7.5角的大小比较

合集下载

苏教版九年级数学下册7.5解直角三角形(第1课时)(优秀教学设计)

苏教版九年级数学下册7.5解直角三角形(第1课时)(优秀教学设计)

课题7.5 解直角三角形(第1课时)主备人执教者课型新授课课时1授课时间教学目标1.使学生了解解直角三角形的概念,能运用直角三角形的角与角、边与边、边与角关系解直角三角形;2.通过学生的探索讨论发现解直角三角形所需的条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决;3.通过问题情境,以及对解直角三角形所需的条件的探究,运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想.教学重难点直角三角形的解法;三角函数在解直角三角形中的灵活运用.教学法指导小组合作讨论、讲练结合法教具准备多媒体课件集体智慧个性设计教学后记新课引入——情景导入五星红旗你是我的骄傲,五星红旗我为你自豪……如何测量旗杆的高度?请同学们说说你的想法.积极思考,回答问题——大多数学生会凭直觉发表自己的观点,有的用尺子度量,有的说我们可以构建直角三角通过身边的情境让学生思考、交流、发言,调动学生的课堂参与的积极性,激发了他们研究的兴趣和探究的激情.实践探索活动一:(课件展示1)如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞多远?活动二:(课件展示2)如图,为测量旗杆的高度,在C点测得A点的仰角为30°,点C到点B的距离56.3,求旗杆的高度(精确到0.1m).解:略.归纳总结同学们回答的非常好,通过上面的两个活动,若要完整解该直角三角形,还需求出哪些元素?如图,在Rt△ABC中,∠C为直角,其余5个元素之间有以下关系:观察、思考,并归纳、小结得出“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)”.用,把实际问题转化为数学模型解决;(2)巩固解直角三角形的定义和目标,初步体会解直角三角形的方法——直角三角形的边角关系(勾股定理、两锐角互余、锐角三角函数)使学生体会到“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”交流讨论;归纳总结.AB C(1)三边之间关系: a 2+b 2=c 2(勾股定理).(2)锐角之间的关系: ∠A +∠B =90°(直角三角形的两个锐角互余). (3)边角之间的关系:学生交流讨论归纳(课件展示讨论的条件)师总结:解直角三角形,有下面 两种情况(其中至少有一边) :(1) 已知两条边(一直角边一 斜边;两直角边) ;(2) 已知一条边和一个锐角(一直角边一锐角;一斜边一锐角).自然就可以得出“定义” . 例题讲解例1 在Rt △ABC 中,∠C =90°,∠A =30°,a sin cos tan a b a A A A c c b===,,.=5.解这个直角三角形.例2已知:在Rt△ABC中,∠C=90°,a=104,b=20.49.(1)求c的值(精确到0.01);(2)求∠A、∠B的大小(精确到0.01°).知识巩固1.在Rt△ABC中,∠C=90°,根据下列条件解直角三角形(边长精确到0.1,角度精确到0.1°):求:(1)a=9 ,b=6;(2)∠A=18°,∠C=13.2.如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,求:B、C两地之间的距离.1.根据解直角三角形定义和方法进行分析.2.思考多种方法,选择最简便的方法.例2由学生独立分析,板练完成,并作自我评价,以掌握方法.练分析问题,掌握所学基础知识及基本方法,并进一步提高学生“执果索因”的能力.使学生巩固利用直角三角形的有关知识解决实际问题,考察建立数学模型的能力,转化的数学思想在学习中的应用,提高学生分析问题、解决问题的能力,以及在学习中还存在哪些问题,及时反馈矫正.课堂小结通过今天的学习,你学会了什么?布置作业(1)必做题:(2)选做题:如图所示,施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米.(1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶?解直角三角(勾股定理)两锐角之间关系 边角之间关系简单应用(参考数据:cos20°≈0.94,sin20°≈0.34,sin18°≈0.31, cos18°≈0.95)(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。

株洲数学家教周余:初中数学教材版本目录比较

株洲数学家教周余:初中数学教材版本目录比较

株洲数学家教周余:初中数学教材版本目录比较因为经常涉及到不同同学所使用的教材不同,所以,特意整理出来分享给大家。

注意:株洲地区使用的教材是湘教版,这里没有罗列出来。

长沙地区使用的是人教版。

株洲数学家教周余老师因为手机号码变更,导致以前的联系信息有误,最新信息请以本文右上角页眉为准。

七年级上册华师大版七年级上第1章走进数学世界§1.1与数学交朋友1.数学伴我们成长2.人类离不开数学3.人人都能学会数学§1.2 让我们来做数学1.跟我学2.试试看第2章有理数§2.1 正数和负数1.相反意义的量2.正数和负数3.有理数§2.2 数轴1.数轴2.在数轴上比较数的大小§2.3 相反数§2.4 绝对值§2.5 有理数的大小比较§2.6 有理数的加法1.理数的加法法则2.有理数加法的运算律§2.7有理数的减法§2.8有理数的加减混合运算1.加减法统一成加法2.加法运算律在加减混合运算中的应用§2.9;有理数的乘法1.有理数的乘法法则2.有理数乘法的运算律§2.10有理数的除法§2.11有理数的乘方§2.12 科学记数法§2.13有理数的混合运算§2.14近似数和有效数字§2.15用计算器进行数的简单运算第3章整式的加减§3.1 列代数式1.用字母表示数2.代数式3.列代数式§3.2代数式的值§3.3 整式1.单项式2.多项式3.升幂排列与降幂排列§3.4 整式的加减1.同类项2.合并同类项3.去括号与添括号4.整式的加减第4章图形的初步认识§4.1生活中的立体图形§4.2画立体图形1.由立体图形到视图2.由视图到立体图形§4.3立体图形的表面展开图§4.4平面图形§4.5最基本的图形——点和线1.点和线2.线段的长短比较§4.6角1.角2.角的比较和运算3.角的特殊关系§4.7相交线1.垂线2.相交线中的角§4.8 平行线1.平行线2.平行线的识别3.平行线的特征第5章数据的收集与表示§5.1 数据的收集1.数据有用吗2.数据的收集§5.2数据的表示1.利用统计图表传递信息2.从统计图表获取信息七年级下册华师大版第6章一元一次方程§6.1从实际问题到方程§6.2解一元一次方程1.方程的简单变形2.解一元一次方程阅读材料丢番图的墓志铭与方程§6.3实践与探索阅读材料 2=3吗小结复习题第7章二元一次方程组§7.1二元一次方程组和它的解§7.2二元一次方程组的解法§7.3实践与探索阅读材料鸡兔同笼小结复习题第8章一元一次不等式§8.1;认识不等式§8.2;解一元一次不等式1.不等式的解集2.不等式的简单变形3.解一元一次不等式§8.3 一元一次不等式组小结复习题第9章多边形§9.1 瓷砖的铺设§9.2 三角形1.认识三角形2.三角形的外角和3.三角形的三边关系§9.3 多边形的内角和与外角和§9.4 用正多边形拼地板1.用相同的正多边形拼地板2.用多种正多边形拼地板阅读材料多姿多彩的图案小结复习题课题学习图形的镶嵌第10章轴对称§10.1 生活中的轴对称阅读材料剪正五角星§10.2 轴对称的认识1.简单的轴对称图形2.画图形的对称轴3.画轴对称图形4.设计轴对称图案阅读材料对称拼图游戏§10.3 等腰三角形1.等腰三角形2.等腰三角形的识别阅读材料 Times;and;dates小结复习题第11章体验不确定现象§11.1 可能还是确定1. 不可能发生、可能发生和必然发生2. 不太可能是不可能吗§11.2 机会的均等与不等1. 成功与失败2. 游戏的公平与不公平阅读材料搅匀对保证公平很重要§11.3在反复实验中观察不确定现象阅读材料计算机帮我们处理数据八年级上册八年级下册九年级上册九年级下册。

北师大版八年级数学上册课件:7.5 第2课时 三角形的

北师大版八年级数学上册课件:7.5  第2课时 三角形的
用文字表述为: 三角形的一个外角等于和它不相邻的两个内角的和. 三角形的一个外角大于任何一个和它不相邻的内角.
在这里,我们通过三角形的内角和定理
直接推导出两个新定理.像这样,由一
个基本事实或定理直接推出的定理,
3
B 叫做这个基本事实或定理的推论.
推论可以当做定理使用.
定理的推论: 定理: 三角形的一个外角等于和它不相邻的两个内角的和. 定理: 三角形的一个外角大于任何一个和它不相邻的内角.
课堂小结
三角形的 外角
外角:三角形的一边与另 一边的反向延长线所组成 的角,叫做三角形的外角
推论1:三角形的一个外 角等于和它不相邻的两个 内角的和
推论2:三角形的一个外 角大于任何一个和它不相 邻的内角
当堂练习
1.(河北·中考)如图,在 △ABC中,D是BC延长线上一点, ∠B = 40°,∠ACD = 120°, 则∠A等于( C ) A.60° B.70° C.80° D.90° 【解析】根据三角形外角的性质可得,∠ACD =∠B+∠A, 所以∠A=∠ACD -∠B= 120°-40°= 80°.
第七章 平行线的证明
7.5 三角形内角和定理
第2课时 三角形的外角
学习目标
1.了解并掌握三角形的外角的定义.(重点) 2.掌握三角形内角和定理的两个推l论,利用这两个推论 进行简单的证明和计算.(难点)
导入新课
问题:在一个三角形花坛的外围走一圈,在每一个拐弯的 地方都转了一个角度(∠1,∠2,∠3),那么回到原来 位置时(方向与出发时相同),一共转了多少度?
2.如图,AB∥CD,则下列说法正确的是( C )
A.∠3=2∠1+∠2 B.∠3=2∠1-∠2 C.∠3=∠1+∠2 D.∠3=180°-∠1-∠2

八年级数学上册 7.5.1 三角形内角和定理教案 (新版)北师大版-(新版)北师大版初中八年级上册数

八年级数学上册 7.5.1 三角形内角和定理教案 (新版)北师大版-(新版)北师大版初中八年级上册数

课题:三角形内角和定理教学目标:1.掌握“三角形内角和定理”,理解三角形内角和定理的证明方法及证明过程.2.灵活运用三角形内角和定理解决相关问题.3.通过猜想、推理等数学活动,探究三角形内角和定理的证明思路和过程,初步体会辅助线在证明中的作用.教学重点与难点:重点:三角形内角和定理及其证明.难点:三角形内角和定理的证明及灵活应用解决相关问题.课前准备:多媒体课件、三角形纸板等 .一、创设情境,复习引入问题1:平行线的性质?问题2:证明一个命题有哪些步骤?问题3: 关于三角形的知识,你都知道哪些呢?问题4:如图,按规定,一块模板中AB、CD的延长线应相交成85°角.因交点不在板上,不便测量,工人师傅连接AC,测得∠BAC=32°,∠DCA=65°,此时AB、C D的延长线相交所成的角是不是符合规定?为什么?处理方式:教师出示题目,学生回答问题,问题的设置不仅起到复习的目的,也为新课的引入做了铺垫.预设学生回答.1.两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角相等.2.证明一个命题的一般步骤:(1)分清命题的条件和结论,根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.3.三角形两边之和大于第三边;三角形具有稳定性;三角形按角分为直角三角形,锐角三角形和钝角三角形;三角形按边分为不等边三角形、等边三角形和等腰三角形;三角形三个内角和为180°......4.不符合规定.延长AB、CD交于点O,∵△AOC中,∠BAC=32°,∠DCA=65°,∴∠AOC=180°-∠BAC-∠DCA=180°-32°-65°=83°<80°,∴模板不符合规定.师导语:三角形的内角和从小学就开始学习,七年级又有了新的认识,这一节课我们将进一步通过动手操作、观察、合作、交流探究等方法来验证这一定理,并通过这一定理来解决有关问题.设计意图:设置问题情景,与学生前面所学知识紧密相连,在教学过程设计上从学生熟悉的知识创设情境,让学生简单地对三角形内角和的知识加以回忆,激发学生探究三角形内角和的兴趣.二、情境再现,探究新知(一)探索三角形内角和等于180°我们知道,三角形内角和等于180°.1.你还记得这个结论的探索过程吗?2.如图,如果我们只把∠A移到∠1的位置,你能说明这个结论吗?如果不移动∠A,那么你还有什么方法可以达到同样的效果?处理方式:对于第一个问题教师引导学生可以用量角器测量,用准备好的三角形纸片或三角形纸板进行折叠或剪拼,完成后小组讨论并展示结果.对于第二个问题,教师结合学生的完成情况,让学生代表说出结论和思路,针对学生的回答教师给予肯定和补充.预设学生回答:1.(1)用测量的方法:由于误差原因,有时可能不是180°.(2)用折纸的方法:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行,然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合,最后得图示的结果.(3)用剪拼(撕纸)的方法:剪三个角,拼成一个平角;剪两个角,也是拼成一个平角;剪一个角,构造平行线,利用平行线判定和性质说明.2.构造平行线,可得同样效果.设计意图:在回忆中学习,在学习中探索,在探索中验证,通过学生亲身经历的探索活动,让学生进一步理解验证三角形内角和等于180°,不仅调动小组愉快的合作学习,也激发学生的学习兴趣.(二)证明三角形内角和等于180°根据前面给出的基本事实和定理,你能用自己的语言说说“三角形内角和等于180°”这一结论的证明思路吗?处理方式:结合探索三角形内角和,引导学生小组完成问题,学生发言后教师总结并板书证明过程及三角形内角和定理.已知:如图,△ABC.求证:∠A+∠B+∠C=180°。

初中数学角的大小比较(含答案)

初中数学角的大小比较(含答案)

7.5 角的大小比较课内练习A组1.下列语句中,正确的是()(A)小于钝角的角是锐角;(B)大于直角的角是钝角(C)小于直角的角是锐角;(D)大于锐角的角是直角或钝角2.钝角减去锐角所得的差是()(A)锐角(B)直角(C)钝角(D)都有可能3.已知∠A=50°24′,∠B=50.24°,∠C=50°14′24″,那么下列各式正确的是()(A)∠A>∠B>∠C (B)∠A>∠B=∠C(C)∠B>∠C>∠A (D)∠B=∠C>∠A4.根据图1,完成下列填空:(1)∠BOD=∠BOC+_______;∠AOC=•______+•_______;•∠AOB=•______+•_____+______;∠AOD+∠BOC=_______-______;(2)若∠AOC=90°,∠BOC=30°,则∠AOB=________.(1) (2) (3)5.如图2,∠AOB和∠COD都是直角,则∠AOD+∠BOC=________.6.如图3,∠AOC=50°,∠BOD=40•°,•∠AOD=•60•°,•求∠1=•_____,•∠2=_______,∠3=______.7.读题画图并按题目要求解答:已知∠AOB的外部有∠BOC,OM,ON分别是∠AOB和∠BOC 的平分线,若∠MON=75°,求∠AOC的度数.8.如图,直线AB,CD相交于点O,OB平分∠DOE.如果∠COE=80°,求∠EOB•与∠AOC的度数.9.已知两个角有公共顶点和一条公共边,且一个角为130°,另一个角为40°,那么这两个角的另一条边所成的角为几度?并画图说明.B组10.下列说法,错误..的个数是()①直角都相等②直角大于任何锐角③钝角大于直角④大于直角的角是钝角(A)3个(B)2个(C)1个(D)0个11.OC在∠AOB的内部,下列给出的条件中不能得到OC为∠AOB的平分线的是()(A)∠AOC=12∠BOA (B)∠AOB=2∠BOC(C)∠AOC+∠COB=∠AOB (D)∠AOC=∠BOC12.如图4,射线OC,OD把∠AOB三等分,且∠AOC=10°,•则图中所有角的度数和是()(A)30°(B)90°(C)130°(D)100°(4) (5) (6)13.如图5,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF=60°,则∠DAE=()(A)15°(B)30°(C)45°(D)60°14.若∠AOB=50°,∠BOC=40°,则∠AOC=_____.15.如图6,已知∠AOB=∠BOC=∠COD=∠DOE=30°,图中相加得180•°的两个角共有_________对.16.如图,∠AOB=30°,∠AOC=60°,∠AOD=90°,∠AOE=120°.试问图中哪条射线是哪一个角的角平分线?17.如图,∠AOB ,∠COD 都是直角.(1)图中共有______个角,其中锐角有______个,钝角有______个;(2)比较∠AOC 与∠BOD 的大小.18.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,且∠AOB=130°.(1)求∠COE 是多少度;(2)如果∠COD=20°,求∠BOE 的度数.课外练习A 组1.一条射线绕它的端点先按逆时针旋转75.5°,再按顺序时针方向旋转15•°30′,则射线后来位置与原来位置所成角的度数是( )(A )90.8° (B )90°35′ (C )60° (D )60.2°2.已知∠AOB=150°,OC 平分∠AOB ,OD 在∠AOB 的内部,且∠AOD=13∠AOB ,则∠COD=( )(A )15° (B )25° (C )35° (D )45°3.点P 在∠MAN 的平面上,现有等式∠PAM=12∠MAN ,∠PAN=12∠MAN ,∠PAM=∠PAN ,•∠MAN=2∠NAP ,其中能表示AP 是角平分线的等式有( )(A )1个 (B )2个 (C )3个 (D )4个4.如图7,∠AOC=∠BOD=90°,下列结论中正确的个数是( )①∠AOB=∠COD ; ②∠AOD=3∠BOC ; ③∠AOD+∠BOC=∠AOC+∠BOD(A )0个 (B )1个 (C )2个 (D )3个(7) (8) (9)5.若∠AOB=75°,∠BOC=60°,OM 平分∠AOB ,ON 平分∠BOC ,则∠MON=_______.6.如图8,在2×2的方格中,连结AB ,AC ,AD ,则∠2=______;∠1+•∠2+•∠3=________. B 组7.已知∠AOB=80°,过O 作射线OC (不同于OA ,OB ),满足∠AOC=35∠BOC ,求∠AOC•的大小.8.如图9所示,将书页斜折过去,使顶角A 落在A ′处,BC 为折痕,然后把BE 边折过去,使之与A ′B 边重合,折痕为BD ,那么两折痕BC ,BD 间的夹角是多少度?9.(1)利用一副三角尺的拼合,分别画出75°,120°,135°,150°的角;(2)利用一副三角形,你能画出几个不同的角(小于180°)?分别是几度的角?•用一副三角尺所画的这些角的大小有什么规律?7.5 角的大小比较答案:课内练习:1.C 2.D 3.B4.(1)∠DOC ∠AOD ∠DOC ∠AOD ∠DOC • •∠COB ∠AOB ∠DOC (2)120°5.180° 6.10° 30° 20° 7.图略,•∠AOC=150°8.∠BOE=50°,∠AOC=50°9.90°或170°图略 10.C 11.C 12.D 13.A 14.90°或10° 15.4 16.OB平分∠AOC,OD平分∠EOC,OC平分∠AOE和∠DOB •17.(1)6,3,1 (2)相等 18.(1)65°(2)45°课外练习:1.C 2.B 3.A 4.C 5.7.5°或67.5°6.45°,135° 7.30°或120° 8.90°9.(1)画图略(2)11个,15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°规律:15°的倍数.。

数学 7.5 三角形内角和定理-课件

数学 7.5 三角形内角和定理-课件
A.360°B.250°
C.180° D.140°
9.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2等于( B )
A.90° B.100°
C.130° D.180°
第七章
7.5 三角形内角和定理
知识要点基础练
综合能力提升练
拓展探究突破练
-6-
10.如图是由线段AB,CD,DF,BF,CA组成的平面图形.若∠D=28°,则∠A+∠B+∠C+∠F的度数
C,∠1=30°,∠B=60°,∠C=20°,则∠2= 50° ,∠A= 70° .
-3-
第七章
7.5 三角形内角和定理
知识要点基础练
综合能力提升练
拓展探究突破练
6.( 改编 )如图,∠1,∠2,∠3之间的大小关系为 ∠2<∠3<∠1 ( 用“<”连接 ).
-4-
第七章
7.5 三角形内角和定理
知识要点基础练
∴∠AFC=180°-∠FAC-∠FCA=120°,
∴∠EFD=∠AFC=120°.
( 2 )FE=FD.
在 AC 上截取 AG=AE,连接 FG.
∵AD 是∠BAC 的平分线,∴∠BAD=∠DAC,
又∵AF=AF,∴△AEF≌△AGF( SAS ),
∴FE=FG,∠AFE=∠AFG=60°,
∴∠CFG=60°.
于点F.
( 1 )求∠EFD的度数;
( 2 )判断FE与FD之间的数量关系,并证明你的结论.
第七章
7.5 三角形内角和定理
知识要点基础练
综合能力提升练
解:( 1 )∵△ABC 中,∠ACB=90°,∠B=60°,

角的概念推广教案

角的概念推广教案

角的概念推广优秀教案第一章:角的引入1.1 教学目标让学生了解角的定义和基本性质。

能够识别和比较不同类型的角。

能够用角度来描述角的大小。

1.2 教学内容角的定义:从一点引出两条射线所组成的图形。

角的性质:角的内部是两条射线的公共部分,外部是不共线的两条射线的夹角。

角的分类:锐角、直角、钝角、平角、周角。

1.3 教学方法通过实物演示和图形展示,引导学生直观地理解角的概念。

利用几何模型和练习题,让学生亲手操作,加深对角的认识。

1.4 教学资源角的概念引入PPT演示文稿。

实物模型和图片,如剪刀、三角板等。

1.5 教学步骤1.5.1 导入:利用实物或图片,引导学生观察和描述角的存在。

1.5.2 新课引入:讲解角的定义和性质,通过PPT演示文稿和实物模型进行辅助说明。

1.5.3 实例分析:展示不同类型的角,让学生区分和比较它们的大小。

1.5.4 练习巩固:提供一些练习题,让学生运用角的概念进行解答。

1.6 教学评价通过课堂提问和练习题的正确与否,评估学生对角的概念的理解程度。

第二章:角的大小比较2.1 教学目标让学生能够比较不同角的大小。

学会使用量角器测量角的大小。

2.2 教学内容角的大小比较:通过观察角的内部或外部,比较角的大小。

量角器的使用:量角器的结构和如何测量角的大小。

2.3 教学方法通过实际操作量角器,让学生学会正确测量角的大小。

提供练习题,让学生运用比较角大小的方法。

2.4 教学资源量角器演示文稿和实物量角器。

练习题和答案。

2.5 教学步骤2.5.1 导入:复习上一章的内容,引导学生回顾角的概念。

2.5.2 新课引入:讲解如何比较角的大小,通过PPT演示文稿和实物量角器进行辅助说明。

2.5.3 实例分析:提供一些角的大小比较实例,让学生实践和理解比较方法。

2.5.4 练习巩固:提供一些练习题,让学生运用角的大小比较方法进行解答。

2.6 教学评价通过课堂提问和练习题的正确与否,评估学生对角的大小比较的理解程度。

苏教版七年级上册数学[角(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[角(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习角(基础)知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的换算及运算;2. 掌握借助三角尺或量角器画角的方法,并熟悉角大小的比较方法;3. 掌握角的和、差、倍、分关系,并会进行有关计算;5. 掌握余角、补角及对顶角的概念及性质,会用其性质进行有关计算;6.了解方位角、钟表上有关角,并能解决一些实际问题.【要点梳理】要点一、角的概念及表示1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图1 图2(2)定义二:角也可以看成是一条射线绕着它的端点旋转到另一个位置所成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:在表示角时,要在靠近角的顶点处加上弧线,再注上相应数字或字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角的比较与运算1.角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.2.角的比较:角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.3.角的和、差关系如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点三、余角、补角、对顶角1.余角与补角(1)定义:一般地,如果两个角的和是一个直角,那么这两个角互为余角,简称互余,其中一个角叫做另一个角的余角.类似地,如果两个角的和是一个平角,那么这两个角互为补角,简称互补,其中一个角叫做另一个角的补角.(2)性质:同角(等角)的余角相等.同角(等角)的补角相等.要点诠释:(1)互余互补指的是两个角的数量关系,互余、互补的两个角只与它们的和有关,而与它们的位置无关.(2)一个锐角的补角比它的余角大90°.2.对顶角(1)定义:由两条直线相交构成的四个角中,有公共顶点没有公共边(相对)的两个角,互为对顶角.要点诠释:(1)对顶角满足的条件:①相等的两个角;②有公共顶点且一角的两边是另一角两边的反向延长线.(2)只有两条直线相交时,才能产生对顶角.两条直线相交时,除了产生对顶角外,还会产生邻补角,邻补角满足的条件:①有公共顶点;②有一条公共边,另一边互为反向延长线. (2)性质:对顶角相等.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示;(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”;(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向;(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念及表示1.下列语句正确的是 ( )A.两条直线相交,组成的图形叫做角.B.两条具有公共端点的线段组成的图形叫做角.C.两条具有公共端点的射线组成的图形叫做角.D.过同一点的两条射线组成的图形叫做角.【答案】C【解析】根据角的定义判断【总结升华】角不能仅仅看作是有公共端点的两条射线,角的两种描述中都隐含了组成角的一个重要元素,即两条射线间的相对位置关系,这是角与“有公共端点的两条射线”的重要区别.举一反三:【变式】写出图中(1)能用一个字母表示的角;(2)以B为顶点的角; (3)图中共有几个角(小于180°).【答案】解:(1)能用一个字母表示的角∠A、∠C.(2)以B为顶点的角∠ABE、∠ABC、∠CBE.(3)图中共有7个角.类型二、角度制的换算2. 把25.72°用度、分、秒表示; (2)把45°12′30″化成度(精确到百分位).【思路点拨】第(1)题中25.72°中含有两部分25°和0.72°,只要把0.72°化成分、秒即可.第(2)题中,45°12′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.【答案与解析】解:(1)0.72°=0.72×60′=43.2′,0.2′=0.2×60″=12″,所以25.72°=25°43′12″.(2)130300.560'⎛⎫'''=⨯=⎪⎝⎭,112.512.50.2160⎛⎫'=⨯ ⎪⎝⎭°≈°所以45°12′30″≈45.21°.【总结升华】无论由高级单位向低级化还是由低级单位向高级化,都必须逐级进行,“越级”化单位容易出错.举一反三:【变式】 (1)把26.29°转化为度、分、秒表示的形式;(2)把33°24′36″转化成度表示的形式.【答案】 (1)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′+24″=26°17′24″(2)33°24′36″=33°+24′+36×160'⎛⎫⎪⎝⎭=33°+24′+0.6′=33°+24.6′=33°+24.6×160⎛⎫⎪⎝⎭°=33.41°【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后再进行计算.类型三、角的比较与运算3.不用量角器,比较图1和图2中角的大小.(用“>”连接)【思路点拨】图1中两角∠α、∠β均为锐角,因此,在不能测量的情形下,我们可以将图中的∠α向∠β平移,让∠α与∠β始边重合,观察终边的位置来比较角的大小.图2中的三个角按角的分类,∠1为锐角,∠2为直角,∠3为钝角,因此按照各自的范围就可以将它们的大小比较出来.【答案与解析】解:(1)如图所示,将∠α平移使∠α的始边与∠β的始边重合,发现∠α落在∠β内部,因此∠β>∠α.(2)由图可知∠1是锐角,∠1<90°,∠2是直角,即∠2=90°,∠3是钝角,即90°<∠3<180°,因此∠3>∠2>∠1.【总结升华】本例给出的两题是在不用量角器测量角的情况下比较角的大小,一种方法是叠合比较法,另外一种方法则是根据角的分类,由图形观察角的不同分类,按照常见的锐角<直角<钝角<平角<周角来比较大小.举一反三:【变式】已知∠AOB(如图所示),画一个角等于这个角.【答案】作法:如图,(1)以点O为圆心,适当长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧l,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,交弧l于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.4. 如图所示,已知OC平分∠BOD,且∠BOC=20°,OB是∠AOD的平分线,求∠AOD的度数.【答案与解析】解:因为OC平分∠BOD,且∠BOC=20°,所以∠BOD=2∠BOC=2×20°=40°.又因为OB是∠AOD的平分线,所以∠AOD=2∠BOD=2×40°=80°.【总结升华】应用角的平分线的定义时根据两点:若OB是∠AOC的平分线,则①∠AOB=∠BOC=12∠AOC;②∠AOC=2∠AOB=2∠BOC,在解题时要学会灵活应用.【角 397364 角的有关计算例3】举一反三:【变式】已知:如图,OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOC=80︒,求:∠MON.【答案】解:∵OM平分∠AOB,ON平分∠COB,∴∠MOB=12∠AOB,∠BON=12∠BOC.(角平分线的定义)∴∠MON=∠MOB+∠BON=12∠AOB+12∠BOC=12(∠AOB+∠BOC)=12∠AOC=12×80︒=40︒ .即∠MON=40︒.类型四、余角、补角、对顶角5.(2016春•曹县校级月考)一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.【思路点拨】这类题目要先设出这个角的度数.设这个角为x°,分别写出它的余角和补角,根据题意写出等量关系,解之即可得到这个角的度数.【答案与解析】解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180﹣x=2(90﹣x)+40,解得x=40.答:这个角的度数是40°.【总结升华】本题考查了余角和补角,是基础题,列出方程是解题的关键.举一反三:【变式】(2015•崇左)下列各图中,∠1与∠2互为余角的是()A. B.C.D.【答案】C.解:四个选项中,只有选项C满足∠1+∠2=90°,即选项C中,∠1与∠2互为余角.类型五、方位角及钟表上有关角问题6.(2015•浦东新区三模)已知小岛A位于基地O的东南方向,货船B位于基地O的北偏东50°方向,那么∠AOB的度数等于.【答案】85°.【解析】解:如图:∵∠2=50°,∴∠3=40°,∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°,故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A,B的方位,注意东南方向是45度是解答此题的关键.7.计算: 4时15分时针与分针的夹角.【答案与解析】解法一:如下图,设4时15分时针与分针的夹角为∠α(注:夹角指小于180°的角),时针转过的角度为:30°×4+0.5°×15,分针转过的角度为:6°×15,所以∠α=30°×4+0.5°×15-6°×15=37.5°.解法二:如上图,∠AOC=30°×1=30°,∠BOC=0.5°×15=7.5°.所以∠AOB=37.5°.即4时15分时针与分针的夹角为37.5°.【总结升华】求钟表中时针与分针的夹角有两种方法:第一种方法利用时针与分针的每分钟转速求解,比如解法一;第二种方法直接根据图形求夹角,如解法二.。

11# 7.5 多边形的内角和

11#  7.5  多边形的内角和
60度 90度 108度 60度,90度,108度,
菱形
120度 135度 120度,135度
矩形
正多边形
内角和 边数
每一个内角的度数
因为正多边形的每个角相等 因为正多边形的每个角相等
正多边形的每 个内角的度数为
(n − 2) ×180 n
0
1.如果一个多边形的每一个内角 1.如果一个多边形的每一个内角 等于120 120° 等于120°,则这个多边形的边数 是_____ 练.如果一个多边形的每一个外 角等于30 30° 角等于30°,则这个多边形的边 数是_____ 数是_____
B A
D
C
我们已经知道一个三角形的内角和等于 180° 那么四边形、五边形、六边形\ 180°,那么四边形、五边形、六边形\n 边形的内角和呢? 边形的内角和呢?
能否将四边形、 能否将四边形、 五边形、 五边形、六边形 及n边形的内角和 转化为三角形的 内角和呢? 内角和呢?
数学的基本思想: 数学的基本思想:
2、已知四边形的四个内角的度数 的比为1 的比为1:2:3:4,求这个四边形 最大的角的度数. 最大的角的度数.
3、已知两个多边形的内角和为 1440° 1440° , 且两多边形的边数之比 为 1︰3 , 求它们的边数分别是多 少?
解:设它们的边数分别是x和3X 由题意得: 由题意得: (x-2)·180+(3X -2)·180=1440 解之得 x =3 3X =9
2、如果一个多边形的每一个内 角都相等, 角都相等,且每一个内角的度数 是和它相邻的外角的度数的3 是和它相邻的外角的度数的3倍, 求这个多边形的边数。 求这个多边形的边数。
五边形从一个顶点出发共有 ____条对角线 条对角线, 边形、 ____条对角线,六边形、n边形 呢? 有没有什么

7.5角的大小比较

7.5角的大小比较

练一练 P书 180---181
分类 思想

★★
1. 已知∠AOB=145°和∠AOC=25° 则∠B任意一条射线, OD平分∠AOC,OE平分∠BOC。 问∠DOE与∠AOB有什么关系?
B
E C D A O
练一练
★★
3. 如图,∠AOB=64°, 如图, ° OA1平分∠AOB, 平分∠ , OA2平分∠AOA1, 平分∠ OA3平分∠AOA2, 平分∠ OA4平分∠AOA3, 平分∠ O . 则∠AOA4= A4A3 A A2 A1
学习目标: 学习目标:
会用叠合法和度量法比较两个角的大小。 1. 会用叠合法和度量法比较两个角的大小。 2.了解角平分线的概念,并会平分一个角。 2.了解角平分线的概念,并会平分一个角。 了解角平分线的概念 3.了解角的和差的意义 并进行角的简单计算。 了解角的和差的意义, 3.了解角的和差的意义,并进行角的简单计算。
重点和难点: 重点和难点:
重点:角的大小比较。 重点:角的大小比较。 难点: 难点:角的和差计算
合作学习
1.∠α = 12.30°与∠β = 12°30′ ∠ ° ° 这两个角一样大吗?为什么? 这两个角一样大吗?为什么? 2. 拿出一个三角形纸片, 拿出一个三角形纸片, 怎样比较各角的大小? 怎样比较各角的大小? 3.请拿出一副三角板,看看一共有几个角? 请拿出一副三角板,看看一共有几个角? 请拿出一副三角板 你能比较它们的大小吗?你用什么方法? 你能比较它们的大小吗?你用什么方法?
B C O A
角的平分线:从一个角的顶点引出的一条射线, 角的平分线:从一个角的顶点引出的一条射线, 把这个角分成两个相等的角。 把这个角分成两个相等的角。 这条射线叫这个角的平分线 射线叫这个角的平分线。 这条射线叫这个角的平分线。

7.5角的大小比较

7.5角的大小比较

1
2
3
4
角 的 分 类

等于90°的角是直角。
小于直角的角是锐角。
大于直角而小于平角的角是钝角。
例1 根据图解下列问题:
(1)比较∠AOB, ∠ AOC, ∠ AOD, ∠ AOE
的大小; (2)找出图中的直角、锐角和钝角。 (3)如果∠AOB=12.30° ∠ DOE=12°30″这两个角 的大小相等吗?
欢迎 飞
天 高 任 鸟
遨游

海 阔 凭 鱼
数学 海洋!
角与角的大小比较
角的大小比较
①叠合法
O

B
D
A
E
C

E C
D
D E C
∠BOA<∠DEC ∠BOA=∠DEC ∠BOA>∠DEC
②度量法
3、下图一组角,其大小顺序正确的是( D ) A, ∠1< ∠2< ∠3< ∠4 B, ∠1< ∠4< ∠2< ∠3 C, ∠1< ∠4< ∠3< ∠2 D, ∠1< ∠3< ∠2<∠4
A B C D
O E
B
C O A
从一个角的顶点引出的一条射线,把这 个角分成两个相等的角,这条射线叫做这个 角的平分线
例2 如图,∠ABC=90°, ∠CBD=30 °, BP平分∠ ABD。
求∠ABP的度数。 D
C
P
B
A
想一想
利用一副三角板,你能 画出哪些度数的角?
课本P167课内练习2
COB 1A0 B AOC _____ 2AOD AOB DOBAOCCOD ____ ____ 3AOC BOD AOB _____ COD

苏科版数学七年级下7.5多边形的内角和与外角和同步练习含详细答案

苏科版数学七年级下7.5多边形的内角和与外角和同步练习含详细答案

7.5 多边形的内角和与外角和一.选择题(共15小题)1.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35°B.40°C.45°D.50°2.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°3.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40°B.45°C.50°D.60°5.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.706.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°8.正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.139.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°10.六边形的内角和是()A.540°B.720°C.900° D.360°11.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.1112.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.6 B.7 C.8 D.913.内角和为540°的多边形是()A. B.C.D.14.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720° D.900°15.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9二.填空题(共11小题)16.如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=.17.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.18.一个多边形的每个外角都是60°,则这个多边形边数为.19.若一个正多边形的一个外角等于18°,则这个正多边形的边数是.20.若n边形内角和为900°,则边数n=.21.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=.22.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=.23.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为°.24.若多边形的每一个内角均为135°,则这个多边形的边数为.25.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.26.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=°.三.解答题(共4小题)27.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.28.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:.29.平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD 是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.30.阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.图1给出了四边形的具体分割方法,分别将四边形分割成了2个,3个,4个小三角形.请你按照上述方法将图2中的六边形进行分割,并写出得到的小三角形的个数.试把这一结论推广至n边形.参考答案一.选择题(共15小题)1.(•贵港)在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35°B.40°C.45°D.50°【分析】在△ABC中,根据三角形内角和是180度来求∠C的度数.【解答】解:∵三角形的内角和是180°,又∠A=95°,∠B=40°∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.【点评】本题考查了三角形内角和定理,利用三角形内角和定理:三角形内角和是180°是解答此题的关键.2.(•乐山)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A 即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.3.(•南通)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.【点评】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.4.(•台湾)如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40°B.45°C.50°D.60°【分析】延长BC交OD与点M,根据多边形的外角和为360°可得出∠OBC+∠MCD+∠CDM=140°,再根据四边形的内角和为360°即可得出结论.【解答】解:延长BC交OD与点M,如图所示.∵多边形的外角和为360°,∴∠OBC+∠MCD+∠CDM=360°﹣220°=140°.∵四边形的内角和为360°,∴∠BOD+∠OBC+180°+∠MCD+∠CDM=360°,∴∠BOD=40°.故选A.【点评】本题考查了多边形的内角与外角以及角的计算,解题的关键是能够熟练的运用多边形的外角和为360°来解决问题.本题属于基础题,难度不大,解决该题型题目时,利用多边形的外角和与内角和定理,通过角的计算求出角的角度即可.5.(•广安)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70【分析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n 的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论.【解答】解:∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10.这个正n边形的所有对角线的条数是:==35.故选C.【点评】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n 边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键.6.(•十堰)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.7.(2016•临沂)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,故这个正多边形的每一个外角等于:=72°.故选C.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.8.(2016•衡阳)正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.13【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数是解题关键.9.(2016•宜昌)设四边形的内角和等于a,五边形的外角和等于b,则a与b 的关系是()A.a>b B.a=b C.a<b D.b=a+180°【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【解答】解:∵四边形的内角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.10.(2016•长沙)六边形的内角和是()A.540°B.720°C.900° D.360°【分析】利用多边形的内角和定理计算即可得到结果.【解答】解:根据题意得:(6﹣2)×180°=720°,故选B.【点评】此题考查了多边形内角与外角,熟练掌握多边形内角和定理是解本题的关键.11.(2016•三明)已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.11【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10,所以这个正多边形是正十边形.故选C.【点评】本题主要考查了多边形的外角和定理.是需要识记的内容.12.(2016•舟山)已知一个正多边形的内角是140°,则这个正多边形的边数是()A.6 B.7 C.8 D.9【分析】首先根据一个正多边形的内角是140°,求出每个外角的度数是多少;然后根据外角和定理,求出这个正多边形的边数是多少即可.【解答】解:360°÷(180°﹣140°)=360°÷40°=9.答:这个正多边形的边数是9.故选:D.【点评】此题主要考查了多边形的内角与外角,要熟练掌握,解答此题的关键是要明确多边形的外角和定理.13.(2016•北京)内角和为540°的多边形是()A. B.C.D.【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:C.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.14.(2016•益阳)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720° D.900°【分析】根据题意列出可能情况,再分别根据多边形的内角和定理进行解答即可.【解答】解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和为:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:360°+360°=720°,④将矩形沿一组邻边剪开,得到一个三角形和一个五边形,其内角和为:180°+540°=720°;故选:D.【点评】本题考查了多边形的内角与外角,能够得出一个矩形截一刀后得到的图形有三种情形,是解决本题的关键.15.(2016•凉山州)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选:D.【点评】本题考查了多边形的内角和定理,一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变.二.填空题(共11小题)16.(2016•大庆)如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=110°.【分析】由D点是∠ABC和∠ACB角平分线的交点可推出∠DBC+∠DCB=70°,再利用三角形内角和定理即可求出∠BDC的度数.【解答】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=∠ABC,∠BCD=∠ACD=∠ACB,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°﹣70°=110°,故答案为:110°.【点评】此题主要考查学生对角平分线性质,三角形内角和定理,熟记三角形内角和定理是解决问题的关键.17.(2016•西宁)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.18.(2016•常州)一个多边形的每个外角都是60°,则这个多边形边数为6.【分析】利用外角和除以外角的度数即可得到边数.【解答】解:360÷60=6.故这个多边形边数为6.故答案为:6.【点评】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360°.19.(2016•梧州)若一个正多边形的一个外角等于18°,则这个正多边形的边数是20.【分析】根据正多边形的外角和以及一个外角的度数,求得边数.【解答】解:正多边形的一个外角等于18°,且外角和为360°,∴这个正多边形的边数是:360°÷18°=20.故答案为:20.【点评】本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.20.(2016•自贡)若n边形内角和为900°,则边数n=7.【分析】由n边形的内角和为:180°(n﹣2),即可得方程180(n﹣2)=900,解此方程即可求得答案.【解答】解:根据题意得:180(n﹣2)=900,解得:n=7.故答案为:7.【点评】此题考查了多边形内角和公式.此题比较简单,注意方程思想的应用是解此题的关键.21.(2016•资阳)如图,AC是正五边形ABCDE的一条对角线,则∠ACB=36°.【分析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【解答】解:∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为:36°.【点评】本题考查了正五边形的性质、等腰三角形的性质、三角形内角和定理;熟练掌握正五边形的性质,由等腰三角形的性质和三角形内角和定理求出∠ACB 是解决问题的关键.22.(2016•连云港)如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10= 75°.【分析】如图,作辅助线,首先证得=⊙O的周长,进而求得∠A3OA10= =150°,运用圆周角定理问题即可解决.【解答】解:设该正十二边形的中心为O,如图,连接A10O和A3O,由题意知,=⊙O的周长,∴∠A3OA10==150°,∴∠A3A7A10=75°,故答案为:75°.【点评】此题主要考查了正多边形及其外接圆的性质及圆周角定理,作出恰当的辅助线,灵活运用有关定理来分析是解答此题的关键.23.(2016•宁德)如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为108°.【分析】所求角即为正五边形的内角,利用多边形的内角和定理求出即可.【解答】解:∵正五边形的内角和为(5﹣2)×180°=540°,∴∠1=540°÷5=108°,故答案为:108【点评】此题考查了多边形的内角和外角,熟练掌握多边形的内角和定理是解本题的关键.24.(2016•扬州)若多边形的每一个内角均为135°,则这个多边形的边数为8.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.25.(2015•常德)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=70°.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【点评】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.26.(2016•河北)如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A= 76°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=6°.【分析】根据入射角等于反射角得出∠1=∠2=90°﹣7°=83°,再由∠1是△AA1O的外角即可得∠A度数;如图,当MN⊥OA时,光线沿原路返回,分别根据入射角等于反射角和外角性质求出∠5、∠9的度数,从而得出与∠A具有相同位置的角的度数变化规律,即可解决问题.【解答】解:∵A1A2⊥AO,∠AOB=7°,∴∠1=∠2=90°﹣7°=83°,∴∠A=∠1﹣∠AOB=76°,如图:当MN⊥OA时,光线沿原路返回,∴∠4=∠3=90°﹣7°=83°,∴∠6=∠5=∠4﹣∠AOB=83°﹣7°=76°=90°﹣14°,∴∠8=∠7=∠6﹣∠AOB=76°﹣7°=69°,∴∠9=∠8﹣∠AOB=69°﹣7°=62°=90°﹣2×14°,由以上规律可知,∠A=90°﹣n•14°,当n=6时,∠A取得最小值,最下度数为6°,故答案为:76,6.【点评】本题主要考查直角三角形的性质和三角形的外角性质及入射角等于反射角,根据三角形的外角性质及入射角等于反射角得出与∠A具有相同位置的角的度数变化规律是解题的关键.三.解答题(共4小题)27.(2016•河北)已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.【分析】(1)根据多边形内角和公式可得n边形的内角和是180°的倍数,依此即可判断,再根据多边形内角和公式即可求出边数n;(2)根据等量关系:若n边形变为(n+x)边形,内角和增加了360°,依此列出方程,解方程即可确定x.【解答】解:(1)∵360°÷180°=2,630°÷180°=3…90°,∴甲的说法对,乙的说法不对,360°÷180°+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x﹣2)×180°﹣(n﹣2)×180°=360°,解得x=2.故x的值是2.【点评】考查了多边形内角与外角,此题需要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.28.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:∠BOC=90°﹣∠A.【分析】(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.【解答】解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.【点评】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.29.平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD 是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.【分析】(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据三角形的外角性质,把角转化到四边形中再求解.【解答】解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)连接EG并延长,根据三角形的外角性质,∠AGB=∠A+∠B+∠E,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题是信息给予题,利用平行线的性质和三角形的一个外角等于和它不相邻的两个内角的和解答.30.阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.图1给出了四边形的具体分割方法,分别将四边形分割成了2个,3个,4个小三角形.请你按照上述方法将图2中的六边形进行分割,并写出得到的小三角形的个数.试把这一结论推广至n边形.【分析】图(一)中,(1)是作一个顶点出发的所有对角线对其进行分割;(2)是连接多边形的其中一边上的一个点和各个顶点,对其进行分割;(3)是连接多边形内部的任意一点和多边形的各个顶点,对其进行分割.根据上述方法分别进行分割,可以发现所分割成的三角形的个数分别是4个,5个,6个.根据这样的两个特殊图形,不难发现:第一种分割法,分割成的三角形的个数比边数少2,第二种分割法分割成的三角形的个数比边数少1,第三种分割法分割成的三角形的个数等于多边形的边数.【解答】解:如图所示:。

7.5角的大小比较

7.5角的大小比较

>∠ ∠ ABC___∠ DEF
BA落在∠ BA落在∠ DEF的外部 落在 的外部
请观察下图中的一组角,如果要把他们分 请观察下图中的一组角 如果要把他们分 类,你将怎样分 你的分类标准是什么呢? 你将怎样分?你的分类标准是什么呢 你将怎样分 你的分类标准是什么呢
3 2 1
4
5
6
直角:
等于90° 的角. 等于90° 的角. ∠α
1
2
角有大小,角的大小与角两边张开的程度有关, 角有大小,角的大小与角两边张开的程度有关, 与角两边画出的长短没有关系. 与角两边画出的长短没有关系.
1、∠A与∠P哪个角较 怎样比较呢? 大?怎样比较呢?
观察下列两图,考虑该如何比较∠ 和 的大小? 观察下列两图 考虑该如何比较∠1和∠2的大小 考虑该如何比较 的大小
例2:如图,∠ABC=90°,∠CBD=30°,BP平分 :如图, ° ° 平分 的度数. ∠ABD. 求∠ABP的度数 的度数
C D
P
B
A
活动三: 活动三: (1)利用一副三角尺,直接能画出哪些度数的角? 利用一副三角尺,直接能画出哪些度数的角? (2)只用一副三角尺,你能直接画出这些角的平分线吗? 只用一副三角尺,你能直接画出这些角的平分线吗? 一副三角尺 (3)借助一副三角尺的组合,你能画出15°的角吗? 借助一副三角尺的组合,你能画出15°的角吗? 一副三角尺的组合 15 (4)借助一副三角尺的组合,你还能画出哪些度数的角? 借助一副三角尺的组合,你还能画出哪些度数的角? 一副三角尺的组合
C D
解: ∵ ∠ABC=60°,∠ABD=145° ° °
E
∴ ∠CBD= ∠ABD- ∠ABC = 145°- 60°=85° ° ° ° 平分∠ 又∵ BE平分∠ABC 平分

7.5 角的大小比较

7.5 角的大小比较

P A
量一量,比一比
请同学们同桌分别画两个角,然后交 换用量角器测量其度数,比较它们的 大小.
角的分类 直角:等于90度的角
90
锐角:小于直角的角 0 90 钝角:大于直角而小于平角的角
90 180
根据图解下列问题 (1)比较AOB,AOC,AOD,AOE
B
式子表示
O
C
1 OB 平分 AOC AOB COB AOC 2
填一填
求一求
ABC 90, CBD 30, BP
平分 ABD ,求 ABP 的度数
D C P
B
A
• 观察下图中的∠AOC,∠COB和∠AOB ,如何表 示它们的关系。
∠AOC+∠COB=∠AOB
B
OC
问:若AB边与PQ边重合表明什么?记作什么? 问:若AB边落在PQ边的外部又表明,记作什么?
注意:角的大小只与开口大小有关,与边的长短 无关,以及角的符号与小于号、大于号书写时的 区别.
方法二:测量法 小学我们学过用量角器测量一个角, 角的大小也可以按其度数比较,度数大的 角则大,度数小的则小.反之,角大度 数大,角小度数小. 注意:使用量角器应注意的问题.即三点: 对中;重合;读数. 如: A 45, P 60
小结
∠AOB-∠AOC=∠COB
∠AOB-∠COB=∠AOC

学生活动:观察一副三角板的角度特征, 讨论回答用三角板可以组合画出多少个不 同角度的角。
150、300、450、 600、750、900、 1050、1200、 1350、1500、 1750、1800……
(75º ) (15º ) 75º =30º +45º 15º =45º -30º

7.5三角形内角和定理的证明(教案)

7.5三角形内角和定理的证明(教案)
-掌握三角形内角和定理的证明方法:通过几何证明,让学生理解定理背后的逻辑推理过程。
举例:在解决三角形内角和问题时,教师应强调如何利用定理将三角形的内角和与180°联系起来,例如,在直角三角形中,明确两个锐角之和等于90°,从而间接得出三角形内角和为180°。
2.教学难点
-理解三角形内角和定理的普遍性:学生需要理解这个定理不仅适用于直角三角形,而且适用于所有类型的三角形。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形内角和定理的基本概念。三角形内角和定理指出,任意三角形的三个内角之和等于180°。这个定理是几何学中的基础,对于解决实际问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过测量不同类型的三角形的内角度数,验证三角形内角和定理的正确性,并探讨其在实际中的应用。
其次,在实践活动中,学生们分组讨论和实验操作的热情很高,这让我感到很高兴。但同时我也注意到,部分学生在操作过程中仍然存在一些误区,比如对三角形内角和定理的应用不够熟练。为此,我考虑在接下来的课程中,加强对学生实际操作能力的培养,让他们在动手实践中更好地掌握知识。
此外,今天的课堂讨论环节,学生们提出了许多有关三角形内角和定理在实际生活中应用的想法,这让我很惊喜。我觉得这是一个很好的教学反馈,说明学生们能够将所学知识联系到生活实际中。今后,我可以继续鼓励学生多思考、多提问,提高他们的问题解决能力。
然而,我也注意到,在小组讨论中,部分学生表现得较为沉默,可能是因为他们对知识点掌握得不够牢固,或者是对讨论主题不够感兴趣。为了提高这部分学生的参与度,我打算在接下来的教学中,更多地关注他们的需求,针对性地进行指导,激发他们的学习兴趣。
最后,今天的课程让我再次认识到,作为一名教师,要时刻关注学生的成长和进步,不断调整教学方法和策略。在今后的教学中,我将努力做好以下几点:

初一数学7.5多边形的内角和与外角和教案

初一数学7.5多边形的内角和与外角和教案

怀文中学2012—2013学年度第一学期教学设计初 一 数 学(7.5 多边形的内角和与多边形的外角和 第1课时)主备:陈尚高 审校:陈秀珍 日期:2013年2月28日教学目标:知识目标:1、知道三角形内角之间的关系,直角三角形的两个内角互余 2、知道三角形外角的意义以及外角和内角之间的关系 3、能运用相关结论进行有关的推理和计算;能力目标:通过观察、操作、想象、推理等活动,经历三角形的内角和等于180度 的过程。

体会说理的必要性教学重点: 1、探索三角形3个内角之间的关系以及三角形外角的性质 2、在使用有关结论的场合形成及时的反馈,理性思维的培养 教学难点: 1、探索三角形3个内角之间的关系以及三角形外角的性质 2、在使用有关结论的场合形成及时的反馈,理性思维的培养。

教学内容:一. 自主学习(导学部分)(一)创设情境,感悟三角形内角和等于1801:在小学里,学生就会用拼图的方法得出三角形内角和等于1800【设计说明:通过操作,使学生直观地感受三角形的三个内角之间的关系】 2:在△ABC 中,把∠A 撕下,然后把点A 与点C 重合在同一点,摆成如图所示的位置:【设计说明:根据内错角相等,两直线平行,可知a ∥b ,又由两直线平行,同旁内角互补,就可以得到∠A+∠B+∠C=18000】二.合作、探究、展示(二)探索规律,揭示三角形内角和等于1800议一议:如图7-33,3根木条相交成∠1,∠2,若木条a 与木条b 平行,则∠1+∠2=1800A B ab(2)1221(1)baC B A操作:把木条a 绕点A 转动,使它与木条b 相交于点C ,根据图(2),你能说明“三角形内角和等于1800”吗?【设计说明:本例合于章头图,设计目的在于经历 “特殊→一般”的思维辩证过程, 利用已知认识未知,找到事物之间的相关性。

深刻理解本课的结果】思维链接:我们也可以在顶点做平行线,从而把3个角拼在一起,构成平角。

7.4-7.5角与角的度量-角的大小比较

7.4-7.5角与角的度量-角的大小比较

17.4 角与角的度量自主学习一:预习书本161页到162做一做,并思考:角的表示方法有哪几种?并完成1.角的概念:角是由两条有公共 的 所组成的图形.这个公共 叫做这个角的 . 角也可以看成是由一条 绕着它的 旋转而成的图形.起始位置的射线叫做角的 ,终止位置的射线叫做角的 .【讲练互动】【例1】已知如图,图中小于平角的角共有几个角…………( ) A .9 B .12 C .10 D .13 【变式训练1】1. 如下图,图中共有_________个小于平角的角. 自主学习二:预习书本162页最后两段到163页例1上面,并思考:特殊叫有哪些?度分秒如何转换?自主学习三:预习书本163页例1到例3,完成书本164页课内练习。

【变式训练2】1、计算(结果用度表示):(1) 20º27′+35º54′; (2) 90º- 43º18′36″.2.计算(结果用度、分、秒表示):123.4º-60º36'36″.【同步测控】1. 下列说法中,正确的是………………………………………………………………( )A. 有公共端点的两条射线组成的图形叫做角B. 两条射线组成的图形叫做角C. 两条线段组成的图形叫做角D. 一条射线从一个位置移到另一个位置所形成的图形叫做角2. 下列四个图形中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的图形………( )7.5 角的大小比较自主学习一:预习书本165页到166做一做,并思考:角的大小比较方法有哪些?并完成 1.角的大小比较方法:角的大小比较方法有两种,它们是叠合法与 法.2.直角,锐角与钝角的概念:等于 度的角是直角;小于 的角是锐角;大于 而小于 的角是钝角.3.角平分线的概念:从一个角的 引出的一条 ,把这个角分成两个的角,这条射线叫做这个角的平分线.1. 一副三角板有6个角,则最小角的度数是 .2.平角的一半是 .3.已知OC 是∠AOB 的平分线,且∠AOB=48°,则∠AOC= 度. 自主学习二:预习书本166页例2并思考:哪些是已知的角,哪些是未知的角?并完成【例1】根据图形填空:(1) ∠AOB=∠AOC+ ;(2) ∠COB=∠COD - = - . (3) ∠AOB+∠COD -∠AOD= .【变式训练】如例1图,若AOB COD ∠=∠,则图中还有哪两个角相等?为什么?【例2】已知∠BOC=120°,∠AOB=70°,求∠AOC 的度数.【变式训练】2. 已知∠AOB=80°,过O 作射线OC (不同于OA.OB ),满足∠AOC=53∠BOC ,求∠AOC 的度数. 【同步测控】1. 用一副三角板画角时可画出许多不同度数的角,下列哪个度数画不出来………( )A .15°B .75°C .105°D .65°2 如图所示,OD 平分∠AOB ,OE 平分∠BOC ,则∠DOE 是( )A.锐角B.直角C.钝角D.平角 3.如图,要把角钢(1) 弯成120°的钢架(2),则在角钢(1)上截去 的缺口是_________度.4 把一副三角板如图叠合在一起,则∠AOB 的度数为 .DBECO A第2题图第3题图第4题图 D OCABDECBAODEB CACBAAOB 1CD AOB 1C AOB 11BO A2ABC D EA ' F F 'E '第6题图CBA O ED 5. 如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线,如果∠COB=50°,∠DOC=30°,求∠AOE 的度数.第5题图6.如图,OC 是∠AOB 的平分线,OD 是∠BOC 的平分线,那么下列各式中正确的是……………………………………………………( )A.∠COD=12∠AOBB.∠AOD=23∠AOBC.∠BOD=13∠AODD.∠BOC=23∠AOD7. 已知α、β是两个钝角,计算()16αβ+的值,甲、乙、丙、丁四位同学算出了四种不同的答案分别为24°、48°、76°、86°,其中只有一个答案是正确的,则正确的答案是…( ) A.86° B.76° C.48° D.24°8.将两块直角三角板的直角顶点重合,如图所示,若128AOD =∠,则BOC =∠_______.第8题图 第9题图9.将一长方形的纸片按如图方式折叠,BC BD ,为折痕,求CBD ∠=多少度?10. (1) 如图,已知∠AOB=90°,∠BOC=30°,OM 平分∠AOC ,ON 平分∠BOC ,求∠MON 的度数.(2) 如果(1)中,∠AOB=m°,其它条件不变,求∠MON 的度数. (3) 如果(1)中,∠BOC=n°,(∠BOC 为锐角),其它条件不变,求∠MON 的度数.3. 若∠1=50º5' ∠2=50.5º, 则∠1与∠2的大小关系是……………………………( )A. ∠1=∠2B. ∠1>∠2C. ∠1<∠2D. 无法确定4. 由2点15分到2点30分,时钟的分针转过的角度是……………( )A. 30°B. 45°C. 60°D. 90°5. (1) 把下列角度化成度,分,秒的形式:36.42º= º ′ ″;120.59º= º ′ ″.(2) 把下列角度化成度的形式:36º12'= º ;120º42'= º.6. 计算:(1)984536712234''''''+ = ;(2)180º- (7832'5147'︒+︒)= .7. 下列关于角的描述正确的是………………………………………………………( )A. 角的边是两条线段B. 角是由两条射线组成的图形C. 角可以看成一条射线绕着它的端点旋转而成图形D. 角的大小与边的长短有关 8.钟表在整点时,时针与分针的夹角会出现5种度数相等的情况,请分别写出它们的度数 .9. 将图中的角用不同方法表示出来,并填写下表:10. 数一数,找规律:下列各图中,角的射线依次增加,请数一数各图中有几个角?(1) 如果一个角内部有8条射线,那么该图中有______个角. (2) 如果一个角内部有 n 条射线,那么该图中有______个角.∠1∠3 ∠4 ∠α∠BCANOCAMB α4321DEFACB________个角 ________个角 ______个角 _______个角。

7.5-角的大小比较(含答案)

7.5-角的大小比较(含答案)

角的大小比较1.比较角的大小有两种方法,它们是叠合法和 .2.等于90°的角是 .小于直角的角是 .大于直角而小于平角的角是 .3.从一个角的引出的一条,把这个角分成两个的角,这条射线叫做这个角的平分线.4.等腰直角三角形的锐角是°.5.已知∠AOB=60。

,0C是∠AOB的平分线,那么∠BOC= . 典型例题1 如图,(1) ∠AOC= + = -(2) ∠AOC-∠AOB= = -(3) ∠BOC= - - =∠AOC- = -∠COD巩固练习1 如图,0为直线AB上一点,∠AOD=90°.回答下列问题:(1)试比较∠AOB,∠AOD,∠AOE,∠AOC的大小,并找出其中的锐角、直角、钝角、平角.(2)在如图的角中找出三个等量关系.2 如图,∠AOB=135°,∠BOC=80°,OD平分∠BOC,求∠AOD的度数.2 如图所示,OE 平分∠AOB,OD 平分∠BOC,∠AOB=90°,∠EOD=80°,求∠BOC的度数.一、选择题1.如图所示,射线OB,OC将∠AOD分为三部分,如果∠AOC>∠BOD,那么∠AOB与∠COD的大小关系是( )A. ∠AOB>∠CODB. ∠AOB<∠CODC. ∠AoB=∠CODD.无法判断2.下列说法正确的是 ( )A.两个锐角的和是钝角B.一个钝角与一个锐角的差是直角C.大于直角的角是钝角D.钝角一定大于锐角3.如图,已知直线AB,CD相交于点0,A0平分∠EOC,∠EOC=90°,则∠BOD的度数是 ( ) A.20° B.90° C.40° D.45°4.用一副三角板画不出下列哪个度数的角 ( ) A.75° B.90° C.65°D.105°二、填空题5.如图,AB 上CD 于点B ,BE 是∠ABD 的平分线,则∠CBE 的度数为 .6.如图,∠AOB=120°,∠AOC 是直角,0D 为∠AOB 的平分线,根据图形填空: (1)∵0D 平分∠AOB ,∴∠AOD= ∠AOB= °(2)得到:∠B0C ∠COD= °,∴∠AOD-∠B0C= °.(3) ∠AOC+∠BOD-∠COD= .7.如图,点0是直线AB 上一点,已知∠BOD=30°,0E 平分∠AOD ,那么∠AOE 的度数是 度.8.如图,射线OQ 平分∠POR ,OR 平分∠QOS ,则∠POQ= = ;∠POR= ;∠QOR= ∠POS ,∠QOS= ∠POS.三、解答题9.如图∠AOE 是平角,0D 是∠COE 的平分线,0B 是∠AOC 的平分线.(1)求∠BOD 的度数;(2)若∠COD :∠BOC=2 :3,求∠COD 、∠BOC 的度数.10.如图,∠COB=2∠AOC ,OD 平分∠AOB ,且∠COD=19°,求∠AOB.1.已知α,β是两个钝角,计算61 (α+β)的值,甲、乙、丙、丁四位同学计算出了四种不同的答案分别为24°,48°,76°,86°,其中只有一个答案是正确的,正确的答案是 ( )A.24°B.48°C.76°D.86°2.如图,已知∠AOB=64°,0A 1平分∠AOB ,OA 2平分∠AOA 1,0A 3平分∠AOA 2,0A 4平分∠AOA 3,则∠AOA 4的大小为 ( ) A.8° B.4° C.2° D.1°3.已知∠AOB=5∠1,若0C 是∠AOB 的平分线,则∠AOC 是∠1的 ( )A. 21B. 51C. 25D. 52 4.将两块直角三角板的顶点重合,如图所示,若∠AOD=138°,则∠B0C= °.第4题5.在飞机飞行时,飞行方向是用飞行路线与实际南或北方向线之间的夹角大小来表示的.如图,用AN(南北线)与飞行线之间顺时针方向的夹角作为飞行方向角,从A到B的飞行方向角为35°,从A到C的飞行方向角为60°,从A到D的飞行方向角为145°,则AB与AC之间的夹角是°,AD与AC 之间的夹角是°.6.(1)如图,∠AOB=90°,∠AOC为一锐角,0E平分∠BOC,OF平分∠AOC,∠AOC=30°,求∠EOF的度数;(2)如果(1)中∠AOB=a,其他条件不变,求∠EOF的度数;(3)你从(1)(2)的结果中能发现什么规律?。

北师大版初中数学八年级上册《7.5 三角形内角和定理》同步练习卷(含答案解析

北师大版初中数学八年级上册《7.5 三角形内角和定理》同步练习卷(含答案解析

北师大新版八年级上学期《7.5 三角形内角和定理》同步练习卷一.选择题(共23小题)1.如图,在△ABC中,∠C=78°,若沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.258°D.360°2.如图,BE、CF是△ABC的角平分线,∠A=50°,BE、CF相交于D,则∠BDC 的度数是()A.115°B.110°C.100°D.90°3.如图,在△ABC中,AD和BE是角平分线,其交点为O,若∠BOD=70°,则∠ACB的度数为()A.10°B.20°C.30°D.40°4.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°5.如图,∠ABC和∠ACB的外角平分线相交于点D,设∠BDC=β,那么∠A等于()A.180°﹣B.180°﹣2βC.90°﹣βD.90°﹣6.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°7.如图,将△ABC纸片沿DE折叠,使点A落在四边形BCDE外点A'的位置,则下列结论正确的是()A.∠1+∠2=∠A B.∠1+∠2=2∠A C.∠1﹣∠2=∠A D.∠1﹣∠2=2∠A 8.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°9.已知:如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为()A.60°B.65°C.75°D.85°10.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°11.如图△ABC中,∠C=∠ABC=2∠A,BD是边AC上的高,则∠DBC的度数是()A.36°B.26°C.18°D.16°12.如图,△ABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=()A.80°B.82.5°C.90°D.85°13.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°14.如图,△ABC中,BD为△ABC的角平分线,CE为△ABC的高,CE交BD于点F,∠A=80°,∠BCA=50°,那么∠BFC的度数是()A.110°B.l15°C.120°D.125°15.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如图2.照此下去,至多能进行()步.A.3B.4C.5D.616.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°17.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°18.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为()A.40°B.41°C.42°D.43°19.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA 与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°20.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个21.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG 于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的个数是()A.1B.2C.3D.422.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=128°,∠BGC=114°,则∠A的度数为()A.64°B.62°C.70°D.78°23.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=50°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°二.填空题(共17小题)24.如图,在△ABC中,BD平分∠ABC,CE平分∠ACB,BD与CE交于点M.若MN⊥BC于N,∠A=60°,则∠1﹣∠2=度.25.如图所示,在△ABC中,∠A=52°,若∠ABC与∠ACB的角平分线交于点D1,得到∠D1,∠ABD1与∠ACD1的角平分线交于点D2,得到∠D2;依此类推,∠ABD4与∠ACD4的角平分线交于点D5,得到∠D5,则∠D5的度数是.26.如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的一个角折叠,使点C落在△ABC内,∠α=25°,则∠β=.27.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=55°,∠1=95°,则∠2的度数为.28.如图,将△ABC沿着平行于BC的直线折叠,点A落到点A′,若∠C=135°,∠A=15°,则∠A′DB的度数为.29.如图,在△ABC中,D、E分别是边AB、AC上一点,将△ABC沿DE折叠,使点A落在边BC上.若∠A=55°,则∠1+∠2+∠3+∠4=度.30.如图,将△ABC纸片沿DE折叠,使点A落在点A′处,且A′B平分∠ABC,A′C 平分∠ACB,若∠BA′C=110°,则∠1+∠2=.31.如图,在△ABC中,点D是BC边上的一点,∠B=48°,∠BAD=28°,将△ABD 沿AD折叠得到△AED,AE与BC交于点F,则∠AFC=°.32.如图,已知AB、CD相交于点O,且∠A=38°,∠B=58°,∠C=44°,则∠D=.33.如图,在△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于点P,若∠A=70°,则∠BPC=°.34.如图,△ABE和△ACD是△ABC分别沿着AB、AC翻折而成的,若∠1=140°,∠2=25°,则∠α度数为.35.如图,点D、E、F、G、H分别是△ABC的边上一点,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在△ABC内点O处,则∠1+∠2为°.36.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=.37.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E=.(用度数表示)38.如图,在△ABC中,点D、E分别在边BC、AC上,∠DCE=∠DEC,点F在AC、点G在DE的延长线上,∠DFG=∠DGF.若∠EFG=35°,则∠CDF的度数为.39.如图,在△ABC中,∠ABC=100°,∠ACB的平分线交AB边于点E,在AC边取点D,使∠CBD=20°,连接DE,则∠CED的大小=(度).40.如图,在△ABC中,∠A=70°∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若△EFC为直角三角形,则∠BDF的度数为.三.解答题(共9小题)41.如图,在△ABC中,AD是高线,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠EAD与∠BOA的度数.42.在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.43.动手操作:一个三角形的纸片ABC,沿DE折叠,使点A落在点Aˊ处.观察猜想(1)如图1,若∠A=40°,则∠1+∠2=°;若∠A=55°,则∠1+∠2=°;若∠A=n°,则∠1+∠2=°.探索证明:(2)利用图1,探索∠1、∠2与∠A有怎样的关系?请说明理由.拓展应用(3)如图2,把△ABC折叠后,BA′平分∠ABC,CA′平分∠ACB,若∠1+∠2=108°,利用(2)中结论求∠BA′C的度数.44.在△ABC中,BM平分∠ABC交AC于点M,点P是直线AC上一点,过点P 作PH⊥BM于点H.(1)如图1,当∠ACB=110°,∠BAC=30°,且点P与点C重合时,∠APH=°;(2)如图2,当点P在AC的延长线上时,求证:2∠APH=∠ACB﹣∠BAC;(3)如图3,当点P在线段AM上(不含端点)时,①补全图形;②直接写出∠APH、∠ACB、∠BAC之间的数量关系:.45.如图,在△ABC中,∠CAB=∠CBA,过点A向右作AD∥BC,点E是射线AD 上的一个动点,∠ACE的平分线交BA的延长线于点F.(1)若∠ACB=40°,∠ACE=38°,求∠F的度数;(2)在动点E运动的过程中,的值是否发生变化?若不变,求它的值;若变化,请说明理由.46.在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D.(1)如图①,当点F与点A重合,且∠C=50°,∠B=30°时,求∠EFD的度数,并直接写出∠EFD与(∠C﹣∠B)之间的数量关系.(2)如图②,当点F在线段AE上(不与点A重合),∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)当点F在△ABC外部时,在图③中画出符合题意的图形,并直接写出∠EFD 与∠C﹣∠B的数量关系.47.已知:如图,AM,CM分别平分∠BAD和∠BCD.①若∠B=32°,∠D=38°,求∠M的度数;②探索∠M与∠B、∠D的关系并证明你的结论.48.△ABC中,AD是∠BAC的平分线,AE⊥BC,垂足为E,作CF∥AD,交直线AE于点F.设∠B=α,∠ACB=β.(1)若∠B=30°,∠ACB=70°,依题意补全图1,并直接写出∠AFC的度数;(2)如图2,若∠ACB是钝角,求∠AFC的度数(用含α,β的式子表示);(3)如图3,若∠B>∠ACB,直接写出∠AFC的度数(用含α,β的式子表示).49.(1)如图1的图形我们把它称为“8字形”,则∠A,∠B,∠C,∠D四个角的数量关系是;(2)如图2,若∠BCD,∠ADE的角平分线CP,DP交于点P,则∠P与∠A,∠B的数量关系为∠P=;(3)如图3,CM,DN分别平分∠BCD,∠ADE,当∠A+∠B=80°时,试求∠M+∠N的度数(提醒:解决此问题可以直接利用上述结论);(4)如图4,如果∠MCD=∠BCD,∠NDE=∠ADE,当∠A+∠B=n°时,试求∠M+∠N的度数.北师大新版八年级上学期《7.5 三角形内角和定理》同步练习卷参考答案与试题解析一.选择题(共23小题)1.如图,在△ABC中,∠C=78°,若沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.258°D.360°【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=78°+180°=258°.故选:C.【点评】此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.2.如图,BE、CF是△ABC的角平分线,∠A=50°,BE、CF相交于D,则∠BDC 的度数是()A.115°B.110°C.100°D.90°【分析】根据三角形内角和定理得到∠ABC+∠ACB=130°,根据角平分线的定义,三角形内角和定理计算.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵BE、CF是△ABC的角平分线,∴∠EBC=∠ABC,∠FCB=∠ACB,∴∠EBC+∠FCB=×(∠ABC+∠ACB)=65°,∴∠BDC=180°﹣65°=115°,故选:A.【点评】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.3.如图,在△ABC中,AD和BE是角平分线,其交点为O,若∠BOD=70°,则∠ACB的度数为()A.10°B.20°C.30°D.40°【分析】依据三角形外角性质,即可得到∠ABO+∠BAO=∠BOD=70°,再根据角平分线的定义,即可得到∠ABC+∠BAC=140°,进而得出∠C的度数.【解答】解:∵∠BOD是△ABO的外角,∴∠ABO+∠BAO=∠BOD=70°,又∵AD和BE是角平分线,∴∠ABC+∠BAC=2(∠ABO+∠BAO)=2×70°=140°,∴∠ACB=180°﹣140°=40°,故选:D.【点评】本题主要考查了三角形内角和定理的运用,解题时注意:三角形内角和是180°.4.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°【分析】根据角平分线的定义得到∠DCE=∠ACE,∠DBC=∠ABC,根据三角形的外角的性质计算即可.【解答】解:∵BD,CD分别是∠ABC与外角∠ACE的平分线,∴∠DCE=∠ACE,∠DBC=∠ABC,∵∠ACE﹣∠ABC=∠A=70°,∴∠D=∠DCE﹣∠DBC=∠A=35°,故选:B.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.5.如图,∠ABC和∠ACB的外角平分线相交于点D,设∠BDC=β,那么∠A等于()A.180°﹣B.180°﹣2βC.90°﹣βD.90°﹣【分析】在△BCD中利用三角形内角和定理可求出∠BCD+∠CBD的度数,由角平分线的定理可得出∠CBE+∠BCF的度数,由邻补角互补可求出∠ABC+∠ACB 的度数,再在△ABC中利用三角形内角和定理即可求出∠A的度数.【解答】解:∵∠BCD+∠CBD+∠D=180°,∠D=β,∴∠BCD+∠CBD=180°﹣β.∵BD平分∠CBE,CD平分∠BCF,∴∠CBE+∠BCF=2(∠BCD+∠CBD)=360°﹣2β,∴∠ABC+∠ACB=180°﹣∠CBE+180°﹣∠BCF=360°﹣(∠CBE+∠BCF)=2β.又∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣2β.故选:B.【点评】本题考查了三角形内角和定理、邻补角以及角平分线的性质,利用三角形内角和定理、角平分线的性质及邻补角互补求出∠ABC+∠ACB的度数是解题的关键.6.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.7.如图,将△ABC纸片沿DE折叠,使点A落在四边形BCDE外点A'的位置,则下列结论正确的是()A.∠1+∠2=∠A B.∠1+∠2=2∠A C.∠1﹣∠2=∠A D.∠1﹣∠2=2∠A 【分析】根据折叠的性质和三角形的外角的性质解答即可.【解答】解:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,∵∠1=∠A+∠3,∠3=∠A′+∠2,∴∠1=∠A+∠A′+∠2,∴∠1﹣∠2=2∠A,故选:D.【点评】本题考查的是三角形的外角性质和图形的翻折变换,理清图中角与角的关系是解决问题的关键.8.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°【分析】利用角平分线的定义结合∠1的度数可得出∠CAE的值,进而可得出∠DAE、∠BAD的值,在△ABD中利用三角形内角和定理可求出∠B的值,此题得解.【解答】解:∵AE平分∠BAC,∠1=30,∴∠CAE=∠1=30°,∴∠DAE=∠CAE﹣∠2=10°,∴∠BAE=∠1+∠DAE=40°.∵AD⊥BC,∴∠ADB=90°,∴∠B=180°﹣∠BAD﹣∠ADB=50°.故选:D.【点评】本题考查了三角形内角和定理,牢记三角形内角和是180°是解题的关键.9.已知:如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为()A.60°B.65°C.75°D.85°【分析】先根据EF⊥BC,∠DEF=15°可得出∠ADB的度数,再由三角形外角的性质得出∠CAD的度数,根据角平分线的定义得出∠BAC的度数,由三角形内角和定理即可得出结论.【解答】解:∵EF⊥BC,∠DEF=15°,∴∠ADB=90°﹣15°=75°.∵∠C=35°,∴∠CAD=75°﹣35°=40°.∵AD是∠BAC的平分线,∴∠BAC=2∠CAD=80°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣80°﹣35°=65°.故选:B.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.10.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【分析】依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.【点评】本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.11.如图△ABC中,∠C=∠ABC=2∠A,BD是边AC上的高,则∠DBC的度数是()A.36°B.26°C.18°D.16°【分析】根据三角形内角和定理求出∠A和∠C,根据垂直的定义得到∠BDC=90°,计算即可.【解答】解:∵∠A+∠C+∠ABC=180°,∠C=∠ABC=2∠A,∴2∠A+2∠A+∠A=180°,解得,∠A=36°,则∠C=72°,∵BD是边AC上的高,∴∠BDC=90°,∴∠DBC=90°﹣∠C=18°,故选:C.【点评】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.12.如图,△ABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=()A.80°B.82.5°C.90°D.85°【分析】根据三角形的内角和定理可得∠BAC=100°,再利用角平分线的性质得到∠EDC=47.5°,最后利用三角形外角的性质得出结果.【解答】解:∵∠B=45°,∠C=35°,∴∠BAC=180°﹣45°﹣35°=100°,∵AD平分∠BAC,∴∠BAD═50°,∵∠ADC=∠B+∠BAD=50°+45°=95°,∵DE平分∠ADC,∴∠EDC═47.5°,∵∠AED=∠C+∠EDC,∴∠AED=35°+47.5°=82.5°.故选:B.【点评】本题考查了三角形的内角和定理、角平分线的性质及三角形外角的性质,解题的关键是熟练掌握三角形的内角和及三角形外角的性质.13.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,即可解决问题.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠ADE=180°﹣71°﹣71°=38°故选:C.【点评】本题主要考查折叠的性质,掌握折叠前后图形的对应线段和对应角相等是解题的关键.14.如图,△ABC中,BD为△ABC的角平分线,CE为△ABC的高,CE交BD于点F,∠A=80°,∠BCA=50°,那么∠BFC的度数是()A.110°B.l15°C.120°D.125°【分析】依据三角形内角和定理,即可得到∠ABC=50°,依据BD为△ABC的角平分线,可得∠ABD=25°,根据CE为△ABC的高,即可得到∠BEF=90°,再根据三角形外角性质,即可得到∠BFC=∠BEF+∠ABD.【解答】解:∵∠A=80°,∠BCA=50°,∴∠ABC=50°,又∵BD为△ABC的角平分线,∴∠ABD=25°,∵CE为△ABC的高,∴∠BEF=90°,∴∠BFC=∠BEF+∠ABD=90°+25°=115°,故选:B.【点评】本题考查了三角形的内角和定理、三角形外角的性质以及角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.15.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如图2.照此下去,至多能进行()步.A.3B.4C.5D.6【分析】由三角形内角和定理可得出∠ABC+∠ACB=30°,由∠A1BA=∠ABC、∠A1CA=∠ACB结合三角形内角和定理可求出∠A1=120°,同理可求出∠A2=90°、∠A3=60°、…、∠A n=180°﹣30°•(n+1),令∠A n>0°,求出n的最大值即可.【解答】解:∵∠A=150°,∴∠ABC+∠ACB=180°﹣∠A=30°.∵∠A1BA=∠ABC,∠A1CA=∠ACB,∴∠A1BC+∠A1CB=2(∠ABC+∠ACB)=60°,∴∠A1=180°﹣(∠A1BC+∠A1CB)=120°.同理可得:∠A2=90°,∠A3=60°,…,∠A n=180°﹣30°•(n+1),∴当∠A n>0°时,180°﹣30°•(n+1)>0°,解得n<5,∴至多能进行4步.故选:B.【点评】本题考查了三角形内角和定理,根据三角形内角和定理找出∠A n=180°﹣30°•(n+1)是解题的关键.16.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°【分析】延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=(∠A﹣∠D),然后代入数据计算即可得解.【解答】解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=55°,∠D=15°,∴∠P=(55°﹣15°)=20°.故选:B.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线然后整理出∠A、∠D、∠P三者之间的关系式是解题的关键.17.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°【分析】根据三角形的内角和定理和三角形外角性质解答即可.【解答】解:如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°﹣∠C=30°+90°+180°﹣90°=210°,故选:C.【点评】此题考查三角形内角和,关键是根据三角形的内角和定理和三角形外角性质解答.18.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为()A.40°B.41°C.42°D.43°【分析】连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=100°,推出2∠DAO+2∠FBO=100°,推出∠DAO+∠FBO=50°,由此即可解决问题.【解答】解:如图,连接AO、BO.由题意EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO,∵∠CDO+∠CFO=100°,∴2∠DAO+2∠FBO=100°,∴∠DAO+∠FBO=50°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=140°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣140°=40°,故选:A.【点评】本题考查三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识,学会把条件转化的思想.19.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA 与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°【分析】根据翻折的性质得出∠A=∠DOE,∠B=∠FOE,进而得出∠DOF=∠A+∠B,利用三角形内角和解答即可.【解答】解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=139°,∴∠C=180°﹣∠A﹣∠B=180°﹣139°=41°,故选:D.【点评】本题考查三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.20.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,判断出错误;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,∴正确的有①②④,共三个,故选:B.【点评】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键21.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG 于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的个数是()A.1B.2C.3D.4【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【解答】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.∴正确的为:①②③,故选:C.【点评】本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.22.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=128°,∠BGC=114°,则∠A的度数为()A.64°B.62°C.70°D.78°【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y的值,即可求结论.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣128°=52°①,在△BGC中,x+2y=180°﹣114°=66°②,解得:①+②:3x+3y=118°,∴∠A=180°﹣(3x+3y)=180°﹣118°=62°,故选:B.【点评】本题考查了三角形的内角和定理、三等分线的定义,利用整体的思想解决问题比较简便.23.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=50°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°【分析】根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=130°,∠DBC+∠DCB=180°﹣∠DBC=90°,进而可求出∠ABD+∠ACD的度数.【解答】解:在△ABC中,∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=130°﹣90°=40°;故选:C.【点评】本题考查了三角形的内角和定理,解题的关键是熟练掌握三角形的内角和为180°,此题难度不大.二.填空题(共17小题)24.如图,在△ABC中,BD平分∠ABC,CE平分∠ACB,BD与CE交于点M.若MN⊥BC于N,∠A=60°,则∠1﹣∠2=30度.【分析】利用三角形内角和和角平分线的定义,构建方程组即可解决问题;【解答】解:∵BD平分∠ABC,CE平分∠ACB,∴∠MBC=∠ABC,∠MCB=∠ACB,∴∠BMC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=120°,∴∠1+∠BMN=120°①,∵MN⊥BC,∴∠2+∠BMN=90°②,①﹣②得:∠1﹣∠2=30°.故答案为:30【点评】此题考查了三角形内角和定理、角平分线的性质,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.25.如图所示,在△ABC中,∠A=52°,若∠ABC与∠ACB的角平分线交于点D1,得到∠D1,∠ABD1与∠ACD1的角平分线交于点D2,得到∠D2;依此类推,∠ABD4与∠ACD4的角平分线交于点D5,得到∠D5,则∠D5的度数是56°.【分析】根据角平分线的性质和三角形的内角和定理可得.【解答】解:∵∠A=52°,∴∠ABC+∠ACB=180°﹣52°=128°,又∠ABC与∠ACB的角平分线交于D1,∴∠ABD1=∠CBD1=∠ABC,∠ACD1=∠BCD1=∠ACB,∴∠CBD1+∠BCD1=(∠ABC+∠ACB)=×128°=64°,∴∠BD1C=180°﹣(∠ABC+∠ACB)=180°﹣64°=116°,同理∠BD2C=180°﹣(∠ABC+∠ACB)=180°﹣96°=84°,依此类推,∠BD5C=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°.【点评】此题主要考查角平分线的性质和三角形的内角和定理,解决本题的关键是利用三角形内角和定理.26.如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的一个角折叠,使点C落在△ABC内,∠α=25°,则∠β=65°.【分析】首先根据四边形内角和定理可得:∠α+∠β+(180°﹣∠C)+∠A+∠B=360°,再算出∠C的度数,代入相应数值,即可算出∠β.【解答】解:根据四边形内角和定理可得:∠α+∠β+(180°﹣∠C)+∠A+∠B=360°,∵∠A=75°,∠B=60°,∴∠C=45°,∵∠α=25°,∴25°+∠β+180°﹣45°+75°+60°=360°,解得∠β=65°.故答案为:65°.【点评】本题主要考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.27.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=55°,∠1=95°,则∠2的度数为15°.【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=125°,再根据邻补角的性质可得∠FEB+∠EFC=360°﹣125°=235°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=235°,然后计算出∠1+∠2的度数,进而得到答案.【解答】解:∵∠A=55°,∴∠AEF+∠AFE=180°﹣55°=125°,∴∠FEB+∠EFC=360°﹣125°=235°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=235°,∴∠1+∠2=235°﹣125°=110°,∵∠1=95°,∴∠2=110°﹣95°=15°,故答案为:15°.【点评】本题考查了三角形的内角和定理,翻折变换的性质,四边形的内角和等于360°,熟记定理并准确识图是解题的关键.28.如图,将△ABC沿着平行于BC的直线折叠,点A落到点A′,若∠C=135°,∠A=15°,则∠A′DB的度数为120°.【分析】根据三角形的内角和等于180°求出∠B,根据两直线平行,同位角相等可得∠ADE=∠B,再根据翻折变换的性质可得∠A′DE=∠ADE,然后根据平角等于180°列式计算即可得解.【解答】解:∵∠C=135°,∠A=15°,∴∠B=180°﹣∠A﹣∠C=180°﹣15°﹣135°=30°,∵△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠ADE=∠B=30°,∠A′DE=∠ADE=30°,∴∠A′DB=180°﹣30°﹣30°=120°.故答案为120°.【点评】本题考查了平行线的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.29.如图,在△ABC中,D、E分别是边AB、AC上一点,将△ABC沿DE折叠,使点A落在边BC上.若∠A=55°,则∠1+∠2+∠3+∠4=235度.【分析】依据三角形内角和定理,可得△ABC中,∠B+∠C=125°,再根据∠1+∠2+∠B=180°,∠3+∠4+∠C=180°,即可得出∠1+∠2+∠3+∠4=360°﹣(∠B+∠C)=235°.【解答】解:∵∠A=55°,∴△ABC中,∠B+∠C=125°,又∵∠1+∠2+∠B=180°,∠3+∠4+∠C=180°,∴∠1+∠2+∠3+∠4=360°﹣(∠B+∠C)=360°﹣125°=235°,故答案为:235.【点评】本题主要考查了三角形的内角和定理,综合运用各定理是解答此题的关键.30.如图,将△ABC纸片沿DE折叠,使点A落在点A′处,且A′B平分∠ABC,A′C 平分∠ACB,若∠BA′C=110°,则∠1+∠2=80°.【分析】连接AA′.首先求出∠BAC,再证明∠1+∠2=2∠BAC即可解决问题.【解答】解:连接AA′.∵A'B平分∠ABC,A'C平分∠ACB,∠BA'C=110°,∴∠A′BC+∠A′CB=70°,∴∠ABC+∠ACB=140°,∴∠BAC=180°﹣140°=40°,∵∠1=∠DAA′+∠DA′A,∠2=∠EAA′+∠EA′A,∵∠DAA′=∠DA′A,∠EAA′=∠EA′A,∴∠1+∠2=2(∠DAA′+∠EAA′)=2∠BAC=80°,故答案为80°.【点评】本题考查三角形的内角和定理、角平分线的定义、三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识,属于中考常考题型.31.如图,在△ABC中,点D是BC边上的一点,∠B=48°,∠BAD=28°,将△ABD 沿AD折叠得到△AED,AE与BC交于点F,则∠AFC=104°.【分析】根据折叠的性质求出∠FAD=∠BAD=28°,根据三角形外角性质求出∠ADF,再根据三角形外角性质求出∠AFC即可.【解答】解:∵∠BAD=28°,将△ABD沿AD折叠得到△AED,AE与BC交于点F,∴∠BAD=∠FAD=28°,∵∠B=48°,∴∠ADF=∠B+∠BAD=48°+28°=76°,∴∠AFC=∠FAD+∠ADF=28°+76°=104°,故答案为:104.【点评】本题考查了折叠的性质和三角形外角的性质,能根据折叠的性质求出∠FAD的度数是解此题的关键.32.如图,已知AB、CD相交于点O,且∠A=38°,∠B=58°,∠C=44°,则∠D= 64°.【分析】根据三角形内角和定理即可求出答案.【解答】解:∵∠A+∠D=∠C+∠B,∴∠D=64°,故答案为:64°【点评】本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理,本题属于基础题型.33.如图,在△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于点P,若∠A=70°,则∠BPC=110°.【分析】根据四边形的内角和等于360°,求出∠DPE的度数,再根据对顶角相等解答.【解答】解:∵CD、BE分别是AB、AC边上的高,∴∠DPE=360°﹣90°×2﹣70°=110°,∴∠BPC=∠DPE=110°.故答案为:110°.【点评】本题考查了多边形的内角和,对顶角相等的性质,熟记定理并准确识图理清图中各角度之间的关系是解题的关键.34.如图,△ABE和△ACD是△ABC分别沿着AB、AC翻折而成的,若∠1=140°,∠2=25°,则∠α度数为80°.【分析】依据∠1=140°,∠2=25°,可得∠3=15°,利用翻折变换前后对应角不变,得出∠2=∠EBA,∠3=∠ACD,进而得出∠BCD+∠CBE的度数,再根据三角形外角性质,即可得到∠α的度数.【解答】解:∵∠1=140°,∠2=25°,∴∠3=15°,由折叠可得,∠2=∠EBA=25°,∠3=∠ACD=15°,∴∠EBC=50°,∠BCD=30°,∴由三角形外角性质可得,∠α=∠EBC+∠DCB=80°,故答案为:80°.【点评】此题主要考查了翻折变换的性质以及三角形外角的性质的运用,利用翻折变换前后对应角不变得出是解题关键.35.如图,点D、E、F、G、H分别是△ABC的边上一点,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在△ABC内点O处,则∠1+∠2为180°.【分析】根据折叠的性质得:∠A=∠DOE,∠B=∠GOH,∠C=∠EOF,中间以O 的顶点的周角为360°,和三角形内角和定理可得结论.【解答】解:由折叠的性质得:∠A=∠DOE,∠B=∠GOH,∠C=∠EOF,∵∠A+∠B+∠C=180°,∴∠DOE+∠GOH+∠EOF=180°,∴∠1+∠2=360°﹣180°=180°,故答案为;180.【点评】本题考查了三角形内角和定理和折叠的性质,熟练掌握折叠前后的两个角相等是关键.36.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=80°.【分析】根据三角形的内角和定理,及角平分线上的性质先计算∠ABC+∠ACB 的度数,从而得出∠A的度数.【解答】解:如图,连接BC.∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABE=∠DBE=∠ABD,∠ACF=∠DCF=∠ACD,又∠BDC=140°,∠BGC=110°,∴∠DBC+∠DCB=40°,∠GBC+∠GCB=70°,∴∠EBD+∠FCD=70°﹣40°=30°,∴∠ABE+∠ACF=30°,∴∠ABE+∠ACF+∠GBC+∠GCB=70°+30°=100°,即∠ABC+∠ACB=100°,∴∠A=80°.故答案为:80°.【点评】本题考查角平分线的性质及三角形的内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.37.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E=180°.(用度数表示)【分析】根据三角形外角性质,可得∠1=∠C+∠2,∠2=∠A+∠D,那么有∠1=∠C+∠A+∠D,再根据三角形内角和定理有∠1+∠B+∠E=180°,从而易求∠A+∠B+∠C+∠D+∠E=180°.【解答】解:如右图所示,∵∠1=∠C+∠2,∠2=∠A+∠D,∴∠1=∠C+∠A+∠D,又∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案是:180°.【点评】本题考查了三角形内角和定理、三角形外角的性质.三角形的外角等于和它不相邻的两个内角的和.38.如图,在△ABC中,点D、E分别在边BC、AC上,∠DCE=∠DEC,点F在AC、点G在DE的延长线上,∠DFG=∠DGF.若∠EFG=35°,则∠CDF的度数为70°.【分析】根据三角形内角和定理求出x+y=145,在△FDC中,根据三角形内角和定理求出即可.【解答】解:∵∠DCE=∠DEC,∠DFG=∠DGF,∴设∠DCE=∠DEC=x°,∠DFG=∠DGF=y°,则∠FEG=∠DEC=x°,∵在△GFE中,∠EFG=35°,∴∠FEG+∠DGF=x°+y°=180°﹣35°=145°,即x+y=145,在△FDC中,∠CDF=180°﹣∠DCE﹣∠DFC=180°﹣x°﹣(y°﹣35°)=215°﹣(x°+y°)=70°,故答案为:70°.【点评】本题考查了三角形内角和定理,能求出x+y=145是解此题的关键.39.如图,在△ABC中,∠ABC=100°,∠ACB的平分线交AB边于点E,在AC边取点D,使∠CBD=20°,连接DE,则∠CED的大小=10(度).【分析】根据题意和图象,通过作辅助线,可以求得∠CED的度数,本题得以解决.【解答】解:延长CB到F,∵在△ABC中,∠ABC=100°,∠CBD=20°,∴∠ABF=80°,∠ABD=80°,∴AB平分∠FBD,又∵∠ACB的平分线交AB边于点E,∴点E到边BF,BD,AC的距离相等,∴点E在∠ADB的平分线上,即DE平分∠ADB,∵∠DBC=∠ADB﹣∠ACB,∠DBC=20°,∴,∴10°=,∵∠DEC=∠ADE﹣∠ACE=,∴∠DEC=10°,故答案为:10.【点评】本题考查三角形内角和定理,解答本题的关键是明确题意,利用数形结合的思想解答.40.如图,在△ABC中,∠A=70°∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若△EFC为直角三角形,则∠BDF的度数为110°或50°.【分析】由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC ﹣∠B可得答案.【解答】解:∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;综上,∠BDF的度数为110°或50°,故答案为:110°或50°.【点评】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在日常生活中,如果司机师傅判断失误 就会发生交通事故,造成悲剧。 以上的撞车事故就是由于两个司机师傅判 断两车的夹角错误造成的,那么我们如 何判断两个角的大小呢?
1、你知道∠A、∠B、 ∠C 、∠P、 ∠Q、 ∠O的度数吗?
30°
45°
60°
45°
利用一副三角尺,你能画出哪 些度数的角?
15º ,30º ,45º ,60º , 90º ,105º ,120º , 135º ,150º ,165பைடு நூலகம் , 180º
请同学们试一试:如何 比较∠1和 ∠2 的大小
2
1
度量法
52度
1
2
66度
∠1
<
∠2
叠合法
比较∠1和 ∠2 的大小
2 1
你 还 有 其 他 方 法 吗
以上我们用了哪两种方法比较两 个角的大小,除此之外,我们还 有其它方法吗?
度量法
叠合法
角的分类:
直角(等于90度的角)

锐角(小于90度的角)
(2)如果∠AOE=140度,∠COD=30度,那么
∠AOB是多少度?
D E C B
O
A
谈谈本节课的要点!
1比较角的大小 度量法和叠合法 2角平分线的概念,会用量角器画角平分线
3了解角的和差,会进行简单的运算
你有哪些困惑?
C
图中的钝角有∠AOD,∠BOE;
E D
同学们,你能说出图中有几个角吗? 它们有什么关系呢?
A
B
1 2
o
C
等如 ,果 它图 们中 又的 有 ∠1 什和 么 ∠2 关 系相
• 角平分线的定义:从一个角 的顶点出发,把一个角分成 相等的两个角的射线,叫做 这个角的平分线。(或者叫 做角的二等分线)
角的和差
钝角(大于90度且小于180度的角)
例题1:根据图解下列问题: (1)比较∠AOB,∠AOC,∠AOD,∠AOE的大小; (2)找出图中的直角、锐角和钝角。
A
解(1)由图可以看出:
∠AOB﹤∠AOC﹤∠AOD﹤∠AOE
O
B
(2)图中的直角有∠AOC,∠BOD,∠COE 图中的锐角有∠AOB,∠BOC, ∠COD,∠DOE;
1.如图,填空: (1) ABC ABD ____; DBC
(2) ADB ADC ____ . BDC
BD 2. 是ABC 的平分线,那么, ABD _____ CBD;
练习:已知 OB是∠AOC的平分线,OD是 ∠COE平 分线。
(1)如果∠AOB=40度,∠DOE=30度,那么 ∠BOD是多少度?
相关文档
最新文档