 x 1 9
3 2 5 x 9
1、A B {x | x A或x B}
2、A B {x | x A且x B}
A B
3、CU A {x | x U且x A}
全集:某集合含有我们所研究的各个集合的全
部元素,用U表示
例题与练习
1.集合A={1,0,x},且x2∈A,则x= 。 -1 2.已知集合 M { 1,,}集合 N { y x 2 , M } y x - 1 2 , 则M∩N是( B )
例2 若f(x)在R上是奇函数,当x∈(0,+∞)时为增函数, 且f(1)=0,则不等式f(x)>0的解集为______ 例3 若f(x)是定义在[-1,1]上的奇函数,且在[-1,1]是单调 增函数,求不等式f(x-1)+f(2x)>0的解集.
零 点 并且有 f (a) f (b) 0 ,那么,函数 y f ( x) 在区间 a , b 内有零点, 存 在 性 即存在 c a ,b ,使得 f (c) 0 ,这个 c 也就是方程 f ( x) 0 的根。 定 理
6、对勾函数
Y
1.形如 f x x
a a 0 的性质 x 0 1 定义域为 , 0,
2 a
a 0
X X a
2 a
2 值域为 ,-2 a 2 a, 3 奇偶性:在其定义域上是奇函数 4 单调性:,- a , a, 上是增函数
y=x-1
y=x-2
1
y=x-1/2
1
0
X
0
X
a>0
图象不经过第四象限
……
a<0
(1)图象都过(0,0)点和 (1,1)点; (2)在第一象限内,函数值 随x 的增大而增大,即 在(0,+∞)上是增函 数。
(1)图象都过(1,1)点; (2)在第一象限内,函数值随 x 的增大而减小,即在 (0,+∞)上是减函数。 (3)在第一象限,图象向上与 y 轴无限接近,向右与 x 轴无限接近。
1 f ( x)
⑵
3
4 x ( x 4) x 1 log 2 ( x 1)
0
y
1 log x1 (2 x )
一.复合函数求定义域的几种题型
题型(一):已知f ( x)的定义域, 求f [ g ( x)]的定义域
例 若f ( x)的定义域是[0, 2], 求f (2 x 1)的定义域 1.
A
{ 1,, } 2 4
B{1 }
x
C{1,2}
DΦ
M 变式: {y | y 2 , x R}, N {x | y 1 log 3 x }
3.满足{1,2} A {1,2,3,4}的集合A的个数 有 个 3
5.设 A {x x 4 x 0}, B {x x 2(a 1) x a 1 0} ,
2012年秋季期末复习:必修一
pxgzljw
一、集合的含义与表示
(一)集合的含义 1、集合:把研究对象称为元素,把一些元素组成的
总体叫做集合。
2、元素与集合的关系: 或 3、元素的特性:确定性、互异性、无序性
4、常用数集: 、N、Z、Q、R N
二、集合间的基本关系
1、子集:对于两个集合A,B如果集合A中的任何
一个元素都是集合B的元素,我们称A为B的子集. 若集合中元素有n个,则其子集个数为 2n 真子集个数为 2n-1;非空真子集个数为 2n-2
2、集合相等: A B, B A A B 3、真子集: 4、空集:规定空集是任何集合的子集,是任
何非空集合的真
0<a<1
y
X
x =1
(1,0)
O
O
(1,0)
y loga x (0 a 1)
X
( 0,+∞) 定义域 : 值 域 : R 即当x =1时,y=0 恒过定点 (1 ,0) : 增函数 在(0,+∞)上是 减函数 在(0,+∞)上是:
.性质
y
y=x3 y=x2
y
1
y=x1/2
1
幂 函 数
概念 三要素 大小比较
函 数
图象 性质
指数函数 对数函数 幂函数
方程解的个数
应用
不等式的解
实际应用
一函数的概念
A x1 x2 x3
x4
x5
A.B是两个非空的集合,如果按照 某种对应法则f,对于集合A中的 每一个数x,在集合B中都有唯一 的数y和它对应,这样的对应叫 做从A到B的一个函数。
思考:函 数值域与 集合B的 关系
例1 判断函数
f x log2 1 e
x
的单调性。
例2 求函数y=log 0. 5(x2-1) 的单调区间。 例3 若函数y= x2+ax+1在[-1,1]上是单调函数, 求a的取值范围。
一、函数的奇偶性定义
前提条件:定义域关于原点对称。 1、奇函数 2、偶函数 f (-x)= - f (x) f (-x) = f (x) 或 f (-x)+f (x) = 0 或f (-x) - f (x) = 0
3、单调性
4、图象
3、指数函数
的图像及性质
a>1
0<a<1
y=ax
(a>1)
图 象
y=1
y
y=ax
(0<a<1)
y
(0,1)
y=1 x
(0,1)
0 当 x > 0 时,y > 1.
当 x < 0 时,. 0< y < 1
x
0 当 x < 0 时,y > 1;
当 x > 0 时, 0< y < 1。
换元法、配凑法、待定系数法、解方程组 法
函数的单调性:
x1 x2 1 f x 为增函数。 f x1 f x2 x1 x2 2 f x 为减函数。 f x1 f x2
3
4
5
x1 x2 f x1 f x2 f x 为增函数 x1 x2 f x1 f x2 f x 为减函数 f x1 f x2 f x1 f x2 x1 x2 6 f x 为减函数 x1 x2 f x 为增函数
解: 由题意知: 0 2 x 1 2 1 3 x 2 2
1 3 故 : f ( 2 x 1)的定义域是 {x x } 2 2
题型(二):已知f g x 的定义域, 求f ( x)的定义域
例2 :已知f 2x 1的定义域(1,5], 求f ( x)的定义域
B C y1 y2 y3 y4 y5
函数的三要素:定义域、值域、对应法则
y6
二、几种常见函数及其性质:
1、反比例函数
k>0
1、定义域 2、值域 3、单调性 .
k y x
k<0
(, 0)(0,+)
(,0)(0,+)
递减(,0), (0,+)
递增(,0), (0,+)
2.用二分法求方程x3-2x-5=0在区间[2,3]内的 实数根时,取区间中间x0=2.5,那么下一个有根区 间是________.
用定义证明函数单调性的步骤:
(1) 取值:设x1,x2是定义域上的两个实数,且x1<x2; (2) 作差: f(x1)-f(x2) ; (3)变形:通过因式分解转化为易于判断符号的形式 (4)判号: 确定 f(x1)-f(x2)>0或 f(x1)-f(x2)<0; ⑸定论: 复合函数的单调性判别:同增异减。
二、奇函数、偶函数的性质
1、奇函数的图象关于原点成中心对称图形。 2、偶函数的图象关于y轴成轴对称图形。 3、若函数f(x)是奇函数,且在x=0处有定义,则f(0)=0.
1 例1 判断函数 f ( x ) 1 x 的奇偶性。 2 1 1 变: 若函数 f ( x) a x 为奇函数,求a。 2 1
y O
如果函数 y f ( x) 在区间 a, b 上的图象是连续不断的一条曲线,
c
a
b x
二分法求方程近似解的口诀: 定区间,找中点, 中值计算两边看; 同号去,异号算, 零点落在异号间;
周而复始怎么办? 精确度上来判断.
2 1.函数 f ( x) Inx 的零点所在的大致区间是( ) x 1 A. 1, 2 B. 2,3 C. 1, 和 3,4 D. e, e
定义域: R 性 值 域: ( 0,+ ∞ ) 恒过定点: ( 0 , 1 ) ,即 x = 0 时, y = 1 . 质 在 R 上是单调 增函数 在 R 上是单调 减函数
4、对数函数y=logax (a>0,且a≠1) 的图象与性质
a>1 图 象 性 质
y
x =1
其中 x R ,如果 A B B,求实数a的取值范围
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
函数部分知识结构
解:由题意知: 1
x5
3 2 x 1 9
f ( x)的定义域为 3, 9
题型(三):已知复合求复合
已知f (2x 1)的定义域 1, 5, 求f (2 5x)的定义域
解:由题意知:
1 x 5
3 2 x 1 9
3 2 5 x 9
1、A B {x | x A或x B}
2、A B {x | x A且x B}
A B
3、CU A {x | x U且x A}
全集:某集合含有我们所研究的各个集合的全
部元素,用U表示
例题与练习
1.集合A={1,0,x},且x2∈A,则x= 。 -1 2.已知集合 M { 1,,}集合 N { y x 2 , M } y x - 1 2 , 则M∩N是( B )
例2 若f(x)在R上是奇函数,当x∈(0,+∞)时为增函数, 且f(1)=0,则不等式f(x)>0的解集为______ 例3 若f(x)是定义在[-1,1]上的奇函数,且在[-1,1]是单调 增函数,求不等式f(x-1)+f(2x)>0的解集.
零 点 并且有 f (a) f (b) 0 ,那么,函数 y f ( x) 在区间 a , b 内有零点, 存 在 性 即存在 c a ,b ,使得 f (c) 0 ,这个 c 也就是方程 f ( x) 0 的根。 定 理
6、对勾函数
Y
1.形如 f x x
a a 0 的性质 x 0 1 定义域为 , 0,
2 a
a 0
X X a
2 a
2 值域为 ,-2 a 2 a, 3 奇偶性:在其定义域上是奇函数 4 单调性:,- a , a, 上是增函数
y=x-1
y=x-2
1
y=x-1/2
1
0
X
0
X
a>0
图象不经过第四象限
……
a<0
(1)图象都过(0,0)点和 (1,1)点; (2)在第一象限内,函数值 随x 的增大而增大,即 在(0,+∞)上是增函 数。
(1)图象都过(1,1)点; (2)在第一象限内,函数值随 x 的增大而减小,即在 (0,+∞)上是减函数。 (3)在第一象限,图象向上与 y 轴无限接近,向右与 x 轴无限接近。
1 f ( x)
⑵
3
4 x ( x 4) x 1 log 2 ( x 1)
0
y
1 log x1 (2 x )
一.复合函数求定义域的几种题型
题型(一):已知f ( x)的定义域, 求f [ g ( x)]的定义域
例 若f ( x)的定义域是[0, 2], 求f (2 x 1)的定义域 1.
A
{ 1,, } 2 4
B{1 }
x
C{1,2}
DΦ
M 变式: {y | y 2 , x R}, N {x | y 1 log 3 x }
3.满足{1,2} A {1,2,3,4}的集合A的个数 有 个 3
5.设 A {x x 4 x 0}, B {x x 2(a 1) x a 1 0} ,
2012年秋季期末复习:必修一
pxgzljw
一、集合的含义与表示
(一)集合的含义 1、集合:把研究对象称为元素,把一些元素组成的
总体叫做集合。
2、元素与集合的关系: 或 3、元素的特性:确定性、互异性、无序性
4、常用数集: 、N、Z、Q、R N
二、集合间的基本关系
1、子集:对于两个集合A,B如果集合A中的任何
一个元素都是集合B的元素,我们称A为B的子集. 若集合中元素有n个,则其子集个数为 2n 真子集个数为 2n-1;非空真子集个数为 2n-2
2、集合相等: A B, B A A B 3、真子集: 4、空集:规定空集是任何集合的子集,是任
何非空集合的真
0<a<1
y
X
x =1
(1,0)
O
O
(1,0)
y loga x (0 a 1)
X
( 0,+∞) 定义域 : 值 域 : R 即当x =1时,y=0 恒过定点 (1 ,0) : 增函数 在(0,+∞)上是 减函数 在(0,+∞)上是:
.性质
y
y=x3 y=x2
y
1
y=x1/2
1
幂 函 数
概念 三要素 大小比较
函 数
图象 性质
指数函数 对数函数 幂函数
方程解的个数
应用
不等式的解
实际应用
一函数的概念
A x1 x2 x3
x4
x5
A.B是两个非空的集合,如果按照 某种对应法则f,对于集合A中的 每一个数x,在集合B中都有唯一 的数y和它对应,这样的对应叫 做从A到B的一个函数。
思考:函 数值域与 集合B的 关系
例1 判断函数
f x log2 1 e
x
的单调性。
例2 求函数y=log 0. 5(x2-1) 的单调区间。 例3 若函数y= x2+ax+1在[-1,1]上是单调函数, 求a的取值范围。
一、函数的奇偶性定义
前提条件:定义域关于原点对称。 1、奇函数 2、偶函数 f (-x)= - f (x) f (-x) = f (x) 或 f (-x)+f (x) = 0 或f (-x) - f (x) = 0
3、单调性
4、图象
3、指数函数
的图像及性质
a>1
0<a<1
y=ax
(a>1)
图 象
y=1
y
y=ax
(0<a<1)
y
(0,1)
y=1 x
(0,1)
0 当 x > 0 时,y > 1.
当 x < 0 时,. 0< y < 1
x
0 当 x < 0 时,y > 1;
当 x > 0 时, 0< y < 1。
换元法、配凑法、待定系数法、解方程组 法
函数的单调性:
x1 x2 1 f x 为增函数。 f x1 f x2 x1 x2 2 f x 为减函数。 f x1 f x2
3
4
5
x1 x2 f x1 f x2 f x 为增函数 x1 x2 f x1 f x2 f x 为减函数 f x1 f x2 f x1 f x2 x1 x2 6 f x 为减函数 x1 x2 f x 为增函数
解: 由题意知: 0 2 x 1 2 1 3 x 2 2
1 3 故 : f ( 2 x 1)的定义域是 {x x } 2 2
题型(二):已知f g x 的定义域, 求f ( x)的定义域
例2 :已知f 2x 1的定义域(1,5], 求f ( x)的定义域
B C y1 y2 y3 y4 y5
函数的三要素:定义域、值域、对应法则
y6
二、几种常见函数及其性质:
1、反比例函数
k>0
1、定义域 2、值域 3、单调性 .
k y x
k<0
(, 0)(0,+)
(,0)(0,+)
递减(,0), (0,+)
递增(,0), (0,+)
2.用二分法求方程x3-2x-5=0在区间[2,3]内的 实数根时,取区间中间x0=2.5,那么下一个有根区 间是________.
用定义证明函数单调性的步骤:
(1) 取值:设x1,x2是定义域上的两个实数,且x1<x2; (2) 作差: f(x1)-f(x2) ; (3)变形:通过因式分解转化为易于判断符号的形式 (4)判号: 确定 f(x1)-f(x2)>0或 f(x1)-f(x2)<0; ⑸定论: 复合函数的单调性判别:同增异减。
二、奇函数、偶函数的性质
1、奇函数的图象关于原点成中心对称图形。 2、偶函数的图象关于y轴成轴对称图形。 3、若函数f(x)是奇函数,且在x=0处有定义,则f(0)=0.
1 例1 判断函数 f ( x ) 1 x 的奇偶性。 2 1 1 变: 若函数 f ( x) a x 为奇函数,求a。 2 1
y O
如果函数 y f ( x) 在区间 a, b 上的图象是连续不断的一条曲线,
c
a
b x
二分法求方程近似解的口诀: 定区间,找中点, 中值计算两边看; 同号去,异号算, 零点落在异号间;
周而复始怎么办? 精确度上来判断.
2 1.函数 f ( x) Inx 的零点所在的大致区间是( ) x 1 A. 1, 2 B. 2,3 C. 1, 和 3,4 D. e, e
定义域: R 性 值 域: ( 0,+ ∞ ) 恒过定点: ( 0 , 1 ) ,即 x = 0 时, y = 1 . 质 在 R 上是单调 增函数 在 R 上是单调 减函数
4、对数函数y=logax (a>0,且a≠1) 的图象与性质
a>1 图 象 性 质
y
x =1