2015年高二数学 专题训练3 基本初等函数

合集下载

高中数学第三章基本初等函数(Ⅰ)3.2对数与对数函数3.2.1对数及其运算第2课时积、商、幂的对数课

高中数学第三章基本初等函数(Ⅰ)3.2对数与对数函数3.2.1对数及其运算第2课时积、商、幂的对数课

对数及其运算第2课时积、商、幂对数课堂导学三点剖析一、利用对数运算法那么计算问题85+lg 21; (2)log a n a +log a n a 1+log a n a1(a>0且a≠1); (3)2log 510+log 50.25;(4)2log 525+3log 264;(5)log 2(log 216).思路分析:要注意灵活运用对数运算法那么,要会正用法那么,也要会逆用法那么,更要会变形用法那么. 解:85+lg 21 =(lg12.5+lg 21)-lg 85 =lg(12.5×21)+lg 58 =lg(12.5×21×58) =lg10=1.(2)log a n a +log a n a 1+log a n a1 =n 1log a a-nlog a a n1-log a a =-n 1n n 1-=-n. (3)2log 510+log 50.25=log 5102+log 50.25=log 5(102×0.25)=log 552=2.(4)2log 525+3log 264=2log 552+3log 226=4log 55+18log 22=4+18=22.(5)log 2(log 216)=log 2(log 224)=log 24=log 222=2.温馨提示计算时要将式子中真数积、商、幂、方根运用对数运算法那么将它们化为对数和、差、积、商,然后化简求值;另一方面就是将式子中对数和、差、积、商运用对数运算法那么将它们化为真数积、商、幂、方根,然后化简求值.总之,要根据解题具体需要正用及逆用法那么,灵活地运用法那么.二、对数式条件求值问题【例2】lg2=0.3010,lg3=0.4771,求lg 45.思路分析:运用对数运算法那么变形lg 45,最后变为仅含lg2和lg3式子.解:lg 45=21lg45=21lg5×9 =21(lg5+lg9)=21lg 210+21lg32 =21(lg10-lg2)+lg3 =21(1-0.3010)+0.4771=0.8266. 温馨提示条件求值问题,关键是如何利用条件,条件直接用不上时,要变形后再用,或条件与所求值式子同时变形,找到共同点.三、对数运算法那么综合应用问题【例3】(1)化简27lg 81lg 3lg 27lg 539lg 523lg -+++; (2)lgx+lgy=2lg(x-2y),求证:logyx 2=4. (1)解法一:先采用“分〞方法. 原式=3lg 33lg 43lg 213lg 1093lg 543lg --++ ==511. 解法二:采用“合〞方法. 原式=2781lg )32793lg(21532152-⨯⨯⨯⨯==511. (2)证明:∵lgx+lgy=2lg(x -2y),∴lgxy=lg(x -2y)2.∴xy=(x -2y)2,即x 2-5xy+4y 2=0.∴x=4y 或x=y(舍去). ∴yx =4. ∴log 2y x =log 24=log 2(2)4=4.对数式化简两种方法.一是把真数分解质数,然后把对数分成假设干个对数代数和,最后进展化简;二是把同底对数之和合并成一个对数,对真数进展化简.这两种解题思路,便是我们解决对数式化简问题重要方法,在碰到这类问题时,要善于灵活地选用上面所讲方法. 各个击破类题演练1计算:(1); (2)21lg 493243-lg 8+lg 245. 解析:(1)= ==12lg 12lg =1. (2)21lg 493243-lg 8+lg 245 =21(5lg2-2lg7)43-×23lg2+21(2lg7+lg5) =25lg2-lg7-2lg2+lg7+21lg5 =21lg2+21lg5=21(lg2+lg5) =21lg10=21. 变式提升1计算:(1)lg52+32lg8+lg5lg20+(lg2)2; (2)解析:(1)lg52+32lg8+lg5lg20+(lg2)2 =2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2lg10+(lg5+lg2)2=2+(lg10)2=3.(2)= ==21. 类题演练2lgx=m,lgy=n,求lg x -lg(10y )2值. 解析:lg x -lg(10y )2=21lgx-2lg 10y =21lgx-2(lgy-lg10)=21m-2n+2.3n =2,求log 38-log 336(用n 表示).解析:由3n =2,得n=log 32.∴log 38-log 336=log 323-log 362=3log 32-2log 36=3log 32-2log 32×3=3log 32-2(log 32+log 33)=log 32-2=n-2.类题演练3化简log 2487+log 21221-log 242. 解法一:把48、12、42分解质因数,再利用对数运算法那么,把log 2487,log 212,log 242拆成假设干个对数代数和,然后再化简.原式=21log 2+log 2(3×22)21-log 2(7×2×3) =21log 27-21log 23-2log 22+log 23+2log 2221-log 2721-log 2221-log 23 =21-log 22=21-. 解法二:由于所给对数底数一样,可以把各对数合并成一个对数,然后再化简计算. 原式=log 2=log 221=21-. 变式提升3证明(lg2)3+(lg5)3+3lg2·lg5=1.证明:(lg2)3+(lg5)3+3lg2·lg5=(lg2+lg5)[(lg2)2-lg2·lg5+(lg5)2]+3lg2·lg5=(lg2)2+2lg2lg5+(lg5)2=(lg2+lg5)2=(lg10)2=1.。

2015届高考数学(理)二轮专题配套练习:专题2_第1讲_函数、基本初等函数的图象与性质(含答案)

2015届高考数学(理)二轮专题配套练习:专题2_第1讲_函数、基本初等函数的图象与性质(含答案)

第1讲 函数、基本初等函数的图象与性质考情解读 1.高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下. 2.函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一是识图,二是用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以选择、填空题的形式出现,且常与新定义问题相结合,难度较大.1.函数的三要素 定义域、值域及对应关系两个函数当且仅当它们的三要素完全相同时才表示同一函数,定义域和对应关系相同的两个函数是同一函数. 2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y 轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f (a +x )=f (x )(a 不等于0),则其一个周期T =|a |. 3.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换. 4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x(a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质.(2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况.热点一 函数的性质及应用例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32的值等于________.思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,12]时的解析式探求f (3)和f (-32)的值.思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·重庆)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))等于( ) A .-5 B .-1 C .3 D .4(2)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为_________.热点二 函数的图象例2 (1)(2014·烟台质检)下列四个图象可能是函数y =10ln|x +1|x +1图象的是()(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f (x )的单调性. 思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)函数f (x )=1+log 2x 与g (x )=21-x 在同一直角坐标系中的图象大致是( )(2)(2013·课标全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]热点三 基本初等函数的图象及性质例3 (1)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)(2)已知α,β∈[-π2,π2]且αsin α-βsin β>0,则下面结论正确的是( )A .α>βB .α+β>0C .α<βD .α2>β2思维启迪 (1)可利用函数图象或分类讨论确定a 的范围;(2)构造函数f (x )=x sin x ,利用f (x )的单调性. 思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算能力. (2)比较数式大小问题,往往利用函数图象或者函数的单调性.(1)设15<(15)b <(15)a <1,那么( )A .a a <a b <b aB .a b <a a <b aC .a a <b a <a bD .a b <b a <a a(2)已知函数f (x )=2x -12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.1.判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3.函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y=f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a .(2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称.4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中.5.指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较.6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.真题感悟1.(2014·安徽)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________.2.(2014·福建)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则所给函数图象正确的是()押题精练1.已知函数f (x )=e |ln x |-⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为()2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞)3.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( ) A .有最小值-1,最大值1 B .有最大值1,无最小值 C .有最小值-1,无最大值 D .有最大值-1,无最小值(推荐时间:40分钟)一、选择题1.下列函数f (x )中,满足“对任意的x 1,x 2∈(0,+∞)时,均有(x 1-x 2)[f (x 1)-f (x 2)]>0”的是( ) A .f (x )=12 B .f (x )=x 2-4x +4 C .f (x )=2x D .f (x )=log 12x2.(2014·浙江)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是()3.已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值等于( ) A.1lg 2 B .-1lg 2 C .lg 2 D .-lg 2 4.若a >b ,则下列不等式成立的是( )A .ln a >ln bB .0.3a>0.3bC .1122a b > D .3a >3b5.设偶函数f (x )满足f (x )=2x-4(x ≥0),则{x |f (x -2)>0}等于( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2} 6.使log 2(-x )<x +1成立的x 的取值范围是( ) A .(-1,0) B .[-1,0) C .(-2,0) D .[-2,0)7.下列函数中,与函数f (x )=2x -1-12x 1的奇偶性、单调性均相同的是()A .y =e xB .y =ln(x +x 2+1)C .y =x 2D .y =tan x8.(2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( )A .[1,2]B .⎝⎛⎦⎤0,12C .⎣⎡⎦⎤12,2 D .(0,2] 二、填空题9.已知函数f (x )=⎩⎪⎨⎪⎧13e x (x ≥2)f (x +1)(x <2),则f (ln 3)=________.10.已知函数f (x )=x |x -a |,若对任意的x 1,x 2∈[2,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]>0恒成立,则实数a 的取值范围为________.11.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.12.已知定义在R 上的函数y =f (x )满足以下三个条件: ①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2); ③函数y =f (x +2)的图象关于y 轴对称.则判断f (4.5),f (6.5),f (7)的大小关系为________.13.设函数f (x )=1+(-1)x 2(x ∈Z ),给出以下三个结论:①f (x )为偶函数;②f (x )为周期函数;③f (x +1)+f (x )=1,其中正确结论的序号是________.例1 (1)(-1,3) (2)-14 变式训练1 (1)C (2)⎝⎛⎭⎫-2,23 例2 答案 (1)C (2)D 变式训练2 (1)C (2)D 例3 (1)C (2)D 变式训练3 (1)B (2)0 1.516 2.B 1.A 2.D 3.CCDDDB ABC9.e 10.{a |a ≤2} 11.-10 12.f (4.5)<f (7)<f (6.5) 13.①②③。

高中数学基本初等函数图像题专题训练含答案

高中数学基本初等函数图像题专题训练含答案

高中数学基本初等函数图像题专题训练含答案姓名:__________ 班级:__________考号:__________一、选择题(共20题)1、函数的图象大致是 ( )A .B .C .D .2、已知函数的图象如图所示,则该函数的解析式可能是()A .B .C .D .3、函数在区间上的图象大致是()A . B .C .D .4、函数的图象大致为()A .B .C .D .5、 A . B .C .D .6、下列图象中不能作为函数的是()A .B .C .D .7、设函数满足对,都有,且在上单调递增,,,则函数的大致图象是()A .B .C .D .8、若方程在区间有解,则函数图象可能是()A .B .C .D .9、函数的图象大致为()A .B .C .D .10、函数的大致图象为()A .B .C .D .11、函数,图象大致为A. B .C .D .12、函数的图象大致是()A .B .C .D .13、已知函数,,则的图象不可能是()A .B .C .D .14、函数的图像可能是()A .B .C .D .15、函数的图像大致为()A .B .C .D .16、函数的图象大致为A .B .C .D .17、函数在其定义域上的图象大致为()A .B .C .D .18、函数的图象大致形状是()A .B .C .D .19、已知,函数与的图象可能是()A .B .C .D .20、函数的图象大致为()A .B .C .D .============参考答案============一、选择题1、B【解析】【分析】根据题意,先分析函数的奇偶性,排除AC ,再判断函数在上的符号,排除 D ,即可得答案.【详解】∵ f ( x ) 定义域 [ - 1 , 1 ] 关于原点对称,且,∴ f ( x ) 为偶函数,图像关于y 轴对称,故AC 不符题意;在区间上,,,则有,故 D 不符题意, B 正确.故选: B .2、D【解析】【分析】根据函数的图象结合函数的定义域,复合函数的奇偶性,利用排除法,即可得到结果 . 【详解】由图象可知函数是奇函数,函数和由复合函数的奇偶性可知,这两个函数为偶函数,故排除 A , C ;对于函数,由于时,,此时无意义,所以函数不经过原点,故 B 错误;故 D 满足题意.故选: D.3、A【解析】【分析】先判断函数的奇偶性,再由,进而得到正确选项 .【详解】∵ 函数,故函数为奇函数,排除 BD ;,可排除 C.故选: A.4、 B【分析】根据函数的奇偶性可排除 C ,再根据的符号即可排除 AD ,即可得出答案.【详解】解:函数的定义域为R ,因为,所以函数是偶函数,故排除 C ;,故排除 A ;,故排除 D.故选: B.5、【分析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象 .【详解】因为,则,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误;且时,,据此可知选项B 错误 .故选: A.【点睛】函数图象的识辨可从以下方面入手: (1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2) 从函数的单调性,判断图象的变化趋势.(3) 从函数的奇偶性,判断图象的对称性.(4) 从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.6、 B【分析】根据函数的定义可知,对于x 的任何值y 都有唯一的值与之相对应,分析图象即可得到结论.【详解】由函数的定义可知,对定义域内的任意一个自变量x 的值,都有唯一的函数值y 与其对应,故函数的图象与直线x =a 至多有一个交点,图 B 中,存在x =a 与函数的图象有两个交点,不满足函数的定义,故 B 不是函数的图象.故选: B7、 A【分析】判断的奇偶性排除 BD ,再由当时,得出答案 .【详解】令,则函数为偶函数,故排除 BD当时,,则,故排除 C故选: A【点睛】关键点睛:本题关键是采用排除法,由奇偶性排除 BD ,再由当时,排除 C.8、 D【分析】由题意可得在区间上,能够成立,结合所给的选项,得出结论【详解】解:方程在区间上有解,在区间上,能够成立,结合所给的选项,只有 D 选项符合.故选: D .9、 A【分析】由条件判断函数为奇函数,且在为负数,从而得出结论 .【详解】,因此函数为奇函数,图像关于原点对称排除;当时,,,因此.故选:.【点睛】本题主要考查的是函数图像的应用,奇偶性的应用,根据奇偶函数的对称性进行判断是解决本题的关键,是中档题 .10、 A【分析】判断函数的奇偶性和对称性的关系,利用极限思想进行求解即可【详解】解:函数,,,,则函数为非奇非偶函数,图象不关于 y 轴对称,排除 C , D ,当,排除 B ,故选 A【点睛】本题主要考查函数图象的识别和判断,利用函数的对称性以及极限思想是解决本题的关键11、 D【分析】根据函数的奇偶性和函数图像上的特殊点对选项进行排除,由此得出正确选项 .【详解】,故函数为奇函数,图像关于原点对称,排除选项 .由排除选项 . 由,排除 C 选项,故本小题选 D.【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性的判断方法,属于基础题 .12、 C【分析】根据函数的奇偶性和值域即可判断 .【详解】所以为偶函数,所以图象关于轴对称,故排除 B ,当时,故排除 A ,当时,故排除 D故选: C .13、 D【分析】先分析出为偶函数 . ,其图像关于y 轴对称,即可得到答案 .【详解】定义域为 R.因为,所以为偶函数 . ,其图像关于y 轴对称,对照四个选项的图像,只能选 D.故选 :D14、 B【分析】根据、分类讨论的图象,利用导函数研究它在各个区间上的单调性,分别判断两个区间某一部份的单调性即可得到它的大致图象;【详解】1 、当时,,即,令,则,∴ 时,即单调递增,故,∴ 此时,,即在单调递增,故排除D 选项;2 、当时,,令,则,∴ ,,故有即,所以,∴ 在上,而,故在上一定有正有负,则有B 正确;故选: B【点睛】本题考查了利用导数研究函数单调性,并确定函数的大致图象,注意按区间分类讨论,以及零点、极值点的讨论15、 B【分析】由函数为偶函数可排除 AC ,再由当时,,排除 D ,即可得解.【详解】设,则函数的定义域为,关于原点对称,又,所以函数为偶函数,排除 AC ;当时,,所以,排除 D.故选: B.16、 C【分析】由可排除 A 、 D ;再利用导函数判断在上的单调性,即可得出结论 . 【详解】因为,故排除 A 、 D ;,令,在是减函数,,在是增函数,,存在,使得,单调递减,单调递增,所以选项 B 错误,选项 C 正确.故选: C【点睛】本题考查由解析式选择函数图象的问题,利用导数研究函数单调性是解题的关键,考查学生逻辑推理能力,是一道中档题 .17、 D【分析】求函数的定义域 , 判断函数的奇偶性和对称性, 利用排除法, 进行判断即可【详解】函数的定义域为.因为,,所以是奇函数,图象关于原点对称,排除 A,B ;当,,排除 C.故选 :D.18、 D【分析】利用排除法,先判断函数的奇偶性,再取特殊值即可判断【详解】解:函数的定义域为,因为,所以为偶函数,所以其图像关于轴对称,所以排除 A ,B ,因为,所以排除 C ,故选: D19、 B【分析】根据函数的定义域,判断两个函数的单调性,即可求解 .【详解】,函数在上是增函数,而函数定义域为,且在定义域内是减函数,选项 B 正确》故选 :B.【点睛】本题考查函数的定义域、单调性,函数的图像,属于基础题 .20、 A【分析】分析函数的奇偶性,并结合函数的解析式知:当时,即可确定大概函数图象 . 【详解】根据题意,设,其定义域为,有,则为奇函数,其图象关于原点对称,排除 C 、 D ,当时,,,必有,排除 B ,故选: A.【点睛】关键点点睛:分析函数的奇偶性与函数值符号,应用间接法确定函数图象 .。

2015年高考数学试题专题练习:函数概念与基本初等函数doc

2015年高考数学试题专题练习:函数概念与基本初等函数doc

2015年高考数学试题专题练习:函数概念与基本初等函数1.函数f(x)=ln(x 2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)2.已知函数f(x)=5|x|,g(x)=ax 2-x(a∈R).若f[g(1)]=1,则a=( )A.1B.2C.3D.-1 3.函数f(x)=1)(log 122-x 的定义域为( )A. B.(2,+∞) C.∪(2,+∞) D.∪[2,+∞) 4.已知函数f(x)=则下列结论正确的是( )A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)5.若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a 的值为( )A.5或8B.-1或5C.-1或-4D.-4或86.设函数f(x)=若f(f(a))≤2,则实数a 的取值范围是 .7.下列函数中,在区间(0,+∞)上为增函数的是( ) A.1+=x y B.y=(x-1)2 C.y=2-xD.y=log 0.5(x+1) 8.已知实数x,y 满足a x <a y (0<a<1),则下列关系式恒成立的是( )A.111122+>+y x B.ln(x 2+1)>ln(y 2+1) C.sin x>sin y D.x 3>y 3 9.下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是( )A.f(x)=B.f(x)=x 3C.f(x)=D.f(x)=3x10.已知偶函数f(x)在[0,+∞)上单调递减, f(2)=0.若f(x-1)>0,则x的取值范围是.11.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数12.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=( )A.-3B.-1C.1D.313.设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x.当0≤x<π时, f(x)=0,则 f=( )A. B. C.0 D.-14.已知函数f(x)是定义在R上的奇函数,当x≥0时, f(x)=(|x-a2|+|x-2a2|-3a2).若∀x∈R, f(x-1)≤f(x),则实数a的取值范围为( )A. B. C. D.15.设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时, f(x)=则f= .16.已知函数f(x)=e x+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-+3x0)成立.试比较e a-1与a e-1的大小,并证明你的结论.17.对于c>0,当非零实数a,b 满足4a 2-2ab+4b 2-c=0且使|2a+b|最大时, - + 的最小值为 .18.若函数f(x)=cos 2x+asin x 在区间是减函数,则a 的取值范围是 . 19.在同一直角坐标系中,函数f(x)=x a (x>0),g(x)=log a x 的图象可能是( )20.已知a=,b=log 2,c=lo ,则( ) A.a>b>c B.a>c>bC.c>a>bD.c>b>a21.函数f(x)=)4(log 221-x 的单调递增区间为( )A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)22.若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是( )23.已知f(x)=ln(1+x)-ln(1-x),x∈(-1,1).现有下列命题:①f(-x)=-f(x);②f =2f(x);③|f(x)|≥2|x|. 其中的所有正确命题的序号是( )A.①②③B.②③C.①③D.①② 24.已知4a =2,lg x=a,则x= .25.函数f(x)=)2(log log 22x x ⋅的最小值为 .26.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA,终边为射线OP,过点P 作直线OA 的垂线,垂足为M,将点M 到直线OP 的距离表示成x 的函数f(x),则y=f(x)在[0,π]上的图象大致为( )27.已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k 的取值范围是( ) A. B. C.(1,2) D.(2,+∞)28.已知函数f(x)=x 2+e x 21 (x<0)与g(x)=x 2+ln(x+a)的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A. B.(-∞,) C. D.29.已知f(x)是定义在R 上且周期为3的函数,当x∈[0,3)时, f(x)=.若函数y=f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是 .30.已知函数f(x)=|x 2+3x|,x∈R.若方程f(x)-a|x-1|=0恰有4个互异的实数根,则实数a 的取值范围为 .31.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为( ) A. B. C. D.-1 32.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P,需计算由点A 观察点P 的仰角θ的大小.若AB=15 m,AC=25 m,∠BCM=30°,则tan θ的最大值是 .(仰角θ为直线AP 与平面ABC 所成角)33.已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)-f(y)|<|x-y|.若对所有x,y∈[0,1],|f(x)-f(y)|<k恒成立,则k的最小值为( )A. B. C. D.34.设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a, f(a)),(b,-f(b))的直线与x轴的交点为(c,0),则称c为a,b关于函数f(x)的平均数,记为M f(a,b).例如,当f(x)=1(x>0)时,可得M f(a,b)=c=,即M f(a,b)为a,b的算术平均数.(1)当f(x)= (x>0)时,M f(a,b)为a,b的几何平均数;(2)当f(x)= (x>0)时,M f(a,b)为a,b的调和平均数.(以上两空各只需写出一个符合要求的函数即可)35.已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是.36.以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D, f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=aln(x+2)+(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)参考答案1. C2. A3. C4. D5. D6. (-∞,]7. A 8. D 9. D 10. (-1,3)11. C 12. C 13. A 14. B 15. 116.解析(1)证明:因为对任意x∈R,都有f(-x)=e-x+e-(-x)=e-x+e x=f(x),所以f(x)是R上的偶函数.(2)由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立,令t=e x(x>0),则t>1,所以m≤-=-对任意t>1成立.因为t-1++1≥2+1=3,所以-≥-,当且仅当t=2,即x=ln 2时等号成立.因此实数m的取值范围是.(3)令函数g(x)=e x+-a(-x3+3x),则g'(x)=e x-+3a(x2-1).当x≥1时,e x->0,x2-1≥0,又a>0,故g'(x)>0,所以g(x)是[1,+∞)上的单调增函数,因此g(x)在[1,+∞)上的最小值是g(1)=e+e-1-2a.由于存在x0∈[1,+∞),使+-a(-+3x0)<0成立,当且仅当最小值g(1)<0,故e+e-1-2a<0,即a>.令函数h(x)=x-(e-1)ln x-1,则h'(x)=1-.令h'(x)=0,得x=e-1.当x∈(0,e-1)时,h'(x)<0,故h(x)是(0,e-1)上的单调减函数;当x∈(e-1,+∞)时,h'(x)>0,故h(x)是(e-1,+∞)上的单调增函数.所以h(x)在(0,+∞)上的最小值是h(e-1).注意到h(1)=h(e)=0,所以当x∈(1,e-1)⊆(0,e-1)时,h(e-1)≤h(x)<h(1)=0;当x∈(e-1,e)⊆(e-1,+∞)时,h(x)<h(e)=0.所以h(x)<0对任意的x∈(1,e)成立.①当a∈⊆(1,e)时,h(a)<0,即a-1<(e-1)ln a,从而e a-1<a e-1;②当a=e时,e a-1=a e-1;③当a∈(e,+∞)⊆(e-1,+∞)时,h(a)>h(e)=0,即a-1>(e-1)ln a,故e a-1>a e-1.综上所述,当a∈时,e a-1<a e-1;当a=e时,e a-1=a e-1;当a∈(e,+∞)时,e a-1>a e-1.17. -2 18. (-∞,2] 19. D 20. C21. D 22. B 23. A 24. 25. -26. C 27. B 28. B 29.30. (0,1)∪(9,+∞) 31. D 32. 33. B 34. (1)(2)x 35. (2,+∞) 36. ①③④。

高中数学第三章基本初等函数(Ⅰ)3.2对数与对数函数(1)第一课时同步练习新人教B版必修1

高中数学第三章基本初等函数(Ⅰ)3.2对数与对数函数(1)第一课时同步练习新人教B版必修1

3.2.1 对数及其运算第1课时1.若a 2=N(a>0且a≠1),则有( )A .log 2N =aB .log 2a =NC .log N a =2D .log a N =22.若log x 7y =z ,则( )A .y 7=x zB .y =x 7zC .y =7x zD .y =z 7x3.21+log 272的值等于( )A .272B .7 C.47D .144.若log 16x =-14,则x =________;若(2)x=12,则x =________.5.若log 2(x 2-4x +6)=1,则x =________.1.有下列说法:①零和负数无对数;②3log 3(-5)=-5成立;③任何一个指数式都可以化为对数式;④以10为底的对数叫做常用对数.其中正确命题的个数为( )A .1个B .2个C .3个D .4个2.下列指数式与对数式的互化中,不正确的一组是( )A .100=1与lg1=0B .27-13=13与log 2713=-13C .log 39=2与912=3D .log 55=1与51=53.在b =log (a -2)(5-a)中,实数a 的取值范围为…( ) A .a>5或a<2 B .2<a<5 C .2<a<3或3<a<5 D .3<a<44.计算3log 35+3log315=________.5.已知log 7[log 3(log 2x)]=0,那么x -12=________.6.已知log a 2=m ,log a 3=n ,求a 2m +n的值.7.求alog a b·log b c·log c N 的值.1.给出下列式子:①5log 512=12;②πlogπ3-1=13;③4log 4(-3)=-3;④xlog x 6=6.其中不正确的是( )A .①③ B.②③ C.③④ D.②④ 2.下列命题正确的是( )①对数式log a N =b(a>0,且a≠1)和指数式a b=N(a>0,且a≠1)是同一关系式的两种不同表达形式;②在同底条件下,对数式log a N =b 与指数式a b=N 可以互相转化;③若a b=N(a>0,且a≠1),则alog a N =N 一定成立; ④对数的底数是任意正实数. A .①② B.①②③④ C .①②③ D.④3.以6为底,216336的对数等于( )A.73B.113C.92D .2 4.设5lgx=25,则x 的值等于( ) A .10 B .±10 C.100 D .±100 5.log 6(log 4(log 381))=________.6.log 3(1-2x9)=1,则x =________.7.(1)求对数值:log 4381=________;log 354625=________.(2)求真数:log 3x =-34,则x =________;log 2x =78,则x =________.(3)求底数:log x 3=-35,则x =________;log x 2=78,则x =________.8.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.9.已知log a b =log b a(a>0,a≠1;b>0,且b≠1),求证:a =b 或a =1b.10.已知lga 和lgb 是关于x 的方程x 2-x +m =0的两个根,而关于x 的方程x 2-(lga)x -(1+lga)=0有两个相等的实数根,求实数a ,b 和m 的值.答案与解析课前预习1.D 由对数式与指数式的互化易得.2.B log x 7y =z ⇔x z =7y ,∴x 7z=y.3.B 21+log 272=2·2log 272=2·72=7.4.12 -2 log 16x =-14⇔x =16-14=12,(2)x =12⇔x =log 212=log 2(2)-2=-2. 5.2 由log 2(x 2-4x +6)=1得x 2-4x +6=2,即x 2-4x +4=0,即(x -2)2=0,∴x =2. 课堂巩固1.B ③错误,如(-1)2=1就不能写成对数式.②错误,log 3(-5)无意义.2.C log 39=2的指数式应为32=9. 3.C 由对数的定义知⎩⎪⎨⎪⎧5-a>0,a -2>0,a -2≠1,解得⎩⎪⎨⎪⎧a<5,a>2,a≠3,∴2<a<3或3<a<5.4.655 ∵3log 35=5,3log 315=(3log 315)12=(15)12=55. ∴原式=5+55=655. 5.24由已知得log 3(log 2x)=1, ∴log 2x =3,则x =23.∴x-12=2-32=122=24.6.解:∵log a 2=m ,∴a m=2.又log a 3=n ,∴a n=3. ∴a 2m +n =(a m )2·a n =22·3=12.7.解:原式=(alog a b)log b c·log c N =blog b c·log c N =(blog b c)log c N =clog c N =N. 点评:重复使用对数恒等式即可得解;对数恒等式alog a N =N 中要注意书写格式. 课后检测1.C ③不正确,log 4(-3)无意义,∵负数和零无对数;④不正确,应在条件“x>0,且x≠1”的前提下计算.2.C ④中的底数应满足“大于0且不等于1”.3.A ∵216336=63623=63-23=673,∴log 6216336=log 6673=73.4.C 5lgx =25,∴lgx=2,即102=x. ∴x=100.5.0 原式=log 6[log 4(log 334)] =log 6(log 44) =log 61=0.6.-13 由已知得1-2x9=3,∴x=-13.7.(1)16 3 (2)1427278 (3)3-53 287(1)(43)16=34=81,∴log 4381=16;∵(354)3=625,∴log 354625=3.(2)由题意可得x =3-34=1427;由已知得x =278.(3)由已知得x -35=3,∴x=3-53;x 78=2,∴x=287.点评:对于对数和对数的底数与真数三者之间,已知其中两个就可求另外一个,关键是指数式与对数式的互化.8.解:∵f(x)的最大值为3,∴⎩⎪⎨⎪⎧lga<0,16lg 2a -44lga=3⇒(4lga +1)(lga -1)=0.∴lga=1(舍去)或lga =-14.∴a=10-14.9.证明:设log a b =log b a =k ,则b =a k ,a =b k,从而有b =(b k )k =bk 2.∵b>0,b≠1,∴k 2=1,即k =±1.当k =-1时,a =1b;当k =1时,a =b.∴a=b 或a =1b ,命题得证.10.解:由题意,得⎩⎪⎨⎪⎧ lga +lgb =1,lga·lgb=m ,(lga)2+4(1+lga)=0,①②③由③得(lga +2)2=0,∴lga=-2.∴a =1100.代入①得lgb =1-lga =3,∴b=103=1 000. 代入②得m =lga·lgb=(-2)×3=-6.∴a=1100,b =1 000,m =-6.。

高中数学 第三章 基本初等函数(Ⅰ)3.2 对数与对数函数

高中数学 第三章 基本初等函数(Ⅰ)3.2 对数与对数函数

3.2.2 对数函数课堂导学三点剖析一、对数函数定义域、值域问题【例1】求下列函数的定义域与值域.(1)y=log 2(x 2-4x-5);(2)y=log 3(9-x 2); (3)y=32x log ; (4)y=)34(log 5.0-x .思路分析:(1)(2)题,用y=log a x 的定义域来求它们的定义域,即相当于利用y=log a x 中的x 的代数式大于0即可求得;(3)(4)题,对数要有意义并且根式也要有意义,结合对数函数的图象求定义域比较直观、好理解.解:(1)∵x 2-4x-5>0,∴x<-1或x>5.∴y=log 2(x 2-4x-5)的定义域是{x|x<-1或x>5}.又令g(x)=(x-2)2-9,∵g(x)在定义域内恒有g(x)>0,∴函数值域为R .(2)由9-x 2>0,得-3<x<3,∴y=log 3(9-x 2)的定义域为{x|-3<x<3}.又知0<9-x 2≤9且y=log 3x 是增函数,∴y=log 3(9-x 2)≤log 39=2.∴y=log 3(9-x 2)的值域为(-∞,2].(3)∵该函数有奇次根式,要使函数有意义,只需对数的真数是正数,∴所求定义域是{x|x>0},值域为R .(4)要使函数y=)34(log 5.0-x 有意义,必须log 0.5(4x-3)≥0=log 0.51.∴0<4x -3≤1.∴43<x≤1. ∴所求定义域是{x|43<x≤1},值域为[0,+∞). 二、比较大小问题【例2】比较下列各组数中两个值的大小: (1)log 310.3,log 20.8;(2)log a 5.1,log a 5.9;(3)log 67,log 76.思路分析:对于底数相同的两个对数值比较大小,可由对数函数的单调性确定.对于底数不同的两个对数值比较大小,要换底或在两个对数值之间搭一个“桥梁”,如“0”和“1”,间接地比较大小.解:(1)由对数的性质,知 log 310.3>0,log 20.8<0,∴log 310.3>log 20.8.(2)对数函数的增减性取决于对数的底数是大于1还是在0与1之间,而已知条件中并未明确指出底数a 与1哪个大,因此需要对底数a 进行讨论.当a>1时,函数y=log a x 在(0,+∞)上是增函数,5.1<5.9,∴log a 5.1<log a 5.9;当0<a<1时,函数y=log a x 在(0,+∞)上是减函数,5.1<5.9,∴log a 5.1>log a 5.9.(3)∵log 67>1,log 76<log 77=1,∴log 67>log 76.三、函数单调性的判定与单调区间的求法【例3】(1)求证:函数f(x)=-log 51x 在(0,+∞)上是增函数;(2)求函数f(x)=log 2(x 2-1)的单调区间.(1)证明:在(0,+∞)上任取x 1、x 2,且0<x 1<x 2,则f(x 1)-f(x 2)=(-log 51x 1)-(-log 51x 2)=log 51x 2-log 51x 1.又y=log 51x 在(0,+∞)上是减函数,有log 51x 2<log 51x 1, ∴log 51x 2-log 51x 1<0,即f(x 1)-f(x 2)<0.∴f(x 1)<f(x 2).∴f(x)=-log 51x 在(0,+∞)上是增函数.(2)解析:由x 2-1>0得x>1或x<-1,∴f(x)定义域为(1,+∞)∪(-∞,-1).令g(x)=x 2-1,知g(x)在(1,+∞)上递增,在(-∞,-1)上递减且f(x)=log 2x 为增函数.故f(x)的增区间为(1,+∞),减区间为(-∞,-1).温馨提示(1)要熟练地应用增、减函数的定义,以及对数函数y=log a x 的单调性来证明复合函数单调性.(2)G(x)=f [g(x)],若g(x)与f(x)同增(或同减),则G(x)为增;若g(x)与f(x)一增一减,则G(x)为减,可据此来求单调区间.各个击破类题演练1已知函数y=log a (a-a x )(其中a>1),求它的定义域和值域.解析:根据题意a-a x >0,∴a x <a.又∵a>1,y=a x 是增函数,∴x<1.∵a x <a,且a x >0,0<a-a x <a,∴log a (a-a x )<1.∴函数y=log a (a-a x )的定义域和值域分别是{x|x<1}和{y|y<1}.变式提升1求下列函数的定义域:(1)y=log 7x311 ;(2)y=)32lg(422-+-x x x ; (3)y=log (x+1)(16-4x). 解析:(1)由⎪⎩⎪⎨⎧≠->-,031,0311x x 得x<31, ∴所求函数的定义域为{x|x<31}. (2)由⎪⎩⎪⎨⎧≠-+>-+≥-.0)32lg(,032,04222x x x x x 即⎩⎨⎧±-≠-<≥⇔⎪⎩⎪⎨⎧≠-+>-<-≤≥.51,63213213222x x x x x x x x x 或或或∴函数y=)32lg(422-+-x x x 的定义域为{x|x≥2或x<-3且x≠-15-}. (3)由⎪⎩⎪⎨⎧≠-><⎪⎩⎪⎨⎧≠-><⇔⎪⎩⎪⎨⎧≠+>+>-.0,1,2,0,1,44110104162x x x x x x x x x 得∴y=log (x+1)(16-4x)的定义域为{x|-1<x<2且x≠0}.类题演练2比较下列各组数中两个值的大小: (1)log 213,log 513;(2)log 3π,log 20.8.解析:(1)∵在x∈(1,+∞)上,y=log 51x 的图象在y=log 21x 图象的上方, ∴log 513>log 213.(2)∵log 3π>log 31=0,log 20.8<log 21=0,∴log 3π>log 20.8.变式提升比较(lgm)1.9与(lgm)2.1(m>1)的大小.解析:把lgm 看作指数函数的底数,本题转化为比较一个指数函数的两个函数值的大小,于是应对底数lgm 进行讨论:当1>lgm>0,即1<m<10时,y=(lgm)x 在R 上是减函数,1.9<2.1,∴(lgm)1.9>(lgm)2.1;当lgm=1,即m=10时,(lgm)1.9=(lgm)2.1=1;当lgm>1,即m>10时,y=(lgm)x 在R 上是增函数,1.9<2.1,∴(lgm )1.9<(lgm)2.1.类题演练3求函数f(x)=log 0.5(x 2-2x-3)的单调区间.解析:由x 2-2x-3>0得x>3或x<-1,令g(x)=(x-1)2-4,知g(x)在(3,+∞)上递增,在(-∞,-1)上递减.又f(x)=log0.5x是减函数,故f(x)的增区间为(-∞,-1),减区间为(3,+∞).变式提升3判断f(x)=log a(x2-2x-3)在(3,+∞)上的单调性.解析:令g(x)=x2-2x-3,当x∈(3,+∞)时,有g(x)>0. 设x1、x2∈(3,+∞)且x1>x2,则g(x1)=x12-2x1-3,g(x2)=x22-2x2-3.∴g(x1)-g(x2)=(x12-x22)-2(x1-x2)=(x1-x2)(x1+x2-2). ∵x1>x2>3,∴x1-x2>0,x1+x2-2>0.∴g(x1)>g(x2).又当a>1时,f(x)=log a x是增函数,∴f(x1)=log a g(x1)>log a g(x2)=f(x2).∴当a>1时,f(x)在(3,+∞)上是增函数.同理可证,当0<a<1时,f(x)在(3,+∞)上是减函数.。

专题3 基本初等函数-1

专题3  基本初等函数-1

高考数学题型归纳与精讲(文/理科)诸葛老师课堂基础+强化+冲刺高考数学题型归纳与精讲(文/理科)不择手段,得分才是硬道理专题三基本初等函数题型7 函数的概念及其表示题型8 求函数的定义域题型9 求函数的值域真题精讲答案详解真题精讲答案详解题型攻略易错指导真题精讲答案详解真题精讲答案详解题型攻略易错指导真题精讲答案详解真题精讲答案详解真题精讲答案详解真题精讲答案详解题型攻略易错指导精品课程上线安排课程编号课程目录课程内容大纲适用人群1高考数学一轮微专题系列①函数性质的综合应用②巧解零点问题③三角函数综合应用④平面向量的综合应用⑤数列及其综合应用⑥不等式与线性规划⑦导数及其综合应用●高中各阶段总结复习●高考数学一轮复习●高考数学二轮复习●高考强化阶段重点突破●高考冲刺阶段提分秘籍●高考数学成绩冲刺140+课程编号课程目录课程内容大纲适用人群2高考二轮重难点突破①三角函数与解三角形3大经典问题②立体几何与空间向量4大类经典问题③概率与统计3大经典问题④解析几何4大类经典问题⑤导数及其应用5大经典问题⑥极坐标与参数方程3大经典问题⑦不等式选讲3大经典问题●高考数学二轮复习●高考强化阶段重点突破●高考核心题型归纳●解答题冲刺60+课程编号课程目录课程内容大纲适用人群3高考冲刺大招须知①客观题得分技巧与策略②解答题答题模板归纳与应用③高考数学冲刺130+答题策略④高考数学常见误区与陷阱⑤高考数学试卷抢分秘籍●客观题得分率低●解答题得分率低●高分答题技巧欠缺●忽视常见命题陷阱●考前抢分策略薄弱预祝大家高考金榜题名!温馨提示:专题三基本初等函数2。

高中数学【基本初等函数、函数的应用】专题练习

高中数学【基本初等函数、函数的应用】专题练习

高中数学【基本初等函数、函数的应用】专题练习1.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A.a <b <c B.b <a <c C.b <c <a D.c <a <b答案 A解析 ∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝ ⎛⎭⎪⎫log 53+log 5822-1log 58=⎝ ⎛⎭⎪⎫log 52422-1log 58<⎝ ⎛⎭⎪⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4log 88=4=4log 1313<5log 138, ∴log 85<log 138,∴log 53<log 85<log 138, 即a <b <c .故选A.2.若2x -2y <3-x -3-y ,则( ) A.ln(y -x +1)>0 B.ln(y -x +1)<0 C.ln|x -y |>0 D.ln|x -y |<0 答案 A解析 设函数f (x )=2x -3-x .因为函数y =2x 与y =-3-x 在R 上均单调递增, 所以f (x )在R 上单调递增.原已知条件等价于2x -3-x <2y -3-y ,即f (x )<f (y ),所以x <y ,即y -x >0,y -x +1>1,所以A 正确,B 不正确. 因为|x -y |与1的大小不能确定,所以C ,D 不正确.3.设a ∈R ,函数f (x )=⎩⎨⎧cos (2πx -2πa ),x <a ,x 2-2(a +1)x +a 2+5,x ≥a ,若f (x )在区间(0,+∞)内恰有6个零点,则a 的取值范围是( ) A.⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114 B.⎝ ⎛⎭⎪⎫74,2∪⎝ ⎛⎭⎪⎫52,114 C.⎝ ⎛⎦⎥⎤2,94∪⎣⎢⎡⎭⎪⎫114,3 D.⎝ ⎛⎭⎪⎫74,2∪⎣⎢⎡⎭⎪⎫114,3 答案 A解析 因为x 2-2(a +1)x +a 2+5=0最多有2个根, 所以c os (2πx -2πa )=0至少有4个根.由2πx -2πa =π2+k π,k ∈Z 可得x =k 2+14+a ,k ∈Z .由0<k 2+14+a <a 可得-2a -12<k <-12.①当x <a 时,当-5≤-2a -12<-4时,f (x )有4个零点,即74<a ≤94;当-6≤-2a -12<-5时,f (x )有5个零点, 即94<a ≤114;当-7≤-2a -12<-6时,f (x )有6个零点, 即114<a ≤134;②当x ≥a 时,f (x )=x 2-2(a +1)x +a 2+5, Δ=4(a +1)2-4(a 2+5)=8(a -2), 当a <2时,Δ<0,f (x )无零点;当a =2时,Δ=0,f (x )有1个零点x =3;当a >2时,令f (a )=a 2-2a (a +1)+a 2+5=-2a +5≥0,则2<a ≤52,此时f (x )有2个零点;所以当a >52时,f (x )有1个零点.综上,要使f (x )在区间(0,+∞)内恰有6个零点,则应满足⎩⎪⎨⎪⎧74<a ≤94,2<a ≤52或⎩⎪⎨⎪⎧94<a ≤114,a =2或a >52或⎩⎨⎧114<a ≤134,a <2.则可解得a 的取值范围是⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114.4.已知f (x )=|lg x |-kx -2,给出下列四个结论: (1)若k =0,则f (x )有两个零点; (2)∃k <0,使得f (x )有一个零点; (3)∃k <0,使得f (x )有三个零点; (4)∃k >0,使得f (x )有三个零点. 以上正确结论的序号是________. 答案 (1)(2)(4)解析 令f (x )=|lg x |-kx -2=0,可转化成两个函数y 1=|lg x |,y 2=kx +2的图象的交点个数问题. 对于(1),当k =0时,y 2=2与y 1=|lg x |的图象有两个交点,(1)正确; 对于(2),存在k <0,使y 2=kx +2与y 1=|lg x |的图象相切,(2)正确;对于(3),若k <0,则y 1=|lg x |与y 2=kx +2的图象最多有2个交点,(3)错误; 对于(4),当k >0时,过点(0,2)存在函数g (x )=lg x (x >1)图象的切线,此时共有两个交点,当直线斜率稍微小于相切时的斜率时,就会有3个交点,故(4)正确.1.指数式与对数式的七个运算公式 (1)a m ·a n =a m +n ; (2)(a m )n =a mn ;(3)log a (MN )=log a M +log a N ; (4)log a MN =log a M -log a N ;(5)log a M n =n log a M ; (6)a log a N =N ;(7)log a N =log b Nlog ba (注:a ,b >0且a ,b ≠1,M >0,N >0).2.指数函数与对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数. 3.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解. 4.应用函数模型解决实际问题的一般程序 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.热点一 基本初等函数的图象与性质 【例1】 (1)(多选)下列命题中正确的是( ) A.∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB.∀x ∈(0,1),log 12x >log 13xC.∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12D.∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x(2)已知函数f (x )=⎩⎨⎧log a x ,x >0,|x +2|,-3≤x ≤0(a >0且a ≠1),若函数f (x )的图象上有且仅有两个点关于y 轴对称,则a 的取值范围是( )A.(0,1)B.(1,3)C.(0,1)∪(3,+∞)D.(0,1)∪(1,3)答案 (1)ABC (2)D解析 (1)对于A ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x的图象,如图(1),由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x,故A 正确;对于B ,分别作出y =log 12x ,y =log 13x 的图象,如图(2),由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确;对于C ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象,如图(3),由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确;对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC.(2)y =log a x 的图象关于y 轴对称的图象对应的函数为y =log a (-x ),函数f (x )的图象上有且仅有两个点关于y 轴对称,等价于y =log a (-x )与y =|x +2|,-3≤x ≤0的图象有且仅有一个交点.当0<a <1时,显然符合题意(图略).当a >1时,只需log a 3>1,∴1<a <3. 综上所述,a 的取值范围是(0,1)∪(1,3).探究提高 1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围. 2.基本初等函数的图象和性质是统一的,在解题中可相互转化. 【训练1】 (1)函数f (x )=x 2-1e x 的图象大致为( )(2)(多选)已知函数f (x )=log 2(1+4x )-x ,则下列说法正确的是( ) A.函数f (x )是偶函数 B.函数f (x )是奇函数C.函数f (x )在(-∞,0]上单调递增D.函数f (x )的值域为[1,+∞) 答案 (1)A (2)AD解析 (1)易知f (x )在定义域R 上为非奇非偶函数,B 不合题意. 当x <0且x →-∞时,f (x )>0,且f (x )→+∞,C 不合题意. 当x >0且x →+∞时,f (x )→0,知D 不合题意,只有A 满足.(2)因为f (x )的定义域为R ,且f (-x )=log 2⎝ ⎛⎭⎪⎫1+14x -(-x )=log 2⎝ ⎛⎭⎪⎫4x +14x +x =log 2(4x +1)-log 24x +x =log 2(1+4x )-2x +x =log 2(1+4x )-x =f (x ), 所以函数f (x )为偶函数,故A 正确,B 不正确;f ′(x )=4x ln 4(1+4x)ln 2-1=2×4x 4x +1-1=4x -14x +1, 则当x <0时,f ′(x )<0,函数f (x )单调递减,当x >0时,f ′(x )>0,函数f (x )单调递增,故C 不正确;由以上分析知,f (x )min =f (0)=1,所以函数f (x )的值域为[1,+∞),故D 正确.综上所述,选AD. 热点二 函数的零点与方程 考向1 确定函数零点个数【例2】 (1)设函数f (x )=2|x |+x 2-3,则函数y =f (x )的零点个数是( ) A.4 B.3 C.2D.1(2)已知函数f (x )=⎩⎨⎧e x ,x <0,4x 3-6x 2+1,x ≥0,其中e 为自然对数的底数,则函数g (x )=3[f (x )]2-10f (x )+3的零点个数为( ) A.4 B.5 C.6D.3答案 (1)C (2)A解析 (1)易知f (x )是偶函数,当x ≥0时,f (x )=2x +x 2-3,所以x ≥0时,f (x )在[0,+∞)上是增函数,且f (1)=0,所以x =1是函数y =f (x )在[0,+∞)上的唯一零点.根据奇偶性,知x =-1是y =f (x )在(-∞,0)内的零点, 因此y =f (x )有两个零点.(2)当x ≥0时,f (x )=4x 3-6x 2+1的导数为f ′(x )=12x 2-12x , 当0<x <1时,f (x )单调递减,x >1时,f (x )单调递增,可得f (x )在x =1处取得最小值,最小值为-1,且f (0)=1, 作出函数f (x )的图象,如图. g (x )=3[f (x )]2-10f (x )+3,可令g (x )=0,t =f (x ),可得3t 2-10t +3=0, 解得t =3或13.当t =13时,可得f (x )=13有三个实根,即g (x )有三个零点; 当t =3时,可得f (x )=3有一个实根,即g (x )有一个零点. 综上,g (x )共有四个零点.探究提高 判断函数零点个数的主要方法(1)解方程f (x )=0,直接求零点;(2)利用零点存在性定理;(3)数形结合法:对于给定的函数不能直接求解或画出图象,常会通过分解转化为两个能画出图象的函数,求其图象交点问题.【训练2】 (1)函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为( ) A.2 B.3 C.4D.5(2)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,则关于x 的方程为f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为( ) A.1 B.2 C.3D.4答案 (1)B (2)C解析 (1)令f (x )=0,得2sin x -sin 2x =0, 即2sin x -2sin x cos x =0,∴2sin x (1-cos x )=0,∴sin x =0或cos x =1. 又x ∈[0,2π],∴由sin x =0得x =0,π或2π,由cos x =1得x =0或2π. 故函数f (x )的零点为0,π,2π,共3个. (2)对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,函数f (x )是定义在R 上的偶函数,且f (6)=f (-2)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f (x )-log 8(x +2)=0在区间(-2,6)上有3个根. 考向2 根据函数的零点求参数的值或范围 【例3】 (1)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A.-12B.13C.12D.1(2)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b恰有3个零点,则( ) A.a <-1,b <0 B.a <-1,b >0 C.a >-1,b <0 D.a >-1,b >0答案 (1)C (2)C解析 (1)f (x )=(x -1)2+a (e x -1+e 1-x )-1, 令t =x -1,则g (t )=f (t +1)=t 2+a (e t +e -t )-1. ∵g (-t )=(-t )2+a (e -t +e t )-1=g (t ),且t ∈R , ∴函数g (t )为偶函数.∵f (x )有唯一零点,∴g (t )也有唯一零点. 又g (t )为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.(2)由题意,令y =f (x )-ax -b =0,得b =f (x )-ax =⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0. 设y =b ,g (x )=⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0,则以上两个函数的图象恰有3个交点,根据选项进行讨论.①当a <-1时,1-a >0,可知在x ∈(-∞,0)上,g (x )单调递增,且g (x )<0; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知在x ∈[0,+∞)上,g (x )单调递增,且g (x )≥0.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故排除A ,B. ②当a >-1,即a +1>0时.因为g ′(x )=x [x -(a +1)](x ≥0),所以当x ≥0时,由g ′(x )<0可得0<x <a +1,由g ′(x )>0可得x >a +1,所以当x ≥0时,g (x )在(0,a +1)上单调递减,g (x )在(a +1,+∞)上单调递增.如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在恰有3个交点的情况,不符合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在恰有3个交点的情况,不符合题意,舍去. 综上,-1<a <1,b <0.故选C.探究提高 1.求解第(1)题关键是利用函数f (x )有唯一零点找到解题思路.借助换元法,构造函数g (t )=f (t +1)=t 2+a (e t +e -t )-1,利用函数的性质求解. 2.解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.【训练3】 设函数f (x )=e x (2x -1)-ax +a (a <1)有两个零点,则实数a 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫0,43e -0.5 C.(-∞,1) D.⎝ ⎛⎭⎪⎫-∞,43e -0.5 答案 A解析 依题设,f (x )=e x (2x -1)-ax +a 有两个零点,∴函数y =e x (2x -1)的图象与直线y =a (x -1)有两个交点. 令y ′=[e x (2x -1)]′=e x (2x +1)=0,得x =-12.当x ∈⎝ ⎛⎭⎪⎫-∞,-12时,y ′<0,故y =e x(2x -1)为减函数; 当x ∈⎝ ⎛⎭⎪⎫-12,+∞时,y ′>0,故y =e x (2x -1)为增函数,如图.设直线y =a (x -1)与y =e x (2x -1)相切于点P (x 0,y 0), ∴y 0=e x 0(2x 0-1). 则过点P (x 0,y 0)的切线为 y -e x 0(2x 0-1)=e x 0(2x 0+1)(x -x 0).将点(1,0)代入上式,得x 0=0或x 0=32(舍去). 此时,直线y =a (x -1)的斜率为1.故若直线y =a (x -1)与函数y =e x (2x -1)的图象有两个交点,应有0<a <1. 热点三 函数的实际应用【例4】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO ′为铅垂线(O ′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO ′的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO ′的距离b (米)之间满足关系式h 2=-1800b 3+6b .已知点B 到OO ′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?解(1)如图,设AA1,BB1,CD1,EF1都与MN垂直,A1,B1,D1,F1是相应垂足.由条件知,当O′B=40时,BB1=-1800×403+6×40=160,则AA1=160.由140O′A2=160,得O′A=80.所以AB=O′A+O′B=80+40=120(米).(2)以O为原点,OO′所在直线为y轴建立平面直角坐标系xOy(如图所示).设F(x,y2),x∈(0,40),则y2=-1800x3+6x,EF=160-y2=160+1800x3-6x.因为CE=80,所以O′C=80-x.设D(x-80,y1),则y1=140(80-x)2,所以CD =160-y 1=160-140(80-x )2=-140x 2+4x . 记桥墩CD 和EF 的总造价为f (x )万元, 则f (x )=k ⎝ ⎛⎭⎪⎫160+1800x 3-6x +32k ⎝ ⎛⎭⎪⎫-140x 2+4x=k ⎝ ⎛⎭⎪⎫1800x 3-380x 2+160(0<x <40). f ′(x )=k ⎝ ⎛⎭⎪⎫3800x 2-340x =3k 800x (x -20),令f ′(x )=0,得x =20或x =0(舍去). 列表如下:所以当x =20时,f (x )取得最小值. 答:(1)桥AB 的长度为120米;(2)当O ′E 为20米时,桥墩CD 与EF 的总造价最低.探究提高 1.解决函数的实际应用问题时,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去.2.对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.【训练4】 “一骑红尘妃子笑,无人知是荔枝来”描述了封建统治者的骄奢生活,同时也讲述了古代资源流通的不便利.如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e ax +b (a ,b 为常数),若该果蔬在6 ℃的保鲜时间为216小时,在24 ℃的保鲜时间为8小时,且该果蔬所需物流时间为3天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过( ) A.9 ℃ B.12 ℃ C.18 ℃ D.20 ℃答案 B解析 当x =6时,e 6a +b =216;当x =24时,e 24a +b =8, ∴e 6a +be 24a +b =2168=27,则e 6a =13. 若果蔬保鲜3天,则72=13×216=e 6a ·e 6a +b =e 12a +b , 故物流过程中果蔬的储藏温度最高不能超过12 ℃.一、选择题1.设a =log 2 0.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为( )A.a <b <cB.c <a <bC.b <c <aD.a <c <b答案 D解析 ∵log 20.3<log 21=0,∴a <0.∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1.∵0<0.40.3<0.40=1,∴0<c <1, ∴a <c <b .2.已知函数f (x )是定义在R 上的偶函数,满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=cos π2x ,则函数y =f (x )-|x |的零点个数是( ) A.2 B.3 C.4 D.5 答案 A解析 由f (x +1)=-f (x ),得f (x +2)=f (x ),知周期T =2. 令f (x )-|x |=0,得f (x )=|x |.作出函数y =f (x )与g (x )=|x |的图象如图所示.由图象知,函数y =f (x )-|x |有两个零点.3.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A.60 B.63 C.66 D.69答案 C 解析 ∵I (t )=K 1+e -0.23(t -53), ∴当I (t *)=0.95K 时,K1+e -0.23(t *-53)=0.95K ,则11+e -0.23(t *-53)=0.95⇒1+e -0.23(t *-53)=10.95⇒e -0.23(t *-53)=10.95-1⇒e0.23(t *-53)=19. ∴0.23(t *-53)=ln 19,∴t *=ln 190.23+53≈30.23+53≈66.4.已知函数f (x )=[x ]([x ]表示不超过实数x 的最大整数),若函数g (x )=e x -1e x -2的零点为x 0,则g [f (x 0)]等于( ) A.1e -e -2B.-2C.e -1e -2 D.e 2-1e 2-2答案 B解析 因为g (x )=e x -1e x -2, 所以g ′(x )=e x +1e x >0在R 上恒成立, 即函数g (x )=e x -1e x -2在R 上单调递增.又g(0)=e0-1e0-2=-2<0,g(1)=e1-1e1-2>0,所以g(x)在(0,1)上必然存在零点,即x0∈(0,1),因此f(x0)=[x0]=0,所以g[f(x0)]=g(0)=-2.5.(多选)若0<c<1,a>b>1,则()A.log a c>log b cB.ab c>ba cC.a log b c>b log a cD.a(b-c)>b(a-c) 答案AB解析对于A,因为0<c<1,a>b>1,所以log c a<log c b<0,所以log a alog a c<log b blog b c<0,即1 log a c<1log b c<0,所以0>log a c>log b c,故A正确;对于B,因为0<c<1,所以-1<c-1<0,所以当x>1时,函数y=x c-1单调递减,所以b c-1>a c-1,又ab>0,所以由不等式的基本性质得ab c>ba c,故B正确;对于C,由A知log b c<log a c<0,又a>b>1,所以a log b c<b log b c,b log b c<b log a c,所以a log b c<b log a c,故C不正确;对于D,因为0<c<1,a>b>1,所以ac>bc,所以-ac<-bc,所以ab-ac<ab-bc,即a(b-c)<b(a-c),故D不正确.综上所述,选AB.6.(多选)已知f(x)是定义在R上的奇函数,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=x,则关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是()A.g(x)为偶函数B.g (x )在(1,2)上单调递增C.g (x )在[2 016,2 020]上恰有三个零点D.g (x )的最大值为2 答案 AD解析 易知函数g (x )的定义域为R ,且g (-x )=|f (-x )|+f (|-x |)=|-f (x )|+f (|x |)=|f (x )|+f (|x |)=g (x ), 所以g (x )为偶函数,故A 正确;因为f (1+x )=f (1-x ),所以f (x )的图象关于直线x =1对称,又f (x )是奇函数,当0≤x ≤1时,f (x )=x ,所以f (x )是周期为4的函数,其部分图象如图所示,所以当x ≥0时,g (x )=⎩⎪⎨⎪⎧2f (x ),x ∈[4k ,2+4k ],0,x ∈(2+4k ,4+4k ],k ∈N ,当x ∈(1,2)时,g (x )=2f (x ),g (x )单调递减,故B 错误;g (x )在[2 016,2 020]上零点的个数等价于g (x )在[0,4]上零点的个数,而g (x )在[0,4]上有无数个零点,故C 错误;当x ≥0时,易知g (x )的最大值为2,由偶函数图象的对称性可知,当x <0时,g (x )的最大值也为2,所以g (x )在整个定义域上的最大值为2,故D 正确. 综上可知,选AD. 二、填空题7.已知λ∈R ,函数f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ.若函数f (x )恰有2个零点,则λ的取值范围是________. 答案 (1,3]∪(4,+∞)解析 令f (x )=0,当x ≥λ时,x =4.当x <λ时,x 2-4x +3=0,则x =1或x =3.若函数f (x )恰有2个零点,结合图1与图2知,1<λ≤3或λ>4.8.为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25 mg/m 3时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (单位:mg/m 3)与经过的时间t (单位:min)之间的函数关系为y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t10-a,t ≥10(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是________.答案 9:30解析 由题图可得函数图象过点(10,1), 代入函数的解析式,可得⎝ ⎛⎭⎪⎫121-a=1,解得a =1,所以y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t 10-1,t ≥10. 设从喷洒药物开始经过t min 顾客方可进入商场,易知t >10, 则⎝ ⎛⎭⎪⎫12t10-1≤0.25,解得t ≥30,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.9.已知a ,b ,c 为正实数,且ln a =a -1,b ln b =1,c e c =1,则a ,b ,c 的大小关系是________. 答案 c <a <b解析 ln a =a -1,ln b =1b ,e c =1c .依次作出y =e x ,y =ln x ,y =x -1,y =1x 这四个函数的图象,如下图所示.由图象可知0<c <1,a =1,b >1,∴c <a <b . 三、解答题10.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求实数m 的取值范围. 解 (1)函数f (x )的图象如图所示.(2)因为f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,在(1,+∞)上是增函数,由0<a <b 且f (a )=f (b ),得0<a <1<b , 且1a -1=1-1b ,所以1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 故实数m 的取值范围为(0,1).11.随着中国经济的快速发展,节能减耗刻不容缓.某市环保部门为了提高对所辖水域生态环境的巡查效率,引进了一种新型生态环保探测器,该探测器消耗能量由公式E n =M v n T 给出,其中M 是质量(常数),v 是设定速度(单位:km/h),T 是行进时间(单位:h),n 为参数.某次巡查为逆水行进,水流速度为4 km/h ,行进路程为100 km.(逆水行进中,实际速度=设定速度-水流速度,顺水行进中,实际速度=设定速度+水流速度)(1)求T 关于v 的函数关系式,并指出v 的取值范围;(2)①当参数n =2时,求探测器最低消耗能量;②当参数n =3时,试确定使该探测器消耗的能量最低的设定速度.解 (1)由题意得,探测器实际速度为100T =v -4,则T =100v -4(v >4). (2)①当参数n =2时,E 2=100·M ·v 2v -4=100M ⎣⎢⎡⎦⎥⎤v -4+16v -4+8 ≥100M ⎣⎢⎡⎦⎥⎤2(v -4)·16v -4+8 =1 600M ⎝ ⎛⎭⎪⎫当且仅当v -4=16v -4,即v =8时取等号. 因此,当参数n =2时,该探测器最低消耗能量为1 600M .②当参数n =3时,E 3=100·M ·v 3v -4(v >4). 令f (v )=v 3v -4(v >4),则f ′(v )=2v 2(v -6)(v -4)2, 当4<v <6时,f ′(v )<0,f (v )单调递减,当v >6时,f ′(v )>0,f (v )单调递增.故当设定速度为6 km/h 时,该探测器消耗的能量最低.12.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天答案 B解析 由R 0=1+rT ,R 0=3.28,T =6,得r =R 0-1T =3.28-16=0.38.由题意,累计感染病例数增加1倍,则I (t 2)=2I (t 1),即e0.38t 2=2e0.38t 1,所以e0.38(t 2-t 1)=2,即0.38(t 2-t 1)=ln 2,∴t 2-t 1=ln 20.38≈0.690.38≈1.8. 13.(多选)方程e x +x -2=0的根为x 1,ln x +x -2=0的根为x 2,则( ) A.x 1x 2>12 B.x 1ln x 2+x 2ln x 1<0 C.e x 1+e x 2<2eD.x 1x 2<e 2 答案 BD解析 令f (x )=e x +x -2,g (x )=ln x +x -2,作出函数y =-x +2,y =e x ,y =ln x 的图象,其中y =e x 与y =ln x 互为反函数,其图象关于直线y =x 对称,如图,则A (x 1,e x 1),B (x 2,ln x 2).设直线y =x 与y =-x +2的交点为C ,则C (1,1),且A ,B 关于点C 对称,∴e x 1=x 2,x 1+x 2=2.∵f (0)=-1<0,f ⎝ ⎛⎭⎪⎫12=e -32>0,g (1)=-1<0,g (2)=ln 2>0, ∴0<x 1<12<1<x 2<2,∴x 1x 2<12,故A 错误; ∵x 1ln x 2+x 2ln x 1<0等价于ln x 1x 1+ln x 2x 2<0,易知h (x )=ln x x 在(0,e)上单调递增, ∴h (x 1)<h ⎝ ⎛⎭⎪⎫12=-2ln 2,h (x 2)<h (2)=12ln 2, ∴h (x 1)+h (x 2)<-32ln 2<0,即ln x 1x 1+ln x 2x 2<0,故B 正确; ∵x 1+x 2=2且x 1≠x 2,∴e x 1+e x 2>2e x 1+x 2=2e ,故C 错误;∵e x 1=x 2,∴x 1x 2=x 1e x 1.易知φ(x )=x e x 在⎝ ⎛⎭⎪⎫0,12上单调递增, ∴φ(x 1)<φ⎝ ⎛⎭⎪⎫12, 即x 1e x 1<e 2,即x 1x 2<e 2,故D 正确. 故选BD.14.记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”;(2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值.(1)证明 函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎨⎧x =x 2+2x -2,1=2x +2,此方程组无解, 因此,f (x )与g (x )不存在“S 点”.(2)解 函数f (x )=ax 2-1,g (x )=ln x ,则f ′(x )=2ax ,g ′(x )=1x .设x 0为f (x )与g (x )的“S 点”, 由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得 ⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎨⎧ax 20-1=ln x 0,2ax 20=1, (*) 得ln x 0=-12,即x 0=e -12,则a =12⎝ ⎛⎭⎪⎫e -122=e 2. 当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”.因此,a 的值为e 2.。

高中数学 第三章 基本初等函数(Ⅰ)3.2 对数与对数函数

高中数学 第三章 基本初等函数(Ⅰ)3.2 对数与对数函数

3.2.1 对数及其运算课堂探究探究一对数式与指数式的互化由对数的定义知,对数式与指数式是同一种数量关系的两种不同表达形式,其关系如下表:10(2)log39=2⇔32=9;(3)log210=x⇔2x=10;(4)e3=x⇔log e x=3,即ln x=3.答案:(1)lg 1 000=3 (2)32=9 (3)2x=10 (4)ln x=3探究二对数基本性质的应用1.对数恒等式a log a N=N的应用(1)能直接应用对数恒等式的求值.(2)对于不能直接应用对数恒等式的情况按以下步骤求解.2.利用对数的基本性质求值时经常用到两个关键的转化(1)log a x=1⇔x=a(a>0,且a≠1).(2)log a x=0⇔x=1(a>0,且a≠1).我们常用其来实现一些较复杂的指数式的转化.【典型例题2】(1)若log 3(lg x )=1,则x =__________;(2)求值:4221(log 9log 5)2-=__________.解析:(1)∵log 3(lg x )=1,∴lg x =3.∴x =103=1 000. (2)原式=2(log 29-log 25)=22log 9log 522=95. 答案:(1)1 000 (2) 95点评 在对数的相关运算中,除了对数的定义外,应灵活应用如log a 1=0,log a a =1,a log a M =M 等常用性质,另外要特别注意真数与底数的取值要求,做到及时检验. 探究三 对数运算法则的应用对数运算法则的使用技巧及注意事项:1.“收”:同底的对数式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂等,然后化简求值,如log 24+log 25=log 220.2.“拆”:将式中真数的积、商、幂等运用对数的运算法则把它们化为对数的和、差、积、商,然后化简求值,如log 295=log 29-log 25. 3.各字母的取值范围即字母的取值必须保证底数大于0且不等于1,真数大于0.4.注意“同底”这个化简的方向,因为同底的对数才可能利用对数的运算法则.5.要保证所得结果中的对数与化简过程中的对数都有意义.【典型例题3】化简下列各式:(1)4lg2+3lg5-lg 15;; (3)2log 32-log 3329+log 38-55log 3. 思路分析:利用对数的运算法则,将所给式子转化为积、商、幂的对数.解:(1)原式=lg 432515⨯=lg(24×54)=lg(2×5)4=4; (2)原式=33lg 33lg 222lg 32lg 21+-+-=()3lg321lg 212lg32lg 21+-+-=32; (3)原式=2log 32-(5log 32-2)+3log 32-3=2log 32-5log 32+2+3log 32-3=-1.点评 (1)注意对数运算法则的正用和逆用;(2)综合运用对数运算法则时应注意掌握变形技巧,如化为最简形式或统一底数等. 探究四 对数换底公式的应用1.应用换底公式表示已知对数的两个策略2.利用换底公式进行化简求值的技巧及常见处理方式(1)技巧:“化异为同”,即将不同底的对数尽量化为同底的对数来计算.(2)常见的三种处理方式:①借助运算性质:先利用对数的运算法则及性质进行部分运算,最后再换成同底求解.②借助换底公式:一次性地统一换为常用对数(或自然对数),再化简、通分、求值. ③利用对数恒等式或常见结论:有时可熟记一些常见结论,这样能够提高解题效率.【典型例题4】(1)计算lg12-lg 58+lg12.5-log 89·log 98的值; (2)已知log 189=a,18b =5,求log 3645.解:(1)原式=lg 1525282⎛⎫÷⨯ ⎪⎝⎭-lg 9lg 8·lg 8lg 9=lg10-1=0. (2)方法一:∵log 189=a,18b =5,∴log 18 5=b .于是log 36 45=1818log 45log 36=()()1818log 95log 182⨯⨯=81818log 9log 51log 2++=18181log 9a b ++=2a b a +-. 方法二:∵log 189=a,18b =5,∴log 185=b .于是log 3645=()18218log 9518log 9⨯=18181818log 9log 52log 18log 9+-=2a b a +-. 方法三:∵log 189=a,18b =5,∴lg 9=a lg18,lg 5=b lg18.∴log 36 45=lg 45lg 36=()2lg 9518lg 9⨯=lg 9lg 52lg18lg 9+-=lg18lg182lg18lg18a b a +-=2a b a +-. 点评 在解题过程中,根据问题的需要将指数式转化为对数式,或者将对数式转化为指数式,这正是数学转化思想的具体体现,要注意学习、体会,逐步达到灵活应用.探究五易错辨析易错点忽视底数的限制条件而致误【典型例题5】已知log(x+3)(x2+3x)=1,求实数x的值.错解:由对数的性质,可得x2+3x=x+3,解得x=1或x=-3.错因分析:错解中忽视了对数的底数和真数必须大于0且底数不等于1.正解:由对数的性质,知22333030,31x x xx xx x⎧+=+⎪+⎨⎪++≠⎩ff且解得x=1,故实数x的值为1.点评由对数的定义可知,对数log a N的底数a>0,且a≠1,真数N>0,因此我们在解题时一定要注意这些限制条件,如果忽视了这些条件,则很容易出错.。

【1对1】2015年高中数学学业水平考试专题综合检测课件 3.3

【1对1】2015年高中数学学业水平考试专题综合检测课件 3.3

16. 用二分法求 f(x)=0 的近似解,已知 f(1)=-2 ,f(3)=0.625 ,f(2)= -0.984.若要求下一个 f(m),则 m=________ 2.5 . 17. 函数 f(x)=(x+a)(x-4)为偶函数,则实数 a=________. 4
18. 已知方程 lgx = 3 - x 的解所在的区间为 (k , k + 1)(k∈N*) ,则 k = ________ . 2
23. 函数 f(x)是定义在 R 上的奇函数,且当 x∈(0,+∞)时,f(x)=2x,那 1 么,f(log2 )=________ -3 . 3
1 log2 =f -log23=-f(log23)=-2log23=-3. 3
解析:f
3 24. 已知定义在 R 上的函数 f(x)满足 f(x)=-f(x+ ),且 f(-2)=f(-1)= 2 -1,f(0)=2,则 f(1)+f(2)+„+f(2013)+f(2014)=________ -1 .
6. 设 f(x)=3x+3x-8,用二分法求方程 3x+3x-8=0 在 x∈ 1,2内近似
解的过程中得 f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( B ) A. (1,1.25) B. (1.25,1.5) C. (1.5,2) D. 不能确定
m 7. 若函数 f(x)=1+ x 是奇函数,则 m 的值是( D ) e -1 A. 0 B. 1 2 C. 1 D. 2
C. f(5)<f(-3)
D. f(-5)<f(3)
提示:可作出草图(为分段函数),由图易知答案.
பைடு நூலகம்
15. 函数 y= |log1x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长 2 度 b-a 的最小值为( B ) A. 3 B. 3 4 C. 4 D. 1 4

2015届高三数学成才之路二轮专项复习课件1.3基本初等函数Ⅰ

2015届高三数学成才之路二轮专项复习课件1.3基本初等函数Ⅰ

M = logaM + logaN ; loga N = logaM - logaN , logaMn = nlogaM(a>0 且 a≠1,b>0 且 b≠1,M>0,N>0). 2.对数恒等式与换底公式 logcN alogaN=N, logaN= log a (a>0 且 a≠1, c>0 且 c≠1, N>0). c
• [点评] (1)由指数函数的性质首先判断命题 p1、p2的真假是解题关键,再由真值表可判 定命题q1、q2、q3、q4的真假. • (2)考查指、对函数的单调性是这一部分高考 命题的主要考查方式之一.常常是判断单调 性;已知单调性讨论参数值或取值范围;依 据单调性比较数的大小等.
• (文)定义在R上的奇函数f(x),当x∈(0,+∞) 时,f(x)=log2x,则不等式f(x)<-1的解集是 1 ________ . [ 答案] (-∞,-2)∪(0, )
• 1.比较幂值大小时,要正确依据底数相同、 指数变化,还是指数相同,底数变化来区分 应用指数函数性质还是幂函数性质. • 2.注意区分f(x)在区间A上单调增(减)和f(x) 的单调增(减)区间是A. • 3.换元和转化是解决函数问题中常用的方 法,要注意保持等价性.
命题热点突破
•指数函数、对数函数的图象与性质
当x>1时,y>0;
当0<x<1时,y<0;
性 0< a <1 , 当x>1时,y<0; 质 当x>0时,0<y<1; 当0<x<1时,y>0;
当x<0时,0<y<1; 0<a<1,
• 4.幂函数的性质

2015届高考二轮数学文科金版学案专题复习课件1.2函数、基本初等函数的图象与性质

2015届高考二轮数学文科金版学案专题复习课件1.2函数、基本初等函数的图象与性质
y轴 y= f(x)的图象关于 ______
y = f(x) 的 图 象 关 于
②奇函数在其定义域内关于原点对称的两个区间上的 相 单调性 __________ ,且在 x = 0 处有定义时必有 f(0) = 同 0 原点 . ________,即 f(x)的图象过________ ③偶函数在其定义域内关于原点对称的两个区间上的 相反 . 单调性________
栏 目 链 接
Z 主干 考点 梳 理
①如果存在实数M满足:对任意的x∈I,都有 ________ ,使得 ,那么称M是 f(x)≤M 且存在 x______ f(x______ 0∈ I 0)= M 函数y=f(x)的最大值; ②如果存在实数M满足:对任意x∈I,都有 f(x)≥M
栏 目 链 接
________且存在________,使得________,那么称 x0∈I f(x0)=M M是函数y=f(x)的最小值.
Z 主干 考点 梳 理
(2)图象变换法作图. ①平移变换.
a.y=f(x)的图象向左平移a(a>0)个单位长度 得到函数 _______________ 的图象. y=f(x +a)
b.y=f(x-b)(b>0)的图象可由y=f(x)的图象 向__________________. 右平移b个单位长度得到 对于左、右平移变换,往往容易出错,在实际 判断中可熟记口诀:左加右减. 而对于上、下平移变换,相比较则容易掌握, 原则是:上加下减,但要注意的是加、减指的是在 f(x)整体上.
问题,对于函数的性质,主要考查函数单调性、奇
偶性、周期性,也可能考查求函数的定义域和简单 函数的值域、最值问题.
Z 主干 考点Байду номын сангаас梳 理
栏 目 链 接

基本初等函数(高考数学专题)

基本初等函数(高考数学专题)

基本初等函数一、指数函数1、指数与指数幂的运算 (1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n次方根用符号表示;当n 是偶数时,正数a 的正的n次方根用符号表示,负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.②式子这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n为奇数时,a =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mnaa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈()(0,0,)r r r ab a b a b r R =>>∈2、指数函数及其性质(4)指数函数1、化简下列各式(其中各字母均为正数):(1);)(65312121132ba ba b a ⋅⋅⋅⋅--2、已知实数a 、b满足等式b a )31()21(=0<b <a;②a <b<0;③0<a <b;④b <a <0;⑤a=b. ( )A.1个B.2个C.3个D.43、求下列函数的单调递增区间:y=262--x x .二、对数函数 1、对数与对数运算 (1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即l o geN (其中 2.71828e =…). (4)对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且2、对数函数及其性质(5)对数函数1、计算:(1))32(log 32-+(2)21lg 4932-34lg8+lg 245.变式训练1:化简求值.(1)log 2487+log 212-21log 242-1;(2)(lg2)2+lg2·lg50+lg25;(3)(log 32+log 92)·(log 43+log 83).2、比较下列各组数的大小.(1)log 332与log 556;2)log 1.10.7与log 1.20.7;(3)已知log 1b <log 1a <log 1c,比较2b ,2a ,2c 的大小关系.变式训练2:已知0<a <1,b >1,ab >1,则log a bb bba1log ,log,1的大小关系是 ( )A.log a bb bba1log log1<<B.bb b b aa1log 1log log<< C.b b b a ba1log 1log log << D.b b b a a b log 1log 1log <<三、幂函数 (1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qp y x =是奇函数,若p 为奇数q 为偶数时,则qp y x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.1、写出下列函数的定义域,并指出它们的奇偶性:(1)3y x=(2)12y x=(3)2y x-=(4)22y x x-=+(5)1122y x x-=+(6)1124()3()f x x x=+-变式训练1:讨论下列函数的定义域、值域,奇偶性与单调性:(1)5y x=(2)43y x-=(3)54y x=(4)35y x-=(5)12y x-=2、比较大小:(1)1122 1.5,1.7(2)33 (1.2),(1.25) --(3)112 5.25,5.26,5.26---(4)30.53 0.5,3,log0.53、已知幂函数223m my x--=(m Z∈)的图象与x轴、y轴都无交点,且关于原点对称,求m的值.变式训练2:证明幂函数12()f x x=在[0,)+∞上是增函数.分析:直接根据函数单调性的定义来证明.答案: 指数:1、解:原式=.100653121612131656131212131=⋅=⋅=⋅-+-+--b a baba ba b a2、B3、令u=x 2-x-6,则y=2u ,u=x 2-x-6的对称轴是x=21,在区间[21,+∞)上u=x 2-x-6是增函数.y=2uy=262--x x 在区间[21,+∞)上是增函数故函数y=262--x x 的单调递增区间是[21,+∞)对数: 1、(1)设)32(log 32-+=x,(2+3)x =2-3=321+=(2+3)-1,∴x=-1.(2)原式=21(lg32-lg49)-34lg821+21lg245=21 (5lg2-2lg7)-34×2lg 23+21(2lg7+lg5)=25lg2-lg7-2lg2+lg7+21lg5=21lg2+21lg5=21lg(2×5)= 21lg10=21.变式训练1: (1)原式=log 2487+log 212-log 242-log 22=log 2.232log 221log 242481272322-===⨯⨯⨯-(2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.(3)原式=(.452lg 63lg 5·3lg 22lg 3)2lg 33lg 2lg 23lg (·)3lg 22lg 3lg 2lg ==++2、(1)∵log 332<log 31=0,log 556>log 51=0,∴log 332<log 556.(2)方法一 ∵0<0.7<1,1.1< 1.2,0>2.1log 1.1log 7.00.7>,∴2.1log 11.1log 17.07.0<,即由换底公式可得log 1.10.7<log 1.20.7.方法二 作出y=log1.1x 与y=log 1.2x 的图象.如图所示两图象与x=0.7相交可知log 1.10.7<log 1.20.7.(3)∵y=x 21log 为减函数,且c a b 212121log log log<<,∴b >a >c,而y=2x 是增函数,∴2b >2a >2c .变式训练2:C 幂函数:1、(1)此函数的定义域为R ,33()()()f x x x f x -=-=-=- ∴此函数为奇函数.(2)12y x ==[0,)+∞ 此函数的定义域不关于原点对称 ∴此函数为非奇非偶函数. (3)221y x x-==∴此函数的定义域为(,0)(0,)-∞⋃+∞ 2211()()()f x f x x x-===-∴此函数为偶函数 (4)22221y x x x x-=+=+∴此函数的定义域为(,0)(0,)-∞⋃+∞ 222211()()()()f x x x f x x x -=-+=+=- ∴此函数为偶函数(5)1122y x x-=+=[0,)+∞ 此函数的定义域不关于原点对称∴此函数为非奇非偶函数(6)1124()3()f x x x =+-=0x x ≥⎧∴⎨-≥⎩ 0x ∴=∴此函数的定义域为{0} ∴此函数既是奇函数又是偶函数变式训练1、分析:要求幂函数的定义域和值域,可先将分数指数式化为根式. 解:(1)定义域R ,值域R ,奇函数,在R 上单调递增.(2)定义域(,0)(0,)-∞⋃+∞,值域(0,)+∞,偶函数,在(,0)-∞上单调递增, 在(0,)+∞ 上单调递减.(3)定义域[0,)+∞,值域[0,)+∞,偶函数,非奇非偶函数,在[0,)+∞上单调递增.(4)定义域(,0)(0,)-∞⋃+∞,值域(,0)(0,)-∞⋃+∞,奇函数,在(,0)-∞上单调递减,在(0,)+∞上单调递减.(5)定义域(0,)+∞,值域(0,)+∞,非奇非偶函数,在(0,)+∞上单调递减. 2、(1)∵12y x =在[0,)+∞上是增函数,1.5 1.7<,∴11221.5 1.7< (2)∵3y x =在R 上是增函数, 1.2 1.25->-,∴33( 1.2)( 1.25)->- (3)∵1y x -=在(0,)+∞上是减函数,5.25 5.26<,∴115.25 5.26-->;∵ 5.26x y =是增函数,12->-,∴125.26 5.26-->;综上,1125.25 5.26 5.26--->> (4)∵300.51<<,0.531>,3log 0.50<,∴30.53log 0.50.53<<3、分析:幂函数图象与x 轴、y 轴都无交点,则指数小于或等于零;图象关于原点对称,则函数为奇函数.结合m Z ∈,便可逐步确定m 的值. 解:∵幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,∴2230m m --≤,∴13m -≤≤;∵m Z ∈,∴2(23)m m Z --∈,又函数图象关于原点对称,∴223m m --是奇数,∴0m =或2m =.变式训练2:证明:设120x x ≤<则11221212()()f x f x x x -=-==12x x <120x x ∴-<0>12()()0f x f x ∴-< 即12()()f x f x <∴此函数在[0,)+∞上是增函数。

基本初等函数(幂函数、指数函数、对数函数) 专题训练

基本初等函数(幂函数、指数函数、对数函数) 专题训练

基本初等函数(幂函数、指数函数、对数函数) 专题训练1.(优质试题·全国Ⅰ)若a >b >0,0<c <1,则( )A.log a c <log b cB.log c a <log c bC.a c <b cD.c a >c b2.(优质试题·浙江)已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b =________.考点1 指数、对数的运算1.(优质试题·四川)已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )A.d =acB.a =cdC.c =adD.d =a +c2.(优质试题·浙江)若a =log 43,则2a +2-a =________.3.(优质试题·安徽)lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________. 4.(优质试题·安徽)⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=________. 5.(优质试题·陕西)已知4a =2,lg x =a ,则x =________. 考点2 基本函数的图象的应用6.(优质试题·山东)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<17.(优质试题·浙江)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()8.(优质试题·四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1,x2,设m=f(x1)-f(x2)x1-x2,n=g(x1)-g(x2)x1-x2,现有如下命题:①对于任意不相等的实数x1,x2,都有m>0;②对于任意的a及任意不相等的实数x1,x2,都有n>0;③对于任意的a,存在不相等的实数x1,x2,使得m=n;④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中的真命题有________(写出所有真命题的序号).考点3 基本函数的性质的应用9.(优质试题·四川)设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件10.(优质试题·天津)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =(log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A.a <b <cB.a <c <bC.c <a <bD.c <b <a11.(优质试题·陕西)设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A.q =r <pB.q =r >pC.p =r <qD.p =r >q12.(优质试题·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B.[0,1]C.⎣⎢⎡⎭⎪⎫23,+∞ D.[1, +∞) 13.(优质试题·江西)已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( )A.1B.2C.3D.-114.(优质试题·辽宁)已知a =2-13,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >a >bD.c >b >a15.(优质试题·天津)函数f (x )=log 12(x 2-4)的单调递增区间为( )A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)16.(优质试题·天津)设a =log 2 π,b =log 12π,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a17.(优质试题·山东)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B.ln(x 2+1)>ln(y 2+1)C.sin x >sin yD.x 3>y 318.(优质试题·福建)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________.19.(优质试题·天津)函数f (x )=lg x 2的单调递减区间是________.1.(优质试题·湖北孝感模拟)已知集合A ={x |y =lg(5-x )},B ={y |y =lg(5-x )},则A ∩B =()A.∅B.RC.(-∞,5)D.[0,5]2.(优质试题·福建五校模拟)若a =log 2 3,b =log 3 2,c =log 4 6,则下列结论正确的是( )A.b <a <cB.a <b <cC.c <b <aD.b <c <a3.(优质试题·陕西西安一模)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14的值是________. 4.(优质试题·湖北孝感模拟)已知点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b的图象上,则函数f (x )是( )A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数5.(优质试题·安徽合肥模拟)已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x (x ≤0),f (x -4)(x >0),则f (2 015)=________.6.(优质试题·广东汕尾模拟)函数f (x )=32x -a ·3x +2,若x >0时f (x )>0恒成立,则实数a 的取值范围是________.7.(优质试题·山东青岛模拟)已知函数f (x )=e |ln x |,则函数y =f (x +1)的大致图象为( )8.(优质试题·安徽淮南模拟)设函数y =x 13与y =⎝ ⎛⎭⎪⎫12x 的图象的交点为(x 0,y 0),则x 0所在的区间是( )A.⎝ ⎛⎭⎪⎫12,1B.⎝ ⎛⎭⎪⎫13,12C.⎝ ⎛⎭⎪⎫14,13D.⎝ ⎛⎭⎪⎫0,14 9.(优质试题·广东湛江模拟)已知幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫18,24,P (x 1,y 1),Q (x 2,y 2)(x 1<x 2)是函数图象上的任意不同两点,给出以下结论:①x 1f (x 1)>x 2f (x 2);②x 1f (x 2)<x 2f (x 1);③f (x 1)x 1>f (x 2)x 2;④f (x 1)x 1<f (x 2)x 2其中正确结论的序号是( )A.①②B.①③C.②④D.②③10.(优质试题·浙江协作体模拟)∀α∈⎝ ⎛⎭⎪⎫π4,π2,x =(sin α)log π cos α,y =(cos α)log π sin α,则x 与y 的大小关系为( )A.x >yB.x <yC.x =yD.不确定11.(优质试题·浙江绍兴模拟)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)单调递增.若实数a 满足f (log 2 a )+f (log 12a )≤2f (1),则a 的最小值是( )A.32B.1C.12D.212.(优质试题·河南豫南九校联考)当|a |≤1,|x |≤1时,关于x 的不等式|x 2-ax -a 2|≤m 恒成立,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫34,+∞ B.⎣⎢⎡⎭⎪⎫54,+∞ C.⎣⎢⎡⎭⎪⎫32,+∞ D.⎣⎢⎡⎭⎪⎫52,+∞ 13.(优质试题·河南郑州模拟)已知定义在R 上的奇函数y =f (x )的图象关于直线x =1对称,当-1≤x <0时,f (x )=-log 12(-x ),则方程f (x )-12=0在(0,6)内的零点之和为( )A.8B.10C.12D.1614.(优质试题·辽宁沈阳模拟)已知函数f (x )=2x -12x +1,则不等式f (x -2)+f (x 2-4)<0的解集为( )A.(-1,6)B.(-6,1)C.(-2,3)D.(-3,2)15.(优质试题·福建漳州模拟)已知函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2 x ,0<a <b <c ,f (a )f (b )f (c )<0,实数d 是函数f (x )的一个零点.给出下列四个判断:①d <a ;②d >b ;③d <c ;④d >c .其中可能成立的是________(填序号).16.(优质试题·河北邯郸模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2-6x +6,x ≥0,3x +4,x <0,若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则x 1+x 2+x 3的取值范围是( )A.⎝ ⎛⎦⎥⎤203,263B.⎝ ⎛⎭⎪⎫203,263C.⎝ ⎛⎦⎥⎤113,6D.⎝ ⎛⎭⎪⎫113,6 17.(优质试题·黑龙江模拟)如果对定义在R 上的函数f (x ),对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数①y =e x +x ;②y =x 2;③y =3x -sin x ;④f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0.以上函数是“H 函数”的所有序号为________.18.(优质试题·河北邯郸模拟)已知g (x )是R 上的奇函数,当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3 (x ≤0),g (x ) (x >0),若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(1,2)D.(-2,1)19.(优质试题·河北名校模拟)已知a >0且a ≠1,若函数f (x )=log a [ax 2-(2-a )x +3]在⎣⎢⎡⎦⎥⎤13,2上是增函数,则a 的取值范围是________.20.(优质试题·山东济宁模拟)对于图象上的任意点M ,存在点N ,使得OM →·ON→=0,则称图象为“优美图象”.下列函数的图象为“优美图象”的是( )A.y =2x +1B.y =log 3(x -2)C.y =2xD.y =cos x 21.(优质试题·河北唐山模拟)已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1.的值域为R ,那么a 的取值范围是( )A.(-∞,-1]B.⎝ ⎛⎭⎪⎫-1,12C.⎣⎢⎡⎭⎪⎫-1,12D.⎝ ⎛⎭⎪⎫0,12 22.(优质试题·浙江湖州模拟)已知函数f (x )=m ·9x -3x ,若存在非零实数x 0,使得f (-x 0)=f (x 0)成立,则实数m 的取值范围是( )A.m ≥12B.0<m <12C.0<m <2D.m ≥223.(优质试题·北京昌平模拟)已知函数f (x )=ln(1+x )-ln(1-x ),有如下结论:①∀x ∈(-1,1),有f (-x )=f (x );②∀x ∈(-1,1),有f (-x )=-f (x );③∀x 1,x 2∈(-1,1),有f (x 1)-f (x 2)x 1-x 2>0;④∀x 1,x 2∈(0,1),有f ⎝ ⎛⎭⎪⎫x 1+x 22≤f (x 1)+f (x 2)2 其中正确结论的序号是________(写出所有正确结论的序号).24.(优质试题·安徽淮南模拟)对于函数f (x ),g (x )和区间D ,如果存在x 0∈D ,使得|f (x 0)-g (x 0)|≤1,则称x 0是函数f (x )与g (x )在区间D 上的“相互接近点”.现给出四对函数:①f (x )=x 2,g (x )=2x -2;②f (x )=x ,g (x )=x +2;③f (x )=ln x ,g (x )=x ;④f (x )=e -x+1,g (x )=-1x . 则在区间(0,+∞)上存在唯一“相互接近点”的是( )A.①③B.③④C.①④D.②④25.(优质试题·天一大联考)已知定义域为R 的奇函数f (x )满足f (x )+f (2-x )=0,且当x ∈[-1,0)时,f (x )=-1-x 2,函数g (x )为偶函数,且当x ≥0时,g (x )=x ,则方程g (x )-f (x )=1在区间[-3,3]上的解的个数为( )A.2B.3C.4D.626.(优质试题·浙江湖州模拟)已知二次函数f (x )=x 2+bx +c (b ,c ∈R ).(1)若f (-1)=f (2),且不等式x ≤f (x )≤2|x -1|+1对x ∈[0,2]恒成立,求函数f (x )的解析式;(2)若c <0,且函数f (x )在[-1,1]上有两个零点,求2b +c 的取值范围.27.(优质试题·广东惠州模拟)已知函数f (x )=x +t x (x >0),过点P (1,0)作曲线y =f (x )的两条切线PM ,PN ,切点分别为M ,N .(1)当t =2时,求函数f (x )的单调递增区间;(2)设g (t )=|MN |,求函数g (t )的表达式;(3)在(2)的条件下,若对任意的正整数n ,在区间⎣⎢⎡⎦⎥⎤2,n +64n 内,总存在m +1个数a 1,a 2,…,a m ,a m +1,使得不等式g (a 1)+g (a 2)+…+g (a m )<g (a m +1)成立,求m 的最大值.。

高考专题---基本初等函数

高考专题---基本初等函数

专题1:基本初等函数(两课时)班级 姓名一、前测训练1.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥1,-x 2+4,x <1,①若f (x )≥2,则x 的取值范围为 .②f (x )在区间[-1,3]的值域为 .答案:①[-2,+∞);②[2,4].2.①若f (x 2+1)=x 2,则f (x )= .②已知f [f (x )]=9+4x ,且f (x )是一次函数,则f (x )= .③已知函数满足2f (x )+f (1x)=x ,则f (2)= ;f (x )= . 答案:①x -1(x ≥1);②2x +3或-2x -9;③76,23x -13x. 3.①若二次不等式f (x )<0的解集为(1,2),且函数y =f (x )的图象过点(-1,2),则f (x )= .②已知f (x )=-x 2+2x -2,x ∈[t ,t +1],若f (x )的最小值为h (t ),则h (t )= .答案:①13x 2-x +23;②⎩⎨⎧-t 2+2t -2,t <12-t 2-1, t ≥12. 4.①已知2x 2+x ≤(14)x -2,则函数y =( 3)x 2+2x 的值域为 . ②设log a 13<2,则实数a 的取值范围为 . 答案:①[33,81];②(0,33)∪(1,+∞). 5. ①lg 25+lg2lg50= .②已知函数y =log 12(x 2-2x +2),则它的值域为 .③已知函数y =log 12(2-ax )在区间[0,1]上为单调递减,则实数a 的取值范围为 . 答案:①1;②(-∞,0];③(-∞,0).6.①函数f (x )=lg x -sin x 零点的个数为 .②函数f (x )=2x +x -4零点所在区间为(k ,k +1 ),k ∈N ,则k = .答案:①3;②1.二、方法联想1.分段函数方法1:分段函数,分类处理;方法2:分段函数整体处理.2.解析式求法方法1 换元法、配凑法;方法2 待定系数法;方法3 方程组法.3.二次函数二次函数解析式求法一般设为三种形式:(1)一般式:f (x )=ax 2+bx +c (a ≠0);(2)顶点式:f (x )=a (x -h )2+k (a ≠0);(3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0).二次函数最值求法求二次函数最值,考虑对称轴与区间的相对位置关系,即左、中偏左、中偏右、右,再根据具体问题对四种情况进行合并(或取舍).4.指数函数(1)指数方程与不等式问题关键是两边化同底.(2)与指数函数有关的值域问题,方法一:复合函数法,转化为利用指数函数的单调性;方法二:换元法.5.对数函数(1)对数式化简可利用公式log a m b n =n mlog a b 将底数和真数均化成最简形式. (2) 对数方程与不等式问题关键是两边化同底.6.零点问题方法1 数形结合法;方法2连续函数y =f (x )在区间(a ,b )上有f (a )f (b )<0,则f (x )在(a ,b )上至少存在一个零点.反之不一定成立. 二次函数y =f (x )在区间(a ,b )上有f (a )f (b )<0,则f (x )在(a ,b )上存在唯一一个零点.三、例题分析第一层次例1.已知函数f (x )=log a (8-2x )(a >0,且a ≠1).(1)当a =2时,求满足不等式f (x )≤2的实数x 的取值范围;(2)当a >1时,求函数y =f (x )+f (-x )的最大值.解:(1)实数x 的取值范围为[2,3).(2)函数y =f (x )+f (-x )的最大值为log a 49.〖教学建议〗(1)主要问题归类与方法:1.解指(对)数不等式问题:方法:①利用指(对)数函数的单调性,将不等式转化为代数不等式来解.②换元法:转化为代数不等式.2.与指(对)数有关的函数值域:方法:①考察对应函数(复合函数)的单调性,利用单调性处理.②用换元法,转化为几个基本函数的值域问题.(2)方法选择与优化建议:对于问题1,学生一般会选择方法①,因为本题既含对数,也含有指数,用换元不能一次转化为代数不等式,所以选择方法①.对于问题2,学生一般会选择方法②,因为用换元法转化为几个基本函数的值域,处理比较方便,所以选择方法①.指数函数、对数函数的单调性受底数a 的影响,解决与指、对数函数特别是单调性有关的问题时,首先要看底数的范围.本题的易错点有两个,一是第一问中的“8-2x >0”的定义域部分;二是第二问中函数y =f (x )+f (-x )的定义域.例2.已知函数f (x )=x 2-4ax +2a +30(a ∈R )的定义域为R ,求关于x 的方程xa +3=|a -1|+1的根的取值范围.解: 取值范围为[94,18]. 〖教学建议〗(1)主要问题归类与方法:1.已知函数的定义域,求参数的范围:方法:与求函数的定义域的处理方法一致,将问题转化为已知不等式的解集,再利用对应方程的根已知,求参数的范围.2.分段函数的值域:方法:①利用函数的图象,求值域.②分别求每个区间的值域,再求并集.(2)方法选择与优化建议:对于问题2,学生一般会选择方法②,在解答题中,需要解题过程,所以选择方法②.本题的易错点是最后求得的x 的取值范围应该两段函数的值域的并集.例3.已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0.(1)若ab >0,判断函数f (x )的单调性;(2)若ab <0,求f (x +1)>f (x )时x 的取值范围.解:(1)当a >0,b >0时,函数f (x )在R 上是增函数.同理,当a <0,b <0时,函数f (x )在R 上是减函数.(2)当a <0,b >0时,x 的取值范围为(log 1.5⎝ ⎛⎭⎪⎫-a 2b ,+∞); 当a >0,b <0时,x 的取值范围为(-∞,log 1.5⎝ ⎛⎭⎪⎫-a 2b ). 〖教学建议〗(1)主要问题归类与方法:1.讨论函数的单调性问题:方法:①利用函数的图象;②复合函数的单调性;③利用函数单调性的定义.④利用导函数来求函数的单调区间.2.与指(对)数有关的解不等式问题:方法:①利用函数的单调性,转化为代数不等式.②用换元法,依次解几个代数不等式.(2)方法选择与优化建议:对于问题1,学生一般会选择方法③或④,因为本题不仅要求判断还需要证明结论,方法①②不能用作证明,所以选择方法③或④.对于问题2,学生一般会选择方法①,因为本题函数的单调性比较明确,便于转化,所以选择方法①. 本题的易错点是第二问中忽视字母a 的符号对不等号的方向的影响.本题中的分类讨论是由数学运算的要求而引起的,“ab >0”和“ab <0”的含义是字母a 、b 同号或异号,因此需要具体到a 、b 各自的符号.第二层次例1.已知函数f (x )=log a (8-2x )(a >0,且a ≠1).(1)当a =2时,求满足不等式f (x )≤2的实数x 的取值范围;(2)当a >1时,求函数y =f (x )+f (-x )的最大值.解:(1)实数x 的取值范围为[2,3).(2)函数y =f (x )+f (-x )的最大值为log a 49.〖教学建议〗(1)主要问题归类与方法:1.解指(对)数不等式问题:方法:①利用指(对)数函数的单调性,将不等式转化为代数不等式来解.②换元法:转化为代数不等式.2.与指(对)数有关的函数值域:方法:①考察对应函数(复合函数)的单调性,利用单调性处理.②用换元法,转化为几个基本函数的值域问题.(2)方法选择与优化建议:对于问题1,学生一般会选择方法①,因为本题既含对数,也含有指数,用换元不能一次转化为代数不等式,所以选择方法①.对于问题2,学生一般会选择方法②,因为用换元法转化为几个基本函数的值域,处理比较方便,所以选择方法①.指数函数、对数函数的单调性受底数a 的影响,解决与指、对数函数特别是单调性有关的问题时,首先要看底数的范围.本题的易错点有两个,一是第一问中的“8-2x >0”的定义域部分;二是第二问中函数y =f (x )+f (-x )的定义域.例2.已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0.(1)若ab >0,判断函数f (x )的单调性;(2)若ab <0,求f (x +1)>f (x )时x 的取值范围.解:(1)当a >0,b >0时,函数f (x )在R 上是增函数.当a <0,b <0时,函数f (x )在R 上是减函数.(2)当a <0,b >0时,x 的取值范围为(log 1.5⎝ ⎛⎭⎪⎫-a 2b ,+∞); 当a >0,b <0时,x 的取值范围为(-∞,log 1.5⎝ ⎛⎭⎪⎫-a 2b ). 〖教学建议〗(1)主要问题归类与方法:1.讨论函数的单调性问题:方法:①利用函数的图象;②复合函数的单调性;③利用函数单调性的定义.④利用导函数来求函数的单调区间.2.与指(对)数有关的解不等式问题:方法:①利用函数的单调性,转化为代数不等式.②用换元法,依次解几个代数不等式.(2)方法选择与优化建议:对于问题1,学生一般会选择方法③或④,因为本题不仅要求判断还需要证明结论,方法①②不能用作证明,所以选择方法③或④.对于问题2,学生一般会选择方法①,因为本题函数的单调性比较明确,便于转化,所以选择方法①. 本题的易错点是第二问中忽视字母a 的符号对不等号的方向的影响.本题中的分类讨论是由数学运算的要求而引起的,“ab >0”和“ab <0”的含义是字母a 、b 同号或异号,因此需要具体到a、b各自的符号.例3.设命题p:函数f(x)=1ax2-ax+1的定义域为R;命题q:不等式3x-9x<a-1对一切正实数x均成立.(1)如果p是真命题,求实数a的取值范围;(2)如果命题p且q为真命题,求实数a的取值范围.解:(1)实数a的取值范围为[0,4).(2)实数a的取值范围为[1,4).〖教学建议〗(1)主要问题归类与方法:1.已知函数的定义域,求参数的范围:方法:与求函数的定义域的处理方法一致,将问题转化为已知不等式的解集,再利用对应方程的根已知,求参数的范围.2.不等式恒成立问题:方法:①分离变量转化为求函数的最值.②直接求函数的最值,再解不等式;③利用函数的图象,观察临界情况,再进行相应的计算.3.复合命题的真假判断:方法:转化为判断构成复合命题的简单命题的真假,再根据逻辑联结词,来判断.(2)方法选择与优化建议:对于问题1,因为它是二次不等式对于任意实数恒成立,只需研究判定式及二次项系数的符号即可;对于问题2,学生一般会选择方法①,因为本题分离变量较容易,而且对应函数的值域比较容易求,所以选择方法①.在考查命题p是真命题时,容易漏掉a=0的情况,另外容易出现因为忽视“ax2-ax+1”出现的位置,在限制条件中将“△>0”错写为“△≥0”.第三层次例1.已知函数f(x)=log a(8-2x)(a>0,且a≠1).(1)当a=2时,求满足不等式f(x)≤2的实数x的取值范围;(2)当a>1时,求函数y=f(x)+f(-x)的最大值.解:(1)实数x的取值范围为[2,3).(2)函数y=f(x)+f(-x)的最大值为log a49.〖教学建议〗(1)主要问题归类与方法:1.解指(对)数不等式问题:方法:①利用指(对)数函数的单调性,将不等式转化为代数不等式来解.②换元法:转化为代数不等式.2.与指(对)数有关的函数值域:方法:①考察对应函数(复合函数)的单调性,利用单调性处理.②用换元法,转化为几个基本函数的值域问题.(2)方法选择与优化建议:对于问题1,学生一般会选择方法①,因为本题既含对数,也含有指数,用换元不能一次转化为代数不等式,所以选择方法①.对于问题2,学生一般会选择方法②,因为用换元法转化为几个基本函数的值域,处理比较方便,所以选择方法①.指数函数、对数函数的单调性受底数a 的影响,解决与指、对数函数特别是单调性有关的问题时,首先要看底数的范围.本题的易错点有两个,一是第一问中的“8-2x >0”的定义域部分;二是第二问中函数y =f (x )+f (-x )的定义域.例2.已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0.(1)若ab >0,判断函数f (x )的单调性;(2)若ab <0,求f (x +1)>f (x )时x 的取值范围.解:(1)当a >0,b >0时,函数f (x )在R 上是增函数.当a <0,b <0时,函数f (x )在R 上是减函数.(2)当a <0,b >0时,x 的取值范围为(log 1.5⎝ ⎛⎭⎪⎫-a 2b ,+∞); 当a >0,b <0时,x 的取值范围为(-∞,log 1.5⎝ ⎛⎭⎪⎫-a 2b ). 〖教学建议〗(1)主要问题归类与方法:1.讨论函数的单调性问题:方法:①利用函数的图象; ②复合函数的单调性;③利用函数单调性的定义.④利用导函数来求函数的单调区间.2.与指(对)数有关的解不等式问题:方法:①利用函数的单调性,转化为代数不等式. ②用换元法,依次解几个代数不等式.(2)方法选择与优化建议:对于问题1,学生一般会选择方法③或④,因为本题不仅要求判断还需要证明结论,方法①②不能用作证明,所以选择方法③或④.对于问题2,学生一般会选择方法①,因为本题函数的单调性比较明确,便于转化,所以选择方法①. 本题的易错点是第二问中忽视字母a 的符号对不等号的方向的影响.本题中的分类讨论是由数学运算的要求而引起的,“ab >0”和“ab <0”的含义是字母a 、b 同号或异号,因此需要具体到a 、b 各自的符号.例3.已知函数f (x )=a -1|x |. (1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围;(3)若函数y =f (x )在[m ,n ]上的值域是[m ,n ](m ≠n ),求实数a 的取值范围.解:(1)f (x )在(0,+∞)上为增函数.(2)a 的取值范围为(-∞,3].(3)a 的取值范围为{0}∪(2,+∞).〖教学建议〗(1)主要问题归类与方法:1.讨论函数的单调性问题:方法:①利用函数的图象;②复合函数的单调性;③利用函数单调性的定义.④利用导函数来求函数的单调区间.2.不等式恒成立问题:方法:①分离变量转化为求函数的最值.②直接求函数的最值,再解不等式;③利用函数的图象,观察临界情况,再进行相应的计算.3.已知函数的值域,求参数的取值:方法:借助函数的图象了解函数单调性,再根据函数的单调性找最值来处理.(2)方法选择与优化建议:对于问题1,学生一般会选择方法③或④,因为本题是证明函数的单调性,方法①②不能用作证明,所以选择方法③或④.对于问题2,学生一般会选择方法①,因为本题分离变量较容易,而且对应函数的值域比较容易求,所以选择方法①.。

高中数学第三章基本初等函数Ⅰ3.2对数与对数函数3.2.1对数及其运算第3课时换底公式与自然对数课堂导学案

高中数学第三章基本初等函数Ⅰ3.2对数与对数函数3.2.1对数及其运算第3课时换底公式与自然对数课堂导学案

3.2.1 对数及其运算第3课时换底公式与自然对数课堂导学三点剖析一、利用换底公式进行求值【例1】计算:(1)log 1627log 8132;(2)(log 32+log 92)(log 43+log 83).思路分析:在两个式子中,底数、真数都不相同,因而要用换底公式进行换底便于计算求值. 解:(1)log 1627log 8132=81lg 32lg 16lg 27lg ⨯ =45433lg 2lg 2lg 3lg ⨯=3lg 42lg 52413lg 3⨯g =1615. (2)方法一:(log 32+log 92)(log 43+log 83)=(log 32+9log 2log 33)(8log 3log 4log 3log 2222+) =(log 32+21log 32)(21log 23+31log 23) =23log 32×65log 23=45×2lg 3lg 3lg 2lg ⨯=45. 方法二:原式=()8lg 3lg 4lg 3lg )(9lg 2lg 3lg 2lg (++=)2lg 33lg 2lg 23lg )(3lg 2lg 23lg 2lg (+⨯+=23×3lg 2lg ×65× 2lg 3lg =45. 二、条件求值【例2】已知log 1227=a,求log 616的值.思路分析:此题用换底公式,将log 616换成以12为底的对数,而已知a=log 1227可转化为log 123=3a ,关键是log 122的值,312=22是一个重要转折,∴log 12312=log 1222=2log 122. 解:∵log 1227=a,∴log 123=3a . ∵log 12312=2log 122=1-log 123=13a -, ∴log 122=21(13a -). ∴log 616=6log 16log 1212=3log 2log 2log 4121212+=aa +-3)3(4. 三、恒等式的证明问题【例3】求证:(1)log x ylog y zlog z a=log x a;(2)log n a b n log c a=log c b.思路分析:两题中的对数中,底数都不完全相同,故需用换底公式,由左边向右边的式子“靠近”. 证明:(1)log x ylog y zlog z a=z a y z x y lg lg lg lg lg lg ⨯⨯=xa lg lg =log x a.∴原式成立. (2)log n ab nlog c a=c a a b n n lg lg lg lg ⨯=c a a n b n lg lg lg lg ⨯=c b lg lg =log c b. ∴原式成立.温馨提示在利用换底公式进行计算、化简、证明时,要会正用公式,即从左到右,也要会逆用公式,即从右到左,更要会变用公式,不管怎样用公式,一定要从整体上把握公式的特点,方能用活公式. 各个击破类题演练1求值:(1)log 23log 95log 58;(2)(log 2125+log 425+log 85)(log 52+log 254+log 1258).解析:(1)原式=5lg 8lg 9lg 5lg 2lg 3lg ∙∙=5lg 2lg 33lg 25lg 2lg 3lg ∙∙=23. (2)原式=(2lg 35lg 2lg 25lg 22lg 5lg 3++)(5lg 32lg 35lg 22lg 25lg 2lg ++)=5lg 2lg 32lg 35lg 13∙=13. 变式提升1已知log 34log 481log 8m=log 416,求m 的值.解析:由条件知2lg 3lg 2lg 23lg 43lg 2lg 2m ∙∙=2, 2lg 3lg 4m 2,∴2lgm=3lg2. ∴lgm 2=lg8.∴m 2=8. 又∵m>0,∴m=22.类题演练2已知log 35=a,求log 1575.解析:log 1575=15log 75log 33=5log 1125log 33++=5log 115log 233++=aa ++112. 变式提升已知log 23=a,log 37=b,求log 4256.解析:∵log 23=a,∴log 32=a1. ∴log 4256=42log 56log 33=76log 87log 33⨯⨯=7log 6log 8log 7log 3333++=7log 12log 2log 37log 3333+++=b aa b +++113=13+++a ab ab . 类题演练3求证:log m (x+y+a)log (x+y+a)(y+z)log (y+z)m=1. 证明:log m (x+y+a)log (x+y+a)(y+z)log (y+z)m =)lg(lg )lg()lg(lg )lg(z y m a y x z y m a y x +∙+++∙++=1. 变式提升3设x 、y 、z∈(0,+∞)且3x =4y =36,求证:y x 12+=1. 证明:∵3x =36,4y =36,∴x=log 336,y=log 436. ∴x 1=log 363y1=log 364. ∴x 2+y1=2log 363+log 364 =log 36(32×4)=1. ∴x 2+y 1=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练3 基本初等函数Ⅱ基础过关1. 下列各图象所表示的函数能用二分法求零点的是( )2. 当x 越来越大时,下列函数中,增长速度最快的应该是( )A. y =100xB. y =log 100xC. y =x 100D. y =100x3. 函数f (x )=e x -1x的零点所在的区间是( ) A. ⎝ ⎛⎭⎪⎫0,12 B. ⎝ ⎛⎭⎪⎫12,1 C. ⎝ ⎛⎭⎪⎫1,32 D. ⎝ ⎛⎭⎪⎫32,2 4. 下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,f (x 1)>f (x 2)”的是( ) A. f (x )=1xB. f (x )=x 2C. f (x )=lg(x +2)D. f (x )=2x 5. 函数f (x )=⎝ ⎛⎭⎪⎫x -120+|x 2-1|x +2的定义域为( ) A. ⎝ ⎛⎭⎪⎫-2,12B. (-2,+∞)C. ⎝ ⎛⎭⎪⎫-2,12∪⎝ ⎛⎭⎪⎫12,+∞ D. ⎝ ⎛⎭⎪⎫12,+∞ 6. 设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在x ∈()1,2内近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间( )A. (1,1.25)B. (1.25,1.5)C. (1.5,2)D. 不能确定 7. 若函数f (x )=1+m e x -1是奇函数,则m 的值是( ) A. 0B. 12C. 1D. 28. 已知定义在实数集上的函数y =f (x )满足f (x +y )=f (x )+f (y ), 且f (x )不恒等于零,则y =f (x )是( )A. 奇函数B. 偶函数C. 非奇非偶函数D. 不能确定 9. 已知关于x 的不等式ax 2+bx +2<0的解集是⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫13,+∞,则ab 等于( ) A. -24 B. 24 C. 14 D. -1410. 已知A ,B 两地相距150 km ,某人开汽车以60 km/h 的速度从A 地到达B 地,在B 地停留1 h 后再以50 km/h 的速度返回A 地,把汽车离开A 地的距离x (km)表示为时间t (h)的函数关系式是( )A. x =60tB. x =60t +50tC. x =⎩⎪⎨⎪⎧60t (0≤t ≤2.5),150-50t (t >3.5)D. x =⎩⎪⎨⎪⎧60t (0≤t ≤2.5),150(2.5<t ≤3.5),150-50(t -3.5)(3.5<t ≤6.5)11. 建造一个容积为8 cm 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为( )A. 1700元B. 1720元C. 1740元D. 1760元 12. 若函数f (x )=x 2+bx +c 对任意实数都有f (2+x )=f (2-x ),则( )A. f (2)<f (1)<f (4)B. f (1)<f (2)<f (4)C. f (2)<f (4)<f (1)D. f (4)<f (2)<f (1) 13. 若方程2ax 2-x -1=0在(0,1)内恰有一解,则实数a 的取值范围是( )A. [-18,+∞) B. (1,+∞) C. (-∞,1)D. [-18,1)14. 已知函数f (x )=a |x |(a >1),则下列不等式成立的是( )A. f (-1)<f (2)B. f (-2)<f (1)C. f (5)<f (-3)D. f (-5)<f (3) 15. 函数y = |log 12x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度b -a 的最小值为( )A. 3B. 34C. 4D. 1416. 用二分法求f (x )=0的近似解,已知f (1)=-2 ,f (3)=0.625 ,f (2)=-0.984.若要求下一个f (m ),则m =________.17. 函数f (x )=(x +a )(x -4)为偶函数,则实数a =________.18. 已知方程lg x =3-x 的解所在的区间为(k ,k +1)(k ∈N *),则k =________.19. 某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(OA 为线段,AB 为某二次函数图象的一部分,O 为原点).(1)写出服药后y 与t 之间的函数关系式y =f (x );(2)据进一步测定:每毫升血液中含药量不少于49微克时,对治疗有效,求服药一次治疗疾病有效的时间.20. 在经济学中,已知函数f (x )的边际函数Mf (x )定义为Mf (x )=f (x +1)-f (x ).某公司每月最多生产100台报警系统装置,生产x 台(x ∈N *)的收入函数R (x )=3000x -20x 2(单位:元),其成本函数为C (x )=500x +4000(单位:元),利润是收入与成本之差.(1)求利润函数P (x )及边际利润函数MP (x );(2)利润函数P (x )与边际利润函数MP (x )是否具有相同的最大值?冲刺A 级21. 设f (x )是区间[a ,b ]上的单调函数,且f (a )·f (b )<0,则方程f (x )=0在区间(a ,b )( )A. 至少有一实根B. 至多有一实根C. 没有实根D. 必有唯一实根22. 已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图像上的两点,则||f (x )<1的解集是( )A. ()-3,0B. ()0,3C. (]-∞,-1∪[)3,+∞D. (]-∞,0∪[)1,+∞23. 函数f (x )是定义在R 上的奇函数,且当x ∈(0,+∞)时,f (x )=2x ,那么,f (log 213)=________. 24. 已知定义在R 上的函数f (x )满足f (x )=-f (x +32),且f (-2)=f (-1)=-1,f (0)=2,则f (1)+f (2)+…+f (2013)+f (2014)=________.25. 已知函数f (x )=x 2+2(a -2)x +4.(1)如果对一切x ∈R ,f (x )>0恒成立,求实数a 的取值范围;(2)如果对x ∈[-3,1],f (x )>0恒成立,求实数a 的取值范围.专题训练3 基本初等函数Ⅱ基础过关1. C2. D3. B4. A5. C6. B7. D8. A 9. B 10. D 11. D12. A [提示:由条件知对称轴为x =2,再由二次函数性质,知f ()4>f (1)>f (2).]13. B [提示:可分离变量来解,2a =⎝ ⎛⎭⎪⎫1x +122-14,且1x >1,利用图象知,2a >2,即a >1.] 14. A [提示:可作出草图(为分段函数),由图易知答案.]15. B [提示:利用数形结合,当a =14,b =1时,长度最小.] 16. 2.5 17. 418. 2 [提示:构造函数f (x )=lg x +x -3,该函数在()0,+∞上递增,且f (2)<0,f ()3>0,仅有一个零点在(2,3)之间.]19. 解析:(1)由已知得y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,14(t -5)2,1<t ≤5. (2)当0≤t ≤1时,4t ≥49,得19≤t ≤1;当1<t ≤5时,14(t -5)2≥49,得1<t ≤113.∴19≤t ≤113,即所求时间为113-19=323(小时). 20. 解析:由题意知,x ∈[]1,100,且x ∈N *.(1)P (x )=R (x )-C (x )=3000x -20x 2-(500x +4000)=-20x 2+2500x -4000,MP (x )=P ()x +1-P (x )=-20()x +12+2500()x +1-4000-(-20x 2+2500x -4000)=2480-40x . (2) P (x )=-20x 2+2500x -4000=-20(x -1252)2+74125,当x =62或x =63时,P (x )的最大值为74120 (元).因为MP (x )=2480-40x 是减函数,所以当x =1时,MP (x )的最大值为2440 (元).因此,利润函数P (x )与边际利润函数MP (x )不具有相同的最大值.冲剌A 级21. D [解析:f (x )在[]a ,b 上单调且两端异号,则f (x )在()a ,b 上有且只有一个零点.]22. B [解析:可作出草图,直观判断.]23. -3 [解析:f ⎝⎛⎭⎪⎫log 213=f ()-log 23=-f (log 23)=-2log 23=-3.] 24. -1 [解析:由f (x )=-f ⎝ ⎛⎭⎪⎫x +32,得f (x +3)=f (x ),知函数f (x )周期为3,∴f (1)=f (-2)=-1,∴f (2)=f ()-1=-1,f ()3=f (0)=2,∴f (1)+f (2)+…+f ()2013+f ()2014=671×[]f (1)+f (2)+f ()3+f (1)=f (1)=-1.]25. 解析:(1)Δ=4(a -2)2-16<0⇒0<a <4.(2)⎩⎪⎨⎪⎧-(a -2)<-3,f (-3)>0或⎩⎪⎨⎪⎧-3≤-(a -2)≤1,Δ<0或⎩⎪⎨⎪⎧-(a -2)>1,f (1)>0,解得a ∈∅或1≤a <4或-12<a <1,∴a 的取值范围为(-12,4).。

相关文档
最新文档