常用离散、连续型随机变量的均值与方差
离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
高中数学中的概率统计计算期望与方差的技巧
高中数学中的概率统计计算期望与方差的技巧概率统计是高中数学中的重要内容,计算期望与方差是其中的关键技巧。
本文将介绍几种常见的计算期望与方差的技巧,以帮助读者更好地理解和应用这些知识。
一、离散型随机变量的期望与方差计算对于离散型随机变量X,其概率分布列为P(X=x),而期望和方差的计算公式如下:1. 期望计算期望E(X)表示随机变量X的平均值,计算公式为:E(X) = Σ[x * P(X=x)]其中,Σ表示对所有可能取值的求和。
通过遍历所有可能取值,将取值与其对应的概率相乘,再求和,即可得到期望值。
2. 方差计算方差Var(X)表示随机变量X的离散程度,计算公式为:Var(X) = Σ[(x - E(X))^2 * P(X=x)]同样,通过遍历所有可能取值,将每个取值减去期望值,再平方,再与其对应的概率相乘,最后再求和,即可得到方差值。
这种计算方法适用于离散型随机变量的期望和方差计算,例如投掷一枚骰子的结果、抽取一副扑克牌的点数等情况。
二、连续型随机变量的期望与方差计算对于连续型随机变量X,其概率密度函数为f(x),而期望和方差的计算公式如下:1. 期望计算期望E(X)的计算公式为:E(X) = ∫(x * f(x))dx其中,∫表示对整个定义域的积分。
通过对概率密度函数乘以x后再积分,即可得到期望值。
2. 方差计算方差Var(X)的计算公式为:Var(X) = ∫[(x - E(X))^2 * f(x)]dx同样,通过对概率密度函数乘以(x - E(X))的平方后再积分,即可得到方差值。
这种计算方法适用于连续型随机变量的期望和方差计算,例如正态分布、指数分布等情况。
三、应用技巧下面将介绍一些计算期望与方差时的常用技巧:1. 期望的线性性质如果X和Y是两个随机变量,a和b为常数,则有:E(aX + bY) = aE(X) + bE(Y)这是期望的线性性质,利用这个性质可以简化复杂随机变量的期望计算。
离散型随机变量的均值与方差
解 (1)甲、乙、丙三名学生每人选择五个社团的方
法数是5种,故共有5×5×5=125(种).
(2)三名学生选择三个不同社团的概率是
A
3 5
53
12 . 25
∴三名学生中至少有两人选择同一个社团的概率为
1 12 13 . 25 25
解 (1)ξ的所有可能取值有6,2,1,-2.
P( 6) 126 0.63, P( 2) 50 0.25,
200
200
P( 1) 20 0.1, P( 2) 4 0.02.
200
200
故ξ的分布列为
6
2
1
-2
P 0.63 0.25 0.1 0.02
(2)E(ξ)=6×0.63+2×0.25+1×0.1+(-2)×0.02
125 125 125 125 5
题型二 均值与方差性质的应用
【例2】设随机变量ξ具有分布P(ξ=k)= 1 , k=1,2,3,
5
4,5,求E(ξ+2)2,D(2ξ-1), D( 1).
思维启迪 利用性质E(aξ+b)=aE(ξ)+b,
D(aξ+b)=a2D(ξ).
解 ∵ E( ) 1 1 2 1 3 1 4 1 5 1 15 3.
9 16
X ~ B(3, 1), D(X ) 3 1 3 9 .
4
4 4 16
题型分类 深度剖析
题型一 离散型随机变量的均值与方差的求法 【例1】 (2009·湖南理,17)为拉动经济增长,某市决
定新建一批重点工程,分为基础设施工程、民生工程 和产业建设工程三类,这三类工程所含项目的个数分 别占总数的 1 , 1 , 1 , 现有3名工人独立地从中任选一
离散型随机变量的均值、方差和正态分布
10.9 离散型随机变量的均值、方差和正态分布[知识梳理]1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)D (X )=∑i =1n(x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差.2.均值与方差的性质 (1)E (aX +b )=aE (X )+b ;(2)D (aX +b )=a 2D(X )(a ,b为常数).3.两点分布与二项分布的均值、方差4.正态曲线(1)正态曲线的定义 函数φμ,σ(x )=12π·σe -(x -μ)22σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,称φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线(μ是正态分布的期望,σ是正态分布的标准差).(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移; ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“高瘦”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.5.正态分布(1)正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x (即x=a ,x =b ,正态曲线及x 轴围成的曲边梯形的面积),则称随机变量X 服从正态分布,记作X ~N (μ,σ2).(2)正态分布的三个常用数据 ①P (μ-σ<X <μ+σ)=0.6826; ②P (μ-2σ<X <μ+2σ)=0.9544; ③P (μ-3σ<X <μ+3σ)=0.9974.[诊断自测] 1.概念思辨(1)随机变量不可以是负数,随机变量所对应的概率可以是负数,随机变量的均值不可以是负数.( )(2)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.( )(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小. ( )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )答案 (1)× (2)√ (3)√ (4)√2.教材衍化(1)(选修A2-3P 68T 1)已知X 的分布列为设Y =2X +3,则E (Y )的值为( ) A.73 B .4 C .-1 D .1 答案 A解析 E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.故选A. (2)(选修A2-3P 75A 组T 1)正态分布密度函数为 φμ,σ(x )=18πe -x 28,x ∈(-∞,+∞),则总体的平均数和标准差分别为()A .0和8B .0和4C .0和2D .0和 2答案 C解析 根据已知条件可知μ=0,σ=2,故选C.3.小题热身(1)(2015·山东高考)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74% 答案 B解析 P (-3<ξ<3)=68.26%,P (-6<ξ<6)=95.44%,则P (3<ξ<6)=12×(95.44%-68.26%)=13.59%.故选B.(2)(2018·张掖检测)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=( )A.126125B.65C.168125D.75 答案 B解析 设涂0个面的小正方体有x 个,涂1个面的小正方体有y 个,涂2个面的小正方体有z 个,涂3个面的小正方体有w 个,则有0·x +1·y +2·z +3·w =25×6=150,所以E (X )=0·x 125+1·y 125+2·z125+3·w 125=150125=65.故选B.题型1 与二项分布有关的期望与方差典例(2017·山西太原模拟)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1.抽奖方案有以下两种,方案a :从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案b :从装有3个红球、2个白球(仅颜色不同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件:顾客购买商品的金额满100元,可根据方案a 抽奖一次;满150元,可根据方案b 抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a 抽奖两次或方案b 抽奖一次或方案a 、b 各抽奖一次).已知顾客A 在该商场购买商品的金额为350元.(1)若顾客A 只选择方案a 进行抽奖,求其所获奖金的期望; (2)要使所获奖金的期望值最大,顾客A 应如何抽奖?解 (1)按方案a 抽奖一次,获得奖金的概率P =C 22C 25=110.顾客A 只选择方案a 进行抽奖,则其可以按方案a 抽奖三次. 此时中奖次数服从二项分布B ⎝ ⎛⎭⎪⎫3,110.设所得奖金为w 1元,则E (w 1)=3×110×30=9. 即顾客A 所奖资金的期望为9元.(2)按方案b 抽奖一次,获得奖金的概率P 1=C 23C 25=310.若顾客A 按方案a 抽奖两次,按方案b 抽奖一次,则由方案a 中奖的次数服从二项分布B 1⎝⎛⎭⎪⎫2,110,由方案b 中奖的次数服从二项分布B 2⎝⎛⎭⎪⎫1,310,设所得奖金为w 2元,则E (w 2)=2×110×30+1×310×15=10.5. 若顾客A 按方案b 抽奖两次,则中奖的次数服从二项分布B 3⎝⎛⎭⎪⎫2,310.设所得奖金为w3元,则E(w3)=2×310×15=9.结合(1)可知,E(w1)=E(w3)<E(w2).所以顾客A应该按方案a抽奖两次,按方案b抽奖一次.方法技巧与二项分布有关的期望、方差的求法1.求随机变量ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B(n,p),则用公式E(ξ)=np,D(ξ)=np(1-p)求解,可大大减少计算量.2.有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E(aξ+b)=aE(ξ)+b以及E(ξ)=np求出E(aξ+b),同样还可求出D(aξ+b).冲关针对训练(2014·辽宁高考)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108. (2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03·(1-0.6)3=0.064, P (X =1)=C 13·0.6(1-0.6)2=0.288, P (X =2)=C 23·0.62(1-0.6)=0.432, P (X =3)=C 33·0.63=0.216.分布列为因为X ~B (3,0.6),所以期望E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1-0.6)=0.72.题型2 离散型随机变量的均值与方差角度1 求离散型随机变量的均值与方差典例(2016·山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D ,由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×( 14×23×34×23+34×13×34×23 )=23.所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×( 34×13×14×13+14×23×14×13 )=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×( 34×23×34×13+34×23×14×23 )=60144=512,P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236. 角度2 均值与方差的应用问题典例(2016·全国卷Ⅰ)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.可知X的所有可能取值为16、17、18、19、20、21、22,P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n =19.方法技巧1.求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ可能的全部值.(2)求ξ取每个值的概率.(3)写出ξ的分布列.(4)由均值的定义求E(ξ).(5)由方差的定义求D(ξ).2.由均值与方差情况求参数问题的求解思路先根据题设条件将均值、方差用待求参数表示,再由已知均值与方差构建关于参数的方程(组),然后求解.3.利用均值、方差进行决策的方法:均值能够反映随机变量取值的“平均水平”,因此,当均值不同时,两个随机变量取值的水平可见分晓,由此可对实际问题作出决策判断;若两个随机变量均值相同或相差不大,则可通过分析两个变量的方差来研究随机变量的离散程度或者稳定程度,方差越小,则偏离均值的平均程度越小,进而进行决策.提醒:均值E(X)由X的分布列唯一确定,即X作为随机变量是可变的,而E(X)是不变的,它描述X值的取值的平均水平.冲关针对训练(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?解(1)由题意知,X所有可能取值为200,300,500,由表格数据知P(X=200)=2+1690=0.2,P(X=300)=3690=0.4,P(X=500)=25+7+490=0.4.因此X的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n≤500.当300≤n≤500时,若最高气温不低于25,则Y=6n-4n=2n;若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此E(Y)=2n×0.4+(1200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n,因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以n=300时,Y的数学期望达到最大值,最大值为520元.题型3正态分布典例(2015·湖南高考)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为() (附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544) A.2386 B.2718 C.3413 D.4772答案 C解析由曲线C为正态分布N(0,1)的密度曲线可知题图中阴影部分的面积为P(0<X≤1)=12×0.6826=0.3413,又题图中正方形面积为1,故它们的比值为0.3413,故落入阴影部分的点的个数的估计值为0.3413×10000=3413.故选C.[条件探究]若将本典例中条件“曲线C为正态分布N(0,1)的密度曲线”变为“曲线C为正态分布N(-1,1)的密度曲线”,则结果如何?解对于正态分布N(-1,1),可知μ=-1,σ=1,正态曲线关于直线x=-1对称,故题图中阴影部分的面积为12×[P(-3<X≤1)-P(-2<X≤0)]=12×[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)]=12×(0.9544-0.6826)=0.1359,所以点落入题图中阴影部分的概率P=0.13591=0.1359,投入10000个点,落入阴影部分的个数约为10000×0.1359=1359.方法技巧正态分布下两类常见的概率计算1.利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,曲线与x轴之间的面积为1.2.利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.冲关针对训练(2014·全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z≤μ+σ)=0.6826,P(μ-2σ<Z≤μ+2σ)=0.9544.解(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.6826.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826, 依题意知X ~B (100,0.6826),所以E (X )=100×0.6826=68.26.1.(2017·浙江高考)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1-p i ,i =1,2.若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2) D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2) 答案 A解析 ∵E (ξ1)=0×(1-p 1)+1×p 1=p 1, 同理,E (ξ2)=p 2,又0<p 1<p 2, ∴E (ξ1)<E (ξ2).D (ξ1)=(0-p 1)2(1-p 1)+(1-p 1)2·p 1=p 1-p 21,同理,D (ξ2)=p 2-p 22.D (ξ1)-D (ξ2)=p 1-p 2-(p 21-p 22)=(p 1-p 2)(1-p 1-p 2).∵0<p 1<p 2<12,∴1-p 1-p 2>0, ∴(p 1-p 2)(1-p 1-p 2)<0. ∴D (ξ1)<D (ξ2).故选A.2.(2015·湖北高考)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D .对任意正数t ,P (X ≥t )≥P (Y ≥t ) 答案 C解析 由题图可知μ1<0<μ2,σ1<σ2,∴P (Y ≥μ2)<P (Y ≥μ1),故A 错误;P (X ≤σ2)>P (X ≤σ1),故B 错误;当t 为任意正数时,由题图可知P (X ≤t )≥P (Y ≤t ),而P (X ≤t )=1-P (X ≥t ),P (Y ≤t )=1-P (Y ≥t ),∴P (X ≥t )≤P (Y ≥t ),故C 正确,D 错误.故选C.3.(2018·安徽模拟)某小区有1000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%,P (μ-3σ<ξ≤μ+3σ)=99.74%)A .17B .23C .34D .46 答案 B解析 P (ξ>320)=12×[1-P (280<ξ≤320)] =12×(1-95.44%)=0.0228, 0.0228×1000=22.8≈23,∴用电量在320度以上的户数约为23.故选B.4.(2017·全国卷Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)=________.答案 1.96解析由题意得X~B(100,0.02),∴D(X)=100×0.02×(1-0.02)=1.96.[重点保分 两级优选练]A 级一、选择题1.已知ξ的分布列为则在下列式中:①E (ξ)=-13;②D (ξ)=2327;③P (ξ=0)=13.正确的个数是( ) A .0 B .1 C .2 D .3 答案 C解析 E (ξ)=(-1)×12+1×16=-13,故①正确.D (ξ)=⎝⎛⎭⎪⎫-1+132×12+⎝⎛⎭⎪⎫0+132×13+⎝⎛⎭⎪⎫1+132×16=59,故②不正确.由分布列知③正确.故选C.2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6答案 B解析 由已知随机变量X +Y =8,所以Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.故选B.3.(2018·广东茂名模拟)若离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .2 B .2或12 C.12 D .1 答案 C解析 因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a = -2(舍去)或a =1,所以E (X )=12.故选C.4.(2017·青岛质检)设随机变量ξ服从正态分布N (1,σ2),则函数f (x )=x 2+2x +ξ不存在零点的概率为( )A.12B.23C.34D.45 答案 A解析 函数f (x )=x 2+2x +ξ不存在零点的条件是 Δ=22-4×1×ξ<0,解得ξ>1.又ξ~N (1,σ2),所以P (ξ>1)=12,即所求事件的概率为12.故选A.5.(2018·山东聊城重点中学联考)已知服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校为高一年级1000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布(165,52),则适合身高在155~175 cm 范围内的校服大约要定制( )A .683套B .954套C .972套D .997套 答案 B解析 P (155<ξ<175)=P (165-5×2<ξ<165+5×2)=P (μ-2σ<ξ<μ+2σ)=95.4%.因此服装大约定制1000×95.4%=954套.故选B.6.(2018·皖南十校联考)在某市1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市理科学生约9450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第多少名?( )A .1500B .1700C .4500D .8000 答案 A解析 因为学生的数学成绩X ~N (98,100),所以P (X ≥108)=12[1-P (88<X <108)]=12[1-P (μ-σ<X <μ+σ)]=12(1-0.6826)=0.1587,故该学生的数学成绩大约排在全市第0.1587×9450≈1500名,故选A.7.(2017·银川一中一模)一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,(a ,b ,c ∈(0,1)),已知他投篮得分的数学期望是2,则2a +13b 的最小值为( )A.323B.283C.143D.163 答案 D解析 由数学期望的定义可知3a +2b =2,所以2a +13b =12(3a +2b )·⎝ ⎛⎭⎪⎫2a +13b =12( 6+23+4b a +a b )≥12⎝ ⎛⎭⎪⎫6+23+4=163,当且仅当4b a =a b 即a =12,b =14时取得等号.故选D.8.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73 C .3 D.113 答案 C 解析 由已知得⎩⎪⎨⎪⎧x 1·23+x 2·13=43,⎝ ⎛⎭⎪⎫x 1-432·23+⎝ ⎛⎭⎪⎫x 2-432·13=29,解得⎩⎪⎨⎪⎧x 1=53,x 2=23或⎩⎪⎨⎪⎧x 1=1,x 2=2. 又∵x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1,x 2=2,∴x 1+x 2=3.故选C.9.(2018·广州调研)已知随机变量x 服从正态分布N (μ,σ2),且P (μ-2σ<x ≤μ+2σ)=0.9544,P (μ-σ<x ≤μ+σ)=0.6826,若μ=4,σ=1,则P (5<x <6)等于( )A .0.1358B .0.1359C .0.2716D .0.2718 答案 B解析 由题知x ~N (4,1),作出相应的正态曲线,如图,依题意P (2<x ≤6)=0.9544,P (3<x ≤5)=0.6826,即曲边梯形ABCD 的面积为0.9544,曲边梯形EFGH 的面积为0.6826,其中A ,E ,F ,B 的横坐标分别是2,3,5,6,由曲线关于直线x =4对称,可知曲边梯形FBCG 的面积为0.9544-0.68262=0.1359,即P (5<x <6)=0.1359,故选B.10.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,712B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫712,1D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 根据题意,学生一次发球成功的概率为p ,即P (X =1)=p ,发球二次的概率P (X =2)=p (1-p ),发球三次的概率P (X =3)=(1-p )2,则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12.故选B. 二、填空题11.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=______.答案 53解析 ∵P (X =0)=13×(1-p )2=112,∴p =12. 则P (X =1)=23×12×12+13×12×12×2=412=13, P (X =2)=23×12×12×2+13×12×12=512, P (X =3)=23×12×12=16.则E (X )=0×112+1×13+2×512+3×16=53.12.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N (100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生约有________人.答案 100解析 ∵数学考试成绩ξ~N (100,σ2),作出正态分布图象,可能看出,图象关于直线x =100对称.显然P (80≤ξ≤100)=P (100≤ξ≤120)=13;∴P (ξ≤80)=P (ξ≥120).又∵P (ξ≤80)+P (ξ≥120)=1-P (80≤ξ≤100)-P (100≤ξ≤120)=13,∴P (ξ≥120)=12×13=16.∴成绩不低于120分的学生约为600×16=100人.13.(2018·沧州七校联考)2017年中国汽车销售量达到1700万辆,汽车耗油量对汽车的销售有着非常重要的影响,各个汽车制造企业积极采用新技术降低耗油量,某汽车制造公司为调查某种型号的汽车的耗油情况,共抽查了1200名车主,据统计该种型号的汽车的平均耗油为百公里8.0升,并且汽车的耗油量ξ服从正态分布N (8,σ2),已知耗油量ξ∈[7,9]的概率为0.7,那么耗油量大于9升的汽车大约有________辆.答案 180解析 由题意可知ξ~N (8,σ2),故正态分布曲线以μ=8为对称轴.又因为P (7≤ξ≤9)=0.7,故P (7≤ξ≤9)=2P (8≤ξ≤9)=0.7,所以P (8≤ξ≤9)=0.35.而P (ξ≥8)=0.5,所以P (ξ>9)=0.15.故耗油量大于9升的汽车大约有1200×0.15 =180辆.14.(2017·安徽蚌埠模拟)赌博有陷阱.某种赌博游戏每局的规则是:参与者从标有5,6,7,8,9的小球中随机摸取一个(除数字不同外,其余均相同),将小球上的数字作为其赌金(单位:元),然后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其奖金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与奖金,则E (ξ)-E (η)=________元.答案 3解析 ξ的分布列为E (ξ)=15×(5+6+7+8+9)=7(元). η的分布列为E (η)=2×25+4×310+6×15+8×110=4(元), ∴E (ξ)-E (η)=7-4=3(元).故答案为3.B 级三、解答题15.(2018·湖北八校第二次联考)某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:(1)求频率分布表中x、y的值,并补全频率分布直方图;(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X,求X的分布列及数学期望.解(1)由题意知,[25,30)内的频率为0.01×5=0.05,故x=100×0.05=5.因[30,35)内的频率为1-(0.05+0.35+0.3+0.1)=1-0.8=0.2,故y=100×0.2=20,且[30,35)这组对应的频率组距=0.25=0.04.补全频率分布直方图略.(2)∵年龄从小到大的各层人数之间的比为5∶20∶35∶30∶10=1∶4∶7∶6∶2,且共抽取20人,∴抽取的20人中,年龄在[35,40)内的人数为7.X可取0,1,2,P(X=0)=C213C220=78190,P(X=1)=C113C17C220=91190,P(X=2)=C27C220=21 190,故X的分布列为故E(X)=91190×1+21190×2=133190.16.新生儿Apgar 评分,即阿氏评分,是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分, 评分在8~10分者为正常新生儿,评分在4~7分的新生儿考虑患有轻度窒息,评分在4分以下的新生儿考虑患有重度窒息,大部分新生儿的评分在7~10分之间.某医院妇产科从9月份出生的新生儿中随机抽取了16名,表格记录了他们的评分情况.(1)现从这16名新生儿中随机抽取3名,求至多有1名新生儿的评分不低于9分的概率;(2)用这16名新生儿的Apgar 评分来估计本年度新生儿的总体状况,若从本年度新生儿中任选3名,记X 表示抽到评分不低于9分的新生儿数,求X 的分布列及数学期望.解 (1)设A i 表示所抽取的3名新生儿中有i 名的评分不低于9分, “至多有1名新生儿的评分不低于9分”记为事件A ,则由表格中数据可知P (A )=P (A 0)+P (A 1)=C 312C 316+C 14C 212C 316=121140.(2)由表格数据知,从本年度新生儿中任选1名,评分不低于9分的概率为416=14,由题意知随机变量X 的所有可能取值为0,1,2,3,且P (X =0)=⎝ ⎛⎭⎪⎫343=2764;P (X =1)=C 13⎝ ⎛⎭⎪⎫141⎝ ⎛⎭⎪⎫342=2764; P (X =2)=C 23⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫341=964;P (X =3)=C 33⎝ ⎛⎭⎪⎫143=164. 所以X 的分布列为E (X )=0×2764+1×2764+2×964+3×164=0.75⎝ ⎛⎭⎪⎫或E (X )=3×14=0.75.17.(2015·湖南高考)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的数学期望和方差.解 (1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A -2+A -1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2)=25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710. (2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15.故X 的数学期望为E (X )=3×15=35,方差为D (X )=3×15×45=1225.18.(2018·江淮十校联考)某市级教研室对辖区内高三年级10000名学生的数学一轮成绩统计分析发现其服从正态分布N (120,25),该市一重点高中学校随机抽取了该校成绩介于85分到145分之间的50名学生的数学成绩进行分析,得到如图所示的频率分布直方图.(1)试估算该校高三年级数学的平均成绩;(2)从所抽取的50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X ,求X 的期望.附:若X ~N (μ,σ2),则P (μ-3σ<X <μ+3σ)=0.9974. 解 (1)由频率分布直方图可知[125,135)的频率为 1-10×(0.01+0.024+0.03+0.016+0.008)=0.12, 该校高三年级数学的平均成绩为90×0.1+100×0.24+110×0.3+120×0.16+130×0.12+140×0.08=112(分). (2)由于1310000=0.0013,由正态分布得P (120-3×5<X <120+3×5)=0.9974,故P (X ≥135)=1-0.99742=0.0013,即0.0013×10000=13, 所以前13名的成绩全部在135分以上,由频率分布直方图可知这50人中成绩在135以上(包括135分)的有50×0.08=4人,而在[125,145)的学生有50×(0.12+0.08)=10人,所以X 的取值为0,1,2,3,P (X =0)=C 36C 310=16,P (X =1)=C 26C 14C 310=12,P (X =2)=C 16C 24C 310=310,P (X =3)=C 34C 310=130,X 的分布列为数学期望值为E (X )=0×16+1×12+2×310+3×130=1.2.。
概率统计中的离散型随机变量与连续型随机变量
概率统计中的离散型随机变量与连续型随机变量概率统计是数学的一个分支,用于研究随机现象的规律性和不确定性。
在概率统计中,随机变量是一个非常重要的概念。
随机变量可以分为离散型随机变量和连续型随机变量两种类型。
本文将介绍这两种类型的随机变量以及它们的特点和应用。
一、离散型随机变量离散型随机变量是指在一定范围内取有限个或可列个值的随机变量。
它的特点是在定义域内的每个值都有一定的概率与之对应。
离散型随机变量的概率可以通过概率分布函数来描述。
概率分布函数是一个将随机变量的取值映射到概率的函数。
离散型随机变量常见的例子有抛硬币的结果、掷骰子的点数、抽奖的中奖号码等。
这些随机变量的取值都是有限个或可列个,每个取值的概率可以通过实验或统计数据得到。
离散型随机变量的期望值和方差是衡量其分布特征的重要指标。
期望值表示随机变量的平均取值,方差表示随机变量取值的离散程度。
通过计算期望值和方差,可以更好地理解和描述离散型随机变量的分布特征。
离散型随机变量在实际应用中有着广泛的应用。
例如,在市场调研中,我们可以将消费者的购买行为看作是一个离散型随机变量,通过统计分析不同购买决策的概率分布,可以了解不同消费者的购买偏好和市场需求。
二、连续型随机变量连续型随机变量是指在一定范围内可以取任意实数值的随机变量。
与离散型随机变量不同,连续型随机变量的取值是连续的,无法一一列举出来。
连续型随机变量的概率可以通过概率密度函数来描述。
概率密度函数是一个描述随机变量概率分布的函数,它可以表示在某个取值范围内随机变量出现的概率密度。
与离散型随机变量的概率分布函数不同,连续型随机变量的概率密度函数在定义域内的每个点上的函数值并不表示该点的概率,而是表示该点附近的概率密度。
连续型随机变量常见的例子有身高、体重、温度等物理量。
这些随机变量的取值可以是任意的实数,通过概率密度函数可以描述它们的概率分布情况。
与离散型随机变量类似,连续型随机变量也有期望值和方差这两个重要指标。
离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
12.5 离散型随机变量的均值与方差
考点1
考点2
考点3
-12-
参考公式:χ2=(������+������)(������������+(������������������)-(���������������+���)2������)(������+������),其中 n=a+b+c+d. 参考临界值:
P(χ2>k0) k0
0.05 3.841
考点1
考点2
考点3
-22-
思考如何求离散型随机变量X的均值与方差? 解题心得1.求离散型随机变量X的均值与方差的步骤: (1)理解X的意义,写出X的全部可能取值. (2)求X取每个值的概率. (3)写出X的分布列. (4)由均值的定义求EX. (5)由方差的定义求DX. 2.注意性质的应用:若随机变量X的均值为EX,则对应随机变量 aX+b的均值是aEX+b,方差为a2DX.
种子发芽这株豆苗就能有效成活,每株豆成活苗可以收成大豆
2.205
kg.已知每粒豆苗种子成活的概率为
1 2
(假设种子之间及外部
条件一致,发芽相互没有影响).
(1)求恰好有3株成活的概率;
(2)记成活的豆苗株数为ξ,收成为η(kg),求随机变量ξ的分布列及η
的均值Eη.
考点1
考点2
考点3
-17-
解 (1)设每株豆子成活的概率为 P0,
女
40
50
90
合计
120
80
200
又 χ2=20102×0(8×08×05×01-1300××9400)2≈16.498>6.635, 所以有 99%的把握认为性别与“为 A 类学生”有关.
离散型随机变量的均值与方差、正态分布-概率、统计与统计案例
直线x=μ
1 a 2π
对称;
; ;
处达到峰值 1
(4)曲线与x轴之间的面积为
(5)当σ一定时,曲线随着μ的变化而沿 平移; (6)当μ一定时,曲线的形状由σ确定.σ越 小 曲线越“瘦高”,表示总体的分布越集中;σ越 大 曲线越“矮胖”,表示总体的分布越分散.
x轴
, ,
返回目录
考点一 求期望与方差 一接待中心有A,B,C,D四部热线电话,已知某一时 刻电话A,B占线的概率均为0.5,电话C,D占线的概率 均为0.4,各部电话是否占线相互之间没有影响.假设该 时刻有ξ部电话占线,试求随机变量ξ的概率分布和它的 期望. 返回目录
P(a<X≤b)=
∫
b φμ,σ(x)dx, a
则称X的分布为正态分布.正态分布完全由参数μ和 N(μ,σ2) .如果随机变量 σ确定,因此正态分布常记作 N(μ,σ2) . X服从正态分布,则记为X~ 正态曲线有以下特点: 返回目录
(1)曲线位于x轴上方,与x轴不相交;
(2)曲线是单峰的,它关于
【分析】利用ξ,η的分布列,用期望、方差公式计算 出它们的值,再根据期望、方差的实际意义作出分析. 【解析】依题意,有Eξ=10×0.5+9×0.2+8×0.1 +7×0.1+6×0.05+5×0.05+0×0=8.85(环). Eη=10×0.1+9×0.1+8×0.1+7×0.1+6×0.2+5×0.2
返回目录
【解析】因为灯管的使用寿命X~N(1 000,
302),为了查表方便,先化为标准正态分布N(0,1);令
Y= X - 1 000 ,即X=1 000+30Y,故Y~N(0,1).
离散型随机变量的均值与方差
5 0.8
8 0.5
10 0.2
12 0.3
E(Y1)=5×0.8+10×0.2=6, D(Y1)=(5-6)2×0.8+(10-6)2×0.2=4, E(Y2)=2×0.2+8×0.5+12×0.3=8, D(Y2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3 =12.
3.正态曲线的特点: (1)曲线位于x轴 (3)曲线在
x= μ 上方 ,与x轴不相交; x= μ
(2)曲线是单峰的,它关于直线 处达到峰值
1
对称; ;
(4)曲线与x轴之间的面积为
;
(5)当σ一定时,曲线随着μ的变化而沿x轴平移
(6)当μ一定时,曲线的形状由σ确定.σ越小曲线
越“ ”瘦高 ,表示总体的分布越集中;σ越大,曲
离散型随机变量的均值方差
一、均值
1.一般地,若离散型随机变量X的分布列为
X P x1 p1 x2 p2 … … xi pi … … xn Pn
则称E(X)= x1p1+x2p2+…+xipi+…+xnpn 为
随机变量X的均值或数学期望,它反映了离散
型随机变量取值的 平均水平 .
2.若Y=aX+b,其中a,b为常数,则Y也 是随机变量,且E(aX+b)=
(2) f ( x ) D
[ x 2 3(100 x )2 ]
(4 x 2 600 x 3 1002 ).
当 x= =75时,f(x)=3为最小值.
正态分布下的概率计算常见的有两类: 1.利用正态分布密度曲线的对称性研究相关概 率问题,涉及的知识主要是正态曲线关于直线x =μ对称,及曲线与x轴之间的面积为1. 2.利用3σ原则求概率问题时,要注意把给出的 区间或范围与正态变量的μ,σ进行对比联系,
数学期望(均值)、方差和协方差的定义与性质
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
高考数学一轮复习离散型随机变量的均值与方差
第8节离散型随机变量的均值与方差最新考纲了解取有限个值的离散型随机变量的均值、方差的概念口归敦材,夯实:基础IS础诊断知识梳理i. 离散型随机变量的均值与方差若离散型随机变量X的分布列为(1)均值称E (X)= X]p]+ X?02+…+ X]p i+…+ X n P n为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差n称D (X)=£_(x i — E (X)) 2p丄为随机变量X的方差,它刻画了随机变量X与i = 1其均值E (X)的平均偏离程度,其算术平方根 D (X)为随机变量X的标准差.2. 均值与方差的性质(1) E (aX+ b)= aE (X)+ b.(2) D (aX+ b)= a2D (X) (a, b 为常数).3. 两点分布与二项分布的均值、方差(1)若X服从两点分布,则E (X)= p, D (X)= p (1 —p).(2)若X〜B (n, p),则 E (X)= np,D (X)= np (1 —p).[常用结论与微点提醒]1. 已知随机变量X的均值、方差,求X的线性函数丫= aX+ b的均值、方差和标准差,可用均值、方差的性质求解;2. 如能分析所给随机变量服从常用的分布(如二项分布),可直接利用它们的均值、方差公式求解.诊断自测1•思考辨析(在括号内打“/或“ X”) (1) 期望值就是算术平均数,与概率无关•()(2)随机变量的均值是常数,样本的平均值是随机变量 .()(3) 随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度, 方差 或标准差越小,则偏离变量平均程度越小.()(4) 均值与方差都是从整体上刻画离散型随机变量的情况,因此它们是一回事 ( ) 解析均值即期望值刻画了离散型随机变量取值的平均水平,而方差刻画了离散 型随机变量的取值偏离期望值的平均程度,因此它们不是一回事,故(1)(4)均 不正确.答案(1)X (2)V2. (选修2-3P68T1改编)设丫二2X + 3,则E (丫)的值为( )A.3B.4C.-1D.111 1 解析 E (x )= — 2+ g =-3,(3)V(4)X4. (2017全国U 卷)一批产品的二等品率为0.02,从这批产品中每次随机取一件, 有放回地抽取100次,X 表示抽到的二等品件数,则 D (X )= _____________ 解析 有放回地抽取,是一个二项分布模型,则 X 〜B (100,0.02),所以 D (X )= np (1 — p )= 100X 0.02X 0.98=1.96.答案 1.96则a= _________ ,数学期望E (X )= _____________49 25 9 1 65E (X )=1X 84+ 2X 84+ 3X 84+ 4X 84=42. 答案25 65答案 84 42 6. (2018湖州调研)甲、乙两人被随机分配到 A ,B ,C 三个不同的岗位(一个人只能去一个工作岗位).记分配到A 岗位的人数为随机变量X ,则随机变量X 的数 学期望E (X )= _____________ ,方差D (X )= _____________ .0 OA解析 由题意可得X 的可能取值有0,1, 2,P (X = 0)= 亍 =9 P (X = 1)3X 3 9C 2X 2 4 11^44 12 =3X 3 = 9,P (X= 2) = 3X 3=9,则数学期望 E (X )= 0X 9+ 1X9+ 2X 9= 3,已知随机变量X 的分布列如下: 5. (2018金华十校联考)解析 由分布列的性质可得:49 9 1 84+ a + 84+ 84= 1,解得a = 2584.考克突破分类讲竦,以例求试考点一 一般分布列的均值与方差方差D (X )224=0—3 X 9+21-3X 4+ 2-22 43 X9=9.【例3】(3)(2038浙江三市联考)已知某口袋中有3个白球和a 个黑球(a € N ), 现从中随机取出一球,再放回一个不同颜色的球(即若取出的是白球,则放回一 个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是 E若 E (— 3,则 D (5 = ( )3 3 A.|B.3C.|D.2(2) (2038浙江五校联考)从装有大小相同的3个红球和6个白球的袋子中,不 放回地每摸出2个球为一次试验,直到摸出的球中有红球时试验结束,则第一次 试验恰摸到一个红球和一个白球的概率是 ___________________ ;若记试验次数为X ,则X 的 数学期望E (X )= ___________ .3a解析(3)由题意,知 5= 2 或 4,P ( 5= 2)=, P ( 5= 4)= ,则 E a + 3 a + 3 3 a (5 = 2X ------- + 4X ------ = 3,解得 a = 3,a + 3a + 33 3 22••• P ( 5= 2)= P ( = 4)= 2,则 D (5 = $ (2-3) 2+(4-3) 2] = 3. c !c 3 3(2)第一次试验恰摸到一个红球和一个白球的概率是p=-c£=2;若记试验次数为X ,则X = 3, 2, 3, 4,于是c l c 4 C 2C 3+ C 2 93P ( x =3)= C 9C 4—^1 二 84二 l8,P(X = 4) = C l C 4 C |=需,则 X 的数学期望 E(X ) = 3 X -32+ I X 84+ 3x 18+ 4X 84 65 =4I .答案(3) B (I ) 3 45P (X = 3)c 3c 3 + c i 7 —c —=32,P (X = 2)2629c 「c25一规律方法(3)求离散型随机变量的均值与方差关键是确定随机变量的所有可能(2) (2018温州九校联考)将四位同学等可能地分到甲、乙、丙三个班级,则甲 班级至少有一位同学的概率是 _________________ ,用随机变量a 表示分到丙班级 的人数,则E ( a = _____________ .1 1 1 解析 (1)由已知,得1+3+ p = 1,所以p =6, 且 E (X ) — 2X 1+ O X 1+ 1X 1一 6, ••• E (Y )= E (2X + 3)= 2E (X ) + 3 = 2X 1 + 1 + C 4 + C 4 + C 4 16 =81,所以甲班级至少有一位同学的概率为1-81=H •随机变量a 的可能取值为【例2】(1)已知随机变量X 服从二项分布B (n , p ),若E (X )= 30, D (X ) =20」p = (2)(一题多解)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时, 就说这次试验成功,则在2次试验中成功次数X 的均值是 _____________ 解析 (1)依题意可得 E (X )= np = 30,且 D (X )= np (1 — p )= 20,解得 p4- 3 --3+(2 )甲班级没有分到同学的概率为0, 1, 2, 3, 4,则 P (E=0)=話 P ( E= 1)=C 4 ( 1 + 1 + C 3+ C 3)32= P 81’ P(V 2)=C 2 (1 + 1+ 2)3 24 C 4X 2 8 21, P (= 3)= 丁=81, P (片4)24 8 1 4 +2X 81+3X 81+4X 81=3. 答案(1) 1 3(2) 8? 4考点二与二项分布有关的均值、方差=扛81,于是E (a =0X 暮+1X 32值,写出随机变量的分布列,正确运用均值、方差公式进行计算则 p = ________ ;若 Y = 2X + 3,贝U E (Y )= __________ .1=3.1 3(2)法一由题意可知每次试验不成功的概率为4,成功的概率为4,在2次试验中成功次数X的可能取值为0,1, 2,则1 1 1 3 3P (X=o)= 16, P(x= 1)= C2X4X4二8,29P(X= 1 2 = 4 =所以在2次试验中成功次数X的分布列为则在2次试验中成功次数X的均值为1 3 9 3E (X)二o x 16+ 1X8+2X—=^.3法二此试验满足二项分布,其中p= 4,所以在2次试验中成功次数X的均值为3 3E (X)= np= 2X4 = 21 3答案(1) 3 (2) 3规律方法二项分布的期望与方差(1)如果E〜B (n, p),则用公式E (B = np;D ( $ = np (1 —p)求解,可大大减少计算量.(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用 E (a& b)= aE ( $ + b以及E ( $ = np求出 E (a& b),同样还可求出D (a& b).【训练2】(1)有10道数学单项选择题,每题选对得4分,不选或选错得0分.1已知某考生能正确答对其中的7道题,余下的3道题每题能正确答对的概率为-.假设每题答对与否相互独立,记E为该考生答对的题数,n为该考生的得分,则P (E= 9)= ________ , E ( n) = _________ .(2) (2018杭州学军中学模拟)商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖•每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5 个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖,则顾客抽奖1次能获奖的概率是 __________ ;若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,贝U E (X)= ____________ .2解析(1) P ( 9)= C3x 1 x 1 —£= |.由题意可得:E 7,8,9,10,n= 4g 且(E—7)〜B$, 3 4j.3P ( &7)= C3x 1—3 二27,2P ( &8)= C1X3X 1—3 二9,22 Q 2 2P ( E9)= C3X 3 x3二9,31、 1P( 10)= c3x 3 = 27.••• E的分布列为:8 4 2 1E ( 0 = 7X27+ 8X9+ 9X9+ 10X27 = 8.E (n) = E (4 0 = 4E (0 = 32.2 3(2 )由题得,在甲箱中抽中红球、白球的概率分别为5,5,在乙箱中抽中红球、3 7 2 1 13 1 3 13白球的概率分别为2 2.抽奖一次不获奖的概率为£x?=10,所以其(对立事件)获奖的概率为1-10二缶.因为每次获得一等奖的概率为2x 1 = 1, 3次抽奖相互独、” 1 3立,故 E (X)= np= 3x5= 5.2 7 3答案(1)9 32 (2)和 5I课乍业另层训练,提升能右基础巩固题组一、选择题1.已知离散型随机变量X的概率分布列为则其方差D (X) = ( )A.1B.0.6C.2.44D.2.4解析由0.5+ m+ 0.2= 1 得m= 0.3,二 E (X)= 1 x 0.5+ 3X 0.3+ 5X 0.2= 2.4,2 2 2••• D (X) = ( 1-2.4) X 0.5+( 3-2.4) X 0.3+( 5-2.4) X 0.2= 2.44.答案C2. (2018稽阳联谊学校联考)随机变量E的分布列如下,且满足E ( $ = 2,则E (a + b)的值为( )A.0B.1C.2D.无法确定,与a, b有关解析E ( $) = 2,贝U a + 2b+ 3c= 2,又a+ b+ c= 1,由两式可得a= c, 2a + b=1,二 E (a $+ b)= aE ( $ + b = 2a + b= 1.答案B2 13. (2018绍兴检测)设X是离散型随机变量,P (X= X1)=彳P (X= X2) = 3,4 2且X1V X2,若 E (X)= 3, D (X)= 9,则X1 + X2=( )2 1 43x1 + 3x2=3,由已知得12( 4、2 1( 4、2 23x1 3 + 3x2 3 _9,答案 D4•已知随机变量X + n= 8,若X 〜B (10, 0.6),则E ( n, D ( n 分别是( )A.6, 2.4 C.2, 5.6解析 由已知随机变量X + n= 8,所以有n= 8— X. 因此,求得 E ( n) = 8— E (X )= 8— 10X 0.6 = 2, D ( n) = (— 1) 2D (X )= 10X 0.6X 0.4= 2.4. 答案 B5. 某种种子每粒发芽的概率都为0.9,现播种了 1 000粒,对于没有发芽的种子, 每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A.100B.200C.300D.400解析 设没有发芽的种子有E 粒,则 〜B (1 000, 0.1),且X = 2E, ••• E (X )= E (2$ = 2E ( 5 = 2X 1 000 X 0.1 = 200. 答案 B6. 口袋中有5只球,编号分别为1, 2, 3, 4, 5,从中任取3只球,以X 表示取 出的球的最大号码,贝U X 的数学期望E (X )的值是( )A.4B.4.5C.4.75D.51 1 解析 由题意知,X 可以取3, 4, 5, P (X = 3) = & = 10,A ・| D.3解析 |xi = 1, 解得 1x2= 2 LX 1 = 或 X 2 = 5 3,2 3, x1 =1,因为X 1V X 2,所以所以X 1 + x 2= 1 + 2= 3. X 2二 2,B.2, 2.4 D.6, 5.6C s 3 C2 6 3 P (X= 4) = C3= 10,P (X= 5) = C5= 10=5,13 3所以 E (X )= 3X 10 + 4X 10+ 5X 5= 4.5. 答案 B7. (2017浙江卷)已知随机变量&满足P (E = 1)= P i , 1P (&= 0)= 1 — p i , i = 1, 2.若 0v p i <p 2V 2,则( )A. E ( gi)v E (切,D ( &)< D (切B. E ( &)< E ( £>) , D ( 8)> D ( ^2)C. E ( gi)> E (切,D ( &)< D (动D. E ( &)> E (切,D( 8)> D ( ®解析 由题设可知E ( gi)= p 1, E ( $)= p 2,从而 E (8)< E (色),而 D ($)= p 1 (1 — p 1),D (&) =p 2 ( 1 — P 2),所以 D (&)— D (&)<0,即 D (@)< D (切.答案 A甲、乙两人轮流从袋中取球,甲先取,个球,取后不放回,直到其中有一人取出白球时终止•用X 表示取球终止时取球的 总次数,则X 的数学期望E (X ) = ( )A.9B.学C^6 2 3X 6 1 3X 2X 6 1 3X 2X 1 X 6="=9 = 3;P ( X =5 6 = 9X 8 = 4;P ( X = 7= 9^X7=X = 8= 9X 8X 7X 65 2 1 1 1 10 =84所以 E (X )= 1X 3+2X 4+3X 初+4X 84=〒. 答案 B 二、填空题9. (2018湖州调研)设X 为随机变量,X 〜Bn , 3,若随机变量X 的数学期望=(P 1 — P 2)( 1 — P 1 —)9个,从中任取2个都是白球的概率为寻.现 乙后取,然后甲再取,……,每次取出 8.袋中装有大小相同的黑球和白球共 ‘ 12 D.〒解析 易得袋中白球的个数为6•则由题意得, X 的可能取值为1, 2,3, 4.P (XE (X)= 2,则P (X = 2)= ____________ ; D (X)= ___________ .解析由X〜B n, 3 , E (X)= 2,得np=罗=2, •••n = 6,则P (X= 2)=43 二243, D(X)二np(—P)二6x卜3二4.10. 某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的4- 3概率是以a为首项,2为公比的等比数列,相应的奖金分别是7 000元、5 600元、4 200元,则参加此次大赛获得奖金的期望是_________ 元.1 1 解析由题意知a+ 2a + 4a= 1, • a = 7, •获得一、二、三等奖的概率分别为7,2 4 1 2 47, 7,•所获奖金的期望是E( X)二7X 7 000+ 7X 5 600+7X 4 200= 5 000 (元)答案 5 00011. (2018嘉兴测试)已知随机变量E的分布列如下.$ 012P b 2 a1a22则E ( $的最小值为___________ ,此时b= __________ .解析由题意得E ( $ = 0X b+ 1 X a2+ 2X号一2 = a2-a+ 1 = g —舟了+弓,所以E ($的最小值为4,此时a = 2,又因为b+ a2+1—1,所以b= —a2+1+舟=12.3 1答案3112. (2018杭州高级中学模拟)已知一个袋子中装有4个红球和2个白球,假设每一个球被摸到的可能性是相等的,若从袋子中摸出3个球,记摸到白球的个数为$则随机变量$的均值是________________________ ;方差是___________ .解析由题可得,$的所有可能取值分别为0, 1, 2.且P ( $= 0)= 2Q=5,2 1 1 2八C4C2 12 3 , / " c、C4C2 4 1 比「、十八升知斗P ($=1)=CCT=12=5, P (= 2)= "CT二20=1.所以其分布列为$ 0 1 2 P1 3 1 555”、「 1 3 1 2 1 2 3 所以 E ( o = O X 5+ 1X 5+ 2X 5 = 1; D ( $ = ( 0— 1) X 5+( 1- 1) X-5 +2 1 2(2-1) X厲2 答案1 2 513.某商场在儿童节举行回馈顾客活动,凡在商场消费满100元者即可参加射击赢 玩具活动,具体规则如下:每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射击到3次为止.设甲每次击中的概率为p (p M 0),射击次数为 Y ,若Y 的数学期望E (Y ) #,则p 的取值范围是 ______________ . 解析 由已知得 P (丫= 1)= p , P (丫= 2) = ( 1 — p ) p , P (Y = 3) = ( 1 — p ) 2,227则 E (Y )= p + 2 (1 — p ) p + 3 (1 — p ) = p — 3p + 3>4又 E (X )= = 3,二 m = 2,m + 3答案 BA.5解析 由题X 〜B 5,3、m + 3 /i 3、则 X 〜B 5, 5,故 D (X )642-X3- 5X15. 袋中装有大小完全相同,标号分别为 1, 2, 3,…,9的九个球.现从袋中随机 取出3个球.设E 为这3个球的标号相邻的组数(例如:若取出球的标号为 3, 4, 3, 4和4, 5,此时9的值是2),则随机变量9的均值解析 依题意得,9的所有可能取值是0, 1, 2.口 C 7 5且 P (片 o )= &= 12, P (E = 1) c j 丄P (E 2)= C 9=12,… 5 1 1 2 因此 E ( 9 = o x 12+1 x 2+ 2x 12= 3. 答案 D16. (2018北京海淀区模拟)赌博有陷阱.某种赌博游戏每局的规则是:参与者从 标有5, 6, 7, 8, 9的小球中随机摸取一个(除数字不同外,其余均相同),将小 球上的数字作为其赌金(单位:元),然后放回该小球,再随机摸取两个小球,将 两个小球上数字之差的绝对值的 2倍作为其奖金(单位:元).若随机变量X 和Y 分别表示参与者在每一局赌博游戏中的赎金与奖金,则 E (X )— E (Y )=元.1解析 根据题意可得P (X = k )= 5 (k = 5, 6, 7, 8, 9), 1 一可得 E (X )= 5X (5+ 6+ 7 + 8+ 9)= 7 (兀).丫的取值可能为2, 4, 6, 8,其中23115,则有两组相邻的标号A.61- 2 --P (Y = 4)= P (Y = 6)= P (Y = 8)=310155丄10 - - -- 3&2& 注)P (Y = 2)所以E (丫)= 2x5+ 4X10 + 6X5 + 8X —= 4 (元) 故E (X)—E (Y)= 7—4= 3 (元)答案 317. (2018衢州质检)一个袋中装有质地均匀、大小相同的 2个黑球和3个白球, 从袋中一次任意摸出2个球,则恰有1个是白球的概率为 ____________;从袋中一 次任意摸出3个球,摸出白球个数的数学期望 E ( 0 = _____________ . 解析 由题意得从5个小球中任意摸出2个共有C 2= 10种取法,其中满足恰有 一个白球的取法有c 2c 3=6种,所以恰有一个白球的概率为10=&.任意摸出3个C 2C 1 小球,设其中白球的个数为 0贝U 0的可能取值为1, 2, 3,且P ( 0= 1)=-(育 3 c 2c 2 3 c 3 1 十“3 3=10; P ( 0= 2)= c 3 = 5; P ( 0= 3)=况=10,所以 E ( 0 = 1 X 1o + 2X 5 +27E (Y )= E (2X + 3)= 2E (X ) + 3= — 3+ 3=?. 答案 A13X10 18. (2018金华一中模拟)有甲、乙两个盒子,甲盒子中装有 3个小球,乙盒子 中装有5个小球,每次随机取一个盒子并从中取一个球,则甲盒子中的球被取完 时,乙盒子中恰剩下2个球的概率为 _____________ ;当取完一个盒子中的球时,另一 个盒子恰剩下0个球,则0的期望为 _________ . 解析 甲盒子中的球被取完时,乙盒子中恰剩下 2个球的概率P =1-221-1 52 = 32;由题意,知曲勺可能取值为1, 2, 3, 4, 5,因为7 7 P ( & 1)= C 6 2 + C 62 二 64, 1- 22^-1164--4526 -743 2lQ 3⑴」P (E= 4)= C 3 2 = 16,P (E 5)= 2 = 8,所以 E ( 0二 1X65 + 2X 64+ 3X 32 + 4X 老 + 5X 基器答案5 17532 643. _______ 设随机变量X的分布列为P (X= k)= 5 (k= 2, 4, 6, 8,10),则D (X)等于 ____ .1解析••• E (X)= 5 (2+ 4+ 6+ 8+ 10)= 6,••• D (X)= |[ (- 4) 2+(- 2 ) 2+ 02+ 22+ 42] = 8.答案85 1解得p>2或p<2,又p€ (0,1),所以p€ 0, 2 .答案0, 1能力提升题组14. 从装有除颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X,已知E (X)= 3,则D (X)=。
离散型随机变量的均值与方差
返回
(1)P(A)=0.5,P(B)=0.3,C=A+B, P(C)=P(A+B)=P(A)+P(B)=0.8. (2)D=-,P(D)=1-P(C)=1-0.8=0.2, C X~B(100,0.2),即X服从二项分布, 所以期望E(X)=100×0.2=20.
返回
[做一题] [例2] (2011· 福建高考)某产品按行业生产标准分成8个等级,
离散型随机变量均值、方差
考纲点击
1.理解取有限个值的离散型随机变量均值、方差的概念.
2.能计算简单离散型随机变量的均值、方差,并能解决一 些实际问题.
返回
1.离散型随机变量的均值与方差
若离散型随机变量X的分布列为:
X P (1)均值 称E(X)= x1p1+x2p2+…+xipi+…+xnpn 为随机变 x1 p1 x2 p2 „ „ xi Pi „ „ xn pn
6a+7b=3.2, 由 a+b=0.5, a=0.3, 解得 b=0.2.
返回
(2)由已知得,样本的频率分布表如下: X2 3 4 5 6 7 8
f
0.3
0.2
0.2
0.1
0.1
0.1
返回
用这个样本的频率分布估计总体分布,将频率视为概率,
可得等级系数X2的概率分布列如下: X2 3 4 5 6 7 8
3 1 1 2 2 D(ξ2)=(500-200) × 5 +(-300-200) × 3 +(0-200) × 15 =
2
140 000, 所以E(ξ1)=E(ξ2),D(ξ1)<D(ξ2), 这说明虽然项目一、项目二获利相等,但项目一更稳妥. 综上所述,建议该投资公司选择项目一投资.
返回
[热点分析]
常见的离散型随机变量的分布列、均值与方差(学生)
常见的离散型随机变量的分布列、均值与方差【知识要点】一、离散型随机变量及其分布列 1、随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。
长用希腊字母ηξ,来表示。
若ξ是随机变量,b a +=ξη,其中b a ,是常数,则η也是随机变量。
2、离散型随机变量如果对于随机变量可能取的值,可以一一列出,这样的随机变量叫做离散型随机变量。
3、离散型随机变量的分布列(1)若离散型随机变量X 可能取的不同值为n i x x x x ,,,,,⋅⋅⋅⋅⋅⋅21,X 取每一个值)21(n i x i ,,,⋅⋅⋅=的概率i i p x X P ==)(,以表格的形式表示如下:此表称为离散型随机变量X 的分布列,简称X 的分布列。
有时为了表达简单,也用等式i i p xX P ==)(,n i ,,,⋅⋅⋅=21,表示X 的分布列。
(2)性质:①n i p i ,,,,⋅⋅⋅=≥210;②11=∑=ni i p ;③在某个范围内取值的概率等于这个范围内每个随机变量值的概率的总和。
4、常见离散型随机变量 (1)两点分布若随机变量X 的分布列是则这样的分布列称为两点分布列。
如果随机变量X 的分布列为两点分布列,就称X 服从两点分布(也称伯努利分布),而称)1(==x P p 为成功概率。
其EX=p ,DX=p(1-p). (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为m k C C C X P nNkn MN k M ,,,,,⋅⋅⋅=⋅==--210)k (,其中}min{n M m ,=,且*∈≤≤N N M n N M N n 、、,,,称分布列为超几何分布列。
如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。
记作:1)1()(---•==N nN N M N nM DX N nM EX n M N H X ,,其,,—。
概率分布的期望与方差计算
概率分布的期望与方差计算概述:在概率论中,期望和方差是两个重要的统计量,用于描述随机变量的分布特征。
期望代表了随机变量平均取值的位置,方差则描述了这些取值在平均值周围的离散程度。
本文将介绍如何计算概率分布的期望和方差。
一、离散型随机变量的期望和方差计算对于离散型随机变量,其取值只能是某些特定的离散值,我们可以通过计算每个取值与其对应的概率的乘积,并将结果相加得到期望。
方差的计算涉及到每个取值与期望之间的差异。
以一个简单的例子来说明离散型随机变量的期望和方差的计算方法。
假设有一个骰子,它的六个面分别标有1至6的数字。
我们可以用一个随机变量X来表示这个骰子的结果。
X的概率分布如下:X 1 2 3 4 5 6P(X) 1/6 1/6 1/6 1/6 1/6 1/6其中,P(X)表示随机变量X取各个值的概率。
1. 期望的计算:期望E(X)的计算公式为:E(X) = Σ(X * P(X))其中,Σ表示求和,X表示随机变量的取值,P(X)表示对应取值的概率。
对于上述骰子的例子,期望E(X)的计算为:E(X) = 1 * 1/6 + 2 * 1/6 + 3 * 1/6 + 4 * 1/6 + 5 * 1/6 + 6 * 1/6= (1 + 2 + 3 + 4 + 5 + 6) / 6= 21 / 6≈ 3.5因此,骰子的期望值为3.5。
2. 方差的计算:方差Var(X)的计算公式为:Var(X) = Σ((X - E(X))^2 * P(X))其中,X表示随机变量的取值,E(X)表示期望,P(X)表示对应取值的概率。
对于上述骰子的例子,方差Var(X)的计算为:Var(X) = (1 - 3.5)^2 * 1/6 + (2 - 3.5)^2 * 1/6 + (3 - 3.5)^2 * 1/6 + (4 - 3.5)^2 * 1/6 + (5 - 3.5)^2 * 1/6 + (6 - 3.5)^2 * 1/6= (2.5^2 + 1.5^2 + 0.5^2 + 0.5^2 + 1.5^2 + 2.5^2) / 6= (6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25) / 6= 17.5 / 6≈ 2.92因此,骰子的方差为2.92。
2023年高考数学(理科)一轮复习—— 离散型随机变量的均值与方差
P(X=100)=21×14×14=312,
∴X 的分布列为
X 20 40 50 70 100
P
3 8
9 32
1 8
3 16
1 32
∴E(X)=20×38+40×392+50×18+70×136+100×312=1465.
索引
考点二 二项分布的均值与方差
例2 (2021·东北三省三校联考)随着经济的发展,轿车已成为人们上班代步的一 种重要工具.现将某人三年以来每周开车从家到公司的时间之和统计如图所示.
第十一章 计数原理、概率、随机变量及其分布
考试要求 1.理解取有限个值的离散型随机变量的均值、方差的概念;2.能计算 简单离散型随机变量的均值、方差,并能解决一些简单实际问题.
内容 索引
知识诊断 基础夯实
考点突破 题型剖析
分层训练 巩固提升
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
话费,求 X 的分布列与数学期望.
索引
解 ①由题意知 P(ξ<μ)=P(ξ≥μ)=12,获赠话费 X 的可能取值为 20,40,50,
70,100, P(X=20)=12×34=38,P(X=40)=21×34×34=392,
P(X=50)=12×14=18,P(X=70)=21×34×14+12×14×43=136,
索引
P(X=4)=1304=1080100. 故 X 的分布列为
X0
1
2
3
4
P
2 401 10 000
1 029 2 500
1 323 5 000
189 2 500
81 10 000
故 E(X)=0×120400010+1×12 052090+2×15 302030+3×2158090+4×1080100 =65或E(X)=4×130=65.
072随机变量的均值与方差
§16.1 随机变量的均值与方差1.所示,则称n n 2211为离散型随机变量X 的均值或数学期望,记为E(X)或μ,即E(X)=n n p x p x p x +++ 2211,其中i x 是随机变量X 的可能取值,i p 是概率,i p ≥0;n i ,,2,1 =,121=+++n p p p性质:①E(C)=C ;②E(aX)=aE(X);③E(aX+b)=aE(X)+b ;④超几何分布X ~H(n,M,N)的数学期望为NnM X E =)(,二项分布X ~B(n ,p)的数学期望为np X E =)(。
2.X 的概率分布如表所示,则称n n p x p x p x 22211)()()(μ-++-+- 为离散型随机变量X 的方差,记为V(X)或2σ,即V(X)= n n p x p x p x 2222121)()()(μμμ-++-+- (其中)(X E =μ,i p ≥0;n i ,,2,1 =,121=+++n p p p ),方差也可用公式212)(μ-=∑=i ni i p x X V ,即22)()()(X E X E X V -=,V(X)的算术平方根称为X 的标准差,即)(X V =σ。
性质:①0)(=C V ;②)()(2X V a b aX V =+;③超几何分布X ~H(n,M,N)的方差为)1())(()(2---=N N n N M N nM X V ,二项分布X ~B(n ,p)的方差为)1()(p np X V -=。
注:随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度。
方差或标准差越小,随机变量偏离于均值的平均程度越小。
三、典型例题例1:有10张卡片,其中8张标有数字2,有2张标有数字5,从中随即地抽取3张卡片,设3 张卡片上的数字之和为随机变量ξ,求E(ξ)、V(ξ)例2:假定某射手每次射击命中目标的概率为32,且只有3发子弹。
离散型随机变量的均值和方差
a( x1 p1 x2 p2 xn pn ) b( p1 p2 pn )
aE b
即 E(a b) aE b
离散型随机变量的均值的理解
(1) 均 值 是 算 术 平 均 值 概 念 的 推 广 , 是 概 率 意 义 下 的 平 均.
(2)E(X)是一个实数,是由X的概率分布唯一确定的,它 描述X取值的平均状态.
8.两封信随机投入A、B、C三个空邮箱,则A邮箱的信
2
件数ξ的数数学期望Eξ=_____3___.
若ξ~B(n,p),则Eξ= np
ξ01
…k
…n
P Cn0p0qn Cn1p1qn-1 … Cnkpkqn-k … Cnnpnq0
证明:∵P(ξ=k)= Cnkpkqn-k
(∵ k Cnk =n Cn-1k-1)
第二课时:随机变量取值的方差和标准差
前面,我们认识了数学期望. 数学期望: 一般地,若离散型随机变量 ξ 的概率分布 列为
ξ x1 x2 … xk … xn P p1 p2 … pk … pn
则称 E x1 p1 x2 p2 … xk pk … xn pn 为 ξ 的数 学期望,简称期望.数学期望是离散型随机变量的一个特征 数,它反映了离散型随机变量取值的平均水平,表示了随机 变量在随机实验中取值的平均值,所以又常称为随机变量的 平均数、均值.但有时两个随机变量只用这一个特征量是无 法区别他们的。还需要对随机变量取值的稳定与波动、集中 与离散的程度进行刻画.
探究
已知甲、乙两名射手在同一条件下射击,所得环数1、 2的分布列如下:
x1 8 9 10 P 0.2 0.6 0.2
x2 8 9 10 P 0.4 0.2 0.4
试比较两名射手的射击水平.如果其他对手的射击成 绩都在8环左右,应派哪一名选手参赛?如果其他对手的 射击成绩都在9环左右,应派哪一名选手参赛?
离散型随机变量的均值与方差、正态分布
考点自测
1.(教材改编)某射手射击所得环数ξ的分布列如下:
ξ
P
7
x
8
0.1
答案
9
0.3
解析
10
y
已知ξ的均值E(ξ)=8.9,则y的值为 A.0.4 B.0.6 C.0.7
D.0.9
x+0.1+0.3+y=1, 由 7x+8×0.1+9×0.3+10y=8.9,
可得y=0.4.
1 2.设随机变量ξ的分布列为P(ξ=k)=5 (k=2,4,6,8,10),则D(ξ)等于
§12.6 离散型随机变量的均值与方差、正态分布
内容索引
基础知识
自主学习
题型分类
课时作业
深度剖析
基础知识
自主学习
知识梳理
1.离散型随机变量的均值与方差 一般地,若离散型随机变量X的分布列为 X x1 x2 … xi … xn
P (1)均值
p1
p2
…
pi
…
pn
称E(X)= x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或 数学期望 .
2D(X) a (2)D(aX+b)= .(a,b为常数)
3.两点分布与二项分布的均值、方差 (1)若随机变量X服从两点分布,则E(X)= p ,D(X)= p(1-p) (2)若X~B(n,p),则E(X)= np ,D(X)= np(1-p) . .
4.正态分布
(1)正态曲线:函数φμ,σ(x)= 简称正态曲线.
答案 解析
A.8
B.5
C.10
D.12
1 E(ξ)=5(2+4+6+8+10)=6,
1 D(ξ)=5[ (-4)2+(-2)2+02+22+42] =8.
离散型随机变量的均值与方差(4类必考点)(北师大版2019选择性必修第一册)(解析版)
专题6.3 离散型随机变量的均值与方差【基础知识梳理】 (1)【考点1:求离散型随机变量的均值】 (1)【考点2:均值的性质】 (7)【考点3:求离散型随机变量的方差】 (11)【考点4:方差的性质】 (16)【基础知识梳理】1.离散型随机变量的均值与方差若离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n(1)称E(X)=x1p1+x2p2i i n n量取值的平均水平.(2)称D(X)=(x i-E(X))2p i为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根D(X)为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=aE(X)+b;(2)D(aX+b)=a2D(X)(a,b为常数).[方法技巧]求离散型随机变量的均值与方差的步骤(1)找出随机变量X的所有可能取值x i(i=1,2,3,…,n);(2)求出各取值的概率P(X=x i)=p i;(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确;(4)利用公式求均值或方差.【考点1:求离散型随机变量的均值】【知识点:求离散型随机变量的均值】1.(2023·河南平顶山·校联考模拟预测)甲、乙两人进行围棋比赛,两人共比赛两局,每局比赛甲赢的概率为0.6,两人平局的概率为0.1,设每局的胜方得3分,负方得−1分,若该局为平局,则两人各得2分.(1)求甲、乙各赢一局的概率;(2)记两局结束后甲的最后得分为X,求X的数学期望.【答案】(1)0.36(2)3.4【分析】(1)由题可知比赛乙赢的概率为0.3,甲、乙各赢一局相当于甲赢第一局乙赢第二局或乙赢第一局甲赢第二局.据此可得答案;(2)依次写出对局情况及相应概率,后可计算期望.【详解】(1)依题意可得每局比赛乙赢的概率为0.3,甲、乙各赢一局相当于甲赢第一局乙赢第二局或乙赢第一局甲赢第二局,故甲、乙各赢一局的概P=2×0.6×0.3=0.36.(2)若甲赢两局,得分6分,P(X=6)=0.62=0.36;若甲一赢一平,得分5分,P(X=5)=2×0.6×0.1=0.12;若甲平两局,得分4分,P(X=4)=0.12=0.01;若甲一赢一输,得分2分,P(X=2)=2×0.6×0.3=0.36;若甲一平一输,得分1分,P(X=1)=2×0.3×0.1=0.06;若甲输两局,得分−2,P(X=−2)=0.32=0.09.故E(X)=6×0.36+5×0.12+4×0.01+2×0.36+1×0.06−2×0.09=3.42.(2023·四川·校联考一模)甲袋中装有大小相同的红球2个,白球2个:乙袋中装有与甲袋中相同大小的红球3个,白球4个.先从甲袋中取出1个球投入乙袋中,然后从乙袋中取出3个小球.(1)求从乙袋中取出的3个小球中仅有1个红球的概率;(2)记从乙袋中取出的3个小球中白球个数为随机变量ξ,求ξ的分布列和数学期望.【答案】(1)2756.(2)分布列见解析,数学期望E(ξ)=189112【分析】(1)分“从甲袋中取出1红球投入乙袋”和“从甲袋中取出1白球投入乙袋” 两个类型,利用组合数和古典概型公式。