25.2 用列举法求概率 第一课时
25.2 用列举法求概率(第1课时)九年级上册数学人教版
![25.2 用列举法求概率(第1课时)九年级上册数学人教版](https://img.taocdn.com/s3/m/eb20174c54270722192e453610661ed9ad5155d1.png)
另一个 因素所 包含的 可能情 况
两个因素所组合的所 有可能情况,即n
说明
如果第一个 因素包含2种 情况;第二 个因素包含3 种情况;那 么所有情况
n=2×3=6.
探究新知 素养考点 1 利用列表法解答掷骰子问题
例1 同时掷两个质地均匀的骰子,计算下列事件
的概率: (1)两个骰子的点数相同.
.
(3,3)
课堂检测
拓广探索题
在6张卡片上分别写有1-6的整数,随机地抽取一张后 放回,再随机地抽取一张,那么第一次取出的数字能够 整除第二次取出的数字的概率是多少?
第二第张一 张
1
2
3
4
5
6
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
1 第第 二一个个 2 3 4 5 6 1
(2)两个骰子的点数之和
2
是9.
3
4
(3)至少有一个骰子的点数 5
为2.
6
探究新知
分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷
出1、2、···6中的每一种情况,第2枚骰子也可能掷出1,2,···,
6中的每一种情况.可以用“列表法”列出所有可能的结果如下:
解:利用表格列出所有可能的结果:
结果 第二次
第一次
白
白
红1
红2
(白,红1) (白,红2)
红1
(红1,白)
(红1,红2)
红2
(红2,白) (红2,红1)
探究新知
注意
通过例2及拓展延伸的讲解,放回与不放回 列举的过程是不同的,解答问题时,注意明确, 若无明确,具体问题具体分析.
人教版九年级数学第25章《概率初步》25.2 用列举法求概率 第1课时 用列表法求概率(导学案)
![人教版九年级数学第25章《概率初步》25.2 用列举法求概率 第1课时 用列表法求概率(导学案)](https://img.taocdn.com/s3/m/675d255a1eb91a37f1115c50.png)
25.2 用列举法求概率第1课时用列表法求概率一、新课导入1.导入课题:同时抛掷两枚质地均匀的硬币或骰子,会出现哪些可能的结果?怎样才能不重不漏地列举所有可能出现的结果呢?本节课我们学习用列表法列举所有可能出现的结果并求概率.(板书课题)2.三维目标:(1)知识与技能初步掌握直接列举法计算一些简单事件的概率的方法.理解:包含两步,并且每一步的结果为有限的意义,这样的试验会出现的所有可能的结果.(2)过程与方法通过用列举法求简单事件的概率的学习,使学生在具体情境中分析事件.计算其发生的概率,解决实际问题.(3)情感态度体会概率在生活实践中的应用,激发学习数学的兴趣,提高分析问题的能力.3.学习重、难点:重点:用直接列举法和列表法列举所有可能出现的结果.难点:求概率.二、分层学习1.自学指导:(1)自学内容:教材第136页例1.(2)自学时间:5分钟.(3)自学方法:阅读课文分析,理解课本是怎样列举出所有可能的结果的,并学会课本上用不同字母表示不同事件的方法和记法.(4)自学参考提纲:①掷两枚硬币会出现哪些不同的结果?你能列举出来吗?有四种不同的结果:正正、正反、反正、反反.②先后两次掷硬币和一次同时掷下两枚硬币有什么区别?出现的可能性发生变化了吗?没有区别.出现的可能性没有变化. 2.自学:学生可参考自学指导进行自学. 3.助学 (1)师助生:①明了学情:深入课堂了解学生是否理解列举这几种结果的方法. ②差异指导:对共性问题进行适时点拨引导. (2)生助生:学生相互交流帮助解疑难. 4.强化:(1)归纳两步试验中列举全部结果的要点.(2)练习:①袋子中装有红、绿各一个小球,除颜色外无其他差别,随机摸出1个小球后放回,再随机摸出一个.求下列事件的概率:a.第一次摸到红球,第二次摸到绿球.b.两次都摸到相同颜色的小球;c.两次摸到的球中有一个绿球和一个红球. 解:a.14; b12.; c.12②合作小组的4位同学坐在课桌旁讨论问题,学生A 的座位如图所示,学生B ,C ,D 随机坐到其他三个座位上,求学生B 坐在2号座位的概率.解:13③“石头、剪刀、布”是广为流传的游戏,游戏时,双方每次任意出“石头”“剪刀”“布”这三种手势中的一种,求双方出现相同手势的概率.解:131.自学指导:(1)自学内容:教材第136页例2至第137页.(2)自学时间:10分钟.(3)自学方法:完成自学参考提纲. (4)自学参考提纲:①同时掷两枚质地均匀的骰子,会出现哪些可能的结果? 列表列举所有可能的结果:②由表可知:同时掷两枚骰子,可能出现的结果有 36 种,并且它们出现的可能性相等.两枚骰子的点数相同的结果有 6 种,所以P(两枚骰子的点数相同)=16; 两枚骰子的点数和是9的结果有 4 种,所以P(两枚骰子的点数和是9)=19; 至少有一枚骰子的点数为2的结果有 11 种,所以P(至少有一枚骰子的点数为2)=1136. ③如果把例2中的“同时掷两枚骰子”改为“把一枚骰子掷两次”,所得到的结果有变化吗?为什么?没有变化,因为试验的条件是相同的.④当一次试验要涉及 两 个因素,并且可能出现的结果数目较多时,通常采用列表法. 2.自学:学生可参考自学指导进行自学. 3.助学: (1)师助生:①明了学情:了解学生是否掌握了列表法.②差异指导:分类指导与集中辅导相结合. (2)生助生:学生之间相互交流帮助认知理解. 4.强化:(1)列表法适用的条件及表格设计方法.(2)练习:①有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取1张后,放回并混在一起,再随机抽取1张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:列举出所有可能出现的结果:由表可以看出可能出现的结果共有36种,并且它们出现的可能性相等.其中第二次取出的数字能够整除第一次取出的数字(记为事件A )的结果有14种,所以()PA ==1473618. ②有5张看上去无差别的卡片,上面分别标有0,1,2,3,4.求: a.从中任取两张卡片,两张卡片上的数字之和等于4概率;解:列举出所有可能出现的结果:(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所有可能出现的结果共有10种,并且它们出现的可能性相等,其中满足两张卡片上的数字之和等于4(记为事件A )的结果有2种,所以()PA ==21105. b.从中任取2次卡片,每次取1张.第一次取出卡片,记下数字后放回,再取第二次.两次取出的卡片上的数字之和恰好等于4概率.解:列举出所有可能出现的结果:由表可以看出可能出现的结果共有25种,并且它们出现的可能性相等,其中两次取出的卡片上的数字之和恰好等于4(记为事件B )的结果有5种,所以()PB ==51255. 三、评价1.学生的自我评价:说说列举所有结果时,怎样才能做到不重不漏.2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的态度、情感、方法、成果及不足进行归纳总结.(2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):(1)本节课通过以学生喜闻乐见的掷硬币、掷骰子等游戏为载体,充分调动了学生的学习欲望,将学生摆在了真正的主体位置上,充分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多关于概率的问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.(2)教师引导学生交流归纳知识点,看学生是否可以不重不漏地列举出事件发生的所有可能,能否找出事件A 中包含几种可能的结果,并能求P (A ),教学时要重点突出方法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是(D )A.12B.15C.136D.11362.(10分)纸箱里有一双拖鞋,从中随机取一只,放回后再取一只,则两次取出的鞋都是左脚的鞋的概率为14. 3.(10分)有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车,则两个人同坐2号车的概率为14. 4.(10分)有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为 6 的概率最大,抽到和大于8的概率为325. 5.(10分) 如图,随机闭合开关K 1,K 2,K 3中的两个,求能让两盏灯泡同时发光的概率. 解:列举出闭合三个开关中的两个的全部结果:K1K 2,K 1K 3,K 2K 3. 所有可能的结果共有3种,并且这三种结果出现的可能性相等. 只有同时闭合K 1、K 3,才能让两盏灯泡同时发光(记为事件A ),所以()PA 13. 6.(20分)一个不透明的袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机地摸取一个小球然后放回,再随机地摸出一个小球.求下列事件的概率:(1)两次取出的小球标号相同; (2)两次取出的小球标号和等于4. 解:两次取出小球的标号列举如下:共有16种可能的结果.(1)其中两次取出的小球标号相同(记为事件A )的结果有4种,所以()PA ==41164. (2)两次取出的小球标号和等于4(记为事件B )的结果有3种,即(1,3),(2,2),(3,1),所以()P B =316. 二、综合应用(20分)7.(20分)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y ).(1)请你运用列表的方法,表示出点P 所有可能的坐标; 解:如下表:(2)求点(x ,y )在函数y=-x +5图象上的概率.由表示可知,共有12种可能的结果,并且它们出现的可能性相等.其中满足在函数y=-x +5的图象上(记为事件A )的结果有4种,所以()P A ==41123. 三、拓展延伸(10分)8.(10分)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?解:设两把锁分别为m 、n ,三把钥匙分别为a 、b 、c ,且钥匙a 、b 能分别打开锁m 、n.列举出所有可能的配对结果:共有6种可能的结果,且每种结果出现的可能性相等.其中一次打开锁(记为事件A )的结果有2种,所以()PA ==2163.。
25.2 用列举法求概率(第一课时)
![25.2 用列举法求概率(第一课时)](https://img.taocdn.com/s3/m/d8135d38a45177232f60a28f.png)
25.2.1 用列举法求概率(第一课时)教学内容用列表法求概率课型新授课教学目标1.知识与技能目标:学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。
2.过程与方法目标,经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。
渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。
3.情感与态度目标,通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。
教学分析重点学习运用列表法或树形图法计算事件的概率。
难点能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
教学准备PPT 课时第一课时电子教案教学过程1.创设情景,发现新知引例:为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同)。
每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次)。
作为游戏者,你会选择哪个装置呢?并请说明理由。
(1)学生分组讨论,探索交流在这个环节里,首先要求学生分组讨论,探索交流。
然后引导学生将实际问题转化为数学问题,即:“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”由于事件的随机性,我们必须考虑事件发生概率的大小。
此时我首先引导学生观看转盘动画,同学们会发现这个游戏涉及A、B两转盘,即涉及2个因素,与前一课所讲授单转盘概率问题(教材P148例2)相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏。
怎样避免这个问题呢?(2)指导学生构造表格从表中可以发现:A盘数字大于B盘数字的结果共有5种。
∴P(A数较大)= , P(B数较大)=.∴P(A数较大)> P(B数较大)∴选择A装置的获胜可能性较大。
25.2 用列举法求概率1 第1课时 运用直接列举或列表法求概率
![25.2 用列举法求概率1 第1课时 运用直接列举或列表法求概率](https://img.taocdn.com/s3/m/9d29545a0b1c59eef8c7b43b.png)
列表法
3.如果有两组牌,它们的牌面数字分别是1,2,3,那么 从每组牌中各摸出一张牌.
(1)摸出两张牌的数字之和为4的概率为多少? (2)摸出为两张牌的数字相等的概率为多少?
解:
第一张牌的 牌面数字
第二张牌 的牌面数字
1
1 (1,1)
2
(2,1)
3
(3,1)
2 (1,2) (2,2) (3,2)
①
②①
②
①
②①
②
正正
正反 反正 反反
解:抛掷两枚硬币,共出现4种等可能结果,为:正正、正反、 反正、反反
(1)两枚硬币两面一样的结果有2种,为:正正、
反反,
P(两面一样)=
2 1; 42
(2)一枚硬币正面朝上,一枚硬币反面朝上,共
有2种结果,记为事件A.
P(A)= 2 1 . 42
∵P(学生赢)=P(老师赢).
导入新课
我们一起来做游戏 老师向空中抛掷两枚同样的一元硬币,如果落地后一 正一反,老师赢;如果落地后两面一样,你们赢.请问, 你们觉得这个游戏公平吗?
讲授新课
一 用直接列举法求概率
探索交流
同时掷两枚硬币,试求下列事件的概率: (1)两枚两面一样; (2)一枚硬币正面朝上,一枚硬币反面朝上;
①
②ቤተ መጻሕፍቲ ባይዱ
“掷两枚硬币”所有结果如下:
能的配对结果.
解:记一次打开锁为事件A.
P(
A)
2 6
1 3
.
课堂小结
硬币的 正反面
直接 列举法
掷骰子 的点数
在运用列表法求概率时,应注意各种结果出现的可能性 相等,要注意列表时事件(或数据)的顺序不能随意混淆.
25.2 第1课时 用直接列举法和列表法求概率
![25.2 第1课时 用直接列举法和列表法求概率](https://img.taocdn.com/s3/m/d6c138dbeefdc8d377ee32d7.png)
25.2 第1课时用直接列举法和列表法求概率25.2用列举法求概率第1课时用直接列举法和列表法求概率一、基本目标【知识与技能】1.掌握用直接列举法和列表法求简单事件的概率的方法.2.运用概率知识解决计算涉及两个因素的一个事件概率的实际问题.【过程与方法】经历试验操作、观察、记录的过程,探究如何画出适当的表格,列举出事件的所有等可能结果,并总结出用列表法求事件概率的方法.【情感态度与价值观】合作探究如何画出适当的表格列举事件的所有等可能的结果,养成合作意识,形成缜密的思维习惯.二、重难点目标【教学重点】反正__、__反反__,故这两种试验的所有可能结果__一样__.环节2合作探究,解决问题【活动1】小组讨论(师生互学)【例1】先后两次抛掷一枚质地均匀的硬币.(1)求硬币两次都正面向上的概率;(2)求硬币两次向上的面相反的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列举先后两次抛掷一枚质地均匀的硬币的全部结果,它们是:正正、正反、反正、反反.所有的结果有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足硬币两次都正面向上的结果只有1种,即“正正”,所以P(硬币两次都正面向上)=14.(2)硬币两次向上的面相反的结果共有2种,即“正反”“反正”,所以P(硬币两次向上的面相反)=24=12.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较少,且各种结果出现的可能性大小相等,那么我们可以直接列举出试验结果,从而求出随机事件发生的概率.【例2】有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取1张,记下数字后放回洗匀,再从中随机抽取1张.(1)求两次抽到的数都是偶数的概率;(2)求第一次抽到的数比第二次抽到的数大的概率;(3)求两次抽到的数相等的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列表如下:第一次第二次1234 51(1,1)(2,1)(3,1)(4,1)(5,1)2(1,2)(2,2)(3,2)(4,2)(5,2)3(1,3)(2,3)(3,3)(4,3)(5,3)4(1,4)(2,4)(3,4)(4,4)(5,4)5(1,5)(2,5)(3,5)(4,5)(5,5)由表可以看出,可能出现的结果一共有25种,并且它们出现的可能性相等.(1)两次抽到的数都是偶数的结果有4种,即(2,2),(2,4),(4,2),(4,4),所以P(两次抽到的数都是偶数)=4 25.(2)第一次抽到的数比第二次抽到的数大的结果有10种,即(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),所以P(第一次抽到的数比第二次抽到的数大)=1025=25. (3)两次抽到的数相等的结果有5种,即(1,1),(2,2),(3,3),(4,4),(5,5),所以P (两次抽到的数相等)=525=15. 【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性大小相等,那么我们可以列表列举出试验结果,从而求出随机事件发生的概率.【活动2】 巩固练习(学生独学)1.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是( B )A.12B .13 C.14 D .152.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( C )A.18B .16C .14D .123.李玲有红色、黄色、白色的三件运动短袖上衣和白色、黄色两条运动短裤.若任意组合穿着,则李玲穿着“衣裤同色”的概率是__13__. 4.同时掷两枚质地均匀的六面体骰子,计算下列事件的概率:(1)两枚骰子点数的和是6;(2)两枚骰子点数都大于4;(3)其中一枚骰子的点数是3.解:列表如下: 第一枚第二1 2 3 4 5 6枚1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1) 2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2) 3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3) 4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4) 5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5) 6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6) 由表可以看出,同时掷两枚质地均匀的六面体骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子点数的和是6的结果有5种,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P(两枚骰子点数的和是6)=5 36.(2)两枚骰子点数都大于4的结果有4种,即(5,5),(5,6),(6,5),(6,6),所以P(两枚骰子点数都大于4)=436=19.(3)其中一枚骰子的点数是3的结果有11种,即(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(3,1),(3,2),(3,4),(3,5),(3,6),所以P(其中一枚骰子的点数是3)=1136.【活动3】拓展延伸(学生对学)【例3】如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色).小明转动的A盘被等分成4个扇形,小亮转动的B 盘被等分成3个扇形,两人分别转动转盘一次.两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?【互动探索】(引发学生思考)结合概率的相关知识,要使游戏对双方公平,则两人获胜的概率之间有什么关系?【解答】列表如下:红蓝黄蓝(红,(蓝,(黄,蓝)蓝)蓝)红(红,红)(蓝,红)(黄,红)黄(红,黄)(蓝,黄)(黄,黄)红(红,红)(蓝,红)(黄,红)由表可知,两人分别转动转盘一次,可能出现的结果共有12种,并且它们出现的可能性相同.其中能配成紫色的结果有3种,所以P(小明获胜)=312=14,P(小亮获胜)=1-14=34.因为14≠34,所以这个游戏对双方不公平.【互动总结】(学生总结,老师点评)判断一个游戏对双方是否公平,就看双方获胜的概率是否相等.若相等,则公平.否则,不公平.环节3课堂小结,当堂达标(学生总结,老师点评) 请完成本课时对应练习!。
九年级数学人教版上册25.2用列举法求概率第1课时用列表法求概率教学设计
![九年级数学人教版上册25.2用列举法求概率第1课时用列表法求概率教学设计](https://img.taocdn.com/s3/m/9cf676d970fe910ef12d2af90242a8956becaaab.png)
2.在列出列表后,如何统计各种结果的数量,以及如何根据数量计算概率。
3.列表法适用于哪些类型的概率问题,以及在实际应用中需要注意的问题。
(三)学生小组讨论
在讲授新知之后,我会组织学生们进行小组讨论。我会给出几个不同难度的实际问题,让学生们分组讨论如何使用列表法求概率。在这个过程中,我会鼓励学生们积极发言,分享自己的观点和解决问题的方法。
8.教学反思:教师在本节课结束后,进行教学反思,不断提高教学水平。
-分析教学过程中的优点和不足,调整教学方法,以满足学生的学习需求。
四、教学内容与过程
(一)导入新课
在本节课开始时,我将通过一个生动的例子来导入新课。我会问学生们:“同学们,你们在生活中遇到过抽奖的活动吗?当你们参加这样的活动时,是否想过自己中奖的概率是多少?”通过这个问题,让学生们思考概率在生活中的应用。然后,我会拿出一个提前准备好的抽奖箱,里面装有一些彩球,每个球上写有不同的数字。
1.学生对列表法概念的理解:部分学生可能对列表法的概念理解不够深入,需要通过具体实例和讲解,帮助他们理解和掌握列表法的内涵。
2.学生在解决问题时的思维定势:学生在解决概率问题时,容易受到思维定势的影响,局限于某一种解法。教师应引导学生尝试不同的方法,培养其灵活运用列表法的能力。
3.学生的合作交流能力:在小组讨论中,部分学生可能表现出不积极参与、沟通不畅等问题。教师应关注学生的合作交流能力,引导他们积极参与讨论,提高团队协作能力。
(二)过程与方法
1.引导学生通过观察、分析、总结,发现列表法求概率的方法。
2.通过小组合作,培养学生的团队协作能力和沟通能力。
3.设计具有挑战性的问题,激发学生的探究欲望,培养其解决问题的能力。
用列举法求概率优秀教案第1课时
![用列举法求概率优秀教案第1课时](https://img.taocdn.com/s3/m/cad26ab1cfc789eb162dc86b.png)
用列举法求概率优秀教案(第1课时)教材与教学内容:人教版义务教育课程标准实验教科书《数学》九年级上册,第25章第2节:用列举法求概率第1课时。
一、教材分析本节内容是第二十五章第二节“用列举法求概率”的第1课时,主要介绍用列举法求概率。
以两个实际问题为载体,通过学生动手解决问题、观察、分析、评价解题方法获得新知.本节课的教学设计紧扣教材,设计了6个教学活动,由浅入深,层层递进,解决问题以学生为主,发挥学生的集体智慧,教师从中指导、总结,示范.在教学过程中,强调学生形成积极主动的学习态度,关注学生的学习兴趣和体验,充分体现“数学教学主要是数学活动的教学”这一教育思想.利用所学知识解决问题,突现应用意识,进一步巩固所学知识。
力求充分体现教学内容的基础性、教学方法的灵活性、学生学习的主体性、教师教学的主导性。
在学习活动中,尽力让学生主动参与、认真观察、比较思考、动手操作、合作交流、大胆表述,充分体现学生是学习的主人,教师是学习活动的组织者、引导者和合作者。
二、教学目标依据课程标准和教材分析,兼顾学生的实际,本节课的教学目标是:1.知识与技能进一步理解等可能事件的意义,了解古典概型的两个特点——试验结果有无数个和每一个实验结果出现的等可能性;通过探究体会在公式P(A)=m/n中m、n之间的数量关系,P(A)的取值范围。
掌握求等可能条件下的事件的概率,并能进行简单的表述、计算。
2.过程与方法通过用列举法求事件的概率,体会在实践中获得事件发生的概率,渗透转化的思想方法,培养学生分析、判断的能力。
3.情感态度与价值观通过分析探究事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值。
三、教学重难点1.教学重点:用列举法求事件的概率。
2.教学难点:分析事件发生的概率。
四、教学方法教师诱导---学生自学---小组互动---当堂检测针对九年级学生的年龄特征以及他们已有的知识水平,采用启发式、诱导法,结合演示、归纳、尝试等方法,组织生生互动、师生互动,激发学生的学习兴趣,通过多媒体课件的展示,提高教学效率,增进学生对知识的理解,激发他们的求知欲。
人教版数学九上25.2用列举法求概率(第1课时)教学设计
![人教版数学九上25.2用列举法求概率(第1课时)教学设计](https://img.taocdn.com/s3/m/7c4244b718e8b8f67c1cfad6195f312b3069eb70.png)
作业要求:
1.学生在完成作业时,要注重解题过程的规范性和逻辑性,避免出现遗漏和重复。
2.对于思考题,学生可以尝试用文字、图表等形式进行阐述,培养分析和解决问题的能力。
3.小组合作任务中,每个成员都要积极参与,充分发挥团队协作精神,共同完成任务。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结列举法求解概率问题的步骤和要点。
2.学生分享自己的学习心得和收获,提出在解题过程中遇到的问题和困惑。
3.教师针对学生的反馈,进行针对性的解答和指导,巩固所学知识。
4.教师强调数学在生活中的实际应用,激发学生学习数学的兴趣和热情。
五、作业布置
为了巩固本节课所学的知识,培养学生的实际应用能力,特布置以下作业:
6.作业布置,分层设计
教师可以根据学生的实际情况,设计不同难度的作业,使学生在完成作业的过程中,达到巩固知识、提高能力的目的。
7.教学评价,关注过程
教师应关注学生在课堂上的表现,包括思考、交流、合作等方面,进行全面、客观的评价,激励学生不断进步。
四、教学内容与过程
(一)导入新课
1.教师出示一个不透明的袋子,里面装有红球和白球,提问:“同学们,你们知道从袋子中随机摸出一个球,摸到红球和白球的概率分别是多少吗?”
3.学生在合作交流过程中,可能存在沟通不畅、分工不明确等问题,需要教师引导和培养团队协作能力。
4.部分学生对数学学科的兴趣和热情有待提高,教师应关注学生的情感态度,激发学生的学习积极性。
针对以上学情分析,教师在教学过程中应注重以下方面:
1.通过生动的实例,引导学生深入理解列举法的内涵,培养学生的逻辑思维能力。
人教版九年级上册25.2用列举法求概率(第1课时)教学设计
![人教版九年级上册25.2用列举法求概率(第1课时)教学设计](https://img.taocdn.com/s3/m/3b699940c381e53a580216fc700abb68a982adc7.png)
3.教师引导:根据学生的回答,引导学生认识到解决此类问题需要用到概率知识,进而引出本节课的主题——用列举法求概率。
(二)讲授新知
1.列举法概念:介绍列举法的定义,即通过列出所有可能的结果,计算每种结果出现的概率。
2.步骤与方法:讲解列举法求解概率问题的步骤:
2.培养勇于探索、积极思考的学习态度,提高解决问题的自信心;
3.学会与他人合作,尊重他人意见,培养良好的团队协作精神;
4.感受概率知识在实际生活中的应用,增强将所学知识应用于实际问题的意识。
本节课的教学设计以列举法求解概率问题为主线,结合生活实例,让学生在探索中学习,在学习中应用。通过小组合作、问题解决等教学活动,培养学生的数学素养、合作意识和解决问题的能力。同时,注重情感态度与价值观的培养,使学生在学习过程中感受到数学的魅力和价值。
(3)在一个装有10个白球、5个黑球的袋子中,先后两次随机抽取一个球,求第二次抽到黑球的概率。
3.拓展题:
(1)小华有3件上衣、2条裤子,他随机选择一件上衣和一条裤子穿上,求他穿上的衣服颜色搭配是“红配蓝”的概率;
(2)一个密码锁由4位数字组成,每位数字可以是0到9中的任意一个,求设置的密码是“回文数”(即1234、4321这类数字)的概率;
1.重点:掌握列举法求解概率问题的步骤和方法,并能应用于实际问题。
2.难点:
(1)理解并运用列举法求解复杂概率问题,如组合问题、排列问题等;
(2)将实际问题转化为数学模型,运用列举法求解;
(3)在合作学习中,提高沟通协作能力,充分发挥团队作用。
(二)教学设想
1.教学方法:
(1)采用情境导入法,以生活实例引入本节课的内容,激发学生兴趣;
25.2 用列举法求概率(第一课时)教学设计
![25.2 用列举法求概率(第一课时)教学设计](https://img.taocdn.com/s3/m/6c1c2a42e45c3b3567ec8b79.png)
(1)牌上的数字为3;
(2)牌上的数字为奇数;
(3)牌上的数字为大于3且小于6.
分析:因为从6张牌子任抽取一张符合刚才总结的试验的两个特点,所以可用P(A)= 来求解.
解:任抽取一张牌子,其出现数字可能为1,2,3,4,5,6,共6种,这些数字出现的可
能性相同.
(1)P(点数为3)=1/6;
抽取的,所以我们可以认为:每个号被抽到的可能性相等,都是1/5.其概率是1/5。
2.有1,2,3,4,5,6等6种可能.由于股子的构造相同质地均匀,又是随机掷出的,
所以我们可以断言:每个结果的可能性相等,都是1/6,所以所求概率是1/6所求。
以上两个试验有两个共同的特点:
1.一次试验中,可能出现的结果有限多个.
教学时间
课题
25.2用列举法求概率(第一课时)
课型
新授课
教
学
目
标
知 识
和
能 力
1.理解P(A)= (在一次试验中有n种可能的结果,其中A包含m种)的意义.
2.应用P(A)= 解决一些实际问题.
过 程
和
方 法
复习概率的意义,为解决利用一般方法求概率的繁琐,探究用特殊方法—列举法
求概率的简便方法,然后应用这种方法解决一些实际问题.
分析:第二步应该踩在遇到地雷小的概率,所以现在关键求出在 区域、 区域的概率并比较。
解:(1) 区域的方格共有 个,标号 表示在这 个方格中有 个方格各藏 颗地雷,因此,踩 区域的任一方格,遇到地雷的概率是 。
(2) 区域中共有 个小方格,其中有 个方格内各藏 颗地雷。因此,踩 区域的任一方格,遇到地雷的概率是 。
老师点评:1,(口述)一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某一个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P.
初三【数学(人教版)】25.2 用列举法求概率(1)
![初三【数学(人教版)】25.2 用列举法求概率(1)](https://img.taocdn.com/s3/m/8524c94bf121dd36a32d82f1.png)
第2枚
1
2
3
4
5
6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
第 1
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
枚
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
枚
5 (5,1) (5,2) (5,3) (5,4) (5,5) 6 :(6,1) (6,2) (6,3) (6,4) (6,5)
分析:两枚骰子可能出现的结果:
6
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
1.两枚是奇数 ൡ 至少有一枚是奇数
2.一枚是奇数一枚是偶数
3. 0枚是奇数(都是偶数)
27 3 P(C)= 36 = 4 .
第2枚
1
2
3
4
1 (1,1) (1,2) (1,3) (1,4) (1,5)
第
2 (2,1) (2,2) (2,3) (2,4) (2,5)
3 (3,1) (3,2) (3,3) (3,4) (3,5)
1
4 (4,1) (4,2) (4,3) (4,4) (4,5)
第2枚
1
2
3
4
5
6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
第
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
1
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
25.2用列举法求概率第1课时
![25.2用列举法求概率第1课时](https://img.taocdn.com/s3/m/9fa617de76a20029bd642d36.png)
走进中考
1.(2010北京)从1、2、3、4、5、6、7、8、9、10这十个数中 随机取出一个数,取出的数是3的倍数的概率是( ) (A)
1 5
(B)
3 10
(C)
1 3
B
(D)
1 2
2.(2010四川南充)甲箱装有40个红球和10个黑球,乙箱装有 60个红球、40个黑球和50个白球.这些球除了颜色外没有 其他区别.搅匀两箱中的球,从箱中分别任意摸出一个 球.正确说法是( B ) (A)从甲箱摸到黑球的概率较大 (B)从乙箱摸到黑球的概率较大 (C)从甲、乙两箱摸到黑球的概率相等 (D)无法比较从甲、乙两箱摸到黑球的概率
3
A 圆桌
四.课堂小结
(一)等可能性事件的两个特征: 1.出现的结果有限多个;2.各结果发生的可能性相等;
(二)列举法求概率. 1.有时一一列举出的情况数目很大,此时需要考 虑如何去排除不合理的情况,尽可能减少列举的 问题可能解的数目. 2.利用列举法求概率的关键在于正确列举出试 验结果的各种可能性,而列举的方法通常有直接 分类列举、列表、画树形图(下课时将学习)等.
红红
红绿
绿红
绿绿
三.随堂练习
走进中考
1.(湖北荆州)屏幕上有四张卡片,卡片上分别有大 写 的 英 文 字 母 “ A , Z , E , X” , 现 已 将 字 母 隐 藏.只要用手指触摸其中一张,上面的字母就会显 现出来.某同学任意触摸其中2张,上面显现的英 文字母都是中心对称图形的概率是 . 1/6 2.(湖南株洲)从1,2,3,…,,20这二十个整数中 任意取一个数,这个数是5的倍数的概率是 1/5 . 3.(湖南益阳)有三张大小、形状完全相同的卡片, 卡片上分别写有数字1、2、3,从这三张卡片中随机 同时抽取两张,用抽出的卡片上的数字组成两位数, 这个两位数是偶数的概率是 1/3 .
25.2用列举法求概率课件(第一课时)
![25.2用列举法求概率课件(第一课时)](https://img.taocdn.com/s3/m/3821a64510661ed9ad51f386.png)
P( A) 6 1 36 6
用表格列举
第一枚
第二枚
1
2
3
4
5
6
1 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)
2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)
3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)
4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)
(4,4),(5,1),(5,5),(6,1)(6,2),(6,3),(6,6)。
P(A) 14 7 36 18
经验总结:
1、当一次试验要涉及两个因素,并且可能出 现的结果数目较多时,为了不重不漏的列出 所有可能的结果,通常采用列表法。
随堂检测
用实际行动来证明我能行
1、一个家庭有两个孩子,从出生的先后顺序和性别上来分,
例1 :掷两枚硬币,求下列事件的概率: (1)两枚硬币全部正面朝上; (2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上。
解: (1)所有可能出现的结果为:
直接列举法
正正, 正反, 反正, 反反。
共有4个,并且这4个结果出现的可能性相等;
其中满足两枚硬币全部正面朝上的结果只有一个,即“正 正”,所以
P(A)= 3
1
=
62
例2.同时掷两个质地均匀的骰子,计算下列 事件的概率: (1)两个骰子的点数相同; (2)两个骰子点数的和是9; (3)至少有一个骰子的点数为2。
分析:当一次试验要涉及两个因素(例如掷两个 骰子)并且可能出现的结果数目较多时,为不重
不漏地列出所有可能结果,通常采用 列表法 。
25.2 用列举法求概率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五章 概率初步
25.2 用列举法求概率 第一课时
教学目标
1、知识与技能:理解P (A )=
n
m (在一次试验中有n 种可能的结果,其中A 包含 m 种)的意义.
2、过程与方法:应用P (A )=n m 解决一些实际问题.
3、情感态度价值观:复习概率的意义,为解决利用一般方法求概率的繁琐,探究用特殊方法—列举法求概率的简便方法,然后应用这种方法解决实际问题. 教学重难点
1、重点:事件A 发生的概率为P(A)=
n m ,以及运用它解决实际间题。
2、难点:通过实验理解P(A)=
n
m 并应用它解决一些具体题目。
教学步骤
一、复习引入
请同学们回答下列问题.
1、概率是什么?
2、P(A)的取值范围是什么?
3、在大量重复试验中,什么值会稳定在一个常数?俄们又把这个常数叫做什么?
4、A=必然事件,B 是不可能发生的事件,C 是随机事件.诸你画出数轴把这三个量表示出来.
老师点评:在大量重复试验中,如果事件A 发生的频率n m 会稳定在某一个常数P 附近,那么这个常数P 就叫做事件A 的概率,记为P(A)=P .0≤P ≤1.
二、探究新知
1、实验:把学生分为10组,按要求做试验并回答问题.
(1)从分别标有1,2,3 ,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?其抽到1的概率为多少?
(2)掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?
老师点评:可能结果有1,2,3,4,5等5种杯由于纸签的形状、大小相同,又是随机抽取的,所以我们可以认为:每个号被抽到的可能性相等,都是1/5.其概率是1/5。
有1,2,3,4,5,6等6种可能.由于股子的构造相同质地均匀,又是随机掷出的,所以我们可以断言:每个结果的可能性相等,都是1/6,所以所求概率是1/6所求。
以上两个试验有两个共同的特点:
(1)一次试验中,可能出现的结果有限多个.
(2)一次试验中,各种结果发生的可能性相等.
对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.
因此,一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的、种结果,那么李件A 发生的概率为P(A)=
n
m 2、例题解析
例1、小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率.
(1)牌上的数字为3;
(2)牌上的数字为奇数;
(3)牌上的数字为大于3且小于6.
分析:因为从6张牌子任抽取一张符合刚才总结的试验的两个特点,所以可用P(A)= n m 来求解. 解:任抽取一张牌子,其出现数字可能为1,2,3,4,5,6,共6种,这些数字出现的可能性相同.
(1)P (点数为3)=1/6;
(2)P(点数为奇数)=3/6=1/2;
(3)牌上的数字为大于3且小于6的有4,5两种.
所以 P (点数大于3且小于6)=1/3
例2、如图25-7所示,有一个转盘,转盘分成4个相同的扇形,颇色分为红、绿、黄三种颇色,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指针所指的位里(指针指向两个扇形的交线时,当作指向右边的扇
形),求下列事件的概率:
(1)指针指向绿色;
(2)指针指向红色或黄色
(3)指针不指向红色.
分析:转一次转盘,它的可能结果有4种—有限个,并且各种结果发生的可能性相等.因此,它可以应用“ P(A)=
n m ”问题,即“列举法”求概率. 解,(1) P(指针,向绿色)=1/4;
(2) P(指针指向红色或黄色)=3/4;
(3)P(指针不指向红色)=1/2
例3、如图25-8所示是计算机中“扫雷“游戏的画面,在99⨯个小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格内最多只能藏1颗地雷。
小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(画线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,那么第二步应该踩A 区域还是B 区域? 分析:第二步应该踩在遇到地雷小的概率,所以现在关键求出在A 区域、B 区域的概率并比较。
解:(1)A 区域的方格共有8个,标号3表示在这8个方格中有3个方格各藏1
颗地雷,因此,踩A 区域的任一方格,遇到地雷的概率是83。
(2)B 区域中共有72999=-⨯个小方格,其中有7310=-个方格内各藏1颗地雷。
因此,踩B 区域的任一方格,遇到地雷的概率是72
7。
由于72
783>,所以踩A 区域遇到地雷的可能性大于踩B 区域遇到地雷的可能性,因而第二步应踩B 区域。
三、巩固练习
完成教材150P 练习1,2,151P 练习
学生独立完成后教师讲评.
四、课堂小结
请学生归纳本节课的学习内容和学习收获,教师鼓励学生大胆发言,师生共同倾听,并释疑解惑.
五、布置作业
习题25.2的第1、2题板书设计:。