2022-2023学年人教版九年级数学第一学期期末测试卷含答案

合集下载

人教版2022~2023学年九年级数学第一学期期末学业监测试卷【含答案】

人教版2022~2023学年九年级数学第一学期期末学业监测试卷【含答案】

人教版2022~2023学年九年级数学第一学期期末学业监测试卷(分值:120分)一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.(3分)下列说法:①三点确定一个圆;②垂直于弦的直径平分弦;③三角形的内心到三条边的距离相等;④圆的切线垂直于经过切点的半径.其中正确的个数是()A.0B.2C.3D.42.(3分)如图,底边长为2的等腰Rt△ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转45°得到△OA1B1,则点A1的坐标为()A.(1,﹣)B.(1,﹣1)C.()D.(,﹣1)3.(3分)如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=α.则α的值为()A.135°B.120°C.110°D.100°4.(3分)如图,⊙O的半径为5,点O到直线l的距离为7,点P是直线l上的一个动点,PQ与⊙O相切于点Q,则PQ的最小值为()A.B.C.2D.25.(3分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.6.(3分)若A(3,y1),B(5,y2),C(﹣2,y3)是抛物线y=﹣x2+4x+k上的三点,则y1、y2、y3的大小关系为()A.y2>y1>y3B.y3>y2>y1C.y1>y2>y3D.y3>y1>y27.(3分)下列方程中,关于x的一元二次方程是()A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0D.x2+2x=x2﹣1 8.(3分)如图,在矩形ABCD中,AB=3,BC=4,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为()A.B.2C.D.39.(3分)在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是()A.垂直B.相等C.垂直且相等D.不再需要条件10.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.B.5C.D.二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(4分)用配方法解方程x2﹣2x﹣7=0时,配方后的形式为.12.(4分)如图,把△ABC绕点A逆时针旋转42°,得到△AB′C′,点C′恰好落在边AB上,连接BB′,则∠B′BC′的大小为.13.(4分)如图,点P在反比例函数y=(x<0)的图象上,PA⊥x轴于点A,△PAO的面积为5,则k的值为.14.(4分)已知==,则=.15.(4分)如图,双曲线上有一点A,过点A作AB⊥x轴于点B,△AOB的面积为2,则该双曲线的表达式为.16.(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD=.17.(4分)如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC:S△BOC=.18.(4分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为.三、解答题:(共9道题,总分88分)19.(8分)解方程(1)2x2﹣2x﹣5=0;(2)(y+2)2=(3y﹣1)2.20.(8分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.21.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.22.(10分)已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.23.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.24.(10分)如图,已知A (﹣4,n),B (2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式的解集(请直接写出答案).25.(10分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?26.(10分)如图,P1、P2是反比例函数(k>0)在第一象限图象上的两点,点A1的坐标为(2,0),若△P1OA1与△P2A1A2均为等边三角形.(1)求此反比例函数的解析式;(2)求A2点的坐标.27.(12分)(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BE、EF、FD之间的数量关系为.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD 上的点,且∠EAF=∠BAD,线段BE、EF、FD之间存在什么数量关系,为什么?(3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到E、F之间的夹角为70°,根据(2)的结论求E、F之间的距离.答案一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.C2.B3.B4.C5.D6.C7.A8.A9.B10.A二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(x﹣1)2=8.12.69°13.﹣1014.15.y=﹣.16.217.1:318.三、解答题:(共9道题,总分88分)19.解:(1)∵a=2,b=﹣2,c=﹣5,∴△=(﹣2)2﹣4×2×(﹣5)=48>0,∴方程有两个不相等的实数根,∴x==,即x1=,x2=,(2)移项得(y+2)2﹣(3y﹣1)2=0,分解因式得(4y+1)(3﹣2y)=0,解得y1=﹣,y2=.20.解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.21.解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.22.解:(1)画树状图得:∵(a,b)的可能结果有(,1)、(,3)、(,2)、(,1)、(,3)、(,2)、(1,1)、(1,3)及(1,2),∴(a,b)取值结果共有9种;(2)∵当a=,b=1时,△=b2﹣4ac=﹣1<0,此时ax2+bx+1=0无实数根,当a=,b=3时,△=b2﹣4ac=7>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=2>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=1时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,当a=,b=3时,△=b2﹣4ac=8>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=3>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=1时,△=b2﹣4ac=﹣3<0,此时ax2+bx+1=0无实数根,当a=1,b=3时,△=b2﹣4ac=5>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=2时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,∴P(甲获胜)=P(△>0)=>P(乙获胜)=,∴这样的游戏规则对甲有利,不公平.23.证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.24.解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x﹣2.(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C (﹣2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =×2×2+×2×4=6.(3)不等式的解集为:﹣4<x <0或x >2.25.解:设每张贺年卡应降价x 元,现在的利润是(0.3﹣x )元,则商城多售出100x ÷0.1=1000x 张.(0.3﹣x )(500+1000x )=120,解得x 1=﹣0.3(降价不能为负数,不合题意,舍去),x 2=0.1.答:每张贺年卡应降价0.1元.26.解:(1)作P 1B ⊥OA 1于点B ,∵等边△P 1OA 1中,OA 1=2,∴OB=1,P 1B=,把P 1点坐标(1,)代入, 解得:,∴; (2)作P 2C ⊥A 1A 2于点C ,∵等边△P 2A 1A 2,设A 1C=a ,则P 2C=,OC=2+a ,把P 2点坐标(2+a ,)代入, 即:, 解得,(舍去), ∴OA 2=2+2a=, ∴A 2(,0).27.解:(1)EF=BE+DF;证明:如图1,延长FD到G,使DG=BE,连接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故EF=BE+DF;(2)EF=BE+DF仍然成立.证明:如图2,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如图3,连接EF,延长AE、BF相交于点C,∵∠AOB=20°+90°+(90°﹣60°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣20°)+(60°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=583米.。

2022-2023学年山东省济南市九级九年级数学第一学期期末学业水平测试试题含解析

2022-2023学年山东省济南市九级九年级数学第一学期期末学业水平测试试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在平面直角坐标系中,点P (m ,1)与点Q (﹣2,n )关于原点对称,则m n 的值是( )A .﹣2B .﹣1C .0D .22.下列二次根式是最简二次根式的是( )A .18B .13C .10D .0.33.服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是( ) A .平均数 B .中位数 C .方差 D .众数4.如图,平面直角坐标系中,()()()8,0,8,4,0,4A B C --,反比例函数k y x=的图象分别与线段,AB BC 交于点,D E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k =( )A .20-B .16-C .12-D .8-5.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .6.已知关于x 的方程(m +4)x 2+2x ﹣3m =0是一元二次方程,则m 的取值范围是( )A .m <﹣4B .m ≠0C .m ≠﹣4D .m >﹣47.已知如图ABC 中,点O 为BAC ∠,ACB ∠的角平分线的交点,点D 为AC 延长线上的一点,且AD AB =,CD CO =,若138∠=︒AOD ,则ABC ∠的度数是( ).A .12︒B .24︒C .48︒D .96︒8.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC =,则DE EF=( )A .12B .13C .23D .19.若正方形的外接圆半径为2,则其内切圆半径为( )A .2B 2C 2D .110.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定 11.一元二次方程x 2+x ﹣1=0的两根分别为x 1,x 2,则1211x x +=( ) A .12 B .1 C 5 D 512.若反比例函数2k yx (k 为常数)的图象在第二、四象限,则k 的取值范围是( ) A .2k <-B .2k >-且0k ≠C .2k >D .2k <且0k ≠二、填空题(每题4分,共24分)13.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.14.若二次函数25(0)y ax bx a =-+≠的图像经过点(2,2),则242017b a -+的值是_______.15. “上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .16.如图,在矩形ABCD中,AB=4,AD=3,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是______(结果保留π).17.如图,A、B、C是⊙O上三点,∠ACB=30°,则∠AOB的度数是_____.18.某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A、B两组对抗赛方式进行,实际报名后,A组有男生3人,女生2人,B组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是__________.三、解答题(共78分)19.(8分)已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.(1)证明:DE//AB;(2)若CD=3,求四边形BEDF的周长.20.(8分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)21.(8分)为了推动课堂教学改革,打造高效课堂,配合我市“两型课堂”的课题研究,莲城中学对八年级部分学生就一期来“分组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:(1)求本次被调查的八年级学生的人数,并补全条形统计图;(2)若该校八年级学生共有180人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生).22.(10分)某校综合实践小组要对一幢建筑物MN 的高度进行测量.如图,该小组在一斜坡坡脚A 处测得该建筑物顶端M 的仰角为45︒,沿斜坡向上走20m 到达B 处,(即20AB m =)测得该建筑物顶端M 的仰角为30.已知斜坡的坡度3:4i =,请你计算建筑物MN 的高度(即MN 的长,结果保留根号).23.(10分)如图,在△ABC 中,∠C =90°,AC=8cm ,BC=6cm . 点P 从点A 出发,沿AB 边以2 cm /s 的速度向点B 匀速移动;点Q 从点B 出发,沿BC 边以1 cm /s 的速度向点C 匀速移动, 当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t (s).(1)当PQ ∥AC 时,求t 的值;(2)当t 为何值时,△PBQ 的面积等于245cm 2.24.(10分)如图,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为()2,4.矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且AD =2,AB =1.(1)求该抛物线所对应的函数关系式;(2)将矩形ABCD 以每秒1个单位长度的速度从图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度从点A 出发向B 匀速移动,设它们运动的时间为t 秒(03)t ≤≤,直线AB 与该抛物线的交点为N (如图2所示). ①当52t =,判断点P 是否在直线MB 上,并说明理由; ②设P 、N 、C 、D 以为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.25.(12分)先化简,再求值:2111x y x y xy y⎛⎫+÷ ⎪+-+⎝⎭,其中x 52,y 5 2. 26.已知,直线23y x =-+与抛物线2y ax =相交于A 、B 两点,且A 的坐标是(3,)m -(1)求a ,m 的值;(2)抛物线的表达式及其对称轴和顶点坐标.参考答案一、选择题(每题4分,共48分)1、A【分析】已知在平面直角坐标系中,点P (m ,1)与点Q(﹣2,n )关于原点对称,则P 和Q 两点横坐标互为相反数,纵坐标互为相反数即可求得m ,n ,进而求得m n 的值.【详解】∵点P (m ,1)与点Q(﹣2,n )关于原点对称∴m=2,n=-1∴m n =-2故选:A【点睛】本题考查了直角坐标系中,关于原点对称的两个点的坐标特点,它们的横坐标互为相反数,纵坐标互为相反数. 2、C【解析】根据最简二次根式的定义逐项分析即可.【详解】A. ,故不是最简二次根式;B. ,故不是最简二次根式;C. ,是最简二次根式;D. ,故不是最简二次根式; 故选C.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,象这样的二次根式叫做最简二次根式.3、D【分析】根据题意,应该关注哪种尺码销量最多.【详解】由于众数是数据中出现次数最多的数,故应该关注这组数据中的众数.故选D【点睛】本题考查了数据的选择,根据题意分析,即可完成。

山西省部分学校联考2022-2023学年九年级上学期期末数学试卷 (含答案)

山西省部分学校联考2022-2023学年九年级上学期期末数学试卷  (含答案)

山西省2022~2023学年第一学期九年级期末质量监测数学试卷(人教版)注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共6页,满分120分,考试时间120分钟. 2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置. 3.答案全部在答题卡上完成,答在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1.下面用数学家名宇命名的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.神奇的自然界处处隐含着数学美!生物学家在向日葵圆盘中发现:向日葵籽粒成螺线状排列,螺线的发散角是137.5︒.我们知道圆盘一周为360︒,36013752225︒-︒=︒..,137522250618︒÷︒≈....这体现了( )A .轴对称B .旋转C .平移D .黄金分割3.用配方法解一元二次方程2450x x --=,此方程可变形为( )A .2(2)9x -= B .2(2)9x += C .2(2)1x += D .2(2)1x -=4.如图,AB 是O 的直径,C ,D 是O 上的两点,且42BDC ∠=︒,则BOC ∠的度数为( )A .42︒B .84︒C .90︒D .96︒5.将抛物线223y x =+先向右平移1个单位长度,再向下平移5个单位长度,所得新抛物线的函数表达式为( )A .22(1)2y x =+- B .22(1)2y x =-- C .22(5)2y x =-+ D .22(5)4y x =++ 6.在一个不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是白球B .至少有1个球是黑球C .至少有2个球是黑球D .至少有2个球是白球7.如图1,大约在两千四百年前,墨子和他的学生做了世界上第一个小孔成像的实验,并在《墨经》中有这样精彩的记录:“景到,在午有端,与景长,说在端.”在如图2所示的小孔成像实验中,若物距为10cm ,像距为15cm ,蜡烛火焰倒立的像的高度是9cm ,则蜡烛火焰的高度为( )A .6cmB .8cmC .10cmD .12cm 8.对于反比例函数4y x=-,下列说法正确的是( ) A .函数图象分布在第一、三象限 B .点()1,4在该函数图象上 C .当1x >时,4y <- D .当0x >时,y 随x 的增大而增大 9.如图,AB CD EF ∥∥,AF 与BE 相交于点G ,且2AG =,1GD =,5DF =,则:CE BC =( )A .5:3B .1:3C .3:5D .2:310.如图,以等边三角形ABC 的一边AB 为直径的半圆O 交AC 边于点D ,交BC 边于点E .若4AB =,则图中阴影部分的面积为( )A .2B .2πCD .4π第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分.请将答案直接写在答题卡相应的位置)11.若反比例函数ky x=的图象分别位于第一、三象限,请写出一个满足条件的反比例函数表达式___________(写出一个即可) 12.已知ABCA B C '''△△,若:1:2AB A B ''=,则:ABC A B C S S '''=△△____________.13.某城市启动“城市森林”绿化工程,林业部门要考察某种树苗在一定条件下的移植成活率.在同样的条件下,对这种树苗进行大量移植,并统计其成活情况,数据如下表所示:由此估计这种树苗移植成活的概率为___________.(结果精确到0.1)14.如图,李大爷要建一个矩形羊圈,羊圈的一边利用长为12m 的住房墙,另外三边用25m 长的彩钢围成,为了方便进出,在垂直于住房墙的一边留了一扇1m 宽的门.若要使羊圈的面积为280m ,则所围矩形与墙垂直的一边长为__________m .15.如图,四边形ABCD 是由两个直角三角板拼成的,其中90ACB ADC ∠=∠=︒,1230∠=∠=︒,E 为AB 边的中点,连接DE ,交AC 于点F .若3CD =,则AF 的长为____________.三、解答题(本大题共8个小题,共7巧分.解答应写出文字说明、证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分)解下列方程: (1)22530x x --=; (2)()2121x x -=+.17.(本题7分)在平面直角坐标系中,ABC △的位置如图所示,其中(1,1),(4,4),(5,1)A B C .(1)将ABC △向左平移6个单位长度,点A ,B ,C 的对应点分别为点111,,A B C ,画出平移后得到的111A B C △.(2)将ABC △绕着点O 顺时针旋转90︒,点A ,B ,C 的对应点分别为点222,,A B C ,画出旋转后得到的222A B C △,并直接写出点222,,A B C 的坐标.18.(本题8分)如图,已知一次函数1y ax b =+的图象与反比例函数2ky x=的图象交于(6,1)A ,B 两点,点B 的横坐标为2-,与x 轴交于点C ,连接,OA OB .(1)求k 的值, (2)求AOB △的面积.19.(本题8分)“二十大”之后,某校打算组织九年级90名团员开展一次以“爱国教育”为主题的观影活动.目前有A 《万里归途》、B 《我和我的祖国》、C 《长津湖之水门桥》三部电影可供选择,小华和小军参加了此次观影活动.(1)小军选择看《万里归途》的概率为____________.(2)请用画树状图或列表的方法,求小华和小军恰好选择看同一部电影的概率.20.(本题8分)如图,强强同学为了测量学校一座高楼OE 的高度,在操场上点A 处放一面平面镜,从点A 处后退1m 到达点B 处,恰好在平面镜中看到高楼的顶部点E 的像.再将平面镜向后移动4m (即4m AC =)放在点C 处,从点C 处后退1.5m 到达点D 处,恰好再次在平面镜中看到高楼的顶部点E 的像,测得强强同学的眼睛距地面的高度FB ,GD 为1.5m .已知点O ,A ,B ,C ,D 在同一水平线上,且GD ,FB ,EO 均与OD 垂直.求高楼OE 的高度.(平面镜的厚度忽略不计)21.(本题9分)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.切割线定理揭示了从圆外一点引圆的切线和割线时,切线与割线之间的关系. 如图1,P 是O 外一点,PT 切O 于点T ,PA 交O 于点B (即PA 是O 的割线),则PT PA PB =⋅.下面是切割线定理的证明过程: 证明:如图2,连接TO 并延长,交O 于点C ,连接BC .∵PT 切O 于点T ,∴90CTP ∠=︒. ∴1290∠+∠=︒. ∵CT 是O 的直径,……(1)根据前面的证明思路,补全剩余的证明过程.(2)在图1中,已知6AB =,5PB =,则PT =_________,ATTB=__________. 22.(本题12分)综合与实践九年级(1)班同学在数学老师的指导下,以“三角形的旋转”为主题,开展数学活动. 操作探究:(1)如图1,ABC △为等边三角形,将ABC △绕点A 旋转180︒,得到ADE △,连接BE ,则CBE ∠=_________︒.若F 是BE 的中点,连接AF ,则AF 与DE 的数量关系是________. 迁移探究:(2)如图2,(1)中的其他条件不变,当ABC △绕点A 逆时针旋转30︒,得到ADE △,求出此时EBC ∠的度数及AF 与DE 的数量关系. 拓展应用:(3)如图3,在Rt ABC △中,2AB AC ==,90BAC ∠=︒,将ABC △绕点A 旋转,得到ADE △,连接BE ,F 是BE 的中点,连接AF .当15EBC ∠=︒时,求AF 的长.23.(本题13分)综合与探究如图,抛物线2y x bx c =++与x 轴交于(1,0),(3,0)A B -两点,与y 轴交于点C .点(,0)P m 是x 轴上的一个动点,过点P 作直线PM x ⊥轴,与直线BC 交于点M ,与抛物线交于点N .(1)求抛物线的函数表达式.(2)①若点P 在线段OB 上运动,求线段MN 的最大值;②若点P 在x 轴的正半轴上运动,在y 轴上是否存在点Q ,使以M ,N ,C ,Q 为顶点的四边形为菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.山西省2022~2023学年第一学期九年级期末质量监测数学(人教版)参考答案与评分标准一、选择题(本大题共10个小题,每小题3分,共30分)二、填空题(本大题共5个小题,每小题3分,共15分)11.2y x=(答案不唯一) 12.1:4 13.0.9 14.8 15.185三、解答题(本大题共8个小题,共75分)16.(1)解:这里2,5,3a b c ==-=-. ∵224(5)42(3)490b ac -=--⨯⨯-=>,∴557224x ±±==⨯.∴121,32x x =-=. (2)解:原方程可变形为(1)(1)2(1)0x x x +--+=.(1)(12)0x x +--=.10x +=或120x --=.解得121,3x x =-=.17.解:(1)如解图所示,111A B C △即为所求.(2)如解图所示,222A B C △即为所求. 点222,,A B C 的坐标分别为(1,1),(4,4),(1,5)---. 18.解:(1)把(6,1)A 代入2ky x=,得6k =. (2)由(1),得反比例函数的表达式为26y x=. ∵点B 在反比例函数的图象上,且横坐标为2-, ∴(2,3)B --.把()()6,1,2,3A B --分别代入1y ax b =+,得61,2 3.a b a b +=⎧⎨-+=-⎩解得1,22.a b ⎧=⎪⎨⎪=-⎩∴一次函数的表达式为1122y x =-. 当0y =时,1202x -=.解得4x =. ∴(4,0)C .∴114143822AOB AOC BOC S S S =+=⨯⨯+⨯⨯=△△△. 19.解:(1)13(2)根据题意,画树状图如下:由树状图可知,共有9种等可能的结果,其中小华和小军恰好选择看同一部电影的结果有3种,故其概率为31=93. 20.解:根据题意,得COE CDG △∽△. ∴OC OEDC DG=. ∵15m DC DG ==., ∴OC OE =.根据题意,得AOE ABF △∽△. ∴OA OEBA BF=. ∵4m AC =,∴4OA OC AC OE =-=-. ∵1m,15m BA BF ==., ∴41 1.5OE OE-=. 解得12OE =.答:高楼OE 的高度为12m . 21.解:(1)∴90CBT ∠=︒. ∴190C ∠+∠=︒. ∴2C ∠=∠. 又∵C A ∠=∠, ∴2A ∠=∠. 又∵P P ∠=∠,∴PBT PTA △∽△. ∴PT PBPA PT=. ∴2PT PA PB =⋅.(2【提示】∵6AB =,5PB =, ∴5611PA PB AB =+=+=. ∵2PT PA PB =⋅,∴PT ==5【提示】由(1)知,PTA PBT △∽△,则AT PT TB PB ==. 22.解:(1)9012AF DE =(或2DE AF =) (2)由旋转的性质,可知AB AD AE DE ===,30BAD ∠=︒,60DAE BAC ∠=∠=︒.∴90BAE BAD DAE ∠=∠+∠=︒.∴ABE △是等腰直角三角形. ∴45ABE ∠=︒.∴15EBC ABC ABE ∠=∠-∠=︒. ∵F 是BE 的中点,∴2AF AB =.∴2AF DE =(或DE =). (3)分以下两种情况进行讨论:①如解图1,当点E 在BC 下方时,根据题意,得ABC △为等腰直角三角形∴45ABC ∠=︒.∵15EBC ∠=︒,∴60ABF ∠=︒.∵AB AE =,F 是BE 的中点,∴AF BE ⊥.∴2AF AB == ②如解图2,当点E 在BC 上方时,同理,可得30ABE ∠=︒,112AF AB ==.综上所述,AF 1.23.解:(1)把()1,0A -,()3,0B 分别代入2y x bx c =++,得2y x bx c =++解得2,3.b c =-⎧⎨=-⎩ ∴抛物线的函数表达式为223y x x =--.(2)①把0x =代入223y x x =--,得3y =-.∴(0,3)C -.设直线BC 的函数表达式为y kx d =+.把(3,0),(0,3)B C -分别代入,得30,3.k d d +=⎧⎨=-⎩解得1,3.?k d =⎧⎨=-⎩∴直线BC 的函数表达式为3y x =-.∵(,0)P m 是x 轴上的一个动点,且PM x ⊥轴,∴()2(,3),,23M m m N m m m ---. ∴()22239323324MN m m m m m m ⎛⎫=----=-+=--+ ⎪⎝⎭. ∵10,03m -<≤≤, ∴当32m =时,线段MN 有最大值,最大值为94.②存在,点Q 的坐标为(0,1)-或(0,1)--或1).【提示】a .如解图1,当点P 在线段OB 上,且MC 是菱形QCNM 的对角线时. ∵四边形QCNM 是菱形,∴CMN CMQ ∠=∠.又∵45PMB PBM ∠=∠=︒,∴90QMN ∠=︒.∴四边形QCNM 是正方形∴QM OP ∥.∴CN OP ∥.∴点N 的纵坐标为3-.把3y =-代入223y x x =--,解得2x =或0x =(舍去).∴2CQ CN ==.∴()0,1Q -.b .如解图2,当点P 在线段OB 上,且MC 是菱形MNQC 的边时.∵23,MN m m MC =-+=,∴23m m -+=.解得3m =0m =(舍去).∴2CQ MC ==.∴1OQ OC CQ =+=.∴(0,1)Q --.c .如解图3,当点P 在点B 的右侧时,MC 只能是菱形QCMN 的边.∵23,MN m m MC =-=,∴23m m -=.解得3m =0m =(舍去).∴2CQ MC ==.∴1OQ CQ OC =-=.∴1)Q .综上所述,点Q 的坐标为(0,1)-或(0,1)-或1)-.。

2022~2023学年九年级数学上学期期末考试卷-人教版(含答案)

2022~2023学年九年级数学上学期期末考试卷-人教版(含答案)

2022~2023学年九年级数学上学期期末考试卷-人教版(含答案)本试卷共8页.总分120分,考试时间120分钟. 注意事项:1.仔细审题,工整作答,保持卷面整洁. 2.考生完成试卷后,务必从头到尾认真检查一遍.一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点(,3)a -关于原点的对称点是(2,3),则a 的值为( ) A .2-B .2C .3-D .32.抛物线223y x x =-+-与y 轴的交点坐标为( ) A .(0,3)B .(0,3)-C .(3,0)D .(3,0)-3.图1是某几何体的三视图,该几何体是( )A .长方体B .正方体C .球D .圆柱4.在Rt ABC △中,90C ∠=︒,5AB =,3BC =,则sin A 的值为( ) A .35B .45C .34D .435.如图2,在ABC △中,DE BC ∥,且23AD AB =.若6DE =,则BC 的长为( )A .8B .9C .12D .156.在如图3所示的44⨯正方形方格中,选取一个白色的小正方形涂灰,使图中阴影部分成为一个中心对称图形,这样的涂法有( )A .0种B .1种C .2种D .3种7.小明解方程2280x x --=的过程如图4所示,开始出现错误..的是( )A .第一步B .第二步C .第三步D .第四步8.不透明布袋中有3个白球,若干个黄球,这些球除颜色外无其他差别.从袋子中随机取出1个球,如果取到白球的概率最大,那么布袋中的黄球可能..有( ) A .2个B .3个C .4个D .4个以上9.已知点11(,)A x y ,22(,)B x y 在反比例函数2k y x+=的图象上,且当120x x <<时,12y y <,则k 的取值范围是( ) A .2k >-B .2k ≥-C .2k <-D .2k ≤-10.已知在矩形ABCD 中,3AB =,6BC =,若以AD 为直径作圆,则与这个圆相切的矩形ABCD 的边共有( ) A .0条B .1条C .2条D .3条11.从地面竖直向上抛出一小球,小球的高度h (米)与运动时间t (秒)之间的解析式是2530(06)h t t t =-+≤≤,则小球到达最高高度时,运动的时间是( )A .1秒B .2秒C .3秒D .4秒12.下列说法正确的是( ) A .阳光下林荫道上的树影是中心投影B .相似图形一定是位似图形C .关于x 的方程220x kx --=有实数根D .三点确定一个圆属于必然事件13.如图5,矩形ABCD 在平面直角坐标系中,点A ,D 分别在反比例函数k y x =和3y x=-的图象上,点B ,C 在x 轴上,若4ABCD S =矩形,则k 的值为( )A .12B .7C .12-D .7-14.如图6,四边形ABCD 内接于O ,135ABC =∠︒,4AC =,则O 的半径为( )A .4B .22C .23D .4215.如图7,在ABC △中,8AB AC ==,6BC =,点P 从点B 出发以每秒1个单位长度的速度向点A 运动,同时点Q 从点C 出发以每秒2个单位长度的速度向点B 运动.当以B ,P ,Q 为顶点的三角形与ABC △相似时,运动时间为( )A .2411秒 B .95秒 C .2411秒或95秒 D .以上均不对16.已知抛物线2()1y x a a =--+-(a 为常数),则下列判断正确的是( ) ①当12x -<<时,y 随x 的增大而增大,则a 的取值范围为2a ≥; ②无论a 为何值,该抛物线的顶点始终在一条直线上 A .两个都对B .两个都错C .只有①对D .只有②对二、填空题.(本大题有3个小题,每小题有2个空,每空2分,共12分.把答案写在题中横线上) 17.如图8,已知AB 是O 的直径,AB CD ⊥于点E ,120COD =∠︒.(1)BAD ∠的度数为_____________.(2)若23CD =AB 的长为_____________. 18.已知一个矩形的周长为56cm .(1)当该矩形的面积为2180cm 时,求矩形的长.设矩形的长为cm x ,则根据题意可列方程为__________________________;(2)该矩形的面积_____________.(填“能”或“不能”)为2200cm .19.如图9,已知在ABC △中,5AB AC ==,8BC =,点P 在边BC 上(点P 与点B ,C 不重合),APF B ∠=∠,射线PF 与边AC 交于点F ,过点A 作BC 的平行线,交射线PF 于点Q .(1)若2BP =,则CF 的长为_____________;(2)当AFQ △是等腰三角形时,BP 的长为_____________.三、解答题.(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(每小题4分,共计8分) 按要求完成下列各小题.(1)解方程:2(23)5(23)x x -=-;(2)计算:22sin 30cos 30︒+︒.21.(本小题满分9分)如图10,为测量一座山峰CD 的高度,将此山的某侧山坡划分为AB 和BC 两段,每一段山坡近似是“直”的,测得坡长800AB =米,200BC =米,坡面AB 的坡度为1:3坡面BC 的坡度为1:1.过点B 作BE CD ⊥于点E .(1)求点B 到AD 的高度;(2)求山峰的高度CD .2 1.41≈3 1.73≈)22.(本小题满分9分)小明和小亮相约乘坐地铁到“市图书馆”站集合,此站有A ,B ,C ,D 四个出站口,选择每个出站口出站的机会是相同的.(1)小明到“市图书馆”站下车恰好从D 口出站的概率是____________;(2)请用列表法或画树状图法求小明和小亮到“市图书馆”站下车都从D 口出站的概率.23.(本小题满分9分)如图11,已知点(,2)A a ,(1,)B b -是直线26y x =-与反比例函数my x=图象的交点,且该直线与y 轴交于点C .(1)求该反比例函数的解析式;(2)连接OA ,OB ,求AOB △的面积; (3)根据图象,直接..写出不等式26mx x-≥的解集.如图12,已知BE ,CF 分别是ABC △的边AC ,AB 上的高. (1)求证:AE ABAF AC=; (2)连接EF .若1cos 2A =,试判断AEF S △与ABC S △之间的数量关系,并说明理由.25.(本小题满分10分)如图13-1,已知60ABC ∠=︒,点O 在射线BC 上,且4OB =.以点O 为圆心,(0)r r >为半径作O ,交直线BC 于点D ,E . (1)当O 与ABC ∠只有两个交点时,r 的取值范围是__________________;(2)当22r =BA 绕点B 按顺时针方向旋转(0180)αα︒<<︒. ①当α为多少时,射线BA 与O 相切;②如图13-2,射线BA 与O 交于M ,N 两点,若MN OB =,求阴影部分的面积.一小球M从斜坡OA上的点O处抛出,球的抛出路线是抛物线的一部分,建立如图14所示的平面直角坐标系,斜坡可以用一次函数12y x刻画.若小球到达最高点的坐标为(4,8).(1)求抛物线的函数解析式(不写自变量x的取值范围);(2)小球在斜坡上的落点A的垂直高度为___________米;(3)若要在斜坡OA上的点B处竖直立一个高4米的广告牌,点B的横坐标为2,请判断小球M能否飞过这个广告牌?通过计算说明理由;(4)求小球M在飞行的过程中离斜坡OA的最大高度.参考答案评分说明:1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分. 2.若答案不正确,但解题过程正确,可酌情给分. 一、(1-10题每题3分,11-16题每题2分,共计42分) 题号 1 2 3 4 5678910111213141516答案ABDABBDACDCCDBCA二、(每小题有2个空,每空2分,共计12分) 17.(1)30︒;(2)418.(1)1568202x x -⎛⎫⎪⎝=⎭(或(28)180x x -=);(2)不能 19.(1)125;(2)5或25819.(2)【精思博考:①当AF FQ =时,易证四边形ABPQ 是平行四边形,APQ ABC ∽△△,5PQ AB ∴==,AQ BP =,AQ PQ AC BC =,258BP ∴=; ②当AQ AF =时,易证BAP CPF ∽△△,AB BPCP CF∴=,5AB BP ∴==; ③当AQ QF =时,QAF QFA ∠=∠.QFA PFC ∠=∠,QAF C ∠=∠,PFC C ∴∠=∠.C B APQ ∠=∠=∠,APQ PFC ∴∠=∠,AP AC ∴∥,与已知矛盾,舍去】三、20.解:(1)方程的解为132x =,24x =;(4分)(2)原式1=.(4分)21.解:(1)过点B 作BF AD ⊥于点F . 设BF x =米.坡面AB 的坡度为1:3,30A ∴∠=︒,14002BF AB ∴==(米),即点B 到AD 的高度BF 为400米;(5分) (2)易得四边形BFDE 为矩形,ED BF ∴=.坡面BC 的坡度为1∶1,222BE CE BC ∴===(米),1002400541CD CE ED ∴=+=≈(米),即山峰的高度CD 为541米.(4分) 22.解:(1)14;(3分) (2)树状图如图,共有16种等可能的结果,小明和小亮到“市图书馆”站下车都从D 口出站的结果有1种,∴小明和小亮到“市图书馆”站下车都从D 口出站的概率为116.(6分)23.解:(1)点(,2)A a 在直线26y x =-上,226a ∴=-,解得4a =.点(4,2)A 在反比例函数m y x =的图象上,24m ∴=,解得8m =,即反比例函数的解析式为8y x=;(4分) (2)直线26y x =-与y 轴交于点C ,当0x =时,6y =-,∴点C 的坐标为(0,6)-,6OC ∴=.1161641522AOB OBC AOC S S S =+=⨯⨯+⨯⨯=△△△;(3分) (3)不等式26mx x-≥的解集为10x -≤<或4x ≥.(2分) 24.解:(1)证明:BE ,CF 分别是ABC △的边AC ,AB 上的高,90AEB AFC ∴∠=∠=︒.又BAE CAF ∠=∠,ABE ACF ∴∽△△,AE ABAF AC∴=;(4分) (2)AEF S △与ABC S △之间的数量关系为14AEF ABC S S =△△; 理由:由(1)得AE AB AF AC =,AE AFAB AC∴=.又EAF BAC ∠=∠,AEF ABC ∴∽△△. 1cos 2AF A AC ==,21124AEF ABC S S ∆∆⎛⎫∴== ⎪⎝⎭,AEF S ∴△与ABC S △之间的数量关系为14AEF ABC S S =△△.(5分) 25.解:(1)023r <<4r >;(2分) (2)①如图1,当射线BA 在射线BC 的上方与O 相切时,设切点为P ,连接OP .4OB =,22OP =2sin 2OP B OB ∴==,45B ∴∠=︒,604515α∴=︒-︒=︒. 如图2,当射线BA 在射线BC 的下方与O 相切时,设切点为P ,连接OP .同理可得6045105α=︒+︒=︒. 综上所述,当α为15︒或105︒时,射线BA 与O 相切;(4分)②如图3,连接OM ,ON ,过点O 作OQ MN ⊥于点Q ,122MQ NQ MN ∴===. 22OM =2sin 2MQ MOQ OM ∴∠==,45MOQ ∴∠=︒,290MON MOQ ∴∠=∠=︒, 2290(22)1(22)243602S ππ∴=-⨯=-阴影.(4分)26.解:(1)小球到达最高点的坐标为(4,8),∴设抛物线的解析式为2(4)8y a x =-+,把(0,0)代入2(4)8y a x =-+,解得12a =-,∴抛物线的解析式为21(4)82y x =--+(或2142y x x =-+);(3分) (2)72;(2分) (3)能;理由:当2x =时,112y x ==,21(4)862y x =--+=.614->, ∴小球M 能飞过这个广告牌;(3分)(4)小球M 在飞行的过程中离斜坡OA 的高度22111749(4)822228h x x x ⎛⎫=--+-=--+ ⎪⎝⎭,∴小球M 在飞行的过程中离斜坡OA 的最大高度为498.(4分)。

人教版2022-2023学年第一学期九年级数学期末模拟测试题(附答案)

人教版2022-2023学年第一学期九年级数学期末模拟测试题(附答案)

2022-2023学年第一学期九年级数学期末模拟测试题(附答案)一.选择部分(共30分)1.下列函数中y是x的二次函数的是()A.y=﹣2x2B.y=C.y=ax2+bx+c D.y=(x﹣2)2﹣x22.下列图形中,既是轴对称图形又是中心对称图形的有()A.B.C.D.3.若关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.k≤B.k>C.k<且k≠1D.k≤且k≠1 4.已知a>1,点A(a﹣1,y1),B(a,y2),C(a+1,y3)都在二次函数y=﹣2x2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y1<y35.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=1106.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.7.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.28.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°9.已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x,y轴的交点分别为A,B,P是其对称轴x=1上的动点,根据图中提供的信息,以下结论中不正确的是()A.2a+b=0B.a>﹣C.△P AB周长的最小值是D.x=3是ax2+bx+3=0的一个根10.二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=1.下列结论:①abc<0;②a+c>b;③4a+c>0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个二.填空题(共33分)11.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.12.若x1,x2方程x2﹣4x﹣2021=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.13.把二次函数y=2x2﹣1的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.14.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△DEC,连接AD,若∠BAC =25°,则∠BAD=.15.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.16.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.17.已知点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,当﹣2<x≤1时,y的取值范围是.18.如图,⊙O的半径为2,弦AB=,E为弧AB的中点,OE交AB于点F,则OF 的长为.19.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为.20.若一个圆锥的底面半径为1cm,它的侧面展开图的圆心角为90°,则这个圆锥的母线长为cm.21.如图,二次函数y=ax2+bx+c的图象与x轴的两个交点分别为(﹣1,0),(3,0)对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0④8a+c<0,其中正确的有.三.解答题(共57分)22.如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边AB、BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=,BC=2,则⊙O的半径为.23.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABO的三个顶点坐标分别为A(﹣1,3),B(﹣4,3),O(0,0).(1)画出△ABO关于x轴对称的△A1B1O,并写出点A1的坐标;(2)画出△ABO绕点O顺时针旋转90°后得到的△A2B2O,并写出点A2的坐标;(3)在(2)的条件下,求点A旋转到点A2所经过的路径长(结果保留π).24.已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣1=0(1)若该方程有两个实数根,求m的取值范围.(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2﹣10m=2,求m的值.25.已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.26.已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.27.山西转型综合改革示范区的一工厂里,生产的某种产品按供需要求分为十个档次.若生产第一档次(最低档次)的产品,一天可生产76件,每件的利润为10元,每提高一个档次,每件的利润增加2元,每天的产量将减少4件.设产品的档次(每天只生产一个档次的产品)为x,请解答下列问题.(1)用含x的代数式表示:一天生产的产品件数为件,每件产品的利润为元;(2)若该产品一天的总利润为1080元,求这天生产产品的档次x的值.28.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C(0,﹣4)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.参考答案一.选择部分(共30分)1.解:A、是二次函数,故此选项符合题意;B、不是二次函数,故此选项不合题意;C、a=0时,不是二次函数,故此选项不合题意;D、不是二次函数,故此选项不合题意;故选:A.2.解:A.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;B.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;C.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;D.该图形是中心对称图形,不是轴对称图形,故此选项不合题意.故选:C.3.解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.4.解:∵a>1,∴0<a﹣1<a<a+1,∵y=﹣2x2,﹣2<0,∴当x>0时,y随x值的增大而减少,∴y3<y2<y1.故选:C.5.解:设有x个队参赛,则x(x﹣1)=110.故选:D.6.解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.7.解:连接OA,∵⊙O的直径CD=20,OM:OC=3:5,∴OC=10,OM=6,∵AB⊥CD,∴AM===8,∴AB=2AM=16.故选:C.8.解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.9.解:A、根据图象知,对称轴是直线x=﹣=1,则b=﹣2a,即2a+b=0.故A正确;B、根据图象知,点A的坐标是(﹣1,0),对称轴是直线x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x轴的另一个交点的坐标是(3,0),∴x=3时,y=9a+3b+3=0,∴9a﹣6a+3=0,∴3a+3=0,∵抛物线开口向下,则a<0,∴2a+3=﹣a>0,∴a>﹣,故B正确;C,点A关于x=1对称的点是A′为(3,0),即抛物线与x轴的另一个交点.连接BA′与直线x=1的交点即为点P,则△P AB周长的最小值是(BA′+AB)的长度.∵A(﹣1,0),B(0,3),A′(3,0),∴AB=,BA′=3.即△P AB周长的最小值是+3,故C错误;D、根据图象知,点A的坐标是(﹣1,0),对称轴是直线x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x轴的另一个交点的坐标是(3,0),所以x=3是ax2+bx+3=0的一个根,故D正确;故选:C.10.解:∵函数开口方向向上,a>0,∵对称轴为x=1,则﹣=1,∴b=﹣2a<0,∵与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①错;当x=﹣1时,y=a﹣b+c>0,即a+c>b,故②正确;对称轴为x=1,则﹣=1,即b=﹣2a,由上知,a﹣b+c>0,则a+2a+c>0,即3a+c>0,∴4a+c>a>0,故③正确;由图象可得,当x=1时,函数取得最小值,∴对任意m为实数,有am2+bm+c≥a+b+c,∴am2+bm≥a+b,即a+b≤m(am+b),故④正确.综上,正确的个数有三个.故选:B.二.填空题(共33分)11.解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.12.解:∵x1,x2是方程x2﹣4x﹣2021=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2021=0,即x12﹣4x1=2021,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2021+2×4=2021+8=2029.故答案为:2029.13.解:由“左加右减”的原则可知,将二次函数y=2x2﹣1的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2﹣1;由“上加下减”的原则可知,将抛物线y=2(x+1)2﹣1向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣1﹣2=2(x+1)2﹣3,故答案为:y=2(x+1)2﹣3.14.解:∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°.15.解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.16.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.17.解:∵二次函数y=2(x+1)2﹣3,∴该函数对称轴是直线x=﹣1,当x=﹣1时,取得最小值,此时y=﹣3,∵点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,∴当﹣2<x≤1时,y的取值范围是:﹣3≤y≤5,故答案为:﹣3≤y≤5.18.解:∵E为弧AB的中点,∴OE⊥AB于F,∵AB=2,∴AF=BF=,在Rt△OAF中,OA=2,,故答案为:1.19.解:∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1cm,当点O在点H的左侧,⊙O与直线a相切时,如图1所示:OP=PH﹣OH=4﹣1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,如图2所示:OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm,故答案为:3cm或5cm.20.解:设母线长为lcm,则=2π×1解得:l=4.故答案为:4.21.解:根据图象可得:a>0,c<0,对称轴:x=﹣>0,①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是直线x=1,∴﹣=1,∴b+2a=0,故①错误;②∵a>0,∴b<0,∵c<0,∴abc>0,故②错误;③∵a﹣b+c=0,∴c=b﹣a,∴a﹣2b+4c=a﹣2b+4(b﹣a)=2b﹣3a,又由①得b=﹣2a,∴a﹣2b+4c=﹣7a<0,故此选项正确;④根据图示知,当x=4时,y>0,∴16a+4b+c>0,由①知,b=﹣2a,∴8a+c>0;故④错误;故正确为:③1个.故答案为:③.三.解答题(共57分)22.解:(1)如图直线l,⊙O即为所求.(2)过点O作OE⊥AB于E.设OE=ON=r,∵BM=,BC=2,MN垂直平分线段BC,∴BN=CN=1,∴MN===,∵s△BNM=S△BNO+S△BOM,∴×1×=×1×r+××r,解得,r=.故答案为:.23.解:(1)如图,△A1B1O即为所求,点A1的坐标(﹣1,﹣3);(2)如图,△A2B2O即为所求,点A2的坐标(3,1);(3)点A旋转到点A2所经过的路径长==π24.解:(1)由题意可知:Δ=(2m﹣1)2﹣4(m2﹣1)≥0,∴﹣4m+5≥0,∴m≤;(2)由题意可知:x1+x2=1﹣2m,x1x2=m2﹣1,∵(x1﹣x2)2﹣10m=2,∴(x1+x2)2﹣4x1x2﹣10m=2,∴(1﹣2m)2﹣4(m2﹣1)﹣10m=2,解得:m=;25.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°.∵∠BCD+∠DCE=180°,∴∠BCD=∠DCE=90°.又∵CG=CE,∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′.∵CE=CG,∴CG=AE′.∵四边形ABCD是正方形,∴BE′∥DG,AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.26.(1)证明:如图,连接OA;∵OC=BC,AC=OB,∴OC=BC=AC=OA.∴△ACO是等边三角形.∴∠O=∠OCA=60°,∵AC=BC,∴∠CAB=∠B,又∠OCA为△ACB的外角,∴∠OCA=∠CAB+∠B=2∠B,∴∠B=30°,又∠OAC=60°,∴∠OAB=90°,∴AB是⊙O的切线;(2)解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.27.解(1)一天生产的产品件数为[76﹣4(x﹣1)]=(80﹣4x)件,每件产品的利润为[10+2(x﹣1)]=(8+2x)元,故答案为(80﹣4x),(8+2x);(2)当利润是1080元时,即:[10+2(x﹣1)][76﹣4(x﹣1)]=1080,整理得:﹣8x2+128x+640=1080,解得x1=5,x2=11,因为x=11>10,不符合题意,舍去.因此取x=5,当生产产品的质量档次是在第5档次时,一天的总利润为1080元.28.解:(1)将B、C两点的坐标代入y=x2+bx+c得:,解得:,所以二次函数的表达式为:y=x2﹣3x﹣4;(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣3x﹣4),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;如图,连接PP′,则PE⊥CO于E,∵C(0,﹣4),∴CO=4,又∵OE=EC,∴OE=EC=2∴y=﹣2;∴x2﹣3x﹣4=﹣2,解得:x1=,x2=(不合题意,舍去),∴P点的坐标为(,﹣2).。

2022-2023学年人教版九年级数学第一学期期末测试题含答案

2022-2023学年人教版九年级数学第一学期期末测试题含答案

第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题。

(每题5分,共45分)1.在下列图形中,是中心对称图形的是( )A.B.C.D.2.下列事件属于必然事件的是( )A.打开电视,正在播放新闻B.我们班的同学将会有人成为航天员C.实数0<a ,则02<aD.新疆的冬天不下雪3.若关于x 的一元二次方程01)12=++-x x k (有两个实数根,则k 的取值范围是( ) A.45≤k B.45>kC.45<k 且1≠kD.45≤k 且1≠k4.用配方法解方程0982=++x x ,变形后的结果正确的是 A.9)4(2-=+x B.7)4(2-=+x C.25)4(2=+xD.7)4(2=+x5.二次函数3)1(2+-=x y 的图象的顶点坐标是 A.)3,1(-B.)3,1(C.)3,1(--D.)3,1(-6.如图,在圆O 中,所对的圆周角50=∠ACB ,若P 为上一点,55=∠AOP ,则=∠POB ( ) A.30B.45 C.55D.60第6题图 第7题图7.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形生日礼帽.如图,圆锥帽底面半径为cm 9,母线长为cm 36,请你帮助他们计算制作一个这样的生日礼帽需要纸板的面积为( ) A.2648cm ΠB.2432cm ΠC.2324cm ΠD.2216cm Π8.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )A.B. C. D.9.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A.10890)1050)(20180=--+xx ( B.10890)1018050)(20=---x x (C.180902050)108050(=⨯---x xD.108902050)1050)(180=⨯--+xx (二、 填空题。

天津市第一中学2022-2023学年数学九年级第一学期期末学业水平测试试题含解析

天津市第一中学2022-2023学年数学九年级第一学期期末学业水平测试试题含解析

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每题4分,共48分)1.若△ABC ∽△ADE ,若AB =9,AC =6,AD =3,则EC 的长是( )A .2B .3C .4D .52.如图,⊙O 的半径OC 垂直于弦AB ,P 是优弧AB 上的一点(不与点A B 、重合),若55BOC ∠=︒,则APC ∠等于( )A .27.5B .25C .22.5D .203.如图,在AOC ∆中,31OA cm OC cm =,=,将△AOC 绕点O 顺时针旋转90后得到BOD ∆,则AC 边在旋转过程中所扫过的图形的面积为( )2cm .A .2πB .2πC .178πD .198π4.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( )A .m ≥1B .m ≤1C .m ≥-1D .m ≤-15.已点A (﹣1,y 1),B (2,y 2)都在反比例函数y =1k x -的图象上,并且y 1<y 2,那么k 的取值范围是( ) A .k >0 B .k >1 C .k <1 D .k ≠16.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为( )A .B .C .D .7.函数1k y x=和2y kx k =-在同一坐标系中的图象大致是( ) A . B . C . D .8.如图,E ,F 分别为矩形ABCD 的边AD ,BC 的中点,若矩形ABCD 与矩形EABF 相似,AB =1,则矩形ABCD 的面积是( )A .4B .2C .3D .29.已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC 的高为 1.6 m ,并测得BC =2.2 m ,CA =0.8 m, 那么树DB 的高度是( )A .6 mB .5.6 mC .5.4 mD .4.4 m10.点A(1,y 1)、B(3,y 2)是反比例函数y =9x 图象上的两点,则y 1、y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能确定11.下列关系式中,y 是x 的反比例函数的是( )A .y=4xB .3y x =C .1y x =-D .21y x =-12.如图,在纸上剪一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径r =1,扇形的半径为R ,扇形的圆心角等于90°,则R 的值是( )A .R =2B .R =3C .R =4D .R =5二、填空题(每题4分,共24分)13.方程x 2=1的解是_____.14.如图,在矩形 ABCD 中,如果 AB =3,AD =4,EF 是对角线 BD 的垂直平分线,分别交 AD ,BC 于 点 EF ,则 ED 的长为____________________________.15.某校七年级共380名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中20名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有______人.16.如图,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 与CB 的延长线上的点E 重合连接CD ,则∠BDC 的度数为_____度.17.一个不透明的口袋中装有5个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,估计口袋中白球有__________个.18.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.三、解答题(共78分)19.(8分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形统计图(如图1)和不完整的扇形图(如图2),其中条形统计图被墨迹遮盖了一部分.(1)求条形统计图中被遮盖的数,并写出册数的中位数;(2)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没有改变,则最多补查了____人.20.(8分)如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=60°,BE=2,求△ABC的周长.21.(8分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.22.(10分)如图,在等边△ABC 中,把△ABC 沿直线MN 翻折,点A 落在线段BC 上的D 点位置(D 不与B 、C 重合),设∠AMN =α.(1)用含α的代数式表示∠MDB 和∠NDC ,并确定的α取值范围;(2)若α=45°,求BD :DC 的值;(3)求证:AM •CN =AN •BD .23.(10分)如图,在ABC ∆中,90,10,6ACB AB AC ︒∠===,正方形DEFG 的顶点D G 、分别在边AC 、BC 上,EF 在边AB 上.(1)点C 到AB 的距离为_________.(2)求DE 的长.24.(10分)(1)解方程:2340x x --=(2)计算:222sin 60cos 602tan 45︒+︒-︒25.(12分)如图,O 的半径为3AB 是O 的直径,F 是O 上一点,连接FO 、FB .C 为劣弧BF 的中点,过点C 作CD AB ⊥,垂足为D ,CD 交FB 于点E ,//CG FB ,交AB 的延长线于点G .(1)求证:CG是O的切线;(2)连接BC,若//BC OF,如图2.①求CE的长;②图中阴影部分的面积等于_________.26.如图所示是某路灯灯架示意图,其中点A表示电灯,AB和BC为灯架,l表示地面,已知AB=2m,BC=5.7m,∠ABC=110°,BC⊥l于点C,求电灯A与地面l的距离.(结果精确到0.1m.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)参考答案一、选择题(每题4分,共48分)1、C【分析】利用相似三角形的性质得,对应边的比相等,求出AE的长,EC=AC-AE,即可计算DE的长;【详解】∵△ABC∽△ADE,∴AB AC AD AE,∵AB=9,AC=6,AD=3,∴AE=2,即EC=AC-AE=6-2=4;故选C.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.2、A【分析】根据题意,⊙O 的半径 O C 垂直于弦 AB ,可应用垂径定理解题, O C 平分弦,平分弦所对的弧、平分弦所对的圆心角,故 55AOC BOC ∠=∠=︒,又根据同一个圆中,同弧所对的圆周角等于其圆心角的一半,可解得27.5APC ∠=︒【详解】 ⊙O 的半径 O C 垂直于弦AB , AC BC ∴=55BOC ∠=︒127.52APC BOC ∴∠=∠=︒ 故选A【点睛】本题考查垂径定理、圆周角与圆心角的关系,熟练掌握相关知识并灵活应用是解题关键.3、B【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式即可求解.【详解】解:AOC BOD ∆∆≌,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积229039012360360πππ⋅⨯⋅⨯=-= 故选B .【点睛】考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题关键.4、C【解析】根据函数解析式可知,开口方向向上,在对称轴的右侧y 随x 的增大而增大,在对称轴的左侧,y 随x 的增大而减小.【详解】解:∵函数的对称轴为x=222b m m a -=-=-,又∵二次函数开口向上,∴在对称轴的右侧y随x的增大而增大,∵x>1时,y随x的增大而增大,∴-m≤1,即m≥-1故选:C.【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.5、B【分析】利用反比例函数的性质即可得出答案.【详解】∵点A(﹣1,y1),B(1.y1)都在反比例函数y=1kx的图象上,并且y1<y1,∴k﹣1>0,∴k>1,故选:B.【点睛】本题考查反比例函数的图象上的点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.6、D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.7、D【解析】试题分析:当k<0时,反比例函数过二、四象限,一次函数过一、二、四象限;当k>0时,反比例函数过一、三象限,一次函数过一、三、四象限.故选D.考点:1.反比例函数的图象;2.一次函数的图象.8、D【分析】根据相似多边形的性质列出比例式,计算即可.【详解】∵矩形ABCD与矩形EABF相似,∴AE ABAB AD=,即121AD=1AD,解得,AD,∴矩形ABCD的面积=AB•AD,故选:D.【点睛】此题主要考查相似多边形,解题的关键是根据相似的定义列出比例式进行求解.9、A【分析】先根据相似三角形的判定定理得出Rt△ACE∽Rt△ABD,再根据相似三角形的对应边成比例即可求出BD的长.【详解】解:∵EC∥AB,BD⊥AB,∴EC∥BD,∠ACE=∠ABD=90°,在Rt△ACE∽Rt△ABD中,∠A=∠A,∠ACE=∠ABD=90°,∴Rt△ACE∽Rt△ABD,∴EC CABD CA BC=+,即1.60.80.8 2.2BD=+,解得BD=6m.故选A.【点睛】本题考查的是相似三角形的应用,用到的知识点为:相似三角形的对应边成比例.10、A【解析】∵反比例函数y=9x中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y₁)、B(3,y₂)都位于第一象限,且1<3,∴y₁>y₂,故选A.11、C【解析】根据反比例函数的定义判断即可.【详解】A、y=4x是正比例函数;B 、y x=3,可以化为y =3x ,是正比例函数; C 、y =﹣1x 是反比例函数; D 、y =x 2﹣1是二次函数;故选C .【点睛】本题考查的是反比例函数的定义,形如y =k x (k 为常数,k≠0)的函数称为反比例函数. 12、C【分析】利用圆锥的底面周长等于侧面展开图的扇形弧长,根据弧长公式计算.【详解】解:扇形的弧长是:90180R π=2R π, 圆的半径r =1,则底面圆的周长是2π, 圆锥的底面周长等于侧面展开图的扇形弧长则得到:2R π=2π, ∴2R =2, 即:R =4,故选C .【点睛】本题主要考查圆锥底面周长与展开扇形弧长关系,解决本题的关键是要熟练掌握圆锥底面周长与展开扇形之间关系.二、填空题(每题4分,共24分)13、±1 【解析】方程利用平方根定义开方求出解即可.【详解】∵x 2=1∴x =±1. 【点睛】本题考查直接开平方法解一元二次方程,解题关键是熟练掌握一元二次方程的解法.14、258【分析】连接EB ,构造直角三角形,设AE 为x ,则4DE BE x ==-,利用勾股定理得到有关x 的一元一次方程,即可求出ED 的长.【详解】连接EB ,∵EF 垂直平分BD ,∴ED=EB ,设AE x =,则4ED EB x ==-,在Rt △AEB 中,222AE AB BE +=,即:()22234x x +=-, 解得:78x =. ∴725488ED EB ==-=, 故答案为:258. 【点睛】 本题考查了矩形的性质,线段的垂直平分线的性质和勾股定理,正确根据勾股定理列出方程是解题的关键. 15、152.【解析】随机抽取的50名学生的成绩是一个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校七年级学生在这次数学测试中达到优秀的人数.【详解】随机抽取了50名学生的成绩进行统计,共有20名学生成绩达到优秀,∴样本优秀率为:20÷50=40%, 又∵某校七年级共380名学生参加数学测试,∴该校七年级学生在这次数学测试中达到优秀的人数为:380×40%=152人. 故答案为:152.【点睛】本题考查了用样本估计总体,解题的关键是求样本的优秀率.16、1【分析】根据△EBD 由△ABC 旋转而成,得到△ABC ≌△EBD ,则BC =BD ,∠EBD =∠ABC =30°,则有∠BDC =∠BCD ,∠DBC =180﹣30°=10°,化简计算即可得出15BDC ∠=︒.【详解】解:∵△EBD 由△ABC 旋转而成,∴△ABC ≌△EBD ,∴BC =BD ,∠EBD =∠ABC =30°,∴∠BDC =∠BCD ,∠DBC =180﹣30°=10°, ∴()1180150152BDC BCD ∠=∠=︒-︒=︒; 故答案为1.【点睛】此题考查旋转的性质,即图形旋转后与原图形全等.17、15【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x 个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%, ∴5154x =+, 解得x=15,检验:x=15是原方程的根,∴白球的个数为15个,故答案为:15.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出和分式方程的解法解题关键.18、y =1(x ﹣3)1﹣1.【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =1x 1的图象先向右平移3个单位长度,再向下平移1个单位长度得到新函数的图象,得 新函数的表达式是y =1(x ﹣3)1﹣1,故答案为y =1(x ﹣3)1﹣1.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.三、解答题(共78分)19、 (1)被遮盖的数是9,中位数为5;(2)1.【分析】(1)用读书为6册的人数除以它所占的百分比得到调查的总人数,再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,然后根据中位数的定义求册数的中位数;(2)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.【详解】解:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24-5-6-4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了1人.故答案为1.【点睛】本题考查了统计图和中位数,解题的关键是明确题意,找出所求问题需要的条件.20、(1)证明见解析;(2)1.【解析】试题分析:(1)根据DE ⊥AB ,DF ⊥AC ,AB=AC ,求证∠B=∠C .再利用D 是BC 的中点,求证△BED ≌△CFD即可得出结论.(2)根据AB=AC ,∠A=60°,得出△ABC 为等边三角形.然后求出∠BDE=30°,再根据题目中给出的已知条件即可算出△ABC 的周长.试题解析:(1)∵DE ⊥AB ,DF ⊥AC ,∴∠BED=∠CFD=90°,∵AB=AC ,∴∠B=∠C (等边对等角).∵D 是BC 的中点,∴BD=CD .在△BED 和△CFD 中,{BED CFDB CBD CD ∠=∠∠=∠=,∴△BED ≌△CFD (AAS ).∴DE=DF(2)∵AB=AC ,∠A=60°,∴△ABC 为等边三角形.∴∠B=60°,∵∠BED=90°,∴∠BDE=30°,∴BE=12BD ,∵BE=2,∴BD=4,∴BC=2BD=8,∴△ABC的周长为1.考点:全等三角形的判定与性质.21、(1)抛物线的解析式为:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F 的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).解得:,∴抛物线的解析式为:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴抛物线的对称轴是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x轴于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)当y=0时,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+1.如图1,过点C作CM⊥EF于M,设E(a,﹣a+1),F(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1时,S四边形CDBF的面积最大=,∴E(1,1).考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值22、(1)∠MDB==2α﹣60°,∠NDC=180°﹣2α,(30°<α<90°);(23;(3)见解析【分析】(1)利用翻折不变性,三角形内角和定理求解即可解决问题.(2)设BM=x.解直角三角形用x表示BD,CD即可解决问题.(3)证明△BDM∽△CND,推出DMND=BDCN,推出DM•CN=DN•BD可得结论.【详解】(1)由翻折的性质可知∠AMN=∠DMN=α,∵∠AMB=∠B+∠MDB,∠B=60°,∴∠MDB=2α﹣60°,∠NDC=180°﹣∠MDB﹣∠MDN=180°﹣(2α﹣60°)﹣60°=180°﹣2α,(30°<α<90°)(2)设BM=x.∵α=45°,∴∠AMD=90°,∴∠BMD=90°,∵∠B=60°,∴∠BDM=30°,∴BD=2x,DN=BD•cos30°3,∴MA=MD3,∴BC=AB=x3,∴CD=BC﹣BD3﹣x,∴BD :CD =2x :(3x ﹣x )=3+1. (3)∵∠BDN =∠BDM +∠MDN =∠C +∠DNC ,∠MDN =∠A =∠C =60°,∴∠BDM =∠DNC , ∵∠B =∠C ,∴△BDM ∽△CND ,∴DM ND =BD CN, ∴DM •CN =DN •BD ,∵DM =AM ,ND =AN ,∴AM •CN =AN •BD .【点睛】本题考查了翻折变换、解直角三角形以及相似三角形的判定与性质,熟练掌握折叠的性质是解题的关键.23、(1)245;(2)12037【分析】(1)根据勾股定理即可得出BC=8,再运用等面积法,即可得出答案.(2)根据正方形的性质,即可得出//DG AB ,再根据相似三角形的判定可得出CDG CAB ∆∆,进而得出::DG AB CN CM =,设x 得出方程进行求解即可.【详解】解:(1)∵90,10,6ACB AB AC ︒∠===∴BC=8∴ABC S ∆ =1682⨯⨯ =24 ∴110h=242⨯⨯ ∴点C 到AB 的距离是245. (2)如图,过点C 作CM AB ⊥于点M ,交DG 于点N ,∵四边形DEFG 是正方形,∴//DG AB ,∴,MN DE CN DG =⊥,∴CDG CAB ∆∆,∴::DG AB CN CM =.设DE DG x ==,则2424:10:55x x ⎛⎫=- ⎪⎝⎭, 解得12037x =∴DE 的长为12037. 【点睛】本题主要考察了勾股定理和相似三角形,正确找出三角形的线段关系和灵活运用等面积法是解题的关键.24、(1)121,4x x =-=;(2)-1【分析】(1)方程因式分解后即可求出解;(2)原式利用特殊角的三角函数值计算,即可得到结果.【详解】(1)()()2x 3x 4x 4x 10--=-+=, ()()x 40x 10-=+=或,x 4x 1==-所以,解得或;(2)22231sin 60cos 602tan 452144︒+︒-︒=+-⨯=1-2=-1 【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.25、(1)见解析;(2)①2CE =,②2S π=阴.【分析】(1)连接OC ,利用等腰三角形三线合一的性质证得OC ⊥BF ,再根据CG ∥FB 即可证得结论; (2)①根据已知条件易证得OBC 是等边三角形,利用三角函数可求得CD 的长,根据三角形重心的性质即可求得答案;②易证得OBC FBC S S =,利用扇形的面积公式即可求得答案.【详解】(1)连接CO . C 是BF 的中点,BOC FOC ∴∠=∠.又OF OB =,OC BF ∴⊥.//CG FB ,OC CG ∴⊥.CG ∴是O 的切线.(2)①//OF CB ,∴FOC OCB ∠=∠.OC OB =,BOC FOC ∠=∠60AOF COF BOC ∴∠=∠=∠=︒.∴OBC 是等边三角形.CD OB ⊥,OC BF ⊥,又O 的半径为23在Rt OCD 中,3sin sin 60233CD OC COD OC ∠==︒=⨯=, ∵BF ⊥OC ,CD ⊥OB ,BF 与CD 相交于E ,点E 是等边三角形OBC 的垂心,也是重心和内心,∴223CE CD ==. ②∵AF ∥BC ,∴OBC FBC S S =∴(260232360OBC S S ππ⨯⨯===阴扇形.【点睛】要题考查了等腰三角形的性质,等边三角形的判定和性质,三角函数的知识,扇形的面积公式,根据三角形重心的性质求得CE的长是解题的关键.26、电灯A距离地面l的高度为6.4米.【分析】过A作AD⊥l,过B作BE⊥AD于E,则DE=BC=5.7m,解直角三角形即可得到结论.【详解】解:过A作AD⊥l,过B作BE⊥AD于E,则DE=BC=5.7m,∵∠ABC=110°,∴∠ABE=20°,∴∠A=70°,∴sin20°=AEAB=AE2=0.34,解得:AE=0.68,∴AD=AE+DE≈6.4;答:电灯A距离地面l的高度为6.4米.【点睛】考核知识点:解直角三角形应用.构造直角三角形,解直角三角形是关键.。

2022-2023学年福州市重点中学九年级数学第一学期期末学业质量监测试题含解析

2022-2023学年福州市重点中学九年级数学第一学期期末学业质量监测试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题4分,共48分)1.下列事件的概率,与“任意选2个人,恰好同月过生日”这一事件的概率相等的是( )A .任意选2个人,恰好生肖相同B .任意选2个人,恰好同一天过生日C .任意掷2枚骰子,恰好朝上的点数相同D .任意掷2枚硬币,恰好朝上的一面相同2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .3.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( )A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+34.已知菱形的周长为40 cm ,两对角线长度比为3:4,则对角线长分别为( )A .12 cm .16 cmB .6 cm ,8 cmC .3 cm ,4 cmD .24 cm ,32 cm5.已知反比例函数3m y x -=的图象在二、四象限,则m 的取值范围是( ) A .3m ≥ B .3m >C .3m ≤D .3m < 6.下列不是中心对称图形的是( )A .B .C .D .7.抛物线y =ax 2+bx +c (a ≠1)如图所示,下列结论:①abc <1;②点(﹣3,y 1),(1,y 2)都在抛物线上,则有y 1>y 2;③b 2>(a +c )2;④2a ﹣b <1.正确的结论有( )A .4个B .3个C .2个D .1个8.一元二次方程mx 2+mx ﹣12=0有两个相等实数根,则m 的值为( ) A .0 B .0或﹣2C .﹣2D .2 9.下列运算正确的是( )A .x 6÷x 3=x 2B .(x 3)2=x 5C .2(2)2-=±D .33(2)2-=-10.如图,△ABC 内接于⊙O ,∠ABC=71°,∠CAB=53°,点D 在AC 弧上,则∠ADB 的大小为A .46°B .53°C .56°D .71°11.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,则在下列五个条件中:①∠AED =∠B ;②DE ∥BC ;③AD AC =AE AB;④AD ·BC =DE ·AC ;⑤∠ADE =∠C ,能满足△ADE ∽△ACB 的条件有( )A .1个B .2C .3个D .4个12.抛物线y=x 2+2x ﹣3的最小值是( )A .3B .﹣3C .4D .﹣4二、填空题(每题4分,共24分)13.如图,ABC 是等腰直角三角形,ACB 90∠=,以BC 为边向外作等边三角形BCD ,CE AB ⊥,连接AD 交CE 于点F ,交BC 于点G ,过点C 作CH AD ⊥交AB 于点H.下列结论:CF CG =①;CFG ②∽DBG ;()CF 31EF =-③;tan CDA 2 3.∠=-④则正确的结论是______.(填序号)14.若两个相似三角形的面积比是9:25,则对应边上的中线的比为 _________.15.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题(每题5分,共45分)1.(5分)下列新冠疫情防控标识图案中,中心对称图形是( )A.B.C.D.2.(5分)下列为一元二次方程的是( )A.02=+-c bx axB.0232=-+x x C.01322=+-x x D.0222=+y x3.(5分)已知关于x 的一元二次方程x m x 442=-有两个不相等的实数根,则m 的取值范围是( )A.1->mB.2<mC.0≥mD.0<m4.(5分)方程0)3)(2(=+-x x 的解是( )A.2=xB.3-=xC.3,221==x xD.3,221-==x x 5.(5分)如图,AB 是☉O 的弦,点C 在圆上,已知∠AOB=100°,则∠C=( )A.40°B.50°C.60°D.80°6.(5分)抛物线2)4(32++=x y 的顶点坐标是( ) A.(2,4) B.(2,-4) C.(4,2) D.(-4,-2)7.(5分)目前我国已建立了比较完善的经济困难学生资助体系.某校前年发放给每个经济困难学生389元,今年发放了438元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A.438)13892=+x (B.389)14382=+x (C.438)21389=+x (D.389)21438=+x (8.(5分)对于二次函数2)1(2+-=x y 的图像,下列说法正确的是( ) A.开口向下B.对称轴是直线1-=xC.顶点坐标是(1,2)D.当1>x 时,y 随x 的增大而减小9.(5分)当0>ab 时,2ax y =与b ax y +=的图象大致是( )A. B. C. D.二、 填空题 (每题 5 分 ,共30分 )10.(5分)点A(-2,3)关于原点对称的点的坐标是________.11.(5分)已知关于x 的方程0322=++k x x 的一个根是-1,则k=________. 12.(5分)如图,四边形ABCD 为☉O 的内接四边形,已知∠BOD=100°,则∠BCD 的度数为____.13.(5分)一个不透明袋子中装有10个球,其中有5个红球,3个白球,2个黑球,这些球除颜色外无其它差别,从袋子中随机取出个球,则它是白球的概率是________.14.(5分)若562)1(--+=m m x m y 是二次函数,则m=________.第3页,共14页第4页,共14页装订线内不许答题15.(5分)如图,抛物线与x 轴交于点A(-1,0),顶点坐标(1,n),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论正确的有________.(填编号)①03<b a +;②134-≤≤-a ;③对于任意实数m ,bm am b a +≥+2恒成立;④关于x 的方程12+=++n c bx ax 有两个相等的实数根.三、 解答题 (本题共计 8 小题 ,共计75分 )16. (8分) 解方程:(1)033(=-+-x x x ); (2)0142=--x x . 17. (7分) 关于x 的方程0232=+-m x x 的一个根为-1,求方程的另一个根及m 的值.18. (8分) 如图所示,每个小正方形的边长为1个单位长度,作出△ABC 关于原点对称的图形△A 1B 1C 1,并写出A 1,B 1,C 1的坐标.19. (10分) 如图,某小区规划在一个长为40米、宽为26米的矩形场地ABCD 上修建三条同样宽度的马路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积都是144m 2,求马路的宽.第5页,共4页 第6页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(10分) 为了解长垣市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)此次调查中接受调查的人数为________人; (2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分) 如图,在△ABC 中,点O 是AB 边上一点,OB=OC,∠B=30°,过点A 的 ☉O 切BC 于点D ,CO 平分∠ACB .(1)求证:AC 是☉O 的切线; (2)若BC=12,求☉O 的半径长;(3)在(2)的条件下,求阴影部分的面积.22. (10分) 某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件.现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价0.1元,其销售量就要减少1件,问涨价多少元时,才能使每天所赚的利润达到360元?23.(12分) 如图,在平面直角坐标系中,抛物线422++=ax ax y 与x 轴交于点 A(-4,0),B(2,0),与y 轴交于点C .经过点B 的直线b kx y +=与y 轴交于点D(0,2),与抛物线交于点E .(1)求抛物线的解析式及点C 的坐标;(2)若点P 为抛物线的对称轴上的动点,当△AEP 的周长最小时,求点P 的坐标; (3)若点M 是直线BE 上的动点,过M 作MN ∥y 轴交抛物线于点N ,判断是否存在点M ,使以点M 、N ,C ,D 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.第7页,共14页 第8页,共14页装订线内不许答题2022-2023学年第一学期期末质量监测试卷答案九年级 数学学科一、选择题(每题5分,共45分)1.A2.C3.A4.D5.B6.D7.A8.C9.D二、 填空题 (每题 5 分 ,共30分 )10.(2,-3) 11.2± 12.130° 13.10314. 7 15.①②③三、 解答题 (本题共计 8 小题 ,共计75分 )16.解:(1)0)3()3(=-+-x x x分解因式得:0)1)(3=+-x x (————————2分 可得03=-x 或01=+x解得:1,321-==x x ————————4分 (2)5142=--x x移项得:642=-x x ————————1分配方法得:10442=+-x x 即10)22=-x (————————2分 开方得:102±=-x解得:10210221-=+=x x , ————————4分 17.解:把 代入方程,得,解得,————————3分设方程的另一个根为,则,————————5分所以,即方程的另一个根为.————————7分18.解:关于原点的对称图形如图,————————5分根据图形可知:,,.————————8分19.解:设马路的宽为米 ————————1分依题意可列方程————————4分整理得 ————————6分 解得,(舍去) ————————9分答:马路的宽为2米.————————10分第9页,共4页第10页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(1)∵非常满意的有18人,占,∴此次调查中接受调查的人数:(人).故答案为:50 ————————2分 (2)此次调查中结果为满意的人数为:(人)补全条形统计图如下:————————4分(3)144 ————————6分 (4)画树状图:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:. ————————10分21.(1)证明:∵∴又∵ 平分∴ ∴∴∴是的切线. ————————3分(2)解:如图,连接,设交于点,设半径为r .∵ 切于点, ∴.又∵,, ∴AC=6,,由勾股定理得AB=36∴ 在直角三角形OCD 中,由勾股定理得 r 2+62=(36-r)2解得 r=32 ————————6分 (3)解:∵, ∴————————10分第11页,共14页 第12页,共14页装订线内不许答题22.解:设涨价元时,才能使每天所赚的利润达到元. ————————1分————————4分 ,, ————————7分 解得. ————————9分答:涨价元时,才能使每天所赚的利润达到元. ————————10分23.解:(1),点的坐标为————————4分(2)如图,由,可得对称轴为.∵ 的边是定长,∴ 当的值最小时,的周长最小.点关于的对称点为点,∴ 当点是与直线的交点时,的 值最小. ∵ 直线经过点∴ ’解得∴ 直线:令,得,∴ 当的周长最小时,点的坐标为————————8分(3)存在.点的坐标为或————————12分第13页,共4页 第14页,共4页…………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………点场号名座位号。

相关文档
最新文档