专题:带电粒子在磁场中运动

合集下载

带电粒子在有界磁场磁场中的运动

带电粒子在有界磁场磁场中的运动

d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电

(完整版)高考物理带电粒子在磁场中的运动解析归纳

(完整版)高考物理带电粒子在磁场中的运动解析归纳

难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。

(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。

1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。

确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。

圆心的确定,通常有以下两种方法。

① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。

带电粒子在磁场中的运动(磁聚焦和磁扩散)

带电粒子在磁场中的运动(磁聚焦和磁扩散)
Q
θR O/
OM
x
图 (b)
(3)带电微粒在y轴右方(X> O)的区域离开磁场并做 匀速直线运动.靠近上端发射出来的带电微粒在穿出 磁场后会射向X轴正方向的无穷远处,靠近下端发射 出来的带电微粒会在靠近原点之处穿出磁场.所以, 这束带电微粒与X轴相交的区域范围是X> 0.
装带 置点
微 粒 发 射
Pv Cr
(2)这束带电微粒都通过坐标原点。 如图(b)所示,从任一点P水平进入磁场的 带电微粒在磁场中做半径为R 的匀速圆周运动,圆 心位于其正下方的Q点,设微粒从M 点离开磁 场.可证明四边形PO’ MQ是菱形,则M 点就是坐 标原点,故这束带电微粒都通过坐标原点0.
y
v AC
R O/
O
x
图 (a)
y
Pv R
y
D
C
v0
O
x
A
B
S=2(πa2/4-a2/2) =(π-2)a2/2
解:(1)设匀强磁场的磁感应强度的大小为B。令圆弧AEC是自C点垂直于 BC入射的电子在磁场中的运行轨道。依题意,圆心在A、C连线的中垂线上, 故B点即为圆心,圆半径为a,按照牛顿定律有 ev0B= mv02/a,得B= mv0/ea。 (2)自BC边上其他点入射的电子运动轨道只能在BAEC区域中。因而,圆弧 AEC是所求的最小磁场区域的一个边界。
(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区
域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感
应强度的大小与方向。
y
(2)请指出这束带电微粒与x轴相 带
交的区域,并说明理由。
点 微

(3)在这束带电磁微粒初速度变为
发 射

1.3带电粒子在匀强磁场中的运动

1.3带电粒子在匀强磁场中的运动
思路导引:
依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出
所受重力与洛伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆
周运动,由此可以求出粒子运动的轨道半径及周期。
完全解答:
重力与洛伦兹力之比
(1)粒子所受的重力
G= mg = 1.67×10-27kg×9.8 N= 1.64×10-26N
匀强磁场中。求电子做匀速圆周运动的轨道半径和周期。
解:洛伦兹力提供向心力,首先列:
2
v
qvB m
r
2πr
T
v
mv
9.110 31 1.6 10 6
2



.
55

10
m
r
19
4
1.6 10 2 10
qB
2m
T
qB
2 9.110 31
7


5
.
6875






洛伦兹力提供向心力
v2
qvB m
r



圆周运动的半径
mv
r
qB
粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成
正比,与电荷量、磁感应强度成反比。
观察带电粒子的运动径迹
洛伦兹力演示仪示意图
洛伦兹力演示仪
励磁线圈
玻璃泡
电子枪
加速极电压
励磁电流
选择档
选择档
电子枪可以发射电子束
玻璃泡内充有稀薄的气体,在电
2 m
T
eB
电子在矩形磁场中沿圆弧从
a点运动到c点的时间

t
T

带电粒子在匀强磁场中运动轨迹

带电粒子在匀强磁场中运动轨迹

带电粒子在匀强磁场中运动轨迹带电粒子在匀强磁场中运动轨迹一、带电粒子在匀强磁场中运动轨迹带电粒子只受洛伦兹力作用的条件下,在匀强磁场中的运动有:1.粒子初速度方向平行磁场方向(V ∥B ):运动轨迹:匀速直线运动2.粒子初速度方向垂直磁场方向(V ⊥B ):(1)动力学角度:洛伦兹力提供了带电粒子做匀速圆周运动所需的向心力(2)运动学角度:加速度方向始终和运动方向垂直,而且加速度大小不变。

运动轨迹:匀速圆周运动二、轨道半径和运动周期1.轨道半径r :qBm v r = 在匀强磁场中做匀速圆周运动的带电粒子,轨道半径跟运动速率成正比。

2.运动周期T :qBm T π2= (1)周期跟轨道半径和运动速率均无关(2)粒子运动不满一个圆周的运动时间:qB m t θ=,θ为带电粒子运动所通过的圆弧所对的圆心角三、有界磁场专题:(三个确定)1、圆心的确定已知进出磁场速度方向已知进出磁场位置和一个速度方向2. 半径的确定:半径一般都在确定圆心的基础上用平面几何知识求解,常常要解三角形带电粒子在匀强磁场中运动轨迹3、时间的确定(由圆心角确定时间)粒子速度的偏转角(?)等于回旋角(α),并等于AB 弦与切线的夹角(弦切角θ)的2倍即.θα?2==粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:T t πα2= (1)直界磁场区: 如图,虚线上方存在无穷大的磁场B ,一带正电的粒子质量m 、电量q 、若它以速度v 沿与虚线成o o o o o o*****6030、、、、、角分别射入,请你作出上述几种情况下粒子的轨迹、并求其在磁场中运动的半径和时间。

粒子在直界磁场(足够大)的对称规律:从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等。

(2)、圆界磁场带电粒子在匀强磁场中运动轨迹偏转角:rR =2tan θR :磁场半径r:圆周运动半径经历时间:qBmt θ= 圆运动的半径:qBm v r = 圆界磁场对称规律:在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。

1.3.2 专题 带电粒子在有界磁场中的运动 课件-2023年高二物理人教版(2019)

1.3.2 专题  带电粒子在有界磁场中的运动 课件-2023年高二物理人教版(2019)
②圆心角互补: 2θ+2 α= π,即θ+α= π/2
③半径关系:r=R/tanθ=Rtanα
④运动时间:t= 2θT/2 π= θT/ π
(2)不沿径向射入时,速度
o’
方向与对应点半径的夹角
相等(等角进出)
o

(3)非径向入射的距离和时间推论:
①若r 轨迹<R边界,当轨迹直径恰好是边界圆的一
条弦,此时出射点离入射点最远,且Xmax=2r,
角(弦切角)相等。若出射点到入射点之间距离为d,则
d=2R
1
t T
2
d=2Rsinθ

t
T

d=2Rsinθ

t T

【例1】水平直线MN上方有垂直纸面向里范围足够大的有界匀强磁场,磁感应强度为B,正、负电子同时从MN边界O点以与MN成45°角的相
同速率v射入该磁场区域(电子的质量为m,电荷量为e),正、负电子间的
射入筒内,射入时的运动方向与MN成30°角。当筒转过90°时,该粒
子恰好从小孔N飞出圆筒。不计重力。若粒子在筒内未与筒壁发生碰撞,
则带电粒子的比荷为(
)
【变式训练】在真空中半径 r =3×10-2m的圆形区域内有一匀强磁场,磁场
的磁感应强度B=0.2 T,方向如图所示,一个带正电的粒子以v0=1×106 m/s
(3)到入射点最远距离:
①和边界相交时,离出射点最远距离是以出射点为端点的直径或半径。
②和边界相切时,离出射点最远的距离是以出射点和切点为端点的弦长。
【例1】(多选)如图所示,圆形区域内有垂直纸面向里的匀强磁场,三个
质量和电荷量相同的带电粒子a、b、c,以不同的速率对准圆心O沿着

带电粒子在磁场中的运动

带电粒子在磁场中的运动

带电粒子在磁场中的运动因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷非平行与磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提==2/。

带电粒子在磁场中运动问题大致可分两种情况:1. 做供向心力,即F qvB mv R完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。

无论何种情况,其关键均在圆心、半径的确定上。

1. 找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。

方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。

2. 求半径圆心确定下来后,半径也随之确定。

一般可运用平面几何知识来求半径的长度。

3. 画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。

4. 应用对称规律带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。

临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。

一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。

电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。

当不加磁场时,电子束将通过O点打到屏幕的中心M点。

为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。

做a、b点速度的垂线,交点O1即为轨迹圆的圆心。

图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122=(/)/tan(/)B r mU e二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B,方向向里。

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动

〔思考与讨论〕
◎带电教粒材子在资匀料强分磁场析中做匀速圆周运动的圆半径,与粒
子的速度、磁场的磁感应强度有什么关系? 点拨: 由演示实验知,粒子做圆周运动的半径与速度、
磁感应强度有关系,分析可知,因洛伦兹力提供向心力,即 qvB=mrv2,可得:r=mqBv.
可见,粒子圆周运动的半径与速度大小成正比,与磁感 应强度 B 成反比.
质谱仪可以求出该粒子的比荷(电荷量与质量之比)mq =B22Ur2.
(2)回旋加速器 ①工作原理 利用电场对带电粒子的加速作用和磁场对
运a.动磁电场的荷作的用 偏 转 作 用 来 获 得 高 能 粒 子 , 这 些带电过粒程子在以某回一旋速度加垂速直器磁场的方核向心进入部匀件强磁——场两后,个在D 洛伦形兹盒力作和用其下间做匀的速窄圆缝周运内动完,其成周.期与速率、半径均无
(1)M点与坐标原点O间的距离; (2)粒子从P点运动到M点所用的时间.
解析:(1)带电粒子在匀强电场中做类平抛 运 负OP方动=l向,=12上在at1做x2,正初O方Q速=向2度上3为l=做零v匀0t1的,速a匀=直加qmE线速运运动动,,在设y 加 用解得速 的v度时0=大间小为6qmt为E1l,a;进粒入子磁从场P时点速运度动方到向Q与点x所轴 正方向的夹角为θ,则
解析: 粒子在电场中加速时,只有静电力做功,由动
能定理得 qU=12mv2,故EEkk12=qq12UU=qq12=12,同时也能求得 v = 2mqU,因为粒子在磁场中运动的轨迹半径 r=mqBv=qmB
2mqU=B1
2mqU,所以有rr12=
m1 q1 = 1 ,粒子做圆周运 m2 2 q2
动的周期 T=2qπBm,故TT21=mm12//qq12=12.

带电粒子在有界磁场中的运动

带电粒子在有界磁场中的运动
带电粒子在磁场中运动
简单回顾
一、带电粒子在匀强 磁场中的运动规律
1.带电粒子在匀强磁场中 运动( v B),只受洛伦兹
F v
o
力作用,做 匀速圆周运动 .
2.洛伦兹力提供向心力:
v2 m q v B R
半径:
2R T v
周期:
T
mv R qB 2m
qB
二、 r(1 cos ) cot
mv0 x1 b L a (1 cos ) cot eB eBL (其中 arcsin ) ⑤ mv0

P
v0
θ θ
0
图1
x
Q
②当 r<L 时,磁场区域及电子运动轨迹如图 2 所示,
( 1 )粒子沿环状的半径方向射入磁场,不能穿越磁场的最大 速度。
(2)所有粒子不能穿越磁场的最大速度。
解析:( 1)要粒子沿环状的半径方向射入磁场,不能穿越磁 场,则粒子的临界轨迹必须要与外圆相切,轨迹如图所示。
2 2 2 r R ( R r ) 由图中知, 1 1 2 1
解得
r1 0.375m
v v
v v v
v
一.带电粒子在平行直线边界磁场中的运动
Q P B P Q
P
Q
v
S
垂直磁场边界射入
①速度较小时,作半圆 运动后从原边界飞出; ②速度增加为某临界值 时,粒子作部分圆周运 动其轨迹与另一边界相 切;③速度较大时粒子 作部分圆周运动后从另 一边界飞出
v
S
①速度较小时,作圆 周运动通过射入点; ②速度增加为某临界 值时,粒子作圆周运 动其轨迹与另一边界 相切;③速度较大时 粒子作部分圆周运动 后从另一边界飞出

备战2023年高考物理母题题源解密(全国通用):带电粒子在磁场中的运动(原卷版)

备战2023年高考物理母题题源解密(全国通用):带电粒子在磁场中的运动(原卷版)

专题10带电粒子在磁场中的运动【母题来源一】2022年高考广东卷【母题题文】(2022·广东卷·T8)如图所示,磁控管内局部区域分布有水平向右的匀强电场和垂直纸面向里的匀强磁场。

电子从M点由静止释放,沿图中所示轨迹依次经过N、P两点。

已知M、P在同一等势面上,下列说法正确的有()A.电子从N到P,电场力做正功B.N点的电势高于P点的电势C.电子从M到N,洛伦兹力不做功D.电子在M点所受的合力大于在P点所受的合力【母题来源二】2022年高考广东卷【母题题文】(2022·广东卷·T7)如图所示,一个立方体空间被对角平面MNPQ划分成两个区域,两区域分布有磁感应强度大小相等、方向相反且与z轴平行的匀强磁场。

一质子以某一速度从立方体左侧垂直Oyz平面进入磁场,并穿过两个磁场区域。

下列关于质子运动轨迹在不同坐标平面的投影中,可能正确的是()A. B. C. D.【母题来源三】2022年高考全国甲卷【母题题文】(2022·全国甲卷·T18)空间存在着匀强磁场和匀强电场,磁场的方向垂直于纸面(xOy平面)向里,电场的方向沿y轴正方向。

一带正电的粒子在电场和磁场的作用下,从坐标原点O由静止开始运动。

下列四幅图中,可能正确描述该粒子运动轨迹的是()A. B.C. D.【母题来源四】2022年高考浙江卷【母题题文】(2022·浙江6月卷·T15)如图为某一径向电场示意图,电场强度大小可表示为E a r ,a 为常量。

比荷相同的两粒子在半径r 不同的圆轨道运动。

不考虑粒子间的相互作用及重力,则()A.轨道半径r 小的粒子角速度一定小B.电荷量大的粒子的动能一定大C.粒子的速度大小与轨道半径r 一定无关D.当加垂直纸面磁场时,粒子一定做离心运动【母题来源五】2022年高考湖北卷【母题题文】(2022·湖北·T8)在如图所示的平面内,分界线SP 将宽度为L 的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B ,SP 与磁场左右边界垂直。

2022届高考物理二轮专题讲义:带电粒子在磁场中运动

2022届高考物理二轮专题讲义:带电粒子在磁场中运动

带电粒子在磁场中运动1方法梳理(1)力与运动观(牛顿第二定律) qvB=m v 2r(2)运动时间T=2πmqB t=θ2πT2考点解读 (1)两类边界 ①直线边界角度关系:θ=β=2α(圆形角等于速度偏转角等于弦切角2倍)弦长关系:优弧(弦长越短,圆心角越大),劣弧(弦长越长,圆心角越大)例1:如图,圆心在O 点的半圆形区域ACD (CO⊥AD )内存在着方向垂直于区域平面向外、磁感应强度为B 的匀强磁场,一带电粒子(不计重力)从圆弧上与AD 相距为d 的P 点,以速度v 沿平行直径AD 的方向射入磁场,速度方向偏转60°角后从圆弧上C 点离开。

则可知(B)A .粒子带正电B .直径AD 的长度为4dC .粒子在磁场中运动时间为πd 3vD .粒子的比荷为vBd ②圆形边界a 沿半径射入,沿半径射出。

∠AOˊB + ∠AOB=1800例2:如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。

现将带电粒子的速度变为13v ,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间②圆形边界a轨迹半径r等于磁场圆半径R,粒子平行射入磁场,汇聚一点,反之亦然。

例3:如图所示,在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板。

从圆形磁场最高点Р垂直磁场正对着圆心O射入带正电的粒子,且粒子所带电荷量为q、质量为m,不考虑粒子重力,关于粒子的运动,以下说法正确的是(BD) A.粒子有可能始终在磁场中运动而不再射出磁场B.出磁场的粒子,其出射方向的反向延长线也一定过圆心OC.粒子在磁场中通过的弧长越长,运动时间也越长D.出射后垂直打在MN上的粒子,入射速度一定为v=qB Rm2放缩圆例4:如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场,在ad边中点O,方向垂直磁场向里射入一速度方向跟ad边夹角θ=30°、大小为v0的带正电粒子,已知粒子质量为m,电量为q,ad边长为L,ab边足够长,粒子重力不计,求:粒子能从ab边上射出磁场的v0大小范围.qBL 3m ≤v0≤qBLm2旋转圆例5:如图,磁感应强度为B的匀强磁场垂直于纸面向里,PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。

带电粒子在匀强磁场中的运动(知识小结)

带电粒子在匀强磁场中的运动(知识小结)

带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。

② 则粒子做匀速直线运动。

(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。

(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。

二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。

速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。

2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。

)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。

或者说两圆心连线OO ′与两个交点的连线AB 垂直。

(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO , 延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。

(完整版)带电粒子在匀强磁场中的运动专题

(完整版)带电粒子在匀强磁场中的运动专题

带电粒子在匀强磁场中的运动专题一、带电粒子在匀强磁场中做匀速圆周运动的程序解题法——三步法1.画轨迹:即画出轨迹,确定圆心,用几何方法求半径。

2.找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系。

3.用规律:即用牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式。

例题1、如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A点沿直径AOB方向射入磁场,经过Δt时间从C点射出磁场,OC与OB成60°角。

现将带电粒子的速度变为v/3,仍从A点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.12Δt B.2Δt C.13Δt D.3Δt例题2、如图,虚线OL与y轴的夹角θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B。

一质量为m、电荷量为q(q>0)的粒子从左侧平行于x轴射入磁场,入射点为M。

粒子在磁场中运动的轨道半径为R,粒子离开磁场后的运动轨迹与x轴交于P点(图中未画出),且OP=R。

不计重力。

求M点到O点的距离和粒子在磁场中运动的时间。

二、带电粒子在磁场中运动的多解问题1.带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,形成多解。

如图甲所示,带电粒子以速率v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b。

2.磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成的多解。

如图乙所示,带正电粒子以速率v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B垂直纸面向外,其轨迹为b。

3.临界状态不唯一形成多解带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过去了,也可能转过180°从入射界面这边反向飞出,如图甲所示,于是形成了多解。

带电粒子在磁场中的运动

带电粒子在磁场中的运动

洛伦兹力,带电粒子在磁场中的运动一、洛伦兹力:磁场对运动电荷的作用力1.洛伦兹力的公式:F=qvb2.当带电粒子的运动方向与磁场方向互相平行时,F=03.当带电粒子的运动方向与磁场方向互相垂直时,F=qvb4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷磁场中受到的磁场对电荷的作用力一定为0。

二、洛伦兹力的方向1.运动电荷在磁场中受力方向要用左手定则来判定.2.洛伦兹力F的方向既垂直磁场B的方向,又垂直运动电荷v的方向,即F总是垂直B和v的所在平面.3.使用左手定则判定洛伦兹力方向时,若粒子带正电时,四个手指的指向与正电荷的运动方向相同.若粒子带负电时,四个手指的指向与负电荷的运动方向相反.4.安培力的本质是磁场对运动电荷的作用力的宏观表现.三、洛伦兹力的特征洛伦兹力与电荷运动状态有关:当v=0时,F=0;v≠0,但v∥B时,F=0。

1洛伦兹力对运动电荷不做功.注意:由于洛伦兹力的方向总与带电粒子在磁场中的运动方向垂直,所以洛伦兹力对运动电荷不做功,不能改变运动电荷的速度大小和电荷的大小,但洛伦兹力可以改变运动电荷的速度方向和运动电荷的运动状态.四、带电粒子在匀强磁场中的运动1.不计重力的带电粒子在匀强磁场中的运动可分为三种情况:一是匀速直线运动;二是匀速圆周运动;三是螺旋运动.2.不计重力的带电粒子在匀强磁场中做匀速圆周运动的几个基本公式: (1)向心力公式_qvB=m错误!(2)轨道半径公式R=错误!;(3)周期、频率公式T=2πRv=错误!.3.不计重力的带电粒子垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:带电粒子垂直进入匀强电场,在电场中做类平抛运动曲线运;垂直进入匀强磁场,则做匀速圆周运动曲线运动.一、在研究带电粒子在匀强磁场中做匀速圆周运动规律时,着重把握“一找圆心,二找半径错误!,三找周期错误!或时间”的分析方法.1.圆心的确定因为洛伦兹力F洛指向圆心,根据F洛⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点)的F洛的方向,沿两个洛伦兹力F洛画其延长线的交点即为圆心,另外,圆心位置必定在圆中一根弦的中垂线上(见图).2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点.(1)粒子速度的偏向角(φ)等于同心角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍(如图所示),即φ=α=2θ=ωt。

专题12 带电粒子在磁场中的运动-2023年高考物理大题限时集训(解析版)

专题12 带电粒子在磁场中的运动-2023年高考物理大题限时集训(解析版)

专题12带电粒子在磁场中的运动【例题】如图所示,直线MN 上方有垂直纸面向外的匀强磁场,磁感应强度2T B =。

两带有等量异种电荷的粒子,同时从O 点以相同速度6110m/s v =⨯射入磁场,速度方向与MN 成30°角。

已知粒子的质量均为236.410kg m -=⨯,电荷量-163.210C q =⨯,不计粒子的重力及两粒子间相互作用力,求:(1)它们从磁场中射出时相距多远?(2)射出的时间差是多少?【答案】(1)0.2m ;(2)7410s 3π-⨯【解析】(1)易知正、负电子偏转方向相反,做匀速圆周运动的半径相同,均设为r ,根据牛顿第二定律有2v qvB m r=解得0.1m mv r qB==作出运动轨迹如图所示,根据几何关系可得它们从磁场中射出时相距220.2m mv d r qB===(2)正、负电子运动的周期均为72210s r T vππ-==⨯根据几何关系可知正、负电子转过的圆心角分别为60°和300°,所以射出的时间差是7410s 3603t T θπ-︒∆∆==⨯1.带电粒子在有界匀强磁场中的运动(1)粒子从同一直线边界射入磁场和射出磁场时,入射角等于出射角.粒子经过磁场时速度方向的偏转角等于其轨迹的圆心角.(如图,θ1=θ2=θ3)(2)圆形边界(进、出磁场具有对称性)①沿径向射入必沿径向射出,如图所示.②不沿径向射入时.射入时粒子速度方向与半径的夹角为θ,射出磁场时速度方向与半径的夹角也为θ,如图所示.2.临界问题(1)解决带电粒子在磁场中运动的临界问题,关键在于运用动态思维,寻找临界点,确定临界状态,根据粒子的速度方向找出半径方向,同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系.(2)粒子射出或不射出磁场的临界状态是粒子运动轨迹与磁场边界相切.3.多解问题题目描述的条件不具体,存在多解的可能性,常见的多解原因有:(1)磁场方向不确定形成多解;(2)带电粒子电性不确定形成多解;(3)速度不确定形成多解;(4)运动的周期性形成多解.【变式训练】如图所示,矩形区域内有垂直于纸面向外的匀强磁场,磁感应强度的大小为25.010T B -=⨯,矩形区域长为235,宽为0.2m 。

专题57 带电粒子在磁场中的运动(解析版)

专题57 带电粒子在磁场中的运动(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题57 带电粒子在磁场中的运动导练目标 导练内容目标1 洛伦兹力的大小方向 目标2 带电粒子在有界磁场中的运动 目标3带电粒子在磁场中运动的多解问题一、洛伦兹力的大小方向 1.洛伦兹力的大小和周期(1)大小:qvB F =(v B ⊥);(2)向心力公式:rmv qvB 2=;(3)周期:22r m T v qB ππ== 2.洛伦兹力的特点(1)利用左手定则判断洛伦兹力的方向,注意区分正、负电荷。

(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化。

(3)运动电荷在磁场中不一定受洛伦兹力作用。

(4)洛伦兹力永不做功。

3.洛伦兹力的方向 (1)判断方法:左手定则(2)方向特点:洛伦兹力的方向一定与粒子速度方向和磁感应强度方向所决定的平面垂直(B 与v 可以有任意夹角)。

注意:由左手定则判断洛伦兹力方向时,四指指向正电荷运动的方向或负电荷运动的反方向。

【例1】如图所示,光滑的水平桌面处于匀强磁场中,磁场方向竖直向下,磁感应强度大小为B ;在桌面上放有内壁光滑、长为L 的试管,底部有质量为m 、带电量为q 的小球,试管在水平向右的拉力作用下以速度v 向右做匀速直线运动(拉力与试管壁始终垂直),带电小球能从试管口处飞出,关于带电小球及其在离开试管前的运动,下列说法中正确的是( )A .小球带负电,且轨迹为抛物线B .小球运动到试管中点时,水平拉力的大小应增大至qvBLqBmC .洛伦兹力对小球做正功D .对小球在管中运动全过程,拉力对试管做正功,大小为qvBL 【答案】BD【详解】A .小球能从试管口处飞出,说明小球受到指向试管口的洛伦兹力,根据左手定则判断,小球带正电;小球沿试管方向受到洛伦兹力的分力y F qvB =恒定,小球运动的轨迹是一条抛物线,故A 错误;B .由于小球相对试管做匀加速直线运动,会受到与试管垂直且向左的洛,则拉力应增大伦兹力的分力x y F qv B =小球运动到中点时沿管速度为22y qvB L v m =⨯qvBL F m=持匀速运动,故B 正确;C .沿管与垂直于管洛伦兹力的分力合成得到的实际洛伦兹力总是与速度方向垂直,不做功,故C 错误;D .对试管、小球组成的系统,拉力做功的效果就是增加小球的动能,由功能关系F k W E qvBL =∆=故D 正确;故选BD 。

(完整word版)专题训练:带电粒子在磁场中的运动——动态圆问题

(完整word版)专题训练:带电粒子在磁场中的运动——动态圆问题

专题训练:带电粒子在磁场中的运动—-动态圆问题一、单选题(共13小题,每小题5。

0分,共65分)1。

如图所示,边界OA与OC之间分布有垂直纸面向里的匀强磁场,边界OA上有一粒子源S。

某一时刻,从S平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC射出磁场.已知∠AOC=60°,从边界OC 射出的粒子在磁场中运动的最长时间等于T/2(T为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的最短时间为( )A.T/2B.T/4C.T/6D.T/82。

在真空室中,有垂直于纸面向里的匀强磁场,三个质子1、2和3分别以大小相等、方向如图所示的初速度v1、v2和v3,经过平板MN上的小孔O射入匀强磁场,这三个质子打到平板MN上的位置到小孔O的距离分别是s1、s2和s3,则有()A.s1>s2>s3B.s1<s2<s3C.s1=s3>s2D.s1=s3<s23.如图所示,在荧屏MN上方分布了水平方向的匀强磁场,磁感应强度的大小B=0。

1T,方向与纸面垂直。

距离荧屏h=16cm处有一粒子源S,以速度v=1×106m/s不断地在纸面内向各个方向发射比荷的带正电粒子,不计粒子的重力,则粒子打在荧屏范围的长度为( )A.12cmB.16cmC.20cmD.24cm4.如图,圆形区域内有一垂直纸面的匀强磁场,P为磁场边界上的一点。

有无数带有同样电荷、具有同样质量的粒子在纸面内沿各个方向以同样的速率通过P点进入磁场.这些粒子射出边界的位置均处于边界的某一段弧上,这段圆弧的弧长是圆周长的1/3.将磁感应强度的大小从原来的B1变为B2,结果相应的弧长变为原来的一半,则B2与B1等于()A.2 B.3C.D.5。

在一空心圆柱面内有一垂直于纸面的匀强磁场,磁感应强度为B,其横截面如图所示,磁场边界为同心圆,内,外半径分别为r和().圆心处有一粒子源不断地沿半径方向射出质量为,电量为q的带电粒子,不计粒子重力.为使这些粒子不射出磁场外边界,粒子从圆心处射出时速度不能超过()A.B.C.D.6。

带电粒子在磁场中运动解题方法及经典例题

带电粒子在磁场中运动解题方法及经典例题

带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨道半径为R,运动的周期为T,推导半径和周期公式:推导过程:运动时间t=3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定的常规方法①若已知粒子在圆周运动中的两个具体位置与通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向与圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2图4-3图4-4例1 、一个质量为m电荷量为q的带电粒子从x轴上的P〔a,0〕点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。

求3〕〕匀强磁场的磁感应强度B和射出点的坐标。

〔坐标为〔0,a例2、电子自静止开始经M、N板间〔两板间的电压为U〕的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:〔1〕正确画出电子由静止开始直至离开磁场时的轨迹图; 〔2〕匀强磁场的磁感应强度.〔已知电子的质量为m ,电量为e 〕emUd L L 2222(2)利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


238 92
U正在匀强磁场中以速率v。做匀速圆周运动的轨迹,当它
234 90
运动到O点时,衰变成钍核
Th 和另外一个新核,两核的速度方向
与v0共线,不计衰变后粒子间的相互作用,则关于钍核与新核在磁 场中运动的轨迹和绕行方向可能正确的是
如图所示,空间存在着垂直纸面向里的匀强磁场,磁感应强度 大小为B,一质量为m,带电量为−q的带电粒子(重力忽略不计), 从坐标原点O以初速度v沿与x轴正向成60∘角的方向射入磁场。 求: ①粒子第一次到达x轴的坐标; ②粒子第一次到达x轴的时间。
(2017年全国卷3)如图,空间存在方向垂直于纸面(xOy平面)
向里的磁场。在x≥0区域,磁感应强度的大小为B0;x<0区 域,磁感应强度的大小为λB0(常数λ>1)。一质量为m、电 荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正 向射入磁场,此时开始计时,当粒子的速度方向再次沿x 轴正向时,求(不计重力) (1)粒子运动的时间;(2)粒子与O点间的距离。
专题训练
(16年北京卷)如图所示,质量为m,电荷量为q的带电粒子,
以初速度v沿垂直磁场方向射入磁感应强度为B的匀强磁场, 在磁场中做匀速圆周运动。不计带电粒子所受重力。 (1)求粒子做匀速圆周运动的半 径R和周期T; (2)为使该粒子做匀速直线运动, 还需要同时存在一个与磁场方向垂 直的匀强电场,求电场强度E的大小。
带电粒子在磁场中的运动
带电粒子在磁场中的运动 带电粒子在磁场中的运动 带电粒子在复合场中的运 动 带电粒子在磁场中的运动 带电粒子在磁场中的运动 带电粒子在磁场中的运动 带电粒子在磁场中的运动
16年北卷 15年浙江卷
15四川卷
22 25
7
计算题 计算题
计算题
16 22
带电粒子在磁场中的运动 带电粒子在磁场中的运动
(2016年全国卷3)平面OM和平面ON之间的夹角为30∘,其横截面
( 纸面) 如图所示 , 平面 OM上方存在匀强磁场 ,磁感应强度大小 为B,方向垂直于纸面向外。一带电粒子的质量为 m,电荷量为 q(q>0).粒子沿纸面以大小为 v的速度从OM的某点向左上方射 入磁场,速度与OM成30∘角。已知粒子在磁场中的运动轨迹与 ON只有一个交点,并从OM上另一点射出磁场。不计重力。粒 子 离 开 磁 场 的 射 点 到 两 平 面 交 线 O 的 距 离 为 多少?
专题 带电粒子在磁场中运动
考情报告
年份 题号 24 18 16 23、24 11 18 15 15 题型 分值 12 6 6 40 18 6 6 6 知识点
17年全国卷3
17年全国卷2 17年全国卷1 17年北京卷 17年天津卷 16年全国卷3 16年全国卷2 16年全国卷1
计算题
选择题 选择题 计算题 计算题 选择题 选择题 选择题
(2016年全国卷2)一半径为R 圆筒处于匀强磁场中,磁场方向与筒的 轴平行,筒的横截面如图所示。图中直径MN的两端分别开有小孔, 筒绕其中心轴以角速度 ω 顺时针转动。在该截面内,一质量为m,带 电量为q带电粒子从小孔M射入筒内,射入时的运动方向与MN成30∘ 角。当筒转过90∘时,该粒子恰好从小孔N飞出圆筒。不计粒子重力, 若粒子在筒内未与筒壁发生碰撞,则关于带电粒子的运动半径r与磁 场的磁感应强度B正确的是:
构建模型:带点粒子有磁场的空间区域的运动。 知识储 备: 1. 向心力由洛伦兹力提供:
mv 2. 轨道半径公式: r qB 2 m 3. 周期公式: T qB
解题方法:
v2 qvB=m r
对在磁场中运动的粒子进行受力分析— → 求出合力的大小和 放向— → 根据合力画出运动轨迹图— → 通过轨迹图找出圆心— → 画出相关辅助线— → 利用带电粒子在磁场运动的相关知识点结合 数学几何关系求解相关物理量
带电粒子在磁场中的运动
通过上面表格来看,带电粒子在磁场中的运动是历年高 考 的 重 点 , 在 高 考 当 中 占 有 较 大 的 分 值 。 从本专题的知识特点以及历年高考的题型分析来看,带 电粒子在磁场中的运动在高考考察当中对学生的空间想象能 力、分析能力以及运用数学只是解决物理问题有较高的要求。
(15年广东卷)在同一匀强磁场中,α粒子(氦核 4 He )和质子(氢
核 H )做匀速圆周运动,若它们的动量大小相等,则α粒子和质
1 1
2
子( )。
A. 运动半径之比是2:1 B. 运动周期之比是2:1比是2:1
(17年哈尔滨师大附中、东北师大附中、辽宁师大附中联考)如图所示,虚线是一
相关文档
最新文档